

	Clang 3.7 Release Notes

Using Clang as a Compiler

	Clang Compiler User’s Manual

	Clang Language Extensions

	Attributes in Clang

	Cross-compilation using Clang

	Thread Safety Analysis

	AddressSanitizer

	ThreadSanitizer

	MemorySanitizer

	DataFlowSanitizer

	LeakSanitizer

	SanitizerCoverage

	Sanitizer special case list

	Control Flow Integrity

	SafeStack

	Modules

	MSVC compatibility

	Clang “man” pages

	Frequently Asked Questions (FAQ)

Using Clang as a Library

	Choosing the Right Interface for Your Application

	External Clang Examples

	Introduction to the Clang AST

	LibTooling

	LibFormat

	Clang Plugins

	How to write RecursiveASTVisitor based ASTFrontendActions.

	Tutorial for building tools using LibTooling and LibASTMatchers

	Matching the Clang AST

	How To Setup Clang Tooling For LLVM

	JSON Compilation Database Format Specification

Using Clang Tools

	Overview

	ClangCheck

	ClangFormat

	Clang-Format Style Options

Design Documents

	“Clang” CFE Internals Manual

	Driver Design & Internals

	Pretokenized Headers (PTH)

	Precompiled Header and Modules Internals

Indices and tables

	Index

	Module Index

	Search Page

Clang 3.7 Release Notes

	Introduction

	What’s New in Clang 3.7?
	Major New Features

	Improvements to Clang’s diagnostics

	New Compiler Flags

	Objective-C Language Changes in Clang

	Profile Guided Optimization

	OpenMP Support

	Internal API Changes

	Static Analyzer

	clang-tidy

	SystemZ

	Last release which will run on Windows XP and Windows Vista

	Additional Information

Written by the LLVM Team [http://llvm.org/]

Introduction

This document contains the release notes for the Clang C/C++/Objective-C
frontend, part of the LLVM Compiler Infrastructure, release 3.7. Here we
describe the status of Clang in some detail, including major
improvements from the previous release and new feature work. For the
general LLVM release notes, see the LLVM
documentation [http://llvm.org/docs/ReleaseNotes.html]. All LLVM
releases may be downloaded from the LLVM releases web
site [http://llvm.org/releases/].

For more information about Clang or LLVM, including information about
the latest release, please check out the main please see the Clang Web
Site [http://clang.llvm.org] or the LLVM Web
Site [http://llvm.org].

What’s New in Clang 3.7?

Some of the major new features and improvements to Clang are listed
here. Generic improvements to Clang as a whole or to its underlying
infrastructure are described first, followed by language-specific
sections with improvements to Clang’s support for those languages.

Major New Features

	Use of the __declspec language extension for declaration attributes now
requires passing the -fms-extensions or -fborland compiler flag. This language
extension is also enabled when compiling CUDA code, but its use should be
viewed as an implementation detail that is subject to change.

	On Windows targets, some uses of the __try, __except, and
__finally language constructs are supported in Clang 3.7. MSVC-compatible
C++ exceptions are not yet supported, however.

	Clang 3.7 fully supports OpenMP 3.1 and reported to work on many platforms,
including x86, x86-64 and Power. Also, pragma omp simd from OpenMP 4.0 is
supported as well. See below for details.

	Clang 3.7 includes an implementation of control flow integrity, a security hardening mechanism.

Improvements to Clang’s diagnostics

Clang’s diagnostics are constantly being improved to catch more issues,
explain them more clearly, and provide more accurate source information
about them. The improvements since the 3.6 release include:

	-Wrange-loop-analysis analyzes the loop variable type and the container type
to determine whether copies are made of the container elements. If possible,
suggest a const reference type to prevent copies, or a non-reference type
to indicate a copy is made.

	-Wredundant-move warns when a parameter variable is moved on return and the
return type is the same as the variable. Returning the variable directly
will already make a move, so the call is not needed.

	-Wpessimizing-move warns when a local variable is moved on return and the
return type is the same as the variable. Copy elision cannot take place with
a move, but can take place if the variable is returned directly.

	-Wmove is a new warning group which has the previous two warnings,
-Wredundant-move and -Wpessimizing-move, as well as previous warning
-Wself-move. In addition, this group is part of -Wmost and -Wall now.

	-Winfinite-recursion, a warning for functions that only call themselves,
is now part of -Wmost and -Wall.

	-Wobjc-circular-container prevents creation of circular containers,
it covers NSMutableArray, NSMutableSet, NSMutableDictionary,
NSMutableOrderedSet and all their subclasses.

New Compiler Flags

The sized deallocation feature of C++14 is now controlled by the
-fsized-deallocation flag. This feature relies on library support that
isn’t yet widely deployed, so the user must supply an extra flag to get the
extra functionality.

Objective-C Language Changes in Clang

	objc_boxable attribute was added. Structs and unions marked with this attribute can be
used with boxed expressions (@(...)) to create NSValue.

Profile Guided Optimization

Clang now accepts GCC-compatible flags for profile guided optimization (PGO).
You can now use -fprofile-generate=<dir>, -fprofile-use=<dir>,
-fno-profile-generate and -fno-profile-use. These flags have the
same semantics as their GCC counterparts. However, the generated profile
is still LLVM-specific. PGO profiles generated with Clang cannot be used
by GCC and vice-versa.

Clang now emits function entry counts in profile-instrumented binaries.
This has improved the computation of weights and frequencies in
profile analysis.

OpenMP Support

OpenMP 3.1 is fully supported, but disabled by default. To enable it, please use
the -fopenmp=libomp command line option. Your feedback (positive or negative) on
using OpenMP-enabled clang would be much appreciated; please share it either on
cfe-dev [http://lists.llvm.org/mailman/listinfo/cfe-dev] or openmp-dev [http://lists.llvm.org/mailman/listinfo/openmp-dev] mailing lists.

In addition to OpenMP 3.1, several important elements of the 4.0 version of the
standard are supported as well:

	omp simd, omp for simd and omp parallel for simd pragmas

	atomic constructs

	proc_bind clause of omp parallel pragma

	depend clause of omp task pragma (except for array sections)

	omp cancel and omp cancellation point pragmas

	omp taskgroup pragma

Internal API Changes

These are major API changes that have happened since the 3.6 release of
Clang. If upgrading an external codebase that uses Clang as a library,
this section should help get you past the largest hurdles of upgrading.

	Some of the PPCallbacks interface now deals in MacroDefinition
objects instead of MacroDirective objects. This allows preserving
full information on macros imported from modules.

	clang-c/Index.h no longer #includes clang-c/Documentation.h.
You now need to explicitly #include "clang-c/Documentation.h" if
you use the libclang documentation API.

Static Analyzer

	The generated plists now contain the name of the check that generated it.

	Configuration options can now be passed to the checkers (not just the static
analyzer core).

	New check for dereferencing object that the result of a zero-length
allocation.

	Also check functions in precompiled headers.

	Properly handle alloca() in some checkers.

	Various improvements to the retain count checker.

clang-tidy

Added new checks:

	google-global-names-in-headers: flag global namespace pollution in header
files.

	misc-assert-side-effect: detects assert() conditions with side effects
which can cause different behavior in debug / release builds.

	misc-assign-operator-signature: finds declarations of assign operators with
the wrong return and/or argument types.

	misc-inaccurate-erase: warns when some elements of a container are not
removed due to using the erase() algorithm incorrectly.

	misc-inefficient-algorithm: warns on inefficient use of STL algorithms on
associative containers.

	misc-macro-parentheses: finds macros that can have unexpected behavior due
to missing parentheses.

	misc-macro-repeated-side-effects: checks for repeated argument with side
effects in macros.

	misc-noexcept-move-constructor: flags user-defined move constructors and
assignment operators not marked with noexcept or marked with
noexcept(expr) where expr evaluates to false (but is not a
false literal itself).

	misc-static-assert: replaces assert() with static_assert() if the
condition is evaluable at compile time.

	readability-container-size-empty: checks whether a call to the size()
method can be replaced with a call to empty().

	readability-else-after-return: flags conditional statements having the
else branch, when the true branch has a return as the last statement.

	readability-redundant-string-cstr: finds unnecessary calls to
std::string::c_str().

	readability-shrink-to-fit: replaces copy and swap tricks on shrinkable
containers with the shrink_to_fit() method call.

	readability-simplify-boolean-expr: looks for boolean expressions involving
boolean constants and simplifies them to use the appropriate boolean
expression directly (if (x == true) ... -> if (x), etc.)

SystemZ

	Clang will now always default to the z10 processor when compiling
without any -march= option. Previous releases used to automatically
detect the current host CPU when compiling natively. If you wish to
still have clang detect the current host CPU, you now need to use the
-march=native option.

	Clang now provides the <s390intrin.h> header file.

	Clang now supports the transactional-execution facility and
provides associated builtins and the <htmintrin.h> and
<htmxlintrin.h> header files. Support is enabled by default
on zEC12 and above, and can additionally be enabled or disabled
via the -mhtm / -mno-htm command line options.

	Clang now supports the vector facility. This includes a
change in the ABI to pass arguments and return values of
vector types in vector registers, as well as a change in
the default alignment of vector types. Support is enabled
by default on z13 and above, and can additionally be enabled
or disabled via the -mvx / -mno-vx command line options.

	Clang now supports the System z vector language extension,
providing a “vector” keyword to define vector types, and a
set of builtins defined in the <vecintrin.h> header file.
This can be enabled via the -fzvector command line option.
For compatibility with GCC, Clang also supports the
-mzvector option as an alias.

	Several cases of ABI incompatibility with GCC have been fixed.

Last release which will run on Windows XP and Windows Vista

This is expected to the be the last major release of Clang that will support
running on Windows XP and Windows Vista. For the next major release the
minimum Windows version requirement will be Windows 7.

Additional Information

A wide variety of additional information is available on the Clang web
page [http://clang.llvm.org/]. The web page contains versions of the
API documentation which are up-to-date with the Subversion version of
the source code. You can access versions of these documents specific to
this release by going into the “clang/docs/” directory in the Clang
tree.

If you have any questions or comments about Clang, please feel free to
contact us via the mailing
list [http://lists.llvm.org/mailman/listinfo/cfe-dev].

Clang Compiler User’s Manual

	Introduction
	Terminology

	Basic Usage

	Command Line Options
	Options to Control Error and Warning Messages
	Formatting of Diagnostics

	Individual Warning Groups

	Options to Control Clang Crash Diagnostics

	Options to Emit Optimization Reports
	Current limitations

	Other Options

	Language and Target-Independent Features
	Controlling Errors and Warnings
	Controlling How Clang Displays Diagnostics

	Diagnostic Mappings

	Diagnostic Categories

	Controlling Diagnostics via Command Line Flags

	Controlling Diagnostics via Pragmas

	Controlling Diagnostics in System Headers

	Enabling All Diagnostics

	Controlling Static Analyzer Diagnostics

	Precompiled Headers
	Generating a PCH File

	Using a PCH File

	Relocatable PCH Files

	Controlling Code Generation

	Profile Guided Optimization
	Differences Between Sampling and Instrumentation

	Using Sampling Profilers
	Sample Profile Formats

	Sample Profile Text Format

	Profiling with Instrumentation

	Controlling Size of Debug Information

	Comment Parsing Options

	C Language Features
	Extensions supported by clang

	Differences between various standard modes

	GCC extensions not implemented yet

	Intentionally unsupported GCC extensions

	Microsoft extensions

	C++ Language Features
	Controlling implementation limits

	Objective-C Language Features

	Objective-C++ Language Features

	Target-Specific Features and Limitations
	CPU Architectures Features and Limitations
	X86

	ARM

	PowerPC

	Other platforms

	Operating System Features and Limitations
	Darwin (Mac OS X)

	Windows
	Cygwin

	MinGW32

	MinGW-w64

	clang-cl
	Command-Line Options
	The /fallback Option

Introduction

The Clang Compiler is an open-source compiler for the C family of
programming languages, aiming to be the best in class implementation of
these languages. Clang builds on the LLVM optimizer and code generator,
allowing it to provide high-quality optimization and code generation
support for many targets. For more general information, please see the
Clang Web Site [http://clang.llvm.org] or the LLVM Web
Site [http://llvm.org].

This document describes important notes about using Clang as a compiler
for an end-user, documenting the supported features, command line
options, etc. If you are interested in using Clang to build a tool that
processes code, please see “Clang” CFE Internals Manual. If you are interested in the
Clang Static Analyzer [http://clang-analyzer.llvm.org], please see its web
page.

Clang is designed to support the C family of programming languages,
which includes C, Objective-C, C++, and
Objective-C++ as well as many dialects of those. For
language-specific information, please see the corresponding language
specific section:

	C Language: K&R C, ANSI C89, ISO C90, ISO C94 (C89+AMD1), ISO
C99 (+TC1, TC2, TC3).

	Objective-C Language: ObjC 1, ObjC 2, ObjC 2.1, plus
variants depending on base language.

	C++ Language

	Objective C++ Language

In addition to these base languages and their dialects, Clang supports a
broad variety of language extensions, which are documented in the
corresponding language section. These extensions are provided to be
compatible with the GCC, Microsoft, and other popular compilers as well
as to improve functionality through Clang-specific features. The Clang
driver and language features are intentionally designed to be as
compatible with the GNU GCC compiler as reasonably possible, easing
migration from GCC to Clang. In most cases, code “just works”.
Clang also provides an alternative driver, clang-cl, that is designed
to be compatible with the Visual C++ compiler, cl.exe.

In addition to language specific features, Clang has a variety of
features that depend on what CPU architecture or operating system is
being compiled for. Please see the Target-Specific Features and
Limitations section for more details.

The rest of the introduction introduces some basic compiler
terminology that is used throughout this manual and
contains a basic introduction to using Clang as a
command line compiler.

Terminology

Front end, parser, backend, preprocessor, undefined behavior,
diagnostic, optimizer

Basic Usage

Intro to how to use a C compiler for newbies.

compile + link compile then link debug info enabling optimizations
picking a language to use, defaults to C11 by default. Autosenses based
on extension. using a makefile

Command Line Options

This section is generally an index into other sections. It does not go
into depth on the ones that are covered by other sections. However, the
first part introduces the language selection and other high level
options like -c, -g, etc.

Options to Control Error and Warning Messages

	
-Werror

	Turn warnings into errors.

-Werror=foo

Turn warning “foo” into an error.

	
-Wno-error=foo

	Turn warning “foo” into an warning even if -Werror is specified.

	
-Wfoo

	Enable warning “foo”.

	
-Wno-foo

	Disable warning “foo”.

	
-w

	Disable all diagnostics.

	
-Weverything

	Enable all diagnostics.

	
-pedantic

	Warn on language extensions.

	
-pedantic-errors

	Error on language extensions.

	
-Wsystem-headers

	Enable warnings from system headers.

	
-ferror-limit=123

	Stop emitting diagnostics after 123 errors have been produced. The default is
20, and the error limit can be disabled with -ferror-limit=0.

	
-ftemplate-backtrace-limit=123

	Only emit up to 123 template instantiation notes within the template
instantiation backtrace for a single warning or error. The default is 10, and
the limit can be disabled with -ftemplate-backtrace-limit=0.

Formatting of Diagnostics

Clang aims to produce beautiful diagnostics by default, particularly for
new users that first come to Clang. However, different people have
different preferences, and sometimes Clang is driven by another program
that wants to parse simple and consistent output, not a person. For
these cases, Clang provides a wide range of options to control the exact
output format of the diagnostics that it generates.

	-f[no-]show-column

	Print column number in diagnostic.

This option, which defaults to on, controls whether or not Clang
prints the column number of a diagnostic. For example, when this is
enabled, Clang will print something like:

test.c:28:8: warning: extra tokens at end of #endif directive [-Wextra-tokens]
#endif bad
 ^
 //

When this is disabled, Clang will print “test.c:28: warning...” with
no column number.

The printed column numbers count bytes from the beginning of the
line; take care if your source contains multibyte characters.

	-f[no-]show-source-location

	Print source file/line/column information in diagnostic.

This option, which defaults to on, controls whether or not Clang
prints the filename, line number and column number of a diagnostic.
For example, when this is enabled, Clang will print something like:

test.c:28:8: warning: extra tokens at end of #endif directive [-Wextra-tokens]
#endif bad
 ^
 //

When this is disabled, Clang will not print the “test.c:28:8: ”
part.

	-f[no-]caret-diagnostics

	Print source line and ranges from source code in diagnostic.
This option, which defaults to on, controls whether or not Clang
prints the source line, source ranges, and caret when emitting a
diagnostic. For example, when this is enabled, Clang will print
something like:

test.c:28:8: warning: extra tokens at end of #endif directive [-Wextra-tokens]
#endif bad
 ^
 //

	-f[no-]color-diagnostics

	This option, which defaults to on when a color-capable terminal is
detected, controls whether or not Clang prints diagnostics in color.

When this option is enabled, Clang will use colors to highlight
specific parts of the diagnostic, e.g.,

 test.c:28:8: warning: extra tokens at end of #endif directive [-Wextra-tokens]
 #endif bad
 ^
 //

When this is disabled, Clang will just print:

test.c:2:8: warning: extra tokens at end of #endif directive [-Wextra-tokens]
#endif bad
 ^
 //

	-fansi-escape-codes

	Controls whether ANSI escape codes are used instead of the Windows Console
API to output colored diagnostics. This option is only used on Windows and
defaults to off.

	
-fdiagnostics-format=clang/msvc/vi

	Changes diagnostic output format to better match IDEs and command line tools.

This option controls the output format of the filename, line number,
and column printed in diagnostic messages. The options, and their
affect on formatting a simple conversion diagnostic, follow:

	clang (default)

	t.c:3:11: warning: conversion specifies type 'char *' but the argument has type 'int'

	msvc

	t.c(3,11) : warning: conversion specifies type 'char *' but the argument has type 'int'

	vi

	t.c +3:11: warning: conversion specifies type 'char *' but the argument has type 'int'

	-f[no-]diagnostics-show-option

	Enable [-Woption] information in diagnostic line.

This option, which defaults to on, controls whether or not Clang
prints the associated warning group
option name when outputting a warning diagnostic. For example, in
this output:

test.c:28:8: warning: extra tokens at end of #endif directive [-Wextra-tokens]
#endif bad
 ^
 //

Passing -fno-diagnostics-show-option will prevent Clang from
printing the [-Wextra-tokens] information in
the diagnostic. This information tells you the flag needed to enable
or disable the diagnostic, either from the command line or through
#pragma GCC diagnostic.

	
-fdiagnostics-show-category=none/id/name

	Enable printing category information in diagnostic line.

This option, which defaults to “none”, controls whether or not Clang
prints the category associated with a diagnostic when emitting it.
Each diagnostic may or many not have an associated category, if it
has one, it is listed in the diagnostic categorization field of the
diagnostic line (in the []’s).

For example, a format string warning will produce these three
renditions based on the setting of this option:

t.c:3:11: warning: conversion specifies type 'char *' but the argument has type 'int' [-Wformat]
t.c:3:11: warning: conversion specifies type 'char *' but the argument has type 'int' [-Wformat,1]
t.c:3:11: warning: conversion specifies type 'char *' but the argument has type 'int' [-Wformat,Format String]

This category can be used by clients that want to group diagnostics
by category, so it should be a high level category. We want dozens
of these, not hundreds or thousands of them.

	-f[no-]diagnostics-fixit-info

	Enable “FixIt” information in the diagnostics output.

This option, which defaults to on, controls whether or not Clang
prints the information on how to fix a specific diagnostic
underneath it when it knows. For example, in this output:

test.c:28:8: warning: extra tokens at end of #endif directive [-Wextra-tokens]
#endif bad
 ^
 //

Passing -fno-diagnostics-fixit-info will prevent Clang from
printing the “//” line at the end of the message. This information
is useful for users who may not understand what is wrong, but can be
confusing for machine parsing.

	-fdiagnostics-print-source-range-info

	Print machine parsable information about source ranges.
This option makes Clang print information about source ranges in a machine
parsable format after the file/line/column number information. The
information is a simple sequence of brace enclosed ranges, where each range
lists the start and end line/column locations. For example, in this output:

exprs.c:47:15:{47:8-47:14}{47:17-47:24}: error: invalid operands to binary expression ('int *' and '_Complex float')
 P = (P-42) + Gamma*4;
       ~~~~~~ ^ ~~~~~~~





The {}’s are generated by -fdiagnostics-print-source-range-info.

The printed column numbers count bytes from the beginning of the
line; take care if your source contains multibyte characters.






	
-fdiagnostics-parseable-fixits

	Print Fix-Its in a machine parseable form.

This option makes Clang print available Fix-Its in a machine
parseable format at the end of diagnostics. The following example
illustrates the format:

fix-it:"t.cpp":{7:25-7:29}:"Gamma"





The range printed is a half-open range, so in this example the
characters at column 25 up to but not including column 29 on line 7
in t.cpp should be replaced with the string “Gamma”. Either the
range or the replacement string may be empty (representing strict
insertions and strict erasures, respectively). Both the file name
and the insertion string escape backslash (as “\\”), tabs (as
“\t”), newlines (as “\n”), double quotes(as “\””) and
non-printable characters (as octal “\xxx”).

The printed column numbers count bytes from the beginning of the
line; take care if your source contains multibyte characters.






	
-fno-elide-type

	Turns off elision in template type printing.

The default for template type printing is to elide as many template
arguments as possible, removing those which are the same in both
template types, leaving only the differences. Adding this flag will
print all the template arguments. If supported by the terminal,
highlighting will still appear on differing arguments.

Default:

t.cc:4:5: note: candidate function not viable: no known conversion from 'vector<map<[...], map<float, [...]>>>' to 'vector<map<[...], map<double, [...]>>>' for 1st argument;





-fno-elide-type:

t.cc:4:5: note: candidate function not viable: no known conversion from 'vector<map<int, map<float, int>>>' to 'vector<map<int, map<double, int>>>' for 1st argument;










	
-fdiagnostics-show-template-tree

	Template type diffing prints a text tree.

For diffing large templated types, this option will cause Clang to
display the templates as an indented text tree, one argument per
line, with differences marked inline. This is compatible with
-fno-elide-type.

Default:

t.cc:4:5: note: candidate function not viable: no known conversion from 'vector<map<[...], map<float, [...]>>>' to 'vector<map<[...], map<double, [...]>>>' for 1st argument;





With -fdiagnostics-show-template-tree:

t.cc:4:5: note: candidate function not viable: no known conversion for 1st argument;
  vector<
    map<
      [...],
      map<
        [float != double],
        [...]>>>












Individual Warning Groups

TODO: Generate this from tblgen. Define one anchor per warning group.


	
-Wextra-tokens

	Warn about excess tokens at the end of a preprocessor directive.

This option, which defaults to on, enables warnings about extra
tokens at the end of preprocessor directives. For example:

test.c:28:8: warning: extra tokens at end of #endif directive [-Wextra-tokens]
#endif bad
       ^





These extra tokens are not strictly conforming, and are usually best
handled by commenting them out.






	
-Wambiguous-member-template

	Warn about unqualified uses of a member template whose name resolves to
another template at the location of the use.

This option, which defaults to on, enables a warning in the
following code:

template<typename T> struct set{};
template<typename T> struct trait { typedef const T& type; };
struct Value {
  template<typename T> void set(typename trait<T>::type value) {}
};
void foo() {
  Value v;
  v.set<double>(3.2);
}





C++ [basic.lookup.classref] requires this to be an error, but,
because it’s hard to work around, Clang downgrades it to a warning
as an extension.






	
-Wbind-to-temporary-copy

	Warn about an unusable copy constructor when binding a reference to a
temporary.

This option enables warnings about binding a
reference to a temporary when the temporary doesn’t have a usable
copy constructor. For example:

struct NonCopyable {
  NonCopyable();
private:
  NonCopyable(const NonCopyable&);
};
void foo(const NonCopyable&);
void bar() {
  foo(NonCopyable());  // Disallowed in C++98; allowed in C++11.
}





struct NonCopyable2 {
  NonCopyable2();
  NonCopyable2(NonCopyable2&);
};
void foo(const NonCopyable2&);
void bar() {
  foo(NonCopyable2());  // Disallowed in C++98; allowed in C++11.
}





Note that if NonCopyable2::NonCopyable2() has a default argument
whose instantiation produces a compile error, that error will still
be a hard error in C++98 mode even if this warning is turned off.










Options to Control Clang Crash Diagnostics

As unbelievable as it may sound, Clang does crash from time to time.
Generally, this only occurs to those living on the bleeding
edge [http://llvm.org/releases/download.html#svn]. Clang goes to great
lengths to assist you in filing a bug report. Specifically, Clang
generates preprocessed source file(s) and associated run script(s) upon
a crash. These files should be attached to a bug report to ease
reproducibility of the failure. Below are the command line options to
control the crash diagnostics.


	
-fno-crash-diagnostics

	Disable auto-generation of preprocessed source files during a clang crash.





The -fno-crash-diagnostics flag can be helpful for speeding the process
of generating a delta reduced test case.




Options to Emit Optimization Reports

Optimization reports trace, at a high-level, all the major decisions
done by compiler transformations. For instance, when the inliner
decides to inline function foo() into bar(), or the loop unroller
decides to unroll a loop N times, or the vectorizer decides to
vectorize a loop body.

Clang offers a family of flags which the optimizers can use to emit
a diagnostic in three cases:


	When the pass makes a transformation (-Rpass).

	When the pass fails to make a transformation (-Rpass-missed).

	When the pass determines whether or not to make a transformation
(-Rpass-analysis).



NOTE: Although the discussion below focuses on -Rpass, the exact
same options apply to -Rpass-missed and -Rpass-analysis.

Since there are dozens of passes inside the compiler, each of these flags
take a regular expression that identifies the name of the pass which should
emit the associated diagnostic. For example, to get a report from the inliner,
compile the code with:

$ clang -O2 -Rpass=inline code.cc -o code
code.cc:4:25: remark: foo inlined into bar [-Rpass=inline]
int bar(int j) { return foo(j, j - 2); }
                        ^





Note that remarks from the inliner are identified with [-Rpass=inline].
To request a report from every optimization pass, you should use
-Rpass=.* (in fact, you can use any valid POSIX regular
expression). However, do not expect a report from every transformation
made by the compiler. Optimization remarks do not really make sense
outside of the major transformations (e.g., inlining, vectorization,
loop optimizations) and not every optimization pass supports this
feature.


Current limitations


	Optimization remarks that refer to function names will display the
mangled name of the function. Since these remarks are emitted by the
back end of the compiler, it does not know anything about the input
language, nor its mangling rules.

	Some source locations are not displayed correctly. The front end has
a more detailed source location tracking than the locations included
in the debug info (e.g., the front end can locate code inside macro
expansions). However, the locations used by -Rpass are
translated from debug annotations. That translation can be lossy,
which results in some remarks having no location information.








Other Options

Clang options that that don’t fit neatly into other categories.


	
-MV

	When emitting a dependency file, use formatting conventions appropriate
for NMake or Jom. Ignored unless another option causes Clang to emit a
dependency file.





When Clang emits a dependency file (e.g., you supplied the -M option)
most filenames can be written to the file without any special formatting.
Different Make tools will treat different sets of characters as “special”
and use different conventions for telling the Make tool that the character
is actually part of the filename. Normally Clang uses backslash to “escape”
a special character, which is the convention used by GNU Make. The -MV
option tells Clang to put double-quotes around the entire filename, which
is the convention used by NMake and Jom.






Language and Target-Independent Features


Controlling Errors and Warnings

Clang provides a number of ways to control which code constructs cause
it to emit errors and warning messages, and how they are displayed to
the console.


Controlling How Clang Displays Diagnostics

When Clang emits a diagnostic, it includes rich information in the
output, and gives you fine-grain control over which information is
printed. Clang has the ability to print this information, and these are
the options that control it:


	A file/line/column indicator that shows exactly where the diagnostic
occurs in your code [-fshow-column,
-fshow-source-location].

	A categorization of the diagnostic as a note, warning, error, or
fatal error.

	A text string that describes what the problem is.

	An option that indicates how to control the diagnostic (for
diagnostics that support it)
[-fdiagnostics-show-option].

	A high-level category for the diagnostic
for clients that want to group diagnostics by class (for diagnostics
that support it)
[-fdiagnostics-show-category].

	The line of source code that the issue occurs on, along with a caret
and ranges that indicate the important locations
[-fcaret-diagnostics].

	“FixIt” information, which is a concise explanation of how to fix the
problem (when Clang is certain it knows)
[-fdiagnostics-fixit-info].

	A machine-parsable representation of the ranges involved (off by
default)
[-fdiagnostics-print-source-range-info].



For more information please see Formatting of
Diagnostics.




Diagnostic Mappings

All diagnostics are mapped into one of these 6 classes:


	Ignored

	Note

	Remark

	Warning

	Error

	Fatal






Diagnostic Categories

Though not shown by default, diagnostics may each be associated with a
high-level category. This category is intended to make it possible to
triage builds that produce a large number of errors or warnings in a
grouped way.

Categories are not shown by default, but they can be turned on with the
-fdiagnostics-show-category option.
When set to “name”, the category is printed textually in the
diagnostic output. When it is set to “id”, a category number is
printed. The mapping of category names to category id’s can be obtained
by running ‘clang   --print-diagnostic-categories‘.




Controlling Diagnostics via Command Line Flags

TODO: -W flags, -pedantic, etc




Controlling Diagnostics via Pragmas

Clang can also control what diagnostics are enabled through the use of
pragmas in the source code. This is useful for turning off specific
warnings in a section of source code. Clang supports GCC’s pragma for
compatibility with existing source code, as well as several extensions.

The pragma may control any warning that can be used from the command
line. Warnings may be set to ignored, warning, error, or fatal. The
following example code will tell Clang or GCC to ignore the -Wall
warnings:

#pragma GCC diagnostic ignored "-Wall"





In addition to all of the functionality provided by GCC’s pragma, Clang
also allows you to push and pop the current warning state. This is
particularly useful when writing a header file that will be compiled by
other people, because you don’t know what warning flags they build with.

In the below example -Wmultichar is ignored for only a single line of
code, after which the diagnostics return to whatever state had previously
existed.

#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wmultichar"

char b = 'df'; // no warning.

#pragma clang diagnostic pop





The push and pop pragmas will save and restore the full diagnostic state
of the compiler, regardless of how it was set. That means that it is
possible to use push and pop around GCC compatible diagnostics and Clang
will push and pop them appropriately, while GCC will ignore the pushes
and pops as unknown pragmas. It should be noted that while Clang
supports the GCC pragma, Clang and GCC do not support the exact same set
of warnings, so even when using GCC compatible #pragmas there is no
guarantee that they will have identical behaviour on both compilers.

In addition to controlling warnings and errors generated by the compiler, it is
possible to generate custom warning and error messages through the following
pragmas:

// The following will produce warning messages
#pragma message "some diagnostic message"
#pragma GCC warning "TODO: replace deprecated feature"

// The following will produce an error message
#pragma GCC error "Not supported"





These pragmas operate similarly to the #warning and #error preprocessor
directives, except that they may also be embedded into preprocessor macros via
the C99 _Pragma operator, for example:

#define STR(X) #X
#define DEFER(M,...) M(__VA_ARGS__)
#define CUSTOM_ERROR(X) _Pragma(STR(GCC error(X " at line " DEFER(STR,__LINE__))))

CUSTOM_ERROR("Feature not available");








Controlling Diagnostics in System Headers

Warnings are suppressed when they occur in system headers. By default,
an included file is treated as a system header if it is found in an
include path specified by -isystem, but this can be overridden in
several ways.

The system_header pragma can be used to mark the current file as
being a system header. No warnings will be produced from the location of
the pragma onwards within the same file.

char a = 'xy'; // warning

#pragma clang system_header

char b = 'ab'; // no warning





The --system-header-prefix= and --no-system-header-prefix=
command-line arguments can be used to override whether subsets of an include
path are treated as system headers. When the name in a #include directive
is found within a header search path and starts with a system prefix, the
header is treated as a system header. The last prefix on the
command-line which matches the specified header name takes precedence.
For instance:

$ clang -Ifoo -isystem bar --system-header-prefix=x/ \
    --no-system-header-prefix=x/y/





Here, #include "x/a.h" is treated as including a system header, even
if the header is found in foo, and #include "x/y/b.h" is treated
as not including a system header, even if the header is found in
bar.

A #include directive which finds a file relative to the current
directory is treated as including a system header if the including file
is treated as a system header.




Enabling All Diagnostics

In addition to the traditional -W flags, one can enable all
diagnostics by passing -Weverything. This works as expected
with
-Werror, and also includes the warnings from -pedantic.

Note that when combined with -w (which disables all warnings), that
flag wins.




Controlling Static Analyzer Diagnostics

While not strictly part of the compiler, the diagnostics from Clang’s
static analyzer [http://clang-analyzer.llvm.org] can also be
influenced by the user via changes to the source code. See the available
annotations [http://clang-analyzer.llvm.org/annotations.html] and the
analyzer’s FAQ
page [http://clang-analyzer.llvm.org/faq.html#exclude_code] for more
information.






Precompiled Headers

Precompiled headers [http://en.wikipedia.org/wiki/Precompiled_header]
are a general approach employed by many compilers to reduce compilation
time. The underlying motivation of the approach is that it is common for
the same (and often large) header files to be included by multiple
source files. Consequently, compile times can often be greatly improved
by caching some of the (redundant) work done by a compiler to process
headers. Precompiled header files, which represent one of many ways to
implement this optimization, are literally files that represent an
on-disk cache that contains the vital information necessary to reduce
some of the work needed to process a corresponding header file. While
details of precompiled headers vary between compilers, precompiled
headers have been shown to be highly effective at speeding up program
compilation on systems with very large system headers (e.g., Mac OS X).


Generating a PCH File

To generate a PCH file using Clang, one invokes Clang with the
-x <language>-header option. This mirrors the interface in GCC
for generating PCH files:

$ gcc -x c-header test.h -o test.h.gch
$ clang -x c-header test.h -o test.h.pch








Using a PCH File

A PCH file can then be used as a prefix header when a -include
option is passed to clang:

$ clang -include test.h test.c -o test





The clang driver will first check if a PCH file for test.h is
available; if so, the contents of test.h (and the files it includes)
will be processed from the PCH file. Otherwise, Clang falls back to
directly processing the content of test.h. This mirrors the behavior
of GCC.


Note

Clang does not automatically use PCH files for headers that are directly
included within a source file. For example:

$ clang -x c-header test.h -o test.h.pch
$ cat test.c
#include "test.h"
$ clang test.c -o test





In this example, clang will not automatically use the PCH file for
test.h since test.h was included directly in the source file and not
specified on the command line using -include.






Relocatable PCH Files

It is sometimes necessary to build a precompiled header from headers
that are not yet in their final, installed locations. For example, one
might build a precompiled header within the build tree that is then
meant to be installed alongside the headers. Clang permits the creation
of “relocatable” precompiled headers, which are built with a given path
(into the build directory) and can later be used from an installed
location.

To build a relocatable precompiled header, place your headers into a
subdirectory whose structure mimics the installed location. For example,
if you want to build a precompiled header for the header mylib.h
that will be installed into /usr/include, create a subdirectory
build/usr/include and place the header mylib.h into that
subdirectory. If mylib.h depends on other headers, then they can be
stored within build/usr/include in a way that mimics the installed
location.

Building a relocatable precompiled header requires two additional
arguments. First, pass the --relocatable-pch flag to indicate that
the resulting PCH file should be relocatable. Second, pass
-isysroot /path/to/build, which makes all includes for your library
relative to the build directory. For example:

# clang -x c-header --relocatable-pch -isysroot /path/to/build /path/to/build/mylib.h mylib.h.pch





When loading the relocatable PCH file, the various headers used in the
PCH file are found from the system header root. For example, mylib.h
can be found in /usr/include/mylib.h. If the headers are installed
in some other system root, the -isysroot option can be used provide
a different system root from which the headers will be based. For
example, -isysroot /Developer/SDKs/MacOSX10.4u.sdk will look for
mylib.h in /Developer/SDKs/MacOSX10.4u.sdk/usr/include/mylib.h.

Relocatable precompiled headers are intended to be used in a limited
number of cases where the compilation environment is tightly controlled
and the precompiled header cannot be generated after headers have been
installed.






Controlling Code Generation

Clang provides a number of ways to control code generation. The options
are listed below.


	-f[no-]sanitize=check1,check2,...

	Turn on runtime checks for various forms of undefined or suspicious
behavior.

This option controls whether Clang adds runtime checks for various
forms of undefined or suspicious behavior, and is disabled by
default. If a check fails, a diagnostic message is produced at
runtime explaining the problem. The main checks are:


	-fsanitize=address:
AddressSanitizer, a memory error
detector.



	-fsanitize=integer: Enables checks for undefined or
suspicious integer behavior.

	-fsanitize=thread: ThreadSanitizer, a data race detector.



	-fsanitize=memory: MemorySanitizer,
an experimental detector of uninitialized reads. Not ready for
widespread use.



	-fsanitize=undefined: Fast and compatible undefined behavior
checker. Enables the undefined behavior checks that have small
runtime cost and no impact on address space layout or ABI. This
includes all of the checks listed below other than
unsigned-integer-overflow.



	-fsanitize=undefined-trap: This is a deprecated alias for
-fsanitize=undefined.

	-fsanitize=dataflow: DataFlowSanitizer, a general data
flow analysis.

	-fsanitize=cfi: control flow integrity
checks. Requires -flto.

	-fsanitize=safe-stack: safe stack
protection against stack-based memory corruption errors.



The following more fine-grained checks are also available:


	-fsanitize=alignment: Use of a misaligned pointer or creation
of a misaligned reference.

	-fsanitize=bool: Load of a bool value which is neither
true nor false.

	-fsanitize=bounds: Out of bounds array indexing, in cases
where the array bound can be statically determined.

	-fsanitize=cfi-cast-strict: Enables strict cast checks.

	-fsanitize=cfi-derived-cast: Base-to-derived cast to the wrong
dynamic type. Requires -flto.

	-fsanitize=cfi-unrelated-cast: Cast from void* or another
unrelated type to the wrong dynamic type. Requires -flto.

	-fsanitize=cfi-nvcall: Non-virtual call via an object whose vptr is of
the wrong dynamic type. Requires -flto.

	-fsanitize=cfi-vcall: Virtual call via an object whose vptr is of the
wrong dynamic type. Requires -flto.

	-fsanitize=enum: Load of a value of an enumerated type which
is not in the range of representable values for that enumerated
type.

	-fsanitize=float-cast-overflow: Conversion to, from, or
between floating-point types which would overflow the
destination.

	-fsanitize=float-divide-by-zero: Floating point division by
zero.

	-fsanitize=function: Indirect call of a function through a
function pointer of the wrong type (Linux, C++ and x86/x86_64 only).

	-fsanitize=integer-divide-by-zero: Integer division by zero.

	-fsanitize=nonnull-attribute: Passing null pointer as a function
parameter which is declared to never be null.

	-fsanitize=null: Use of a null pointer or creation of a null
reference.

	-fsanitize=object-size: An attempt to use bytes which the
optimizer can determine are not part of the object being
accessed. The sizes of objects are determined using
__builtin_object_size, and consequently may be able to detect
more problems at higher optimization levels.

	-fsanitize=return: In C++, reaching the end of a
value-returning function without returning a value.

	-fsanitize=returns-nonnull-attribute: Returning null pointer
from a function which is declared to never return null.

	-fsanitize=shift: Shift operators where the amount shifted is
greater or equal to the promoted bit-width of the left hand side
or less than zero, or where the left hand side is negative. For a
signed left shift, also checks for signed overflow in C, and for
unsigned overflow in C++. You can use -fsanitize=shift-base or
-fsanitize=shift-exponent to check only left-hand side or
right-hand side of shift operation, respectively.

	-fsanitize=signed-integer-overflow: Signed integer overflow,
including all the checks added by -ftrapv, and checking for
overflow in signed division (INT_MIN / -1).

	-fsanitize=unreachable: If control flow reaches
__builtin_unreachable.

	-fsanitize=unsigned-integer-overflow: Unsigned integer
overflows.

	-fsanitize=vla-bound: A variable-length array whose bound
does not evaluate to a positive value.

	-fsanitize=vptr: Use of an object whose vptr indicates that
it is of the wrong dynamic type, or that its lifetime has not
begun or has ended. Incompatible with -fno-rtti.



You can turn off or modify checks for certain source files, functions
or even variables by providing a special file:


	-fsanitize-blacklist=/path/to/blacklist/file: disable or modify
sanitizer checks for objects listed in the file. See
Sanitizer special case list for file format description.

	-fno-sanitize-blacklist: don’t use blacklist file, if it was
specified earlier in the command line.



Extra features of MemorySanitizer (require explicit
-fsanitize=memory):


	-fsanitize-memory-track-origins[=level]: Enables origin tracking in
MemorySanitizer. Adds a second section to MemorySanitizer
reports pointing to the heap or stack allocation the
uninitialized bits came from. Slows down execution by additional
1.5x-2x.

Possible values for level are 0 (off), 1, 2 (default). Level 2
adds more sections to MemorySanitizer reports describing the
order of memory stores the uninitialized value went
through. This mode may use extra memory in programs that copy
uninitialized memory a lot.





The -fsanitize= argument must also be provided when linking, in
order to link to the appropriate runtime library. When using
-fsanitize=vptr (or a group that includes it, such as
-fsanitize=undefined) with a C++ program, the link must be
performed by clang++, not clang, in order to link against the
C++-specific parts of the runtime library.

It is not possible to combine more than one of the -fsanitize=address,
-fsanitize=thread, and -fsanitize=memory checkers in the same
program. The -fsanitize=undefined checks can only be combined with
-fsanitize=address.





-f[no-]sanitize-recover=check1,check2,...


Controls which checks enabled by -fsanitize= flag are non-fatal.
If the check is fatal, program will halt after the first error
of this kind is detected and error report is printed.

By default, non-fatal checks are those enabled by UndefinedBehaviorSanitizer,
except for -fsanitize=return and -fsanitize=unreachable. Some
sanitizers (e.g. AddressSanitizer) may not support recovery,
and always crash the program after the issue is detected.

Note that the -fsanitize-trap flag has precedence over this flag.
This means that if a check has been configured to trap elsewhere on the
command line, or if the check traps by default, this flag will not have
any effect unless that sanitizer’s trapping behavior is disabled with
-fno-sanitize-trap.

For example, if a command line contains the flags -fsanitize=undefined
-fsanitize-trap=undefined, the flag -fsanitize-recover=alignment
will have no effect on its own; it will need to be accompanied by
-fno-sanitize-trap=alignment.




-f[no-]sanitize-trap=check1,check2,...


Controls which checks enabled by the -fsanitize= flag trap. This
option is intended for use in cases where the sanitizer runtime cannot
be used (for instance, when building libc or a kernel module), or where
the binary size increase caused by the sanitizer runtime is a concern.

This flag is only compatible with local-bounds,
unsigned-integer-overflow, sanitizers in the cfi group and
sanitizers in the undefined group other than vptr. If this flag
is supplied together with -fsanitize=undefined, the vptr sanitizer
will be implicitly disabled.

This flag is enabled by default for sanitizers in the cfi group.




-f[no-]sanitize-coverage=[type,features,...]


Enable simple code coverage in addition to certain sanitizers.
See SanitizerCoverage for more details.



	
-fsanitize-undefined-trap-on-error

	Deprecated alias for -fsanitize-trap=undefined.






	
-fno-assume-sane-operator-new

	Don’t assume that the C++’s new operator is sane.

This option tells the compiler to do not assume that C++’s global
new operator will always return a pointer that does not alias any
other pointer when the function returns.






	
-ftrap-function=[name]

	Instruct code generator to emit a function call to the specified
function name for __builtin_trap().

LLVM code generator translates __builtin_trap() to a trap
instruction if it is supported by the target ISA. Otherwise, the
builtin is translated into a call to abort. If this option is
set, then the code generator will always lower the builtin to a call
to the specified function regardless of whether the target ISA has a
trap instruction. This option is useful for environments (e.g.
deeply embedded) where a trap cannot be properly handled, or when
some custom behavior is desired.






	
-ftls-model=[model]

	Select which TLS model to use.

Valid values are: global-dynamic, local-dynamic,
initial-exec and local-exec. The default value is
global-dynamic. The compiler may use a different model if the
selected model is not supported by the target, or if a more
efficient model can be used. The TLS model can be overridden per
variable using the tls_model attribute.






	
-mhwdiv=[values]

	Select the ARM modes (arm or thumb) that support hardware division
instructions.

Valid values are: arm, thumb and arm,thumb.
This option is used to indicate which mode (arm or thumb) supports
hardware division instructions. This only applies to the ARM
architecture.






	
-m[no-]crc

	Enable or disable CRC instructions.

This option is used to indicate whether CRC instructions are to
be generated. This only applies to the ARM architecture.

CRC instructions are enabled by default on ARMv8.






	
-mgeneral-regs-only

	Generate code which only uses the general purpose registers.

This option restricts the generated code to use general registers
only. This only applies to the AArch64 architecture.






	-f[no-]max-unknown-pointer-align=[number]

	Instruct the code generator to not enforce a higher alignment than the given
number (of bytes) when accessing memory via an opaque pointer or reference.
This cap is ignored when directly accessing a variable or when the pointee
type has an explicit “aligned” attribute.

The value should usually be determined by the properties of the system allocator.
Some builtin types, especially vector types, have very high natural alignments;
when working with values of those types, Clang usually wants to use instructions
that take advantage of that alignment.  However, many system allocators do
not promise to return memory that is more than 8-byte or 16-byte-aligned.  Use
this option to limit the alignment that the compiler can assume for an arbitrary
pointer, which may point onto the heap.

This option does not affect the ABI alignment of types; the layout of structs and
unions and the value returned by the alignof operator remain the same.

This option can be overridden on a case-by-case basis by putting an explicit
“aligned” alignment on a struct, union, or typedef.  For example:

#include <immintrin.h>
// Make an aligned typedef of the AVX-512 16-int vector type.
typedef __v16si __aligned_v16si __attribute__((aligned(64)));

void initialize_vector(__aligned_v16si *v) {
  // The compiler may assume that ‘v’ is 64-byte aligned, regardless of the
  // value of -fmax-unknown-pointer-align.
}












Profile Guided Optimization

Profile information enables better optimization. For example, knowing that a
branch is taken very frequently helps the compiler make better decisions when
ordering basic blocks. Knowing that a function foo is called more
frequently than another function bar helps the inliner.

Clang supports profile guided optimization with two different kinds of
profiling. A sampling profiler can generate a profile with very low runtime
overhead, or you can build an instrumented version of the code that collects
more detailed profile information. Both kinds of profiles can provide execution
counts for instructions in the code and information on branches taken and
function invocation.

Regardless of which kind of profiling you use, be careful to collect profiles
by running your code with inputs that are representative of the typical
behavior. Code that is not exercised in the profile will be optimized as if it
is unimportant, and the compiler may make poor optimization choices for code
that is disproportionately used while profiling.


Differences Between Sampling and Instrumentation

Although both techniques are used for similar purposes, there are important
differences between the two:


	Profile data generated with one cannot be used by the other, and there is no
conversion tool that can convert one to the other. So, a profile generated
via -fprofile-instr-generate must be used with -fprofile-instr-use.
Similarly, sampling profiles generated by external profilers must be
converted and used with -fprofile-sample-use.

	Instrumentation profile data can be used for code coverage analysis and
optimization.

	Sampling profiles can only be used for optimization. They cannot be used for
code coverage analysis. Although it would be technically possible to use
sampling profiles for code coverage, sample-based profiles are too
coarse-grained for code coverage purposes; it would yield poor results.

	Sampling profiles must be generated by an external tool. The profile
generated by that tool must then be converted into a format that can be read
by LLVM. The section on sampling profilers describes one of the supported
sampling profile formats.






Using Sampling Profilers

Sampling profilers are used to collect runtime information, such as
hardware counters, while your application executes. They are typically
very efficient and do not incur a large runtime overhead. The
sample data collected by the profiler can be used during compilation
to determine what the most executed areas of the code are.

Using the data from a sample profiler requires some changes in the way
a program is built. Before the compiler can use profiling information,
the code needs to execute under the profiler. The following is the
usual build cycle when using sample profilers for optimization:


	Build the code with source line table information. You can use all the
usual build flags that you always build your application with. The only
requirement is that you add -gline-tables-only or -g to the
command line. This is important for the profiler to be able to map
instructions back to source line locations.

$ clang++ -O2 -gline-tables-only code.cc -o code







	Run the executable under a sampling profiler. The specific profiler
you use does not really matter, as long as its output can be converted
into the format that the LLVM optimizer understands. Currently, there
exists a conversion tool for the Linux Perf profiler
(https://perf.wiki.kernel.org/), so these examples assume that you
are using Linux Perf to profile your code.

$ perf record -b ./code





Note the use of the -b flag. This tells Perf to use the Last Branch
Record (LBR) to record call chains. While this is not strictly required,
it provides better call information, which improves the accuracy of
the profile data.



	Convert the collected profile data to LLVM’s sample profile format.
This is currently supported via the AutoFDO converter create_llvm_prof.
It is available at http://github.com/google/autofdo. Once built and
installed, you can convert the perf.data file to LLVM using
the command:

$ create_llvm_prof --binary=./code --out=code.prof





This will read perf.data and the binary file ./code and emit
the profile data in code.prof. Note that if you ran perf
without the -b flag, you need to use --use_lbr=false when
calling create_llvm_prof.



	Build the code again using the collected profile. This step feeds
the profile back to the optimizers. This should result in a binary
that executes faster than the original one. Note that you are not
required to build the code with the exact same arguments that you
used in the first step. The only requirement is that you build the code
with -gline-tables-only and -fprofile-sample-use.

$ clang++ -O2 -gline-tables-only -fprofile-sample-use=code.prof code.cc -o code










Sample Profile Formats

Since external profilers generate profile data in a variety of custom formats,
the data generated by the profiler must be converted into a format that can be
read by the backend. LLVM supports three different sample profile formats:


	ASCII text. This is the easiest one to generate. The file is divided into
sections, which correspond to each of the functions with profile
information. The format is described below.

	Binary encoding. This uses a more efficient encoding that yields smaller
profile files, which may be useful when generating large profiles. It can be
generated from the text format using the llvm-profdata tool.

	GCC encoding. This is based on the gcov format, which is accepted by GCC. It
is only interesting in environments where GCC and Clang co-exist. Similarly
to the binary encoding, it can be generated using the llvm-profdata tool.



If you are using Linux Perf to generate sampling profiles, you can use the
conversion tool create_llvm_prof described in the previous section.
Otherwise, you will need to write a conversion tool that converts your
profiler’s native format into one of these three.




Sample Profile Text Format

This section describes the ASCII text format for sampling profiles. It is,
arguably, the easiest one to generate. If you are interested in generating any
of the other two, consult the ProfileData library in in LLVM’s source tree
(specifically, llvm/lib/ProfileData/SampleProfWriter.cpp).

function1:total_samples:total_head_samples
offset1[.discriminator]: number_of_samples [fn1:num fn2:num ... ]
offset2[.discriminator]: number_of_samples [fn3:num fn4:num ... ]
...
offsetN[.discriminator]: number_of_samples [fn5:num fn6:num ... ]





The file may contain blank lines between sections and within a
section. However, the spacing within a single line is fixed. Additional
spaces will result in an error while reading the file.

Function names must be mangled in order for the profile loader to
match them in the current translation unit. The two numbers in the
function header specify how many total samples were accumulated in the
function (first number), and the total number of samples accumulated
in the prologue of the function (second number). This head sample
count provides an indicator of how frequently the function is invoked.

Each sampled line may contain several items. Some are optional (marked
below):


	Source line offset. This number represents the line number
in the function where the sample was collected. The line number is
always relative to the line where symbol of the function is
defined. So, if the function has its header at line 280, the offset
13 is at line 293 in the file.

Note that this offset should never be a negative number. This could
happen in cases like macros. The debug machinery will register the
line number at the point of macro expansion. So, if the macro was
expanded in a line before the start of the function, the profile
converter should emit a 0 as the offset (this means that the optimizers
will not be able to associate a meaningful weight to the instructions
in the macro).



	[OPTIONAL] Discriminator. This is used if the sampled program
was compiled with DWARF discriminator support
(http://wiki.dwarfstd.org/index.php?title=Path_Discriminators).
DWARF discriminators are unsigned integer values that allow the
compiler to distinguish between multiple execution paths on the
same source line location.

For example, consider the line of code if (cond) foo(); else bar();.
If the predicate cond is true 80% of the time, then the edge
into function foo should be considered to be taken most of the
time. But both calls to foo and bar are at the same source
line, so a sample count at that line is not sufficient. The
compiler needs to know which part of that line is taken more
frequently.

This is what discriminators provide. In this case, the calls to
foo and bar will be at the same line, but will have
different discriminator values. This allows the compiler to correctly
set edge weights into foo and bar.



	Number of samples. This is an integer quantity representing the
number of samples collected by the profiler at this source
location.



	[OPTIONAL] Potential call targets and samples. If present, this
line contains a call instruction. This models both direct and
number of samples. For example,

130: 7  foo:3  bar:2  baz:7





The above means that at relative line offset 130 there is a call
instruction that calls one of foo(), bar() and baz(),
with baz() being the relatively more frequently called target.










Profiling with Instrumentation

Clang also supports profiling via instrumentation. This requires building a
special instrumented version of the code and has some runtime
overhead during the profiling, but it provides more detailed results than a
sampling profiler. It also provides reproducible results, at least to the
extent that the code behaves consistently across runs.

Here are the steps for using profile guided optimization with
instrumentation:


	Build an instrumented version of the code by compiling and linking with the
-fprofile-instr-generate option.

$ clang++ -O2 -fprofile-instr-generate code.cc -o code







	Run the instrumented executable with inputs that reflect the typical usage.
By default, the profile data will be written to a default.profraw file
in the current directory. You can override that default by setting the
LLVM_PROFILE_FILE environment variable to specify an alternate file.
Any instance of %p in that file name will be replaced by the process
ID, so that you can easily distinguish the profile output from multiple
runs.

$ LLVM_PROFILE_FILE="code-%p.profraw" ./code







	Combine profiles from multiple runs and convert the “raw” profile format to
the input expected by clang. Use the merge command of the
llvm-profdata tool to do this.

$ llvm-profdata merge -output=code.profdata code-*.profraw





Note that this step is necessary even when there is only one “raw” profile,
since the merge operation also changes the file format.



	Build the code again using the -fprofile-instr-use option to specify the
collected profile data.

$ clang++ -O2 -fprofile-instr-use=code.profdata code.cc -o code





You can repeat step 4 as often as you like without regenerating the
profile. As you make changes to your code, clang may no longer be able to
use the profile data. It will warn you when this happens.





Profile generation and use can also be controlled by the GCC-compatible flags
-fprofile-generate and -fprofile-use. Although these flags are
semantically equivalent to their GCC counterparts, they do not handle
GCC-compatible profiles. They are only meant to implement GCC’s semantics
with respect to profile creation and use.


	
-fprofile-generate[=<dirname>]

	Without any other arguments, -fprofile-generate behaves identically to
-fprofile-instr-generate. When given a directory name, it generates the
profile file default.profraw in the directory named dirname. If
dirname does not exist, it will be created at runtime. The environment
variable LLVM_PROFILE_FILE can be used to override the directory and
filename for the profile file at runtime. For example,

$ clang++ -O2 -fprofile-generate=yyy/zzz code.cc -o code





When code is executed, the profile will be written to the file
yyy/zzz/default.profraw. This can be altered at runtime via the
LLVM_PROFILE_FILE environment variable:

$ LLVM_PROFILE_FILE=/tmp/myprofile/code.profraw ./code





The above invocation will produce the profile file
/tmp/myprofile/code.profraw instead of yyy/zzz/default.profraw.
Notice that LLVM_PROFILE_FILE overrides the directory and the file
name for the profile file.






	
-fprofile-use[=<pathname>]

	Without any other arguments, -fprofile-use behaves identically to
-fprofile-instr-use. Otherwise, if pathname is the full path to a
profile file, it reads from that file. If pathname is a directory name,
it reads from pathname/default.profdata.










Controlling Size of Debug Information

Debug info kind generated by Clang can be set by one of the flags listed
below. If multiple flags are present, the last one is used.


	
-g0

	Don’t generate any debug info (default).






	
-gline-tables-only

	Generate line number tables only.

This kind of debug info allows to obtain stack traces with function names,
file names and line numbers (by such tools as gdb or addr2line).  It
doesn’t contain any other data (e.g. description of local variables or
function parameters).






	
-fstandalone-debug

	Clang supports a number of optimizations to reduce the size of debug
information in the binary. They work based on the assumption that
the debug type information can be spread out over multiple
compilation units.  For instance, Clang will not emit type
definitions for types that are not needed by a module and could be
replaced with a forward declaration.  Further, Clang will only emit
type info for a dynamic C++ class in the module that contains the
vtable for the class.

The -fstandalone-debug option turns off these optimizations.
This is useful when working with 3rd-party libraries that don’t come
with debug information.  Note that Clang will never emit type
information for types that are not referenced at all by the program.






	
-fno-standalone-debug

	On Darwin -fstandalone-debug is enabled by default. The
-fno-standalone-debug option can be used to get to turn on the
vtable-based optimization described above.






	
-g

	Generate complete debug info.








Comment Parsing Options

Clang parses Doxygen and non-Doxygen style documentation comments and attaches
them to the appropriate declaration nodes.  By default, it only parses
Doxygen-style comments and ignores ordinary comments starting with // and
/*.


	
-Wdocumentation

	Emit warnings about use of documentation comments.  This warning group is off
by default.

This includes checking that \param commands name parameters that actually
present in the function signature, checking that \returns is used only on
functions that actually return a value etc.






	
-Wno-documentation-unknown-command

	Don’t warn when encountering an unknown Doxygen command.






	
-fparse-all-comments

	Parse all comments as documentation comments (including ordinary comments
starting with // and /*).






	
-fcomment-block-commands=[commands]

	Define custom documentation commands as block commands.  This allows Clang to
construct the correct AST for these custom commands, and silences warnings
about unknown commands.  Several commands must be separated by a comma
without trailing space; e.g. -fcomment-block-commands=foo,bar defines
custom commands \foo and \bar.

It is also possible to use -fcomment-block-commands several times; e.g.
-fcomment-block-commands=foo -fcomment-block-commands=bar does the same
as above.










C Language Features

The support for standard C in clang is feature-complete except for the
C99 floating-point pragmas.


Extensions supported by clang

See Clang Language Extensions.




Differences between various standard modes

clang supports the -std option, which changes what language mode clang
uses. The supported modes for C are c89, gnu89, c94, c99, gnu99, c11,
gnu11, and various aliases for those modes. If no -std option is
specified, clang defaults to gnu11 mode. Many C99 and C11 features are
supported in earlier modes as a conforming extension, with a warning. Use
-pedantic-errors to request an error if a feature from a later standard
revision is used in an earlier mode.

Differences between all c* and gnu* modes:


	c* modes define “__STRICT_ANSI__”.

	Target-specific defines not prefixed by underscores, like “linux”,
are defined in gnu* modes.

	Trigraphs default to being off in gnu* modes; they can be enabled by
the -trigraphs option.

	The parser recognizes “asm” and “typeof” as keywords in gnu* modes;
the variants “__asm__” and “__typeof__” are recognized in all
modes.

	The Apple “blocks” extension is recognized by default in gnu* modes
on some platforms; it can be enabled in any mode with the “-fblocks”
option.

	Arrays that are VLA’s according to the standard, but which can be
constant folded by the frontend are treated as fixed size arrays.
This occurs for things like “int X[(1, 2)];”, which is technically a
VLA. c* modes are strictly compliant and treat these as VLAs.



Differences between *89 and *99 modes:


	The *99 modes default to implementing “inline” as specified in C99,
while the *89 modes implement the GNU version. This can be
overridden for individual functions with the __gnu_inline__
attribute.

	Digraphs are not recognized in c89 mode.

	The scope of names defined inside a “for”, “if”, “switch”, “while”,
or “do” statement is different. (example: “if ((struct x {int
x;}*)0) {}”.)

	__STDC_VERSION__ is not defined in *89 modes.

	“inline” is not recognized as a keyword in c89 mode.

	“restrict” is not recognized as a keyword in *89 modes.

	Commas are allowed in integer constant expressions in *99 modes.

	Arrays which are not lvalues are not implicitly promoted to pointers
in *89 modes.

	Some warnings are different.



Differences between *99 and *11 modes:


	Warnings for use of C11 features are disabled.

	__STDC_VERSION__ is defined to 201112L rather than 199901L.



c94 mode is identical to c89 mode except that digraphs are enabled in
c94 mode (FIXME: And __STDC_VERSION__ should be defined!).




GCC extensions not implemented yet

clang tries to be compatible with gcc as much as possible, but some gcc
extensions are not implemented yet:


	clang does not support #pragma weak (bug
3679 [http://llvm.org/bugs/show_bug.cgi?id=3679]). Due to the uses
described in the bug, this is likely to be implemented at some point,
at least partially.



	clang does not support decimal floating point types (_Decimal32 and
friends) or fixed-point types (_Fract and friends); nobody has
expressed interest in these features yet, so it’s hard to say when
they will be implemented.



	clang does not support nested functions; this is a complex feature
which is infrequently used, so it is unlikely to be implemented
anytime soon. In C++11 it can be emulated by assigning lambda
functions to local variables, e.g:

auto const local_function = [&](int parameter) {
  // Do something
};
...
local_function(1);







	clang does not support global register variables; this is unlikely to
be implemented soon because it requires additional LLVM backend
support.



	clang does not support static initialization of flexible array
members. This appears to be a rarely used extension, but could be
implemented pending user demand.



	clang does not support
__builtin_va_arg_pack/__builtin_va_arg_pack_len. This is
used rarely, but in some potentially interesting places, like the
glibc headers, so it may be implemented pending user demand. Note
that because clang pretends to be like GCC 4.2, and this extension
was introduced in 4.3, the glibc headers will not try to use this
extension with clang at the moment.



	clang does not support the gcc extension for forward-declaring
function parameters; this has not shown up in any real-world code
yet, though, so it might never be implemented.





This is not a complete list; if you find an unsupported extension
missing from this list, please send an e-mail to cfe-dev. This list
currently excludes C++; see C++ Language Features. Also, this
list does not include bugs in mostly-implemented features; please see
the bug
tracker [http://llvm.org/bugs/buglist.cgi?quicksearch=product%3Aclang+component%3A-New%2BBugs%2CAST%2CBasic%2CDriver%2CHeaders%2CLLVM%2BCodeGen%2Cparser%2Cpreprocessor%2CSemantic%2BAnalyzer]
for known existing bugs (FIXME: Is there a section for bug-reporting
guidelines somewhere?).




Intentionally unsupported GCC extensions


	clang does not support the gcc extension that allows variable-length
arrays in structures. This is for a few reasons: one, it is tricky to
implement, two, the extension is completely undocumented, and three,
the extension appears to be rarely used. Note that clang does
support flexible array members (arrays with a zero or unspecified
size at the end of a structure).

	clang does not have an equivalent to gcc’s “fold”; this means that
clang doesn’t accept some constructs gcc might accept in contexts
where a constant expression is required, like “x-x” where x is a
variable.

	clang does not support __builtin_apply and friends; this extension
is extremely obscure and difficult to implement reliably.






Microsoft extensions

clang has some experimental support for extensions from Microsoft Visual
C++; to enable it, use the -fms-extensions command-line option. This is
the default for Windows targets. Note that the support is incomplete.
Some constructs such as dllexport on classes are ignored with a warning,
and others such as Microsoft IDL annotations [http://msdn.microsoft.com/en-us/library/8tesw2eh.aspx] are silently
ignored.

clang has a -fms-compatibility flag that makes clang accept enough
invalid C++ to be able to parse most Microsoft headers. For example, it
allows unqualified lookup of dependent base class members [http://clang.llvm.org/compatibility.html#dep_lookup_bases], which is
a common compatibility issue with clang. This flag is enabled by default
for Windows targets.

-fdelayed-template-parsing lets clang delay parsing of function template
definitions until the end of a translation unit. This flag is enabled by
default for Windows targets.


	clang allows setting _MSC_VER with -fmsc-version=. It defaults to
1700 which is the same as Visual C/C++ 2012. Any number is supported
and can greatly affect what Windows SDK and c++stdlib headers clang
can compile.

	clang does not support the Microsoft extension where anonymous record
members can be declared using user defined typedefs.

	clang supports the Microsoft #pragma pack feature for controlling
record layout. GCC also contains support for this feature, however
where MSVC and GCC are incompatible clang follows the MSVC
definition.

	clang supports the Microsoft #pragma comment(lib, "foo.lib") feature for
automatically linking against the specified library.  Currently this feature
only works with the Visual C++ linker.

	clang supports the Microsoft #pragma comment(linker, "/flag:foo") feature
for adding linker flags to COFF object files.  The user is responsible for
ensuring that the linker understands the flags.

	clang defaults to C++11 for Windows targets.








C++ Language Features

clang fully implements all of standard C++98 except for exported
templates (which were removed in C++11), and all of standard C++11
and the current draft standard for C++1y.


Controlling implementation limits


	
-fbracket-depth=N

	Sets the limit for nested parentheses, brackets, and braces to N.  The
default is 256.






	
-fconstexpr-depth=N

	Sets the limit for recursive constexpr function invocations to N.  The
default is 512.






	
-ftemplate-depth=N

	Sets the limit for recursively nested template instantiations to N.  The
default is 256.






	
-foperator-arrow-depth=N

	Sets the limit for iterative calls to ‘operator->’ functions to N.  The
default is 256.










Objective-C Language Features




Objective-C++ Language Features




Target-Specific Features and Limitations


CPU Architectures Features and Limitations


X86

The support for X86 (both 32-bit and 64-bit) is considered stable on
Darwin (Mac OS X), Linux, FreeBSD, and Dragonfly BSD: it has been tested
to correctly compile many large C, C++, Objective-C, and Objective-C++
codebases.

On x86_64-mingw32, passing i128(by value) is incompatible with the
Microsoft x64 calling convention. You might need to tweak
WinX86_64ABIInfo::classify() in lib/CodeGen/TargetInfo.cpp.

For the X86 target, clang supports the -m16 command line
argument which enables 16-bit code output. This is broadly similar to
using asm(".code16gcc") with the GNU toolchain. The generated code
and the ABI remains 32-bit but the assembler emits instructions
appropriate for a CPU running in 16-bit mode, with address-size and
operand-size prefixes to enable 32-bit addressing and operations.




ARM

The support for ARM (specifically ARMv6 and ARMv7) is considered stable
on Darwin (iOS): it has been tested to correctly compile many large C,
C++, Objective-C, and Objective-C++ codebases. Clang only supports a
limited number of ARM architectures. It does not yet fully support
ARMv5, for example.




PowerPC

The support for PowerPC (especially PowerPC64) is considered stable
on Linux and FreeBSD: it has been tested to correctly compile many
large C and C++ codebases. PowerPC (32bit) is still missing certain
features (e.g. PIC code on ELF platforms).




Other platforms

clang currently contains some support for other architectures (e.g. Sparc);
however, significant pieces of code generation are still missing, and they
haven’t undergone significant testing.

clang contains limited support for the MSP430 embedded processor, but
both the clang support and the LLVM backend support are highly
experimental.

Other platforms are completely unsupported at the moment. Adding the
minimal support needed for parsing and semantic analysis on a new
platform is quite easy; see lib/Basic/Targets.cpp in the clang source
tree. This level of support is also sufficient for conversion to LLVM IR
for simple programs. Proper support for conversion to LLVM IR requires
adding code to lib/CodeGen/CGCall.cpp at the moment; this is likely to
change soon, though. Generating assembly requires a suitable LLVM
backend.






Operating System Features and Limitations


Darwin (Mac OS X)

Thread Sanitizer is not supported.




Windows

Clang has experimental support for targeting “Cygming” (Cygwin / MinGW)
platforms.

See also Microsoft Extensions.


Cygwin

Clang works on Cygwin-1.7.




MinGW32

Clang works on some mingw32 distributions. Clang assumes directories as
below;


	C:/mingw/include

	C:/mingw/lib

	C:/mingw/lib/gcc/mingw32/4.[3-5].0/include/c++



On MSYS, a few tests might fail.




MinGW-w64

For 32-bit (i686-w64-mingw32), and 64-bit (x86_64-w64-mingw32), Clang
assumes as below;


	GCC versions 4.5.0 to 4.5.3, 4.6.0 to 4.6.2, or 4.7.0 (for the C++ header search path)

	some_directory/bin/gcc.exe

	some_directory/bin/clang.exe

	some_directory/bin/clang++.exe

	some_directory/bin/../include/c++/GCC_version

	some_directory/bin/../include/c++/GCC_version/x86_64-w64-mingw32

	some_directory/bin/../include/c++/GCC_version/i686-w64-mingw32

	some_directory/bin/../include/c++/GCC_version/backward

	some_directory/bin/../x86_64-w64-mingw32/include

	some_directory/bin/../i686-w64-mingw32/include

	some_directory/bin/../include



This directory layout is standard for any toolchain you will find on the
official MinGW-w64 website [http://mingw-w64.sourceforge.net].

Clang expects the GCC executable “gcc.exe” compiled for
i686-w64-mingw32 (or x86_64-w64-mingw32) to be present on PATH.

Some tests might fail [http://llvm.org/bugs/show_bug.cgi?id=9072] on
x86_64-w64-mingw32.










clang-cl

clang-cl is an alternative command-line interface to Clang driver, designed for
compatibility with the Visual C++ compiler, cl.exe.

To enable clang-cl to find system headers, libraries, and the linker when run
from the command-line, it should be executed inside a Visual Studio Native Tools
Command Prompt or a regular Command Prompt where the environment has been set
up using e.g. vcvars32.bat [http://msdn.microsoft.com/en-us/library/f2ccy3wt.aspx].

clang-cl can also be used from inside Visual Studio  by using an LLVM Platform
Toolset.


Command-Line Options

To be compatible with cl.exe, clang-cl supports most of the same command-line
options. Those options can start with either / or -. It also supports
some of Clang’s core options, such as the -W options.

Options that are known to clang-cl, but not currently supported, are ignored
with a warning. For example:


clang-cl.exe: warning: argument unused during compilation: '/AI'








To suppress warnings about unused arguments, use the -Qunused-arguments option.

Options that are not known to clang-cl will cause errors. If they are spelled with a
leading /, they will be mistaken for a filename:


clang-cl.exe: error: no such file or directory: '/foobar'








Please file a bug [http://llvm.org/bugs/enter_bug.cgi?product=clang&component=Driver]
for any valid cl.exe flags that clang-cl does not understand.

Execute clang-cl /? to see a list of supported options:


CL.EXE COMPATIBILITY OPTIONS:
  /?                     Display available options
  /arch:<value>          Set architecture for code generation
  /C                     Don't discard comments when preprocessing
  /c                     Compile only
  /D <macro[=value]>     Define macro
  /EH<value>             Exception handling model
  /EP                    Disable linemarker output and preprocess to stdout
  /E                     Preprocess to stdout
  /fallback              Fall back to cl.exe if clang-cl fails to compile
  /FA                    Output assembly code file during compilation
  /Fa<file or directory> Output assembly code to this file during compilation (with /FA)
  /Fe<file or directory> Set output executable file or directory (ends in / or \)
  /FI <value>            Include file before parsing
  /Fi<file>              Set preprocess output file name (with /P)
  /Fo<file or directory> Set output object file, or directory (ends in / or \) (with /c)
  /fp:except-
  /fp:except
  /fp:fast
  /fp:precise
  /fp:strict
  /GA                    Assume thread-local variables are defined in the executable
  /GF-                   Disable string pooling
  /GR-                   Disable emission of RTTI data
  /GR                    Enable emission of RTTI data
  /Gs<value>             Set stack probe size
  /Gw-                   Don't put each data item in its own section
  /Gw                    Put each data item in its own section
  /Gy-                   Don't put each function in its own section
  /Gy                    Put each function in its own section
  /help                  Display available options
  /I <dir>               Add directory to include search path
  /J                     Make char type unsigned
  /LDd                   Create debug DLL
  /LD                    Create DLL
  /link <options>        Forward options to the linker
  /MDd                   Use DLL debug run-time
  /MD                    Use DLL run-time
  /MTd                   Use static debug run-time
  /MT                    Use static run-time
  /Ob0                   Disable inlining
  /Od                    Disable optimization
  /Oi-                   Disable use of builtin functions
  /Oi                    Enable use of builtin functions
  /Os                    Optimize for size
  /Ot                    Optimize for speed
  /Ox                    Maximum optimization
  /Oy-                   Disable frame pointer omission
  /Oy                    Enable frame pointer omission
  /O<n>                  Optimization level
  /o <file or directory> Set output file or directory (ends in / or \)
  /P                     Preprocess to file
  /Qvec-                 Disable the loop vectorization passes
  /Qvec                  Enable the loop vectorization passes
  /showIncludes          Print info about included files to stderr
  /TC                    Treat all source files as C
  /Tc <filename>         Specify a C source file
  /TP                    Treat all source files as C++
  /Tp <filename>         Specify a C++ source file
  /U <macro>             Undefine macro
  /vd<value>             Control vtordisp placement
  /vmb                   Use a best-case representation method for member pointers
  /vmg                   Use a most-general representation for member pointers
  /vmm                   Set the default most-general representation to multiple inheritance
  /vms                   Set the default most-general representation to single inheritance
  /vmv                   Set the default most-general representation to virtual inheritance
  /volatile:iso          Volatile loads and stores have standard semantics
  /volatile:ms           Volatile loads and stores have acquire and release semantics
  /W0                    Disable all warnings
  /W1                    Enable -Wall
  /W2                    Enable -Wall
  /W3                    Enable -Wall
  /W4                    Enable -Wall
  /Wall                  Enable -Wall
  /WX-                   Do not treat warnings as errors
  /WX                    Treat warnings as errors
  /w                     Disable all warnings
  /Zc:sizedDealloc-      Disable C++14 sized global deallocation functions
  /Zc:sizedDealloc       Enable C++14 sized global deallocation functions
  /Zc:strictStrings      Treat string literals as const
  /Zc:threadSafeInit-    Disable thread-safe initialization of static variables
  /Zc:threadSafeInit     Enable thread-safe initialization of static variables
  /Zc:trigraphs-         Disable trigraphs (default)
  /Zc:trigraphs          Enable trigraphs
  /Zi                    Enable debug information
  /Zp                    Set the default maximum struct packing alignment to 1
  /Zp<value>             Specify the default maximum struct packing alignment
  /Zs                    Syntax-check only

OPTIONS:
  -###                    Print (but do not run) the commands to run for this compilation
  --analyze               Run the static analyzer
  -fansi-escape-codes     Use ANSI escape codes for diagnostics
  -fcolor-diagnostics     Use colors in diagnostics
  -fdiagnostics-parseable-fixits
                          Print fix-its in machine parseable form
  -fms-compatibility-version=<value>
                          Dot-separated value representing the Microsoft compiler version
                          number to report in _MSC_VER (0 = don't define it (default))
  -fmsc-version=<value>   Microsoft compiler version number to report in _MSC_VER (0 = don't
                          define it (default))
  -fno-sanitize-coverage=<value>
                          Disable specified features of coverage instrumentation for Sanitizers
  -fno-sanitize-recover=<value>
                          Disable recovery for specified sanitizers
  -fno-sanitize-trap=<value>
                          Disable trapping for specified sanitizers
  -fsanitize-blacklist=<value>
                          Path to blacklist file for sanitizers
  -fsanitize-coverage=<value>
                          Specify the type of coverage instrumentation for Sanitizers
  -fsanitize-recover=<value>
                          Enable recovery for specified sanitizers
  -fsanitize-trap=<value> Enable trapping for specified sanitizers
  -fsanitize=<check>      Turn on runtime checks for various forms of undefined or suspicious
                          behavior. See user manual for available checks
  -mllvm <value>          Additional arguments to forward to LLVM's option processing
  -Qunused-arguments      Don't emit warning for unused driver arguments
  -R<remark>              Enable the specified remark
  --target=<value>        Generate code for the given target
  -v                      Show commands to run and use verbose output
  -W<warning>             Enable the specified warning
  -Xclang <arg>           Pass <arg> to the clang compiler









The /fallback Option

When clang-cl is run with the /fallback option, it will first try to
compile files itself. For any file that it fails to compile, it will fall back
and try to compile the file by invoking cl.exe.

This option is intended to be used as a temporary means to build projects where
clang-cl cannot successfully compile all the files. clang-cl may fail to compile
a file either because it cannot generate code for some C++ feature, or because
it cannot parse some Microsoft language extension.











          

      

      

    

  

    
      
          
            
  
Clang Language Extensions



	Introduction

	Feature Checking Macros

	Include File Checking Macros

	Builtin Macros

	Vectors and Extended Vectors

	Messages on deprecated and unavailable Attributes

	Attributes on Enumerators

	‘User-Specified’ System Frameworks

	Checks for Standard Language Features

	Checks for Type Trait Primitives

	Blocks

	Objective-C Features

	Initializer lists for complex numbers in C

	Builtin Functions

	Non-standard C++11 Attributes

	Target-Specific Extensions

	Extensions for Static Analysis

	Extensions for Dynamic Analysis

	Extensions for selectively disabling optimization

	Extensions for loop hint optimizations









Introduction

This document describes the language extensions provided by Clang.  In addition
to the language extensions listed here, Clang aims to support a broad range of
GCC extensions.  Please see the GCC manual [http://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html] for more information on
these extensions.




Feature Checking Macros

Language extensions can be very useful, but only if you know you can depend on
them.  In order to allow fine-grain features checks, we support three builtin
function-like macros.  This allows you to directly test for a feature in your
code without having to resort to something like autoconf or fragile “compiler
version checks”.


__has_builtin

This function-like macro takes a single identifier argument that is the name of
a builtin function.  It evaluates to 1 if the builtin is supported or 0 if not.
It can be used like this:

#ifndef __has_builtin         // Optional of course.
  #define __has_builtin(x) 0  // Compatibility with non-clang compilers.
#endif

...
#if __has_builtin(__builtin_trap)
  __builtin_trap();
#else
  abort();
#endif
...








__has_feature and __has_extension

These function-like macros take a single identifier argument that is the name
of a feature.  __has_feature evaluates to 1 if the feature is both
supported by Clang and standardized in the current language standard or 0 if
not (but see below), while
__has_extension evaluates to 1 if the feature is supported by Clang in the
current language (either as a language extension or a standard language
feature) or 0 if not.  They can be used like this:

#ifndef __has_feature         // Optional of course.
  #define __has_feature(x) 0  // Compatibility with non-clang compilers.
#endif
#ifndef __has_extension
  #define __has_extension __has_feature // Compatibility with pre-3.0 compilers.
#endif

...
#if __has_feature(cxx_rvalue_references)
// This code will only be compiled with the -std=c++11 and -std=gnu++11
// options, because rvalue references are only standardized in C++11.
#endif

#if __has_extension(cxx_rvalue_references)
// This code will be compiled with the -std=c++11, -std=gnu++11, -std=c++98
// and -std=gnu++98 options, because rvalue references are supported as a
// language extension in C++98.
#endif





For backward compatibility, __has_feature can also be used to test
for support for non-standardized features, i.e. features not prefixed c_,
cxx_ or objc_.

Another use of __has_feature is to check for compiler features not related
to the language standard, such as e.g. AddressSanitizer.

If the -pedantic-errors option is given, __has_extension is equivalent
to __has_feature.

The feature tag is described along with the language feature below.

The feature name or extension name can also be specified with a preceding and
following __ (double underscore) to avoid interference from a macro with
the same name.  For instance, __cxx_rvalue_references__ can be used instead
of cxx_rvalue_references.




__has_cpp_attribute

This function-like macro takes a single argument that is the name of a
C++11-style attribute. The argument can either be a single identifier, or a
scoped identifier. If the attribute is supported, a nonzero value is returned.
If the attribute is a standards-based attribute, this macro returns a nonzero
value based on the year and month in which the attribute was voted into the
working draft. If the attribute is not supported by the current compliation
target, this macro evaluates to 0.  It can be used like this:

#ifndef __has_cpp_attribute         // Optional of course.
  #define __has_cpp_attribute(x) 0  // Compatibility with non-clang compilers.
#endif

...
#if __has_cpp_attribute(clang::fallthrough)
#define FALLTHROUGH [[clang::fallthrough]]
#else
#define FALLTHROUGH
#endif
...





The attribute identifier (but not scope) can also be specified with a preceding
and following __ (double underscore) to avoid interference from a macro with
the same name.  For instance, gnu::__const__ can be used instead of
gnu::const.




__has_attribute

This function-like macro takes a single identifier argument that is the name of
a GNU-style attribute.  It evaluates to 1 if the attribute is supported by the
current compilation target, or 0 if not.  It can be used like this:

#ifndef __has_attribute         // Optional of course.
  #define __has_attribute(x) 0  // Compatibility with non-clang compilers.
#endif

...
#if __has_attribute(always_inline)
#define ALWAYS_INLINE __attribute__((always_inline))
#else
#define ALWAYS_INLINE
#endif
...





The attribute name can also be specified with a preceding and following __
(double underscore) to avoid interference from a macro with the same name.  For
instance, __always_inline__ can be used instead of always_inline.




__has_declspec_attribute

This function-like macro takes a single identifier argument that is the name of
an attribute implemented as a Microsoft-style __declspec attribute.  It
evaluates to 1 if the attribute is supported by the current compilation target,
or 0 if not.  It can be used like this:

#ifndef __has_declspec_attribute         // Optional of course.
  #define __has_declspec_attribute(x) 0  // Compatibility with non-clang compilers.
#endif

...
#if __has_declspec_attribute(dllexport)
#define DLLEXPORT __declspec(dllexport)
#else
#define DLLEXPORT
#endif
...





The attribute name can also be specified with a preceding and following __
(double underscore) to avoid interference from a macro with the same name.  For
instance, __dllexport__ can be used instead of dllexport.




__is_identifier

This function-like macro takes a single identifier argument that might be either
a reserved word or a regular identifier. It evaluates to 1 if the argument is just
a regular identifier and not a reserved word, in the sense that it can then be
used as the name of a user-defined function or variable. Otherwise it evaluates
to 0.  It can be used like this:

...
#ifdef __is_identifier          // Compatibility with non-clang compilers.
  #if __is_identifier(__wchar_t)
    typedef wchar_t __wchar_t;
  #endif
#endif

__wchar_t WideCharacter;
...










Include File Checking Macros

Not all developments systems have the same include files.  The
__has_include and __has_include_next macros allow
you to check for the existence of an include file before doing a possibly
failing #include directive.  Include file checking macros must be used
as expressions in #if or #elif preprocessing directives.


__has_include

This function-like macro takes a single file name string argument that is the
name of an include file.  It evaluates to 1 if the file can be found using the
include paths, or 0 otherwise:

// Note the two possible file name string formats.
#if __has_include("myinclude.h") && __has_include(<stdint.h>)
# include "myinclude.h"
#endif





To test for this feature, use #if defined(__has_include):

// To avoid problem with non-clang compilers not having this macro.
#if defined(__has_include)
#if __has_include("myinclude.h")
# include "myinclude.h"
#endif
#endif








__has_include_next

This function-like macro takes a single file name string argument that is the
name of an include file.  It is like __has_include except that it looks for
the second instance of the given file found in the include paths.  It evaluates
to 1 if the second instance of the file can be found using the include paths,
or 0 otherwise:

// Note the two possible file name string formats.
#if __has_include_next("myinclude.h") && __has_include_next(<stdint.h>)
# include_next "myinclude.h"
#endif

// To avoid problem with non-clang compilers not having this macro.
#if defined(__has_include_next)
#if __has_include_next("myinclude.h")
# include_next "myinclude.h"
#endif
#endif





Note that __has_include_next, like the GNU extension #include_next
directive, is intended for use in headers only, and will issue a warning if
used in the top-level compilation file.  A warning will also be issued if an
absolute path is used in the file argument.




__has_warning

This function-like macro takes a string literal that represents a command line
option for a warning and returns true if that is a valid warning option.

#if __has_warning("-Wformat")
...
#endif










Builtin Macros


	__BASE_FILE__

	Defined to a string that contains the name of the main input file passed to
Clang.

	__COUNTER__

	Defined to an integer value that starts at zero and is incremented each time
the __COUNTER__ macro is expanded.

	__INCLUDE_LEVEL__

	Defined to an integral value that is the include depth of the file currently
being translated.  For the main file, this value is zero.

	__TIMESTAMP__

	Defined to the date and time of the last modification of the current source
file.

	__clang__

	Defined when compiling with Clang

	__clang_major__

	Defined to the major marketing version number of Clang (e.g., the 2 in
2.0.1).  Note that marketing version numbers should not be used to check for
language features, as different vendors use different numbering schemes.
Instead, use the Feature Checking Macros.

	__clang_minor__

	Defined to the minor version number of Clang (e.g., the 0 in 2.0.1).  Note
that marketing version numbers should not be used to check for language
features, as different vendors use different numbering schemes.  Instead, use
the Feature Checking Macros.

	__clang_patchlevel__

	Defined to the marketing patch level of Clang (e.g., the 1 in 2.0.1).

	__clang_version__

	Defined to a string that captures the Clang marketing version, including the
Subversion tag or revision number, e.g., “1.5 (trunk 102332)”.






Vectors and Extended Vectors

Supports the GCC, OpenCL, AltiVec and NEON vector extensions.

OpenCL vector types are created using ext_vector_type attribute.  It
support for V.xyzw syntax and other tidbits as seen in OpenCL.  An example
is:

typedef float float4 __attribute__((ext_vector_type(4)));
typedef float float2 __attribute__((ext_vector_type(2)));

float4 foo(float2 a, float2 b) {
  float4 c;
  c.xz = a;
  c.yw = b;
  return c;
}





Query for this feature with __has_extension(attribute_ext_vector_type).

Giving -faltivec option to clang enables support for AltiVec vector syntax
and functions.  For example:

vector float foo(vector int a) {
  vector int b;
  b = vec_add(a, a) + a;
  return (vector float)b;
}





NEON vector types are created using neon_vector_type and
neon_polyvector_type attributes.  For example:

typedef __attribute__((neon_vector_type(8))) int8_t int8x8_t;
typedef __attribute__((neon_polyvector_type(16))) poly8_t poly8x16_t;

int8x8_t foo(int8x8_t a) {
  int8x8_t v;
  v = a;
  return v;
}






Vector Literals

Vector literals can be used to create vectors from a set of scalars, or
vectors.  Either parentheses or braces form can be used.  In the parentheses
form the number of literal values specified must be one, i.e. referring to a
scalar value, or must match the size of the vector type being created.  If a
single scalar literal value is specified, the scalar literal value will be
replicated to all the components of the vector type.  In the brackets form any
number of literals can be specified.  For example:

typedef int v4si __attribute__((__vector_size__(16)));
typedef float float4 __attribute__((ext_vector_type(4)));
typedef float float2 __attribute__((ext_vector_type(2)));

v4si vsi = (v4si){1, 2, 3, 4};
float4 vf = (float4)(1.0f, 2.0f, 3.0f, 4.0f);
vector int vi1 = (vector int)(1);    // vi1 will be (1, 1, 1, 1).
vector int vi2 = (vector int){1};    // vi2 will be (1, 0, 0, 0).
vector int vi3 = (vector int)(1, 2); // error
vector int vi4 = (vector int){1, 2}; // vi4 will be (1, 2, 0, 0).
vector int vi5 = (vector int)(1, 2, 3, 4);
float4 vf = (float4)((float2)(1.0f, 2.0f), (float2)(3.0f, 4.0f));








Vector Operations

The table below shows the support for each operation by vector extension.  A
dash indicates that an operation is not accepted according to a corresponding
specification.










	Opeator
	OpenCL
	AltiVec
	GCC
	NEON




	[]
	yes
	yes
	yes
	–


	unary operators +, –
	yes
	yes
	yes
	–


	++, – –
	yes
	yes
	yes
	–


	+,–,*,/,%
	yes
	yes
	yes
	–


	bitwise operators &,|,^,~
	yes
	yes
	yes
	–


	>>,<<
	yes
	yes
	yes
	–


	!, &&, ||
	yes
	–
	–
	–


	==, !=, >, <, >=, <=
	yes
	yes
	–
	–


	=
	yes
	yes
	yes
	yes


	:?
	yes
	–
	–
	–


	sizeof
	yes
	yes
	yes
	yes


	C-style cast
	yes
	yes
	yes
	no


	reinterpret_cast
	yes
	no
	yes
	no


	static_cast
	yes
	no
	yes
	no


	const_cast
	no
	no
	no
	no





See also __builtin_shufflevector, __builtin_convertvector.






Messages on deprecated and unavailable Attributes

An optional string message can be added to the deprecated and
unavailable attributes.  For example:

void explode(void) __attribute__((deprecated("extremely unsafe, use 'combust' instead!!!")));





If the deprecated or unavailable declaration is used, the message will be
incorporated into the appropriate diagnostic:

harmless.c:4:3: warning: 'explode' is deprecated: extremely unsafe, use 'combust' instead!!!
      [-Wdeprecated-declarations]
  explode();
  ^





Query for this feature with
__has_extension(attribute_deprecated_with_message) and
__has_extension(attribute_unavailable_with_message).




Attributes on Enumerators

Clang allows attributes to be written on individual enumerators.  This allows
enumerators to be deprecated, made unavailable, etc.  The attribute must appear
after the enumerator name and before any initializer, like so:

enum OperationMode {
  OM_Invalid,
  OM_Normal,
  OM_Terrified __attribute__((deprecated)),
  OM_AbortOnError __attribute__((deprecated)) = 4
};





Attributes on the enum declaration do not apply to individual enumerators.

Query for this feature with __has_extension(enumerator_attributes).




‘User-Specified’ System Frameworks

Clang provides a mechanism by which frameworks can be built in such a way that
they will always be treated as being “system frameworks”, even if they are not
present in a system framework directory.  This can be useful to system
framework developers who want to be able to test building other applications
with development builds of their framework, including the manner in which the
compiler changes warning behavior for system headers.

Framework developers can opt-in to this mechanism by creating a
“.system_framework” file at the top-level of their framework.  That is, the
framework should have contents like:

.../TestFramework.framework
.../TestFramework.framework/.system_framework
.../TestFramework.framework/Headers
.../TestFramework.framework/Headers/TestFramework.h
...





Clang will treat the presence of this file as an indicator that the framework
should be treated as a system framework, regardless of how it was found in the
framework search path.  For consistency, we recommend that such files never be
included in installed versions of the framework.




Checks for Standard Language Features

The __has_feature macro can be used to query if certain standard language
features are enabled.  The __has_extension macro can be used to query if
language features are available as an extension when compiling for a standard
which does not provide them.  The features which can be tested are listed here.

Since Clang 3.4, the C++ SD-6 feature test macros are also supported.
These are macros with names of the form __cpp_<feature_name>, and are
intended to be a portable way to query the supported features of the compiler.
See the C++ status page [http://clang.llvm.org/cxx_status.html#ts] for
information on the version of SD-6 supported by each Clang release, and the
macros provided by that revision of the recommendations.


C++98

The features listed below are part of the C++98 standard.  These features are
enabled by default when compiling C++ code.


C++ exceptions

Use __has_feature(cxx_exceptions) to determine if C++ exceptions have been
enabled.  For example, compiling code with -fno-exceptions disables C++
exceptions.




C++ RTTI

Use __has_feature(cxx_rtti) to determine if C++ RTTI has been enabled.  For
example, compiling code with -fno-rtti disables the use of RTTI.






C++11

The features listed below are part of the C++11 standard.  As a result, all
these features are enabled with the -std=c++11 or -std=gnu++11 option
when compiling C++ code.


C++11 SFINAE includes access control

Use __has_feature(cxx_access_control_sfinae) or
__has_extension(cxx_access_control_sfinae) to determine whether
access-control errors (e.g., calling a private constructor) are considered to
be template argument deduction errors (aka SFINAE errors), per C++ DR1170 [http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#1170].




C++11 alias templates

Use __has_feature(cxx_alias_templates) or
__has_extension(cxx_alias_templates) to determine if support for C++11’s
alias declarations and alias templates is enabled.




C++11 alignment specifiers

Use __has_feature(cxx_alignas) or __has_extension(cxx_alignas) to
determine if support for alignment specifiers using alignas is enabled.

Use __has_feature(cxx_alignof) or __has_extension(cxx_alignof) to
determine if support for the alignof keyword is enabled.




C++11 attributes

Use __has_feature(cxx_attributes) or __has_extension(cxx_attributes) to
determine if support for attribute parsing with C++11’s square bracket notation
is enabled.




C++11 generalized constant expressions

Use __has_feature(cxx_constexpr) to determine if support for generalized
constant expressions (e.g., constexpr) is enabled.




C++11 decltype()

Use __has_feature(cxx_decltype) or __has_extension(cxx_decltype) to
determine if support for the decltype() specifier is enabled.  C++11’s
decltype does not require type-completeness of a function call expression.
Use __has_feature(cxx_decltype_incomplete_return_types) or
__has_extension(cxx_decltype_incomplete_return_types) to determine if
support for this feature is enabled.




C++11 default template arguments in function templates

Use __has_feature(cxx_default_function_template_args) or
__has_extension(cxx_default_function_template_args) to determine if support
for default template arguments in function templates is enabled.




C++11 defaulted functions

Use __has_feature(cxx_defaulted_functions) or
__has_extension(cxx_defaulted_functions) to determine if support for
defaulted function definitions (with = default) is enabled.




C++11 delegating constructors

Use __has_feature(cxx_delegating_constructors) to determine if support for
delegating constructors is enabled.




C++11 deleted functions

Use __has_feature(cxx_deleted_functions) or
__has_extension(cxx_deleted_functions) to determine if support for deleted
function definitions (with = delete) is enabled.




C++11 explicit conversion functions

Use __has_feature(cxx_explicit_conversions) to determine if support for
explicit conversion functions is enabled.




C++11 generalized initializers

Use __has_feature(cxx_generalized_initializers) to determine if support for
generalized initializers (using braced lists and std::initializer_list) is
enabled.




C++11 implicit move constructors/assignment operators

Use __has_feature(cxx_implicit_moves) to determine if Clang will implicitly
generate move constructors and move assignment operators where needed.




C++11 inheriting constructors

Use __has_feature(cxx_inheriting_constructors) to determine if support for
inheriting constructors is enabled.




C++11 inline namespaces

Use __has_feature(cxx_inline_namespaces) or
__has_extension(cxx_inline_namespaces) to determine if support for inline
namespaces is enabled.




C++11 lambdas

Use __has_feature(cxx_lambdas) or __has_extension(cxx_lambdas) to
determine if support for lambdas is enabled.




C++11 local and unnamed types as template arguments

Use __has_feature(cxx_local_type_template_args) or
__has_extension(cxx_local_type_template_args) to determine if support for
local and unnamed types as template arguments is enabled.




C++11 noexcept

Use __has_feature(cxx_noexcept) or __has_extension(cxx_noexcept) to
determine if support for noexcept exception specifications is enabled.




C++11 in-class non-static data member initialization

Use __has_feature(cxx_nonstatic_member_init) to determine whether in-class
initialization of non-static data members is enabled.




C++11 nullptr

Use __has_feature(cxx_nullptr) or __has_extension(cxx_nullptr) to
determine if support for nullptr is enabled.




C++11 override control

Use __has_feature(cxx_override_control) or
__has_extension(cxx_override_control) to determine if support for the
override control keywords is enabled.




C++11 reference-qualified functions

Use __has_feature(cxx_reference_qualified_functions) or
__has_extension(cxx_reference_qualified_functions) to determine if support
for reference-qualified functions (e.g., member functions with & or &&
applied to *this) is enabled.




C++11 range-based for loop

Use __has_feature(cxx_range_for) or __has_extension(cxx_range_for) to
determine if support for the range-based for loop is enabled.




C++11 raw string literals

Use __has_feature(cxx_raw_string_literals) to determine if support for raw
string literals (e.g., R"x(foo\bar)x") is enabled.




C++11 rvalue references

Use __has_feature(cxx_rvalue_references) or
__has_extension(cxx_rvalue_references) to determine if support for rvalue
references is enabled.




C++11 static_assert()

Use __has_feature(cxx_static_assert) or
__has_extension(cxx_static_assert) to determine if support for compile-time
assertions using static_assert is enabled.




C++11 thread_local

Use __has_feature(cxx_thread_local) to determine if support for
thread_local variables is enabled.




C++11 type inference

Use __has_feature(cxx_auto_type) or __has_extension(cxx_auto_type) to
determine C++11 type inference is supported using the auto specifier.  If
this is disabled, auto will instead be a storage class specifier, as in C
or C++98.




C++11 strongly typed enumerations

Use __has_feature(cxx_strong_enums) or
__has_extension(cxx_strong_enums) to determine if support for strongly
typed, scoped enumerations is enabled.




C++11 trailing return type

Use __has_feature(cxx_trailing_return) or
__has_extension(cxx_trailing_return) to determine if support for the
alternate function declaration syntax with trailing return type is enabled.




C++11 Unicode string literals

Use __has_feature(cxx_unicode_literals) to determine if support for Unicode
string literals is enabled.




C++11 unrestricted unions

Use __has_feature(cxx_unrestricted_unions) to determine if support for
unrestricted unions is enabled.




C++11 user-defined literals

Use __has_feature(cxx_user_literals) to determine if support for
user-defined literals is enabled.




C++11 variadic templates

Use __has_feature(cxx_variadic_templates) or
__has_extension(cxx_variadic_templates) to determine if support for
variadic templates is enabled.






C++1y

The features listed below are part of the committee draft for the C++1y
standard.  As a result, all these features are enabled with the -std=c++1y
or -std=gnu++1y option when compiling C++ code.


C++1y binary literals

Use __has_feature(cxx_binary_literals) or
__has_extension(cxx_binary_literals) to determine whether
binary literals (for instance, 0b10010) are recognized. Clang supports this
feature as an extension in all language modes.




C++1y contextual conversions

Use __has_feature(cxx_contextual_conversions) or
__has_extension(cxx_contextual_conversions) to determine if the C++1y rules
are used when performing an implicit conversion for an array bound in a
new-expression, the operand of a delete-expression, an integral constant
expression, or a condition in a switch statement.




C++1y decltype(auto)

Use __has_feature(cxx_decltype_auto) or
__has_extension(cxx_decltype_auto) to determine if support
for the decltype(auto) placeholder type is enabled.




C++1y default initializers for aggregates

Use __has_feature(cxx_aggregate_nsdmi) or
__has_extension(cxx_aggregate_nsdmi) to determine if support
for default initializers in aggregate members is enabled.




C++1y digit separators

Use __cpp_digit_separators to determine if support for digit separators
using single quotes (for instance, 10'000) is enabled. At this time, there
is no corresponding __has_feature name




C++1y generalized lambda capture

Use __has_feature(cxx_init_captures) or
__has_extension(cxx_init_captures) to determine if support for
lambda captures with explicit initializers is enabled
(for instance, [n(0)] { return ++n; }).




C++1y generic lambdas

Use __has_feature(cxx_generic_lambdas) or
__has_extension(cxx_generic_lambdas) to determine if support for generic
(polymorphic) lambdas is enabled
(for instance, [] (auto x) { return x + 1; }).




C++1y relaxed constexpr

Use __has_feature(cxx_relaxed_constexpr) or
__has_extension(cxx_relaxed_constexpr) to determine if variable
declarations, local variable modification, and control flow constructs
are permitted in constexpr functions.




C++1y return type deduction

Use __has_feature(cxx_return_type_deduction) or
__has_extension(cxx_return_type_deduction) to determine if support
for return type deduction for functions (using auto as a return type)
is enabled.




C++1y runtime-sized arrays

Use __has_feature(cxx_runtime_array) or
__has_extension(cxx_runtime_array) to determine if support
for arrays of runtime bound (a restricted form of variable-length arrays)
is enabled.
Clang’s implementation of this feature is incomplete.




C++1y variable templates

Use __has_feature(cxx_variable_templates) or
__has_extension(cxx_variable_templates) to determine if support for
templated variable declarations is enabled.






C11

The features listed below are part of the C11 standard.  As a result, all these
features are enabled with the -std=c11 or -std=gnu11 option when
compiling C code.  Additionally, because these features are all
backward-compatible, they are available as extensions in all language modes.


C11 alignment specifiers

Use __has_feature(c_alignas) or __has_extension(c_alignas) to determine
if support for alignment specifiers using _Alignas is enabled.

Use __has_feature(c_alignof) or __has_extension(c_alignof) to determine
if support for the _Alignof keyword is enabled.




C11 atomic operations

Use __has_feature(c_atomic) or __has_extension(c_atomic) to determine
if support for atomic types using _Atomic is enabled.  Clang also provides
a set of builtins which can be used to implement
the <stdatomic.h> operations on _Atomic types. Use
__has_include(<stdatomic.h>) to determine if C11’s <stdatomic.h> header
is available.

Clang will use the system’s <stdatomic.h> header when one is available, and
will otherwise use its own. When using its own, implementations of the atomic
operations are provided as macros. In the cases where C11 also requires a real
function, this header provides only the declaration of that function (along
with a shadowing macro implementation), and you must link to a library which
provides a definition of the function if you use it instead of the macro.




C11 generic selections

Use __has_feature(c_generic_selections) or
__has_extension(c_generic_selections) to determine if support for generic
selections is enabled.

As an extension, the C11 generic selection expression is available in all
languages supported by Clang.  The syntax is the same as that given in the C11
standard.

In C, type compatibility is decided according to the rules given in the
appropriate standard, but in C++, which lacks the type compatibility rules used
in C, types are considered compatible only if they are equivalent.




C11 _Static_assert()

Use __has_feature(c_static_assert) or __has_extension(c_static_assert)
to determine if support for compile-time assertions using _Static_assert is
enabled.




C11 _Thread_local

Use __has_feature(c_thread_local) or __has_extension(c_thread_local)
to determine if support for _Thread_local variables is enabled.






Modules

Use __has_feature(modules) to determine if Modules have been enabled.
For example, compiling code with -fmodules enables the use of Modules.

More information could be found here [http://clang.llvm.org/docs/Modules.html].






Checks for Type Trait Primitives

Type trait primitives are special builtin constant expressions that can be used
by the standard C++ library to facilitate or simplify the implementation of
user-facing type traits in the <type_traits> header.

They are not intended to be used directly by user code because they are
implementation-defined and subject to change – as such they’re tied closely to
the supported set of system headers, currently:


	LLVM’s own libc++

	GNU libstdc++

	The Microsoft standard C++ library



Clang supports the GNU C++ type traits [http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html] and a subset of the
Microsoft Visual C++ Type traits [http://msdn.microsoft.com/en-us/library/ms177194(v=VS.100).aspx].

Feature detection is supported only for some of the primitives at present. User
code should not use these checks because they bear no direct relation to the
actual set of type traits supported by the C++ standard library.

For type trait __X, __has_extension(X) indicates the presence of the
type trait primitive in the compiler. A simplistic usage example as might be
seen in standard C++ headers follows:

#if __has_extension(is_convertible_to)
template<typename From, typename To>
struct is_convertible_to {
  static const bool value = __is_convertible_to(From, To);
};
#else
// Emulate type trait for compatibility with other compilers.
#endif





The following type trait primitives are supported by Clang:


	__has_nothrow_assign (GNU, Microsoft)

	__has_nothrow_copy (GNU, Microsoft)

	__has_nothrow_constructor (GNU, Microsoft)

	__has_trivial_assign (GNU, Microsoft)

	__has_trivial_copy (GNU, Microsoft)

	__has_trivial_constructor (GNU, Microsoft)

	__has_trivial_destructor (GNU, Microsoft)

	__has_virtual_destructor (GNU, Microsoft)

	__is_abstract (GNU, Microsoft)

	__is_base_of (GNU, Microsoft)

	__is_class (GNU, Microsoft)

	__is_convertible_to (Microsoft)

	__is_empty (GNU, Microsoft)

	__is_enum (GNU, Microsoft)

	__is_interface_class (Microsoft)

	__is_pod (GNU, Microsoft)

	__is_polymorphic (GNU, Microsoft)

	__is_union (GNU, Microsoft)

	__is_literal(type): Determines whether the given type is a literal type

	__is_final: Determines whether the given type is declared with a
final class-virt-specifier.

	__underlying_type(type): Retrieves the underlying type for a given
enum type.  This trait is required to implement the C++11 standard
library.

	__is_trivially_assignable(totype, fromtype): Determines whether a value
of type totype can be assigned to from a value of type fromtype such
that no non-trivial functions are called as part of that assignment.  This
trait is required to implement the C++11 standard library.

	__is_trivially_constructible(type, argtypes...): Determines whether a
value of type type can be direct-initialized with arguments of types
argtypes... such that no non-trivial functions are called as part of
that initialization.  This trait is required to implement the C++11 standard
library.

	__is_destructible (MSVC 2013): partially implemented

	__is_nothrow_destructible (MSVC 2013): partially implemented

	__is_nothrow_assignable (MSVC 2013, clang)

	__is_constructible (MSVC 2013, clang)

	__is_nothrow_constructible (MSVC 2013, clang)






Blocks

The syntax and high level language feature description is in
BlockLanguageSpec. Implementation and ABI details for
the clang implementation are in Block-ABI-Apple.

Query for this feature with __has_extension(blocks).




Objective-C Features


Related result types

According to Cocoa conventions, Objective-C methods with certain names
(“init”, “alloc”, etc.) always return objects that are an instance of
the receiving class’s type.  Such methods are said to have a “related result
type”, meaning that a message send to one of these methods will have the same
static type as an instance of the receiver class.  For example, given the
following classes:

@interface NSObject
+ (id)alloc;
- (id)init;
@end

@interface NSArray : NSObject
@end





and this common initialization pattern

NSArray *array = [[NSArray alloc] init];





the type of the expression [NSArray alloc] is NSArray* because
alloc implicitly has a related result type.  Similarly, the type of the
expression [[NSArray alloc] init] is NSArray*, since init has a
related result type and its receiver is known to have the type NSArray *.
If neither alloc nor init had a related result type, the expressions
would have had type id, as declared in the method signature.

A method with a related result type can be declared by using the type
instancetype as its result type.  instancetype is a contextual keyword
that is only permitted in the result type of an Objective-C method, e.g.

@interface A
+ (instancetype)constructAnA;
@end





The related result type can also be inferred for some methods.  To determine
whether a method has an inferred related result type, the first word in the
camel-case selector (e.g., “init” in “initWithObjects”) is considered,
and the method will have a related result type if its return type is compatible
with the type of its class and if:


	the first word is “alloc” or “new”, and the method is a class method,
or

	the first word is “autorelease”, “init”, “retain”, or “self”,
and the method is an instance method.



If a method with a related result type is overridden by a subclass method, the
subclass method must also return a type that is compatible with the subclass
type.  For example:

@interface NSString : NSObject
- (NSUnrelated *)init; // incorrect usage: NSUnrelated is not NSString or a superclass of NSString
@end





Related result types only affect the type of a message send or property access
via the given method.  In all other respects, a method with a related result
type is treated the same way as method that returns id.

Use __has_feature(objc_instancetype) to determine whether the
instancetype contextual keyword is available.




Automatic reference counting

Clang provides support for automated reference counting in Objective-C, which eliminates the need
for manual retain/release/autorelease message sends.  There are two
feature macros associated with automatic reference counting:
__has_feature(objc_arc) indicates the availability of automated reference
counting in general, while __has_feature(objc_arc_weak) indicates that
automated reference counting also includes support for __weak pointers to
Objective-C objects.




Enumerations with a fixed underlying type

Clang provides support for C++11 enumerations with a fixed underlying type
within Objective-C.  For example, one can write an enumeration type as:

typedef enum : unsigned char { Red, Green, Blue } Color;





This specifies that the underlying type, which is used to store the enumeration
value, is unsigned char.

Use __has_feature(objc_fixed_enum) to determine whether support for fixed
underlying types is available in Objective-C.




Interoperability with C++11 lambdas

Clang provides interoperability between C++11 lambdas and blocks-based APIs, by
permitting a lambda to be implicitly converted to a block pointer with the
corresponding signature.  For example, consider an API such as NSArray‘s
array-sorting method:

- (NSArray *)sortedArrayUsingComparator:(NSComparator)cmptr;





NSComparator is simply a typedef for the block pointer NSComparisonResult
(^)(id, id), and parameters of this type are generally provided with block
literals as arguments.  However, one can also use a C++11 lambda so long as it
provides the same signature (in this case, accepting two parameters of type
id and returning an NSComparisonResult):

NSArray *array = @[@"string 1", @"string 21", @"string 12", @"String 11",
                   @"String 02"];
const NSStringCompareOptions comparisonOptions
  = NSCaseInsensitiveSearch | NSNumericSearch |
    NSWidthInsensitiveSearch | NSForcedOrderingSearch;
NSLocale *currentLocale = [NSLocale currentLocale];
NSArray *sorted
  = [array sortedArrayUsingComparator:[=](id s1, id s2) -> NSComparisonResult {
             NSRange string1Range = NSMakeRange(0, [s1 length]);
             return [s1 compare:s2 options:comparisonOptions
             range:string1Range locale:currentLocale];
     }];
NSLog(@"sorted: %@", sorted);





This code relies on an implicit conversion from the type of the lambda
expression (an unnamed, local class type called the closure type) to the
corresponding block pointer type.  The conversion itself is expressed by a
conversion operator in that closure type that produces a block pointer with the
same signature as the lambda itself, e.g.,

operator NSComparisonResult (^)(id, id)() const;





This conversion function returns a new block that simply forwards the two
parameters to the lambda object (which it captures by copy), then returns the
result.  The returned block is first copied (with Block_copy) and then
autoreleased.  As an optimization, if a lambda expression is immediately
converted to a block pointer (as in the first example, above), then the block
is not copied and autoreleased: rather, it is given the same lifetime as a
block literal written at that point in the program, which avoids the overhead
of copying a block to the heap in the common case.

The conversion from a lambda to a block pointer is only available in
Objective-C++, and not in C++ with blocks, due to its use of Objective-C memory
management (autorelease).




Object Literals and Subscripting

Clang provides support for Object Literals and Subscripting in Objective-C, which simplifies common Objective-C
programming patterns, makes programs more concise, and improves the safety of
container creation.  There are several feature macros associated with object
literals and subscripting: __has_feature(objc_array_literals) tests the
availability of array literals; __has_feature(objc_dictionary_literals)
tests the availability of dictionary literals;
__has_feature(objc_subscripting) tests the availability of object
subscripting.




Objective-C Autosynthesis of Properties

Clang provides support for autosynthesis of declared properties.  Using this
feature, clang provides default synthesis of those properties not declared
@dynamic and not having user provided backing getter and setter methods.
__has_feature(objc_default_synthesize_properties) checks for availability
of this feature in version of clang being used.




Objective-C retaining behavior attributes

In Objective-C, functions and methods are generally assumed to follow the
Cocoa Memory Management [http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/MemoryMgmt/Articles/mmRules.html]
conventions for ownership of object arguments and
return values. However, there are exceptions, and so Clang provides attributes
to allow these exceptions to be documented. This are used by ARC and the
static analyzer [http://clang-analyzer.llvm.org] Some exceptions may be
better described using the objc_method_family attribute instead.

Usage: The ns_returns_retained, ns_returns_not_retained,
ns_returns_autoreleased, cf_returns_retained, and
cf_returns_not_retained attributes can be placed on methods and functions
that return Objective-C or CoreFoundation objects. They are commonly placed at
the end of a function prototype or method declaration:

id foo() __attribute__((ns_returns_retained));

- (NSString *)bar:(int)x __attribute__((ns_returns_retained));





The *_returns_retained attributes specify that the returned object has a +1
retain count.  The *_returns_not_retained attributes specify that the return
object has a +0 retain count, even if the normal convention for its selector
would be +1.  ns_returns_autoreleased specifies that the returned object is
+0, but is guaranteed to live at least as long as the next flush of an
autorelease pool.

Usage: The ns_consumed and cf_consumed attributes can be placed on
an parameter declaration; they specify that the argument is expected to have a
+1 retain count, which will be balanced in some way by the function or method.
The ns_consumes_self attribute can only be placed on an Objective-C
method; it specifies that the method expects its self parameter to have a
+1 retain count, which it will balance in some way.

void foo(__attribute__((ns_consumed)) NSString *string);

- (void) bar __attribute__((ns_consumes_self));
- (void) baz:(id) __attribute__((ns_consumed)) x;





Further examples of these attributes are available in the static analyzer’s list of annotations for analysis [http://clang-analyzer.llvm.org/annotations.html#cocoa_mem].

Query for these features with __has_attribute(ns_consumed),
__has_attribute(ns_returns_retained), etc.




Objective-C++ ABI: protocol-qualifier mangling of parameters

Starting with LLVM 3.4, Clang produces a new mangling for parameters whose
type is a qualified-id (e.g., id<Foo>).  This mangling allows such
parameters to be differentiated from those with the regular unqualified id
type.

This was a non-backward compatible mangling change to the ABI.  This change
allows proper overloading, and also prevents mangling conflicts with template
parameters of protocol-qualified type.

Query the presence of this new mangling with
__has_feature(objc_protocol_qualifier_mangling).






Initializer lists for complex numbers in C

clang supports an extension which allows the following in C:

#include <math.h>
#include <complex.h>
complex float x = { 1.0f, INFINITY }; // Init to (1, Inf)





This construct is useful because there is no way to separately initialize the
real and imaginary parts of a complex variable in standard C, given that clang
does not support _Imaginary.  (Clang also supports the __real__ and
__imag__ extensions from gcc, which help in some cases, but are not usable
in static initializers.)

Note that this extension does not allow eliding the braces; the meaning of the
following two lines is different:

complex float x[] = { { 1.0f, 1.0f } }; // [0] = (1, 1)
complex float x[] = { 1.0f, 1.0f }; // [0] = (1, 0), [1] = (1, 0)





This extension also works in C++ mode, as far as that goes, but does not apply
to the C++ std::complex.  (In C++11, list initialization allows the same
syntax to be used with std::complex with the same meaning.)




Builtin Functions

Clang supports a number of builtin library functions with the same syntax as
GCC, including things like __builtin_nan, __builtin_constant_p,
__builtin_choose_expr, __builtin_types_compatible_p,
__builtin_assume_aligned, __sync_fetch_and_add, etc.  In addition to
the GCC builtins, Clang supports a number of builtins that GCC does not, which
are listed here.

Please note that Clang does not and will not support all of the GCC builtins
for vector operations.  Instead of using builtins, you should use the functions
defined in target-specific header files like <xmmintrin.h>, which define
portable wrappers for these.  Many of the Clang versions of these functions are
implemented directly in terms of extended vector support instead of builtins, in order to reduce the number of
builtins that we need to implement.


__builtin_assume

__builtin_assume is used to provide the optimizer with a boolean
invariant that is defined to be true.

Syntax:

__builtin_assume(bool)





Example of Use:

int foo(int x) {
  __builtin_assume(x != 0);

  // The optimizer may short-circuit this check using the invariant.
  if (x == 0)
    return do_something();

  return do_something_else();
}





Description:

The boolean argument to this function is defined to be true. The optimizer may
analyze the form of the expression provided as the argument and deduce from
that information used to optimize the program. If the condition is violated
during execution, the behavior is undefined. The argument itself is never
evaluated, so any side effects of the expression will be discarded.

Query for this feature with __has_builtin(__builtin_assume).




__builtin_readcyclecounter

__builtin_readcyclecounter is used to access the cycle counter register (or
a similar low-latency, high-accuracy clock) on those targets that support it.

Syntax:

__builtin_readcyclecounter()





Example of Use:

unsigned long long t0 = __builtin_readcyclecounter();
do_something();
unsigned long long t1 = __builtin_readcyclecounter();
unsigned long long cycles_to_do_something = t1 - t0; // assuming no overflow





Description:

The __builtin_readcyclecounter() builtin returns the cycle counter value,
which may be either global or process/thread-specific depending on the target.
As the backing counters often overflow quickly (on the order of seconds) this
should only be used for timing small intervals.  When not supported by the
target, the return value is always zero.  This builtin takes no arguments and
produces an unsigned long long result.

Query for this feature with __has_builtin(__builtin_readcyclecounter). Note
that even if present, its use may depend on run-time privilege or other OS
controlled state.




__builtin_shufflevector

__builtin_shufflevector is used to express generic vector
permutation/shuffle/swizzle operations.  This builtin is also very important
for the implementation of various target-specific header files like
<xmmintrin.h>.

Syntax:

__builtin_shufflevector(vec1, vec2, index1, index2, ...)





Examples:

// identity operation - return 4-element vector v1.
__builtin_shufflevector(v1, v1, 0, 1, 2, 3)

// "Splat" element 0 of V1 into a 4-element result.
__builtin_shufflevector(V1, V1, 0, 0, 0, 0)

// Reverse 4-element vector V1.
__builtin_shufflevector(V1, V1, 3, 2, 1, 0)

// Concatenate every other element of 4-element vectors V1 and V2.
__builtin_shufflevector(V1, V2, 0, 2, 4, 6)

// Concatenate every other element of 8-element vectors V1 and V2.
__builtin_shufflevector(V1, V2, 0, 2, 4, 6, 8, 10, 12, 14)

// Shuffle v1 with some elements being undefined
__builtin_shufflevector(v1, v1, 3, -1, 1, -1)





Description:

The first two arguments to __builtin_shufflevector are vectors that have
the same element type.  The remaining arguments are a list of integers that
specify the elements indices of the first two vectors that should be extracted
and returned in a new vector.  These element indices are numbered sequentially
starting with the first vector, continuing into the second vector.  Thus, if
vec1 is a 4-element vector, index 5 would refer to the second element of
vec2. An index of -1 can be used to indicate that the corresponding element
in the returned vector is a don’t care and can be optimized by the backend.

The result of __builtin_shufflevector is a vector with the same element
type as vec1/vec2 but that has an element count equal to the number of
indices specified.

Query for this feature with __has_builtin(__builtin_shufflevector).




__builtin_convertvector

__builtin_convertvector is used to express generic vector
type-conversion operations. The input vector and the output vector
type must have the same number of elements.

Syntax:

__builtin_convertvector(src_vec, dst_vec_type)





Examples:

typedef double vector4double __attribute__((__vector_size__(32)));
typedef float  vector4float  __attribute__((__vector_size__(16)));
typedef short  vector4short  __attribute__((__vector_size__(8)));
vector4float vf; vector4short vs;

// convert from a vector of 4 floats to a vector of 4 doubles.
__builtin_convertvector(vf, vector4double)
// equivalent to:
(vector4double) { (double) vf[0], (double) vf[1], (double) vf[2], (double) vf[3] }

// convert from a vector of 4 shorts to a vector of 4 floats.
__builtin_convertvector(vs, vector4float)
// equivalent to:
(vector4float) { (float) vs[0], (float) vs[1], (float) vs[2], (float) vs[3] }





Description:

The first argument to __builtin_convertvector is a vector, and the second
argument is a vector type with the same number of elements as the first
argument.

The result of __builtin_convertvector is a vector with the same element
type as the second argument, with a value defined in terms of the action of a
C-style cast applied to each element of the first argument.

Query for this feature with __has_builtin(__builtin_convertvector).




__builtin_unreachable

__builtin_unreachable is used to indicate that a specific point in the
program cannot be reached, even if the compiler might otherwise think it can.
This is useful to improve optimization and eliminates certain warnings.  For
example, without the __builtin_unreachable in the example below, the
compiler assumes that the inline asm can fall through and prints a “function
declared ‘noreturn‘ should not return” warning.

Syntax:

__builtin_unreachable()





Example of use:

void myabort(void) __attribute__((noreturn));
void myabort(void) {
  asm("int3");
  __builtin_unreachable();
}





Description:

The __builtin_unreachable() builtin has completely undefined behavior.
Since it has undefined behavior, it is a statement that it is never reached and
the optimizer can take advantage of this to produce better code.  This builtin
takes no arguments and produces a void result.

Query for this feature with __has_builtin(__builtin_unreachable).




__sync_swap

__sync_swap is used to atomically swap integers or pointers in memory.

Syntax:

type __sync_swap(type *ptr, type value, ...)





Example of Use:

int old_value = __sync_swap(&value, new_value);





Description:

The __sync_swap() builtin extends the existing __sync_*() family of
atomic intrinsics to allow code to atomically swap the current value with the
new value.  More importantly, it helps developers write more efficient and
correct code by avoiding expensive loops around
__sync_bool_compare_and_swap() or relying on the platform specific
implementation details of __sync_lock_test_and_set().  The
__sync_swap() builtin is a full barrier.




__builtin_addressof

__builtin_addressof performs the functionality of the built-in &
operator, ignoring any operator& overload.  This is useful in constant
expressions in C++11, where there is no other way to take the address of an
object that overloads operator&.

Example of use:

template<typename T> constexpr T *addressof(T &value) {
  return __builtin_addressof(value);
}








__builtin_operator_new and __builtin_operator_delete

__builtin_operator_new allocates memory just like a non-placement non-class
new-expression. This is exactly like directly calling the normal
non-placement ::operator new, except that it allows certain optimizations
that the C++ standard does not permit for a direct function call to
::operator new (in particular, removing new / delete pairs and
merging allocations).

Likewise, __builtin_operator_delete deallocates memory just like a
non-class delete-expression, and is exactly like directly calling the normal
::operator delete, except that it permits optimizations. Only the unsized
form of __builtin_operator_delete is currently available.

These builtins are intended for use in the implementation of std::allocator
and other similar allocation libraries, and are only available in C++.




Multiprecision Arithmetic Builtins

Clang provides a set of builtins which expose multiprecision arithmetic in a
manner amenable to C. They all have the following form:

unsigned x = ..., y = ..., carryin = ..., carryout;
unsigned sum = __builtin_addc(x, y, carryin, &carryout);





Thus one can form a multiprecision addition chain in the following manner:

unsigned *x, *y, *z, carryin=0, carryout;
z[0] = __builtin_addc(x[0], y[0], carryin, &carryout);
carryin = carryout;
z[1] = __builtin_addc(x[1], y[1], carryin, &carryout);
carryin = carryout;
z[2] = __builtin_addc(x[2], y[2], carryin, &carryout);
carryin = carryout;
z[3] = __builtin_addc(x[3], y[3], carryin, &carryout);





The complete list of builtins are:

unsigned char      __builtin_addcb (unsigned char x, unsigned char y, unsigned char carryin, unsigned char *carryout);
unsigned short     __builtin_addcs (unsigned short x, unsigned short y, unsigned short carryin, unsigned short *carryout);
unsigned           __builtin_addc  (unsigned x, unsigned y, unsigned carryin, unsigned *carryout);
unsigned long      __builtin_addcl (unsigned long x, unsigned long y, unsigned long carryin, unsigned long *carryout);
unsigned long long __builtin_addcll(unsigned long long x, unsigned long long y, unsigned long long carryin, unsigned long long *carryout);
unsigned char      __builtin_subcb (unsigned char x, unsigned char y, unsigned char carryin, unsigned char *carryout);
unsigned short     __builtin_subcs (unsigned short x, unsigned short y, unsigned short carryin, unsigned short *carryout);
unsigned           __builtin_subc  (unsigned x, unsigned y, unsigned carryin, unsigned *carryout);
unsigned long      __builtin_subcl (unsigned long x, unsigned long y, unsigned long carryin, unsigned long *carryout);
unsigned long long __builtin_subcll(unsigned long long x, unsigned long long y, unsigned long long carryin, unsigned long long *carryout);








Checked Arithmetic Builtins

Clang provides a set of builtins that implement checked arithmetic for security
critical applications in a manner that is fast and easily expressable in C. As
an example of their usage:

errorcode_t security_critical_application(...) {
  unsigned x, y, result;
  ...
  if (__builtin_umul_overflow(x, y, &result))
    return kErrorCodeHackers;
  ...
  use_multiply(result);
  ...
}





A complete enumeration of the builtins are:

bool __builtin_uadd_overflow  (unsigned x, unsigned y, unsigned *sum);
bool __builtin_uaddl_overflow (unsigned long x, unsigned long y, unsigned long *sum);
bool __builtin_uaddll_overflow(unsigned long long x, unsigned long long y, unsigned long long *sum);
bool __builtin_usub_overflow  (unsigned x, unsigned y, unsigned *diff);
bool __builtin_usubl_overflow (unsigned long x, unsigned long y, unsigned long *diff);
bool __builtin_usubll_overflow(unsigned long long x, unsigned long long y, unsigned long long *diff);
bool __builtin_umul_overflow  (unsigned x, unsigned y, unsigned *prod);
bool __builtin_umull_overflow (unsigned long x, unsigned long y, unsigned long *prod);
bool __builtin_umulll_overflow(unsigned long long x, unsigned long long y, unsigned long long *prod);
bool __builtin_sadd_overflow  (int x, int y, int *sum);
bool __builtin_saddl_overflow (long x, long y, long *sum);
bool __builtin_saddll_overflow(long long x, long long y, long long *sum);
bool __builtin_ssub_overflow  (int x, int y, int *diff);
bool __builtin_ssubl_overflow (long x, long y, long *diff);
bool __builtin_ssubll_overflow(long long x, long long y, long long *diff);
bool __builtin_smul_overflow  (int x, int y, int *prod);
bool __builtin_smull_overflow (long x, long y, long *prod);
bool __builtin_smulll_overflow(long long x, long long y, long long *prod);








__c11_atomic builtins

Clang provides a set of builtins which are intended to be used to implement
C11’s <stdatomic.h> header.  These builtins provide the semantics of the
_explicit form of the corresponding C11 operation, and are named with a
__c11_ prefix.  The supported operations, and the differences from
the corresponding C11 operations, are:


	__c11_atomic_init

	__c11_atomic_thread_fence

	__c11_atomic_signal_fence

	__c11_atomic_is_lock_free (The argument is the size of the
_Atomic(...) object, instead of its address)

	__c11_atomic_store

	__c11_atomic_load

	__c11_atomic_exchange

	__c11_atomic_compare_exchange_strong

	__c11_atomic_compare_exchange_weak

	__c11_atomic_fetch_add

	__c11_atomic_fetch_sub

	__c11_atomic_fetch_and

	__c11_atomic_fetch_or

	__c11_atomic_fetch_xor



The macros __ATOMIC_RELAXED, __ATOMIC_CONSUME, __ATOMIC_ACQUIRE,
__ATOMIC_RELEASE, __ATOMIC_ACQ_REL, and __ATOMIC_SEQ_CST are
provided, with values corresponding to the enumerators of C11’s
memory_order enumeration.




Low-level ARM exclusive memory builtins

Clang provides overloaded builtins giving direct access to the three key ARM
instructions for implementing atomic operations.

T __builtin_arm_ldrex(const volatile T *addr);
T __builtin_arm_ldaex(const volatile T *addr);
int __builtin_arm_strex(T val, volatile T *addr);
int __builtin_arm_stlex(T val, volatile T *addr);
void __builtin_arm_clrex(void);





The types T currently supported are:
* Integer types with width at most 64 bits (or 128 bits on AArch64).
* Floating-point types
* Pointer types.

Note that the compiler does not guarantee it will not insert stores which clear
the exclusive monitor in between an ldrex type operation and its paired
strex. In practice this is only usually a risk when the extra store is on
the same cache line as the variable being modified and Clang will only insert
stack stores on its own, so it is best not to use these operations on variables
with automatic storage duration.

Also, loads and stores may be implicit in code written between the ldrex and
strex. Clang will not necessarily mitigate the effects of these either, so
care should be exercised.

For these reasons the higher level atomic primitives should be preferred where
possible.






Non-standard C++11 Attributes

Clang’s non-standard C++11 attributes live in the clang attribute
namespace.

Clang supports GCC’s gnu attribute namespace. All GCC attributes which
are accepted with the __attribute__((foo)) syntax are also accepted as
[[gnu::foo]]. This only extends to attributes which are specified by GCC
(see the list of GCC function attributes [http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html], GCC variable
attributes [http://gcc.gnu.org/onlinedocs/gcc/Variable-Attributes.html], and
GCC type attributes [http://gcc.gnu.org/onlinedocs/gcc/Type-Attributes.html]). As with the GCC
implementation, these attributes must appertain to the declarator-id in a
declaration, which means they must go either at the start of the declaration or
immediately after the name being declared.

For example, this applies the GNU unused attribute to a and f, and
also applies the GNU noreturn attribute to f.

[[gnu::unused]] int a, f [[gnu::noreturn]] ();








Target-Specific Extensions

Clang supports some language features conditionally on some targets.


ARM/AArch64 Language Extensions


Memory Barrier Intrinsics

Clang implements the __dmb, __dsb and __isb intrinsics as defined
in the ARM C Language Extensions Release 2.0 [http://infocenter.arm.com/help/topic/com.arm.doc.ihi0053c/IHI0053C_acle_2_0.pdf].
Note that these intrinsics are implemented as motion barriers that block
reordering of memory accesses and side effect instructions. Other instructions
like simple arithmatic may be reordered around the intrinsic. If you expect to
have no reordering at all, use inline assembly instead.






X86/X86-64 Language Extensions

The X86 backend has these language extensions:


Memory references off the GS segment

Annotating a pointer with address space #256 causes it to be code generated
relative to the X86 GS segment register, and address space #257 causes it to be
relative to the X86 FS segment.  Note that this is a very very low-level
feature that should only be used if you know what you’re doing (for example in
an OS kernel).

Here is an example:

#define GS_RELATIVE __attribute__((address_space(256)))
int foo(int GS_RELATIVE *P) {
  return *P;
}





Which compiles to (on X86-32):

_foo:
        movl    4(%esp), %eax
        movl    %gs:(%eax), %eax
        ret












Extensions for Static Analysis

Clang supports additional attributes that are useful for documenting program
invariants and rules for static analysis tools, such as the Clang Static
Analyzer [http://clang-analyzer.llvm.org/]. These attributes are documented
in the analyzer’s list of source-level annotations [http://clang-analyzer.llvm.org/annotations.html].




Extensions for Dynamic Analysis

Use __has_feature(address_sanitizer) to check if the code is being built
with AddressSanitizer.

Use __has_feature(thread_sanitizer) to check if the code is being built
with ThreadSanitizer.

Use __has_feature(memory_sanitizer) to check if the code is being built
with MemorySanitizer.

Use __has_feature(safe_stack) to check if the code is being built
with SafeStack.




Extensions for selectively disabling optimization

Clang provides a mechanism for selectively disabling optimizations in functions
and methods.

To disable optimizations in a single function definition, the GNU-style or C++11
non-standard attribute optnone can be used.

// The following functions will not be optimized.
// GNU-style attribute
__attribute__((optnone)) int foo() {
  // ... code
}
// C++11 attribute
[[clang::optnone]] int bar() {
  // ... code
}





To facilitate disabling optimization for a range of function definitions, a
range-based pragma is provided. Its syntax is #pragma clang optimize
followed by off or on.

All function definitions in the region between an off and the following
on will be decorated with the optnone attribute unless doing so would
conflict with explicit attributes already present on the function (e.g. the
ones that control inlining).

#pragma clang optimize off
// This function will be decorated with optnone.
int foo() {
  // ... code
}

// optnone conflicts with always_inline, so bar() will not be decorated.
__attribute__((always_inline)) int bar() {
  // ... code
}
#pragma clang optimize on





If no on is found to close an off region, the end of the region is the
end of the compilation unit.

Note that a stray #pragma clang optimize on does not selectively enable
additional optimizations when compiling at low optimization levels. This feature
can only be used to selectively disable optimizations.

The pragma has an effect on functions only at the point of their definition; for
function templates, this means that the state of the pragma at the point of an
instantiation is not necessarily relevant. Consider the following example:

template<typename T> T twice(T t) {
  return 2 * t;
}

#pragma clang optimize off
template<typename T> T thrice(T t) {
  return 3 * t;
}

int container(int a, int b) {
  return twice(a) + thrice(b);
}
#pragma clang optimize on





In this example, the definition of the template function twice is outside
the pragma region, whereas the definition of thrice is inside the region.
The container function is also in the region and will not be optimized, but
it causes the instantiation of twice and thrice with an int type; of
these two instantiations, twice will be optimized (because its definition
was outside the region) and thrice will not be optimized.




Extensions for loop hint optimizations

The #pragma clang loop directive is used to specify hints for optimizing the
subsequent for, while, do-while, or c++11 range-based for loop. The directive
provides options for vectorization, interleaving, and unrolling. Loop hints can
be specified before any loop and will be ignored if the optimization is not safe
to apply.


Vectorization and Interleaving

A vectorized loop performs multiple iterations of the original loop
in parallel using vector instructions. The instruction set of the target
processor determines which vector instructions are available and their vector
widths. This restricts the types of loops that can be vectorized. The vectorizer
automatically determines if the loop is safe and profitable to vectorize. A
vector instruction cost model is used to select the vector width.

Interleaving multiple loop iterations allows modern processors to further
improve instruction-level parallelism (ILP) using advanced hardware features,
such as multiple execution units and out-of-order execution. The vectorizer uses
a cost model that depends on the register pressure and generated code size to
select the interleaving count.

Vectorization is enabled by vectorize(enable) and interleaving is enabled
by interleave(enable). This is useful when compiling with -Os to
manually enable vectorization or interleaving.

#pragma clang loop vectorize(enable)
#pragma clang loop interleave(enable)
for(...) {
  ...
}





The vector width is specified by vectorize_width(_value_) and the interleave
count is specified by interleave_count(_value_), where
_value_ is a positive integer. This is useful for specifying the optimal
width/count of the set of target architectures supported by your application.

#pragma clang loop vectorize_width(2)
#pragma clang loop interleave_count(2)
for(...) {
  ...
}





Specifying a width/count of 1 disables the optimization, and is equivalent to
vectorize(disable) or interleave(disable).




Loop Unrolling

Unrolling a loop reduces the loop control overhead and exposes more
opportunities for ILP. Loops can be fully or partially unrolled. Full unrolling
eliminates the loop and replaces it with an enumerated sequence of loop
iterations. Full unrolling is only possible if the loop trip count is known at
compile time. Partial unrolling replicates the loop body within the loop and
reduces the trip count.

If unroll(full) is specified the unroller will attempt to fully unroll the
loop if the trip count is known at compile time. If the fully unrolled code size
is greater than an internal limit the loop will be partially unrolled up to this
limit. If the loop count is not known at compile time the loop will not be
unrolled.

#pragma clang loop unroll(full)
for(...) {
  ...
}





The unroll count can be specified explicitly with unroll_count(_value_) where
_value_ is a positive integer. If this value is greater than the trip count the
loop will be fully unrolled. Otherwise the loop is partially unrolled subject
to the same code size limit as with unroll(full).

#pragma clang loop unroll_count(8)
for(...) {
  ...
}





Unrolling of a loop can be prevented by specifying unroll(disable).




Additional Information

For convenience multiple loop hints can be specified on a single line.

#pragma clang loop vectorize_width(4) interleave_count(8)
for(...) {
  ...
}





If an optimization cannot be applied any hints that apply to it will be ignored.
For example, the hint vectorize_width(4) is ignored if the loop is not
proven safe to vectorize. To identify and diagnose optimization issues use
-Rpass, -Rpass-missed, and -Rpass-analysis command line options. See the
user guide for details.









          

      

      

    

  

    
      
          
            
  
Objective-C Literals


Introduction

Three new features were introduced into clang at the same time:
NSNumber Literals provide a syntax for creating NSNumber from
scalar literal expressions; Collection Literals provide a short-hand
for creating arrays and dictionaries; Object Subscripting provides a
way to use subscripting with Objective-C objects. Users of Apple
compiler releases can use these features starting with the Apple LLVM
Compiler 4.0. Users of open-source LLVM.org compiler releases can use
these features starting with clang v3.1.

These language additions simplify common Objective-C programming
patterns, make programs more concise, and improve the safety of
container creation.

This document describes how the features are implemented in clang, and
how to use them in your own programs.




NSNumber Literals

The framework class NSNumber is used to wrap scalar values inside
objects: signed and unsigned integers (char, short, int,
long, long long), floating point numbers (float,
double), and boolean values (BOOL, C++ bool). Scalar values
wrapped in objects are also known as boxed values.

In Objective-C, any character, numeric or boolean literal prefixed with
the '@' character will evaluate to a pointer to an NSNumber
object initialized with that value. C’s type suffixes may be used to
control the size of numeric literals.


Examples

The following program illustrates the rules for NSNumber literals:

void main(int argc, const char *argv[]) {
  // character literals.
  NSNumber *theLetterZ = @'Z';          // equivalent to [NSNumber numberWithChar:'Z']

  // integral literals.
  NSNumber *fortyTwo = @42;             // equivalent to [NSNumber numberWithInt:42]
  NSNumber *fortyTwoUnsigned = @42U;    // equivalent to [NSNumber numberWithUnsignedInt:42U]
  NSNumber *fortyTwoLong = @42L;        // equivalent to [NSNumber numberWithLong:42L]
  NSNumber *fortyTwoLongLong = @42LL;   // equivalent to [NSNumber numberWithLongLong:42LL]

  // floating point literals.
  NSNumber *piFloat = @3.141592654F;    // equivalent to [NSNumber numberWithFloat:3.141592654F]
  NSNumber *piDouble = @3.1415926535;   // equivalent to [NSNumber numberWithDouble:3.1415926535]

  // BOOL literals.
  NSNumber *yesNumber = @YES;           // equivalent to [NSNumber numberWithBool:YES]
  NSNumber *noNumber = @NO;             // equivalent to [NSNumber numberWithBool:NO]

#ifdef __cplusplus
  NSNumber *trueNumber = @true;         // equivalent to [NSNumber numberWithBool:(BOOL)true]
  NSNumber *falseNumber = @false;       // equivalent to [NSNumber numberWithBool:(BOOL)false]
#endif
}








Discussion

NSNumber literals only support literal scalar values after the '@'.
Consequently, @INT_MAX works, but @INT_MIN does not, because
they are defined like this:

#define INT_MAX   2147483647  /* max value for an int */
#define INT_MIN   (-2147483647-1) /* min value for an int */





The definition of INT_MIN is not a simple literal, but a
parenthesized expression. Parenthesized expressions are supported using
the boxed expression syntax, which is
described in the next section.

Because NSNumber does not currently support wrapping long double
values, the use of a long double NSNumber literal (e.g.
@123.23L) will be rejected by the compiler.

Previously, the BOOL type was simply a typedef for signed char,
and YES and NO were macros that expand to (BOOL)1 and
(BOOL)0 respectively. To support @YES and @NO expressions,
these macros are now defined using new language keywords in
<objc/objc.h>:

#if __has_feature(objc_bool)
#define YES             __objc_yes
#define NO              __objc_no
#else
#define YES             ((BOOL)1)
#define NO              ((BOOL)0)
#endif





The compiler implicitly converts __objc_yes and __objc_no to
(BOOL)1 and (BOOL)0. The keywords are used to disambiguate
BOOL and integer literals.

Objective-C++ also supports @true and @false expressions, which
are equivalent to @YES and @NO.






Boxed Expressions

Objective-C provides a new syntax for boxing C expressions:

@( <expression> )





Expressions of scalar (numeric, enumerated, BOOL), C string pointer
and some C structures (via NSValue) are supported:

// numbers.
NSNumber *smallestInt = @(-INT_MAX - 1);  // [NSNumber numberWithInt:(-INT_MAX - 1)]
NSNumber *piOverTwo = @(M_PI / 2);        // [NSNumber numberWithDouble:(M_PI / 2)]

// enumerated types.
typedef enum { Red, Green, Blue } Color;
NSNumber *favoriteColor = @(Green);       // [NSNumber numberWithInt:((int)Green)]

// strings.
NSString *path = @(getenv("PATH"));       // [NSString stringWithUTF8String:(getenv("PATH"))]
NSArray *pathComponents = [path componentsSeparatedByString:@":"];

// structs.
NSValue *center = @(view.center);         // Point p = view.center;
                                          // [NSValue valueWithBytes:&p objCType:@encode(Point)];
NSValue *frame = @(view.frame);           // Rect r = view.frame;
                                          // [NSValue valueWithBytes:&r objCType:@encode(Rect)];






Boxed Enums

Cocoa frameworks frequently define constant values using enums.
Although enum values are integral, they may not be used directly as
boxed literals (this avoids conflicts with future '@'-prefixed
Objective-C keywords). Instead, an enum value must be placed inside a
boxed expression. The following example demonstrates configuring an
AVAudioRecorder using a dictionary that contains a boxed enumeration
value:

enum {
  AVAudioQualityMin = 0,
  AVAudioQualityLow = 0x20,
  AVAudioQualityMedium = 0x40,
  AVAudioQualityHigh = 0x60,
  AVAudioQualityMax = 0x7F
};

- (AVAudioRecorder *)recordToFile:(NSURL *)fileURL {
  NSDictionary *settings = @{ AVEncoderAudioQualityKey : @(AVAudioQualityMax) };
  return [[AVAudioRecorder alloc] initWithURL:fileURL settings:settings error:NULL];
}





The expression @(AVAudioQualityMax) converts AVAudioQualityMax
to an integer type, and boxes the value accordingly. If the enum has a
fixed underlying type as in:

typedef enum : unsigned char { Red, Green, Blue } Color;
NSNumber *red = @(Red), *green = @(Green), *blue = @(Blue); // => [NSNumber numberWithUnsignedChar:]





then the fixed underlying type will be used to select the correct
NSNumber creation method.

Boxing a value of enum type will result in a NSNumber pointer with a
creation method according to the underlying type of the enum, which can
be a fixed underlying type
or a compiler-defined integer type capable of representing the values of
all the members of the enumeration:

typedef enum : unsigned char { Red, Green, Blue } Color;
Color col = Red;
NSNumber *nsCol = @(col); // => [NSNumber numberWithUnsignedChar:]








Boxed C Strings

A C string literal prefixed by the '@' token denotes an NSString
literal in the same way a numeric literal prefixed by the '@' token
denotes an NSNumber literal. When the type of the parenthesized
expression is (char *) or (const char *), the result of the
boxed expression is a pointer to an NSString object containing
equivalent character data, which is assumed to be ‘\0’-terminated and
UTF-8 encoded. The following example converts C-style command line
arguments into NSString objects.

// Partition command line arguments into positional and option arguments.
NSMutableArray *args = [NSMutableArray new];
NSMutableDictionary *options = [NSMutableDictionary new];
while (--argc) {
    const char *arg = *++argv;
    if (strncmp(arg, "--", 2) == 0) {
        options[@(arg + 2)] = @(*++argv);   // --key value
    } else {
        [args addObject:@(arg)];            // positional argument
    }
}





As with all C pointers, character pointer expressions can involve
arbitrary pointer arithmetic, therefore programmers must ensure that the
character data is valid. Passing NULL as the character pointer will
raise an exception at runtime. When possible, the compiler will reject
NULL character pointers used in boxed expressions.




Boxed C Structures

Boxed expressions support construction of NSValue objects.
It said that C structures can be used, the only requirement is:
structure should be marked with objc_boxable attribute.
To support older version of frameworks and/or third-party libraries
you may need to add the attribute via typedef.

struct __attribute__((objc_boxable)) Point {
    // ...
};

typedef struct __attribute__((objc_boxable)) _Size {
    // ...
} Size;

typedef struct _Rect {
    // ...
} Rect;

struct Point p;
NSValue *point = @(p);          // ok
Size s;
NSValue *size = @(s);           // ok

Rect r;
NSValue *bad_rect = @(r);       // error

typedef struct __attribute__((objc_boxable)) _Rect Rect;

NSValue *good_rect = @(r);      // ok










Container Literals

Objective-C now supports a new expression syntax for creating immutable
array and dictionary container objects.


Examples

Immutable array expression:

NSArray *array = @[ @"Hello", NSApp, [NSNumber numberWithInt:42] ];





This creates an NSArray with 3 elements. The comma-separated
sub-expressions of an array literal can be any Objective-C object
pointer typed expression.

Immutable dictionary expression:

NSDictionary *dictionary = @{
    @"name" : NSUserName(),
    @"date" : [NSDate date],
    @"processInfo" : [NSProcessInfo processInfo]
};





This creates an NSDictionary with 3 key/value pairs. Value
sub-expressions of a dictionary literal must be Objective-C object
pointer typed, as in array literals. Key sub-expressions must be of an
Objective-C object pointer type that implements the
<NSCopying> protocol.




Discussion

Neither keys nor values can have the value nil in containers. If the
compiler can prove that a key or value is nil at compile time, then
a warning will be emitted. Otherwise, a runtime error will occur.

Using array and dictionary literals is safer than the variadic creation
forms commonly in use today. Array literal expressions expand to calls
to +[NSArray arrayWithObjects:count:], which validates that all
objects are non-nil. The variadic form,
+[NSArray arrayWithObjects:] uses nil as an argument list
terminator, which can lead to malformed array objects. Dictionary
literals are similarly created with
+[NSDictionary dictionaryWithObjects:forKeys:count:] which validates
all objects and keys, unlike
+[NSDictionary dictionaryWithObjectsAndKeys:] which also uses a
nil parameter as an argument list terminator.






Object Subscripting

Objective-C object pointer values can now be used with C’s subscripting
operator.


Examples

The following code demonstrates the use of object subscripting syntax
with NSMutableArray and NSMutableDictionary objects:

NSMutableArray *array = ...;
NSUInteger idx = ...;
id newObject = ...;
id oldObject = array[idx];
array[idx] = newObject;         // replace oldObject with newObject

NSMutableDictionary *dictionary = ...;
NSString *key = ...;
oldObject = dictionary[key];
dictionary[key] = newObject;    // replace oldObject with newObject





The next section explains how subscripting expressions map to accessor
methods.




Subscripting Methods

Objective-C supports two kinds of subscript expressions: array-style
subscript expressions use integer typed subscripts; dictionary-style
subscript expressions use Objective-C object pointer typed subscripts.
Each type of subscript expression is mapped to a message send using a
predefined selector. The advantage of this design is flexibility: class
designers are free to introduce subscripting by declaring methods or by
adopting protocols. Moreover, because the method names are selected by
the type of the subscript, an object can be subscripted using both array
and dictionary styles.


Array-Style Subscripting

When the subscript operand has an integral type, the expression is
rewritten to use one of two different selectors, depending on whether
the element is being read or written. When an expression reads an
element using an integral index, as in the following example:

NSUInteger idx = ...;
id value = object[idx];





it is translated into a call to objectAtIndexedSubscript:

id value = [object objectAtIndexedSubscript:idx];





When an expression writes an element using an integral index:

object[idx] = newValue;





it is translated to a call to setObject:atIndexedSubscript:

[object setObject:newValue atIndexedSubscript:idx];





These message sends are then type-checked and performed just like
explicit message sends. The method used for objectAtIndexedSubscript:
must be declared with an argument of integral type and a return value of
some Objective-C object pointer type. The method used for
setObject:atIndexedSubscript: must be declared with its first argument
having some Objective-C pointer type and its second argument having
integral type.

The meaning of indexes is left up to the declaring class. The compiler
will coerce the index to the appropriate argument type of the method it
uses for type-checking. For an instance of NSArray, reading an
element using an index outside the range [0, array.count) will raise
an exception. For an instance of NSMutableArray, assigning to an
element using an index within this range will replace that element, but
assigning to an element using an index outside this range will raise an
exception; no syntax is provided for inserting, appending, or removing
elements for mutable arrays.

A class need not declare both methods in order to take advantage of this
language feature. For example, the class NSArray declares only
objectAtIndexedSubscript:, so that assignments to elements will fail
to type-check; moreover, its subclass NSMutableArray declares
setObject:atIndexedSubscript:.




Dictionary-Style Subscripting

When the subscript operand has an Objective-C object pointer type, the
expression is rewritten to use one of two different selectors, depending
on whether the element is being read from or written to. When an
expression reads an element using an Objective-C object pointer
subscript operand, as in the following example:

id key = ...;
id value = object[key];





it is translated into a call to the objectForKeyedSubscript: method:

id value = [object objectForKeyedSubscript:key];





When an expression writes an element using an Objective-C object pointer
subscript:

object[key] = newValue;





it is translated to a call to setObject:forKeyedSubscript:

[object setObject:newValue forKeyedSubscript:key];





The behavior of setObject:forKeyedSubscript: is class-specific; but
in general it should replace an existing value if one is already
associated with a key, otherwise it should add a new value for the key.
No syntax is provided for removing elements from mutable dictionaries.






Discussion

An Objective-C subscript expression occurs when the base operand of the
C subscript operator has an Objective-C object pointer type. Since this
potentially collides with pointer arithmetic on the value, these
expressions are only supported under the modern Objective-C runtime,
which categorically forbids such arithmetic.

Currently, only subscripts of integral or Objective-C object pointer
type are supported. In C++, a class type can be used if it has a single
conversion function to an integral or Objective-C pointer type, in which
case that conversion is applied and analysis continues as appropriate.
Otherwise, the expression is ill-formed.

An Objective-C object subscript expression is always an l-value. If the
expression appears on the left-hand side of a simple assignment operator
(=), the element is written as described below. If the expression
appears on the left-hand side of a compound assignment operator (e.g.
+=), the program is ill-formed, because the result of reading an element
is always an Objective-C object pointer and no binary operators are
legal on such pointers. If the expression appears in any other position,
the element is read as described below. It is an error to take the
address of a subscript expression, or (in C++) to bind a reference to
it.

Programs can use object subscripting with Objective-C object pointers of
type id. Normal dynamic message send rules apply; the compiler must
see some declaration of the subscripting methods, and will pick the
declaration seen first.






Caveats

Objects created using the literal or boxed expression syntax are not
guaranteed to be uniqued by the runtime, but nor are they guaranteed to
be newly-allocated. As such, the result of performing direct comparisons
against the location of an object literal (using ==, !=, <,
<=, >, or >=) is not well-defined. This is usually a simple
mistake in code that intended to call the isEqual: method (or the
compare: method).

This caveat applies to compile-time string literals as well.
Historically, string literals (using the @"..." syntax) have been
uniqued across translation units during linking. This is an
implementation detail of the compiler and should not be relied upon. If
you are using such code, please use global string constants instead
(NSString * const MyConst = @"...") or use isEqual:.




Grammar Additions

To support the new syntax described above, the Objective-C
@-expression grammar has the following new productions:

objc-at-expression : '@' (string-literal | encode-literal | selector-literal | protocol-literal | object-literal)
                   ;

object-literal : ('+' | '-')? numeric-constant
               | character-constant
               | boolean-constant
               | array-literal
               | dictionary-literal
               ;

boolean-constant : '__objc_yes' | '__objc_no' | 'true' | 'false'  /* boolean keywords. */
                 ;

array-literal : '[' assignment-expression-list ']'
              ;

assignment-expression-list : assignment-expression (',' assignment-expression-list)?
                           | /* empty */
                           ;

dictionary-literal : '{' key-value-list '}'
                   ;

key-value-list : key-value-pair (',' key-value-list)?
               | /* empty */
               ;

key-value-pair : assignment-expression ':' assignment-expression
               ;





Note: @true and @false are only supported in Objective-C++.




Availability Checks

Programs test for the new features by using clang’s __has_feature
checks. Here are examples of their use:

#if __has_feature(objc_array_literals)
    // new way.
    NSArray *elements = @[ @"H", @"He", @"O", @"C" ];
#else
    // old way (equivalent).
    id objects[] = { @"H", @"He", @"O", @"C" };
    NSArray *elements = [NSArray arrayWithObjects:objects count:4];
#endif

#if __has_feature(objc_dictionary_literals)
    // new way.
    NSDictionary *masses = @{ @"H" : @1.0078,  @"He" : @4.0026, @"O" : @15.9990, @"C" : @12.0096 };
#else
    // old way (equivalent).
    id keys[] = { @"H", @"He", @"O", @"C" };
    id values[] = { [NSNumber numberWithDouble:1.0078], [NSNumber numberWithDouble:4.0026],
                    [NSNumber numberWithDouble:15.9990], [NSNumber numberWithDouble:12.0096] };
    NSDictionary *masses = [NSDictionary dictionaryWithObjects:objects forKeys:keys count:4];
#endif

#if __has_feature(objc_subscripting)
    NSUInteger i, count = elements.count;
    for (i = 0; i < count; ++i) {
        NSString *element = elements[i];
        NSNumber *mass = masses[element];
        NSLog(@"the mass of %@ is %@", element, mass);
    }
#else
    NSUInteger i, count = [elements count];
    for (i = 0; i < count; ++i) {
        NSString *element = [elements objectAtIndex:i];
        NSNumber *mass = [masses objectForKey:element];
        NSLog(@"the mass of %@ is %@", element, mass);
    }
#endif

#if __has_attribute(objc_boxable)
    typedef struct __attribute__((objc_boxable)) _Rect Rect;
#endif

#if __has_feature(objc_boxed_nsvalue_expressions)
    CABasicAnimation animation = [CABasicAnimation animationWithKeyPath:@"position"];
    animation.fromValue = @(layer.position);
    animation.toValue = @(newPosition);
    [layer addAnimation:animation forKey:@"move"];
#else
    CABasicAnimation animation = [CABasicAnimation animationWithKeyPath:@"position"];
    animation.fromValue = [NSValue valueWithCGPoint:layer.position];
    animation.toValue = [NSValue valueWithCGPoint:newPosition];
    [layer addAnimation:animation forKey:@"move"];
#endif





Code can use also __has_feature(objc_bool) to check for the
availability of numeric literals support. This checks for the new
__objc_yes / __objc_no keywords, which enable the use of
@YES / @NO literals.

To check whether boxed expressions are supported, use
__has_feature(objc_boxed_expressions) feature macro.







          

      

      

    

  

    
      
          
            
  
Language Specification for Blocks



	Revisions

	Overview

	The Block Type

	Block Variable Declarations

	Block Literal Expressions

	The Invoke Operator

	The Copy and Release Operations

	The __block Storage Qualifier

	Control Flow

	Objective-C Extensions

	C++ Extensions






Revisions


	2008/2/25 — created

	2008/7/28 — revised, __block syntax

	2008/8/13 — revised, Block globals

	2008/8/21 — revised, C++ elaboration

	2008/11/1 — revised, __weak support

	2009/1/12 — revised, explicit return types

	2009/2/10 — revised, __block objects need retain






Overview

A new derived type is introduced to C and, by extension, Objective-C,
C++, and Objective-C++




The Block Type

Like function types, the Block type is a pair consisting
of a result value type and a list of parameter types very similar to a
function type. Blocks are intended to be used much like functions with
the key distinction being that in addition to executable code they
also contain various variable bindings to automatic (stack) or managed
(heap) memory.

The abstract declarator,

int (^)(char, float)





describes a reference to a Block that, when invoked, takes two
parameters, the first of type char and the second of type float, and
returns a value of type int.  The Block referenced is of opaque data
that may reside in automatic (stack) memory, global memory, or heap
memory.




Block Variable Declarations

A variable with Block type is declared using function
pointer style notation substituting ^ for *. The following are
valid Block variable declarations:

void (^blockReturningVoidWithVoidArgument)(void);
int (^blockReturningIntWithIntAndCharArguments)(int, char);
void (^arrayOfTenBlocksReturningVoidWithIntArgument[10])(int);





Variadic ... arguments are supported. [variadic.c] A Block that
takes no arguments must specify void in the argument list [voidarg.c].
An empty parameter list does not represent, as K&R provide, an
unspecified argument list.  Note: both gcc and clang support K&R style
as a convenience.

A Block reference may be cast to a pointer of arbitrary type and vice
versa. [cast.c] A Block reference may not be dereferenced via the
pointer dereference operator *, and thus a Block’s size may not be
computed at compile time. [sizeof.c]




Block Literal Expressions

A Block literal expression produces a reference to a
Block. It is introduced by the use of the ^ token as a unary
operator.

Block_literal_expression ::=   ^ block_decl compound_statement_body
block_decl ::=
block_decl ::= parameter_list
block_decl ::= type_expression





where type expression is extended to allow ^ as a Block reference
(pointer) where * is allowed as a function reference (pointer).

The following Block literal:

^ void (void) { printf("hello world\n"); }





produces a reference to a Block with no arguments with no return value.

The return type is optional and is inferred from the return
statements. If the return statements return a value, they all must
return a value of the same type. If there is no value returned the
inferred type of the Block is void; otherwise it is the type of the
return statement value.

If the return type is omitted and the argument list is ( void ),
the ( void ) argument list may also be omitted.

So:

^ ( void ) { printf("hello world\n"); }





and:

^ { printf("hello world\n"); }





are exactly equivalent constructs for the same expression.

The type_expression extends C expression parsing to accommodate Block
reference declarations as it accommodates function pointer
declarations.

Given:

typedef int (*pointerToFunctionThatReturnsIntWithCharArg)(char);
pointerToFunctionThatReturnsIntWithCharArg functionPointer;
^ pointerToFunctionThatReturnsIntWithCharArg (float x) { return functionPointer; }





and:

^ int ((*)(float x))(char) { return functionPointer; }





are equivalent expressions, as is:

^(float x) { return functionPointer; }





[returnfunctionptr.c]

The compound statement body establishes a new lexical scope within
that of its parent. Variables used within the scope of the compound
statement are bound to the Block in the normal manner with the
exception of those in automatic (stack) storage. Thus one may access
functions and global variables as one would expect, as well as static
local variables. [testme]

Local automatic (stack) variables referenced within the compound
statement of a Block are imported and captured by the Block as const
copies. The capture (binding) is performed at the time of the Block
literal expression evaluation.

The compiler is not required to capture a variable if it can prove
that no references to the variable will actually be evaluated.
Programmers can force a variable to be captured by referencing it in a
statement at the beginning of the Block, like so:

(void) foo;





This matters when capturing the variable has side-effects, as it can
in Objective-C or C++.

The lifetime of variables declared in a Block is that of a function;
each activation frame contains a new copy of variables declared within
the local scope of the Block. Such variable declarations should be
allowed anywhere [testme] rather than only when C99 parsing is
requested, including for statements. [testme]

Block literal expressions may occur within Block literal expressions
(nest) and all variables captured by any nested blocks are implicitly
also captured in the scopes of their enclosing Blocks.

A Block literal expression may be used as the initialization value for
Block variables at global or local static scope.




The Invoke Operator

Blocks are invoked using function call syntax with a
list of expression parameters of types corresponding to the
declaration and returning a result type also according to the
declaration. Given:

int (^x)(char);
void (^z)(void);
int (^(*y))(char) = &x;





the following are all legal Block invocations:

x('a');
(*y)('a');
(true ? x : *y)('a')








The Copy and Release Operations

The compiler and runtime provide copy and
release operations for Block references that create and,
in matched use, release allocated storage for referenced Blocks.

The copy operation Block_copy() is styled as a function that takes
an arbitrary Block reference and returns a Block reference of the same
type. The release operation, Block_release(), is styled as a
function that takes an arbitrary Block reference and, if dynamically
matched to a Block copy operation, allows recovery of the referenced
allocated memory.




The __block Storage Qualifier

In addition to the new Block type we also introduce a new storage
qualifier, __block, for local variables. [testme: a
__block declaration within a block literal] The __block storage
qualifier is mutually exclusive to the existing local storage
qualifiers auto, register, and static. [testme] Variables qualified by
__block act as if they were in allocated storage and this storage
is automatically recovered after last use of said variable.  An
implementation may choose an optimization where the storage is
initially automatic and only “moved” to allocated (heap) storage upon
a Block_copy of a referencing Block.  Such variables may be mutated as
normal variables are.

In the case where a __block variable is a Block one must assume
that the __block variable resides in allocated storage and as such
is assumed to reference a Block that is also in allocated storage
(that it is the result of a Block_copy operation).  Despite this
there is no provision to do a Block_copy or a Block_release if
an implementation provides initial automatic storage for Blocks.  This
is due to the inherent race condition of potentially several threads
trying to update the shared variable and the need for synchronization
around disposing of older values and copying new ones.  Such
synchronization is beyond the scope of this language specification.




Control Flow

The compound statement of a Block is treated much like a function body
with respect to control flow in that goto, break, and continue do not
escape the Block.  Exceptions are treated normally in that when
thrown they pop stack frames until a catch clause is found.




Objective-C Extensions

Objective-C extends the definition of a Block reference type to be
that also of id.  A variable or expression of Block type may be
messaged or used as a parameter wherever an id may be. The converse is
also true. Block references may thus appear as properties and are
subject to the assign, retain, and copy attribute logic that is
reserved for objects.

All Blocks are constructed to be Objective-C objects regardless of
whether the Objective-C runtime is operational in the program or
not. Blocks using automatic (stack) memory are objects and may be
messaged, although they may not be assigned into __weak locations
if garbage collection is enabled.

Within a Block literal expression within a method definition
references to instance variables are also imported into the lexical
scope of the compound statement. These variables are implicitly
qualified as references from self, and so self is imported as a const
copy. The net effect is that instance variables can be mutated.

The Block_copy operator retains all objects held in
variables of automatic storage referenced within the Block expression
(or form strong references if running under garbage collection).
Object variables of __block storage type are assumed to hold
normal pointers with no provision for retain and release messages.

Foundation defines (and supplies) -copy and -release methods for
Blocks.

In the Objective-C and Objective-C++ languages, we allow the
__weak specifier for __block variables of object type.  If
garbage collection is not enabled, this qualifier causes these
variables to be kept without retain messages being sent. This
knowingly leads to dangling pointers if the Block (or a copy) outlives
the lifetime of this object.

In garbage collected environments, the __weak variable is set to
nil when the object it references is collected, as long as the
__block variable resides in the heap (either by default or via
Block_copy()).  The initial Apple implementation does in fact
start __block variables on the stack and migrate them to the heap
only as a result of a Block_copy() operation.

It is a runtime error to attempt to assign a reference to a
stack-based Block into any storage marked __weak, including
__weak __block variables.




C++ Extensions

Block literal expressions within functions are extended to allow const
use of C++ objects, pointers, or references held in automatic storage.

As usual, within the block, references to captured variables become
const-qualified, as if they were references to members of a const
object.  Note that this does not change the type of a variable of
reference type.

For example, given a class Foo:

Foo foo;
Foo &fooRef = foo;
Foo *fooPtr = &foo;





A Block that referenced these variables would import the variables as
const variations:

const Foo block_foo = foo;
Foo &block_fooRef = fooRef;
Foo *const block_fooPtr = fooPtr;





Captured variables are copied into the Block at the instant of
evaluating the Block literal expression.  They are also copied when
calling Block_copy() on a Block allocated on the stack.  In both
cases, they are copied as if the variable were const-qualified, and
it’s an error if there’s no such constructor.

Captured variables in Blocks on the stack are destroyed when control
leaves the compound statement that contains the Block literal
expression.  Captured variables in Blocks on the heap are destroyed
when the reference count of the Block drops to zero.

Variables declared as residing in __block storage may be initially
allocated in the heap or may first appear on the stack and be copied
to the heap as a result of a Block_copy() operation. When copied
from the stack, __block variables are copied using their normal
qualification (i.e. without adding const).  In C++11, __block
variables are copied as x-values if that is possible, then as l-values
if not; if both fail, it’s an error.  The destructor for any initial
stack-based version is called at the variable’s normal end of scope.

References to this, as well as references to non-static members of
any enclosing class, are evaluated by capturing this just like a
normal variable of C pointer type.

Member variables that are Blocks may not be overloaded by the types of
their arguments.







          

      

      

    

  

    
      
          
            
  
Block Implementation Specification



	History

	High Level

	Imported Variables
	Imported const copy variables

	Imported const copy of Block reference
	Importing __attribute__((NSObject)) variables





	Imported __block marked variables
	Layout of __block marked variables

	Access to __block variables from within its lexical scope

	Importing __block variables into Blocks

	Importing __attribute__((NSObject)) __block variables

	__block escapes

	Nesting









	Objective C Extensions to Blocks
	Importing Objects

	Blocks as Objects

	__weak __block Support





	C++ Support

	Runtime Helper Functions

	Copyright






History


	2008/7/14 - created.

	2008/8/21 - revised, C++.

	2008/9/24 - add NULL isa field to __block storage.

	2008/10/1 - revise block layout to use a static descriptor structure.

	2008/10/6 - revise block layout to use an unsigned long int flags.

	2008/10/28 - specify use of _Block_object_assign and
_Block_object_dispose for all “Object” types in helper functions.

	2008/10/30 - revise new layout to have invoke function in same place.

	2008/10/30 - add __weak support.

	2010/3/16 - rev for stret return, signature field.

	2010/4/6 - improved wording.

	2013/1/6 - improved wording and converted to rst.



This document describes the Apple ABI implementation specification of Blocks.

The first shipping version of this ABI is found in Mac OS X 10.6, and shall be
referred to as 10.6.ABI. As of 2010/3/16, the following describes the ABI
contract with the runtime and the compiler, and, as necessary, will be referred
to as ABI.2010.3.16.

Since the Apple ABI references symbols from other elements of the system, any
attempt to use this ABI on systems prior to SnowLeopard is undefined.




High Level

The ABI of Blocks consist of their layout and the runtime functions required
by the compiler.  A Block consists of a structure of the following form:

struct Block_literal_1 {
    void *isa; // initialized to &_NSConcreteStackBlock or &_NSConcreteGlobalBlock
    int flags;
    int reserved;
    void (*invoke)(void *, ...);
    struct Block_descriptor_1 {
    unsigned long int reserved;         // NULL
        unsigned long int size;         // sizeof(struct Block_literal_1)
        // optional helper functions
        void (*copy_helper)(void *dst, void *src);     // IFF (1<<25)
        void (*dispose_helper)(void *src);             // IFF (1<<25)
        // required ABI.2010.3.16
        const char *signature;                         // IFF (1<<30)
    } *descriptor;
    // imported variables
};





The following flags bits are in use thusly for a possible ABI.2010.3.16:

enum {
    BLOCK_HAS_COPY_DISPOSE =  (1 << 25),
    BLOCK_HAS_CTOR =          (1 << 26), // helpers have C++ code
    BLOCK_IS_GLOBAL =         (1 << 28),
    BLOCK_HAS_STRET =         (1 << 29), // IFF BLOCK_HAS_SIGNATURE
    BLOCK_HAS_SIGNATURE =     (1 << 30),
};





In 10.6.ABI the (1<<29) was usually set and was always ignored by the runtime -
it had been a transitional marker that did not get deleted after the
transition. This bit is now paired with (1<<30), and represented as the pair
(3<<30), for the following combinations of valid bit settings, and their
meanings:

switch (flags & (3<<29)) {
  case (0<<29):      10.6.ABI, no signature field available
  case (1<<29):      10.6.ABI, no signature field available
  case (2<<29): ABI.2010.3.16, regular calling convention, presence of signature field
  case (3<<29): ABI.2010.3.16, stret calling convention, presence of signature field,
}





The signature field is not always populated.

The following discussions are presented as 10.6.ABI otherwise.

Block literals may occur within functions where the structure is created in
stack local memory.  They may also appear as initialization expressions for
Block variables of global or static local variables.

When a Block literal expression is evaluated the stack based structure is
initialized as follows:


	A static descriptor structure is declared and initialized as follows:




a. The invoke function pointer is set to a function that takes the
Block structure as its first argument and the rest of the arguments (if
any) to the Block and executes the Block compound statement.

b. The size field is set to the size of the following Block literal
structure.

c. The copy_helper and dispose_helper function pointers are set to
respective helper functions if they are required by the Block literal.





	A stack (or global) Block literal data structure is created and
initialized as follows:

a. The isa field is set to the address of the external
_NSConcreteStackBlock, which is a block of uninitialized memory supplied
in libSystem, or _NSConcreteGlobalBlock if this is a static or file
level Block literal.

b. The flags field is set to zero unless there are variables imported
into the Block that need helper functions for program level
Block_copy() and Block_release() operations, in which case the
(1<<25) flags bit is set.





As an example, the Block literal expression:

^ { printf("hello world\n"); }





would cause the following to be created on a 32-bit system:

struct __block_literal_1 {
    void *isa;
    int flags;
    int reserved;
    void (*invoke)(struct __block_literal_1 *);
    struct __block_descriptor_1 *descriptor;
};

void __block_invoke_1(struct __block_literal_1 *_block) {
    printf("hello world\n");
}

static struct __block_descriptor_1 {
    unsigned long int reserved;
    unsigned long int Block_size;
} __block_descriptor_1 = { 0, sizeof(struct __block_literal_1), __block_invoke_1 };





and where the Block literal itself appears:

struct __block_literal_1 _block_literal = {
     &_NSConcreteStackBlock,
     (1<<29), <uninitialized>,
     __block_invoke_1,
     &__block_descriptor_1
};





A Block imports other Block references, const copies of other
variables, and variables marked __block.  In Objective-C, variables may
additionally be objects.

When a Block literal expression is used as the initial value of a global
or static local variable, it is initialized as follows:

struct __block_literal_1 __block_literal_1 = {
      &_NSConcreteGlobalBlock,
      (1<<28)|(1<<29), <uninitialized>,
      __block_invoke_1,
      &__block_descriptor_1
};





that is, a different address is provided as the first value and a particular
(1<<28) bit is set in the flags field, and otherwise it is the same as for
stack based Block literals.  This is an optimization that can be used for
any Block literal that imports no const or __block storage
variables.




Imported Variables

Variables of auto storage class are imported as const copies.  Variables
of __block storage class are imported as a pointer to an enclosing data
structure.  Global variables are simply referenced and not considered as
imported.


Imported const copy variables

Automatic storage variables not marked with __block are imported as
const copies.

The simplest example is that of importing a variable of type int:

int x = 10;
void (^vv)(void) = ^{ printf("x is %d\n", x); }
x = 11;
vv();





which would be compiled to:

struct __block_literal_2 {
    void *isa;
    int flags;
    int reserved;
    void (*invoke)(struct __block_literal_2 *);
    struct __block_descriptor_2 *descriptor;
    const int x;
};

void __block_invoke_2(struct __block_literal_2 *_block) {
    printf("x is %d\n", _block->x);
}

static struct __block_descriptor_2 {
    unsigned long int reserved;
    unsigned long int Block_size;
} __block_descriptor_2 = { 0, sizeof(struct __block_literal_2) };





and:

struct __block_literal_2 __block_literal_2 = {
      &_NSConcreteStackBlock,
      (1<<29), <uninitialized>,
      __block_invoke_2,
      &__block_descriptor_2,
      x
 };





In summary, scalars, structures, unions, and function pointers are generally
imported as const copies with no need for helper functions.




Imported const copy of Block reference

The first case where copy and dispose helper functions are required is for the
case of when a Block itself is imported.  In this case both a
copy_helper function and a dispose_helper function are needed.  The
copy_helper function is passed both the existing stack based pointer and the
pointer to the new heap version and should call back into the runtime to
actually do the copy operation on the imported fields within the Block. The
runtime functions are all described in Runtime Helper Functions.

A quick example:

void (^existingBlock)(void) = ...;
void (^vv)(void) = ^{ existingBlock(); }
vv();

struct __block_literal_3 {
   ...; // existing block
};

struct __block_literal_4 {
    void *isa;
    int flags;
    int reserved;
    void (*invoke)(struct __block_literal_4 *);
    struct __block_literal_3 *const existingBlock;
};

void __block_invoke_4(struct __block_literal_2 *_block) {
   __block->existingBlock->invoke(__block->existingBlock);
}

void __block_copy_4(struct __block_literal_4 *dst, struct __block_literal_4 *src) {
     //_Block_copy_assign(&dst->existingBlock, src->existingBlock, 0);
     _Block_object_assign(&dst->existingBlock, src->existingBlock, BLOCK_FIELD_IS_BLOCK);
}

void __block_dispose_4(struct __block_literal_4 *src) {
     // was _Block_destroy
     _Block_object_dispose(src->existingBlock, BLOCK_FIELD_IS_BLOCK);
}

static struct __block_descriptor_4 {
    unsigned long int reserved;
    unsigned long int Block_size;
    void (*copy_helper)(struct __block_literal_4 *dst, struct __block_literal_4 *src);
    void (*dispose_helper)(struct __block_literal_4 *);
} __block_descriptor_4 = {
    0,
    sizeof(struct __block_literal_4),
    __block_copy_4,
    __block_dispose_4,
};





and where said Block is used:

struct __block_literal_4 _block_literal = {
      &_NSConcreteStackBlock,
      (1<<25)|(1<<29), <uninitialized>
      __block_invoke_4,
      & __block_descriptor_4
      existingBlock,
};






Importing __attribute__((NSObject)) variables

GCC introduces __attribute__((NSObject)) on structure pointers to mean “this
is an object”.  This is useful because many low level data structures are
declared as opaque structure pointers, e.g. CFStringRef, CFArrayRef,
etc.  When used from C, however, these are still really objects and are the
second case where that requires copy and dispose helper functions to be
generated.  The copy helper functions generated by the compiler should use the
_Block_object_assign runtime helper function and in the dispose helper the
_Block_object_dispose runtime helper function should be called.

For example, Block foo in the following:

struct Opaque *__attribute__((NSObject)) objectPointer = ...;
...
void (^foo)(void) = ^{  CFPrint(objectPointer); };





would have the following helper functions generated:

void __block_copy_foo(struct __block_literal_5 *dst, struct __block_literal_5 *src) {
     _Block_object_assign(&dst->objectPointer, src-> objectPointer, BLOCK_FIELD_IS_OBJECT);
}

void __block_dispose_foo(struct __block_literal_5 *src) {
     _Block_object_dispose(src->objectPointer, BLOCK_FIELD_IS_OBJECT);
}










Imported __block marked variables


Layout of __block marked variables

The compiler must embed variables that are marked __block in a specialized
structure of the form:

struct _block_byref_foo {
    void *isa;
    struct Block_byref *forwarding;
    int flags;   //refcount;
    int size;
    typeof(marked_variable) marked_variable;
};





Variables of certain types require helper functions for when Block_copy()
and Block_release() are performed upon a referencing Block.  At the “C”
level only variables that are of type Block or ones that have
__attribute__((NSObject)) marked require helper functions.  In Objective-C
objects require helper functions and in C++ stack based objects require helper
functions. Variables that require helper functions use the form:

struct _block_byref_foo {
    void *isa;
    struct _block_byref_foo *forwarding;
    int flags;   //refcount;
    int size;
    // helper functions called via Block_copy() and Block_release()
    void (*byref_keep)(void  *dst, void *src);
    void (*byref_dispose)(void *);
    typeof(marked_variable) marked_variable;
};





The structure is initialized such that:


a. The forwarding pointer is set to the beginning of its enclosing
structure.

b. The size field is initialized to the total size of the enclosing
structure.

c. The flags field is set to either 0 if no helper functions are needed
or (1<<25) if they are.


	The helper functions are initialized (if present).

	The variable itself is set to its initial value.

	The isa field is set to NULL.









Access to __block variables from within its lexical scope

In order to “move” the variable to the heap upon a copy_helper operation the
compiler must rewrite access to such a variable to be indirect through the
structures forwarding pointer.  For example:

int __block i = 10;
i = 11;





would be rewritten to be:

struct _block_byref_i {
  void *isa;
  struct _block_byref_i *forwarding;
  int flags;   //refcount;
  int size;
  int captured_i;
} i = { NULL, &i, 0, sizeof(struct _block_byref_i), 10 };

i.forwarding->captured_i = 11;





In the case of a Block reference variable being marked __block the
helper code generated must use the _Block_object_assign and
_Block_object_dispose routines supplied by the runtime to make the
copies. For example:

__block void (voidBlock)(void) = blockA;
voidBlock = blockB;





would translate into:

struct _block_byref_voidBlock {
    void *isa;
    struct _block_byref_voidBlock *forwarding;
    int flags;   //refcount;
    int size;
    void (*byref_keep)(struct _block_byref_voidBlock *dst, struct _block_byref_voidBlock *src);
    void (*byref_dispose)(struct _block_byref_voidBlock *);
    void (^captured_voidBlock)(void);
};

void _block_byref_keep_helper(struct _block_byref_voidBlock *dst, struct _block_byref_voidBlock *src) {
    //_Block_copy_assign(&dst->captured_voidBlock, src->captured_voidBlock, 0);
    _Block_object_assign(&dst->captured_voidBlock, src->captured_voidBlock, BLOCK_FIELD_IS_BLOCK | BLOCK_BYREF_CALLER);
}

void _block_byref_dispose_helper(struct _block_byref_voidBlock *param) {
    //_Block_destroy(param->captured_voidBlock, 0);
    _Block_object_dispose(param->captured_voidBlock, BLOCK_FIELD_IS_BLOCK | BLOCK_BYREF_CALLER)}





and:

struct _block_byref_voidBlock voidBlock = {( .forwarding=&voidBlock, .flags=(1<<25), .size=sizeof(struct _block_byref_voidBlock *),
    .byref_keep=_block_byref_keep_helper, .byref_dispose=_block_byref_dispose_helper,
    .captured_voidBlock=blockA )};

voidBlock.forwarding->captured_voidBlock = blockB;








Importing __block variables into Blocks

A Block that uses a __block variable in its compound statement body must
import the variable and emit copy_helper and dispose_helper helper
functions that, in turn, call back into the runtime to actually copy or release
the byref data block using the functions _Block_object_assign and
_Block_object_dispose.

For example:

int __block i = 2;
functioncall(^{ i = 10; });





would translate to:

struct _block_byref_i {
    void *isa;  // set to NULL
    struct _block_byref_voidBlock *forwarding;
    int flags;   //refcount;
    int size;
    void (*byref_keep)(struct _block_byref_i *dst, struct _block_byref_i *src);
    void (*byref_dispose)(struct _block_byref_i *);
    int captured_i;
};


struct __block_literal_5 {
    void *isa;
    int flags;
    int reserved;
    void (*invoke)(struct __block_literal_5 *);
    struct __block_descriptor_5 *descriptor;
    struct _block_byref_i *i_holder;
};

void __block_invoke_5(struct __block_literal_5 *_block) {
   _block->forwarding->captured_i = 10;
}

void __block_copy_5(struct __block_literal_5 *dst, struct __block_literal_5 *src) {
     //_Block_byref_assign_copy(&dst->captured_i, src->captured_i);
     _Block_object_assign(&dst->captured_i, src->captured_i, BLOCK_FIELD_IS_BYREF | BLOCK_BYREF_CALLER);
}

void __block_dispose_5(struct __block_literal_5 *src) {
     //_Block_byref_release(src->captured_i);
     _Block_object_dispose(src->captured_i, BLOCK_FIELD_IS_BYREF | BLOCK_BYREF_CALLER);
}

static struct __block_descriptor_5 {
    unsigned long int reserved;
    unsigned long int Block_size;
    void (*copy_helper)(struct __block_literal_5 *dst, struct __block_literal_5 *src);
    void (*dispose_helper)(struct __block_literal_5 *);
} __block_descriptor_5 = { 0, sizeof(struct __block_literal_5) __block_copy_5, __block_dispose_5 };





and:

struct _block_byref_i i = {( .forwarding=&i, .flags=0, .size=sizeof(struct _block_byref_i) )};
struct __block_literal_5 _block_literal = {
      &_NSConcreteStackBlock,
      (1<<25)|(1<<29), <uninitialized>,
      __block_invoke_5,
      &__block_descriptor_5,
      2,
};








Importing __attribute__((NSObject)) __block variables

A __block variable that is also marked __attribute__((NSObject)) should
have byref_keep and byref_dispose helper functions that use
_Block_object_assign and _Block_object_dispose.




__block escapes

Because Blocks referencing __block variables may have Block_copy()
performed upon them the underlying storage for the variables may move to the
heap.  In Objective-C Garbage Collection Only compilation environments the heap
used is the garbage collected one and no further action is required.  Otherwise
the compiler must issue a call to potentially release any heap storage for
__block variables at all escapes or terminations of their scope.  The call
should be:

_Block_object_dispose(&_block_byref_foo, BLOCK_FIELD_IS_BYREF);








Nesting

Blocks may contain Block literal expressions.  Any variables used within
inner blocks are imported into all enclosing Block scopes even if the
variables are not used. This includes const imports as well as __block
variables.








Objective C Extensions to Blocks


Importing Objects

Objects should be treated as __attribute__((NSObject)) variables; all
copy_helper, dispose_helper, byref_keep, and byref_dispose
helper functions should use _Block_object_assign and
_Block_object_dispose.  There should be no code generated that uses
*-retain or *-release methods.




Blocks as Objects

The compiler will treat Blocks as objects when synthesizing property setters
and getters, will characterize them as objects when generating garbage
collection strong and weak layout information in the same manner as objects, and
will issue strong and weak write-barrier assignments in the same manner as
objects.




__weak __block Support

Objective-C (and Objective-C++) support the __weak attribute on __block
variables.  Under normal circumstances the compiler uses the Objective-C runtime
helper support functions objc_assign_weak and objc_read_weak.  Both
should continue to be used for all reads and writes of __weak __block
variables:

objc_read_weak(&block->byref_i->forwarding->i)





The __weak variable is stored in a _block_byref_foo structure and the
Block has copy and dispose helpers for this structure that call:

_Block_object_assign(&dest->_block_byref_i, src-> _block_byref_i, BLOCK_FIELD_IS_WEAK | BLOCK_FIELD_IS_BYREF);





and:

_Block_object_dispose(src->_block_byref_i, BLOCK_FIELD_IS_WEAK | BLOCK_FIELD_IS_BYREF);





In turn, the block_byref copy support helpers distinguish between whether
the __block variable is a Block or not and should either call:

_Block_object_assign(&dest->_block_byref_i, src->_block_byref_i, BLOCK_FIELD_IS_WEAK | BLOCK_FIELD_IS_OBJECT | BLOCK_BYREF_CALLER);





for something declared as an object or:

_Block_object_assign(&dest->_block_byref_i, src->_block_byref_i, BLOCK_FIELD_IS_WEAK | BLOCK_FIELD_IS_BLOCK | BLOCK_BYREF_CALLER);





for something declared as a Block.

A full example follows:

__block __weak id obj = <initialization expression>;
functioncall(^{ [obj somemessage]; });





would translate to:

struct _block_byref_obj {
    void *isa;  // uninitialized
    struct _block_byref_obj *forwarding;
    int flags;   //refcount;
    int size;
    void (*byref_keep)(struct _block_byref_i *dst, struct _block_byref_i *src);
    void (*byref_dispose)(struct _block_byref_i *);
    id captured_obj;
};

void _block_byref_obj_keep(struct _block_byref_voidBlock *dst, struct _block_byref_voidBlock *src) {
    //_Block_copy_assign(&dst->captured_obj, src->captured_obj, 0);
    _Block_object_assign(&dst->captured_obj, src->captured_obj, BLOCK_FIELD_IS_OBJECT | BLOCK_FIELD_IS_WEAK | BLOCK_BYREF_CALLER);
}

void _block_byref_obj_dispose(struct _block_byref_voidBlock *param) {
    //_Block_destroy(param->captured_obj, 0);
    _Block_object_dispose(param->captured_obj, BLOCK_FIELD_IS_OBJECT | BLOCK_FIELD_IS_WEAK | BLOCK_BYREF_CALLER);
};





for the block byref part and:

struct __block_literal_5 {
    void *isa;
    int flags;
    int reserved;
    void (*invoke)(struct __block_literal_5 *);
    struct __block_descriptor_5 *descriptor;
    struct _block_byref_obj *byref_obj;
};

void __block_invoke_5(struct __block_literal_5 *_block) {
   [objc_read_weak(&_block->byref_obj->forwarding->captured_obj) somemessage];
}

void __block_copy_5(struct __block_literal_5 *dst, struct __block_literal_5 *src) {
     //_Block_byref_assign_copy(&dst->byref_obj, src->byref_obj);
     _Block_object_assign(&dst->byref_obj, src->byref_obj, BLOCK_FIELD_IS_BYREF | BLOCK_FIELD_IS_WEAK);
}

void __block_dispose_5(struct __block_literal_5 *src) {
     //_Block_byref_release(src->byref_obj);
     _Block_object_dispose(src->byref_obj, BLOCK_FIELD_IS_BYREF | BLOCK_FIELD_IS_WEAK);
}

static struct __block_descriptor_5 {
    unsigned long int reserved;
    unsigned long int Block_size;
    void (*copy_helper)(struct __block_literal_5 *dst, struct __block_literal_5 *src);
    void (*dispose_helper)(struct __block_literal_5 *);
} __block_descriptor_5 = { 0, sizeof(struct __block_literal_5), __block_copy_5, __block_dispose_5 };





and within the compound statement:

truct _block_byref_obj obj = {( .forwarding=&obj, .flags=(1<<25), .size=sizeof(struct _block_byref_obj),
                 .byref_keep=_block_byref_obj_keep, .byref_dispose=_block_byref_obj_dispose,
                 .captured_obj = <initialization expression> )};

truct __block_literal_5 _block_literal = {
     &_NSConcreteStackBlock,
     (1<<25)|(1<<29), <uninitialized>,
     __block_invoke_5,
     &__block_descriptor_5,
     &obj,        // a reference to the on-stack structure containing "captured_obj"
};


functioncall(_block_literal->invoke(&_block_literal));










C++ Support

Within a block stack based C++ objects are copied into const copies using
the copy constructor.  It is an error if a stack based C++ object is used within
a block if it does not have a copy constructor.  In addition both copy and
destroy helper routines must be synthesized for the block to support the
Block_copy() operation, and the flags work marked with the (1<<26) bit in
addition to the (1<<25) bit.  The copy helper should call the constructor using
appropriate offsets of the variable within the supplied stack based block source
and heap based destination for all const constructed copies, and similarly
should call the destructor in the destroy routine.

As an example, suppose a C++ class FOO existed with a copy constructor.
Within a code block a stack version of a FOO object is declared and used
within a Block literal expression:

{
    FOO foo;
    void (^block)(void) = ^{ printf("%d\n", foo.value()); };
}





The compiler would synthesize:

struct __block_literal_10 {
    void *isa;
    int flags;
    int reserved;
    void (*invoke)(struct __block_literal_10 *);
    struct __block_descriptor_10 *descriptor;
    const FOO foo;
};

void __block_invoke_10(struct __block_literal_10 *_block) {
   printf("%d\n", _block->foo.value());
}

void __block_literal_10(struct __block_literal_10 *dst, struct __block_literal_10 *src) {
     FOO_ctor(&dst->foo, &src->foo);
}

void __block_dispose_10(struct __block_literal_10 *src) {
     FOO_dtor(&src->foo);
}

static struct __block_descriptor_10 {
    unsigned long int reserved;
    unsigned long int Block_size;
    void (*copy_helper)(struct __block_literal_10 *dst, struct __block_literal_10 *src);
    void (*dispose_helper)(struct __block_literal_10 *);
} __block_descriptor_10 = { 0, sizeof(struct __block_literal_10), __block_copy_10, __block_dispose_10 };





and the code would be:

{
  FOO foo;
  comp_ctor(&foo); // default constructor
  struct __block_literal_10 _block_literal = {
    &_NSConcreteStackBlock,
    (1<<25)|(1<<26)|(1<<29), <uninitialized>,
    __block_invoke_10,
    &__block_descriptor_10,
   };
   comp_ctor(&_block_literal->foo, &foo);  // const copy into stack version
   struct __block_literal_10 &block = &_block_literal;  // assign literal to block variable
   block->invoke(block);    // invoke block
   comp_dtor(&_block_literal->foo); // destroy stack version of const block copy
   comp_dtor(&foo); // destroy original version
}





C++ objects stored in __block storage start out on the stack in a
block_byref data structure as do other variables.  Such objects (if not
const objects) must support a regular copy constructor.  The block_byref
data structure will have copy and destroy helper routines synthesized by the
compiler.  The copy helper will have code created to perform the copy
constructor based on the initial stack block_byref data structure, and will
also set the (1<<26) bit in addition to the (1<<25) bit.  The destroy helper
will have code to do the destructor on the object stored within the supplied
block_byref heap data structure.  For example,

__block FOO blockStorageFoo;





requires the normal constructor for the embedded blockStorageFoo object:

FOO_ctor(& _block_byref_blockStorageFoo->blockStorageFoo);





and at scope termination the destructor:

FOO_dtor(& _block_byref_blockStorageFoo->blockStorageFoo);





Note that the forwarding indirection is NOT used.

The compiler would need to generate (if used from a block literal) the following
copy/dispose helpers:

void _block_byref_obj_keep(struct _block_byref_blockStorageFoo *dst, struct _block_byref_blockStorageFoo *src) {
     FOO_ctor(&dst->blockStorageFoo, &src->blockStorageFoo);
}

void _block_byref_obj_dispose(struct _block_byref_blockStorageFoo *src) {
     FOO_dtor(&src->blockStorageFoo);
}





for the appropriately named constructor and destructor for the class/struct
FOO.

To support member variable and function access the compiler will synthesize a
const pointer to a block version of the this pointer.




Runtime Helper Functions

The runtime helper functions are described in
/usr/local/include/Block_private.h.  To summarize their use, a Block
requires copy/dispose helpers if it imports any block variables, __block
storage variables, __attribute__((NSObject)) variables, or C++ const
copied objects with constructor/destructors.  The (1<<26) bit is set and
functions are generated.

The block copy helper function should, for each of the variables of the type
mentioned above, call:

_Block_object_assign(&dst->target, src->target, BLOCK_FIELD_<appropo>);





in the copy helper and:

_Block_object_dispose(->target, BLOCK_FIELD_<appropo>);





in the dispose helper where <appropo> is:

enum {
    BLOCK_FIELD_IS_OBJECT   =  3,  // id, NSObject, __attribute__((NSObject)), block, ...
    BLOCK_FIELD_IS_BLOCK    =  7,  // a block variable
    BLOCK_FIELD_IS_BYREF    =  8,  // the on stack structure holding the __block variable

    BLOCK_FIELD_IS_WEAK     = 16,  // declared __weak

    BLOCK_BYREF_CALLER      = 128, // called from byref copy/dispose helpers
};





and of course the constructors/destructors for const copied C++ objects.

The block_byref data structure similarly requires copy/dispose helpers for
block variables, __attribute__((NSObject)) variables, or C++ const
copied objects with constructor/destructors, and again the (1<<26) bit is set
and functions are generated in the same manner.

Under ObjC we allow __weak as an attribute on __block variables, and
this causes the addition of BLOCK_FIELD_IS_WEAK orred onto the
BLOCK_FIELD_IS_BYREF flag when copying the block_byref structure in the
Block copy helper, and onto the BLOCK_FIELD_<appropo> field within the
block_byref copy/dispose helper calls.

The prototypes, and summary, of the helper functions are:

/* Certain field types require runtime assistance when being copied to the
   heap.  The following function is used to copy fields of types: blocks,
   pointers to byref structures, and objects (including
   __attribute__((NSObject)) pointers.  BLOCK_FIELD_IS_WEAK is orthogonal to
   the other choices which are mutually exclusive.  Only in a Block copy
   helper will one see BLOCK_FIELD_IS_BYREF.
*/
void _Block_object_assign(void *destAddr, const void *object, const int flags);

/* Similarly a compiler generated dispose helper needs to call back for each
   field of the byref data structure.  (Currently the implementation only
   packs one field into the byref structure but in principle there could be
   more).  The same flags used in the copy helper should be used for each
   call generated to this function:
*/
void _Block_object_dispose(const void *object, const int flags);








Copyright

Copyright 2008-2010 Apple, Inc.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.







          

      

      

    

  

    
      
          
            
  
Objective-C Automatic Reference Counting (ARC)



	About this document
	Purpose

	Background

	Evolution





	General

	Retainable object pointers
	Retain count semantics

	Retainable object pointers as operands and arguments
	Consumed parameters

	Retained return values

	Unretained return values

	Bridged casts





	Restrictions
	Conversion of retainable object pointers

	Conversion to retainable object pointer type of expressions with known semantics

	Conversion from retainable object pointer type in certain contexts









	Ownership qualification
	Spelling
	Property declarations





	Semantics

	Restrictions
	Weak-unavailable types

	Storage duration of __autoreleasing objects

	Conversion of pointers to ownership-qualified types

	Passing to an out parameter by writeback

	Ownership-qualified fields of structs and unions





	Ownership inference
	Objects

	Indirect parameters

	Template arguments









	Method families
	Explicit method family control

	Semantics of method families
	Semantics of init

	Related result types









	Optimization
	Object liveness

	No object lifetime extension

	Precise lifetime semantics





	Miscellaneous
	Special methods
	Memory management methods

	dealloc





	@autoreleasepool

	self

	Fast enumeration iteration variables

	Blocks

	Exceptions

	Interior pointers

	C retainable pointer types
	Auditing of C retainable pointer interfaces









	Runtime support
	id objc_autorelease(id value);

	void objc_autoreleasePoolPop(void *pool);

	void *objc_autoreleasePoolPush(void);

	id objc_autoreleaseReturnValue(id value);

	void objc_copyWeak(id *dest, id *src);

	void objc_destroyWeak(id *object);

	id objc_initWeak(id *object, id value);

	id objc_loadWeak(id *object);

	id objc_loadWeakRetained(id *object);

	void objc_moveWeak(id *dest, id *src);

	void objc_release(id value);

	id objc_retain(id value);

	id objc_retainAutorelease(id value);

	id objc_retainAutoreleaseReturnValue(id value);

	id objc_retainAutoreleasedReturnValue(id value);

	id objc_retainBlock(id value);

	id objc_storeStrong(id *object, id value);

	id objc_storeWeak(id *object, id value);










About this document


Purpose

The first and primary purpose of this document is to serve as a complete
technical specification of Automatic Reference Counting.  Given a core
Objective-C compiler and runtime, it should be possible to write a compiler and
runtime which implements these new semantics.

The secondary purpose is to act as a rationale for why ARC was designed in this
way.  This should remain tightly focused on the technical design and should not
stray into marketing speculation.




Background

This document assumes a basic familiarity with C.

Blocks are a C language extension for creating anonymous functions.
Users interact with and transfer block objects using block
pointers, which are represented like a normal pointer.  A block may capture
values from local variables; when this occurs, memory must be dynamically
allocated.  The initial allocation is done on the stack, but the runtime
provides a Block_copy function which, given a block pointer, either copies
the underlying block object to the heap, setting its reference count to 1 and
returning the new block pointer, or (if the block object is already on the
heap) increases its reference count by 1.  The paired function is
Block_release, which decreases the reference count by 1 and destroys the
object if the count reaches zero and is on the heap.

Objective-C is a set of language extensions, significant enough to be
considered a different language.  It is a strict superset of C.  The extensions
can also be imposed on C++, producing a language called Objective-C++.  The
primary feature is a single-inheritance object system; we briefly describe the
modern dialect.

Objective-C defines a new type kind, collectively called the object
pointer types.  This kind has two notable builtin members, id and
Class; id is the final supertype of all object pointers.  The validity
of conversions between object pointer types is not checked at runtime.  Users
may define classes; each class is a type, and the pointer to that
type is an object pointer type.  A class may have a superclass; its pointer
type is a subtype of its superclass’s pointer type.  A class has a set of
ivars, fields which appear on all instances of that class.  For
every class T there’s an associated metaclass; it has no fields, its
superclass is the metaclass of T‘s superclass, and its metaclass is a global
class.  Every class has a global object whose class is the class’s metaclass;
metaclasses have no associated type, so pointers to this object have type
Class.

A class declaration (@interface) declares a set of methods.  A
method has a return type, a list of argument types, and a selector:
a name like foo:bar:baz:, where the number of colons corresponds to the
number of formal arguments.  A method may be an instance method, in which case
it can be invoked on objects of the class, or a class method, in which case it
can be invoked on objects of the metaclass.  A method may be invoked by
providing an object (called the receiver) and a list of formal
arguments interspersed with the selector, like so:

[receiver foo: fooArg bar: barArg baz: bazArg]





This looks in the dynamic class of the receiver for a method with this name,
then in that class’s superclass, etc., until it finds something it can execute.
The receiver “expression” may also be the name of a class, in which case the
actual receiver is the class object for that class, or (within method
definitions) it may be super, in which case the lookup algorithm starts
with the static superclass instead of the dynamic class.  The actual methods
dynamically found in a class are not those declared in the @interface, but
those defined in a separate @implementation declaration; however, when
compiling a call, typechecking is done based on the methods declared in the
@interface.

Method declarations may also be grouped into protocols, which are not
inherently associated with any class, but which classes may claim to follow.
Object pointer types may be qualified with additional protocols that the object
is known to support.

Class extensions are collections of ivars and methods, designed to
allow a class’s @interface to be split across multiple files; however,
there is still a primary implementation file which must see the
@interfaces of all class extensions.  Categories allow
methods (but not ivars) to be declared post hoc on an arbitrary class; the
methods in the category’s @implementation will be dynamically added to that
class’s method tables which the category is loaded at runtime, replacing those
methods in case of a collision.

In the standard environment, objects are allocated on the heap, and their
lifetime is manually managed using a reference count.  This is done using two
instance methods which all classes are expected to implement: retain
increases the object’s reference count by 1, whereas release decreases it
by 1 and calls the instance method dealloc if the count reaches 0.  To
simplify certain operations, there is also an autorelease pool, a
thread-local list of objects to call release on later; an object can be
added to this pool by calling autorelease on it.

Block pointers may be converted to type id; block objects are laid out in a
way that makes them compatible with Objective-C objects.  There is a builtin
class that all block objects are considered to be objects of; this class
implements retain by adjusting the reference count, not by calling
Block_copy.




Evolution

ARC is under continual evolution, and this document must be updated as the
language progresses.

If a change increases the expressiveness of the language, for example by
lifting a restriction or by adding new syntax, the change will be annotated
with a revision marker, like so:


ARC applies to Objective-C pointer types, block pointer types, and
[beginning Apple 8.0, LLVM 3.8] BPTRs declared
within extern "BCPL" blocks.


For now, it is sensible to version this document by the releases of its sole
implementation (and its host project), clang.  “LLVM X.Y” refers to an
open-source release of clang from the LLVM project.  “Apple X.Y” refers to an
Apple-provided release of the Apple LLVM Compiler.  Other organizations that
prepare their own, separately-versioned clang releases and wish to maintain
similar information in this document should send requests to cfe-dev.

If a change decreases the expressiveness of the language, for example by
imposing a new restriction, this should be taken as an oversight in the
original specification and something to be avoided in all versions.  Such
changes are generally to be avoided.






General

Automatic Reference Counting implements automatic memory management for
Objective-C objects and blocks, freeing the programmer from the need to
explicitly insert retains and releases.  It does not provide a cycle collector;
users must explicitly manage the lifetime of their objects, breaking cycles
manually or with weak or unsafe references.

ARC may be explicitly enabled with the compiler flag -fobjc-arc.  It may
also be explicitly disabled with the compiler flag -fno-objc-arc.  The last
of these two flags appearing on the compile line “wins”.

If ARC is enabled, __has_feature(objc_arc) will expand to 1 in the
preprocessor.  For more information about __has_feature, see the
language extensions document.




Retainable object pointers

This section describes retainable object pointers, their basic operations, and
the restrictions imposed on their use under ARC.  Note in particular that it
covers the rules for pointer values (patterns of bits indicating the location
of a pointed-to object), not pointer objects (locations in memory which store
pointer values).  The rules for objects are covered in the next section.

A retainable object pointer (or “retainable pointer”) is a value of
a retainable object pointer type (“retainable type”).  There are
three kinds of retainable object pointer types:


	block pointers (formed by applying the caret (^) declarator sigil to a
function type)

	Objective-C object pointers (id, Class, NSFoo*, etc.)

	typedefs marked with __attribute__((NSObject))



Other pointer types, such as int* and CFStringRef, are not subject to
ARC’s semantics and restrictions.


Rationale

We are not at liberty to require all code to be recompiled with ARC;
therefore, ARC must interoperate with Objective-C code which manages retains
and releases manually.  In general, there are three requirements in order for
a compiler-supported reference-count system to provide reliable
interoperation:


	The type system must reliably identify which objects are to be managed.  An
int* might be a pointer to a malloc‘ed array, or it might be an
interior pointer to such an array, or it might point to some field or local
variable.  In contrast, values of the retainable object pointer types are
never interior.

	The type system must reliably indicate how to manage objects of a type.
This usually means that the type must imply a procedure for incrementing
and decrementing retain counts.  Supporting single-ownership objects
requires a lot more explicit mediation in the language.

	There must be reliable conventions for whether and when “ownership” is
passed between caller and callee, for both arguments and return values.
Objective-C methods follow such a convention very reliably, at least for
system libraries on Mac OS X, and functions always pass objects at +0.  The
C-based APIs for Core Foundation objects, on the other hand, have much more
varied transfer semantics.





The use of __attribute__((NSObject)) typedefs is not recommended.  If it’s
absolutely necessary to use this attribute, be very explicit about using the
typedef, and do not assume that it will be preserved by language features like
__typeof and C++ template argument substitution.


Rationale

Any compiler operation which incidentally strips type “sugar” from a type
will yield a type without the attribute, which may result in unexpected
behavior.




Retain count semantics

A retainable object pointer is either a null pointer or a pointer
to a valid object.  Furthermore, if it has block pointer type and is not
null then it must actually be a pointer to a block object, and if it has
Class type (possibly protocol-qualified) then it must actually be a pointer
to a class object.  Otherwise ARC does not enforce the Objective-C type system
as long as the implementing methods follow the signature of the static type.
It is undefined behavior if ARC is exposed to an invalid pointer.

For ARC’s purposes, a valid object is one with “well-behaved” retaining
operations.  Specifically, the object must be laid out such that the
Objective-C message send machinery can successfully send it the following
messages:


	retain, taking no arguments and returning a pointer to the object.

	release, taking no arguments and returning void.

	autorelease, taking no arguments and returning a pointer to the object.



The behavior of these methods is constrained in the following ways.  The term
high-level semantics is an intentionally vague term; the intent is
that programmers must implement these methods in a way such that the compiler,
modifying code in ways it deems safe according to these constraints, will not
violate their requirements.  For example, if the user puts logging statements
in retain, they should not be surprised if those statements are executed
more or less often depending on optimization settings.  These constraints are
not exhaustive of the optimization opportunities: values held in local
variables are subject to additional restrictions, described later in this
document.

It is undefined behavior if a computation history featuring a send of
retain followed by a send of release to the same object, with no
intervening release on that object, is not equivalent under the high-level
semantics to a computation history in which these sends are removed.  Note that
this implies that these methods may not raise exceptions.

It is undefined behavior if a computation history features any use whatsoever
of an object following the completion of a send of release that is not
preceded by a send of retain to the same object.

The behavior of autorelease must be equivalent to sending release when
one of the autorelease pools currently in scope is popped.  It may not throw an
exception.

When the semantics call for performing one of these operations on a retainable
object pointer, if that pointer is null then the effect is a no-op.

All of the semantics described in this document are subject to additional
optimization rules which permit the removal or
optimization of operations based on local knowledge of data flow.  The
semantics describe the high-level behaviors that the compiler implements, not
an exact sequence of operations that a program will be compiled into.




Retainable object pointers as operands and arguments

In general, ARC does not perform retain or release operations when simply using
a retainable object pointer as an operand within an expression.  This includes:


	loading a retainable pointer from an object with non-weak ownership,

	passing a retainable pointer as an argument to a function or method, and

	receiving a retainable pointer as the result of a function or method call.




Rationale

While this might seem uncontroversial, it is actually unsafe when multiple
expressions are evaluated in “parallel”, as with binary operators and calls,
because (for example) one expression might load from an object while another
writes to it.  However, C and C++ already call this undefined behavior
because the evaluations are unsequenced, and ARC simply exploits that here to
avoid needing to retain arguments across a large number of calls.



The remainder of this section describes exceptions to these rules, how those
exceptions are detected, and what those exceptions imply semantically.


Consumed parameters

A function or method parameter of retainable object pointer type may be marked
as consumed, signifying that the callee expects to take ownership
of a +1 retain count.  This is done by adding the ns_consumed attribute to
the parameter declaration, like so:

void foo(__attribute((ns_consumed)) id x);
- (void) foo: (id) __attribute((ns_consumed)) x;





This attribute is part of the type of the function or method, not the type of
the parameter.  It controls only how the argument is passed and received.

When passing such an argument, ARC retains the argument prior to making the
call.

When receiving such an argument, ARC releases the argument at the end of the
function, subject to the usual optimizations for local values.


Rationale

This formalizes direct transfers of ownership from a caller to a callee.  The
most common scenario here is passing the self parameter to init, but
it is useful to generalize.  Typically, local optimization will remove any
extra retains and releases: on the caller side the retain will be merged with
a +1 source, and on the callee side the release will be rolled into the
initialization of the parameter.



The implicit self parameter of a method may be marked as consumed by adding
__attribute__((ns_consumes_self)) to the method declaration.  Methods in
the init family are treated as if they were
implicitly marked with this attribute.

It is undefined behavior if an Objective-C message send to a method with
ns_consumed parameters (other than self) is made with a null receiver.  It
is undefined behavior if the method to which an Objective-C message send
statically resolves to has a different set of ns_consumed parameters than
the method it dynamically resolves to.  It is undefined behavior if a block or
function call is made through a static type with a different set of
ns_consumed parameters than the implementation of the called block or
function.


Rationale

Consumed parameters with null receiver are a guaranteed leak.  Mismatches
with consumed parameters will cause over-retains or over-releases, depending
on the direction.  The rule about function calls is really just an
application of the existing C/C++ rule about calling functions through an
incompatible function type, but it’s useful to state it explicitly.






Retained return values

A function or method which returns a retainable object pointer type may be
marked as returning a retained value, signifying that the caller expects to take
ownership of a +1 retain count.  This is done by adding the
ns_returns_retained attribute to the function or method declaration, like
so:

id foo(void) __attribute((ns_returns_retained));
- (id) foo __attribute((ns_returns_retained));





This attribute is part of the type of the function or method.

When returning from such a function or method, ARC retains the value at the
point of evaluation of the return statement, before leaving all local scopes.

When receiving a return result from such a function or method, ARC releases the
value at the end of the full-expression it is contained within, subject to the
usual optimizations for local values.


Rationale

This formalizes direct transfers of ownership from a callee to a caller.  The
most common scenario this models is the retained return from init,
alloc, new, and copy methods, but there are other cases in the
frameworks.  After optimization there are typically no extra retains and
releases required.



Methods in the alloc, copy, init, mutableCopy, and new
families are implicitly marked
__attribute__((ns_returns_retained)).  This may be suppressed by explicitly
marking the method __attribute__((ns_returns_not_retained)).

It is undefined behavior if the method to which an Objective-C message send
statically resolves has different retain semantics on its result from the
method it dynamically resolves to.  It is undefined behavior if a block or
function call is made through a static type with different retain semantics on
its result from the implementation of the called block or function.


Rationale

Mismatches with returned results will cause over-retains or over-releases,
depending on the direction.  Again, the rule about function calls is really
just an application of the existing C/C++ rule about calling functions
through an incompatible function type.






Unretained return values

A method or function which returns a retainable object type but does not return
a retained value must ensure that the object is still valid across the return
boundary.

When returning from such a function or method, ARC retains the value at the
point of evaluation of the return statement, then leaves all local scopes, and
then balances out the retain while ensuring that the value lives across the
call boundary.  In the worst case, this may involve an autorelease, but
callers must not assume that the value is actually in the autorelease pool.

ARC performs no extra mandatory work on the caller side, although it may elect
to do something to shorten the lifetime of the returned value.


Rationale

It is common in non-ARC code to not return an autoreleased value; therefore
the convention does not force either path.  It is convenient to not be
required to do unnecessary retains and autoreleases; this permits
optimizations such as eliding retain/autoreleases when it can be shown that
the original pointer will still be valid at the point of return.



A method or function may be marked with
__attribute__((ns_returns_autoreleased)) to indicate that it returns a
pointer which is guaranteed to be valid at least as long as the innermost
autorelease pool.  There are no additional semantics enforced in the definition
of such a method; it merely enables optimizations in callers.




Bridged casts

A bridged cast is a C-style cast annotated with one of three
keywords:


	(__bridge T) op casts the operand to the destination type T.  If
T is a retainable object pointer type, then op must have a
non-retainable pointer type.  If T is a non-retainable pointer type,
then op must have a retainable object pointer type.  Otherwise the cast
is ill-formed.  There is no transfer of ownership, and ARC inserts no retain
operations.

	(__bridge_retained T) op casts the operand, which must have retainable
object pointer type, to the destination type, which must be a non-retainable
pointer type.  ARC retains the value, subject to the usual optimizations on
local values, and the recipient is responsible for balancing that +1.

	(__bridge_transfer T) op casts the operand, which must have
non-retainable pointer type, to the destination type, which must be a
retainable object pointer type.  ARC will release the value at the end of
the enclosing full-expression, subject to the usual optimizations on local
values.



These casts are required in order to transfer objects in and out of ARC
control; see the rationale in the section on conversion of retainable
object pointers.

Using a __bridge_retained or __bridge_transfer cast purely to convince
ARC to emit an unbalanced retain or release, respectively, is poor form.






Restrictions


Conversion of retainable object pointers

In general, a program which attempts to implicitly or explicitly convert a
value of retainable object pointer type to any non-retainable type, or
vice-versa, is ill-formed.  For example, an Objective-C object pointer shall
not be converted to void*.  As an exception, cast to intptr_t is
allowed because such casts are not transferring ownership.  The bridged
casts may be used to perform these conversions
where necessary.


Rationale

We cannot ensure the correct management of the lifetime of objects if they
may be freely passed around as unmanaged types.  The bridged casts are
provided so that the programmer may explicitly describe whether the cast
transfers control into or out of ARC.



However, the following exceptions apply.




Conversion to retainable object pointer type of expressions with known semantics

[beginning Apple 4.0, LLVM 3.1]
These exceptions have been greatly expanded; they previously applied
only to a much-reduced subset which is difficult to categorize but which
included null pointers, message sends (under the given rules), and the various
global constants.

An unbridged conversion to a retainable object pointer type from a type other
than a retainable object pointer type is ill-formed, as discussed above, unless
the operand of the cast has a syntactic form which is known retained, known
unretained, or known retain-agnostic.

An expression is known retain-agnostic if it is:


	an Objective-C string literal,

	a load from a const system global variable of C retainable pointer
type, or

	a null pointer constant.



An expression is known unretained if it is an rvalue of C
retainable pointer type and it is:


	a direct call to a function, and either that function has the
cf_returns_not_retained attribute or it is an audited function that does not have the
cf_returns_retained attribute and does not follow the create/copy naming
convention,

	a message send, and the declared method either has the
cf_returns_not_retained attribute or it has neither the
cf_returns_retained attribute nor a selector family that implies a retained result, or

	[beginning LLVM 3.6] a load from a const
non-system global variable.



An expression is known retained if it is an rvalue of C
retainable pointer type and it is:


	a message send, and the declared method either has the
cf_returns_retained attribute, or it does not have the
cf_returns_not_retained attribute but it does have a selector
family that implies a retained result.



Furthermore:


	a comma expression is classified according to its right-hand side,

	a statement expression is classified according to its result expression, if
it has one,

	an lvalue-to-rvalue conversion applied to an Objective-C property lvalue is
classified according to the underlying message send, and

	a conditional operator is classified according to its second and third
operands, if they agree in classification, or else the other if one is known
retain-agnostic.



If the cast operand is known retained, the conversion is treated as a
__bridge_transfer cast.  If the cast operand is known unretained or known
retain-agnostic, the conversion is treated as a __bridge cast.


Rationale

Bridging casts are annoying.  Absent the ability to completely automate the
management of CF objects, however, we are left with relatively poor attempts
to reduce the need for a glut of explicit bridges.  Hence these rules.

We’ve so far consciously refrained from implicitly turning retained CF
results from function calls into __bridge_transfer casts.  The worry is
that some code patterns  —  for example, creating a CF value, assigning it
to an ObjC-typed local, and then calling CFRelease when done  —  are a
bit too likely to be accidentally accepted, leading to mysterious behavior.

For loads from const global variables of C retainable pointer type, it is reasonable to assume that global system
constants were initialitzed with true constants (e.g. string literals), but
user constants might have been initialized with something dynamically
allocated, using a global initializer.






Conversion from retainable object pointer type in certain contexts

[beginning Apple 4.0, LLVM 3.1]

If an expression of retainable object pointer type is explicitly cast to a
C retainable pointer type, the program is
ill-formed as discussed above unless the result is immediately used:


	to initialize a parameter in an Objective-C message send where the parameter
is not marked with the cf_consumed attribute, or

	to initialize a parameter in a direct call to an
audited function where the parameter is
not marked with the cf_consumed attribute.




Rationale

Consumed parameters are left out because ARC would naturally balance them
with a retain, which was judged too treacherous.  This is in part because
several of the most common consuming functions are in the Release family,
and it would be quite unfortunate for explicit releases to be silently
balanced out in this way.










Ownership qualification

This section describes the behavior of objects of retainable object pointer
type; that is, locations in memory which store retainable object pointers.

A type is a retainable object owner type if it is a retainable
object pointer type or an array type whose element type is a retainable object
owner type.

An ownership qualifier is a type qualifier which applies only to
retainable object owner types.  An array type is ownership-qualified according
to its element type, and adding an ownership qualifier to an array type so
qualifies its element type.

A program is ill-formed if it attempts to apply an ownership qualifier to a
type which is already ownership-qualified, even if it is the same qualifier.
There is a single exception to this rule: an ownership qualifier may be applied
to a substituted template type parameter, which overrides the ownership
qualifier provided by the template argument.

When forming a function type, the result type is adjusted so that any
top-level ownership qualifier is deleted.

Except as described under the inference rules,
a program is ill-formed if it attempts to form a pointer or reference type to a
retainable object owner type which lacks an ownership qualifier.


Rationale

These rules, together with the inference rules, ensure that all objects and
lvalues of retainable object pointer type have an ownership qualifier.  The
ability to override an ownership qualifier during template substitution is
required to counteract the inference of __strong for template type
arguments.  Ownership qualifiers
on return types are dropped because they serve no purpose there except to
cause spurious problems with overloading and templates.



There are four ownership qualifiers:


	__autoreleasing

	__strong

	__unsafe_unretained

	__weak



A type is nontrivially ownership-qualified if it is qualified with
__autoreleasing, __strong, or __weak.


Spelling

The names of the ownership qualifiers are reserved for the implementation.  A
program may not assume that they are or are not implemented with macros, or
what those macros expand to.

An ownership qualifier may be written anywhere that any other type qualifier
may be written.

If an ownership qualifier appears in the declaration-specifiers, the
following rules apply:


	if the type specifier is a retainable object owner type, the qualifier
initially applies to that type;

	otherwise, if the outermost non-array declarator is a pointer
or block pointer declarator, the qualifier initially applies to
that type;

	otherwise the program is ill-formed.

	If the qualifier is so applied at a position in the declaration
where the next-innermost declarator is a function declarator, and
there is an block declarator within that function declarator, then
the qualifier applies instead to that block declarator and this rule
is considered afresh beginning from the new position.



If an ownership qualifier appears on the declarator name, or on the declared
object, it is applied to the innermost pointer or block-pointer type.

If an ownership qualifier appears anywhere else in a declarator, it applies to
the type there.


Rationale

Ownership qualifiers are like const and volatile in the sense
that they may sensibly apply at multiple distinct positions within a
declarator.  However, unlike those qualifiers, there are many
situations where they are not meaningful, and so we make an effort
to “move” the qualifier to a place where it will be meaningful.  The
general goal is to allow the programmer to write, say, __strong
before the entire declaration and have it apply in the leftmost
sensible place.




Property declarations

A property of retainable object pointer type may have ownership.  If the
property’s type is ownership-qualified, then the property has that ownership.
If the property has one of the following modifiers, then the property has the
corresponding ownership.  A property is ill-formed if it has conflicting
sources of ownership, or if it has redundant ownership modifiers, or if it has
__autoreleasing ownership.


	assign implies __unsafe_unretained ownership.

	copy implies __strong ownership, as well as the usual behavior of
copy semantics on the setter.

	retain implies __strong ownership.

	strong implies __strong ownership.

	unsafe_unretained implies __unsafe_unretained ownership.

	weak implies __weak ownership.



With the exception of weak, these modifiers are available in non-ARC
modes.

A property’s specified ownership is preserved in its metadata, but otherwise
the meaning is purely conventional unless the property is synthesized.  If a
property is synthesized, then the associated instance variable is
the instance variable which is named, possibly implicitly, by the
@synthesize declaration.  If the associated instance variable already
exists, then its ownership qualification must equal the ownership of the
property; otherwise, the instance variable is created with that ownership
qualification.

A property of retainable object pointer type which is synthesized without a
source of ownership has the ownership of its associated instance variable, if it
already exists; otherwise, [beginning Apple 3.1, LLVM 3.1]
its ownership is implicitly strong.  Prior to this revision, it
was ill-formed to synthesize such a property.


Rationale

Using strong by default is safe and consistent with the generic ARC rule
about inferring ownership.  It is,
unfortunately, inconsistent with the non-ARC rule which states that such
properties are implicitly assign.  However, that rule is clearly
untenable in ARC, since it leads to default-unsafe code.  The main merit to
banning the properties is to avoid confusion with non-ARC practice, which did
not ultimately strike us as sufficient to justify requiring extra syntax and
(more importantly) forcing novices to understand ownership rules just to
declare a property when the default is so reasonable.  Changing the rule away
from non-ARC practice was acceptable because we had conservatively banned the
synthesis in order to give ourselves exactly this leeway.



Applying __attribute__((NSObject)) to a property not of retainable object
pointer type has the same behavior it does outside of ARC: it requires the
property type to be some sort of pointer and permits the use of modifiers other
than assign.  These modifiers only affect the synthesized getter and
setter; direct accesses to the ivar (even if synthesized) still have primitive
semantics, and the value in the ivar will not be automatically released during
deallocation.






Semantics

There are five managed operations which may be performed on an
object of retainable object pointer type.  Each qualifier specifies different
semantics for each of these operations.  It is still undefined behavior to
access an object outside of its lifetime.

A load or store with “primitive semantics” has the same semantics as the
respective operation would have on an void* lvalue with the same alignment
and non-ownership qualification.

Reading occurs when performing a lvalue-to-rvalue conversion on an
object lvalue.


	For __weak objects, the current pointee is retained and then released at
the end of the current full-expression.  This must execute atomically with
respect to assignments and to the final release of the pointee.

	For all other objects, the lvalue is loaded with primitive semantics.



Assignment occurs when evaluating an assignment operator.  The
semantics vary based on the qualification:


	For __strong objects, the new pointee is first retained; second, the
lvalue is loaded with primitive semantics; third, the new pointee is stored
into the lvalue with primitive semantics; and finally, the old pointee is
released.  This is not performed atomically; external synchronization must be
used to make this safe in the face of concurrent loads and stores.

	For __weak objects, the lvalue is updated to point to the new pointee,
unless the new pointee is an object currently undergoing deallocation, in
which case the lvalue is updated to a null pointer.  This must execute
atomically with respect to other assignments to the object, to reads from the
object, and to the final release of the new pointee.

	For __unsafe_unretained objects, the new pointee is stored into the
lvalue using primitive semantics.

	For __autoreleasing objects, the new pointee is retained, autoreleased,
and stored into the lvalue using primitive semantics.



Initialization occurs when an object’s lifetime begins, which
depends on its storage duration.  Initialization proceeds in two stages:


	First, a null pointer is stored into the lvalue using primitive semantics.
This step is skipped if the object is __unsafe_unretained.

	Second, if the object has an initializer, that expression is evaluated and
then assigned into the object using the usual assignment semantics.



Destruction occurs when an object’s lifetime ends.  In all cases it
is semantically equivalent to assigning a null pointer to the object, with the
proviso that of course the object cannot be legally read after the object’s
lifetime ends.

Moving occurs in specific situations where an lvalue is “moved
from”, meaning that its current pointee will be used but the object may be left
in a different (but still valid) state.  This arises with __block variables
and rvalue references in C++.  For __strong lvalues, moving is equivalent
to loading the lvalue with primitive semantics, writing a null pointer to it
with primitive semantics, and then releasing the result of the load at the end
of the current full-expression.  For all other lvalues, moving is equivalent to
reading the object.




Restrictions


Weak-unavailable types

It is explicitly permitted for Objective-C classes to not support __weak
references.  It is undefined behavior to perform an operation with weak
assignment semantics with a pointer to an Objective-C object whose class does
not support __weak references.


Rationale

Historically, it has been possible for a class to provide its own
reference-count implementation by overriding retain, release, etc.
However, weak references to an object require coordination with its class’s
reference-count implementation because, among other things, weak loads and
stores must be atomic with respect to the final release.  Therefore, existing
custom reference-count implementations will generally not support weak
references without additional effort.  This is unavoidable without breaking
binary compatibility.



A class may indicate that it does not support weak references by providing the
objc_arc_weak_unavailable attribute on the class’s interface declaration.  A
retainable object pointer type is weak-unavailable if
is a pointer to an (optionally protocol-qualified) Objective-C class T where
T or one of its superclasses has the objc_arc_weak_unavailable
attribute.  A program is ill-formed if it applies the __weak ownership
qualifier to a weak-unavailable type or if the value operand of a weak
assignment operation has a weak-unavailable type.




Storage duration of __autoreleasing objects

A program is ill-formed if it declares an __autoreleasing object of
non-automatic storage duration.  A program is ill-formed if it captures an
__autoreleasing object in a block or, unless by reference, in a C++11
lambda.


Rationale

Autorelease pools are tied to the current thread and scope by their nature.
While it is possible to have temporary objects whose instance variables are
filled with autoreleased objects, there is no way that ARC can provide any
sort of safety guarantee there.



It is undefined behavior if a non-null pointer is assigned to an
__autoreleasing object while an autorelease pool is in scope and then that
object is read after the autorelease pool’s scope is left.




Conversion of pointers to ownership-qualified types

A program is ill-formed if an expression of type T* is converted,
explicitly or implicitly, to the type U*, where T and U have
different ownership qualification, unless:


	T is qualified with __strong, __autoreleasing, or
__unsafe_unretained, and U is qualified with both const and
__unsafe_unretained; or

	either T or U is cv void, where cv is an optional sequence
of non-ownership qualifiers; or

	the conversion is requested with a reinterpret_cast in Objective-C++; or

	the conversion is a well-formed pass-by-writeback.



The analogous rule applies to T& and U& in Objective-C++.


Rationale

These rules provide a reasonable level of type-safety for indirect pointers,
as long as the underlying memory is not deallocated.  The conversion to
const __unsafe_unretained is permitted because the semantics of reads are
equivalent across all these ownership semantics, and that’s a very useful and
common pattern.  The interconversion with void* is useful for allocating
memory or otherwise escaping the type system, but use it carefully.
reinterpret_cast is considered to be an obvious enough sign of taking
responsibility for any problems.



It is undefined behavior to access an ownership-qualified object through an
lvalue of a differently-qualified type, except that any non-__weak object
may be read through an __unsafe_unretained lvalue.

It is undefined behavior if a managed operation is performed on a __strong
or __weak object without a guarantee that it contains a primitive zero
bit-pattern, or if the storage for such an object is freed or reused without the
object being first assigned a null pointer.


Rationale

ARC cannot differentiate between an assignment operator which is intended to
“initialize” dynamic memory and one which is intended to potentially replace
a value.  Therefore the object’s pointer must be valid before letting ARC at
it.  Similarly, C and Objective-C do not provide any language hooks for
destroying objects held in dynamic memory, so it is the programmer’s
responsibility to avoid leaks (__strong objects) and consistency errors
(__weak objects).



These requirements are followed automatically in Objective-C++ when creating
objects of retainable object owner type with new or new[] and destroying
them with delete, delete[], or a pseudo-destructor expression.  Note
that arrays of nontrivially-ownership-qualified type are not ABI compatible with
non-ARC code because the element type is non-POD: such arrays that are
new[]‘d in ARC translation units cannot be delete[]‘d in non-ARC
translation units and vice-versa.




Passing to an out parameter by writeback

If the argument passed to a parameter of type T __autoreleasing * has type
U oq *, where oq is an ownership qualifier, then the argument is a
candidate for pass-by-writeback` if:


	oq is __strong or __weak, and

	it would be legal to initialize a T __strong * with a U __strong *.



For purposes of overload resolution, an implicit conversion sequence requiring
a pass-by-writeback is always worse than an implicit conversion sequence not
requiring a pass-by-writeback.

The pass-by-writeback is ill-formed if the argument expression does not have a
legal form:


	&var, where var is a scalar variable of automatic storage duration
with retainable object pointer type

	a conditional expression where the second and third operands are both legal
forms

	a cast whose operand is a legal form

	a null pointer constant




Rationale

The restriction in the form of the argument serves two purposes.  First, it
makes it impossible to pass the address of an array to the argument, which
serves to protect against an otherwise serious risk of mis-inferring an
“array” argument as an out-parameter.  Second, it makes it much less likely
that the user will see confusing aliasing problems due to the implementation,
below, where their store to the writeback temporary is not immediately seen
in the original argument variable.



A pass-by-writeback is evaluated as follows:


	The argument is evaluated to yield a pointer p of type U oq *.

	If p is a null pointer, then a null pointer is passed as the argument,
and no further work is required for the pass-by-writeback.

	Otherwise, a temporary of type T __autoreleasing is created and
initialized to a null pointer.

	If the parameter is not an Objective-C method parameter marked out,
then *p is read, and the result is written into the temporary with
primitive semantics.

	The address of the temporary is passed as the argument to the actual call.

	After the call completes, the temporary is loaded with primitive
semantics, and that value is assigned into *p.




Rationale

This is all admittedly convoluted.  In an ideal world, we would see that a
local variable is being passed to an out-parameter and retroactively modify
its type to be __autoreleasing rather than __strong.  This would be
remarkably difficult and not always well-founded under the C type system.
However, it was judged unacceptably invasive to require programmers to write
__autoreleasing on all the variables they intend to use for
out-parameters.  This was the least bad solution.






Ownership-qualified fields of structs and unions

A program is ill-formed if it declares a member of a C struct or union to have
a nontrivially ownership-qualified type.


Rationale

The resulting type would be non-POD in the C++ sense, but C does not give us
very good language tools for managing the lifetime of aggregates, so it is
more convenient to simply forbid them.  It is still possible to manage this
with a void* or an __unsafe_unretained object.



This restriction does not apply in Objective-C++.  However, nontrivally
ownership-qualified types are considered non-POD: in C++11 terms, they are not
trivially default constructible, copy constructible, move constructible, copy
assignable, move assignable, or destructible.  It is a violation of C++’s One
Definition Rule to use a class outside of ARC that, under ARC, would have a
nontrivially ownership-qualified member.


Rationale

Unlike in C, we can express all the necessary ARC semantics for
ownership-qualified subobjects as suboperations of the (default) special
member functions for the class.  These functions then become non-trivial.
This has the non-obvious result that the class will have a non-trivial copy
constructor and non-trivial destructor; if this would not normally be true
outside of ARC, objects of the type will be passed and returned in an
ABI-incompatible manner.








Ownership inference


Objects

If an object is declared with retainable object owner type, but without an
explicit ownership qualifier, its type is implicitly adjusted to have
__strong qualification.

As a special case, if the object’s base type is Class (possibly
protocol-qualified), the type is adjusted to have __unsafe_unretained
qualification instead.




Indirect parameters

If a function or method parameter has type T*, where T is an
ownership-unqualified retainable object pointer type, then:


	if T is const-qualified or Class, then it is implicitly
qualified with __unsafe_unretained;

	otherwise, it is implicitly qualified with __autoreleasing.




Rationale

__autoreleasing exists mostly for this case, the Cocoa convention for
out-parameters.  Since a pointer to const is obviously not an
out-parameter, we instead use a type more useful for passing arrays.  If the
user instead intends to pass in a mutable array, inferring
__autoreleasing is the wrong thing to do; this directs some of the
caution in the following rules about writeback.



Such a type written anywhere else would be ill-formed by the general rule
requiring ownership qualifiers.

This rule does not apply in Objective-C++ if a parameter’s type is dependent in
a template pattern and is only instantiated to a type which would be a
pointer to an unqualified retainable object pointer type.  Such code is still
ill-formed.


Rationale

The convention is very unlikely to be intentional in template code.






Template arguments

If a template argument for a template type parameter is an retainable object
owner type that does not have an explicit ownership qualifier, it is adjusted
to have __strong qualification.  This adjustment occurs regardless of
whether the template argument was deduced or explicitly specified.


Rationale

__strong is a useful default for containers (e.g., std::vector<id>),
which would otherwise require explicit qualification.  Moreover, unqualified
retainable object pointer types are unlikely to be useful within templates,
since they generally need to have a qualifier applied to the before being
used.










Method families

An Objective-C method may fall into a method family, which is a
conventional set of behaviors ascribed to it by the Cocoa conventions.

A method is in a certain method family if:


	it has a objc_method_family attribute placing it in that family; or if
not that,

	it does not have an objc_method_family attribute placing it in a
different or no family, and

	its selector falls into the corresponding selector family, and

	its signature obeys the added restrictions of the method family.



A selector is in a certain selector family if, ignoring any leading
underscores, the first component of the selector either consists entirely of
the name of the method family or it begins with that name followed by a
character other than a lowercase letter.  For example, _perform:with: and
performWith: would fall into the perform family (if we recognized one),
but performing:with would not.

The families and their added restrictions are:


	alloc methods must return a retainable object pointer type.



	copy methods must return a retainable object pointer type.



	mutableCopy methods must return a retainable object pointer type.



	new methods must return a retainable object pointer type.



	init methods must be instance methods and must return an Objective-C
pointer type.  Additionally, a program is ill-formed if it declares or
contains a call to an init method whose return type is neither id nor
a pointer to a super-class or sub-class of the declaring class (if the method
was declared on a class) or the static receiver type of the call (if it was
declared on a protocol).


Rationale

There are a fair number of existing methods with init-like selectors
which nonetheless don’t follow the init conventions.  Typically these
are either accidental naming collisions or helper methods called during
initialization.  Because of the peculiar retain/release behavior of
init methods, it’s very important not to treat these methods as
init methods if they aren’t meant to be.  It was felt that implicitly
defining these methods out of the family based on the exact relationship
between the return type and the declaring class would be much too subtle
and fragile.  Therefore we identify a small number of legitimate-seeming
return types and call everything else an error.  This serves the secondary
purpose of encouraging programmers not to accidentally give methods names
in the init family.

Note that a method with an init-family selector which returns a
non-Objective-C type (e.g. void) is perfectly well-formed; it simply
isn’t in the init family.







A program is ill-formed if a method’s declarations, implementations, and
overrides do not all have the same method family.


Explicit method family control

A method may be annotated with the objc_method_family attribute to
precisely control which method family it belongs to.  If a method in an
@implementation does not have this attribute, but there is a method
declared in the corresponding @interface that does, then the attribute is
copied to the declaration in the @implementation.  The attribute is
available outside of ARC, and may be tested for with the preprocessor query
__has_attribute(objc_method_family).

The attribute is spelled
__attribute__((objc_method_family( family ))).  If family is
none, the method has no family, even if it would otherwise be considered to
have one based on its selector and type.  Otherwise, family must be one of
alloc, copy, init, mutableCopy, or new, in which case the
method is considered to belong to the corresponding family regardless of its
selector.  It is an error if a method that is explicitly added to a family in
this way does not meet the requirements of the family other than the selector
naming convention.


Rationale

The rules codified in this document describe the standard conventions of
Objective-C.  However, as these conventions have not heretofore been enforced
by an unforgiving mechanical system, they are only imperfectly kept,
especially as they haven’t always even been precisely defined.  While it is
possible to define low-level ownership semantics with attributes like
ns_returns_retained, this attribute allows the user to communicate
semantic intent, which is of use both to ARC (which, e.g., treats calls to
init specially) and the static analyzer.






Semantics of method families

A method’s membership in a method family may imply non-standard semantics for
its parameters and return type.

Methods in the alloc, copy, mutableCopy, and new families —
that is, methods in all the currently-defined families except init —
implicitly return a retained object as if they were annotated with
the ns_returns_retained attribute.  This can be overridden by annotating
the method with either of the ns_returns_autoreleased or
ns_returns_not_retained attributes.

Properties also follow same naming rules as methods.  This means that those in
the alloc, copy, mutableCopy, and new families provide access
to retained objects.  This
can be overridden by annotating the property with ns_returns_not_retained
attribute.


Semantics of init

Methods in the init family implicitly consume their self parameter and return a
retained object.  Neither of
these properties can be altered through attributes.

A call to an init method with a receiver that is either self (possibly
parenthesized or casted) or super is called a delegate init
call.  It is an error for a delegate init call to be made except from an
init method, and excluding blocks within such methods.

As an exception to the usual rule, the variable self
is mutable in an init method and has the usual semantics for a __strong
variable.  However, it is undefined behavior and the program is ill-formed, no
diagnostic required, if an init method attempts to use the previous value
of self after the completion of a delegate init call.  It is conventional,
but not required, for an init method to return self.

It is undefined behavior for a program to cause two or more calls to init
methods on the same object, except that each init method invocation may
perform at most one delegate init call.




Related result types

Certain methods are candidates to have related result types:


	class methods in the alloc and new method families

	instance methods in the init family

	the instance method self

	outside of ARC, the instance methods retain and autorelease



If the formal result type of such a method is id or protocol-qualified
id, or a type equal to the declaring class or a superclass, then it is said
to have a related result type.  In this case, when invoked in an explicit
message send, it is assumed to return a type related to the type of the
receiver:


	if it is a class method, and the receiver is a class name T, the message
send expression has type T*; otherwise

	if it is an instance method, and the receiver has type T, the message
send expression has type T; otherwise

	the message send expression has the normal result type of the method.



This is a new rule of the Objective-C language and applies outside of ARC.


Rationale

ARC’s automatic code emission is more prone than most code to signature
errors, i.e. errors where a call was emitted against one method signature,
but the implementing method has an incompatible signature.  Having more
precise type information helps drastically lower this risk, as well as
catching a number of latent bugs.










Optimization

Within this section, the word function will be used to
refer to any structured unit of code, be it a C function, an
Objective-C method, or a block.

This specification describes ARC as performing specific retain and
release operations on retainable object pointers at specific
points during the execution of a program.  These operations make up a
non-contiguous subsequence of the computation history of the program.
The portion of this sequence for a particular retainable object
pointer for which a specific function execution is directly
responsible is the formal local retain history of the
object pointer.  The corresponding actual sequence executed is the
dynamic local retain history.

However, under certain circumstances, ARC is permitted to re-order and
eliminate operations in a manner which may alter the overall
computation history beyond what is permitted by the general “as if”
rule of C/C++ and the restrictions on
the implementation of retain and release.


Rationale

Specifically, ARC is sometimes permitted to optimize release
operations in ways which might cause an object to be deallocated
before it would otherwise be.  Without this, it would be almost
impossible to eliminate any retain/release pairs.  For
example, consider the following code:

id x = _ivar;
[x foo];





If we were not permitted in any event to shorten the lifetime of the
object in x, then we would not be able to eliminate this retain
and release unless we could prove that the message send could not
modify _ivar (or deallocate self).  Since message sends are
opaque to the optimizer, this is not possible, and so ARC’s hands
would be almost completely tied.



ARC makes no guarantees about the execution of a computation history
which contains undefined behavior.  In particular, ARC makes no
guarantees in the presence of race conditions.

ARC may assume that any retainable object pointers it receives or
generates are instantaneously valid from that point until a point
which, by the concurrency model of the host language, happens-after
the generation of the pointer and happens-before a release of that
object (possibly via an aliasing pointer or indirectly due to
destruction of a different object).


Rationale

There is very little point in trying to guarantee correctness in the
presence of race conditions.  ARC does not have a stack-scanning
garbage collector, and guaranteeing the atomicity of every load and
store operation would be prohibitive and preclude a vast amount of
optimization.



ARC may assume that non-ARC code engages in sensible balancing
behavior and does not rely on exact or minimum retain count values
except as guaranteed by __strong object invariants or +1 transfer
conventions.  For example, if an object is provably double-retained
and double-released, ARC may eliminate the inner retain and release;
it does not need to guard against code which performs an unbalanced
release followed by a “balancing” retain.


Object liveness

ARC may not allow a retainable object X to be deallocated at a
time T in a computation history if:


	X is the value stored in a __strong object S with
precise lifetime semantics, or

	X is the value stored in a __strong object S with
imprecise lifetime semantics and, at some point after T but
before the next store to S, the computation history features a
load from S and in some way depends on the value loaded, or

	X is a value described as being released at the end of the
current full-expression and, at some point after T but before
the end of the full-expression, the computation history depends
on that value.




Rationale

The intent of the second rule is to say that objects held in normal
__strong local variables may be released as soon as the value in
the variable is no longer being used: either the variable stops
being used completely or a new value is stored in the variable.

The intent of the third rule is to say that return values may be
released after they’ve been used.



A computation history depends on a pointer value P if it:


	performs a pointer comparison with P,

	loads from P,

	stores to P,

	depends on a pointer value Q derived via pointer arithmetic
from P (including an instance-variable or field access), or

	depends on a pointer value Q loaded from P.



Dependency applies only to values derived directly or indirectly from
a particular expression result and does not occur merely because a
separate pointer value dynamically aliases P.  Furthermore, this
dependency is not carried by values that are stored to objects.


Rationale

The restrictions on dependency are intended to make this analysis
feasible by an optimizer with only incomplete information about a
program.  Essentially, dependence is carried to “obvious” uses of a
pointer.  Merely passing a pointer argument to a function does not
itself cause dependence, but since generally the optimizer will not
be able to prove that the function doesn’t depend on that parameter,
it will be forced to conservatively assume it does.

Dependency propagates to values loaded from a pointer because those
values might be invalidated by deallocating the object.  For
example, given the code __strong id x = p->ivar;, ARC must not
move the release of p to between the load of p->ivar and the
retain of that value for storing into x.

Dependency does not propagate through stores of dependent pointer
values because doing so would allow dependency to outlive the
full-expression which produced the original value.  For example, the
address of an instance variable could be written to some global
location and then freely accessed during the lifetime of the local,
or a function could return an inner pointer of an object and store
it to a local.  These cases would be potentially impossible to
reason about and so would basically prevent any optimizations based
on imprecise lifetime.  There are also uncommon enough to make it
reasonable to require the precise-lifetime annotation if someone
really wants to rely on them.

Dependency does propagate through return values of pointer type.
The compelling source of need for this rule is a property accessor
which returns an un-autoreleased result; the calling function must
have the chance to operate on the value, e.g. to retain it, before
ARC releases the original pointer.  Note again, however, that
dependence does not survive a store, so ARC does not guarantee the
continued validity of the return value past the end of the
full-expression.






No object lifetime extension

If, in the formal computation history of the program, an object X
has been deallocated by the time of an observable side-effect, then
ARC must cause X to be deallocated by no later than the occurrence
of that side-effect, except as influenced by the re-ordering of the
destruction of objects.


Rationale

This rule is intended to prohibit ARC from observably extending the
lifetime of a retainable object, other than as specified in this
document.  Together with the rule limiting the transformation of
releases, this rule requires ARC to eliminate retains and release
only in pairs.

ARC’s power to reorder the destruction of objects is critical to its
ability to do any optimization, for essentially the same reason that
it must retain the power to decrease the lifetime of an object.
Unfortunately, while it’s generally poor style for the destruction
of objects to have arbitrary side-effects, it’s certainly possible.
Hence the caveat.






Precise lifetime semantics

In general, ARC maintains an invariant that a retainable object pointer held in
a __strong object will be retained for the full formal lifetime of the
object.  Objects subject to this invariant have precise lifetime
semantics.

By default, local variables of automatic storage duration do not have precise
lifetime semantics.  Such objects are simply strong references which hold
values of retainable object pointer type, and these values are still fully
subject to the optimizations on values under local control.


Rationale

Applying these precise-lifetime semantics strictly would be prohibitive.
Many useful optimizations that might theoretically decrease the lifetime of
an object would be rendered impossible.  Essentially, it promises too much.



A local variable of retainable object owner type and automatic storage duration
may be annotated with the objc_precise_lifetime attribute to indicate that
it should be considered to be an object with precise lifetime semantics.


Rationale

Nonetheless, it is sometimes useful to be able to force an object to be
released at a precise time, even if that object does not appear to be used.
This is likely to be uncommon enough that the syntactic weight of explicitly
requesting these semantics will not be burdensome, and may even make the code
clearer.








Miscellaneous


Special methods


Memory management methods

A program is ill-formed if it contains a method definition, message send, or
@selector expression for any of the following selectors:


	autorelease

	release

	retain

	retainCount




Rationale

retainCount is banned because ARC robs it of consistent semantics.  The
others were banned after weighing three options for how to deal with message
sends:

Honoring them would work out very poorly if a programmer naively or
accidentally tried to incorporate code written for manual retain/release code
into an ARC program.  At best, such code would do twice as much work as
necessary; quite frequently, however, ARC and the explicit code would both
try to balance the same retain, leading to crashes.  The cost is losing the
ability to perform “unrooted” retains, i.e. retains not logically
corresponding to a strong reference in the object graph.

Ignoring them would badly violate user expectations about their code.
While it would make it easier to develop code simultaneously for ARC and
non-ARC, there is very little reason to do so except for certain library
developers.  ARC and non-ARC translation units share an execution model and
can seamlessly interoperate.  Within a translation unit, a developer who
faithfully maintains their code in non-ARC mode is suffering all the
restrictions of ARC for zero benefit, while a developer who isn’t testing the
non-ARC mode is likely to be unpleasantly surprised if they try to go back to
it.

Banning them has the disadvantage of making it very awkward to migrate
existing code to ARC.  The best answer to that, given a number of other
changes and restrictions in ARC, is to provide a specialized tool to assist
users in that migration.

Implementing these methods was banned because they are too integral to the
semantics of ARC; many tricks which worked tolerably under manual reference
counting will misbehave if ARC performs an ephemeral extra retain or two.  If
absolutely required, it is still possible to implement them in non-ARC code,
for example in a category; the implementations must obey the semantics laid out elsewhere in this document.






dealloc

A program is ill-formed if it contains a message send or @selector
expression for the selector dealloc.


Rationale

There are no legitimate reasons to call dealloc directly.



A class may provide a method definition for an instance method named
dealloc.  This method will be called after the final release of the
object but before it is deallocated or any of its instance variables are
destroyed.  The superclass’s implementation of dealloc will be called
automatically when the method returns.


Rationale

Even though ARC destroys instance variables automatically, there are still
legitimate reasons to write a dealloc method, such as freeing
non-retainable resources.  Failing to call [super dealloc] in such a
method is nearly always a bug.  Sometimes, the object is simply trying to
prevent itself from being destroyed, but dealloc is really far too late
for the object to be raising such objections.  Somewhat more legitimately, an
object may have been pool-allocated and should not be deallocated with
free; for now, this can only be supported with a dealloc
implementation outside of ARC.  Such an implementation must be very careful
to do all the other work that NSObject‘s dealloc would, which is
outside the scope of this document to describe.



The instance variables for an ARC-compiled class will be destroyed at some
point after control enters the dealloc method for the root class of the
class.  The ordering of the destruction of instance variables is unspecified,
both within a single class and between subclasses and superclasses.


Rationale

The traditional, non-ARC pattern for destroying instance variables is to
destroy them immediately before calling [super dealloc].  Unfortunately,
message sends from the superclass are quite capable of reaching methods in
the subclass, and those methods may well read or write to those instance
variables.  Making such message sends from dealloc is generally discouraged,
since the subclass may well rely on other invariants that were broken during
dealloc, but it’s not so inescapably dangerous that we felt comfortable
calling it undefined behavior.  Therefore we chose to delay destroying the
instance variables to a point at which message sends are clearly disallowed:
the point at which the root class’s deallocation routines take over.

In most code, the difference is not observable.  It can, however, be observed
if an instance variable holds a strong reference to an object whose
deallocation will trigger a side-effect which must be carefully ordered with
respect to the destruction of the super class.  Such code violates the design
principle that semantically important behavior should be explicit.  A simple
fix is to clear the instance variable manually during dealloc; a more
holistic solution is to move semantically important side-effects out of
dealloc and into a separate teardown phase which can rely on working with
well-formed objects.








@autoreleasepool

To simplify the use of autorelease pools, and to bring them under the control
of the compiler, a new kind of statement is available in Objective-C.  It is
written @autoreleasepool followed by a compound-statement, i.e.  by a new
scope delimited by curly braces.  Upon entry to this block, the current state
of the autorelease pool is captured.  When the block is exited normally,
whether by fallthrough or directed control flow (such as return or
break), the autorelease pool is restored to the saved state, releasing all
the objects in it.  When the block is exited with an exception, the pool is not
drained.

@autoreleasepool may be used in non-ARC translation units, with equivalent
semantics.

A program is ill-formed if it refers to the NSAutoreleasePool class.


Rationale

Autorelease pools are clearly important for the compiler to reason about, but
it is far too much to expect the compiler to accurately reason about control
dependencies between two calls.  It is also very easy to accidentally forget
to drain an autorelease pool when using the manual API, and this can
significantly inflate the process’s high-water-mark.  The introduction of a
new scope is unfortunate but basically required for sane interaction with the
rest of the language.  Not draining the pool during an unwind is apparently
required by the Objective-C exceptions implementation.






self

The self parameter variable of an Objective-C method is never actually
retained by the implementation.  It is undefined behavior, or at least
dangerous, to cause an object to be deallocated during a message send to that
object.

To make this safe, for Objective-C instance methods self is implicitly
const unless the method is in the init family.  Further, self is always implicitly
const within a class method.


Rationale

The cost of retaining self in all methods was found to be prohibitive, as
it tends to be live across calls, preventing the optimizer from proving that
the retain and release are unnecessary — for good reason, as it’s quite
possible in theory to cause an object to be deallocated during its execution
without this retain and release.  Since it’s extremely uncommon to actually
do so, even unintentionally, and since there’s no natural way for the
programmer to remove this retain/release pair otherwise (as there is for
other parameters by, say, making the variable __unsafe_unretained), we
chose to make this optimizing assumption and shift some amount of risk to the
user.






Fast enumeration iteration variables

If a variable is declared in the condition of an Objective-C fast enumeration
loop, and the variable has no explicit ownership qualifier, then it is
qualified with const __strong and objects encountered during the
enumeration are not actually retained.


Rationale

This is an optimization made possible because fast enumeration loops promise
to keep the objects retained during enumeration, and the collection itself
cannot be synchronously modified.  It can be overridden by explicitly
qualifying the variable with __strong, which will make the variable
mutable again and cause the loop to retain the objects it encounters.






Blocks

The implicit const capture variables created when evaluating a block
literal expression have the same ownership semantics as the local variables
they capture.  The capture is performed by reading from the captured variable
and initializing the capture variable with that value; the capture variable is
destroyed when the block literal is, i.e. at the end of the enclosing scope.

The inference rules apply equally to
__block variables, which is a shift in semantics from non-ARC, where
__block variables did not implicitly retain during capture.

__block variables of retainable object owner type are moved off the stack
by initializing the heap copy with the result of moving from the stack copy.

With the exception of retains done as part of initializing a __strong
parameter variable or reading a __weak variable, whenever these semantics
call for retaining a value of block-pointer type, it has the effect of a
Block_copy.  The optimizer may remove such copies when it sees that the
result is used only as an argument to a call.




Exceptions

By default in Objective C, ARC is not exception-safe for normal releases:


	It does not end the lifetime of __strong variables when their scopes are
abnormally terminated by an exception.

	It does not perform releases which would occur at the end of a
full-expression if that full-expression throws an exception.



A program may be compiled with the option -fobjc-arc-exceptions in order to
enable these, or with the option -fno-objc-arc-exceptions to explicitly
disable them, with the last such argument “winning”.


Rationale

The standard Cocoa convention is that exceptions signal programmer error and
are not intended to be recovered from.  Making code exceptions-safe by
default would impose severe runtime and code size penalties on code that
typically does not actually care about exceptions safety.  Therefore,
ARC-generated code leaks by default on exceptions, which is just fine if the
process is going to be immediately terminated anyway.  Programs which do care
about recovering from exceptions should enable the option.



In Objective-C++, -fobjc-arc-exceptions is enabled by default.


Rationale

C++ already introduces pervasive exceptions-cleanup code of the sort that ARC
introduces.  C++ programmers who have not already disabled exceptions are
much more likely to actual require exception-safety.



ARC does end the lifetimes of __weak objects when an exception terminates
their scope unless exceptions are disabled in the compiler.


Rationale

The consequence of a local __weak object not being destroyed is very
likely to be corruption of the Objective-C runtime, so we want to be safer
here.  Of course, potentially massive leaks are about as likely to take down
the process as this corruption is if the program does try to recover from
exceptions.






Interior pointers

An Objective-C method returning a non-retainable pointer may be annotated with
the objc_returns_inner_pointer attribute to indicate that it returns a
handle to the internal data of an object, and that this reference will be
invalidated if the object is destroyed.  When such a message is sent to an
object, the object’s lifetime will be extended until at least the earliest of:


	the last use of the returned pointer, or any pointer derived from it, in the
calling function or

	the autorelease pool is restored to a previous state.




Rationale

Rationale: not all memory and resources are managed with reference counts; it
is common for objects to manage private resources in their own, private way.
Typically these resources are completely encapsulated within the object, but
some classes offer their users direct access for efficiency.  If ARC is not
aware of methods that return such “interior” pointers, its optimizations can
cause the owning object to be reclaimed too soon.  This attribute informs ARC
that it must tread lightly.

The extension rules are somewhat intentionally vague.  The autorelease pool
limit is there to permit a simple implementation to simply retain and
autorelease the receiver.  The other limit permits some amount of
optimization.  The phrase “derived from” is intended to encompass the results
both of pointer transformations, such as casts and arithmetic, and of loading
from such derived pointers; furthermore, it applies whether or not such
derivations are applied directly in the calling code or by other utility code
(for example, the C library routine strchr).  However, the implementation
never need account for uses after a return from the code which calls the
method returning an interior pointer.



As an exception, no extension is required if the receiver is loaded directly
from a __strong object with precise lifetime semantics.


Rationale

Implicit autoreleases carry the risk of significantly inflating memory use,
so it’s important to provide users a way of avoiding these autoreleases.
Tying this to precise lifetime semantics is ideal, as for local variables
this requires a very explicit annotation, which allows ARC to trust the user
with good cheer.






C retainable pointer types

A type is a C retainable pointer type if it is a pointer to
(possibly qualified) void or a pointer to a (possibly qualifier) struct
or class type.


Rationale

ARC does not manage pointers of CoreFoundation type (or any of the related
families of retainable C pointers which interoperate with Objective-C for
retain/release operation).  In fact, ARC does not even know how to
distinguish these types from arbitrary C pointer types.  The intent of this
concept is to filter out some obviously non-object types while leaving a hook
for later tightening if a means of exhaustively marking CF types is made
available.




Auditing of C retainable pointer interfaces

[beginning Apple 4.0, LLVM 3.1]

A C function may be marked with the cf_audited_transfer attribute to
express that, except as otherwise marked with attributes, it obeys the
parameter (consuming vs. non-consuming) and return (retained vs. non-retained)
conventions for a C function of its name, namely:


	A parameter of C retainable pointer type is assumed to not be consumed
unless it is marked with the cf_consumed attribute, and

	A result of C retainable pointer type is assumed to not be returned retained
unless the function is either marked cf_returns_retained or it follows
the create/copy naming convention and is not marked
cf_returns_not_retained.



A function obeys the create/copy naming convention if its name
contains as a substring:


	either “Create” or “Copy” not followed by a lowercase letter, or

	either “create” or “copy” not followed by a lowercase letter and
not preceded by any letter, whether uppercase or lowercase.



A second attribute, cf_unknown_transfer, signifies that a function’s
transfer semantics cannot be accurately captured using any of these
annotations.  A program is ill-formed if it annotates the same function with
both cf_audited_transfer and cf_unknown_transfer.

A pragma is provided to facilitate the mass annotation of interfaces:

#pragma clang arc_cf_code_audited begin
...
#pragma clang arc_cf_code_audited end





All C functions declared within the extent of this pragma are treated as if
annotated with the cf_audited_transfer attribute unless they otherwise have
the cf_unknown_transfer attribute.  The pragma is accepted in all language
modes.  A program is ill-formed if it attempts to change files, whether by
including a file or ending the current file, within the extent of this pragma.

It is possible to test for all the features in this section with
__has_feature(arc_cf_code_audited).


Rationale

A significant inconvenience in ARC programming is the necessity of
interacting with APIs based around C retainable pointers.  These features are
designed to make it relatively easy for API authors to quickly review and
annotate their interfaces, in turn improving the fidelity of tools such as
the static analyzer and ARC.  The single-file restriction on the pragma is
designed to eliminate the risk of accidentally annotating some other header’s
interfaces.










Runtime support

This section describes the interaction between the ARC runtime and the code
generated by the ARC compiler.  This is not part of the ARC language
specification; instead, it is effectively a language-specific ABI supplement,
akin to the “Itanium” generic ABI for C++.

Ownership qualification does not alter the storage requirements for objects,
except that it is undefined behavior if a __weak object is inadequately
aligned for an object of type id.  The other qualifiers may be used on
explicitly under-aligned memory.

The runtime tracks __weak objects which holds non-null values.  It is
undefined behavior to direct modify a __weak object which is being tracked
by the runtime except through an
objc_storeWeak,
objc_destroyWeak, or
objc_moveWeak call.

The runtime must provide a number of new entrypoints which the compiler may
emit, which are described in the remainder of this section.


Rationale

Several of these functions are semantically equivalent to a message send; we
emit calls to C functions instead because:


	the machine code to do so is significantly smaller,

	it is much easier to recognize the C functions in the ARC optimizer, and

	a sufficient sophisticated runtime may be able to avoid the message send in
common cases.



Several other of these functions are “fused” operations which can be
described entirely in terms of other operations.  We use the fused operations
primarily as a code-size optimization, although in some cases there is also a
real potential for avoiding redundant operations in the runtime.




id objc_autorelease(id value);

Precondition: value is null or a pointer to a valid object.

If value is null, this call has no effect.  Otherwise, it adds the object
to the innermost autorelease pool exactly as if the object had been sent the
autorelease message.

Always returns value.




void objc_autoreleasePoolPop(void *pool);

Precondition: pool is the result of a previous call to
objc_autoreleasePoolPush on the
current thread, where neither pool nor any enclosing pool have previously
been popped.

Releases all the objects added to the given autorelease pool and any
autorelease pools it encloses, then sets the current autorelease pool to the
pool directly enclosing pool.




void *objc_autoreleasePoolPush(void);

Creates a new autorelease pool that is enclosed by the current pool, makes that
the current pool, and returns an opaque “handle” to it.


Rationale

While the interface is described as an explicit hierarchy of pools, the rules
allow the implementation to just keep a stack of objects, using the stack
depth as the opaque pool handle.






id objc_autoreleaseReturnValue(id value);

Precondition: value is null or a pointer to a valid object.

If value is null, this call has no effect.  Otherwise, it makes a best
effort to hand off ownership of a retain count on the object to a call to
objc_retainAutoreleasedReturnValue for the same object in an
enclosing call frame.  If this is not possible, the object is autoreleased as
above.

Always returns value.




void objc_copyWeak(id *dest, id *src);

Precondition: src is a valid pointer which either contains a null pointer
or has been registered as a __weak object.  dest is a valid pointer
which has not been registered as a __weak object.

dest is initialized to be equivalent to src, potentially registering it
with the runtime.  Equivalent to the following code:

void objc_copyWeak(id *dest, id *src) {
  objc_release(objc_initWeak(dest, objc_loadWeakRetained(src)));
}





Must be atomic with respect to calls to objc_storeWeak on src.




void objc_destroyWeak(id *object);

Precondition: object is a valid pointer which either contains a null
pointer or has been registered as a __weak object.

object is unregistered as a weak object, if it ever was.  The current value
of object is left unspecified; otherwise, equivalent to the following code:

void objc_destroyWeak(id *object) {
  objc_storeWeak(object, nil);
}





Does not need to be atomic with respect to calls to objc_storeWeak on
object.




id objc_initWeak(id *object, id value);

Precondition: object is a valid pointer which has not been registered as
a __weak object.  value is null or a pointer to a valid object.

If value is a null pointer or the object to which it points has begun
deallocation, object is zero-initialized.  Otherwise, object is
registered as a __weak object pointing to value.  Equivalent to the
following code:

id objc_initWeak(id *object, id value) {
  *object = nil;
  return objc_storeWeak(object, value);
}





Returns the value of object after the call.

Does not need to be atomic with respect to calls to objc_storeWeak on
object.




id objc_loadWeak(id *object);

Precondition: object is a valid pointer which either contains a null
pointer or has been registered as a __weak object.

If object is registered as a __weak object, and the last value stored
into object has not yet been deallocated or begun deallocation, retains and
autoreleases that value and returns it.  Otherwise returns null.  Equivalent to
the following code:

id objc_loadWeak(id *object) {
  return objc_autorelease(objc_loadWeakRetained(object));
}





Must be atomic with respect to calls to objc_storeWeak on object.


Rationale

Loading weak references would be inherently prone to race conditions without
the retain.






id objc_loadWeakRetained(id *object);

Precondition: object is a valid pointer which either contains a null
pointer or has been registered as a __weak object.

If object is registered as a __weak object, and the last value stored
into object has not yet been deallocated or begun deallocation, retains
that value and returns it.  Otherwise returns null.

Must be atomic with respect to calls to objc_storeWeak on object.




void objc_moveWeak(id *dest, id *src);

Precondition: src is a valid pointer which either contains a null pointer
or has been registered as a __weak object.  dest is a valid pointer
which has not been registered as a __weak object.

dest is initialized to be equivalent to src, potentially registering it
with the runtime.  src may then be left in its original state, in which
case this call is equivalent to objc_copyWeak, or it may be left as null.

Must be atomic with respect to calls to objc_storeWeak on src.




void objc_release(id value);

Precondition: value is null or a pointer to a valid object.

If value is null, this call has no effect.  Otherwise, it performs a
release operation exactly as if the object had been sent the release
message.




id objc_retain(id value);

Precondition: value is null or a pointer to a valid object.

If value is null, this call has no effect.  Otherwise, it performs a retain
operation exactly as if the object had been sent the retain message.

Always returns value.




id objc_retainAutorelease(id value);

Precondition: value is null or a pointer to a valid object.

If value is null, this call has no effect.  Otherwise, it performs a retain
operation followed by an autorelease operation.  Equivalent to the following
code:

id objc_retainAutorelease(id value) {
  return objc_autorelease(objc_retain(value));
}





Always returns value.




id objc_retainAutoreleaseReturnValue(id value);

Precondition: value is null or a pointer to a valid object.

If value is null, this call has no effect.  Otherwise, it performs a retain
operation followed by the operation described in
objc_autoreleaseReturnValue.
Equivalent to the following code:

id objc_retainAutoreleaseReturnValue(id value) {
  return objc_autoreleaseReturnValue(objc_retain(value));
}





Always returns value.




id objc_retainAutoreleasedReturnValue(id value);

Precondition: value is null or a pointer to a valid object.

If value is null, this call has no effect.  Otherwise, it attempts to
accept a hand off of a retain count from a call to
objc_autoreleaseReturnValue on
value in a recently-called function or something it calls.  If that fails,
it performs a retain operation exactly like objc_retain.

Always returns value.




id objc_retainBlock(id value);

Precondition: value is null or a pointer to a valid block object.

If value is null, this call has no effect.  Otherwise, if the block pointed
to by value is still on the stack, it is copied to the heap and the address
of the copy is returned.  Otherwise a retain operation is performed on the
block exactly as if it had been sent the retain message.




id objc_storeStrong(id *object, id value);

Precondition: object is a valid pointer to a __strong object which is
adequately aligned for a pointer.  value is null or a pointer to a valid
object.

Performs the complete sequence for assigning to a __strong object of
non-block type [*].  Equivalent to the following code:

id objc_storeStrong(id *object, id value) {
  value = [value retain];
  id oldValue = *object;
  *object = value;
  [oldValue release];
  return value;
}





Always returns value.




	[*]	This does not imply that a __strong object of block type is an
invalid argument to this function. Rather it implies that an objc_retain
and not an objc_retainBlock operation will be emitted if the argument is
a block.







id objc_storeWeak(id *object, id value);

Precondition: object is a valid pointer which either contains a null
pointer or has been registered as a __weak object.  value is null or a
pointer to a valid object.

If value is a null pointer or the object to which it points has begun
deallocation, object is assigned null and unregistered as a __weak
object.  Otherwise, object is registered as a __weak object or has its
registration updated to point to value.

Returns the value of object after the call.









          

      

      

    

  

    
      
          
            
  
Attributes in Clang



	Introduction

	AMD GPU Register Attributes
	amdgpu_num_sgpr

	amdgpu_num_vgpr





	Function Attributes
	interrupt

	acquire_capability (acquire_shared_capability, clang::acquire_capability, clang::acquire_shared_capability)

	assert_capability (assert_shared_capability, clang::assert_capability, clang::assert_shared_capability)

	assume_aligned (gnu::assume_aligned)

	availability

	_Noreturn

	noreturn

	carries_dependency

	enable_if

	flatten (gnu::flatten)

	format (gnu::format)

	noduplicate (clang::noduplicate)

	no_sanitize (clang::no_sanitize)

	no_sanitize_address (no_address_safety_analysis, gnu::no_address_safety_analysis, gnu::no_sanitize_address)

	no_sanitize_thread

	no_sanitize_memory

	no_split_stack (gnu::no_split_stack)

	objc_boxable

	objc_method_family

	objc_requires_super

	objc_runtime_name

	optnone (clang::optnone)

	overloadable

	release_capability (release_shared_capability, clang::release_capability, clang::release_shared_capability)

	target (gnu::target)

	try_acquire_capability (try_acquire_shared_capability, clang::try_acquire_capability, clang::try_acquire_shared_capability)





	Variable Attributes
	init_seg

	section (gnu::section, __declspec(allocate))

	tls_model (gnu::tls_model)

	thread





	Type Attributes
	align_value

	flag_enum

	__single_inhertiance, __multiple_inheritance, __virtual_inheritance

	novtable





	Statement Attributes
	fallthrough (clang::fallthrough)

	#pragma clang loop

	#pragma unroll, #pragma nounroll





	Calling Conventions
	fastcall (gnu::fastcall, __fastcall, _fastcall)

	ms_abi (gnu::ms_abi)

	pcs (gnu::pcs)

	regparm (gnu::regparm)

	stdcall (gnu::stdcall, __stdcall, _stdcall)

	thiscall (gnu::thiscall, __thiscall, _thiscall)

	vectorcall (__vectorcall, _vectorcall)





	Consumed Annotation Checking
	callable_when

	consumable

	param_typestate

	return_typestate

	set_typestate

	test_typestate





	Type Safety Checking
	argument_with_type_tag

	pointer_with_type_tag

	type_tag_for_datatype





	OpenCL Address Spaces
	__constant(constant)

	__generic(generic)

	__global(global)

	__local(local)

	__private(private)





	Nullability Attributes
	nonnull

	returns_nonnull

	_Nonnull

	_Null_unspecified

	_Nullable










Introduction

This page lists the attributes currently supported by Clang.




AMD GPU Register Attributes

Clang supports attributes for controlling register usage on AMD GPU
targets. These attributes may be attached to a kernel function
definition and is an optimization hint to the backend for the maximum
number of registers to use. This is useful in cases where register
limited occupancy is known to be an important factor for the
performance for the kernel.

The semantics are as follows:


	The backend will attempt to limit the number of used registers to
the specified value, but the exact number used is not
guaranteed. The number used may be rounded up to satisfy the
allocation requirements or ABI constraints of the subtarget. For
example, on Southern Islands VGPRs may only be allocated in
increments of 4, so requesting a limit of 39 VGPRs will really
attempt to use up to 40. Requesting more registers than the
subtarget supports will truncate to the maximum allowed. The backend
may also use fewer registers than requested whenever possible.

	0 implies the default no limit on register usage.

	Ignored on older VLIW subtargets which did not have separate scalar
and vector registers, R600 through Northern Islands.




amdgpu_num_sgpr


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	X
	 
	 
	 
	 





Clang supports the
__attribute__((amdgpu_num_sgpr(<num_registers>))) attribute on AMD
Southern Islands GPUs and later for controlling the number of scalar
registers. A typical value would be between 8 and 104 in increments of
8.

Due to common instruction constraints, an additional 2-4 SGPRs are
typically required for internal use depending on features used. This
value is a hint for the total number of SGPRs to use, and not the
number of user SGPRs, so no special consideration needs to be given
for these.




amdgpu_num_vgpr


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	X
	 
	 
	 
	 





Clang supports the
__attribute__((amdgpu_num_vgpr(<num_registers>))) attribute on AMD
Southern Islands GPUs and later for controlling the number of vector
registers. A typical value would be between 4 and 256 in increments
of 4.






Function Attributes


interrupt


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	X
	 
	 
	 
	 





Clang supports the GNU style __attribute__((interrupt("TYPE"))) attribute on
ARM targets. This attribute may be attached to a function definition and
instructs the backend to generate appropriate function entry/exit code so that
it can be used directly as an interrupt service routine.

The parameter passed to the interrupt attribute is optional, but if
provided it must be a string literal with one of the following values: “IRQ”,
“FIQ”, “SWI”, “ABORT”, “UNDEF”.

The semantics are as follows:


	If the function is AAPCS, Clang instructs the backend to realign the stack to
8 bytes on entry. This is a general requirement of the AAPCS at public
interfaces, but may not hold when an exception is taken. Doing this allows
other AAPCS functions to be called.



	If the CPU is M-class this is all that needs to be done since the architecture
itself is designed in such a way that functions obeying the normal AAPCS ABI
constraints are valid exception handlers.



	If the CPU is not M-class, the prologue and epilogue are modified to save all
non-banked registers that are used, so that upon return the user-mode state
will not be corrupted. Note that to avoid unnecessary overhead, only
general-purpose (integer) registers are saved in this way. If VFP operations
are needed, that state must be saved manually.

Specifically, interrupt kinds other than “FIQ” will save all core registers
except “lr” and “sp”. “FIQ” interrupts will save r0-r7.



	If the CPU is not M-class, the return instruction is changed to one of the
canonical sequences permitted by the architecture for exception return. Where
possible the function itself will make the necessary “lr” adjustments so that
the “preferred return address” is selected.

Unfortunately the compiler is unable to make this guarantee for an “UNDEF”
handler, where the offset from “lr” to the preferred return address depends on
the execution state of the code which generated the exception. In this case
a sequence equivalent to “movs pc, lr” will be used.








acquire_capability (acquire_shared_capability, clang::acquire_capability, clang::acquire_shared_capability)


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	X
	X
	 
	 
	 





Marks a function as acquiring a capability.




assert_capability (assert_shared_capability, clang::assert_capability, clang::assert_shared_capability)


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	X
	X
	 
	 
	 





Marks a function that dynamically tests whether a capability is held, and halts
the program if it is not held.




assume_aligned (gnu::assume_aligned)


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	X
	X
	 
	 
	 





Use __attribute__((assume_aligned(<alignment>[,<offset>])) on a function
declaration to specify that the return value of the function (which must be a
pointer type) has the specified offset, in bytes, from an address with the
specified alignment. The offset is taken to be zero if omitted.

// The returned pointer value has 32-byte alignment.
void *a() __attribute__((assume_aligned (32)));

// The returned pointer value is 4 bytes greater than an address having
// 32-byte alignment.
void *b() __attribute__((assume_aligned (32, 4)));





Note that this attribute provides information to the compiler regarding a
condition that the code already ensures is true. It does not cause the compiler
to enforce the provided alignment assumption.




availability


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	X
	 
	 
	 
	 





The availability attribute can be placed on declarations to describe the
lifecycle of that declaration relative to operating system versions.  Consider
the function declaration for a hypothetical function f:

void f(void) __attribute__((availability(macosx,introduced=10.4,deprecated=10.6,obsoleted=10.7)));





The availability attribute states that f was introduced in Mac OS X 10.4,
deprecated in Mac OS X 10.6, and obsoleted in Mac OS X 10.7.  This information
is used by Clang to determine when it is safe to use f: for example, if
Clang is instructed to compile code for Mac OS X 10.5, a call to f()
succeeds.  If Clang is instructed to compile code for Mac OS X 10.6, the call
succeeds but Clang emits a warning specifying that the function is deprecated.
Finally, if Clang is instructed to compile code for Mac OS X 10.7, the call
fails because f() is no longer available.

The availability attribute is a comma-separated list starting with the
platform name and then including clauses specifying important milestones in the
declaration’s lifetime (in any order) along with additional information.  Those
clauses can be:


	introduced=version

	The first version in which this declaration was introduced.

	deprecated=version

	The first version in which this declaration was deprecated, meaning that
users should migrate away from this API.

	obsoleted=version

	The first version in which this declaration was obsoleted, meaning that it
was removed completely and can no longer be used.

	unavailable

	This declaration is never available on this platform.

	message=string-literal

	Additional message text that Clang will provide when emitting a warning or
error about use of a deprecated or obsoleted declaration.  Useful to direct
users to replacement APIs.



Multiple availability attributes can be placed on a declaration, which may
correspond to different platforms.  Only the availability attribute with the
platform corresponding to the target platform will be used; any others will be
ignored.  If no availability attribute specifies availability for the current
target platform, the availability attributes are ignored.  Supported platforms
are:


	ios

	Apple’s iOS operating system.  The minimum deployment target is specified by
the -mios-version-min=*version* or -miphoneos-version-min=*version*
command-line arguments.

	macosx

	Apple’s Mac OS X operating system.  The minimum deployment target is
specified by the -mmacosx-version-min=*version* command-line argument.



A declaration can be used even when deploying back to a platform version prior
to when the declaration was introduced.  When this happens, the declaration is
weakly linked [https://developer.apple.com/library/mac/#documentation/MacOSX/Conceptual/BPFrameworks/Concepts/WeakLinking.html],
as if the weak_import attribute were added to the declaration.  A
weakly-linked declaration may or may not be present a run-time, and a program
can determine whether the declaration is present by checking whether the
address of that declaration is non-NULL.

If there are multiple declarations of the same entity, the availability
attributes must either match on a per-platform basis or later
declarations must not have availability attributes for that
platform. For example:

void g(void) __attribute__((availability(macosx,introduced=10.4)));
void g(void) __attribute__((availability(macosx,introduced=10.4))); // okay, matches
void g(void) __attribute__((availability(ios,introduced=4.0))); // okay, adds a new platform
void g(void); // okay, inherits both macosx and ios availability from above.
void g(void) __attribute__((availability(macosx,introduced=10.5))); // error: mismatch





When one method overrides another, the overriding method can be more widely available than the overridden method, e.g.,:

@interface A
- (id)method __attribute__((availability(macosx,introduced=10.4)));
- (id)method2 __attribute__((availability(macosx,introduced=10.4)));
@end

@interface B : A
- (id)method __attribute__((availability(macosx,introduced=10.3))); // okay: method moved into base class later
- (id)method __attribute__((availability(macosx,introduced=10.5))); // error: this method was available via the base class in 10.4
@end








_Noreturn


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	 
	 
	 
	X
	 





A function declared as _Noreturn shall not return to its caller. The
compiler will generate a diagnostic for a function declared as _Noreturn
that appears to be capable of returning to its caller.




noreturn


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	 
	X
	 
	 
	 





A function declared as [[noreturn]] shall not return to its caller. The
compiler will generate a diagnostic for a function declared as [[noreturn]]
that appears to be capable of returning to its caller.




carries_dependency


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	X
	X
	 
	 
	 





The carries_dependency attribute specifies dependency propagation into and
out of functions.

When specified on a function or Objective-C method, the carries_dependency
attribute means that the return value carries a dependency out of the function,
so that the implementation need not constrain ordering upon return from that
function. Implementations of the function and its caller may choose to preserve
dependencies instead of emitting memory ordering instructions such as fences.

Note, this attribute does not change the meaning of the program, but may result
in generation of more efficient code.




enable_if


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	X
	 
	 
	 
	 






Note

Some features of this attribute are experimental. The meaning of
multiple enable_if attributes on a single declaration is subject to change in
a future version of clang. Also, the ABI is not standardized and the name
mangling may change in future versions. To avoid that, use asm labels.



The enable_if attribute can be placed on function declarations to control
which overload is selected based on the values of the function’s arguments.
When combined with the overloadable attribute, this feature is also
available in C.

int isdigit(int c);
int isdigit(int c) __attribute__((enable_if(c <= -1 || c > 255, "chosen when 'c' is out of range"))) __attribute__((unavailable("'c' must have the value of an unsigned char or EOF")));

void foo(char c) {
  isdigit(c);
  isdigit(10);
  isdigit(-10);  // results in a compile-time error.
}





The enable_if attribute takes two arguments, the first is an expression written
in terms of the function parameters, the second is a string explaining why this
overload candidate could not be selected to be displayed in diagnostics. The
expression is part of the function signature for the purposes of determining
whether it is a redeclaration (following the rules used when determining
whether a C++ template specialization is ODR-equivalent), but is not part of
the type.

The enable_if expression is evaluated as if it were the body of a
bool-returning constexpr function declared with the arguments of the function
it is being applied to, then called with the parameters at the call site. If the
result is false or could not be determined through constant expression
evaluation, then this overload will not be chosen and the provided string may
be used in a diagnostic if the compile fails as a result.

Because the enable_if expression is an unevaluated context, there are no global
state changes, nor the ability to pass information from the enable_if
expression to the function body. For example, suppose we want calls to
strnlen(strbuf, maxlen) to resolve to strnlen_chk(strbuf, maxlen, size of
strbuf) only if the size of strbuf can be determined:

__attribute__((always_inline))
static inline size_t strnlen(const char *s, size_t maxlen)
  __attribute__((overloadable))
  __attribute__((enable_if(__builtin_object_size(s, 0) != -1))),
                           "chosen when the buffer size is known but 'maxlen' is not")))
{
  return strnlen_chk(s, maxlen, __builtin_object_size(s, 0));
}





Multiple enable_if attributes may be applied to a single declaration. In this
case, the enable_if expressions are evaluated from left to right in the
following manner. First, the candidates whose enable_if expressions evaluate to
false or cannot be evaluated are discarded. If the remaining candidates do not
share ODR-equivalent enable_if expressions, the overload resolution is
ambiguous. Otherwise, enable_if overload resolution continues with the next
enable_if attribute on the candidates that have not been discarded and have
remaining enable_if attributes. In this way, we pick the most specific
overload out of a number of viable overloads using enable_if.

void f() __attribute__((enable_if(true, "")));  // #1
void f() __attribute__((enable_if(true, ""))) __attribute__((enable_if(true, "")));  // #2

void g(int i, int j) __attribute__((enable_if(i, "")));  // #1
void g(int i, int j) __attribute__((enable_if(j, ""))) __attribute__((enable_if(true)));  // #2





In this example, a call to f() is always resolved to #2, as the first enable_if
expression is ODR-equivalent for both declarations, but #1 does not have another
enable_if expression to continue evaluating, so the next round of evaluation has
only a single candidate. In a call to g(1, 1), the call is ambiguous even though
#2 has more enable_if attributes, because the first enable_if expressions are
not ODR-equivalent.

Query for this feature with __has_attribute(enable_if).




flatten (gnu::flatten)


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	X
	X
	 
	 
	 





The flatten attribute causes calls within the attributed function to
be inlined unless it is impossible to do so, for example if the body of the
callee is unavailable or if the callee has the noinline attribute.




format (gnu::format)


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	X
	X
	 
	 
	 





Clang supports the format attribute, which indicates that the function
accepts a printf or scanf-like format string and corresponding
arguments or a va_list that contains these arguments.

Please see GCC documentation about format attribute [http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html] to find details
about attribute syntax.

Clang implements two kinds of checks with this attribute.


	Clang checks that the function with the format attribute is called with
a format string that uses format specifiers that are allowed, and that
arguments match the format string.  This is the -Wformat warning, it is
on by default.



	Clang checks that the format string argument is a literal string.  This is
the -Wformat-nonliteral warning, it is off by default.

Clang implements this mostly the same way as GCC, but there is a difference
for functions that accept a va_list argument (for example, vprintf).
GCC does not emit -Wformat-nonliteral warning for calls to such
functions.  Clang does not warn if the format string comes from a function
parameter, where the function is annotated with a compatible attribute,
otherwise it warns.  For example:

__attribute__((__format__ (__scanf__, 1, 3)))
void foo(const char* s, char *buf, ...) {
  va_list ap;
  va_start(ap, buf);

  vprintf(s, ap); // warning: format string is not a string literal
}





In this case we warn because s contains a format string for a
scanf-like function, but it is passed to a printf-like function.

If the attribute is removed, clang still warns, because the format string is
not a string literal.

Another example:

__attribute__((__format__ (__printf__, 1, 3)))
void foo(const char* s, char *buf, ...) {
  va_list ap;
  va_start(ap, buf);

  vprintf(s, ap); // warning
}





In this case Clang does not warn because the format string s and
the corresponding arguments are annotated.  If the arguments are
incorrect, the caller of foo will receive a warning.








noduplicate (clang::noduplicate)


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	X
	X
	 
	 
	 





The noduplicate attribute can be placed on function declarations to control
whether function calls to this function can be duplicated or not as a result of
optimizations. This is required for the implementation of functions with
certain special requirements, like the OpenCL “barrier” function, that might
need to be run concurrently by all the threads that are executing in lockstep
on the hardware. For example this attribute applied on the function
“nodupfunc” in the code below avoids that:

void nodupfunc() __attribute__((noduplicate));
// Setting it as a C++11 attribute is also valid
// void nodupfunc() [[clang::noduplicate]];
void foo();
void bar();

nodupfunc();
if (a > n) {
  foo();
} else {
  bar();
}





gets possibly modified by some optimizations into code similar to this:

if (a > n) {
  nodupfunc();
  foo();
} else {
  nodupfunc();
  bar();
}





where the call to “nodupfunc” is duplicated and sunk into the two branches
of the condition.




no_sanitize (clang::no_sanitize)


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	X
	X
	 
	 
	 





Use the no_sanitize attribute on a function declaration to specify
that a particular instrumentation or set of instrumentations should not be
applied to that function. The attribute takes a list of string literals,
which have the same meaning as values accepted by the -fno-sanitize=
flag. For example, __attribute__((no_sanitize("address", "thread")))
specifies that AddressSanitizer and ThreadSanitizer should not be applied
to the function.

See Controlling Code Generation for a
full list of supported sanitizer flags.




no_sanitize_address (no_address_safety_analysis, gnu::no_address_safety_analysis, gnu::no_sanitize_address)


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	X
	X
	 
	 
	 





Use __attribute__((no_sanitize_address)) on a function declaration to
specify that address safety instrumentation (e.g. AddressSanitizer) should
not be applied to that function.




no_sanitize_thread


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	X
	X
	 
	 
	 





Use __attribute__((no_sanitize_thread)) on a function declaration to
specify that checks for data races on plain (non-atomic) memory accesses should
not be inserted by ThreadSanitizer. The function is still instrumented by the
tool to avoid false positives and provide meaningful stack traces.




no_sanitize_memory


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	X
	X
	 
	 
	 





Use __attribute__((no_sanitize_memory)) on a function declaration to
specify that checks for uninitialized memory should not be inserted
(e.g. by MemorySanitizer). The function may still be instrumented by the tool
to avoid false positives in other places.




no_split_stack (gnu::no_split_stack)


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	X
	X
	 
	 
	 





The no_split_stack attribute disables the emission of the split stack
preamble for a particular function. It has no effect if -fsplit-stack
is not specified.




objc_boxable


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	X
	 
	 
	 
	 





Structs and unions marked with the objc_boxable attribute can be used
with the Objective-C boxed expression syntax, @(...).

Usage: __attribute__((objc_boxable)). This attribute
can only be placed on a declaration of a trivially-copyable struct or union:

struct __attribute__((objc_boxable)) some_struct {
  int i;
};
union __attribute__((objc_boxable)) some_union {
  int i;
  float f;
};
typedef struct __attribute__((objc_boxable)) _some_struct some_struct;

// ...

some_struct ss;
NSValue *boxed = @(ss);








objc_method_family


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	X
	 
	 
	 
	 





Many methods in Objective-C have conventional meanings determined by their
selectors. It is sometimes useful to be able to mark a method as having a
particular conventional meaning despite not having the right selector, or as
not having the conventional meaning that its selector would suggest. For these
use cases, we provide an attribute to specifically describe the “method family”
that a method belongs to.

Usage: __attribute__((objc_method_family(X))), where X is one of
none, alloc, copy, init, mutableCopy, or new.  This
attribute can only be placed at the end of a method declaration:

- (NSString *)initMyStringValue __attribute__((objc_method_family(none)));





Users who do not wish to change the conventional meaning of a method, and who
merely want to document its non-standard retain and release semantics, should
use the retaining behavior attributes (ns_returns_retained,
ns_returns_not_retained, etc).

Query for this feature with __has_attribute(objc_method_family).




objc_requires_super


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	X
	 
	 
	 
	 





Some Objective-C classes allow a subclass to override a particular method in a
parent class but expect that the overriding method also calls the overridden
method in the parent class. For these cases, we provide an attribute to
designate that a method requires a “call to super” in the overriding
method in the subclass.

Usage: __attribute__((objc_requires_super)).  This attribute can only
be placed at the end of a method declaration:

- (void)foo __attribute__((objc_requires_super));





This attribute can only be applied the method declarations within a class, and
not a protocol.  Currently this attribute does not enforce any placement of
where the call occurs in the overriding method (such as in the case of
-dealloc where the call must appear at the end).  It checks only that it
exists.

Note that on both OS X and iOS that the Foundation framework provides a
convenience macro NS_REQUIRES_SUPER that provides syntactic sugar for this
attribute:

- (void)foo NS_REQUIRES_SUPER;





This macro is conditionally defined depending on the compiler’s support for
this attribute.  If the compiler does not support the attribute the macro
expands to nothing.

Operationally, when a method has this annotation the compiler will warn if the
implementation of an override in a subclass does not call super.  For example:

warning: method possibly missing a [super AnnotMeth] call
- (void) AnnotMeth{};
                   ^








objc_runtime_name


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	X
	 
	 
	 
	 





By default, the Objective-C interface or protocol identifier is used
in the metadata name for that object. The objc_runtime_name
attribute allows annotated interfaces or protocols to use the
specified string argument in the object’s metadata name instead of the
default name.

Usage: __attribute__((objc_runtime_name("MyLocalName"))).  This attribute
can only be placed before an @protocol or @interface declaration:

__attribute__((objc_runtime_name("MyLocalName")))
@interface Message
@end








optnone (clang::optnone)


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	X
	X
	 
	 
	 





The optnone attribute suppresses essentially all optimizations
on a function or method, regardless of the optimization level applied to
the compilation unit as a whole.  This is particularly useful when you
need to debug a particular function, but it is infeasible to build the
entire application without optimization.  Avoiding optimization on the
specified function can improve the quality of the debugging information
for that function.

This attribute is incompatible with the always_inline and minsize
attributes.




overloadable


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	X
	 
	 
	 
	 





Clang provides support for C++ function overloading in C.  Function overloading
in C is introduced using the overloadable attribute.  For example, one
might provide several overloaded versions of a tgsin function that invokes
the appropriate standard function computing the sine of a value with float,
double, or long double precision:

#include <math.h>
float __attribute__((overloadable)) tgsin(float x) { return sinf(x); }
double __attribute__((overloadable)) tgsin(double x) { return sin(x); }
long double __attribute__((overloadable)) tgsin(long double x) { return sinl(x); }





Given these declarations, one can call tgsin with a float value to
receive a float result, with a double to receive a double result,
etc.  Function overloading in C follows the rules of C++ function overloading
to pick the best overload given the call arguments, with a few C-specific
semantics:


	Conversion from float or double to long double is ranked as a
floating-point promotion (per C99) rather than as a floating-point conversion
(as in C++).

	A conversion from a pointer of type T* to a pointer of type U* is
considered a pointer conversion (with conversion rank) if T and U are
compatible types.

	A conversion from type T to a value of type U is permitted if T
and U are compatible types.  This conversion is given “conversion” rank.



The declaration of overloadable functions is restricted to function
declarations and definitions.  Most importantly, if any function with a given
name is given the overloadable attribute, then all function declarations
and definitions with that name (and in that scope) must have the
overloadable attribute.  This rule even applies to redeclarations of
functions whose original declaration had the overloadable attribute, e.g.,

int f(int) __attribute__((overloadable));
float f(float); // error: declaration of "f" must have the "overloadable" attribute

int g(int) __attribute__((overloadable));
int g(int) { } // error: redeclaration of "g" must also have the "overloadable" attribute





Functions marked overloadable must have prototypes.  Therefore, the
following code is ill-formed:

int h() __attribute__((overloadable)); // error: h does not have a prototype





However, overloadable functions are allowed to use a ellipsis even if there
are no named parameters (as is permitted in C++).  This feature is particularly
useful when combined with the unavailable attribute:

void honeypot(...) __attribute__((overloadable, unavailable)); // calling me is an error





Functions declared with the overloadable attribute have their names mangled
according to the same rules as C++ function names.  For example, the three
tgsin functions in our motivating example get the mangled names
_Z5tgsinf, _Z5tgsind, and _Z5tgsine, respectively.  There are two
caveats to this use of name mangling:


	Future versions of Clang may change the name mangling of functions overloaded
in C, so you should not depend on an specific mangling.  To be completely
safe, we strongly urge the use of static inline with overloadable
functions.

	The overloadable attribute has almost no meaning when used in C++,
because names will already be mangled and functions are already overloadable.
However, when an overloadable function occurs within an extern "C"
linkage specification, it’s name will be mangled in the same way as it
would in C.



Query for this feature with __has_extension(attribute_overloadable).




release_capability (release_shared_capability, clang::release_capability, clang::release_shared_capability)


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	X
	X
	 
	 
	 





Marks a function as releasing a capability.




target (gnu::target)


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	X
	X
	 
	 
	 





Clang supports the GNU style __attribute__((target("OPTIONS"))) attribute.
This attribute may be attached to a function definition and instructs
the backend to use different code generation options than were passed on the
command line.

The current set of options correspond to the existing “subtarget features” for
the target with or without a “-mno-” in front corresponding to the absence
of the feature, as well as arch="CPU" which will change the default “CPU”
for the function.

Example “subtarget features” from the x86 backend include: “mmx”, “sse”, “sse4.2”,
“avx”, “xop” and largely correspond to the machine specific options handled by
the front end.




try_acquire_capability (try_acquire_shared_capability, clang::try_acquire_capability, clang::try_acquire_shared_capability)


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	X
	X
	 
	 
	 





Marks a function that attempts to acquire a capability. This function may fail to
actually acquire the capability; they accept a Boolean value determining
whether acquiring the capability means success (true), or failing to acquire
the capability means success (false).






Variable Attributes


init_seg


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	 
	 
	 
	 
	X





The attribute applied by pragma init_seg() controls the section into
which global initialization function pointers are emitted.  It is only
available with -fms-extensions.  Typically, this function pointer is
emitted into .CRT$XCU on Windows.  The user can change the order of
initialization by using a different section name with the same
.CRT$XC prefix and a suffix that sorts lexicographically before or
after the standard .CRT$XCU sections.  See the init_seg [http://msdn.microsoft.com/en-us/library/7977wcck(v=vs.110).aspx]
documentation on MSDN for more information.




section (gnu::section, __declspec(allocate))


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	X
	X
	X
	 
	 





The section attribute allows you to specify a specific section a
global variable or function should be in after translation.




tls_model (gnu::tls_model)


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	X
	X
	 
	 
	 





The tls_model attribute allows you to specify which thread-local storage
model to use. It accepts the following strings:


	global-dynamic

	local-dynamic

	initial-exec

	local-exec



TLS models are mutually exclusive.




thread


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	 
	 
	X
	 
	 





The __declspec(thread) attribute declares a variable with thread local
storage.  It is available under the -fms-extensions flag for MSVC
compatibility.  See the documentation for __declspec(thread) [http://msdn.microsoft.com/en-us/library/9w1sdazb.aspx] on MSDN.

In Clang, __declspec(thread) is generally equivalent in functionality to the
GNU __thread keyword.  The variable must not have a destructor and must have
a constant initializer, if any.  The attribute only applies to variables
declared with static storage duration, such as globals, class static data
members, and static locals.






Type Attributes


align_value


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	X
	 
	 
	 
	 





The align_value attribute can be added to the typedef of a pointer type or the
declaration of a variable of pointer or reference type. It specifies that the
pointer will point to, or the reference will bind to, only objects with at
least the provided alignment. This alignment value must be some positive power
of 2.


typedef double * aligned_double_ptr __attribute__((align_value(64)));
void foo(double & x  __attribute__((align_value(128)),
         aligned_double_ptr y) { ... }








If the pointer value does not have the specified alignment at runtime, the
behavior of the program is undefined.




flag_enum


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	X
	 
	 
	 
	 





This attribute can be added to an enumerator to signal to the compiler that it
is intended to be used as a flag type. This will cause the compiler to assume
that the range of the type includes all of the values that you can get by
manipulating bits of the enumerator when issuing warnings.




__single_inhertiance, __multiple_inheritance, __virtual_inheritance


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	 
	 
	 
	X
	 





This collection of keywords is enabled under -fms-extensions and controls
the pointer-to-member representation used on *-*-win32 targets.

The *-*-win32 targets utilize a pointer-to-member representation which
varies in size and alignment depending on the definition of the underlying
class.

However, this is problematic when a forward declaration is only available and
no definition has been made yet.  In such cases, Clang is forced to utilize the
most general representation that is available to it.

These keywords make it possible to use a pointer-to-member representation other
than the most general one regardless of whether or not the definition will ever
be present in the current translation unit.

This family of keywords belong between the class-key and class-name:

struct __single_inheritance S;
int S::*i;
struct S {};





This keyword can be applied to class templates but only has an effect when used
on full specializations:

template <typename T, typename U> struct __single_inheritance A; // warning: inheritance model ignored on primary template
template <typename T> struct __multiple_inheritance A<T, T>; // warning: inheritance model ignored on partial specialization
template <> struct __single_inheritance A<int, float>;





Note that choosing an inheritance model less general than strictly necessary is
an error:

struct __multiple_inheritance S; // error: inheritance model does not match definition
int S::*i;
struct S {};








novtable


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	 
	 
	X
	 
	 





This attribute can be added to a class declaration or definition to signal to
the compiler that constructors and destructors will not reference the virtual
function table.






Statement Attributes


fallthrough (clang::fallthrough)


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	 
	X
	 
	 
	 





The clang::fallthrough attribute is used along with the
-Wimplicit-fallthrough argument to annotate intentional fall-through
between switch labels.  It can only be applied to a null statement placed at a
point of execution between any statement and the next switch label.  It is
common to mark these places with a specific comment, but this attribute is
meant to replace comments with a more strict annotation, which can be checked
by the compiler.  This attribute doesn’t change semantics of the code and can
be used wherever an intended fall-through occurs.  It is designed to mimic
control-flow statements like break;, so it can be placed in most places
where break; can, but only if there are no statements on the execution path
between it and the next switch label.

Here is an example:

// compile with -Wimplicit-fallthrough
switch (n) {
case 22:
case 33:  // no warning: no statements between case labels
  f();
case 44:  // warning: unannotated fall-through
  g();
  [[clang::fallthrough]];
case 55:  // no warning
  if (x) {
    h();
    break;
  }
  else {
    i();
    [[clang::fallthrough]];
  }
case 66:  // no warning
  p();
  [[clang::fallthrough]]; // warning: fallthrough annotation does not
                          //          directly precede case label
  q();
case 77:  // warning: unannotated fall-through
  r();
}








#pragma clang loop


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	 
	 
	 
	 
	X





The #pragma clang loop directive allows loop optimization hints to be
specified for the subsequent loop. The directive allows vectorization,
interleaving, and unrolling to be enabled or disabled. Vector width as well
as interleave and unrolling count can be manually specified. See
language extensions [http://clang.llvm.org/docs/LanguageExtensions.html#extensions-for-loop-hint-optimizations]
for details.




#pragma unroll, #pragma nounroll


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	 
	 
	 
	 
	X





Loop unrolling optimization hints can be specified with #pragma unroll and
#pragma nounroll. The pragma is placed immediately before a for, while,
do-while, or c++11 range-based for loop.

Specifying #pragma unroll without a parameter directs the loop unroller to
attempt to fully unroll the loop if the trip count is known at compile time:

#pragma unroll
for (...) {
  ...
}





Specifying the optional parameter, #pragma unroll _value_, directs the
unroller to unroll the loop _value_ times.  The parameter may optionally be
enclosed in parentheses:

#pragma unroll 16
for (...) {
  ...
}

#pragma unroll(16)
for (...) {
  ...
}





Specifying #pragma nounroll indicates that the loop should not be unrolled:

#pragma nounroll
for (...) {
  ...
}





#pragma unroll and #pragma unroll _value_ have identical semantics to
#pragma clang loop unroll(full) and
#pragma clang loop unroll_count(_value_) respectively. #pragma nounroll
is equivalent to #pragma clang loop unroll(disable).  See
language extensions [http://clang.llvm.org/docs/LanguageExtensions.html#extensions-for-loop-hint-optimizations]
for further details including limitations of the unroll hints.






Calling Conventions

Clang supports several different calling conventions, depending on the target
platform and architecture. The calling convention used for a function determines
how parameters are passed, how results are returned to the caller, and other
low-level details of calling a function.


fastcall (gnu::fastcall, __fastcall, _fastcall)


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	X
	X
	 
	X
	 





On 32-bit x86 targets, this attribute changes the calling convention of a
function to use ECX and EDX as register parameters and clear parameters off of
the stack on return. This convention does not support variadic calls or
unprototyped functions in C, and has no effect on x86_64 targets. This calling
convention is supported primarily for compatibility with existing code. Users
seeking register parameters should use the regparm attribute, which does
not require callee-cleanup.  See the documentation for __fastcall [http://msdn.microsoft.com/en-us/library/6xa169sk.aspx] on MSDN.




ms_abi (gnu::ms_abi)


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	X
	X
	 
	 
	 





On non-Windows x86_64 targets, this attribute changes the calling convention of
a function to match the default convention used on Windows x86_64. This
attribute has no effect on Windows targets or non-x86_64 targets.




pcs (gnu::pcs)


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	X
	X
	 
	 
	 





On ARM targets, this attribute can be used to select calling conventions
similar to stdcall on x86. Valid parameter values are “aapcs” and
“aapcs-vfp”.




regparm (gnu::regparm)


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	X
	X
	 
	 
	 





On 32-bit x86 targets, the regparm attribute causes the compiler to pass
the first three integer parameters in EAX, EDX, and ECX instead of on the
stack. This attribute has no effect on variadic functions, and all parameters
are passed via the stack as normal.




stdcall (gnu::stdcall, __stdcall, _stdcall)


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	X
	X
	 
	X
	 





On 32-bit x86 targets, this attribute changes the calling convention of a
function to clear parameters off of the stack on return. This convention does
not support variadic calls or unprototyped functions in C, and has no effect on
x86_64 targets. This calling convention is used widely by the Windows API and
COM applications.  See the documentation for __stdcall [http://msdn.microsoft.com/en-us/library/zxk0tw93.aspx] on MSDN.




thiscall (gnu::thiscall, __thiscall, _thiscall)


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	X
	X
	 
	X
	 





On 32-bit x86 targets, this attribute changes the calling convention of a
function to use ECX for the first parameter (typically the implicit this
parameter of C++ methods) and clear parameters off of the stack on return. This
convention does not support variadic calls or unprototyped functions in C, and
has no effect on x86_64 targets. See the documentation for __thiscall [http://msdn.microsoft.com/en-us/library/ek8tkfbw.aspx] on
MSDN.




vectorcall (__vectorcall, _vectorcall)


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	X
	 
	 
	X
	 





On 32-bit x86 and x86_64 targets, this attribute changes the calling
convention of a function to pass vector parameters in SSE registers.

On 32-bit x86 targets, this calling convention is similar to __fastcall.
The first two integer parameters are passed in ECX and EDX. Subsequent integer
parameters are passed in memory, and callee clears the stack.  On x86_64
targets, the callee does not clear the stack, and integer parameters are
passed in RCX, RDX, R8, and R9 as is done for the default Windows x64 calling
convention.

On both 32-bit x86 and x86_64 targets, vector and floating point arguments are
passed in XMM0-XMM5. Homogenous vector aggregates of up to four elements are
passed in sequential SSE registers if enough are available. If AVX is enabled,
256 bit vectors are passed in YMM0-YMM5. Any vector or aggregate type that
cannot be passed in registers for any reason is passed by reference, which
allows the caller to align the parameter memory.

See the documentation for __vectorcall [http://msdn.microsoft.com/en-us/library/dn375768.aspx] on MSDN for more details.






Consumed Annotation Checking

Clang supports additional attributes for checking basic resource management
properties, specifically for unique objects that have a single owning reference.
The following attributes are currently supported, although the implementation
for these annotations is currently in development and are subject to change.


callable_when


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	X
	 
	 
	 
	 





Use __attribute__((callable_when(...))) to indicate what states a method
may be called in.  Valid states are unconsumed, consumed, or unknown.  Each
argument to this attribute must be a quoted string.  E.g.:

__attribute__((callable_when("unconsumed", "unknown")))




consumable


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	X
	 
	 
	 
	 





Each class that uses any of the typestate annotations must first be marked
using the consumable attribute.  Failure to do so will result in a warning.

This attribute accepts a single parameter that must be one of the following:
unknown, consumed, or unconsumed.




param_typestate


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	X
	 
	 
	 
	 





This attribute specifies expectations about function parameters.  Calls to an
function with annotated parameters will issue a warning if the corresponding
argument isn’t in the expected state.  The attribute is also used to set the
initial state of the parameter when analyzing the function’s body.




return_typestate


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	X
	 
	 
	 
	 





The return_typestate attribute can be applied to functions or parameters.
When applied to a function the attribute specifies the state of the returned
value.  The function’s body is checked to ensure that it always returns a value
in the specified state.  On the caller side, values returned by the annotated
function are initialized to the given state.

When applied to a function parameter it modifies the state of an argument after
a call to the function returns.  The function’s body is checked to ensure that
the parameter is in the expected state before returning.




set_typestate


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	X
	 
	 
	 
	 





Annotate methods that transition an object into a new state with
__attribute__((set_typestate(new_state))).  The new state must be
unconsumed, consumed, or unknown.




test_typestate


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	X
	 
	 
	 
	 





Use __attribute__((test_typestate(tested_state))) to indicate that a method
returns true if the object is in the specified state..






Type Safety Checking

Clang supports additional attributes to enable checking type safety properties
that can’t be enforced by the C type system.  Use cases include:


	MPI library implementations, where these attributes enable checking that
the buffer type matches the passed MPI_Datatype;

	for HDF5 library there is a similar use case to MPI;

	checking types of variadic functions’ arguments for functions like
fcntl() and ioctl().



You can detect support for these attributes with __has_attribute().  For
example:

#if defined(__has_attribute)
#  if __has_attribute(argument_with_type_tag) && \
      __has_attribute(pointer_with_type_tag) && \
      __has_attribute(type_tag_for_datatype)
#    define ATTR_MPI_PWT(buffer_idx, type_idx) __attribute__((pointer_with_type_tag(mpi,buffer_idx,type_idx)))
/* ... other macros ...  */
#  endif
#endif

#if !defined(ATTR_MPI_PWT)
# define ATTR_MPI_PWT(buffer_idx, type_idx)
#endif

int MPI_Send(void *buf, int count, MPI_Datatype datatype /*, other args omitted */)
    ATTR_MPI_PWT(1,3);






argument_with_type_tag


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	X
	 
	 
	 
	 





Use __attribute__((argument_with_type_tag(arg_kind, arg_idx,
type_tag_idx))) on a function declaration to specify that the function
accepts a type tag that determines the type of some other argument.
arg_kind is an identifier that should be used when annotating all
applicable type tags.

This attribute is primarily useful for checking arguments of variadic functions
(pointer_with_type_tag can be used in most non-variadic cases).

For example:

int fcntl(int fd, int cmd, ...)
    __attribute__(( argument_with_type_tag(fcntl,3,2) ));








pointer_with_type_tag


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	X
	 
	 
	 
	 





Use __attribute__((pointer_with_type_tag(ptr_kind, ptr_idx, type_tag_idx)))
on a function declaration to specify that the function accepts a type tag that
determines the pointee type of some other pointer argument.

For example:

int MPI_Send(void *buf, int count, MPI_Datatype datatype /*, other args omitted */)
    __attribute__(( pointer_with_type_tag(mpi,1,3) ));








type_tag_for_datatype


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	X
	 
	 
	 
	 





Clang supports annotating type tags of two forms.


	Type tag that is an expression containing a reference to some declared
identifier. Use __attribute__((type_tag_for_datatype(kind, type))) on a
declaration with that identifier:

extern struct mpi_datatype mpi_datatype_int
    __attribute__(( type_tag_for_datatype(mpi,int) ));
#define MPI_INT ((MPI_Datatype) &mpi_datatype_int)







	Type tag that is an integral literal. Introduce a static const
variable with a corresponding initializer value and attach
__attribute__((type_tag_for_datatype(kind, type))) on that declaration,
for example:

#define MPI_INT ((MPI_Datatype) 42)
static const MPI_Datatype mpi_datatype_int
    __attribute__(( type_tag_for_datatype(mpi,int) )) = 42









The attribute also accepts an optional third argument that determines how the
expression is compared to the type tag.  There are two supported flags:


	layout_compatible will cause types to be compared according to
layout-compatibility rules (C++11 [class.mem] p 17, 18).  This is
implemented to support annotating types like MPI_DOUBLE_INT.

For example:

/* In mpi.h */
struct internal_mpi_double_int { double d; int i; };
extern struct mpi_datatype mpi_datatype_double_int
    __attribute__(( type_tag_for_datatype(mpi, struct internal_mpi_double_int, layout_compatible) ));

#define MPI_DOUBLE_INT ((MPI_Datatype) &mpi_datatype_double_int)

/* In user code */
struct my_pair { double a; int b; };
struct my_pair *buffer;
MPI_Send(buffer, 1, MPI_DOUBLE_INT /*, ...  */); // no warning

struct my_int_pair { int a; int b; }
struct my_int_pair *buffer2;
MPI_Send(buffer2, 1, MPI_DOUBLE_INT /*, ...  */); // warning: actual buffer element
                                                  // type 'struct my_int_pair'
                                                  // doesn't match specified MPI_Datatype







	must_be_null specifies that the expression should be a null pointer
constant, for example:

/* In mpi.h */
extern struct mpi_datatype mpi_datatype_null
    __attribute__(( type_tag_for_datatype(mpi, void, must_be_null) ));

#define MPI_DATATYPE_NULL ((MPI_Datatype) &mpi_datatype_null)

/* In user code */
MPI_Send(buffer, 1, MPI_DATATYPE_NULL /*, ...  */); // warning: MPI_DATATYPE_NULL
                                                    // was specified but buffer
                                                    // is not a null pointer














OpenCL Address Spaces

The address space qualifier may be used to specify the region of memory that is
used to allocate the object. OpenCL supports the following address spaces:
__generic(generic), __global(global), __local(local), __private(private),
__constant(constant).


__constant int c = ...;

__generic int* foo(global int* g) {
  __local int* l;
  private int p;
  ...
  return l;
}








More details can be found in the OpenCL C language Spec v2.0, Section 6.5.


__constant(constant)


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	 
	 
	 
	X
	 





The constant address space attribute signals that an object is located in
a constant (non-modifiable) memory region. It is available to all work items.
Any type can be annotated with the constant address space attribute. Objects
with the constant address space qualifier can be declared in any scope and must
have an initializer.




__generic(generic)


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	 
	 
	 
	X
	 





The generic address space attribute is only available with OpenCL v2.0 and later.
It can be used with pointer types. Variables in global and local scope and
function parameters in non-kernel functions can have the generic address space
type attribute. It is intended to be a placeholder for any other address space
except for ‘__constant’ in OpenCL code which can be used with multiple address
spaces.




__global(global)


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	 
	 
	 
	X
	 





The global address space attribute specifies that an object is allocated in
global memory, which is accessible by all work items. The content stored in this
memory area persists between kernel executions. Pointer types to the global
address space are allowed as function parameters or local variables. Starting
with OpenCL v2.0, the global address space can be used with global (program
scope) variables and static local variable as well.




__local(local)


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	 
	 
	 
	X
	 





The local address space specifies that an object is allocated in the local (work
group) memory area, which is accessible to all work items in the same work
group. The content stored in this memory region is not accessible after
the kernel execution ends. In a kernel function scope, any variable can be in
the local address space. In other scopes, only pointer types to the local address
space are allowed. Local address space variables cannot have an initializer.




__private(private)


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	 
	 
	 
	X
	 





The private address space specifies that an object is allocated in the private
(work item) memory. Other work items cannot access the same memory area and its
content is destroyed after work item execution ends. Local variables can be
declared in the private address space. Function arguments are always in the
private address space. Kernel function arguments of a pointer or an array type
cannot point to the private address space.






Nullability Attributes

Whether a particular pointer may be “null” is an important concern when working with pointers in the C family of languages. The various nullability attributes indicate whether a particular pointer can be null or not, which makes APIs more expressive and can help static analysis tools identify bugs involving null pointers. Clang supports several kinds of nullability attributes: the nonnull and returns_nonnull attributes indicate which function or method parameters and result types can never be null, while nullability type qualifiers indicate which pointer types can be null (_Nullable) or cannot be null (_Nonnull).

The nullability (type) qualifiers express whether a value of a given pointer type can be null (the _Nullable qualifier), doesn’t have a defined meaning for null (the _Nonnull qualifier), or for which the purpose of null is unclear (the _Null_unspecified qualifier). Because nullability qualifiers are expressed within the type system, they are more general than the nonnull and returns_nonnull attributes, allowing one to express (for example) a nullable pointer to an array of nonnull pointers. Nullability qualifiers are written to the right of the pointer to which they apply. For example:


// No meaningful result when 'ptr' is null (here, it happens to be undefined behavior).
int fetch(int * _Nonnull ptr) { return *ptr; }

// 'ptr' may be null.
int fetch_or_zero(int * _Nullable ptr) {
  return ptr ? *ptr : 0;
}

// A nullable pointer to non-null pointers to const characters.
const char *join_strings(const char * _Nonnull * _Nullable strings, unsigned n);








In Objective-C, there is an alternate spelling for the nullability qualifiers that can be used in Objective-C methods and properties using context-sensitive, non-underscored keywords. For example:


@interface NSView : NSResponder
  - (nullable NSView *)ancestorSharedWithView:(nonnull NSView *)aView;
  @property (assign, nullable) NSView *superview;
  @property (readonly, nonnull) NSArray *subviews;
@end









nonnull


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	X
	X
	 
	 
	 





The nonnull attribute indicates that some function parameters must not be null, and can be used in several different ways. It’s original usage (from GCC [https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#Common-Function-Attributes]) is as a function (or Objective-C method) attribute that specifies which parameters of the function are nonnull in a comma-separated list. For example:


extern void * my_memcpy (void *dest, const void *src, size_t len)
                __attribute__((nonnull (1, 2)));








Here, the nonnull attribute indicates that parameters 1 and 2
cannot have a null value. Omitting the parenthesized list of parameter indices means that all parameters of pointer type cannot be null:


extern void * my_memcpy (void *dest, const void *src, size_t len)
                __attribute__((nonnull));








Clang also allows the nonnull attribute to be placed directly on a function (or Objective-C method) parameter, eliminating the need to specify the parameter index ahead of type. For example:


extern void * my_memcpy (void *dest __attribute__((nonnull)),
                         const void *src __attribute__((nonnull)), size_t len);








Note that the nonnull attribute indicates that passing null to a non-null parameter is undefined behavior, which the optimizer may take advantage of to, e.g., remove null checks. The _Nonnull type qualifier indicates that a pointer cannot be null in a more general manner (because it is part of the type system) and does not imply undefined behavior, making it more widely applicable.




returns_nonnull


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	X
	X
	 
	 
	 





The returns_nonnull attribute indicates that a particular function (or Objective-C method) always returns a non-null pointer. For example, a particular system malloc might be defined to terminate a process when memory is not available rather than returning a null pointer:


extern void * malloc (size_t size) __attribute__((returns_nonnull));








The returns_nonnull attribute implies that returning a null pointer is undefined behavior, which the optimizer may take advantage of. The _Nonnull type qualifier indicates that a pointer cannot be null in a more general manner (because it is part of the type system) and does not imply undefined behavior, making it more widely applicable




_Nonnull


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	 
	 
	 
	X
	 





The _Nonnull nullability qualifier indicates that null is not a meaningful value for a value of the _Nonnull pointer type. For example, given a declaration such as:


int fetch(int * _Nonnull ptr);








a caller of fetch should not provide a null value, and the compiler will produce a warning if it sees a literal null value passed to fetch. Note that, unlike the declaration attribute nonnull, the presence of _Nonnull does not imply that passing null is undefined behavior: fetch is free to consider null undefined behavior or (perhaps for backward-compatibility reasons) defensively handle null.




_Null_unspecified


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	 
	 
	 
	X
	 





The _Null_unspecified nullability qualifier indicates that neither the _Nonnull nor _Nullable qualifiers make sense for a particular pointer type. It is used primarily to indicate that the role of null with specific pointers in a nullability-annotated header is unclear, e.g., due to overly-complex implementations or historical factors with a long-lived API.




_Nullable


Supported Syntaxes








	GNU
	C++11
	__declspec
	Keyword
	Pragma




	 
	 
	 
	X
	 





The _Nullable nullability qualifier indicates that a value of the _Nullable pointer type can be null. For example, given:


int fetch_or_zero(int * _Nullable ptr);








a caller of fetch_or_zero can provide null.









          

      

      

    

  

    
      
          
            
  
Cross-compilation using Clang


Introduction

This document will guide you in choosing the right Clang options
for cross-compiling your code to a different architecture. It assumes you
already know how to compile the code in question for the host architecture,
and that you know how to choose additional include and library paths.

However, this document is not a “how to” and won’t help you setting your
build system or Makefiles, nor choosing the right CMake options, etc.
Also, it does not cover all the possible options, nor does it contain
specific examples for specific architectures. For a concrete example, the
instructions for cross-compiling LLVM itself [http://llvm.org/docs/HowToCrossCompileLLVM.html] may be of interest.

After reading this document, you should be familiar with the main issues
related to cross-compilation, and what main compiler options Clang provides
for performing cross-compilation.




Cross compilation issues

In GCC world, every host/target combination has its own set of binaries,
headers, libraries, etc. So, it’s usually simple to download a package
with all files in, unzip to a directory and point the build system to
that compiler, that will know about its location and find all it needs to
when compiling your code.

On the other hand, Clang/LLVM is natively a cross-compiler, meaning that
one set of programs can compile to all targets by setting the -target
option. That makes it a lot easier for programers wishing to compile to
different platforms and architectures, and for compiler developers that
only have to maintain one build system, and for OS distributions, that
need only one set of main packages.

But, as is true to any cross-compiler, and given the complexity of
different architectures, OS’s and options, it’s not always easy finding
the headers, libraries or binutils to generate target specific code.
So you’ll need special options to help Clang understand what target
you’re compiling to, where your tools are, etc.

Another problem is that compilers come with standard libraries only (like
compiler-rt, libcxx, libgcc, libm, etc), so you’ll have to
find and make available to the build system, every other library required
to build your software, that is specific to your target. It’s not enough to
have your host’s libraries installed.

Finally, not all toolchains are the same, and consequently, not every Clang
option will work magically. Some options, like --sysroot (which
effectively changes the logical root for headers and libraries), assume
all your binaries and libraries are in the same directory, which may not
true when your cross-compiler was installed by the distribution’s package
management. So, for each specific case, you may use more than one
option, and in most cases, you’ll end up setting include paths (-I) and
library paths (-L) manually.


	To sum up, different toolchains can:

	
	be host/target specific or more flexible

	be in a single directory, or spread out across your system

	have different sets of libraries and headers by default

	need special options, which your build system won’t be able to figure
out by itself










General Cross-Compilation Options in Clang


Target Triple

The basic option is to define the target architecture. For that, use
-target <triple>. If you don’t specify the target, CPU names won’t
match (since Clang assumes the host triple), and the compilation will
go ahead, creating code for the host platform, which will break later
on when assembling or linking.


	The triple has the general format <arch><sub>-<vendor>-<sys>-<abi>, where:

	
	arch = x86, arm, thumb, mips, etc.

	sub = for ex. on ARM: v5, v6m, v7a, v7m, etc.

	vendor = pc, apple, nvidia, ibm, etc.

	sys = none, linux, win32, darwin, cuda, etc.

	abi = eabi, gnu, android, macho, elf, etc.







The sub-architecture options are available for their own architectures,
of course, so “x86v7a” doesn’t make sense. The vendor needs to be
specified only if there’s a relevant change, for instance between PC
and Apple. Most of the time it can be omitted (and Unknown)
will be assumed, which sets the defaults for the specified architecture.
The system name is generally the OS (linux, darwin), but could be special
like the bare-metal “none”.

When a parameter is not important, it can be omitted, or you can
choose unknown and the defaults will be used. If you choose a parameter
that Clang doesn’t know, like blerg, it’ll ignore and assume
unknown, which is not always desired, so be careful.

Finally, the ABI option is something that will pick default CPU/FPU,
define the specific behaviour of your code (PCS, extensions),
and also choose the correct library calls, etc.




CPU, FPU, ABI

Once your target is specified, it’s time to pick the hardware you’ll
be compiling to. For every architecture, a default set of CPU/FPU/ABI
will be chosen, so you’ll almost always have to change it via flags.


	Typical flags include:

	
	-mcpu=<cpu-name>, like x86-64, swift, cortex-a15

	-mfpu=<fpu-name>, like SSE3, NEON, controlling the FP unit available

	-mfloat-abi=<fabi>, like soft, hard, controlling which registers
to use for floating-point







The default is normally the common denominator, so that Clang doesn’t
generate code that breaks. But that also means you won’t get the best
code for your specific hardware, which may mean orders of magnitude
slower than you expect.

For example, if your target is arm-none-eabi, the default CPU will
be arm7tdmi using soft float, which is extremely slow on modern cores,
whereas if your triple is armv7a-none-eabi, it’ll be Cortex-A8 with
NEON, but still using soft-float, which is much better, but still not
great.




Toolchain Options

There are three main options to control access to your cross-compiler:
--sysroot, -I, and -L. The two last ones are well known,
but they’re particularly important for additional libraries
and headers that are specific to your target.

There are two main ways to have a cross-compiler:


	When you have extracted your cross-compiler from a zip file into
a directory, you have to use --sysroot=<path>. The path is the
root directory where you have unpacked your file, and Clang will
look for the directories bin, lib, include in there.

In this case, your setup should be pretty much done (if no
additional headers or libraries are needed), as Clang will find
all binaries it needs (assembler, linker, etc) in there.



	When you have installed via a package manager (modern Linux
distributions have cross-compiler packages available), make
sure the target triple you set is also the prefix of your
cross-compiler toolchain.

In this case, Clang will find the other binaries (assembler,
linker), but not always where the target headers and libraries
are. People add system-specific clues to Clang often, but as
things change, it’s more likely that it won’t find than the
other way around.

So, here, you’ll be a lot safer if you specify the include/library
directories manually (via -I and -L).










Target-Specific Libraries

All libraries that you compile as part of your build will be
cross-compiled to your target, and your build system will probably
find them in the right place. But all dependencies that are
normally checked against (like libxml or libz etc) will match
against the host platform, not the target.

So, if the build system is not aware that you want to cross-compile
your code, it will get every dependency wrong, and your compilation
will fail during build time, not configure time.

Also, finding the libraries for your target are not as easy
as for your host machine. There aren’t many cross-libraries available
as packages to most OS’s, so you’ll have to either cross-compile them
from source, or download the package for your target platform,
extract the libraries and headers, put them in specific directories
and add -I and -L pointing to them.

Also, some libraries have different dependencies on different targets,
so configuration tools to find dependencies in the host can get the
list wrong for the target platform. This means that the configuration
of your build can get things wrong when setting their own library
paths, and you’ll have to augment it via additional flags (configure,
Make, CMake, etc).


Multilibs

When you want to cross-compile to more than one configuration, for
example hard-float-ARM and soft-float-ARM, you’ll have to have multiple
copies of your libraries and (possibly) headers.

Some Linux distributions have support for Multilib, which handle that
for you in an easier way, but if you’re not careful and, for instance,
forget to specify -ccc-gcc-name armv7l-linux-gnueabihf-gcc (which
uses hard-float), Clang will pick the armv7l-linux-gnueabi-ld
(which uses soft-float) and linker errors will happen.

The same is true if you’re compiling for different ABIs, like gnueabi
and androideabi, and might even link and run, but produce run-time
errors, which are much harder to track down and fix.









          

      

      

    

  

    
      
          
            
  
Thread Safety Analysis


Introduction

Clang Thread Safety Analysis is a C++ language extension which warns about
potential race conditions in code.  The analysis is completely static (i.e.
compile-time); there is no run-time overhead.  The analysis is still
under active development, but it is mature enough to be deployed in an
industrial setting.  It is being developed by Google, in collaboration with
CERT/SEI, and is used extensively in Google’s internal code base.

Thread safety analysis works very much like a type system for multi-threaded
programs.  In addition to declaring the type of data (e.g. int, float,
etc.), the programmer can (optionally) declare how access to that data is
controlled in a multi-threaded environment.  For example, if foo is
guarded by the mutex mu, then the analysis will issue a warning whenever
a piece of code reads or writes to foo without first locking mu.
Similarly, if there are particular routines that should only be called by
the GUI thread, then the analysis will warn if other threads call those
routines.


Getting Started

#include "mutex.h"

class BankAccount {
private:
  Mutex mu;
  int   balance GUARDED_BY(mu);

  void depositImpl(int amount) {
    balance += amount;       // WARNING! Cannot write balance without locking mu.
  }

  void withdrawImpl(int amount) REQUIRES(mu) {
    balance -= amount;       // OK. Caller must have locked mu.
  }

public:
  void withdraw(int amount) {
    mu.Lock();
    withdrawImpl(amount);    // OK.  We've locked mu.
  }                          // WARNING!  Failed to unlock mu.

  void transferFrom(BankAccount& b, int amount) {
    mu.Lock();
    b.withdrawImpl(amount);  // WARNING!  Calling withdrawImpl() requires locking b.mu.
    depositImpl(amount);     // OK.  depositImpl() has no requirements.
    mu.Unlock();
  }
};





This example demonstrates the basic concepts behind the analysis.  The
GUARDED_BY attribute declares that a thread must lock mu before it can
read or write to balance, thus ensuring that the increment and decrement
operations are atomic.  Similarly, REQUIRES declares that
the calling thread must lock mu before calling withdrawImpl.
Because the caller is assumed to have locked mu, it is safe to modify
balance within the body of the method.

The depositImpl() method does not have REQUIRES, so the
analysis issues a warning.  Thread safety analysis is not inter-procedural, so
caller requirements must be explicitly declared.
There is also a warning in transferFrom(), because although the method
locks this->mu, it does not lock b.mu.  The analysis understands
that these are two separate mutexes, in two different objects.

Finally, there is a warning in the withdraw() method, because it fails to
unlock mu.  Every lock must have a corresponding unlock, and the analysis
will detect both double locks, and double unlocks.  A function is allowed to
acquire a lock without releasing it, (or vice versa), but it must be annotated
as such (using ACQUIRE/RELEASE).




Running The Analysis

To run the analysis, simply compile with the -Wthread-safety flag, e.g.

clang -c -Wthread-safety example.cpp





Note that this example assumes the presence of a suitably annotated
mutex.h that declares which methods perform locking,
unlocking, and so on.






Basic Concepts: Capabilities

Thread safety analysis provides a way of protecting resources with
capabilities.  A resource is either a data member, or a function/method
that provides access to some underlying resource.  The analysis ensures that
the calling thread cannot access the resource (i.e. call the function, or
read/write the data) unless it has the capability to do so.

Capabilities are associated with named C++ objects which declare specific
methods to acquire and release the capability.  The name of the object serves
to identify the capability.  The most common example is a mutex.  For example,
if mu is a mutex, then calling mu.Lock() causes the calling thread
to acquire the capability to access data that is protected by mu. Similarly,
calling mu.Unlock() releases that capability.

A thread may hold a capability either exclusively or shared.  An exclusive
capability can be held by only one thread at a time, while a shared capability
can be held by many threads at the same time.  This mechanism enforces a
multiple-reader, single-writer pattern.  Write operations to protected data
require exclusive access, while read operations require only shared access.

At any given moment during program execution, a thread holds a specific set of
capabilities (e.g. the set of mutexes that it has locked.)  These act like keys
or tokens that allow the thread to access a given resource.  Just like physical
security keys, a thread cannot make copy of a capability, nor can it destroy
one.  A thread can only release a capability to another thread, or acquire one
from another thread.  The annotations are deliberately agnostic about the
exact mechanism used to acquire and release capabilities; it assumes that the
underlying implementation (e.g. the Mutex implementation) does the handoff in
an appropriate manner.

The set of capabilities that are actually held by a given thread at a given
point in program execution is a run-time concept.  The static analysis works
by calculating an approximation of that set, called the capability
environment.  The capability environment is calculated for every program point,
and describes the set of capabilities that are statically known to be held, or
not held, at that particular point.  This environment is a conservative
approximation of the full set of capabilities that will actually held by a
thread at run-time.




Reference Guide

The thread safety analysis uses attributes to declare threading constraints.
Attributes must be attached to named declarations, such as classes, methods,
and data members. Users are strongly advised to define macros for the various
attributes; example definitions can be found in mutex.h, below.
The following documentation assumes the use of macros.

For historical reasons, prior versions of thread safety used macro names that
were very lock-centric.  These macros have since been renamed to fit a more
general capability model.  The prior names are still in use, and will be
mentioned under the tag previously where appropriate.


GUARDED_BY(c) and PT_GUARDED_BY(c)

GUARDED_BY is an attribute on data members, which declares that the data
member is protected by the given capability.  Read operations on the data
require shared access, while write operations require exclusive access.

PT_GUARDED_BY is similar, but is intended for use on pointers and smart
pointers. There is no constraint on the data member itself, but the data that
it points to is protected by the given capability.

Mutex mu;
int *p1             GUARDED_BY(mu);
int *p2             PT_GUARDED_BY(mu);
unique_ptr<int> p3  PT_GUARDED_BY(mu);

void test() {
  p1 = 0;             // Warning!

  *p2 = 42;           // Warning!
  p2 = new int;       // OK.

  *p3 = 42;           // Warning!
  p3.reset(new int);  // OK.
}








REQUIRES(...), REQUIRES_SHARED(...)

Previously: EXCLUSIVE_LOCKS_REQUIRED, SHARED_LOCKS_REQUIRED

REQUIRES is an attribute on functions or methods, which
declares that the calling thread must have exclusive access to the given
capabilities.  More than one capability may be specified.  The capabilities
must be held on entry to the function, and must still be held on exit.

REQUIRES_SHARED is similar, but requires only shared access.

Mutex mu1, mu2;
int a GUARDED_BY(mu1);
int b GUARDED_BY(mu2);

void foo() REQUIRES(mu1, mu2) {
  a = 0;
  b = 0;
}

void test() {
  mu1.Lock();
  foo();         // Warning!  Requires mu2.
  mu1.Unlock();
}








ACQUIRE(...), ACQUIRE_SHARED(...), RELEASE(...), RELEASE_SHARED(...)

Previously: EXCLUSIVE_LOCK_FUNCTION, SHARED_LOCK_FUNCTION,
UNLOCK_FUNCTION

ACQUIRE is an attribute on functions or methods, which
declares that the function acquires a capability, but does not release it.  The
caller must not hold the given capability on entry, and it will hold the
capability on exit.  ACQUIRE_SHARED is similar.

RELEASE and RELEASE_SHARED declare that the function releases the given
capability.  The caller must hold the capability on entry, and will no longer
hold it on exit. It does not matter whether the given capability is shared or
exclusive.

Mutex mu;
MyClass myObject GUARDED_BY(mu);

void lockAndInit() ACQUIRE(mu) {
  mu.Lock();
  myObject.init();
}

void cleanupAndUnlock() RELEASE(mu) {
  myObject.cleanup();
}                          // Warning!  Need to unlock mu.

void test() {
  lockAndInit();
  myObject.doSomething();
  cleanupAndUnlock();
  myObject.doSomething();  // Warning, mu is not locked.
}





If no argument is passed to ACQUIRE or RELEASE, then the argument is
assumed to be this, and the analysis will not check the body of the
function.  This pattern is intended for use by classes which hide locking
details behind an abstract interface.  For example:

template <class T>
class CAPABILITY("mutex") Container {
private:
  Mutex mu;
  T* data;

public:
  // Hide mu from public interface.
  void Lock()   ACQUIRE() { mu.Lock(); }
  void Unlock() RELEASE() { mu.Unlock(); }

  T& getElem(int i) { return data[i]; }
};

void test() {
  Container<int> c;
  c.Lock();
  int i = c.getElem(0);
  c.Unlock();
}








EXCLUDES(...)

Previously: LOCKS_EXCLUDED

EXCLUDES is an attribute on functions or methods, which declares that
the caller must not hold the given capabilities.  This annotation is
used to prevent deadlock.  Many mutex implementations are not re-entrant, so
deadlock can occur if the function acquires the mutex a second time.

Mutex mu;
int a GUARDED_BY(mu);

void clear() EXCLUDES(mu) {
  mu.Lock();
  a = 0;
  mu.Unlock();
}

void reset() {
  mu.Lock();
  clear();     // Warning!  Caller cannot hold 'mu'.
  mu.Unlock();
}





Unlike REQUIRES, EXCLUDES is optional.  The analysis will not issue a
warning if the attribute is missing, which can lead to false negatives in some
cases.  This issue is discussed further in Negative Capabilities.




NO_THREAD_SAFETY_ANALYSIS

NO_THREAD_SAFETY_ANALYSIS is an attribute on functions or methods, which
turns off thread safety checking for that method.  It provides an escape hatch
for functions which are either (1) deliberately thread-unsafe, or (2) are
thread-safe, but too complicated for the analysis to understand.  Reasons for
(2) will be described in the Known Limitations, below.

class Counter {
  Mutex mu;
  int a GUARDED_BY(mu);

  void unsafeIncrement() NO_THREAD_SAFETY_ANALYSIS { a++; }
};





Unlike the other attributes, NO_THREAD_SAFETY_ANALYSIS is not part of the
interface of a function, and should thus be placed on the function definition
(in the .cc or .cpp file) rather than on the function declaration
(in the header).




RETURN_CAPABILITY(c)

Previously: LOCK_RETURNED

RETURN_CAPABILITY is an attribute on functions or methods, which declares
that the function returns a reference to the given capability.  It is used to
annotate getter methods that return mutexes.

class MyClass {
private:
  Mutex mu;
  int a GUARDED_BY(mu);

public:
  Mutex* getMu() RETURN_CAPABILITY(mu) { return &mu; }

  // analysis knows that getMu() == mu
  void clear() REQUIRES(getMu()) { a = 0; }
};








ACQUIRED_BEFORE(...), ACQUIRED_AFTER(...)

ACQUIRED_BEFORE and ACQUIRED_AFTER are attributes on member
declarations, specifically declarations of mutexes or other capabilities.
These declarations enforce a particular order in which the mutexes must be
acquired, in order to prevent deadlock.

Mutex m1;
Mutex m2 ACQUIRED_AFTER(m1);

// Alternative declaration
// Mutex m2;
// Mutex m1 ACQUIRED_BEFORE(m2);

void foo() {
  m2.Lock();
  m1.Lock();  // Warning!  m2 must be acquired after m1.
  m1.Unlock();
  m2.Unlock();
}








CAPABILITY(<string>)

Previously: LOCKABLE

CAPABILITY is an attribute on classes, which specifies that objects of the
class can be used as a capability.  The string argument specifies the kind of
capability in error messages, e.g. "mutex".  See the Container example
given above, or the Mutex class in mutex.h.




SCOPED_CAPABILITY

Previously: SCOPED_LOCKABLE

SCOPED_CAPABILITY is an attribute on classes that implement RAII-style
locking, in which a capability is acquired in the constructor, and released in
the destructor.  Such classes require special handling because the constructor
and destructor refer to the capability via different names; see the
MutexLocker class in mutex.h, below.




TRY_ACQUIRE(<bool>, ...), TRY_ACQUIRE_SHARED(<bool>, ...)

Previously: EXCLUSIVE_TRYLOCK_FUNCTION, SHARED_TRYLOCK_FUNCTION

These are attributes on a function or method that tries to acquire the given
capability, and returns a boolean value indicating success or failure.
The first argument must be true or false, to specify which return value
indicates success, and the remaining arguments are interpreted in the same way
as ACQUIRE.  See mutex.h, below, for example uses.




ASSERT_CAPABILITY(...) and ASSERT_SHARED_CAPABILITY(...)

Previously:  ASSERT_EXCLUSIVE_LOCK, ASSERT_SHARED_LOCK

These are attributes on a function or method that does a run-time test to see
whether the calling thread holds the given capability.  The function is assumed
to fail (no return) if the capability is not held.  See mutex.h,
below, for example uses.




GUARDED_VAR and PT_GUARDED_VAR

Use of these attributes has been deprecated.




Warning flags


	-Wthread-safety:  Umbrella flag which turns on the following three:
	-Wthread-safety-attributes: Sanity checks on attribute syntax.

	-Wthread-safety-analysis: The core analysis.

	
	-Wthread-safety-precise: Requires that mutex expressions match precisely.

	This warning can be disabled for code which has a lot of aliases.





	-Wthread-safety-reference: Checks when guarded members are passed by reference.







Negative Capabilities are an experimental feature, which are enabled with:


	-Wthread-safety-negative:  Negative capabilities.  Off by default.



When new features and checks are added to the analysis, they can often introduce
additional warnings.  Those warnings are initially released as beta warnings
for a period of time, after which they are migrated into the standard analysis.


	-Wthread-safety-beta:  New features.  Off by default.








Negative Capabilities

Thread Safety Analysis is designed to prevent both race conditions and
deadlock.  The GUARDED_BY and REQUIRES attributes prevent race conditions, by
ensuring that a capability is held before reading or writing to guarded data,
and the EXCLUDES attribute prevents deadlock, by making sure that a mutex is
not held.

However, EXCLUDES is an optional attribute, and does not provide the same
safety guarantee as REQUIRES.  In particular:



	A function which acquires a capability does not have to exclude it.

	A function which calls a function that excludes a capability does not
have transitively exclude that capability.






As a result, EXCLUDES can easily produce false negatives:

class Foo {
  Mutex mu;

  void foo() {
    mu.Lock();
    bar();           // No warning.
    baz();           // No warning.
    mu.Unlock();
  }

  void bar() {       // No warning.  (Should have EXCLUDES(mu)).
    mu.Lock();
    // ...
    mu.Unlock();
  }

  void baz() {
    bif();           // No warning.  (Should have EXCLUDES(mu)).
  }

  void bif() EXCLUDES(mu);
};





Negative requirements are an alternative EXCLUDES that provide
a stronger safety guarantee.  A negative requirement uses the  REQUIRES
attribute, in conjunction with the ! operator, to indicate that a capability
should not be held.

For example, using REQUIRES(!mu) instead of EXCLUDES(mu) will produce
the appropriate warnings:

class FooNeg {
  Mutex mu;

  void foo() REQUIRES(!mu) {   // foo() now requires !mu.
    mu.Lock();
    bar();
    baz();
    mu.Unlock();
  }

  void bar() {
    mu.Lock();       // WARNING!  Missing REQUIRES(!mu).
    // ...
    mu.Unlock();
  }

  void baz() {
    bif();           // WARNING!  Missing REQUIRES(!mu).
  }

  void bif() REQUIRES(!mu);
};





Negative requirements are an experimental feature which is off by default,
because it will produce many warnings in existing code.  It can be enabled
by passing -Wthread-safety-negative.




Frequently Asked Questions


	Should I put attributes in the header file, or in the .cc/.cpp/.cxx file?



(A) Attributes are part of the formal interface of a function, and should
always go in the header, where they are visible to anything that includes
the header.  Attributes in the .cpp file are not visible outside of the
immediate translation unit, which leads to false negatives and false positives.


	“Mutex is not locked on every path through here?”  What does that mean?




	See No conditionally held locks., below.






Known Limitations


Lexical scope

Thread safety attributes contain ordinary C++ expressions, and thus follow
ordinary C++ scoping rules.  In particular, this means that mutexes and other
capabilities must be declared before they can be used in an attribute.
Use-before-declaration is okay within a single class, because attributes are
parsed at the same time as method bodies. (C++ delays parsing of method bodies
until the end of the class.)  However, use-before-declaration is not allowed
between classes, as illustrated below.

class Foo;

class Bar {
  void bar(Foo* f) REQUIRES(f->mu);  // Error: mu undeclared.
};

class Foo {
  Mutex mu;
};








Private Mutexes

Good software engineering practice dictates that mutexes should be private
members, because the locking mechanism used by a thread-safe class is part of
its internal implementation.  However, private mutexes can sometimes leak into
the public interface of a class.
Thread safety attributes follow normal C++ access restrictions, so if mu
is a private member of c, then it is an error to write c.mu in an
attribute.

One workaround is to (ab)use the RETURN_CAPABILITY attribute to provide a
public name for a private mutex, without actually exposing the underlying
mutex.  For example:

class MyClass {
private:
  Mutex mu;

public:
  // For thread safety analysis only.  Does not actually return mu.
  Mutex* getMu() RETURN_CAPABILITY(mu) { return 0; }

  void doSomething() REQUIRES(mu);
};

void doSomethingTwice(MyClass& c) REQUIRES(c.getMu()) {
  // The analysis thinks that c.getMu() == c.mu
  c.doSomething();
  c.doSomething();
}





In the above example, doSomethingTwice() is an external routine that
requires c.mu to be locked, which cannot be declared directly because mu
is private.  This pattern is discouraged because it
violates encapsulation, but it is sometimes necessary, especially when adding
annotations to an existing code base.  The workaround is to define getMu()
as a fake getter method, which is provided only for the benefit of thread
safety analysis.




No conditionally held locks.

The analysis must be able to determine whether a lock is held, or not held, at
every program point.  Thus, sections of code where a lock might be held will
generate spurious warnings (false positives).  For example:

void foo() {
  bool b = needsToLock();
  if (b) mu.Lock();
  ...  // Warning!  Mutex 'mu' is not held on every path through here.
  if (b) mu.Unlock();
}








No checking inside constructors and destructors.

The analysis currently does not do any checking inside constructors or
destructors.  In other words, every constructor and destructor is treated as
if it was annotated with NO_THREAD_SAFETY_ANALYSIS.
The reason for this is that during initialization, only one thread typically
has access to the object which is being initialized, and it is thus safe (and
common practice) to initialize guarded members without acquiring any locks.
The same is true of destructors.

Ideally, the analysis would allow initialization of guarded members inside the
object being initialized or destroyed, while still enforcing the usual access
restrictions on everything else.  However, this is difficult to enforce in
practice, because in complex pointer-based data structures, it is hard to
determine what data is owned by the enclosing object.




No inlining.

Thread safety analysis is strictly intra-procedural, just like ordinary type
checking.  It relies only on the declared attributes of a function, and will
not attempt to inline any method calls.  As a result, code such as the
following will not work:

template<class T>
class AutoCleanup {
  T* object;
  void (T::*mp)();

public:
  AutoCleanup(T* obj, void (T::*imp)()) : object(obj), mp(imp) { }
  ~AutoCleanup() { (object->*mp)(); }
};

Mutex mu;
void foo() {
  mu.Lock();
  AutoCleanup<Mutex>(&mu, &Mutex::Unlock);
  // ...
}  // Warning, mu is not unlocked.





In this case, the destructor of Autocleanup calls mu.Unlock(), so
the warning is bogus.  However,
thread safety analysis cannot see the unlock, because it does not attempt to
inline the destructor.  Moreover, there is no way to annotate the destructor,
because the destructor is calling a function that is not statically known.
This pattern is simply not supported.




No alias analysis.

The analysis currently does not track pointer aliases.  Thus, there can be
false positives if two pointers both point to the same mutex.

class MutexUnlocker {
  Mutex* mu;

public:
  MutexUnlocker(Mutex* m) RELEASE(m) : mu(m)  { mu->Unlock(); }
  ~MutexUnlocker() ACQUIRE(mu) { mu->Lock(); }
};

Mutex mutex;
void test() REQUIRES(mutex) {
  {
    MutexUnlocker munl(&mutex);  // unlocks mutex
    doSomeIO();
  }                              // Warning: locks munl.mu
}





The MutexUnlocker class is intended to be the dual of the MutexLocker class,
defined in mutex.h.  However, it doesn’t work because the analysis
doesn’t know that munl.mu == mutex.  The SCOPED_CAPABILITY attribute handles
aliasing for MutexLocker, but does so only for that particular pattern.




ACQUIRED_BEFORE(...) and ACQUIRED_AFTER(...) are currently unimplemented.

To be fixed in a future update.






mutex.h

Thread safety analysis can be used with any threading library, but it does
require that the threading API be wrapped in classes and methods which have the
appropriate annotations.  The following code provides mutex.h as an example;
these methods should be filled in to call the appropriate underlying
implementation.

#ifndef THREAD_SAFETY_ANALYSIS_MUTEX_H
#define THREAD_SAFETY_ANALYSIS_MUTEX_H

// Enable thread safety attributes only with clang.
// The attributes can be safely erased when compiling with other compilers.
#if defined(__clang__) && (!defined(SWIG))
#define THREAD_ANNOTATION_ATTRIBUTE__(x)   __attribute__((x))
#else
#define THREAD_ANNOTATION_ATTRIBUTE__(x)   // no-op
#endif

#define THREAD_ANNOTATION_ATTRIBUTE__(x)   __attribute__((x))

#define CAPABILITY(x) \
  THREAD_ANNOTATION_ATTRIBUTE__(capability(x))

#define SCOPED_CAPABILITY \
  THREAD_ANNOTATION_ATTRIBUTE__(scoped_lockable)

#define GUARDED_BY(x) \
  THREAD_ANNOTATION_ATTRIBUTE__(guarded_by(x))

#define PT_GUARDED_BY(x) \
  THREAD_ANNOTATION_ATTRIBUTE__(pt_guarded_by(x))

#define ACQUIRED_BEFORE(...) \
  THREAD_ANNOTATION_ATTRIBUTE__(acquired_before(__VA_ARGS__))

#define ACQUIRED_AFTER(...) \
  THREAD_ANNOTATION_ATTRIBUTE__(acquired_after(__VA_ARGS__))

#define REQUIRES(...) \
  THREAD_ANNOTATION_ATTRIBUTE__(requires_capability(__VA_ARGS__))

#define REQUIRES_SHARED(...) \
  THREAD_ANNOTATION_ATTRIBUTE__(requires_shared_capability(__VA_ARGS__))

#define ACQUIRE(...) \
  THREAD_ANNOTATION_ATTRIBUTE__(acquire_capability(__VA_ARGS__))

#define ACQUIRE_SHARED(...) \
  THREAD_ANNOTATION_ATTRIBUTE__(acquire_shared_capability(__VA_ARGS__))

#define RELEASE(...) \
  THREAD_ANNOTATION_ATTRIBUTE__(release_capability(__VA_ARGS__))

#define RELEASE_SHARED(...) \
  THREAD_ANNOTATION_ATTRIBUTE__(release_shared_capability(__VA_ARGS__))

#define TRY_ACQUIRE(...) \
  THREAD_ANNOTATION_ATTRIBUTE__(try_acquire_capability(__VA_ARGS__))

#define TRY_ACQUIRE_SHARED(...) \
  THREAD_ANNOTATION_ATTRIBUTE__(try_acquire_shared_capability(__VA_ARGS__))

#define EXCLUDES(...) \
  THREAD_ANNOTATION_ATTRIBUTE__(locks_excluded(__VA_ARGS__))

#define ASSERT_CAPABILITY(x) \
  THREAD_ANNOTATION_ATTRIBUTE__(assert_capability(x))

#define ASSERT_SHARED_CAPABILITY(x) \
  THREAD_ANNOTATION_ATTRIBUTE__(assert_shared_capability(x))

#define RETURN_CAPABILITY(x) \
  THREAD_ANNOTATION_ATTRIBUTE__(lock_returned(x))

#define NO_THREAD_SAFETY_ANALYSIS \
  THREAD_ANNOTATION_ATTRIBUTE__(no_thread_safety_analysis)


// Defines an annotated interface for mutexes.
// These methods can be implemented to use any internal mutex implementation.
class CAPABILITY("mutex") Mutex {
public:
  // Acquire/lock this mutex exclusively.  Only one thread can have exclusive
  // access at any one time.  Write operations to guarded data require an
  // exclusive lock.
  void Lock() ACQUIRE();

  // Acquire/lock this mutex for read operations, which require only a shared
  // lock.  This assumes a multiple-reader, single writer semantics.  Multiple
  // threads may acquire the mutex simultaneously as readers, but a writer
  // must wait for all of them to release the mutex before it can acquire it
  // exclusively.
  void ReaderLock() ACQUIRE_SHARED();

  // Release/unlock an exclusive mutex.
  void Unlock() RELEASE();

  // Release/unlock a shared mutex.
  void ReaderUnlock() RELEASE_SHARED();

  // Try to acquire the mutex.  Returns true on success, and false on failure.
  bool TryLock() TRY_ACQUIRE(true);

  // Try to acquire the mutex for read operations.
  bool ReaderTryLock() TRY_ACQUIRE_SHARED(true);

  // Assert that this mutex is currently held by the calling thread.
  void AssertHeld() ASSERT_CAPABILITY(this);

  // Assert that is mutex is currently held for read operations.
  void AssertReaderHeld() ASSERT_SHARED_CAPABILITY(this);

  // For negative capabilities.
  const Mutex& operator!() const { return *this; }
};


// MutexLocker is an RAII class that acquires a mutex in its constructor, and
// releases it in its destructor.
class SCOPED_CAPABILITY MutexLocker {
private:
  Mutex* mut;

public:
  MutexLocker(Mutex *mu) ACQUIRE(mu) : mut(mu) {
    mu->Lock();
  }
  ~MutexLocker() RELEASE() {
    mut->Unlock();
  }
};


#ifdef USE_LOCK_STYLE_THREAD_SAFETY_ATTRIBUTES
// The original version of thread safety analysis the following attribute
// definitions.  These use a lock-based terminology.  They are still in use
// by existing thread safety code, and will continue to be supported.

// Deprecated.
#define PT_GUARDED_VAR \
  THREAD_ANNOTATION_ATTRIBUTE__(pt_guarded)

// Deprecated.
#define GUARDED_VAR \
  THREAD_ANNOTATION_ATTRIBUTE__(guarded)

// Replaced by REQUIRES
#define EXCLUSIVE_LOCKS_REQUIRED(...) \
  THREAD_ANNOTATION_ATTRIBUTE__(exclusive_locks_required(__VA_ARGS__))

// Replaced by REQUIRES_SHARED
#define SHARED_LOCKS_REQUIRED(...) \
  THREAD_ANNOTATION_ATTRIBUTE__(shared_locks_required(__VA_ARGS__))

// Replaced by CAPABILITY
#define LOCKABLE \
  THREAD_ANNOTATION_ATTRIBUTE__(lockable)

// Replaced by SCOPED_CAPABILITY
#define SCOPED_LOCKABLE \
  THREAD_ANNOTATION_ATTRIBUTE__(scoped_lockable)

// Replaced by ACQUIRE
#define EXCLUSIVE_LOCK_FUNCTION(...) \
  THREAD_ANNOTATION_ATTRIBUTE__(exclusive_lock_function(__VA_ARGS__))

// Replaced by ACQUIRE_SHARED
#define SHARED_LOCK_FUNCTION(...) \
  THREAD_ANNOTATION_ATTRIBUTE__(shared_lock_function(__VA_ARGS__))

// Replaced by RELEASE and RELEASE_SHARED
#define UNLOCK_FUNCTION(...) \
  THREAD_ANNOTATION_ATTRIBUTE__(unlock_function(__VA_ARGS__))

// Replaced by TRY_ACQUIRE
#define EXCLUSIVE_TRYLOCK_FUNCTION(...) \
  THREAD_ANNOTATION_ATTRIBUTE__(exclusive_trylock_function(__VA_ARGS__))

// Replaced by TRY_ACQUIRE_SHARED
#define SHARED_TRYLOCK_FUNCTION(...) \
  THREAD_ANNOTATION_ATTRIBUTE__(shared_trylock_function(__VA_ARGS__))

// Replaced by ASSERT_CAPABILITY
#define ASSERT_EXCLUSIVE_LOCK(...) \
  THREAD_ANNOTATION_ATTRIBUTE__(assert_exclusive_lock(__VA_ARGS__))

// Replaced by ASSERT_SHARED_CAPABILITY
#define ASSERT_SHARED_LOCK(...) \
  THREAD_ANNOTATION_ATTRIBUTE__(assert_shared_lock(__VA_ARGS__))

// Replaced by EXCLUDE_CAPABILITY.
#define LOCKS_EXCLUDED(...) \
  THREAD_ANNOTATION_ATTRIBUTE__(locks_excluded(__VA_ARGS__))

// Replaced by RETURN_CAPABILITY
#define LOCK_RETURNED(x) \
  THREAD_ANNOTATION_ATTRIBUTE__(lock_returned(x))

#endif  // USE_LOCK_STYLE_THREAD_SAFETY_ATTRIBUTES

#endif  // THREAD_SAFETY_ANALYSIS_MUTEX_H











          

      

      

    

  

    
      
          
            
  
AddressSanitizer



	Introduction

	How to build

	Usage

	Symbolizing the Reports

	Additional Checks
	Initialization order checking

	Memory leak detection





	Issue Suppression
	Suppressing Reports in External Libraries

	Conditional Compilation with __has_feature(address_sanitizer)

	Disabling Instrumentation with __attribute__((no_sanitize("address")))

	Suppressing Errors in Recompiled Code (Blacklist)





	Limitations

	Supported Platforms

	Current Status

	More Information






Introduction

AddressSanitizer is a fast memory error detector. It consists of a compiler
instrumentation module and a run-time library. The tool can detect the
following types of bugs:


	Out-of-bounds accesses to heap, stack and globals

	Use-after-free

	Use-after-return (to some extent)

	Double-free, invalid free

	Memory leaks (experimental)



Typical slowdown introduced by AddressSanitizer is 2x.




How to build

Build LLVM/Clang with CMake [http://llvm.org/docs/CMake.html].




Usage

Simply compile and link your program with -fsanitize=address flag.  The
AddressSanitizer run-time library should be linked to the final executable, so
make sure to use clang (not ld) for the final link step.  When linking
shared libraries, the AddressSanitizer run-time is not linked, so
-Wl,-z,defs may cause link errors (don’t use it with AddressSanitizer).  To
get a reasonable performance add -O1 or higher.  To get nicer stack traces
in error messages add -fno-omit-frame-pointer.  To get perfect stack traces
you may need to disable inlining (just use -O1) and tail call elimination
(-fno-optimize-sibling-calls).

% cat example_UseAfterFree.cc
int main(int argc, char **argv) {
  int *array = new int[100];
  delete [] array;
  return array[argc];  // BOOM
}

# Compile and link
% clang -O1 -g -fsanitize=address -fno-omit-frame-pointer example_UseAfterFree.cc





or:

# Compile
% clang -O1 -g -fsanitize=address -fno-omit-frame-pointer -c example_UseAfterFree.cc
# Link
% clang -g -fsanitize=address example_UseAfterFree.o





If a bug is detected, the program will print an error message to stderr and
exit with a non-zero exit code. AddressSanitizer exits on the first detected error.
This is by design:


	This approach allows AddressSanitizer to produce faster and smaller generated code
(both by ~5%).

	Fixing bugs becomes unavoidable. AddressSanitizer does not produce
false alarms. Once a memory corruption occurs, the program is in an inconsistent
state, which could lead to confusing results and potentially misleading
subsequent reports.



If your process is sandboxed and you are running on OS X 10.10 or earlier, you
will need to set DYLD_INSERT_LIBRARIES environment variable and point it to
the ASan library that is packaged with the compiler used to build the
executable. (You can find the library by searching for dynamic libraries with
asan in their name.) If the environment variable is not set, the process will
try to re-exec. Also keep in mind that when moving the executable to another machine,
the ASan library will also need to be copied over.




Symbolizing the Reports

To make AddressSanitizer symbolize its output
you need to set the ASAN_SYMBOLIZER_PATH environment variable to point to
the llvm-symbolizer binary (or make sure llvm-symbolizer is in your
$PATH):

% ASAN_SYMBOLIZER_PATH=/usr/local/bin/llvm-symbolizer ./a.out
==9442== ERROR: AddressSanitizer heap-use-after-free on address 0x7f7ddab8c084 at pc 0x403c8c bp 0x7fff87fb82d0 sp 0x7fff87fb82c8
READ of size 4 at 0x7f7ddab8c084 thread T0
    #0 0x403c8c in main example_UseAfterFree.cc:4
    #1 0x7f7ddabcac4d in __libc_start_main ??:0
0x7f7ddab8c084 is located 4 bytes inside of 400-byte region [0x7f7ddab8c080,0x7f7ddab8c210)
freed by thread T0 here:
    #0 0x404704 in operator delete[](void*) ??:0
    #1 0x403c53 in main example_UseAfterFree.cc:4
    #2 0x7f7ddabcac4d in __libc_start_main ??:0
previously allocated by thread T0 here:
    #0 0x404544 in operator new[](unsigned long) ??:0
    #1 0x403c43 in main example_UseAfterFree.cc:2
    #2 0x7f7ddabcac4d in __libc_start_main ??:0
==9442== ABORTING





If that does not work for you (e.g. your process is sandboxed), you can use a
separate script to symbolize the result offline (online symbolization can be
force disabled by setting ASAN_OPTIONS=symbolize=0):

% ASAN_OPTIONS=symbolize=0 ./a.out 2> log
% projects/compiler-rt/lib/asan/scripts/asan_symbolize.py / < log | c++filt
==9442== ERROR: AddressSanitizer heap-use-after-free on address 0x7f7ddab8c084 at pc 0x403c8c bp 0x7fff87fb82d0 sp 0x7fff87fb82c8
READ of size 4 at 0x7f7ddab8c084 thread T0
    #0 0x403c8c in main example_UseAfterFree.cc:4
    #1 0x7f7ddabcac4d in __libc_start_main ??:0
...





Note that on OS X you may need to run dsymutil on your binary to have the
file:line info in the AddressSanitizer reports.




Additional Checks


Initialization order checking

AddressSanitizer can optionally detect dynamic initialization order problems,
when initialization of globals defined in one translation unit uses
globals defined in another translation unit. To enable this check at runtime,
you should set environment variable
ASAN_OPTIONS=check_initialization_order=1.

Note that this option is not supported on OS X.




Memory leak detection

For more information on leak detector in AddressSanitizer, see
LeakSanitizer. The leak detection is turned on by default on Linux;
however, it is not yet supported on other platforms.






Issue Suppression

AddressSanitizer is not expected to produce false positives. If you see one,
look again; most likely it is a true positive!


Suppressing Reports in External Libraries

Runtime interposition allows AddressSanitizer to find bugs in code that is
not being recompiled. If you run into an issue in external libraries, we
recommend immediately reporting it to the library maintainer so that it
gets addressed. However, you can use the following suppression mechanism
to unblock yourself and continue on with the testing. This suppression
mechanism should only be used for suppressing issues in external code; it
does not work on code recompiled with AddressSanitizer. To suppress errors
in external libraries, set the ASAN_OPTIONS environment variable to point
to a suppression file. You can either specify the full path to the file or the
path of the file relative to the location of your executable.

ASAN_OPTIONS=suppressions=MyASan.supp





Use the following format to specify the names of the functions or libraries
you want to suppress. You can see these in the error report. Remember that
the narrower the scope of the suppression, the more bugs you will be able to
catch.

interceptor_via_fun:NameOfCFunctionToSuppress
interceptor_via_fun:-[ClassName objCMethodToSuppress:]
interceptor_via_lib:NameOfTheLibraryToSuppress








Conditional Compilation with __has_feature(address_sanitizer)

In some cases one may need to execute different code depending on whether
AddressSanitizer is enabled.
__has_feature can be used for
this purpose.

#if defined(__has_feature)
#  if __has_feature(address_sanitizer)
// code that builds only under AddressSanitizer
#  endif
#endif








Disabling Instrumentation with __attribute__((no_sanitize("address")))

Some code should not be instrumented by AddressSanitizer. One may use the
function attribute __attribute__((no_sanitize("address")))
(which has deprecated synonyms
no_sanitize_address and
no_address_safety_analysis) to disable instrumentation of a particular
function. This attribute may not be supported by other compilers, so we suggest
to use it together with __has_feature(address_sanitizer).




Suppressing Errors in Recompiled Code (Blacklist)

AddressSanitizer supports src and fun entity types in
Sanitizer special case list, that can be used to suppress error reports
in the specified source files or functions. Additionally, AddressSanitizer
introduces global and type entity types that can be used to
suppress error reports for out-of-bound access to globals with certain
names and types (you may only specify class or struct types).

You may use an init category to suppress reports about initialization-order
problems happening in certain source files or with certain global variables.

# Suppress error reports for code in a file or in a function:
src:bad_file.cpp
# Ignore all functions with names containing MyFooBar:
fun:*MyFooBar*
# Disable out-of-bound checks for global:
global:bad_array
# Disable out-of-bound checks for global instances of a given class ...
type:Namespace::BadClassName
# ... or a given struct. Use wildcard to deal with anonymous namespace.
type:Namespace2::*::BadStructName
# Disable initialization-order checks for globals:
global:bad_init_global=init
type:*BadInitClassSubstring*=init
src:bad/init/files/*=init










Limitations


	AddressSanitizer uses more real memory than a native run. Exact overhead
depends on the allocations sizes. The smaller the allocations you make the
bigger the overhead is.

	AddressSanitizer uses more stack memory. We have seen up to 3x increase.

	On 64-bit platforms AddressSanitizer maps (but not reserves) 16+ Terabytes of
virtual address space. This means that tools like ulimit may not work as
usually expected.

	Static linking is not supported.






Supported Platforms

AddressSanitizer is supported on:


	Linux i386/x86_64 (tested on Ubuntu 12.04)

	OS X 10.7 - 10.11 (i386/x86_64)

	iOS Simulator

	Android ARM

	FreeBSD i386/x86_64 (tested on FreeBSD 11-current)



Ports to various other platforms are in progress.




Current Status

AddressSanitizer is fully functional on supported platforms starting from LLVM
3.1. The test suite is integrated into CMake build and can be run with make
check-asan command.




More Information

http://code.google.com/p/address-sanitizer [http://code.google.com/p/address-sanitizer/]







          

      

      

    

  

    
      
          
            
  
ThreadSanitizer


Introduction

ThreadSanitizer is a tool that detects data races.  It consists of a compiler
instrumentation module and a run-time library.  Typical slowdown introduced by
ThreadSanitizer is about 5x-15x.  Typical memory overhead introduced by
ThreadSanitizer is about 5x-10x.




How to build

Build LLVM/Clang with CMake [http://llvm.org/docs/CMake.html].




Supported Platforms

ThreadSanitizer is supported on Linux x86_64 (tested on Ubuntu 12.04).
Support for other 64-bit architectures is possible, contributions are welcome.
Support for 32-bit platforms is problematic and is not planned.




Usage

Simply compile and link your program with -fsanitize=thread.  To get a
reasonable performance add -O1 or higher.  Use -g to get file names
and line numbers in the warning messages.

Example:

% cat projects/compiler-rt/lib/tsan/lit_tests/tiny_race.c
#include <pthread.h>
int Global;
void *Thread1(void *x) {
  Global = 42;
  return x;
}
int main() {
  pthread_t t;
  pthread_create(&t, NULL, Thread1, NULL);
  Global = 43;
  pthread_join(t, NULL);
  return Global;
}

$ clang -fsanitize=thread -g -O1 tiny_race.c





If a bug is detected, the program will print an error message to stderr.
Currently, ThreadSanitizer symbolizes its output using an external
addr2line process (this will be fixed in future).

% ./a.out
WARNING: ThreadSanitizer: data race (pid=19219)
  Write of size 4 at 0x7fcf47b21bc0 by thread T1:
    #0 Thread1 tiny_race.c:4 (exe+0x00000000a360)

  Previous write of size 4 at 0x7fcf47b21bc0 by main thread:
    #0 main tiny_race.c:10 (exe+0x00000000a3b4)

  Thread T1 (running) created at:
    #0 pthread_create tsan_interceptors.cc:705 (exe+0x00000000c790)
    #1 main tiny_race.c:9 (exe+0x00000000a3a4)








__has_feature(thread_sanitizer)

In some cases one may need to execute different code depending on whether
ThreadSanitizer is enabled.
__has_feature can be used for
this purpose.

#if defined(__has_feature)
#  if __has_feature(thread_sanitizer)
// code that builds only under ThreadSanitizer
#  endif
#endif








__attribute__((no_sanitize_thread))

Some code should not be instrumented by ThreadSanitizer.
One may use the function attribute
no_sanitize_thread
to disable instrumentation of plain (non-atomic) loads/stores in a particular function.
ThreadSanitizer still instruments such functions to avoid false positives and
provide meaningful stack traces.
This attribute may not be
supported by other compilers, so we suggest to use it together with
__has_feature(thread_sanitizer).




Blacklist

ThreadSanitizer supports src and fun entity types in
Sanitizer special case list, that can be used to suppress data race reports in
the specified source files or functions. Unlike functions marked with
no_sanitize_thread attribute,
blacklisted functions are not instrumented at all. This can lead to false positives
due to missed synchronization via atomic operations and missed stack frames in reports.




Limitations


	ThreadSanitizer uses more real memory than a native run. At the default
settings the memory overhead is 5x plus 1Mb per each thread. Settings with 3x
(less accurate analysis) and 9x (more accurate analysis) overhead are also
available.

	ThreadSanitizer maps (but does not reserve) a lot of virtual address space.
This means that tools like ulimit may not work as usually expected.

	Libc/libstdc++ static linking is not supported.

	Non-position-independent executables are not supported.  Therefore, the
fsanitize=thread flag will cause Clang to act as though the -fPIE
flag had been supplied if compiling without -fPIC, and as though the
-pie flag had been supplied if linking an executable.






Current Status

ThreadSanitizer is in beta stage.  It is known to work on large C++ programs
using pthreads, but we do not promise anything (yet).  C++11 threading is
supported with llvm libc++.  The test suite is integrated into CMake build
and can be run with make check-tsan command.

We are actively working on enhancing the tool — stay tuned.  Any help,
especially in the form of minimized standalone tests is more than welcome.




More Information

http://code.google.com/p/thread-sanitizer [http://code.google.com/p/thread-sanitizer/].







          

      

      

    

  

    
      
          
            
  
MemorySanitizer



	Introduction

	How to build

	Usage
	__has_feature(memory_sanitizer)

	__attribute__((no_sanitize_memory))

	Blacklist





	Report symbolization

	Origin Tracking

	Handling external code

	Supported Platforms

	Limitations

	Current Status

	More Information






Introduction

MemorySanitizer is a detector of uninitialized reads. It consists of a
compiler instrumentation module and a run-time library.

Typical slowdown introduced by MemorySanitizer is 3x.




How to build

Build LLVM/Clang with CMake [http://llvm.org/docs/CMake.html].




Usage

Simply compile and link your program with -fsanitize=memory flag.
The MemorySanitizer run-time library should be linked to the final
executable, so make sure to use clang (not ld) for the final
link step. When linking shared libraries, the MemorySanitizer run-time
is not linked, so -Wl,-z,defs may cause link errors (don’t use it
with MemorySanitizer). To get a reasonable performance add -O1 or
higher. To get meaninful stack traces in error messages add
-fno-omit-frame-pointer. To get perfect stack traces you may need
to disable inlining (just use -O1) and tail call elimination
(-fno-optimize-sibling-calls).

% cat umr.cc
#include <stdio.h>

int main(int argc, char** argv) {
  int* a = new int[10];
  a[5] = 0;
  if (a[argc])
    printf("xx\n");
  return 0;
}

% clang -fsanitize=memory -fno-omit-frame-pointer -g -O2 umr.cc





If a bug is detected, the program will print an error message to
stderr and exit with a non-zero exit code. Currently, MemorySanitizer
does not symbolize its output by default, so you may need to use a
separate script to symbolize the result offline (this will be fixed in
future).

% ./a.out
WARNING: MemorySanitizer: use-of-uninitialized-value
    #0 0x7f45944b418a in main umr.cc:6
    #1 0x7f45938b676c in __libc_start_main libc-start.c:226





By default, MemorySanitizer exits on the first detected error.


__has_feature(memory_sanitizer)

In some cases one may need to execute different code depending on
whether MemorySanitizer is enabled. __has_feature can be used for this purpose.

#if defined(__has_feature)
#  if __has_feature(memory_sanitizer)
// code that builds only under MemorySanitizer
#  endif
#endif








__attribute__((no_sanitize_memory))

Some code should not be checked by MemorySanitizer.
One may use the function attribute
no_sanitize_memory
to disable uninitialized checks in a particular function.
MemorySanitizer may still instrument such functions to avoid false positives.
This attribute may not be
supported by other compilers, so we suggest to use it together with
__has_feature(memory_sanitizer).




Blacklist

MemorySanitizer supports src and fun entity types in
Sanitizer special case list, that can be used to relax MemorySanitizer
checks for certain source files and functions. All “Use of uninitialized value”
warnings will be suppressed and all values loaded from memory will be
considered fully initialized.






Report symbolization

MemorySanitizer uses an external symbolizer to print files and line numbers in
reports. Make sure that llvm-symbolizer binary is in PATH,
or set environment variable MSAN_SYMBOLIZER_PATH to point to it.




Origin Tracking

MemorySanitizer can track origins of unitialized values, similar to
Valgrind’s –track-origins option. This feature is enabled by
-fsanitize-memory-track-origins=2 (or simply
-fsanitize-memory-track-origins) Clang option. With the code from
the example above,

% cat umr2.cc
#include <stdio.h>

int main(int argc, char** argv) {
  int* a = new int[10];
  a[5] = 0;
  volatile int b = a[argc];
  if (b)
    printf("xx\n");
  return 0;
}

% clang -fsanitize=memory -fsanitize-memory-track-origins=2 -fno-omit-frame-pointer -g -O2 umr2.cc
% ./a.out
WARNING: MemorySanitizer: use-of-uninitialized-value
    #0 0x7f7893912f0b in main umr2.cc:7
    #1 0x7f789249b76c in __libc_start_main libc-start.c:226

  Uninitialized value was stored to memory at
    #0 0x7f78938b5c25 in __msan_chain_origin msan.cc:484
    #1 0x7f7893912ecd in main umr2.cc:6

  Uninitialized value was created by a heap allocation
    #0 0x7f7893901cbd in operator new[](unsigned long) msan_new_delete.cc:44
    #1 0x7f7893912e06 in main umr2.cc:4





By default, MemorySanitizer collects both allocation points and all
intermediate stores the uninitialized value went through.  Origin
tracking has proved to be very useful for debugging MemorySanitizer
reports. It slows down program execution by a factor of 1.5x-2x on top
of the usual MemorySanitizer slowdown.

Clang option -fsanitize-memory-track-origins=1 enabled a slightly
faster mode when MemorySanitizer collects only allocation points but
not intermediate stores.




Handling external code

MemorySanitizer requires that all program code is instrumented. This
also includes any libraries that the program depends on, even libc.
Failing to achieve this may result in false reports.

Full MemorySanitizer instrumentation is very difficult to achieve. To
make it easier, MemorySanitizer runtime library includes 70+
interceptors for the most common libc functions. They make it possible
to run MemorySanitizer-instrumented programs linked with
uninstrumented libc. For example, the authors were able to bootstrap
MemorySanitizer-instrumented Clang compiler by linking it with
self-built instrumented libc++ (as a replacement for libstdc++).




Supported Platforms

MemorySanitizer is supported on


	Linux x86_64 (tested on Ubuntu 12.04);






Limitations


	MemorySanitizer uses 2x more real memory than a native run, 3x with
origin tracking.

	MemorySanitizer maps (but not reserves) 64 Terabytes of virtual
address space. This means that tools like ulimit may not work as
usually expected.

	Static linking is not supported.

	Non-position-independent executables are not supported.  Therefore, the
fsanitize=memory flag will cause Clang to act as though the -fPIE
flag had been supplied if compiling without -fPIC, and as though the
-pie flag had been supplied if linking an executable.

	Depending on the version of Linux kernel, running without ASLR may
be not supported. Note that GDB disables ASLR by default. To debug
instrumented programs, use “set disable-randomization off”.






Current Status

MemorySanitizer is an experimental tool. It is known to work on large
real-world programs, like Clang/LLVM itself.




More Information

http://code.google.com/p/memory-sanitizer [http://code.google.com/p/memory-sanitizer/]







          

      

      

    

  

    
      
          
            
  
DataFlowSanitizer






	Introduction

	Usage
	ABI List





	Example

	Current status

	Design






Introduction

DataFlowSanitizer is a generalised dynamic data flow analysis.

Unlike other Sanitizer tools, this tool is not designed to detect a
specific class of bugs on its own.  Instead, it provides a generic
dynamic data flow analysis framework to be used by clients to help
detect application-specific issues within their own code.




Usage

With no program changes, applying DataFlowSanitizer to a program
will not alter its behavior.  To use DataFlowSanitizer, the program
uses API functions to apply tags to data to cause it to be tracked, and to
check the tag of a specific data item.  DataFlowSanitizer manages
the propagation of tags through the program according to its data flow.

The APIs are defined in the header file sanitizer/dfsan_interface.h.
For further information about each function, please refer to the header
file.


ABI List

DataFlowSanitizer uses a list of functions known as an ABI list to decide
whether a call to a specific function should use the operating system’s native
ABI or whether it should use a variant of this ABI that also propagates labels
through function parameters and return values.  The ABI list file also controls
how labels are propagated in the former case.  DataFlowSanitizer comes with a
default ABI list which is intended to eventually cover the glibc library on
Linux but it may become necessary for users to extend the ABI list in cases
where a particular library or function cannot be instrumented (e.g. because
it is implemented in assembly or another language which DataFlowSanitizer does
not support) or a function is called from a library or function which cannot
be instrumented.

DataFlowSanitizer’s ABI list file is a Sanitizer special case list.
The pass treats every function in the uninstrumented category in the
ABI list file as conforming to the native ABI.  Unless the ABI list contains
additional categories for those functions, a call to one of those functions
will produce a warning message, as the labelling behavior of the function
is unknown.  The other supported categories are discard, functional
and custom.


	discard – To the extent that this function writes to (user-accessible)
memory, it also updates labels in shadow memory (this condition is trivially
satisfied for functions which do not write to user-accessible memory).  Its
return value is unlabelled.

	functional – Like discard, except that the label of its return value
is the union of the label of its arguments.

	custom – Instead of calling the function, a custom wrapper __dfsw_F
is called, where F is the name of the function.  This function may wrap
the original function or provide its own implementation.  This category is
generally used for uninstrumentable functions which write to user-accessible
memory or which have more complex label propagation behavior.  The signature
of __dfsw_F is based on that of F with each argument having a
label of type dfsan_label appended to the argument list.  If F
is of non-void return type a final argument of type dfsan_label *
is appended to which the custom function can store the label for the
return value.  For example:



void f(int x);
void __dfsw_f(int x, dfsan_label x_label);

void *memcpy(void *dest, const void *src, size_t n);
void *__dfsw_memcpy(void *dest, const void *src, size_t n,
                    dfsan_label dest_label, dfsan_label src_label,
                    dfsan_label n_label, dfsan_label *ret_label);





If a function defined in the translation unit being compiled belongs to the
uninstrumented category, it will be compiled so as to conform to the
native ABI.  Its arguments will be assumed to be unlabelled, but it will
propagate labels in shadow memory.

For example:

# main is called by the C runtime using the native ABI.
fun:main=uninstrumented
fun:main=discard

# malloc only writes to its internal data structures, not user-accessible memory.
fun:malloc=uninstrumented
fun:malloc=discard

# tolower is a pure function.
fun:tolower=uninstrumented
fun:tolower=functional

# memcpy needs to copy the shadow from the source to the destination region.
# This is done in a custom function.
fun:memcpy=uninstrumented
fun:memcpy=custom










Example

The following program demonstrates label propagation by checking that
the correct labels are propagated.

#include <sanitizer/dfsan_interface.h>
#include <assert.h>

int main(void) {
  int i = 1;
  dfsan_label i_label = dfsan_create_label("i", 0);
  dfsan_set_label(i_label, &i, sizeof(i));

  int j = 2;
  dfsan_label j_label = dfsan_create_label("j", 0);
  dfsan_set_label(j_label, &j, sizeof(j));

  int k = 3;
  dfsan_label k_label = dfsan_create_label("k", 0);
  dfsan_set_label(k_label, &k, sizeof(k));

  dfsan_label ij_label = dfsan_get_label(i + j);
  assert(dfsan_has_label(ij_label, i_label));
  assert(dfsan_has_label(ij_label, j_label));
  assert(!dfsan_has_label(ij_label, k_label));

  dfsan_label ijk_label = dfsan_get_label(i + j + k);
  assert(dfsan_has_label(ijk_label, i_label));
  assert(dfsan_has_label(ijk_label, j_label));
  assert(dfsan_has_label(ijk_label, k_label));

  return 0;
}








Current status

DataFlowSanitizer is a work in progress, currently under development for
x86_64 Linux.




Design

Please refer to the design document.







          

      

      

    

  

    
      
          
            
  
DataFlowSanitizer Design Document

This document sets out the design for DataFlowSanitizer, a general
dynamic data flow analysis.  Unlike other Sanitizer tools, this tool is
not designed to detect a specific class of bugs on its own. Instead,
it provides a generic dynamic data flow analysis framework to be used
by clients to help detect application-specific issues within their
own code.

DataFlowSanitizer is a program instrumentation which can associate
a number of taint labels with any data stored in any memory region
accessible by the program. The analysis is dynamic, which means that
it operates on a running program, and tracks how the labels propagate
through that program. The tool shall support a large (>100) number
of labels, such that programs which operate on large numbers of data
items may be analysed with each data item being tracked separately.


Use Cases

This instrumentation can be used as a tool to help monitor how data
flows from a program’s inputs (sources) to its outputs (sinks).
This has applications from a privacy/security perspective in that
one can audit how a sensitive data item is used within a program and
ensure it isn’t exiting the program anywhere it shouldn’t be.




Interface

A number of functions are provided which will create taint labels,
attach labels to memory regions and extract the set of labels
associated with a specific memory region. These functions are declared
in the header file sanitizer/dfsan_interface.h.

/// Creates and returns a base label with the given description and user data.
dfsan_label dfsan_create_label(const char *desc, void *userdata);

/// Sets the label for each address in [addr,addr+size) to \c label.
void dfsan_set_label(dfsan_label label, void *addr, size_t size);

/// Sets the label for each address in [addr,addr+size) to the union of the
/// current label for that address and \c label.
void dfsan_add_label(dfsan_label label, void *addr, size_t size);

/// Retrieves the label associated with the given data.
///
/// The type of 'data' is arbitrary.  The function accepts a value of any type,
/// which can be truncated or extended (implicitly or explicitly) as necessary.
/// The truncation/extension operations will preserve the label of the original
/// value.
dfsan_label dfsan_get_label(long data);

/// Retrieves a pointer to the dfsan_label_info struct for the given label.
const struct dfsan_label_info *dfsan_get_label_info(dfsan_label label);

/// Returns whether the given label label contains the label elem.
int dfsan_has_label(dfsan_label label, dfsan_label elem);

/// If the given label label contains a label with the description desc, returns
/// that label, else returns 0.
dfsan_label dfsan_has_label_with_desc(dfsan_label label, const char *desc);








Taint label representation

As stated above, the tool must track a large number of taint
labels. This poses an implementation challenge, as most multiple-label
tainting systems assign one label per bit to shadow storage, and
union taint labels using a bitwise or operation. This will not scale
to clients which use hundreds or thousands of taint labels, as the
label union operation becomes O(n) in the number of supported labels,
and data associated with it will quickly dominate the live variable
set, causing register spills and hampering performance.

Instead, a low overhead approach is proposed which is best-case O(log2 n) during execution. The underlying assumption is that
the required space of label unions is sparse, which is a reasonable
assumption to make given that we are optimizing for the case where
applications mostly copy data from one place to another, without often
invoking the need for an actual union operation. The representation
of a taint label is a 16-bit integer, and new labels are allocated
sequentially from a pool. The label identifier 0 is special, and means
that the data item is unlabelled.

When a label union operation is requested at a join point (any
arithmetic or logical operation with two or more operands, such as
addition), the code checks whether a union is required, whether the
same union has been requested before, and whether one union label
subsumes the other. If so, it returns the previously allocated union
label. If not, it allocates a new union label from the same pool used
for new labels.

Specifically, the instrumentation pass will insert code like this
to decide the union label lu for a pair of labels l1
and l2:

if (l1 == l2)
  lu = l1;
else
  lu = __dfsan_union(l1, l2);





The equality comparison is outlined, to provide an early exit in
the common cases where the program is processing unlabelled data, or
where the two data items have the same label.  __dfsan_union is
a runtime library function which performs all other union computation.

Further optimizations are possible, for example if l1 is known
at compile time to be zero (e.g. it is derived from a constant),
l2 can be used for lu, and vice versa.




Memory layout and label management

The following is the current memory layout for Linux/x86_64:








	Start
	End
	Use




	0x700000008000
	0x800000000000
	application memory


	0x200200000000
	0x700000008000
	unused


	0x200000000000
	0x200200000000
	union table


	0x000000010000
	0x200000000000
	shadow memory


	0x000000000000
	0x000000010000
	reserved by kernel





Each byte of application memory corresponds to two bytes of shadow
memory, which are used to store its taint label. As for LLVM SSA
registers, we have not found it necessary to associate a label with
each byte or bit of data, as some other tools do. Instead, labels are
associated directly with registers.  Loads will result in a union of
all shadow labels corresponding to bytes loaded (which most of the
time will be short circuited by the initial comparison) and stores will
result in a copy of the label to the shadow of all bytes stored to.




Propagating labels through arguments

In order to propagate labels through function arguments and return values,
DataFlowSanitizer changes the ABI of each function in the translation unit.
There are currently two supported ABIs:


	Args – Argument and return value labels are passed through additional
arguments and by modifying the return type.

	TLS – Argument and return value labels are passed through TLS variables
__dfsan_arg_tls and __dfsan_retval_tls.



The main advantage of the TLS ABI is that it is more tolerant of ABI mismatches
(TLS storage is not shared with any other form of storage, whereas extra
arguments may be stored in registers which under the native ABI are not used
for parameter passing and thus could contain arbitrary values).  On the other
hand the args ABI is more efficient and allows ABI mismatches to be more easily
identified by checking for nonzero labels in nominally unlabelled programs.




Implementing the ABI list

The ABI list provides a list of functions
which conform to the native ABI, each of which is callable from an instrumented
program.  This is implemented by replacing each reference to a native ABI
function with a reference to a function which uses the instrumented ABI.
Such functions are automatically-generated wrappers for the native functions.
For example, given the ABI list example provided in the user manual, the
following wrappers will be generated under the args ABI:

define linkonce_odr { i8*, i16 } @"dfsw$malloc"(i64 %0, i16 %1) {
entry:
  %2 = call i8* @malloc(i64 %0)
  %3 = insertvalue { i8*, i16 } undef, i8* %2, 0
  %4 = insertvalue { i8*, i16 } %3, i16 0, 1
  ret { i8*, i16 } %4
}

define linkonce_odr { i32, i16 } @"dfsw$tolower"(i32 %0, i16 %1) {
entry:
  %2 = call i32 @tolower(i32 %0)
  %3 = insertvalue { i32, i16 } undef, i32 %2, 0
  %4 = insertvalue { i32, i16 } %3, i16 %1, 1
  ret { i32, i16 } %4
}

define linkonce_odr { i8*, i16 } @"dfsw$memcpy"(i8* %0, i8* %1, i64 %2, i16 %3, i16 %4, i16 %5) {
entry:
  %labelreturn = alloca i16
  %6 = call i8* @__dfsw_memcpy(i8* %0, i8* %1, i64 %2, i16 %3, i16 %4, i16 %5, i16* %labelreturn)
  %7 = load i16* %labelreturn
  %8 = insertvalue { i8*, i16 } undef, i8* %6, 0
  %9 = insertvalue { i8*, i16 } %8, i16 %7, 1
  ret { i8*, i16 } %9
}





As an optimization, direct calls to native ABI functions will call the
native ABI function directly and the pass will compute the appropriate label
internally.  This has the advantage of reducing the number of union operations
required when the return value label is known to be zero (i.e. discard
functions, or functional functions with known unlabelled arguments).




Checking ABI Consistency

DFSan changes the ABI of each function in the module.  This makes it possible
for a function with the native ABI to be called with the instrumented ABI,
or vice versa, thus possibly invoking undefined behavior.  A simple way
of statically detecting instances of this problem is to prepend the prefix
“dfs$” to the name of each instrumented-ABI function.

This will not catch every such problem; in particular function pointers passed
across the instrumented-native barrier cannot be used on the other side.
These problems could potentially be caught dynamically.







          

      

      

    

  

    
      
          
            
  
LeakSanitizer



	Introduction

	Current status

	More Information






Introduction

LeakSanitizer is a run-time memory leak detector. It can be combined with
AddressSanitizer to get both memory error and leak detection.
LeakSanitizer does not introduce any additional slowdown when used in this mode.
The LeakSanitizer runtime can also be linked in separately to get leak detection
only, at a minimal performance cost.




Current status

LeakSanitizer is turned on by default, but it is only supported on x86_64
Linux.

The combined mode has been tested on fairly large software projects. The
stand-alone mode has received much less testing.

There are plans to support LeakSanitizer in MemorySanitizer builds.




More Information

https://code.google.com/p/address-sanitizer/wiki/LeakSanitizer







          

      

      

    

  

    
      
          
            
  
SanitizerCoverage



	Introduction

	How to build and run

	Postprocessing

	How good is the coverage?

	Edge coverage

	Bitset

	Caller-callee coverage

	Coverage counters

	Output directory

	Sudden death

	In-process fuzzing

	Performance

	Why another coverage?






Introduction

Sanitizer tools have a very simple code coverage tool built in. It allows to
get function-level, basic-block-level, and edge-level coverage at a very low
cost.




How to build and run

SanitizerCoverage can be used with AddressSanitizer,
LeakSanitizer, MemorySanitizer, and UndefinedBehaviorSanitizer.
In addition to -fsanitize=, pass one of the following compile-time flags:


	-fsanitize-coverage=func for function-level coverage (very fast).

	-fsanitize-coverage=bb for basic-block-level coverage (may add up to 30%
extra slowdown).

	-fsanitize-coverage=edge for edge-level coverage (up to 40% slowdown).



You may also specify -fsanitize-coverage=indirect-calls for
additional caller-callee coverage.

At run time, pass coverage=1 in ASAN_OPTIONS, LSAN_OPTIONS,
MSAN_OPTIONS or UBSAN_OPTIONS, as appropriate.

To get Coverage counters, add -fsanitize-coverage=8bit-counters
to one of the above compile-time flags. At runtime, use
*SAN_OPTIONS=coverage=1:coverage_counters=1.

Example:

% cat -n cov.cc
     1  #include <stdio.h>
     2  __attribute__((noinline))
     3  void foo() { printf("foo\n"); }
     4
     5  int main(int argc, char **argv) {
     6    if (argc == 2)
     7      foo();
     8    printf("main\n");
     9  }
% clang++ -g cov.cc -fsanitize=address -fsanitize-coverage=func
% ASAN_OPTIONS=coverage=1 ./a.out; ls -l *sancov
main
-rw-r----- 1 kcc eng 4 Nov 27 12:21 a.out.22673.sancov
% ASAN_OPTIONS=coverage=1 ./a.out foo ; ls -l *sancov
foo
main
-rw-r----- 1 kcc eng 4 Nov 27 12:21 a.out.22673.sancov
-rw-r----- 1 kcc eng 8 Nov 27 12:21 a.out.22679.sancov





Every time you run an executable instrumented with SanitizerCoverage
one *.sancov file is created during the process shutdown.
If the executable is dynamically linked against instrumented DSOs,
one *.sancov file will be also created for every DSO.




Postprocessing

The format of *.sancov files is very simple: the first 8 bytes is the magic,
one of 0xC0BFFFFFFFFFFF64 and 0xC0BFFFFFFFFFFF32. The last byte of the
magic defines the size of the following offsets. The rest of the data is the
offsets in the corresponding binary/DSO that were executed during the run.

A simple script
$LLVM/projects/compiler-rt/lib/sanitizer_common/scripts/sancov.py is
provided to dump these offsets.

% sancov.py print a.out.22679.sancov a.out.22673.sancov
sancov.py: read 2 PCs from a.out.22679.sancov
sancov.py: read 1 PCs from a.out.22673.sancov
sancov.py: 2 files merged; 2 PCs total
0x465250
0x4652a0





You can then filter the output of sancov.py through addr2line --exe
ObjectFile or llvm-symbolizer --obj ObjectFile to get file names and line
numbers:

% sancov.py print a.out.22679.sancov a.out.22673.sancov 2> /dev/null | llvm-symbolizer --obj a.out
cov.cc:3
cov.cc:5








How good is the coverage?

It is possible to find out which PCs are not covered, by subtracting the covered
set from the set of all instrumented PCs. The latter can be obtained by listing
all callsites of __sanitizer_cov() in the binary. On Linux, sancov.py
can do this for you. Just supply the path to binary and a list of covered PCs:

% sancov.py print a.out.12345.sancov > covered.txt
sancov.py: read 2 64-bit PCs from a.out.12345.sancov
sancov.py: 1 file merged; 2 PCs total
% sancov.py missing a.out < covered.txt
sancov.py: found 3 instrumented PCs in a.out
sancov.py: read 2 PCs from stdin
sancov.py: 1 PCs missing from coverage
0x4cc61c








Edge coverage

Consider this code:

void foo(int *a) {
  if (a)
    *a = 0;
}





It contains 3 basic blocks, let’s name them A, B, C:

A
|\
| \
|  B
| /
|/
C





If blocks A, B, and C are all covered we know for certain that the edges A=>B
and B=>C were executed, but we still don’t know if the edge A=>C was executed.
Such edges of control flow graph are called
critical [http://en.wikipedia.org/wiki/Control_flow_graph#Special_edges]. The
edge-level coverage (-fsanitize-coverage=edge) simply splits all critical
edges by introducing new dummy blocks and then instruments those blocks:

A
|\
| \
D  B
| /
|/
C








Bitset

When coverage_bitset=1 run-time flag is given, the coverage will also be
dumped as a bitset (text file with 1 for blocks that have been executed and 0
for blocks that were not).

% clang++ -fsanitize=address -fsanitize-coverage=edge cov.cc
% ASAN_OPTIONS="coverage=1:coverage_bitset=1" ./a.out
main
% ASAN_OPTIONS="coverage=1:coverage_bitset=1" ./a.out 1
foo
main
% head *bitset*
==> a.out.38214.bitset-sancov <==
01101
==> a.out.6128.bitset-sancov <==
11011%





For a given executable the length of the bitset is always the same (well,
unless dlopen/dlclose come into play), so the bitset coverage can be
easily used for bitset-based corpus distillation.




Caller-callee coverage

(Experimental!)
Every indirect function call is instrumented with a run-time function call that
captures caller and callee.  At the shutdown time the process dumps a separate
file called caller-callee.PID.sancov which contains caller/callee pairs as
pairs of lines (odd lines are callers, even lines are callees)

a.out 0x4a2e0c
a.out 0x4a6510
a.out 0x4a2e0c
a.out 0x4a87f0





Current limitations:


	Only the first 14 callees for every caller are recorded, the rest are silently
ignored.

	The output format is not very compact since caller and callee may reside in
different modules and we need to spell out the module names.

	The routine that dumps the output is not optimized for speed

	Only Linux x86_64 is tested so far.

	Sandboxes are not supported.






Coverage counters

This experimental feature is inspired by
AFL [http://lcamtuf.coredump.cx/afl/technical_details.txt]‘s coverage
instrumentation. With additional compile-time and run-time flags you can get
more sensitive coverage information.  In addition to boolean values assigned to
every basic block (edge) the instrumentation will collect imprecise counters.
On exit, every counter will be mapped to a 8-bit bitset representing counter
ranges: 1, 2, 3, 4-7, 8-15, 16-31, 32-127, 128+ and those 8-bit bitsets will
be dumped to disk.

% clang++ -g cov.cc -fsanitize=address -fsanitize-coverage=edge,8bit-counters
% ASAN_OPTIONS="coverage=1:coverage_counters=1" ./a.out
% ls -l *counters-sancov
... a.out.17110.counters-sancov
% xxd *counters-sancov
0000000: 0001 0100 01





These counters may also be used for in-process coverage-guided fuzzers. See
include/sanitizer/coverage_interface.h:

// The coverage instrumentation may optionally provide imprecise counters.
// Rather than exposing the counter values to the user we instead map
// the counters to a bitset.
// Every counter is associated with 8 bits in the bitset.
// We define 8 value ranges: 1, 2, 3, 4-7, 8-15, 16-31, 32-127, 128+
// The i-th bit is set to 1 if the counter value is in the i-th range.
// This counter-based coverage implementation is *not* thread-safe.

// Returns the number of registered coverage counters.
uintptr_t __sanitizer_get_number_of_counters();
// Updates the counter 'bitset', clears the counters and returns the number of
// new bits in 'bitset'.
// If 'bitset' is nullptr, only clears the counters.
// Otherwise 'bitset' should be at least
// __sanitizer_get_number_of_counters bytes long and 8-aligned.
uintptr_t
__sanitizer_update_counter_bitset_and_clear_counters(uint8_t *bitset);








Output directory

By default, .sancov files are created in the current working directory.
This can be changed with ASAN_OPTIONS=coverage_dir=/path:

% ASAN_OPTIONS="coverage=1:coverage_dir=/tmp/cov" ./a.out foo
% ls -l /tmp/cov/*sancov
-rw-r----- 1 kcc eng 4 Nov 27 12:21 a.out.22673.sancov
-rw-r----- 1 kcc eng 8 Nov 27 12:21 a.out.22679.sancov








Sudden death

Normally, coverage data is collected in memory and saved to disk when the
program exits (with an atexit() handler), when a SIGSEGV is caught, or when
__sanitizer_cov_dump() is called.

If the program ends with a signal that ASan does not handle (or can not handle
at all, like SIGKILL), coverage data will be lost. This is a big problem on
Android, where SIGKILL is a normal way of evicting applications from memory.

With ASAN_OPTIONS=coverage=1:coverage_direct=1 coverage data is written to a
memory-mapped file as soon as it collected.

% ASAN_OPTIONS="coverage=1:coverage_direct=1" ./a.out
main
% ls
7036.sancov.map  7036.sancov.raw  a.out
% sancov.py rawunpack 7036.sancov.raw
sancov.py: reading map 7036.sancov.map
sancov.py: unpacking 7036.sancov.raw
writing 1 PCs to a.out.7036.sancov
% sancov.py print a.out.7036.sancov
sancov.py: read 1 PCs from a.out.7036.sancov
sancov.py: 1 files merged; 1 PCs total
0x4b2bae





Note that on 64-bit platforms, this method writes 2x more data than the default,
because it stores full PC values instead of 32-bit offsets.




In-process fuzzing

Coverage data could be useful for fuzzers and sometimes it is preferable to run
a fuzzer in the same process as the code being fuzzed (in-process fuzzer).

You can use __sanitizer_get_total_unique_coverage() from
<sanitizer/coverage_interface.h> which returns the number of currently
covered entities in the program. This will tell the fuzzer if the coverage has
increased after testing every new input.

If a fuzzer finds a bug in the ASan run, you will need to save the reproducer
before exiting the process.  Use __asan_set_death_callback from
<sanitizer/asan_interface.h> to do that.

An example of such fuzzer can be found in the LLVM tree [http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Fuzzer/README.txt?view=markup].




Performance

This coverage implementation is fast. With function-level coverage
(-fsanitize-coverage=func) the overhead is not measurable. With
basic-block-level coverage (-fsanitize-coverage=bb) the overhead varies
between 0 and 25%.












	benchmark
	cov0
	cov1
	diff 0-1
	cov2
	diff 0-2
	diff 1-2




	400.perlbench
	1296.00
	1307.00
	1.01
	1465.00
	1.13
	1.12


	401.bzip2
	858.00
	854.00
	1.00
	1010.00
	1.18
	1.18


	403.gcc
	613.00
	617.00
	1.01
	683.00
	1.11
	1.11


	429.mcf
	605.00
	582.00
	0.96
	610.00
	1.01
	1.05


	445.gobmk
	896.00
	880.00
	0.98
	1050.00
	1.17
	1.19


	456.hmmer
	892.00
	892.00
	1.00
	918.00
	1.03
	1.03


	458.sjeng
	995.00
	1009.00
	1.01
	1217.00
	1.22
	1.21


	462.libquantum
	497.00
	492.00
	0.99
	534.00
	1.07
	1.09


	464.h264ref
	1461.00
	1467.00
	1.00
	1543.00
	1.06
	1.05


	471.omnetpp
	575.00
	590.00
	1.03
	660.00
	1.15
	1.12


	473.astar
	658.00
	652.00
	0.99
	715.00
	1.09
	1.10


	483.xalancbmk
	471.00
	491.00
	1.04
	582.00
	1.24
	1.19


	433.milc
	616.00
	627.00
	1.02
	627.00
	1.02
	1.00


	444.namd
	602.00
	601.00
	1.00
	654.00
	1.09
	1.09


	447.dealII
	630.00
	634.00
	1.01
	653.00
	1.04
	1.03


	450.soplex
	365.00
	368.00
	1.01
	395.00
	1.08
	1.07


	453.povray
	427.00
	434.00
	1.02
	495.00
	1.16
	1.14


	470.lbm
	357.00
	375.00
	1.05
	370.00
	1.04
	0.99


	482.sphinx3
	927.00
	928.00
	1.00
	1000.00
	1.08
	1.08








Why another coverage?


	Why did we implement yet another code coverage?

	
	We needed something that is lightning fast, plays well with
AddressSanitizer, and does not significantly increase the binary size.

	Traditional coverage implementations based in global counters
suffer from contention on counters [https://groups.google.com/forum/#!topic/llvm-dev/cDqYgnxNEhY].













          

      

      

    

  

    
      
          
            
  
Sanitizer special case list



	Introduction

	Goal and usage

	Example

	Format






Introduction

This document describes the way to disable or alter the behavior of
sanitizer tools for certain source-level entities by providing a special
file at compile-time.




Goal and usage

User of sanitizer tools, such as AddressSanitizer, ThreadSanitizer
or MemorySanitizer may want to disable or alter some checks for
certain source-level entities to:


	speedup hot function, which is known to be correct;

	ignore a function that does some low-level magic (e.g. walks through the
thread stack, bypassing the frame boundaries);

	ignore a known problem.



To achieve this, user may create a file listing the entities they want to
ignore, and pass it to clang at compile-time using
-fsanitize-blacklist flag. See Clang Compiler User’s Manual for details.




Example

$ cat foo.c
#include <stdlib.h>
void bad_foo() {
  int *a = (int*)malloc(40);
  a[10] = 1;
}
int main() { bad_foo(); }
$ cat blacklist.txt
# Ignore reports from bad_foo function.
fun:bad_foo
$ clang -fsanitize=address foo.c ; ./a.out
# AddressSanitizer prints an error report.
$ clang -fsanitize=address -fsanitize-blacklist=blacklist.txt foo.c ; ./a.out
# No error report here.








Format

Each line contains an entity type, followed by a colon and a regular
expression, specifying the names of the entities, optionally followed by
an equals sign and a tool-specific category. Empty lines and lines starting
with “#” are ignored. The meanining of * in regular expression for entity
names is different - it is treated as in shell wildcarding. Two generic
entity types are src and fun, which allow user to add, respectively,
source files and functions to special case list. Some sanitizer tools may
introduce custom entity types - refer to tool-specific docs.

# Lines starting with # are ignored.
# Turn off checks for the source file (use absolute path or path relative
# to the current working directory):
src:/path/to/source/file.c
# Turn off checks for a particular functions (use mangled names):
fun:MyFooBar
fun:_Z8MyFooBarv
# Extended regular expressions are supported:
fun:bad_(foo|bar)
src:bad_source[1-9].c
# Shell like usage of * is supported (* is treated as .*):
src:bad/sources/*
fun:*BadFunction*
# Specific sanitizer tools may introduce categories.
src:/special/path/*=special_sources











          

      

      

    

  

    
      
          
            
  
Control Flow Integrity






	Introduction
	Forward-Edge CFI for Virtual Calls
	Performance





	Bad Cast Checking

	Non-Virtual Member Function Call Checking
	Strictness





	Design

	Publications










Introduction

Clang includes an implementation of a number of control flow integrity (CFI)
schemes, which are designed to abort the program upon detecting certain forms
of undefined behavior that can potentially allow attackers to subvert the
program’s control flow. These schemes have been optimized for performance,
allowing developers to enable them in release builds.

To enable Clang’s available CFI schemes, use the flag -fsanitize=cfi.
As currently implemented, CFI relies on link-time optimization (LTO); so it is
required to specify -flto, and the linker used must support LTO, for example
via the gold plugin [http://llvm.org/docs/GoldPlugin.html]. To allow the checks to be implemented efficiently,
the program must be structured such that certain object files are compiled
with CFI enabled, and are statically linked into the program. This may
preclude the use of shared libraries in some cases.

Clang currently implements forward-edge CFI for member function calls and
bad cast checking. More schemes are under development.


Forward-Edge CFI for Virtual Calls

This scheme checks that virtual calls take place using a vptr of the correct
dynamic type; that is, the dynamic type of the called object must be a
derived class of the static type of the object used to make the call.
This CFI scheme can be enabled on its own using -fsanitize=cfi-vcall.

For this scheme to work, all translation units containing the definition
of a virtual member function (whether inline or not) must be compiled
with -fsanitize=cfi-vcall enabled and be statically linked into the
program. Classes in the C++ standard library (under namespace std) are
exempted from checking, and therefore programs may be linked against a
pre-built standard library, but this may change in the future.


Performance

A performance overhead of less than 1% has been measured by running the
Dromaeo benchmark suite against an instrumented version of the Chromium
web browser. Another good performance benchmark for this mechanism is the
virtual-call-heavy SPEC 2006 xalancbmk.

Note that this scheme has not yet been optimized for binary size; an increase
of up to 15% has been observed for Chromium.






Bad Cast Checking

This scheme checks that pointer casts are made to an object of the correct
dynamic type; that is, the dynamic type of the object must be a derived class
of the pointee type of the cast. The checks are currently only introduced
where the class being casted to is a polymorphic class.

Bad casts are not in themselves control flow integrity violations, but they
can also create security vulnerabilities, and the implementation uses many
of the same mechanisms.

There are two types of bad cast that may be forbidden: bad casts
from a base class to a derived class (which can be checked with
-fsanitize=cfi-derived-cast), and bad casts from a pointer of
type void* or another unrelated type (which can be checked with
-fsanitize=cfi-unrelated-cast).

The difference between these two types of casts is that the first is defined
by the C++ standard to produce an undefined value, while the second is not
in itself undefined behavior (it is well defined to cast the pointer back
to its original type).

If a program as a matter of policy forbids the second type of cast, that
restriction can normally be enforced. However it may in some cases be necessary
for a function to perform a forbidden cast to conform with an external API
(e.g. the allocate member function of a standard library allocator). Such
functions may be blacklisted using a Sanitizer special case list.

For this scheme to work, all translation units containing the definition
of a virtual member function (whether inline or not) must be compiled with
-fsanitize=cfi-derived-cast or -fsanitize=cfi-unrelated-cast enabled
and be statically linked into the program. Classes in the C++ standard library
(under namespace std) are exempted from checking, and therefore programs
may be linked against a pre-built standard library, but this may change in
the future.




Non-Virtual Member Function Call Checking

This scheme checks that non-virtual calls take place using an object of
the correct dynamic type; that is, the dynamic type of the called object
must be a derived class of the static type of the object used to make the
call. The checks are currently only introduced where the object is of a
polymorphic class type.  This CFI scheme can be enabled on its own using
-fsanitize=cfi-nvcall.

For this scheme to work, all translation units containing the definition
of a virtual member function (whether inline or not) must be compiled
with -fsanitize=cfi-nvcall enabled and be statically linked into the
program. Classes in the C++ standard library (under namespace std) are
exempted from checking, and therefore programs may be linked against a
pre-built standard library, but this may change in the future.


Strictness

If a class has a single non-virtual base and does not introduce or override
virtual member functions or fields other than an implicitly defined virtual
destructor, it will have the same layout and virtual function semantics as
its base. By default, casts to such classes are checked as if they were made
to the least derived such class.

Casting an instance of a base class to such a derived class is technically
undefined behavior, but it is a relatively common hack for introducing
member functions on class instances with specific properties that works under
most compilers and should not have security implications, so we allow it by
default. It can be disabled with -fsanitize=cfi-cast-strict.






Design

Please refer to the design document.




Publications

Control-Flow Integrity: Principles, Implementations, and Applications [http://research.microsoft.com/pubs/64250/ccs05.pdf].
Martin Abadi, Mihai Budiu, Úlfar Erlingsson, Jay Ligatti.

Enforcing Forward-Edge Control-Flow Integrity in GCC & LLVM [http://www.pcc.me.uk/~peter/acad/usenix14.pdf].
Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway,
Úlfar Erlingsson, Luis Lozano, Geoff Pike.









          

      

      

    

  

    
      
          
            
  
Control Flow Integrity Design Documentation

This page documents the design of the Control Flow Integrity schemes
supported by Clang.


Forward-Edge CFI for Virtual Calls

This scheme works by allocating, for each static type used to make a virtual
call, a region of read-only storage in the object file holding a bit vector
that maps onto to the region of storage used for those virtual tables. Each
set bit in the bit vector corresponds to the address point [https://mentorembedded.github.io/cxx-abi/abi.html#vtable-general] for a virtual
table compatible with the static type for which the bit vector is being built.

For example, consider the following three C++ classes:

struct A {
  virtual void f1();
  virtual void f2();
  virtual void f3();
};

struct B : A {
  virtual void f1();
  virtual void f2();
  virtual void f3();
};

struct C : A {
  virtual void f1();
  virtual void f2();
  virtual void f3();
};





The scheme will cause the virtual tables for A, B and C to be laid out
consecutively:


Virtual Table Layout for A, B, C


















	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14




	A::offset-to-top
	&A::rtti
	&A::f1
	&A::f2
	&A::f3
	B::offset-to-top
	&B::rtti
	&B::f1
	&B::f2
	&B::f3
	C::offset-to-top
	&C::rtti
	&C::f1
	&C::f2
	&C::f3





The bit vector for static types A, B and C will look like this:


Bit Vectors for A, B, C



















	Class
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14




	A
	0
	0
	1
	0
	0
	0
	0
	1
	0
	0
	0
	0
	1
	0
	0


	B
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0


	C
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0





Bit vectors are represented in the object file as byte arrays. By loading
from indexed offsets into the byte array and applying a mask, a program can
test bits from the bit set with a relatively short instruction sequence. Bit
vectors may overlap so long as they use different bits. For the full details,
see the ByteArrayBuilder [http://llvm.org/docs/doxygen/html/structllvm_1_1ByteArrayBuilder.html] class.

In this case, assuming A is laid out at offset 0 in bit 0, B at offset 0 in
bit 1 and C at offset 0 in bit 2, the byte array would look like this:

char bits[] = { 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 0, 5, 0, 0 };





To emit a virtual call, the compiler will assemble code that checks that
the object’s virtual table pointer is in-bounds and aligned and that the
relevant bit is set in the bit vector.

For example on x86 a typical virtual call may look like this:

ca7fbb:       48 8b 0f                mov    (%rdi),%rcx
ca7fbe:       48 8d 15 c3 42 fb 07    lea    0x7fb42c3(%rip),%rdx
ca7fc5:       48 89 c8                mov    %rcx,%rax
ca7fc8:       48 29 d0                sub    %rdx,%rax
ca7fcb:       48 c1 c0 3d             rol    $0x3d,%rax
ca7fcf:       48 3d 7f 01 00 00       cmp    $0x17f,%rax
ca7fd5:       0f 87 36 05 00 00       ja     ca8511
ca7fdb:       48 8d 15 c0 0b f7 06    lea    0x6f70bc0(%rip),%rdx
ca7fe2:       f6 04 10 10             testb  $0x10,(%rax,%rdx,1)
ca7fe6:       0f 84 25 05 00 00       je     ca8511
ca7fec:       ff 91 98 00 00 00       callq  *0x98(%rcx)
  [...]
ca8511:       0f 0b                   ud2





The compiler relies on co-operation from the linker in order to assemble
the bit vectors for the whole program. It currently does this using LLVM’s
bit sets [http://llvm.org/docs/BitSets.html] mechanism together with link-time optimization.


Optimizations

The scheme as described above is the fully general variant of the scheme.
Most of the time we are able to apply one or more of the following
optimizations to improve binary size or performance.

In fact, if you try the above example with the current version of the
compiler, you will probably find that it will not use the described virtual
table layout or machine instructions. Some of the optimizations we are about
to introduce cause the compiler to use a different layout or a different
sequence of machine instructions.


Stripping Leading/Trailing Zeros in Bit Vectors

If a bit vector contains leading or trailing zeros, we can strip them from
the vector. The compiler will emit code to check if the pointer is in range
of the region covered by ones, and perform the bit vector check using a
truncated version of the bit vector. For example, the bit vectors for our
example class hierarchy will be emitted like this:


Bit Vectors for A, B, C



















	Class
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14




	A
	 
	 
	1
	0
	0
	0
	0
	1
	0
	0
	0
	0
	1
	 
	 


	B
	 
	 
	 
	 
	 
	 
	 
	1
	 
	 
	 
	 
	 
	 
	 


	C
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	1
	 
	 








Short Inline Bit Vectors

If the vector is sufficiently short, we can represent it as an inline constant
on x86. This saves us a few instructions when reading the correct element
of the bit vector.

If the bit vector fits in 32 bits, the code looks like this:

 dc2:       48 8b 03                mov    (%rbx),%rax
 dc5:       48 8d 15 14 1e 00 00    lea    0x1e14(%rip),%rdx
 dcc:       48 89 c1                mov    %rax,%rcx
 dcf:       48 29 d1                sub    %rdx,%rcx
 dd2:       48 c1 c1 3d             rol    $0x3d,%rcx
 dd6:       48 83 f9 03             cmp    $0x3,%rcx
 dda:       77 2f                   ja     e0b <main+0x9b>
 ddc:       ba 09 00 00 00          mov    $0x9,%edx
 de1:       0f a3 ca                bt     %ecx,%edx
 de4:       73 25                   jae    e0b <main+0x9b>
 de6:       48 89 df                mov    %rbx,%rdi
 de9:       ff 10                   callq  *(%rax)
[...]
 e0b:       0f 0b                   ud2





Or if the bit vector fits in 64 bits:

11a6:       48 8b 03                mov    (%rbx),%rax
11a9:       48 8d 15 d0 28 00 00    lea    0x28d0(%rip),%rdx
11b0:       48 89 c1                mov    %rax,%rcx
11b3:       48 29 d1                sub    %rdx,%rcx
11b6:       48 c1 c1 3d             rol    $0x3d,%rcx
11ba:       48 83 f9 2a             cmp    $0x2a,%rcx
11be:       77 35                   ja     11f5 <main+0xb5>
11c0:       48 ba 09 00 00 00 00    movabs $0x40000000009,%rdx
11c7:       04 00 00
11ca:       48 0f a3 ca             bt     %rcx,%rdx
11ce:       73 25                   jae    11f5 <main+0xb5>
11d0:       48 89 df                mov    %rbx,%rdi
11d3:       ff 10                   callq  *(%rax)
[...]
11f5:       0f 0b                   ud2





If the bit vector consists of a single bit, there is only one possible
virtual table, and the check can consist of a single equality comparison:

9a2:   48 8b 03                mov    (%rbx),%rax
9a5:   48 8d 0d a4 13 00 00    lea    0x13a4(%rip),%rcx
9ac:   48 39 c8                cmp    %rcx,%rax
9af:   75 25                   jne    9d6 <main+0x86>
9b1:   48 89 df                mov    %rbx,%rdi
9b4:   ff 10                   callq  *(%rax)
[...]
9d6:   0f 0b                   ud2








Virtual Table Layout

The compiler lays out classes of disjoint hierarchies in separate regions
of the object file. At worst, bit vectors in disjoint hierarchies only
need to cover their disjoint hierarchy. But the closer that classes in
sub-hierarchies are laid out to each other, the smaller the bit vectors for
those sub-hierarchies need to be (see “Stripping Leading/Trailing Zeros in Bit
Vectors” above). The GlobalLayoutBuilder [http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/Transforms/IPO/LowerBitSets.h?view=markup] class is responsible for laying
out the globals efficiently to minimize the sizes of the underlying bitsets.




Alignment

If all gaps between address points in a particular bit vector are multiples
of powers of 2, the compiler can compress the bit vector by strengthening
the alignment requirements of the virtual table pointer. For example, given
this class hierarchy:

struct A {
  virtual void f1();
  virtual void f2();
};

struct B : A {
  virtual void f1();
  virtual void f2();
  virtual void f3();
  virtual void f4();
  virtual void f5();
  virtual void f6();
};

struct C : A {
  virtual void f1();
  virtual void f2();
};





The virtual tables will be laid out like this:


Virtual Table Layout for A, B, C



















	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15




	A::offset-to-top
	&A::rtti
	&A::f1
	&A::f2
	B::offset-to-top
	&B::rtti
	&B::f1
	&B::f2
	&B::f3
	&B::f4
	&B::f5
	&B::f6
	C::offset-to-top
	&C::rtti
	&C::f1
	&C::f2





Notice that each address point for A is separated by 4 words. This lets us
emit a compressed bit vector for A that looks like this:









	2
	6
	10
	14




	1
	1
	0
	1





At call sites, the compiler will strengthen the alignment requirements by
using a different rotate count. For example, on a 64-bit machine where the
address points are 4-word aligned (as in A from our example), the rol
instruction may look like this:

dd2:       48 c1 c1 3b             rol    $0x3b,%rcx








Padding to Powers of 2

Of course, this alignment scheme works best if the address points are
in fact aligned correctly. To make this more likely to happen, we insert
padding between virtual tables that in many cases aligns address points to
a power of 2. Specifically, our padding aligns virtual tables to the next
highest power of 2 bytes; because address points for specific base classes
normally appear at fixed offsets within the virtual table, this normally
has the effect of aligning the address points as well.

This scheme introduces tradeoffs between decreased space overhead for
instructions and bit vectors and increased overhead in the form of padding. We
therefore limit the amount of padding so that we align to no more than 128
bytes. This number was found experimentally to provide a good tradeoff.




Eliminating Bit Vector Checks for All-Ones Bit Vectors

If the bit vector is all ones, the bit vector check is redundant; we simply
need to check that the address is in range and well aligned. This is more
likely to occur if the virtual tables are padded.











          

      

      

    

  

    
      
          
            
  
SafeStack



	Introduction
	Performance

	Compatibility
	Known compatibility limitations





	Security
	Known security limitations









	Usage
	Supported Platforms

	Low-level API
	__has_feature(safe_stack)

	__attribute__((no_sanitize("safe-stack")))

	__builtin___get_unsafe_stack_ptr()

	__builtin___get_unsafe_stack_start()









	Design
	Publications










Introduction

SafeStack is an instrumentation pass that protects programs against attacks
based on stack buffer overflows, without introducing any measurable performance
overhead. It works by separating the program stack into two distinct regions:
the safe stack and the unsafe stack. The safe stack stores return addresses,
register spills, and local variables that are always accessed in a safe way,
while the unsafe stack stores everything else. This separation ensures that
buffer overflows on the unsafe stack cannot be used to overwrite anything
on the safe stack.

SafeStack is a part of the Code-Pointer Integrity (CPI) Project [http://dslab.epfl.ch/proj/cpi/].


Performance

The performance overhead of the SafeStack instrumentation is less than 0.1% on
average across a variety of benchmarks (see the Code-Pointer Integrity [http://dslab.epfl.ch/pubs/cpi.pdf] paper for details). This is mainly
because most small functions do not have any variables that require the unsafe
stack and, hence, do not need unsafe stack frames to be created. The cost of
creating unsafe stack frames for large functions is amortized by the cost of
executing the function.

In some cases, SafeStack actually improves the performance. Objects that end up
being moved to the unsafe stack are usually large arrays or variables that are
used through multiple stack frames. Moving such objects away from the safe
stack increases the locality of frequently accessed values on the stack, such
as register spills, return addresses, and small local variables.




Compatibility

Most programs, static libraries, or individual files can be compiled
with SafeStack as is. SafeStack requires basic runtime support, which, on most
platforms, is implemented as a compiler-rt library that is automatically linked
in when the program is compiled with SafeStack.

Linking a DSO with SafeStack is not currently supported.


Known compatibility limitations

Certain code that relies on low-level stack manipulations requires adaption to
work with SafeStack. One example is mark-and-sweep garbage collection
implementations for C/C++ (e.g., Oilpan in chromium/blink), which must be
changed to look for the live pointers on both safe and unsafe stacks.

SafeStack supports linking statically modules that are compiled with and
without SafeStack. An executable compiled with SafeStack can load dynamic
libraries that are not compiled with SafeStack. At the moment, compiling
dynamic libraries with SafeStack is not supported.

Signal handlers that use sigaltstack() must not use the unsafe stack (see
__attribute__((no_sanitize("safe-stack"))) below).

Programs that use APIs from ucontext.h are not supported yet.






Security

SafeStack protects return addresses, spilled registers and local variables that
are always accessed in a safe way by separating them in a dedicated safe stack
region. The safe stack is automatically protected against stack-based buffer
overflows, since it is disjoint from the unsafe stack in memory, and it itself
is always accessed in a safe way. In the current implementation, the safe stack
is protected against arbitrary memory write vulnerabilities though
randomization and information hiding: the safe stack is allocated at a random
address and the instrumentation ensures that no pointers to the safe stack are
ever stored outside of the safe stack itself (see limitations below).


Known security limitations

A complete protection against control-flow hijack attacks requires combining
SafeStack with another mechanism that enforces the integrity of code pointers
that are stored on the heap or the unsafe stack, such as CPI [http://dslab.epfl.ch/proj/cpi/], or a forward-edge control flow integrity
mechanism that enforces correct calling conventions at indirect call sites,
such as IFCC [http://research.google.com/pubs/archive/42808.pdf] with arity
checks. Clang has control-flow integrity protection scheme for C++ virtual
calls, but not non-virtual indirect calls. With
SafeStack alone, an attacker can overwrite a function pointer on the heap or
the unsafe stack and cause a program to call arbitrary location, which in turn
might enable stack pivoting and return-oriented programming.

In its current implementation, SafeStack provides precise protection against
stack-based buffer overflows, but protection against arbitrary memory write
vulnerabilities is probabilistic and relies on randomization and information
hiding. The randomization is currently based on system-enforced ASLR and shares
its known security limitations. The safe stack pointer hiding is not perfect
yet either: system library functions such as swapcontext, exception
handling mechanisms, intrinsics such as __builtin_frame_address, or
low-level bugs in runtime support could leak the safe stack pointer. In the
future, such leaks could be detected by static or dynamic analysis tools and
prevented by adjusting such functions to either encrypt the stack pointer when
storing it in the heap (as already done e.g., by setjmp/longjmp
implementation in glibc), or store it in a safe region instead.

The CPI paper [http://dslab.epfl.ch/pubs/cpi.pdf] describes two alternative,
stronger safe stack protection mechanisms, that rely on software fault
isolation, or hardware segmentation (as available on x86-32 and some x86-64
CPUs).

At the moment, SafeStack assumes that the compiler’s implementation is correct.
This has not been verified except through manual code inspection, and could
always regress in the future. It’s therefore desirable to have a separate
static or dynamic binary verification tool that would check the correctness of
the SafeStack instrumentation in final binaries.








Usage

To enable SafeStack, just pass -fsanitize=safe-stack flag to both compile
and link command lines.


Supported Platforms

SafeStack was tested on Linux, FreeBSD and MacOSX.




Low-level API


__has_feature(safe_stack)

In some rare cases one may need to execute different code depending on
whether SafeStack is enabled. The macro __has_feature(safe_stack) can
be used for this purpose.

#if __has_feature(safe_stack)
// code that builds only under SafeStack
#endif








__attribute__((no_sanitize("safe-stack")))

Use __attribute__((no_sanitize("safe-stack"))) on a function declaration
to specify that the safe stack instrumentation should not be applied to that
function, even if enabled globally (see -fsanitize=safe-stack flag). This
attribute may be required for functions that make assumptions about the
exact layout of their stack frames.

All local variables in functions with this attribute will be stored on the safe
stack. The safe stack remains unprotected against memory errors when accessing
these variables, so extra care must be taken to manually ensure that all such
accesses are safe. Furthermore, the addresses of such local variables should
never be stored on the heap, as it would leak the location of the SafeStack.




__builtin___get_unsafe_stack_ptr()

This builtin function returns current unsafe stack pointer of the current
thread.




__builtin___get_unsafe_stack_start()

This builtin function returns a pointer to the start of the unsafe stack of the
current thread.








Design

Please refer to the Code-Pointer Integrity [http://dslab.epfl.ch/proj/cpi/]
project page for more information about the design of the SafeStack and its
related technologies.


Publications

Code-Pointer Integrity [http://dslab.epfl.ch/pubs/cpi.pdf].
Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer, George Candea, R. Sekar, Dawn Song.
USENIX Symposium on Operating Systems Design and Implementation
(OSDI [https://www.usenix.org/conference/osdi14]), Broomfield, CO, October 2014









          

      

      

    

  

    
      
          
            
  
Modules



	Introduction
	Problems with the current model

	Semantic import

	Problems modules do not solve





	Using Modules
	Objective-C Import declaration

	Includes as imports

	Module maps

	Compilation model

	Command-line parameters





	Module Semantics
	Macros





	Module Map Language
	Lexical structure

	Module map file

	Module declaration
	Requires declaration

	Header declaration

	Umbrella directory declaration

	Submodule declaration

	Export declaration

	Use declaration

	Link declaration

	Configuration macros declaration

	Conflict declarations





	Attributes

	Private Module Map Files





	Modularizing a Platform

	Future Directions

	Where To Learn More About Modules






Introduction

Most software is built using a number of software libraries, including libraries supplied by the platform, internal libraries built as part of the software itself to provide structure, and third-party libraries. For each library, one needs to access both its interface (API) and its implementation. In the C family of languages, the interface to a library is accessed by including the appropriate header files(s):

#include <SomeLib.h>





The implementation is handled separately by linking against the appropriate library. For example, by passing -lSomeLib to the linker.

Modules provide an alternative, simpler way to use software libraries that provides better compile-time scalability and eliminates many of the problems inherent to using the C preprocessor to access the API of a library.


Problems with the current model

The #include mechanism provided by the C preprocessor is a very poor way to access the API of a library, for a number of reasons:


	Compile-time scalability: Each time a header is included, the
compiler must preprocess and parse the text in that header and every
header it includes, transitively. This process must be repeated for
every translation unit in the application, which involves a huge
amount of redundant work. In a project with N translation units
and M headers included in each translation unit, the compiler is
performing M x N work even though most of the M headers are
shared among multiple translation units. C++ is particularly bad,
because the compilation model for templates forces a huge amount of
code into headers.

	Fragility: #include directives are treated as textual
inclusion by the preprocessor, and are therefore subject to any
active macro definitions at the time of inclusion. If any of the
active macro definitions happens to collide with a name in the
library, it can break the library API or cause compilation failures
in the library header itself. For an extreme example,
#define std "The C++ Standard" and then include a standard
library header: the result is a horrific cascade of failures in the
C++ Standard Library’s implementation. More subtle real-world
problems occur when the headers for two different libraries interact
due to macro collisions, and users are forced to reorder
#include directives or introduce #undef directives to break
the (unintended) dependency.

	Conventional workarounds: C programmers have
adopted a number of conventions to work around the fragility of the
C preprocessor model. Include guards, for example, are required for
the vast majority of headers to ensure that multiple inclusion
doesn’t break the compile. Macro names are written with
LONG_PREFIXED_UPPERCASE_IDENTIFIERS to avoid collisions, and some
library/framework developers even use __underscored names
in headers to avoid collisions with “normal” names that (by
convention) shouldn’t even be macros. These conventions are a
barrier to entry for developers coming from non-C languages, are
boilerplate for more experienced developers, and make our headers
far uglier than they should be.

	Tool confusion: In a C-based language, it is hard to build tools
that work well with software libraries, because the boundaries of
the libraries are not clear. Which headers belong to a particular
library, and in what order should those headers be included to
guarantee that they compile correctly? Are the headers C, C++,
Objective-C++, or one of the variants of these languages? What
declarations in those headers are actually meant to be part of the
API, and what declarations are present only because they had to be
written as part of the header file?






Semantic import

Modules improve access to the API of software libraries by replacing the textual preprocessor inclusion model with a more robust, more efficient semantic model. From the user’s perspective, the code looks only slightly different, because one uses an import declaration rather than a #include preprocessor directive:

import std.io; // pseudo-code; see below for syntax discussion





However, this module import behaves quite differently from the corresponding #include <stdio.h>: when the compiler sees the module import above, it loads a binary representation of the std.io module and makes its API available to the application directly. Preprocessor definitions that precede the import declaration have no impact on the API provided by std.io, because the module itself was compiled as a separate, standalone module. Additionally, any linker flags required to use the std.io module will automatically be provided when the module is imported [1]
This semantic import model addresses many of the problems of the preprocessor inclusion model:


	Compile-time scalability: The std.io module is only compiled once, and importing the module into a translation unit is a constant-time operation (independent of module system). Thus, the API of each software library is only parsed once, reducing the M x N compilation problem to an M + N problem.

	Fragility: Each module is parsed as a standalone entity, so it has a consistent preprocessor environment. This completely eliminates the need for __underscored names and similarly defensive tricks. Moreover, the current preprocessor definitions when an import declaration is encountered are ignored, so one software library can not affect how another software library is compiled, eliminating include-order dependencies.

	Tool confusion: Modules describe the API of software libraries, and tools can reason about and present a module as a representation of that API. Because modules can only be built standalone, tools can rely on the module definition to ensure that they get the complete API for the library. Moreover, modules can specify which languages they work with, so, e.g., one can not accidentally attempt to load a C++ module into a C program.






Problems modules do not solve

Many programming languages have a module or package system, and because of the variety of features provided by these languages it is important to define what modules do not do. In particular, all of the following are considered out-of-scope for modules:


	Rewrite the world’s code: It is not realistic to require applications or software libraries to make drastic or non-backward-compatible changes, nor is it feasible to completely eliminate headers. Modules must interoperate with existing software libraries and allow a gradual transition.

	Versioning: Modules have no notion of version information. Programmers must still rely on the existing versioning mechanisms of the underlying language (if any exist) to version software libraries.

	Namespaces: Unlike in some languages, modules do not imply any notion of namespaces. Thus, a struct declared in one module will still conflict with a struct of the same name declared in a different module, just as they would if declared in two different headers. This aspect is important for backward compatibility, because (for example) the mangled names of entities in software libraries must not change when introducing modules.

	Binary distribution of modules: Headers (particularly C++ headers) expose the full complexity of the language. Maintaining a stable binary module format across architectures, compiler versions, and compiler vendors is technically infeasible.








Using Modules

To enable modules, pass the command-line flag -fmodules. This will make any modules-enabled software libraries available as modules as well as introducing any modules-specific syntax. Additional command-line parameters are described in a separate section later.


Objective-C Import declaration

Objective-C provides syntax for importing a module via an @import declaration, which imports the named module:

@import std;





The @import declaration above imports the entire contents of the std module (which would contain, e.g., the entire C or C++ standard library) and make its API available within the current translation unit. To import only part of a module, one may use dot syntax to specific a particular submodule, e.g.,

@import std.io;





Redundant import declarations are ignored, and one is free to import modules at any point within the translation unit, so long as the import declaration is at global scope.

At present, there is no C or C++ syntax for import declarations. Clang
will track the modules proposal in the C++ committee. See the section
Includes as imports to see how modules get imported today.




Includes as imports

The primary user-level feature of modules is the import operation, which provides access to the API of software libraries. However, today’s programs make extensive use of #include, and it is unrealistic to assume that all of this code will change overnight. Instead, modules automatically translate #include directives into the corresponding module import. For example, the include directive

#include <stdio.h>





will be automatically mapped to an import of the module std.io. Even with specific import syntax in the language, this particular feature is important for both adoption and backward compatibility: automatic translation of #include to import allows an application to get the benefits of modules (for all modules-enabled libraries) without any changes to the application itself. Thus, users can easily use modules with one compiler while falling back to the preprocessor-inclusion mechanism with other compilers.


Note

The automatic mapping of #include to import also solves an implementation problem: importing a module with a definition of some entity (say, a struct Point) and then parsing a header containing another definition of struct Point would cause a redefinition error, even if it is the same struct Point. By mapping #include to import, the compiler can guarantee that it always sees just the already-parsed definition from the module.



While building a module, #include_next is also supported, with one caveat.
The usual behavior of #include_next is to search for the specified filename
in the list of include paths, starting from the path after the one
in which the current file was found.
Because files listed in module maps are not found through include paths, a
different strategy is used for #include_next directives in such files: the
list of include paths is searched for the specified header name, to find the
first include path that would refer to the current file. #include_next is
interpreted as if the current file had been found in that path.
If this search finds a file named by a module map, the #include_next
directive is translated into an import, just like for a #include
directive.``




Module maps

The crucial link between modules and headers is described by a module map, which describes how a collection of existing headers maps on to the (logical) structure of a module. For example, one could imagine a module std covering the C standard library. Each of the C standard library headers (<stdio.h>, <stdlib.h>, <math.h>, etc.) would contribute to the std module, by placing their respective APIs into the corresponding submodule (std.io, std.lib, std.math, etc.). Having a list of the headers that are part of the std module allows the compiler to build the std module as a standalone entity, and having the mapping from header names to (sub)modules allows the automatic translation of #include directives to module imports.

Module maps are specified as separate files (each named module.modulemap) alongside the headers they describe, which allows them to be added to existing software libraries without having to change the library headers themselves (in most cases [2]). The actual Module map language is described in a later section.


Note

To actually see any benefits from modules, one first has to introduce module maps for the underlying C standard library and the libraries and headers on which it depends. The section Modularizing a Platform describes the steps one must take to write these module maps.



One can use module maps without modules to check the integrity of the use of header files. To do this, use the -fimplicit-module-maps option instead of the -fmodules option, or use -fmodule-map-file= option to explicitly specify the module map files to load.




Compilation model

The binary representation of modules is automatically generated by the compiler on an as-needed basis. When a module is imported (e.g., by an #include of one of the module’s headers), the compiler will spawn a second instance of itself [3], with a fresh preprocessing context [4], to parse just the headers in that module. The resulting Abstract Syntax Tree (AST) is then persisted into the binary representation of the module that is then loaded into translation unit where the module import was encountered.

The binary representation of modules is persisted in the module cache. Imports of a module will first query the module cache and, if a binary representation of the required module is already available, will load that representation directly. Thus, a module’s headers will only be parsed once per language configuration, rather than once per translation unit that uses the module.

Modules maintain references to each of the headers that were part of the module build. If any of those headers changes, or if any of the modules on which a module depends change, then the module will be (automatically) recompiled. The process should never require any user intervention.




Command-line parameters


	-fmodules

	Enable the modules feature.

	-fimplicit-module-maps

	Enable implicit search for module map files named module.modulemap and similar. This option is implied by -fmodules. If this is disabled with -fno-implicit-module-maps, module map files will only be loaded if they are explicitly specified via -fmodule-map-file or transitively used by another module map file.

	-fmodules-cache-path=<directory>

	Specify the path to the modules cache. If not provided, Clang will select a system-appropriate default.

	-fno-autolink

	Disable automatic linking against the libraries associated with imported modules.

	-fmodules-ignore-macro=macroname

	Instruct modules to ignore the named macro when selecting an appropriate module variant. Use this for macros defined on the command line that don’t affect how modules are built, to improve sharing of compiled module files.

	-fmodules-prune-interval=seconds

	Specify the minimum delay (in seconds) between attempts to prune the module cache. Module cache pruning attempts to clear out old, unused module files so that the module cache itself does not grow without bound. The default delay is large (604,800 seconds, or 7 days) because this is an expensive operation. Set this value to 0 to turn off pruning.

	-fmodules-prune-after=seconds

	Specify the minimum time (in seconds) for which a file in the module cache must be unused (according to access time) before module pruning will remove it. The default delay is large (2,678,400 seconds, or 31 days) to avoid excessive module rebuilding.

	-module-file-info <module file name>

	Debugging aid that prints information about a given module file (with a .pcm extension), including the language and preprocessor options that particular module variant was built with.

	-fmodules-decluse

	Enable checking of module use declarations.

	-fmodule-name=module-id

	Consider a source file as a part of the given module.

	-fmodule-map-file=<file>

	Load the given module map file if a header from its directory or one of its subdirectories is loaded.

	-fmodules-search-all

	If a symbol is not found, search modules referenced in the current module maps but not imported for symbols, so the error message can reference the module by name.  Note that if the global module index has not been built before, this might take some time as it needs to build all the modules.  Note that this option doesn’t apply in module builds, to avoid the recursion.

	-fno-implicit-modules

	All modules used by the build must be specified with -fmodule-file.

	-fmodule-file=<file>

	Load the given precompiled module file.








Module Semantics

Modules are modeled as if each submodule were a separate translation unit, and a module import makes names from the other translation unit visible. Each submodule starts with a new preprocessor state and an empty translation unit.


Note

This behavior is currently only approximated when building a module with submodules. Entities within a submodule that has already been built are visible when building later submodules in that module. This can lead to fragile modules that depend on the build order used for the submodules of the module, and should not be relied upon. This behavior is subject to change.



As an example, in C, this implies that if two structs are defined in different submodules with the same name, those two types are distinct types (but may be compatible types if their definitions match. In C++, two structs defined with the same name in different submodules are the same type, and must be equivalent under C++’s One Definition Rule.


Note

Clang currently only performs minimal checking for violations of the One Definition Rule.



If any submodule of a module is imported into any part of a program, the entire top-level module is considered to be part of the program. As a consequence of this, Clang may diagnose conflicts between an entity declared in an unimported submodule and an entity declared in the current translation unit, and Clang may inline or devirtualize based on knowledge from unimported submodules.


Macros

The C and C++ preprocessor assumes that the input text is a single linear buffer, but with modules this is not the case. It is possible to import two modules that have conflicting definitions for a macro (or where one #defines a macro and the other #undefines it). The rules for handling macro definitions in the presence of modules are as follows:


	Each definition and undefinition of a macro is considered to be a distinct entity.

	Such entities are visible if they are from the current submodule or translation unit, or if they were exported from a submodule that has been imported.

	A #define X or #undef X directive overrides all definitions of X that are visible at the point of the directive.

	A #define or #undef directive is active if it is visible and no visible directive overrides it.

	A set of macro directives is consistent if it consists of only #undef directives, or if all #define directives in the set define the macro name to the same sequence of tokens (following the usual rules for macro redefinitions).

	If a macro name is used and the set of active directives is not consistent, the program is ill-formed. Otherwise, the (unique) meaning of the macro name is used.



For example, suppose:


	<stdio.h> defines a macro getc (and exports its #define)

	<cstdio> imports the <stdio.h> module and undefines the macro (and exports its #undef)



The #undef overrides the #define, and a source file that imports both modules in any order will not see getc defined as a macro.






Module Map Language


Warning

The module map language is not currently guaranteed to be stable between major revisions of Clang.



The module map language describes the mapping from header files to the
logical structure of modules. To enable support for using a library as
a module, one must write a module.modulemap file for that library. The
module.modulemap file is placed alongside the header files themselves,
and is written in the module map language described below.


Note

For compatibility with previous releases, if a module map file named
module.modulemap is not found, Clang will also search for a file named
module.map. This behavior is deprecated and we plan to eventually
remove it.



As an example, the module map file for the C standard library might look a bit like this:

module std [system] [extern_c] {
  module assert {
    textual header "assert.h"
    header "bits/assert-decls.h"
    export *
  }

  module complex {
    header "complex.h"
    export *
  }

  module ctype {
    header "ctype.h"
    export *
  }

  module errno {
    header "errno.h"
    header "sys/errno.h"
    export *
  }

  module fenv {
    header "fenv.h"
    export *
  }

  // ...more headers follow...
}





Here, the top-level module std encompasses the whole C standard library. It has a number of submodules containing different parts of the standard library: complex for complex numbers, ctype for character types, etc. Each submodule lists one of more headers that provide the contents for that submodule. Finally, the export * command specifies that anything included by that submodule will be automatically re-exported.


Lexical structure

Module map files use a simplified form of the C99 lexer, with the same rules for identifiers, tokens, string literals, /* */ and // comments. The module map language has the following reserved words; all other C identifiers are valid identifiers.


config_macros export     private
conflict      framework  requires
exclude       header     textual
explicit      link       umbrella
extern        module     use





Module map file

A module map file consists of a series of module declarations:


module-map-file:
  module-declaration*


Within a module map file, modules are referred to by a module-id, which uses periods to separate each part of a module’s name:


module-id:
  identifier ('.' identifier)*





Module declaration

A module declaration describes a module, including the headers that contribute to that module, its submodules, and other aspects of the module.


module-declaration:
  explicitopt frameworkopt module module-id attributesopt '{' module-member* '}'
  extern module module-id string-literal


The module-id should consist of only a single identifier, which provides the name of the module being defined. Each module shall have a single definition.

The explicit qualifier can only be applied to a submodule, i.e., a module that is nested within another module. The contents of explicit submodules are only made available when the submodule itself was explicitly named in an import declaration or was re-exported from an imported module.

The framework qualifier specifies that this module corresponds to a Darwin-style framework. A Darwin-style framework (used primarily on Mac OS X and iOS) is contained entirely in directory Name.framework, where Name is the name of the framework (and, therefore, the name of the module). That directory has the following layout:

Name.framework/
  Modules/module.modulemap  Module map for the framework
  Headers/                  Subdirectory containing framework headers
  Frameworks/               Subdirectory containing embedded frameworks
  Resources/                Subdirectory containing additional resources
  Name                      Symbolic link to the shared library for the framework





The system attribute specifies that the module is a system module. When a system module is rebuilt, all of the module’s headers will be considered system headers, which suppresses warnings. This is equivalent to placing #pragma GCC system_header in each of the module’s headers. The form of attributes is described in the section Attributes, below.

The extern_c attribute specifies that the module contains C code that can be used from within C++. When such a module is built for use in C++ code, all of the module’s headers will be treated as if they were contained within an implicit extern "C" block. An import for a module with this attribute can appear within an extern "C" block. No other restrictions are lifted, however: the module currently cannot be imported within an extern "C" block in a namespace.

Modules can have a number of different kinds of members, each of which is described below:


module-member:
  requires-declaration
  header-declaration
  umbrella-dir-declaration
  submodule-declaration
  export-declaration
  use-declaration
  link-declaration
  config-macros-declaration
  conflict-declaration


An extern module references a module defined by the module-id in a file given by the string-literal. The file can be referenced either by an absolute path or by a path relative to the current map file.


Requires declaration

A requires-declaration specifies the requirements that an importing translation unit must satisfy to use the module.


requires-declaration:
  requires feature-list

feature-list:
  feature (',' feature)*

feature:
  !opt identifier


The requirements clause allows specific modules or submodules to specify that they are only accessible with certain language dialects or on certain platforms. The feature list is a set of identifiers, defined below. If any of the features is not available in a given translation unit, that translation unit shall not import the module. The optional ! indicates that a feature is incompatible with the module.

The following features are defined:


	altivec

	The target supports AltiVec.

	blocks

	The “blocks” language feature is available.

	cplusplus

	C++ support is available.

	cplusplus11

	C++11 support is available.

	objc

	Objective-C support is available.

	objc_arc

	Objective-C Automatic Reference Counting (ARC) is available

	opencl

	OpenCL is available

	tls

	Thread local storage is available.

	target feature

	A specific target feature (e.g., sse4, avx, neon) is available.



Example: The std module can be extended to also include C++ and C++11 headers using a requires-declaration:

module std {
   // C standard library...

   module vector {
     requires cplusplus
     header "vector"
   }

   module type_traits {
     requires cplusplus11
     header "type_traits"
   }
 }








Header declaration

A header declaration specifies that a particular header is associated with the enclosing module.


header-declaration:
  privateopt textualopt header string-literal
  umbrella header string-literal
  exclude header string-literal


A header declaration that does not contain exclude nor textual specifies a header that contributes to the enclosing module. Specifically, when the module is built, the named header will be parsed and its declarations will be (logically) placed into the enclosing submodule.

A header with the umbrella specifier is called an umbrella header. An umbrella header includes all of the headers within its directory (and any subdirectories), and is typically used (in the #include world) to easily access the full API provided by a particular library. With modules, an umbrella header is a convenient shortcut that eliminates the need to write out header declarations for every library header. A given directory can only contain a single umbrella header.


Note

Any headers not included by the umbrella header should have
explicit header declarations. Use the
-Wincomplete-umbrella warning option to ask Clang to complain
about headers not covered by the umbrella header or the module map.



A header with the private specifier may not be included from outside the module itself.

A header with the textual specifier will not be compiled when the module is
built, and will be textually included if it is named by a #include
directive. However, it is considered to be part of the module for the purpose
of checking use-declarations, and must still be a lexically-valid header
file. In the future, we intend to pre-tokenize such headers and include the
token sequence within the prebuilt module representation.

A header with the exclude specifier is excluded from the module. It will not be included when the module is built, nor will it be considered to be part of the module, even if an umbrella header or directory would otherwise make it part of the module.

Example: The C header assert.h is an excellent candidate for a textual header, because it is meant to be included multiple times (possibly with different NDEBUG settings). However, declarations within it should typically be split into a separate modular header.

module std [system] {
  textual header "assert.h"
}





A given header shall not be referenced by more than one header-declaration.




Umbrella directory declaration

An umbrella directory declaration specifies that all of the headers in the specified directory should be included within the module.


umbrella-dir-declaration:
  umbrella string-literal


The string-literal refers to a directory. When the module is built, all of the header files in that directory (and its subdirectories) are included in the module.

An umbrella-dir-declaration shall not refer to the same directory as the location of an umbrella header-declaration. In other words, only a single kind of umbrella can be specified for a given directory.


Note

Umbrella directories are useful for libraries that have a large number of headers but do not have an umbrella header.






Submodule declaration

Submodule declarations describe modules that are nested within their enclosing module.


submodule-declaration:
  module-declaration
  inferred-submodule-declaration


A submodule-declaration that is a module-declaration is a nested module. If the module-declaration has a framework specifier, the enclosing module shall have a framework specifier; the submodule’s contents shall be contained within the subdirectory Frameworks/SubName.framework, where SubName is the name of the submodule.

A submodule-declaration that is an inferred-submodule-declaration describes a set of submodules that correspond to any headers that are part of the module but are not explicitly described by a header-declaration.


inferred-submodule-declaration:
  explicitopt frameworkopt module '*' attributesopt '{' inferred-submodule-member* '}'

inferred-submodule-member:
  export '*'


A module containing an inferred-submodule-declaration shall have either an umbrella header or an umbrella directory. The headers to which the inferred-submodule-declaration applies are exactly those headers included by the umbrella header (transitively) or included in the module because they reside within the umbrella directory (or its subdirectories).

For each header included by the umbrella header or in the umbrella directory that is not named by a header-declaration, a module declaration is implicitly generated from the inferred-submodule-declaration. The module will:


	Have the same name as the header (without the file extension)

	Have the explicit specifier, if the inferred-submodule-declaration has the explicit specifier

	Have the framework specifier, if the
inferred-submodule-declaration has the framework specifier

	Have the attributes specified by the inferred-submodule-declaration

	Contain a single header-declaration naming that header

	Contain a single export-declaration export *, if the inferred-submodule-declaration contains the inferred-submodule-member export *



Example: If the subdirectory “MyLib” contains the headers A.h and B.h, then the following module map:

module MyLib {
  umbrella "MyLib"
  explicit module * {
    export *
  }
}





is equivalent to the (more verbose) module map:

module MyLib {
  explicit module A {
    header "A.h"
    export *
  }

  explicit module B {
    header "B.h"
    export *
  }
}








Export declaration

An export-declaration specifies which imported modules will automatically be re-exported as part of a given module’s API.


export-declaration:
  export wildcard-module-id

wildcard-module-id:
  identifier
  '*'
  identifier '.' wildcard-module-id


The export-declaration names a module or a set of modules that will be re-exported to any translation unit that imports the enclosing module. Each imported module that matches the wildcard-module-id up to, but not including, the first * will be re-exported.

Example: In the following example, importing MyLib.Derived also provides the API for MyLib.Base:

module MyLib {
  module Base {
    header "Base.h"
  }

  module Derived {
    header "Derived.h"
    export Base
  }
}





Note that, if Derived.h includes Base.h, one can simply use a wildcard export to re-export everything Derived.h includes:

module MyLib {
  module Base {
    header "Base.h"
  }

  module Derived {
    header "Derived.h"
    export *
  }
}






Note

The wildcard export syntax export * re-exports all of the
modules that were imported in the actual header file. Because
#include directives are automatically mapped to module imports,
export * provides the same transitive-inclusion behavior
provided by the C preprocessor, e.g., importing a given module
implicitly imports all of the modules on which it depends.
Therefore, liberal use of export * provides excellent backward
compatibility for programs that rely on transitive inclusion (i.e.,
all of them).






Use declaration

A use-declaration specifies another module that the current top-level module
intends to use. When the option -fmodules-decluse is specified, a module can
only use other modules that are explicitly specified in this way.


use-declaration:
  use module-id


Example: In the following example, use of A from C is not declared, so will trigger a warning.

module A {
  header "a.h"
}

module B {
  header "b.h"
}

module C {
  header "c.h"
  use B
}





When compiling a source file that implements a module, use the option
-fmodule-name=module-id to indicate that the source file is logically part
of that module.

The compiler at present only applies restrictions to the module directly being built.




Link declaration

A link-declaration specifies a library or framework against which a program should be linked if the enclosing module is imported in any translation unit in that program.


link-declaration:
  link frameworkopt string-literal


The string-literal specifies the name of the library or framework against which the program should be linked. For example, specifying “clangBasic” would instruct the linker to link with -lclangBasic for a Unix-style linker.

A link-declaration with the framework specifies that the linker should link against the named framework, e.g., with -framework MyFramework.


Note

Automatic linking with the link directive is not yet widely
implemented, because it requires support from both the object file
format and the linker. The notion is similar to Microsoft Visual
Studio’s #pragma comment(lib...).






Configuration macros declaration

The config-macros-declaration specifies the set of configuration macros that have an effect on the API of the enclosing module.


config-macros-declaration:
  config_macros attributesopt config-macro-listopt

config-macro-list:
  identifier (',' identifier)*


Each identifier in the config-macro-list specifies the name of a macro. The compiler is required to maintain different variants of the given module for differing definitions of any of the named macros.

A config-macros-declaration shall only be present on a top-level module, i.e., a module that is not nested within an enclosing module.

The exhaustive attribute specifies that the list of macros in the config-macros-declaration is exhaustive, meaning that no other macro definition is intended to have an effect on the API of that module.


Note

The exhaustive attribute implies that any macro definitions
for macros not listed as configuration macros should be ignored
completely when building the module. As an optimization, the
compiler could reduce the number of unique module variants by not
considering these non-configuration macros. This optimization is not
yet implemented in Clang.



A translation unit shall not import the same module under different definitions of the configuration macros.


Note

Clang implements a weak form of this requirement: the definitions
used for configuration macros are fixed based on the definitions
provided by the command line. If an import occurs and the definition
of any configuration macro has changed, the compiler will produce a
warning (under the control of -Wconfig-macros).



Example: A logging library might provide different API (e.g., in the form of different definitions for a logging macro) based on the NDEBUG macro setting:

module MyLogger {
  umbrella header "MyLogger.h"
  config_macros [exhaustive] NDEBUG
}








Conflict declarations

A conflict-declaration describes a case where the presence of two different modules in the same translation unit is likely to cause a problem. For example, two modules may provide similar-but-incompatible functionality.


conflict-declaration:
  conflict module-id ',' string-literal


The module-id of the conflict-declaration specifies the module with which the enclosing module conflicts. The specified module shall not have been imported in the translation unit when the enclosing module is imported.

The string-literal provides a message to be provided as part of the compiler diagnostic when two modules conflict.


Note

Clang emits a warning (under the control of -Wmodule-conflict)
when a module conflict is discovered.



Example:

module Conflicts {
  explicit module A {
    header "conflict_a.h"
    conflict B, "we just don't like B"
  }

  module B {
    header "conflict_b.h"
  }
}










Attributes

Attributes are used in a number of places in the grammar to describe specific behavior of other declarations. The format of attributes is fairly simple.


attributes:
  attribute attributesopt

attribute:
  '[' identifier ']'


Any identifier can be used as an attribute, and each declaration specifies what attributes can be applied to it.




Private Module Map Files

Module map files are typically named module.modulemap and live
either alongside the headers they describe or in a parent directory of
the headers they describe. These module maps typically describe all of
the API for the library.

However, in some cases, the presence or absence of particular headers
is used to distinguish between the “public” and “private” APIs of a
particular library. For example, a library may contain the headers
Foo.h and Foo_Private.h, providing public and private APIs,
respectively. Additionally, Foo_Private.h may only be available on
some versions of library, and absent in others. One cannot easily
express this with a single module map file in the library:

module Foo {
  header "Foo.h"

  explicit module Private {
    header "Foo_Private.h"
  }
}





because the header Foo_Private.h won’t always be available. The
module map file could be customized based on whether
Foo_Private.h is available or not, but doing so requires custom
build machinery.

Private module map files, which are named module.private.modulemap
(or, for backward compatibility, module_private.map), allow one to
augment the primary module map file with an additional submodule. For
example, we would split the module map file above into two module map
files:

/* module.modulemap */
module Foo {
  header "Foo.h"
}

/* module.private.modulemap */
explicit module Foo.Private {
  header "Foo_Private.h"
}





When a module.private.modulemap file is found alongside a
module.modulemap file, it is loaded after the module.modulemap
file. In our example library, the module.private.modulemap file
would be available when Foo_Private.h is available, making it
easier to split a library’s public and private APIs along header
boundaries.






Modularizing a Platform

To get any benefit out of modules, one needs to introduce module maps for software libraries starting at the bottom of the stack. This typically means introducing a module map covering the operating system’s headers and the C standard library headers (in /usr/include, for a Unix system).

The module maps will be written using the module map language, which provides the tools necessary to describe the mapping between headers and modules. Because the set of headers differs from one system to the next, the module map will likely have to be somewhat customized for, e.g., a particular distribution and version of the operating system. Moreover, the system headers themselves may require some modification, if they exhibit any anti-patterns that break modules. Such common patterns are described below.


	Macro-guarded copy-and-pasted definitions

	System headers vend core types such as size_t for users. These types are often needed in a number of system headers, and are almost trivial to write. Hence, it is fairly common to see a definition such as the following copy-and-pasted throughout the headers:

#ifndef _SIZE_T
#define _SIZE_T
typedef __SIZE_TYPE__ size_t;
#endif





Unfortunately, when modules compiles all of the C library headers together into a single module, only the first actual type definition of size_t will be visible, and then only in the submodule corresponding to the lucky first header. Any other headers that have copy-and-pasted versions of this pattern will not have a definition of size_t. Importing the submodule corresponding to one of those headers will therefore not yield size_t as part of the API, because it wasn’t there when the header was parsed. The fix for this problem is either to pull the copied declarations into a common header that gets included everywhere size_t is part of the API, or to eliminate the #ifndef and redefine the size_t type. The latter works for C++ headers and C11, but will cause an error for non-modules C90/C99, where redefinition of typedefs is not permitted.



	Conflicting definitions

	Different system headers may provide conflicting definitions for various macros, functions, or types. These conflicting definitions don’t tend to cause problems in a pre-modules world unless someone happens to include both headers in one translation unit. Since the fix is often simply “don’t do that”, such problems persist. Modules requires that the conflicting definitions be eliminated or that they be placed in separate modules (the former is generally the better answer).

	Missing includes

	Headers are often missing #include directives for headers that they actually depend on. As with the problem of conflicting definitions, this only affects unlucky users who don’t happen to include headers in the right order. With modules, the headers of a particular module will be parsed in isolation, so the module may fail to build if there are missing includes.

	Headers that vend multiple APIs at different times

	Some systems have headers that contain a number of different kinds of API definitions, only some of which are made available with a given include. For example, the header may vend size_t only when the macro __need_size_t is defined before that header is included, and also vend wchar_t only when the macro __need_wchar_t is defined. Such headers are often included many times in a single translation unit, and will have no include guards. There is no sane way to map this header to a submodule. One can either eliminate the header (e.g., by splitting it into separate headers, one per actual API) or simply exclude it in the module map.



To detect and help address some of these problems, the clang-tools-extra repository contains a modularize tool that parses a set of given headers and attempts to detect these problems and produce a report. See the tool’s in-source documentation for information on how to check your system or library headers.




Future Directions

Modules support is under active development, and there are many opportunities remaining to improve it. Here are a few ideas:


	Detect unused module imports

	Unlike with #include directives, it should be fairly simple to track whether a directly-imported module has ever been used. By doing so, Clang can emit unused import or unused #include diagnostics, including Fix-Its to remove the useless imports/includes.

	Fix-Its for missing imports

	It’s fairly common for one to make use of some API while writing code, only to get a compiler error about “unknown type” or “no function named” because the corresponding header has not been included. Clang can detect such cases and auto-import the required module, but should provide a Fix-It to add the import.

	Improve modularize

	The modularize tool is both extremely important (for deployment) and extremely crude. It needs better UI, better detection of problems (especially for C++), and perhaps an assistant mode to help write module maps for you.






Where To Learn More About Modules

The Clang source code provides additional information about modules:


	clang/lib/Headers/module.modulemap

	Module map for Clang’s compiler-specific header files.

	clang/test/Modules/

	Tests specifically related to modules functionality.

	clang/include/clang/Basic/Module.h

	The Module class in this header describes a module, and is used throughout the compiler to implement modules.

	clang/include/clang/Lex/ModuleMap.h

	The ModuleMap class in this header describes the full module map, consisting of all of the module map files that have been parsed, and providing facilities for looking up module maps and mapping between modules and headers (in both directions).

	PCHInternals

	Information about the serialized AST format used for precompiled headers and modules. The actual implementation is in the clangSerialization library.






	[1]	Automatic linking against the libraries of modules requires specific linker support, which is not widely available.







	[2]	There are certain anti-patterns that occur in headers, particularly system headers, that cause problems for modules. The section Modularizing a Platform describes some of them.







	[3]	The second instance is actually a new thread within the current process, not a separate process. However, the original compiler instance is blocked on the execution of this thread.







	[4]	The preprocessing context in which the modules are parsed is actually dependent on the command-line options provided to the compiler, including the language dialect and any -D options. However, the compiled modules for different command-line options are kept distinct, and any preprocessor directives that occur within the translation unit are ignored. See the section on the Configuration macros declaration for more information.










          

      

      

    

  

    
      
          
            
  
MSVC compatibility

When Clang compiles C++ code for Windows, it attempts to be compatible with
MSVC.  There are multiple dimensions to compatibility.

First, Clang attempts to be ABI-compatible, meaning that Clang-compiled code
should be able to link against MSVC-compiled code successfully.  However, C++
ABIs are particularly large and complicated, and Clang’s support for MSVC’s C++
ABI is a work in progress.  If you don’t require MSVC ABI compatibility or don’t
want to use Microsoft’s C and C++ runtimes, the mingw32 toolchain might be a
better fit for your project.

Second, Clang implements many MSVC language extensions, such as
__declspec(dllexport) and a handful of pragmas.  These are typically
controlled by -fms-extensions.

Third, MSVC accepts some C++ code that Clang will typically diagnose as
invalid.  When these constructs are present in widely included system headers,
Clang attempts to recover and continue compiling the user’s program.  Most
parsing and semantic compatibility tweaks are controlled by
-fms-compatibility and -fdelayed-template-parsing, and they are a work
in progress.

Finally, there is clang-cl, a driver program for clang that attempts to
be compatible with MSVC’s cl.exe.


ABI features

The status of major ABI-impacting C++ features:


	Record layout: Complete.  We’ve tested this with a fuzzer and have
fixed all known bugs.

	Class inheritance: Mostly complete.  This covers all of the standard
OO features you would expect: virtual method inheritance, multiple
inheritance, and virtual inheritance.  Every so often we uncover a bug where
our tables are incompatible, but this is pretty well in hand.  This feature
has also been fuzz tested.

	Name mangling: Ongoing.  Every new C++ feature generally needs its own
mangling.  For example, member pointer template arguments have an interesting
and distinct mangling.  Fortunately, incorrect manglings usually do not result
in runtime errors.  Non-inline functions with incorrect manglings usually
result in link errors, which are relatively easy to diagnose.  Incorrect
manglings for inline functions and templates result in multiple copies in the
final image.  The C++ standard requires that those addresses be equal, but few
programs rely on this.

	Member pointers: Mostly complete.  Standard C++ member pointers are
fully implemented and should be ABI compatible.  Both #pragma
pointers_to_members [http://msdn.microsoft.com/en-us/library/83cch5a6.aspx] and the /vm [http://msdn.microsoft.com/en-us/library/yad46a6z.aspx] flags are supported. However, MSVC
supports an extension to allow creating a pointer to a member of a virtual
base class [http://llvm.org/PR15713].  Clang does not yet support this.




	Debug info: Minimal.  Clang emits both CodeView line tables
(similar to what MSVC emits when given the /Z7 flag) and DWARF debug
information into the object file.
Microsoft’s link.exe will transform the CodeView line tables into a PDB,
enabling stack traces in all modern Windows debuggers.  Clang does not emit
any CodeView-compatible type info or description of variable layout.
Binaries linked with either binutils’ ld or LLVM’s lld should be usable with
GDB however sophisticated C++ expressions are likely to fail.

	RTTI: Complete.  Generation of RTTI data structures has been
finished, along with support for the /GR flag.

	Exceptions and SEH: Partial.
C++ exceptions (try / catch / throw) and
structured exceptions (__try / __except / __finally) mostly
work on x64. 32-bit exception handling support is being worked on.  LLVM does
not model asynchronous exceptions, so it is currently impossible to catch an
asynchronous exception generated in the same frame as the catching __try.
C++ exception specifications are ignored, but this is consistent with Visual
C++ [https://msdn.microsoft.com/en-us/library/wfa0edys.aspx].




	Thread-safe initialization of local statics: Complete.  MSVC 2015
added support for thread-safe initialization of such variables by taking an
ABI break.
We are ABI compatible with both the MSVC 2013 and 2015 ABI for static local
variables.

	Lambdas: Mostly complete.  Clang is compatible with Microsoft’s
implementation of lambdas except for providing overloads for conversion to
function pointer for different calling conventions.  However, Microsoft’s
extension is non-conforming.






Template instantiation and name lookup

MSVC allows many invalid constructs in class templates that Clang has
historically rejected.  In order to parse widely distributed headers for
libraries such as the Active Template Library (ATL) and Windows Runtime Library
(WRL), some template rules have been relaxed or extended in Clang on Windows.

The first major semantic difference is that MSVC appears to defer all parsing
an analysis of inline method bodies in class templates until instantiation
time.  By default on Windows, Clang attempts to follow suit.  This behavior is
controlled by the -fdelayed-template-parsing flag.  While Clang delays
parsing of method bodies, it still parses the bodies before template argument
substitution, which is not what MSVC does.  The following compatibility tweaks
are necessary to parse the template in those cases.

MSVC allows some name lookup into dependent base classes.  Even on other
platforms, this has been a frequently asked question [http://clang.llvm.org/compatibility.html#dep_lookup] for Clang users.  A
dependent base class is a base class that depends on the value of a template
parameter.  Clang cannot see any of the names inside dependent bases while it
is parsing your template, so the user is sometimes required to use the
typename keyword to assist the parser.  On Windows, Clang attempts to
follow the normal lookup rules, but if lookup fails, it will assume that the
user intended to find the name in a dependent base.  While parsing the
following program, Clang will recover as if the user had written the
commented-out code:

template <typename T>
struct Foo : T {
  void f() {
    /*typename*/ T::UnknownType x =  /*this->*/unknownMember;
  }
};





After recovery, Clang warns the user that this code is non-standard and issues
a hint suggesting how to fix the problem.

As of this writing, Clang is able to compile a simple ATL hello world
application.  There are still issues parsing WRL headers for modern Windows 8
apps, but they should be addressed soon.







          

      

      

    

  

    
      
          
            
  
Clang “man” pages

The following documents are command descriptions for all of the Clang tools.
These pages describe how to use the Clang commands and what their options are.
Note that these pages do not describe all of the options available for all
tools. To get a complete listing, pass the --help (general options) or
--help-hidden (general and debugging options) arguments to the tool you are
interested in.


Basic Commands



	clang - the Clang C, C++, and Objective-C compiler











          

      

      

    

  

    
      
          
            
  
clang - the Clang C, C++, and Objective-C compiler


SYNOPSIS

clang [options] filename ...




DESCRIPTION

clang is a C, C++, and Objective-C compiler which encompasses
preprocessing, parsing, optimization, code generation, assembly, and linking.
Depending on which high-level mode setting is passed, Clang will stop before
doing a full link.  While Clang is highly integrated, it is important to
understand the stages of compilation, to understand how to invoke it.  These
stages are:


	Driver

	The clang executable is actually a small driver which controls the overall
execution of other tools such as the compiler, assembler and linker.
Typically you do not need to interact with the driver, but you
transparently use it to run the other tools.

	Preprocessing

	This stage handles tokenization of the input source file, macro expansion,
#include expansion and handling of other preprocessor directives.  The
output of this stage is typically called a ”.i” (for C), ”.ii” (for C++),
”.mi” (for Objective-C), or ”.mii” (for Objective-C++) file.

	Parsing and Semantic Analysis

	This stage parses the input file, translating preprocessor tokens into a
parse tree.  Once in the form of a parse tree, it applies semantic
analysis to compute types for expressions as well and determine whether
the code is well formed. This stage is responsible for generating most of
the compiler warnings as well as parse errors. The output of this stage is
an “Abstract Syntax Tree” (AST).

	Code Generation and Optimization

	This stage translates an AST into low-level intermediate code (known as
“LLVM IR”) and ultimately to machine code.  This phase is responsible for
optimizing the generated code and handling target-specific code generation.
The output of this stage is typically called a ”.s” file or “assembly” file.

Clang also supports the use of an integrated assembler, in which the code
generator produces object files directly. This avoids the overhead of
generating the ”.s” file and of calling the target assembler.



	Assembler

	This stage runs the target assembler to translate the output of the
compiler into a target object file. The output of this stage is typically
called a ”.o” file or “object” file.

	Linker

	This stage runs the target linker to merge multiple object files into an
executable or dynamic library. The output of this stage is typically called
an “a.out”, ”.dylib” or ”.so” file.



Clang Static Analyzer

The Clang Static Analyzer is a tool that scans source code to try to find bugs
through code analysis.  This tool uses many parts of Clang and is built into
the same driver.  Please see <http://clang-analyzer.llvm.org> for more details
on how to use the static analyzer.




OPTIONS


Stage Selection Options


	
-E

	Run the preprocessor stage.






	
-fsyntax-only

	Run the preprocessor, parser and type checking stages.






	
-S

	Run the previous stages as well as LLVM generation and optimization stages
and target-specific code generation, producing an assembly file.






	
-c

	Run all of the above, plus the assembler, generating a target ”.o” object file.






	
no stage selection option

	If no stage selection option is specified, all stages above are run, and the
linker is run to combine the results into an executable or shared library.








Language Selection and Mode Options


	
-x <language>

	Treat subsequent input files as having type language.






	
-std=<language>

	Specify the language standard to compile for.






	
-stdlib=<library>

	Specify the C++ standard library to use; supported options are libstdc++ and
libc++.






	
-ansi

	Same as -std=c89.






	
-ObjC, -ObjC++

	Treat source input files as Objective-C and Object-C++ inputs respectively.






	
-trigraphs

	Enable trigraphs.






	
-ffreestanding

	Indicate that the file should be compiled for a freestanding, not a hosted,
environment.






	
-fno-builtin

	Disable special handling and optimizations of builtin functions like
strlen() and malloc().






	
-fmath-errno

	Indicate that math functions should be treated as updating errno.






	
-fpascal-strings

	Enable support for Pascal-style strings with “\pfoo”.






	
-fms-extensions

	Enable support for Microsoft extensions.






	
-fmsc-version=

	Set _MSC_VER. Defaults to 1300 on Windows. Not set otherwise.






	
-fborland-extensions

	Enable support for Borland extensions.






	
-fwritable-strings

	Make all string literals default to writable.  This disables uniquing of
strings and other optimizations.






	
-flax-vector-conversions

	Allow loose type checking rules for implicit vector conversions.






	
-fblocks

	Enable the “Blocks” language feature.






	
-fobjc-gc-only

	Indicate that Objective-C code should be compiled in GC-only mode, which only
works when Objective-C Garbage Collection is enabled.






	
-fobjc-gc

	Indicate that Objective-C code should be compiled in hybrid-GC mode, which
works with both GC and non-GC mode.






	
-fobjc-abi-version=version

	Select the Objective-C ABI version to use. Available versions are 1 (legacy
“fragile” ABI), 2 (non-fragile ABI 1), and 3 (non-fragile ABI 2).






	
-fobjc-nonfragile-abi-version=<version>

	Select the Objective-C non-fragile ABI version to use by default. This will
only be used as the Objective-C ABI when the non-fragile ABI is enabled
(either via -fobjc-nonfragile-abi, or because it is the platform
default).






	
-fobjc-nonfragile-abi

	Enable use of the Objective-C non-fragile ABI. On platforms for which this is
the default ABI, it can be disabled with -fno-objc-nonfragile-abi.








Target Selection Options

Clang fully supports cross compilation as an inherent part of its design.
Depending on how your version of Clang is configured, it may have support for a
number of cross compilers, or may only support a native target.


	
-arch <architecture>

	Specify the architecture to build for.






	
-mmacosx-version-min=<version>

	When building for Mac OS X, specify the minimum version supported by your
application.






	
-miphoneos-version-min

	When building for iPhone OS, specify the minimum version supported by your
application.






	
-march=<cpu>

	Specify that Clang should generate code for a specific processor family
member and later.  For example, if you specify -march=i486, the compiler is
allowed to generate instructions that are valid on i486 and later processors,
but which may not exist on earlier ones.








Code Generation Options


	
-O0, -O1, -O2, -O3, -Ofast, -Os, -Oz, -O, -O4

	Specify which optimization level to use:


-O0 Means “no optimization”: this level compiles the fastest and
generates the most debuggable code.

-O1 Somewhere between -O0 and -O2.

-O2 Moderate level of optimization which enables most
optimizations.

-O3 Like -O2, except that it enables optimizations that
take longer to perform or that may generate larger code (in an attempt to
make the program run faster).

-Ofast Enables all the optimizations from -O3 along
with other aggressive optimizations that may violate strict compliance with
language standards.

-Os Like -O2 with extra optimizations to reduce code
size.

-Oz Like -Os (and thus -O2), but reduces code
size further.

-O Equivalent to -O2.

-O4 and higher


Currently equivalent to -O3










	
-g

	Generate debug information.  Note that Clang debug information works best at -O0.






	
-fstandalone-debug -fno-standalone-debug

	Clang supports a number of optimizations to reduce the size of debug
information in the binary. They work based on the assumption that the
debug type information can be spread out over multiple compilation units.
For instance, Clang will not emit type definitions for types that are not
needed by a module and could be replaced with a forward declaration.
Further, Clang will only emit type info for a dynamic C++ class in the
module that contains the vtable for the class.

The -fstandalone-debug option turns off these optimizations.
This is useful when working with 3rd-party libraries that don’t come with
debug information.  This is the default on Darwin.  Note that Clang will
never emit type information for types that are not referenced at all by the
program.






	
-fexceptions

	Enable generation of unwind information. This allows exceptions to be thrown
through Clang compiled stack frames.  This is on by default in x86-64.






	
-ftrapv

	Generate code to catch integer overflow errors.  Signed integer overflow is
undefined in C. With this flag, extra code is generated to detect this and
abort when it happens.






	
-fvisibility

	This flag sets the default visibility level.






	
-fcommon

	This flag specifies that variables without initializers get common linkage.
It can be disabled with -fno-common.






	
-ftls-model=<model>

	Set the default thread-local storage (TLS) model to use for thread-local
variables. Valid values are: “global-dynamic”, “local-dynamic”,
“initial-exec” and “local-exec”. The default is “global-dynamic”. The default
model can be overridden with the tls_model attribute. The compiler will try
to choose a more efficient model if possible.






	
-flto, -emit-llvm

	Generate output files in LLVM formats, suitable for link time optimization.
When used with -S this generates LLVM intermediate language
assembly files, otherwise this generates LLVM bitcode format object files
(which may be passed to the linker depending on the stage selection options).








Driver Options


	
-###

	Print (but do not run) the commands to run for this compilation.






	
--help

	Display available options.






	
-Qunused-arguments

	Do not emit any warnings for unused driver arguments.






	
-Wa,<args>

	Pass the comma separated arguments in args to the assembler.






	
-Wl,<args>

	Pass the comma separated arguments in args to the linker.






	
-Wp,<args>

	Pass the comma separated arguments in args to the preprocessor.






	
-Xanalyzer <arg>

	Pass arg to the static analyzer.






	
-Xassembler <arg>

	Pass arg to the assembler.






	
-Xlinker <arg>

	Pass arg to the linker.






	
-Xpreprocessor <arg>

	Pass arg to the preprocessor.






	
-o <file>

	Write output to file.






	
-print-file-name=<file>

	Print the full library path of file.






	
-print-libgcc-file-name

	Print the library path for “libgcc.a”.






	
-print-prog-name=<name>

	Print the full program path of name.






	
-print-search-dirs

	Print the paths used for finding libraries and programs.






	
-save-temps

	Save intermediate compilation results.






	
-integrated-as, -no-integrated-as

	Used to enable and disable, respectively, the use of the integrated
assembler. Whether the integrated assembler is on by default is target
dependent.






	
-time

	Time individual commands.






	
-ftime-report

	Print timing summary of each stage of compilation.






	
-v

	Show commands to run and use verbose output.








Diagnostics Options


	
-fshow-column, -fshow-source-location, -fcaret-diagnostics, -fdiagnostics-fixit-info, -fdiagnostics-parseable-fixits, -fdiagnostics-print-source-range-info, -fprint-source-range-info, -fdiagnostics-show-option, -fmessage-length

	These options control how Clang prints out information about diagnostics
(errors and warnings). Please see the Clang User’s Manual for more information.








Preprocessor Options


	
-D<macroname>=<value>

	Adds an implicit #define into the predefines buffer which is read before the
source file is preprocessed.






	
-U<macroname>

	Adds an implicit #undef into the predefines buffer which is read before the
source file is preprocessed.






	
-include <filename>

	Adds an implicit #include into the predefines buffer which is read before the
source file is preprocessed.






	
-I<directory>

	Add the specified directory to the search path for include files.






	
-F<directory>

	Add the specified directory to the search path for framework include files.






	
-nostdinc

	Do not search the standard system directories or compiler builtin directories
for include files.






	
-nostdlibinc

	Do not search the standard system directories for include files, but do
search compiler builtin include directories.






	
-nobuiltininc

	Do not search clang’s builtin directory for include files.










ENVIRONMENT


	
TMPDIR, TEMP, TMP

	These environment variables are checked, in order, for the location to write
temporary files used during the compilation process.






	
CPATH

	If this environment variable is present, it is treated as a delimited list of
paths to be added to the default system include path list. The delimiter is
the platform dependent delimiter, as used in the PATH environment variable.

Empty components in the environment variable are ignored.






	
C_INCLUDE_PATH, OBJC_INCLUDE_PATH, CPLUS_INCLUDE_PATH, OBJCPLUS_INCLUDE_PATH

	These environment variables specify additional paths, as for CPATH, which are
only used when processing the appropriate language.






	
MACOSX_DEPLOYMENT_TARGET

	If -mmacosx-version-min is unspecified, the default deployment
target is read from this environment variable. This option only affects
Darwin targets.








BUGS

To report bugs, please visit <http://llvm.org/bugs/>.  Most bug reports should
include preprocessed source files (use the -E option) and the full
output of the compiler, along with information to reproduce.




SEE ALSO

as(1), ld(1)







          

      

      

    

  

    
      
          
            
  
Frequently Asked Questions (FAQ)



	Driver
	I run clang -cc1 ... and get weird errors about missing headers

	I get errors about some headers being missing (stddef.h, stdarg.h)










Driver


I run clang -cc1 ... and get weird errors about missing headers

Given this source file:

#include <stdio.h>

int main() {
  printf("Hello world\n");
}





If you run:

$ clang -cc1 hello.c
hello.c:1:10: fatal error: 'stdio.h' file not found
#include <stdio.h>
         ^
1 error generated.





clang -cc1 is the frontend, clang is the driver.  The driver invokes the frontend with options appropriate
for your system.  To see these options, run:

$ clang -### -c hello.c





Some clang command line options are driver-only options, some are frontend-only
options.  Frontend-only options are intended to be used only by clang developers.
Users should not run clang -cc1 directly, because -cc1 options are not
guaranteed to be stable.

If you want to use a frontend-only option (“a -cc1 option”), for example
-ast-dump, then you need to take the clang -cc1 line generated by the
driver and add the option you need.  Alternatively, you can run
clang -Xclang <option> ... to force the driver pass <option> to
clang -cc1.




I get errors about some headers being missing (stddef.h, stdarg.h)

Some header files (stddef.h, stdarg.h, and others) are shipped with
Clang — these are called builtin includes.  Clang searches for them in a
directory relative to the location of the clang binary.  If you moved the
clang binary, you need to move the builtin headers, too.

More information can be found in the Builtin includes
section.









          

      

      

    

  

    
      
          
            
  
Choosing the Right Interface for Your Application

Clang provides infrastructure to write tools that need syntactic and semantic
information about a program.  This document will give a short introduction of
the different ways to write clang tools, and their pros and cons.


LibClang

LibClang [http://clang.llvm.org/doxygen/group__CINDEX.html] is a stable high
level C interface to clang.  When in doubt LibClang is probably the interface
you want to use.  Consider the other interfaces only when you have a good
reason not to use LibClang.

Canonical examples of when to use LibClang:


	Xcode

	Clang Python Bindings



Use LibClang when you...:


	want to interface with clang from other languages than C++

	need a stable interface that takes care to be backwards compatible

	want powerful high-level abstractions, like iterating through an AST with a
cursor, and don’t want to learn all the nitty gritty details of Clang’s AST.



Do not use LibClang when you...:


	want full control over the Clang AST






Clang Plugins

Clang Plugins allow you to run additional actions on the
AST as part of a compilation.  Plugins are dynamic libraries that are loaded at
runtime by the compiler, and they’re easy to integrate into your build
environment.

Canonical examples of when to use Clang Plugins:


	special lint-style warnings or errors for your project

	creating additional build artifacts from a single compile step



Use Clang Plugins when you...:


	need your tool to rerun if any of the dependencies change

	want your tool to make or break a build

	need full control over the Clang AST



Do not use Clang Plugins when you...:


	want to run tools outside of your build environment

	want full control on how Clang is set up, including mapping of in-memory
virtual files

	need to run over a specific subset of files in your project which is not
necessarily related to any changes which would trigger rebuilds






LibTooling

LibTooling is a C++ interface aimed at writing standalone
tools, as well as integrating into services that run clang tools.  Canonical
examples of when to use LibTooling:


	a simple syntax checker

	refactoring tools



Use LibTooling when you...:


	want to run tools over a single file, or a specific subset of files,
independently of the build system

	want full control over the Clang AST

	want to share code with Clang Plugins



Do not use LibTooling when you...:


	want to run as part of the build triggered by dependency changes

	want a stable interface so you don’t need to change your code when the AST API
changes

	want high level abstractions like cursors and code completion out of the box

	do not want to write your tools in C++



Clang tools are a collection of specific developer tools
built on top of the LibTooling infrastructure as part of the Clang project.
They are targeted at automating and improving core development activities of
C/C++ developers.

Examples of tools we are building or planning as part of the Clang project:


	Syntax checking (clang-check)

	Automatic fixing of compile errors (clang-fixit)

	Automatic code formatting (clang-format)

	Migration tools for new features in new language standards

	Core refactoring tools









          

      

      

    

  

    
      
          
            
  
External Clang Examples


Introduction

This page provides some examples of the kinds of things that people have
done with Clang that might serve as useful guides (or starting points) from
which to develop your own tools. They may be helpful even for something as
banal (but necessary) as how to set up your build to integrate Clang.

Clang’s library-based design is deliberately aimed at facilitating use by
external projects, and we are always interested in improving Clang to
better serve our external users. Some typical categories of applications
where Clang is used are:


	Static analysis.

	Documentation/cross-reference generation.



If you know of (or wrote!) a tool or project using Clang, please send an
email to Clang’s development discussion mailing list [http://lists.llvm.org/mailman/listinfo/cfe-dev] to have it added.
(or if you are already a Clang contributor, feel free to directly commit
additions). Since the primary purpose of this page is to provide examples
that can help developers, generally they must have code available.




List of projects and tools


	https://github.com/Andersbakken/rtags/

	“RTags is a client/server application that indexes c/c++ code and keeps
a persistent in-memory database of references, symbolnames, completions
etc.”

	http://rprichard.github.com/sourceweb/

	“A C/C++ source code indexer and navigator”

	https://github.com/etaoins/qconnectlint

	“qconnectlint is a Clang tool for statically verifying the consistency
of signal and slot connections made with Qt’s QObject::connect.”

	https://github.com/woboq/woboq_codebrowser

	“The Woboq Code Browser is a web-based code browser for C/C++ projects.
Check out http://code.woboq.org/ for an example!”

	https://github.com/mozilla/dxr

	“DXR is a source code cross-reference tool that uses static analysis
data collected by instrumented compilers.”

	https://github.com/eschulte/clang-mutate

	“This tool performs a number of operations on C-language source files.”

	https://github.com/gmarpons/Crisp

	“A coding rule validation add-on for LLVM/clang. Crisp rules are written
in Prolog. A high-level declarative DSL to easily write new rules is under
development. It will be called CRISP, an acronym for Coding Rules in
Sugared Prolog.”

	https://github.com/drothlis/clang-ctags

	“Generate tag file for C++ source code.”

	https://github.com/exclipy/clang_indexer

	“This is an indexer for C and C++ based on the libclang library.”

	https://github.com/holtgrewe/linty

	“Linty - C/C++ Style Checking with Python & libclang.”

	https://github.com/axw/cmonster

	“cmonster is a Python wrapper for the Clang C++ parser.”

	https://github.com/rizsotto/Constantine

	“Constantine is a toy project to learn how to write clang plugin.
Implements pseudo const analysis. Generates warnings about variables,
which were declared without const qualifier.”

	https://github.com/jessevdk/cldoc

	“cldoc is a Clang based documentation generator for C and C++.
cldoc tries to solve the issue of writing C/C++ software documentation
with a modern, non-intrusive and robust approach.”

	https://github.com/AlexDenisov/ToyClangPlugin

	“The simplest Clang plugin implementing a semantic check for Objective-C.
This example shows how to use the DiagnosticsEngine (emit warnings,
errors, fixit hints).  See also http://l.rw.rw/clang_plugin for
step-by-step instructions.”









          

      

      

    

  

    
      
          
            
  
Introduction to the Clang AST

This document gives a gentle introduction to the mysteries of the Clang
AST. It is targeted at developers who either want to contribute to
Clang, or use tools that work based on Clang’s AST, like the AST
matchers.


  
    
    
    LibTooling
    
    

    
 
  
  

    
      
          
            
  
LibTooling

LibTooling is a library to support writing standalone tools based on Clang.
This document will provide a basic walkthrough of how to write a tool using
LibTooling.

For the information on how to setup Clang Tooling for LLVM see
How To Setup Clang Tooling For LLVM


Introduction

Tools built with LibTooling, like Clang Plugins, run FrontendActions over
code.

In this tutorial, we’ll demonstrate the different ways of running Clang’s
SyntaxOnlyAction, which runs a quick syntax check, over a bunch of code.




Parsing a code snippet in memory

If you ever wanted to run a FrontendAction over some sample code, for
example to unit test parts of the Clang AST, runToolOnCode is what you
looked for.  Let me give you an example:

#include "clang/Tooling/Tooling.h"

TEST(runToolOnCode, CanSyntaxCheckCode) {
  // runToolOnCode returns whether the action was correctly run over the
  // given code.
  EXPECT_TRUE(runToolOnCode(new clang::SyntaxOnlyAction, "class X {};"));
}








Writing a standalone tool

Once you unit tested your FrontendAction to the point where it cannot
possibly break, it’s time to create a standalone tool.  For a standalone tool
to run clang, it first needs to figure out what command line arguments to use
for a specified file.  To that end we create a CompilationDatabase.  There
are different ways to create a compilation database, and we need to support all
of them depending on command-line options.  There’s the CommonOptionsParser
class that takes the responsibility to parse command-line parameters related to
compilation databases and inputs, so that all tools share the implementation.


Parsing common tools options

CompilationDatabase can be read from a build directory or the command line.
Using CommonOptionsParser allows for explicit specification of a compile
command line, specification of build path using the -p command-line option,
and automatic location of the compilation database using source files paths.

#include "clang/Tooling/CommonOptionsParser.h"
#include "llvm/Support/CommandLine.h"

using namespace clang::tooling;

// Apply a custom category to all command-line options so that they are the
// only ones displayed.
static llvm::cl::OptionCategory MyToolCategory("my-tool options");

int main(int argc, const char **argv) {
  // CommonOptionsParser constructor will parse arguments and create a
  // CompilationDatabase.  In case of error it will terminate the program.
  CommonOptionsParser OptionsParser(argc, argv, MyToolCategory);

  // Use OptionsParser.getCompilations() and OptionsParser.getSourcePathList()
  // to retrieve CompilationDatabase and the list of input file paths.
}








Creating and running a ClangTool

Once we have a CompilationDatabase, we can create a ClangTool and run
our FrontendAction over some code.  For example, to run the
SyntaxOnlyAction over the files “a.cc” and “b.cc” one would write:

// A clang tool can run over a number of sources in the same process...
std::vector<std::string> Sources;
Sources.push_back("a.cc");
Sources.push_back("b.cc");

// We hand the CompilationDatabase we created and the sources to run over into
// the tool constructor.
ClangTool Tool(OptionsParser.getCompilations(), Sources);

// The ClangTool needs a new FrontendAction for each translation unit we run
// on.  Thus, it takes a FrontendActionFactory as parameter.  To create a
// FrontendActionFactory from a given FrontendAction type, we call
// newFrontendActionFactory<clang::SyntaxOnlyAction>().
int result = Tool.run(newFrontendActionFactory<clang::SyntaxOnlyAction>().get());








Putting it together — the first tool

Now we combine the two previous steps into our first real tool.  A more advanced
version of this example tool is also checked into the clang tree at
tools/clang-check/ClangCheck.cpp.

// Declares clang::SyntaxOnlyAction.
#include "clang/Frontend/FrontendActions.h"
#include "clang/Tooling/CommonOptionsParser.h"
#include "clang/Tooling/Tooling.h"
// Declares llvm::cl::extrahelp.
#include "llvm/Support/CommandLine.h"

using namespace clang::tooling;
using namespace llvm;

// Apply a custom category to all command-line options so that they are the
// only ones displayed.
static cl::OptionCategory MyToolCategory("my-tool options");

// CommonOptionsParser declares HelpMessage with a description of the common
// command-line options related to the compilation database and input files.
// It's nice to have this help message in all tools.
static cl::extrahelp CommonHelp(CommonOptionsParser::HelpMessage);

// A help message for this specific tool can be added afterwards.
static cl::extrahelp MoreHelp("\nMore help text...");

int main(int argc, const char **argv) {
  CommonOptionsParser OptionsParser(argc, argv, MyToolCategory);
  ClangTool Tool(OptionsParser.getCompilations(),
                 OptionsParser.getSourcePathList());
  return Tool.run(newFrontendActionFactory<clang::SyntaxOnlyAction>().get());
}








Running the tool on some code

When you check out and build clang, clang-check is already built and available
to you in bin/clang-check inside your build directory.

You can run clang-check on a file in the llvm repository by specifying all the
needed parameters after a “--” separator:

$ cd /path/to/source/llvm
$ export BD=/path/to/build/llvm
$ $BD/bin/clang-check tools/clang/tools/clang-check/ClangCheck.cpp -- \
      clang++ -D__STDC_CONSTANT_MACROS -D__STDC_LIMIT_MACROS \
      -Itools/clang/include -I$BD/include -Iinclude \
      -Itools/clang/lib/Headers -c





As an alternative, you can also configure cmake to output a compile command
database into its build directory:

# Alternatively to calling cmake, use ccmake, toggle to advanced mode and
# set the parameter CMAKE_EXPORT_COMPILE_COMMANDS from the UI.
$ cmake -DCMAKE_EXPORT_COMPILE_COMMANDS=ON .





This creates a file called compile_commands.json in the build directory.
Now you can run clang-check over files in the project by specifying
the build path as first argument and some source files as further positional
arguments:

$ cd /path/to/source/llvm
$ export BD=/path/to/build/llvm
$ $BD/bin/clang-check -p $BD tools/clang/tools/clang-check/ClangCheck.cpp








Builtin includes

Clang tools need their builtin headers and search for them the same way Clang
does.  Thus, the default location to look for builtin headers is in a path
$(dirname /path/to/tool)/../lib/clang/3.3/include relative to the tool
binary.  This works out-of-the-box for tools running from llvm’s toplevel
binary directory after building clang-headers, or if the tool is running from
the binary directory of a clang install next to the clang binary.

Tips: if your tool fails to find stddef.h or similar headers, call the tool
with -v and look at the search paths it looks through.




Linking

For a list of libraries to link, look at one of the tools’ Makefiles (for
example clang-check/Makefile [http://llvm.org/viewvc/llvm-project/cfe/trunk/tools/clang-check/Makefile?view=markup]).









          

      

      

    

  

  
    
    
    LibFormat
    
    

    
 
  
  

    
      
          
            
  
LibFormat

LibFormat is a library that implements automatic source code formatting based
on Clang. This documents describes the LibFormat interface and design as well
as some basic style discussions.

If you just want to use clang-format as a tool or integrated into an editor,
checkout ClangFormat.


Design

FIXME: Write up design.




Interface

The core routine of LibFormat is reformat():

tooling::Replacements reformat(const FormatStyle &Style, Lexer &Lex,
                               SourceManager &SourceMgr,
                               std::vector<CharSourceRange> Ranges);





This reads a token stream out of the lexer Lex and reformats all the code
ranges in Ranges. The FormatStyle controls basic decisions made during
formatting. A list of options can be found under Style Options.




Style Options

The style options describe specific formatting options that can be used in
order to make ClangFormat comply with different style guides. Currently,
two style guides are hard-coded:

/// \brief Returns a format style complying with the LLVM coding standards:
/// http://llvm.org/docs/CodingStandards.html.
FormatStyle getLLVMStyle();

/// \brief Returns a format style complying with Google's C++ style guide:
/// http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml.
FormatStyle getGoogleStyle();





These options are also exposed in the standalone tools
through the -style option.

In the future, we plan on making this configurable.







          

      

      

    

  

  
    
    
    Clang Plugins
    
    

    
 
  
  

    
      
          
            
  
Clang Plugins

Clang Plugins make it possible to run extra user defined actions during a
compilation. This document will provide a basic walkthrough of how to write and
run a Clang Plugin.


Introduction

Clang Plugins run FrontendActions over code. See the FrontendAction
tutorial on how to write a FrontendAction using the
RecursiveASTVisitor. In this tutorial, we’ll demonstrate how to write a
simple clang plugin.




Writing a PluginASTAction

The main difference from writing normal FrontendActions is that you can
handle plugin command line options. The PluginASTAction base class declares
a ParseArgs method which you have to implement in your plugin.

bool ParseArgs(const CompilerInstance &CI,
               const std::vector<std::string>& args) {
  for (unsigned i = 0, e = args.size(); i != e; ++i) {
    if (args[i] == "-some-arg") {
      // Handle the command line argument.
    }
  }
  return true;
}








Registering a plugin

A plugin is loaded from a dynamic library at runtime by the compiler. To
register a plugin in a library, use FrontendPluginRegistry::Add<>:

static FrontendPluginRegistry::Add<MyPlugin> X("my-plugin-name", "my plugin description");








Putting it all together

Let’s look at an example plugin that prints top-level function names.  This
example is checked into the clang repository; please take a look at
the latest version of PrintFunctionNames.cpp [http://llvm.org/viewvc/llvm-project/cfe/trunk/examples/PrintFunctionNames/PrintFunctionNames.cpp?view=markup].




Running the plugin

To run a plugin, the dynamic library containing the plugin registry must be
loaded via the -load command line option. This will load all plugins
that are registered, and you can select the plugins to run by specifying the
-plugin option. Additional parameters for the plugins can be passed with
-plugin-arg-.

Note that those options must reach clang’s cc1 process. There are two
ways to do so:


	Directly call the parsing process by using the -cc1 option; this
has the downside of not configuring the default header search paths, so
you’ll need to specify the full system path configuration on the command
line.

	Use clang as usual, but prefix all arguments to the cc1 process with
-Xclang.



For example, to run the print-function-names plugin over a source file in
clang, first build the plugin, and then call clang with the plugin from the
source tree:

$ export BD=/path/to/build/directory
$ (cd $BD && make PrintFunctionNames )
$ clang++ -D_GNU_SOURCE -D_DEBUG -D__STDC_CONSTANT_MACROS \
          -D__STDC_FORMAT_MACROS -D__STDC_LIMIT_MACROS -D_GNU_SOURCE \
          -I$BD/tools/clang/include -Itools/clang/include -I$BD/include -Iinclude \
          tools/clang/tools/clang-check/ClangCheck.cpp -fsyntax-only \
          -Xclang -load -Xclang $BD/lib/PrintFunctionNames.so -Xclang \
          -plugin -Xclang print-fns





Also see the print-function-name plugin example’s
README [http://llvm.org/viewvc/llvm-project/cfe/trunk/examples/PrintFunctionNames/README.txt?view=markup]







          

      

      

    

  

  
    
    
    How to write RecursiveASTVisitor based ASTFrontendActions.
    
    

    
 
  
  

    
      
          
            
  
How to write RecursiveASTVisitor based ASTFrontendActions.


Introduction

In this tutorial you will learn how to create a FrontendAction that uses
a RecursiveASTVisitor to find CXXRecordDecl AST nodes with a specified
name.




Creating a FrontendAction

When writing a clang based tool like a Clang Plugin or a standalone tool
based on LibTooling, the common entry point is the FrontendAction.
FrontendAction is an interface that allows execution of user specific
actions as part of the compilation. To run tools over the AST clang
provides the convenience interface ASTFrontendAction, which takes care
of executing the action. The only part left is to implement the
CreateASTConsumer method that returns an ASTConsumer per translation
unit.

class FindNamedClassAction : public clang::ASTFrontendAction {
public:
  virtual std::unique_ptr<clang::ASTConsumer> CreateASTConsumer(
    clang::CompilerInstance &Compiler, llvm::StringRef InFile) {
    return std::unique_ptr<clang::ASTConsumer>(
        new FindNamedClassConsumer);
  }
};








Creating an ASTConsumer

ASTConsumer is an interface used to write generic actions on an AST,
regardless of how the AST was produced. ASTConsumer provides many
different entry points, but for our use case the only one needed is
HandleTranslationUnit, which is called with the ASTContext for the
translation unit.

class FindNamedClassConsumer : public clang::ASTConsumer {
public:
  virtual void HandleTranslationUnit(clang::ASTContext &Context) {
    // Traversing the translation unit decl via a RecursiveASTVisitor
    // will visit all nodes in the AST.
    Visitor.TraverseDecl(Context.getTranslationUnitDecl());
  }
private:
  // A RecursiveASTVisitor implementation.
  FindNamedClassVisitor Visitor;
};








Using the RecursiveASTVisitor

Now that everything is hooked up, the next step is to implement a
RecursiveASTVisitor to extract the relevant information from the AST.

The RecursiveASTVisitor provides hooks of the form bool
VisitNodeType(NodeType *) for most AST nodes; the exception are TypeLoc
nodes, which are passed by-value. We only need to implement the methods
for the relevant node types.

Let’s start by writing a RecursiveASTVisitor that visits all
CXXRecordDecl’s.

class FindNamedClassVisitor
  : public RecursiveASTVisitor<FindNamedClassVisitor> {
public:
  bool VisitCXXRecordDecl(CXXRecordDecl *Declaration) {
    // For debugging, dumping the AST nodes will show which nodes are already
    // being visited.
    Declaration->dump();

    // The return value indicates whether we want the visitation to proceed.
    // Return false to stop the traversal of the AST.
    return true;
  }
};





In the methods of our RecursiveASTVisitor we can now use the full power
of the Clang AST to drill through to the parts that are interesting for
us. For example, to find all class declaration with a certain name, we
can check for a specific qualified name:

bool VisitCXXRecordDecl(CXXRecordDecl *Declaration) {
  if (Declaration->getQualifiedNameAsString() == "n::m::C")
    Declaration->dump();
  return true;
}








Accessing the SourceManager and ASTContext

Some of the information about the AST, like source locations and global
identifier information, are not stored in the AST nodes themselves, but
in the ASTContext and its associated source manager. To retrieve them we
need to hand the ASTContext into our RecursiveASTVisitor implementation.

The ASTContext is available from the CompilerInstance during the call to
CreateASTConsumer. We can thus extract it there and hand it into our
freshly created FindNamedClassConsumer:

virtual std::unique_ptr<clang::ASTConsumer> CreateASTConsumer(
  clang::CompilerInstance &Compiler, llvm::StringRef InFile) {
  return std::unique_ptr<clang::ASTConsumer>(
      new FindNamedClassConsumer(&Compiler.getASTContext()));
}





Now that the ASTContext is available in the RecursiveASTVisitor, we can
do more interesting things with AST nodes, like looking up their source
locations:

bool VisitCXXRecordDecl(CXXRecordDecl *Declaration) {
  if (Declaration->getQualifiedNameAsString() == "n::m::C") {
    // getFullLoc uses the ASTContext's SourceManager to resolve the source
    // location and break it up into its line and column parts.
    FullSourceLoc FullLocation = Context->getFullLoc(Declaration->getLocStart());
    if (FullLocation.isValid())
      llvm::outs() << "Found declaration at "
                   << FullLocation.getSpellingLineNumber() << ":"
                   << FullLocation.getSpellingColumnNumber() << "\n";
  }
  return true;
}








Putting it all together

Now we can combine all of the above into a small example program:

#include "clang/AST/ASTConsumer.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Frontend/FrontendAction.h"
#include "clang/Tooling/Tooling.h"

using namespace clang;

class FindNamedClassVisitor
  : public RecursiveASTVisitor<FindNamedClassVisitor> {
public:
  explicit FindNamedClassVisitor(ASTContext *Context)
    : Context(Context) {}

  bool VisitCXXRecordDecl(CXXRecordDecl *Declaration) {
    if (Declaration->getQualifiedNameAsString() == "n::m::C") {
      FullSourceLoc FullLocation = Context->getFullLoc(Declaration->getLocStart());
      if (FullLocation.isValid())
        llvm::outs() << "Found declaration at "
                     << FullLocation.getSpellingLineNumber() << ":"
                     << FullLocation.getSpellingColumnNumber() << "\n";
    }
    return true;
  }

private:
  ASTContext *Context;
};

class FindNamedClassConsumer : public clang::ASTConsumer {
public:
  explicit FindNamedClassConsumer(ASTContext *Context)
    : Visitor(Context) {}

  virtual void HandleTranslationUnit(clang::ASTContext &Context) {
    Visitor.TraverseDecl(Context.getTranslationUnitDecl());
  }
private:
  FindNamedClassVisitor Visitor;
};

class FindNamedClassAction : public clang::ASTFrontendAction {
public:
  virtual std::unique_ptr<clang::ASTConsumer> CreateASTConsumer(
    clang::CompilerInstance &Compiler, llvm::StringRef InFile) {
    return std::unique_ptr<clang::ASTConsumer>(
        new FindNamedClassConsumer(&Compiler.getASTContext()));
  }
};

int main(int argc, char **argv) {
  if (argc > 1) {
    clang::tooling::runToolOnCode(new FindNamedClassAction, argv[1]);
  }
}





We store this into a file called FindClassDecls.cpp and create the
following CMakeLists.txt to link it:

set(LLVM_USED_LIBS clangTooling)

add_clang_executable(find-class-decls FindClassDecls.cpp)





When running this tool over a small code snippet it will output all
declarations of a class n::m::C it found:

$ ./bin/find-class-decls "namespace n { namespace m { class C {}; } }"
Found declaration at 1:29











          

      

      

    

  

  
    
    
    Tutorial for building tools using LibTooling and LibASTMatchers
    
    

    
 
  
  

    
      
          
            
  
Tutorial for building tools using LibTooling and LibASTMatchers

This document is intended to show how to build a useful source-to-source
translation tool based on Clang’s LibTooling. It is
explicitly aimed at people who are new to Clang, so all you should need
is a working knowledge of C++ and the command line.

In order to work on the compiler, you need some basic knowledge of the
abstract syntax tree (AST). To this end, the reader is incouraged to
skim the Introduction to the Clang
AST


Step 0: Obtaining Clang

As Clang is part of the LLVM project, you’ll need to download LLVM’s
source code first. Both Clang and LLVM are maintained as Subversion
repositories, but we’ll be accessing them through the git mirror. For
further information, see the getting started
guide [http://llvm.org/docs/GettingStarted.html].

mkdir ~/clang-llvm && cd ~/clang-llvm
git clone http://llvm.org/git/llvm.git
cd llvm/tools
git clone http://llvm.org/git/clang.git
cd clang/tools
git clone http://llvm.org/git/clang-tools-extra.git extra





Next you need to obtain the CMake build system and Ninja build tool. You
may already have CMake installed, but current binary versions of CMake
aren’t built with Ninja support.

cd ~/clang-llvm
git clone https://github.com/martine/ninja.git
cd ninja
git checkout release
./bootstrap.py
sudo cp ninja /usr/bin/

cd ~/clang-llvm
git clone git://cmake.org/stage/cmake.git
cd cmake
git checkout next
./bootstrap
make
sudo make install





Okay. Now we’ll build Clang!

cd ~/clang-llvm
mkdir build && cd build
cmake -G Ninja ../llvm -DLLVM_BUILD_TESTS=ON  # Enable tests; default is off.
ninja
ninja check       # Test LLVM only.
ninja clang-test  # Test Clang only.
ninja install





And we’re live.

All of the tests should pass, though there is a (very) small chance that
you can catch LLVM and Clang out of sync. Running 'git svn rebase'
in both the llvm and clang directories should fix any problems.

Finally, we want to set Clang as its own compiler.

cd ~/clang-llvm/build
ccmake ../llvm





The second command will bring up a GUI for configuring Clang. You need
to set the entry for CMAKE_CXX_COMPILER. Press 't' to turn on
advanced mode. Scroll down to CMAKE_CXX_COMPILER, and set it to
/usr/bin/clang++, or wherever you installed it. Press 'c' to
configure, then 'g' to generate CMake’s files.

Finally, run ninja one last time, and you’re done.




Step 1: Create a ClangTool

Now that we have enough background knowledge, it’s time to create the
simplest productive ClangTool in existence: a syntax checker. While this
already exists as clang-check, it’s important to understand what’s
going on.

First, we’ll need to create a new directory for our tool and tell CMake
that it exists. As this is not going to be a core clang tool, it will
live in the tools/extra repository.

cd ~/clang-llvm/llvm/tools/clang
mkdir tools/extra/loop-convert
echo 'add_subdirectory(loop-convert)' >> tools/extra/CMakeLists.txt
vim tools/extra/loop-convert/CMakeLists.txt





CMakeLists.txt should have the following contents:

set(LLVM_LINK_COMPONENTS support)
set(LLVM_USED_LIBS clangTooling clangBasic clangAST)

add_clang_executable(loop-convert
  LoopConvert.cpp
  )
target_link_libraries(loop-convert
  clangTooling
  clangBasic
  clangASTMatchers
  )





With that done, Ninja will be able to compile our tool. Let’s give it
something to compile! Put the following into
tools/extra/loop-convert/LoopConvert.cpp. A detailed explanation of
why the different parts are needed can be found in the LibTooling
documentation.

// Declares clang::SyntaxOnlyAction.
#include "clang/Frontend/FrontendActions.h"
#include "clang/Tooling/CommonOptionsParser.h"
#include "clang/Tooling/Tooling.h"
// Declares llvm::cl::extrahelp.
#include "llvm/Support/CommandLine.h"

using namespace clang::tooling;
using namespace llvm;

// Apply a custom category to all command-line options so that they are the
// only ones displayed.
static llvm::cl::OptionCategory MyToolCategory("my-tool options");

// CommonOptionsParser declares HelpMessage with a description of the common
// command-line options related to the compilation database and input files.
// It's nice to have this help message in all tools.
static cl::extrahelp CommonHelp(CommonOptionsParser::HelpMessage);

// A help message for this specific tool can be added afterwards.
static cl::extrahelp MoreHelp("\nMore help text...");

int main(int argc, const char **argv) {
  CommonOptionsParser OptionsParser(argc, argv, MyToolCategory);
  ClangTool Tool(OptionsParser.getCompilations(),
                 OptionsParser.getSourcePathList());
  return Tool.run(newFrontendActionFactory<clang::SyntaxOnlyAction>().get());
}





And that’s it! You can compile our new tool by running ninja from the
build directory.

cd ~/clang-llvm/build
ninja





You should now be able to run the syntax checker, which is located in
~/clang-llvm/build/bin, on any source file. Try it!

echo "int main() { return 0; }" > test.cpp
bin/loop-convert test.cpp --





Note the two dashes after we specify the source file. The additional
options for the compiler are passed after the dashes rather than loading
them from a compilation database - there just aren’t any options needed
right now.




Intermezzo: Learn AST matcher basics

Clang recently introduced the ASTMatcher
library to provide a simple, powerful, and
concise way to describe specific patterns in the AST. Implemented as a
DSL powered by macros and templates (see
ASTMatchers.h if you’re
curious), matchers offer the feel of algebraic data types common to
functional programming languages.

For example, suppose you wanted to examine only binary operators. There
is a matcher to do exactly that, conveniently named binaryOperator.
I’ll give you one guess what this matcher does:

binaryOperator(hasOperatorName("+"), hasLHS(integerLiteral(equals(0))))





Shockingly, it will match against addition expressions whose left hand
side is exactly the literal 0. It will not match against other forms of
0, such as '\0' or NULL, but it will match against macros that
expand to 0. The matcher will also not match against calls to the
overloaded operator '+', as there is a separate operatorCallExpr
matcher to handle overloaded operators.

There are AST matchers to match all the different nodes of the AST,
narrowing matchers to only match AST nodes fulfilling specific criteria,
and traversal matchers to get from one kind of AST node to another. For
a complete list of AST matchers, take a look at the AST Matcher
References

All matcher that are nouns describe entities in the AST and can be
bound, so that they can be referred to whenever a match is found. To do
so, simply call the method bind on these matchers, e.g.:

variable(hasType(isInteger())).bind("intvar")








Step 2: Using AST matchers

Okay, on to using matchers for real. Let’s start by defining a matcher
which will capture all for statements that define a new variable
initialized to zero. Let’s start with matching all for loops:

forStmt()





Next, we want to specify that a single variable is declared in the first
portion of the loop, so we can extend the matcher to

forStmt(hasLoopInit(declStmt(hasSingleDecl(varDecl()))))





Finally, we can add the condition that the variable is initialized to
zero.

forStmt(hasLoopInit(declStmt(hasSingleDecl(varDecl(
  hasInitializer(integerLiteral(equals(0))))))))





It is fairly easy to read and understand the matcher definition (“match
loops whose init portion declares a single variable which is initialized
to the integer literal 0”), but deciding that every piece is necessary
is more difficult. Note that this matcher will not match loops whose
variables are initialized to '\0', 0.0, NULL, or any form of
zero besides the integer 0.

The last step is giving the matcher a name and binding the ForStmt
as we will want to do something with it:

StatementMatcher LoopMatcher =
  forStmt(hasLoopInit(declStmt(hasSingleDecl(varDecl(
    hasInitializer(integerLiteral(equals(0)))))))).bind("forLoop");





Once you have defined your matchers, you will need to add a little more
scaffolding in order to run them. Matchers are paired with a
MatchCallback and registered with a MatchFinder object, then run
from a ClangTool. More code!

Add the following to LoopConvert.cpp:

#include "clang/ASTMatchers/ASTMatchers.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"

using namespace clang;
using namespace clang::ast_matchers;

StatementMatcher LoopMatcher =
  forStmt(hasLoopInit(declStmt(hasSingleDecl(varDecl(
    hasInitializer(integerLiteral(equals(0)))))))).bind("forLoop");

class LoopPrinter : public MatchFinder::MatchCallback {
public :
  virtual void run(const MatchFinder::MatchResult &Result) {
    if (const ForStmt *FS = Result.Nodes.getNodeAs<clang::ForStmt>("forLoop"))
      FS->dump();
  }
};





And change main() to:

int main(int argc, const char **argv) {
  CommonOptionsParser OptionsParser(argc, argv, MyToolCategory);
  ClangTool Tool(OptionsParser.getCompilations(),
                 OptionsParser.getSourcePathList());

  LoopPrinter Printer;
  MatchFinder Finder;
  Finder.addMatcher(LoopMatcher, &Printer);

  return Tool.run(newFrontendActionFactory(&Finder).get());
}





Now, you should be able to recompile and run the code to discover for
loops. Create a new file with a few examples, and test out our new
handiwork:

cd ~/clang-llvm/llvm/llvm_build/
ninja loop-convert
vim ~/test-files/simple-loops.cc
bin/loop-convert ~/test-files/simple-loops.cc








Step 3.5: More Complicated Matchers

Our simple matcher is capable of discovering for loops, but we would
still need to filter out many more ourselves. We can do a good portion
of the remaining work with some cleverly chosen matchers, but first we
need to decide exactly which properties we want to allow.

How can we characterize for loops over arrays which would be eligible
for translation to range-based syntax? Range based loops over arrays of
size N that:


	start at index 0

	iterate consecutively

	end at index N-1



We already check for (1), so all we need to add is a check to the loop’s
condition to ensure that the loop’s index variable is compared against
N and another check to ensure that the increment step just
increments this same variable. The matcher for (2) is straightforward:
require a pre- or post-increment of the same variable declared in the
init portion.

Unfortunately, such a matcher is impossible to write. Matchers contain
no logic for comparing two arbitrary AST nodes and determining whether
or not they are equal, so the best we can do is matching more than we
would like to allow, and punting extra comparisons to the callback.

In any case, we can start building this sub-matcher. We can require that
the increment step be a unary increment like this:

hasIncrement(unaryOperator(hasOperatorName("++")))





Specifying what is incremented introduces another quirk of Clang’s AST:
Usages of variables are represented as DeclRefExpr‘s (“declaration
reference expressions”) because they are expressions which refer to
variable declarations. To find a unaryOperator that refers to a
specific declaration, we can simply add a second condition to it:

hasIncrement(unaryOperator(
  hasOperatorName("++"),
  hasUnaryOperand(declRefExpr())))





Furthermore, we can restrict our matcher to only match if the
incremented variable is an integer:

hasIncrement(unaryOperator(
  hasOperatorName("++"),
  hasUnaryOperand(declRefExpr(to(varDecl(hasType(isInteger())))))))





And the last step will be to attach an identifier to this variable, so
that we can retrieve it in the callback:

hasIncrement(unaryOperator(
  hasOperatorName("++"),
  hasUnaryOperand(declRefExpr(to(
    varDecl(hasType(isInteger())).bind("incrementVariable"))))))





We can add this code to the definition of LoopMatcher and make sure
that our program, outfitted with the new matcher, only prints out loops
that declare a single variable initialized to zero and have an increment
step consisting of a unary increment of some variable.

Now, we just need to add a matcher to check if the condition part of the
for loop compares a variable against the size of the array. There is
only one problem - we don’t know which array we’re iterating over
without looking at the body of the loop! We are again restricted to
approximating the result we want with matchers, filling in the details
in the callback. So we start with:

hasCondition(binaryOperator(hasOperatorName("<"))





It makes sense to ensure that the left-hand side is a reference to a
variable, and that the right-hand side has integer type.

hasCondition(binaryOperator(
  hasOperatorName("<"),
  hasLHS(declRefExpr(to(varDecl(hasType(isInteger()))))),
  hasRHS(expr(hasType(isInteger())))))





Why? Because it doesn’t work. Of the three loops provided in
test-files/simple.cpp, zero of them have a matching condition. A
quick look at the AST dump of the first for loop, produced by the
previous iteration of loop-convert, shows us the answer:

(ForStmt 0x173b240
  (DeclStmt 0x173afc8
    0x173af50 "int i =
      (IntegerLiteral 0x173afa8 'int' 0)")
  <<>>
  (BinaryOperator 0x173b060 '_Bool' '<'
    (ImplicitCastExpr 0x173b030 'int'
      (DeclRefExpr 0x173afe0 'int' lvalue Var 0x173af50 'i' 'int'))
    (ImplicitCastExpr 0x173b048 'int'
      (DeclRefExpr 0x173b008 'const int' lvalue Var 0x170fa80 'N' 'const int')))
  (UnaryOperator 0x173b0b0 'int' lvalue prefix '++'
    (DeclRefExpr 0x173b088 'int' lvalue Var 0x173af50 'i' 'int'))
  (CompoundStatement ...





We already know that the declaration and increments both match, or this
loop wouldn’t have been dumped. The culprit lies in the implicit cast
applied to the first operand (i.e. the LHS) of the less-than operator,
an L-value to R-value conversion applied to the expression referencing
i. Thankfully, the matcher library offers a solution to this problem
in the form of ignoringParenImpCasts, which instructs the matcher to
ignore implicit casts and parentheses before continuing to match.
Adjusting the condition operator will restore the desired match.

hasCondition(binaryOperator(
  hasOperatorName("<"),
  hasLHS(ignoringParenImpCasts(declRefExpr(
    to(varDecl(hasType(isInteger())))))),
  hasRHS(expr(hasType(isInteger())))))





After adding binds to the expressions we wished to capture and
extracting the identifier strings into variables, we have array-step-2
completed.




Step 4: Retrieving Matched Nodes

So far, the matcher callback isn’t very interesting: it just dumps the
loop’s AST. At some point, we will need to make changes to the input
source code. Next, we’ll work on using the nodes we bound in the
previous step.

The MatchFinder::run() callback takes a
MatchFinder::MatchResult& as its parameter. We’re most interested in
its Context and Nodes members. Clang uses the ASTContext
class to represent contextual information about the AST, as the name
implies, though the most functionally important detail is that several
operations require an ASTContext* parameter. More immediately useful
is the set of matched nodes, and how we retrieve them.

Since we bind three variables (identified by ConditionVarName,
InitVarName, and IncrementVarName), we can obtain the matched nodes by
using the getNodeAs() member function.

In LoopConvert.cpp add

#include "clang/AST/ASTContext.h"





Change LoopMatcher to

StatementMatcher LoopMatcher =
    forStmt(hasLoopInit(declStmt(
                hasSingleDecl(varDecl(hasInitializer(integerLiteral(equals(0))))
                                  .bind("initVarName")))),
            hasIncrement(unaryOperator(
                hasOperatorName("++"),
                hasUnaryOperand(declRefExpr(
                    to(varDecl(hasType(isInteger())).bind("incVarName")))))),
            hasCondition(binaryOperator(
                hasOperatorName("<"),
                hasLHS(ignoringParenImpCasts(declRefExpr(
                    to(varDecl(hasType(isInteger())).bind("condVarName"))))),
                hasRHS(expr(hasType(isInteger())))))).bind("forLoop");





And change LoopPrinter::run to

void LoopPrinter::run(const MatchFinder::MatchResult &Result) {
  ASTContext *Context = Result.Context;
  const ForStmt *FS = Result.Nodes.getStmtAs<ForStmt>("forLoop");
  // We do not want to convert header files!
  if (!FS || !Context->getSourceManager().isFromMainFile(FS->getForLoc()))
    return;
  const VarDecl *IncVar = Result.Nodes.getNodeAs<VarDecl>("incVarName");
  const VarDecl *CondVar = Result.Nodes.getNodeAs<VarDecl>("condVarName");
  const VarDecl *InitVar = Result.Nodes.getNodeAs<VarDecl>("initVarName");

  if (!areSameVariable(IncVar, CondVar) || !areSameVariable(IncVar, InitVar))
    return;
  llvm::outs() << "Potential array-based loop discovered.\n";
}





Clang associates a VarDecl with each variable to represent the variable’s
declaration. Since the “canonical” form of each declaration is unique by
address, all we need to do is make sure neither ValueDecl (base class of
VarDecl) is NULL and compare the canonical Decls.

static bool areSameVariable(const ValueDecl *First, const ValueDecl *Second) {
  return First && Second &&
         First->getCanonicalDecl() == Second->getCanonicalDecl();
}





If execution reaches the end of LoopPrinter::run(), we know that the
loop shell that looks like

for (int i= 0; i < expr(); ++i) { ... }





For now, we will just print a message explaining that we found a loop.
The next section will deal with recursively traversing the AST to
discover all changes needed.

As a side note, it’s not as trivial to test if two expressions are the same,
though Clang has already done the hard work for us by providing a way to
canonicalize expressions:

static bool areSameExpr(ASTContext *Context, const Expr *First,
                        const Expr *Second) {
  if (!First || !Second)
    return false;
  llvm::FoldingSetNodeID FirstID, SecondID;
  First->Profile(FirstID, *Context, true);
  Second->Profile(SecondID, *Context, true);
  return FirstID == SecondID;
}





This code relies on the comparison between two
llvm::FoldingSetNodeIDs. As the documentation for
Stmt::Profile() indicates, the Profile() member function builds
a description of a node in the AST, based on its properties, along with
those of its children. FoldingSetNodeID then serves as a hash we can
use to compare expressions. We will need areSameExpr later. Before
you run the new code on the additional loops added to
test-files/simple.cpp, try to figure out which ones will be considered
potentially convertible.







          

      

      

    

  

  
    
    
    Matching the Clang AST
    
    

    
 
  
  

    
      
          
            
  
Matching the Clang AST

This document explains how to use Clang’s LibASTMatchers to match interesting
nodes of the AST and execute code that uses the matched nodes.  Combined with
LibTooling, LibASTMatchers helps to write code-to-code transformation
tools or query tools.

We assume basic knowledge about the Clang AST.  See the Introduction
to the Clang AST if you want to learn more
about how the AST is structured.


Introduction

LibASTMatchers provides a domain specific language to create predicates on
Clang’s AST.  This DSL is written in and can be used from C++, allowing users
to write a single program to both match AST nodes and access the node’s C++
interface to extract attributes, source locations, or any other information
provided on the AST level.

AST matchers are predicates on nodes in the AST.  Matchers are created by
calling creator functions that allow building up a tree of matchers, where
inner matchers are used to make the match more specific.

For example, to create a matcher that matches all class or union declarations
in the AST of a translation unit, you can call recordDecl().  To narrow the match down,
for example to find all class or union declarations with the name “Foo”,
insert a hasName matcher: the
call recordDecl(hasName("Foo")) returns a matcher that matches classes or
unions that are named “Foo”, in any namespace.  By default, matchers that
accept multiple inner matchers use an implicit allOf().  This allows further narrowing
down the match, for example to match all classes that are derived from
“Bar”: recordDecl(hasName("Foo"), isDerivedFrom("Bar")).




How to create a matcher

With more than a thousand classes in the Clang AST, one can quickly get lost
when trying to figure out how to create a matcher for a specific pattern.  This
section will teach you how to use a rigorous step-by-step pattern to build the
matcher you are interested in.  Note that there will always be matchers missing
for some part of the AST.  See the section about how to write your own
AST matchers later in this document.

The precondition to using the matchers is to understand how the AST for what you
want to match looks like.  The
Introduction to the Clang AST teaches you
how to dump a translation unit’s AST into a human readable format.

In general, the strategy to create the right matchers is:


	Find the outermost class in Clang’s AST you want to match.

	Look at the AST Matcher Reference for
matchers that either match the node you’re interested in or narrow down
attributes on the node.

	Create your outer match expression.  Verify that it works as expected.

	Examine the matchers for what the next inner node you want to match is.

	Repeat until the matcher is finished.






Binding nodes in match expressions

Matcher expressions allow you to specify which parts of the AST are interesting
for a certain task.  Often you will want to then do something with the nodes
that were matched, like building source code transformations.

To that end, matchers that match specific AST nodes (so called node matchers)
are bindable; for example, recordDecl(hasName("MyClass")).bind("id") will
bind the matched recordDecl node to the string “id”, to be later
retrieved in the match callback [http://clang.llvm.org/doxygen/classclang_1_1ast__matchers_1_1MatchFinder_1_1MatchCallback.html].




Writing your own matchers

There are multiple different ways to define a matcher, depending on its type
and flexibility.


VariadicDynCastAllOfMatcher<Base, Derived>

Those match all nodes of type Base if they can be dynamically casted to
Derived.  The names of those matchers are nouns, which closely resemble
Derived.  VariadicDynCastAllOfMatchers are the backbone of the matcher
hierarchy.  Most often, your match expression will start with one of them, and
you can bind the node they represent to ids for later
processing.

VariadicDynCastAllOfMatchers are callable classes that model variadic
template functions in C++03.  They take an aribtrary number of
Matcher<Derived> and return a Matcher<Base>.




AST_MATCHER_P(Type, Name, ParamType, Param)

Most matcher definitions use the matcher creation macros.  Those define both
the matcher of type Matcher<Type> itself, and a matcher-creation function
named Name that takes a parameter of type ParamType and returns the
corresponding matcher.

There are multiple matcher definition macros that deal with polymorphic return
values and different parameter counts.  See ASTMatchersMacros.h [http://clang.llvm.org/doxygen/ASTMatchersMacros_8h.html].




Matcher creation functions

Matchers are generated by nesting calls to matcher creation functions.  Most of
the time those functions are either created by using
VariadicDynCastAllOfMatcher or the matcher creation macros (see below).
The free-standing functions are an indication that this matcher is just a
combination of other matchers, as is for example the case with callee.









          

      

      

    

  

  
    
    
    How To Setup Clang Tooling For LLVM
    
    

    
 
  
  

    
      
          
            
  
How To Setup Clang Tooling For LLVM

Clang Tooling provides infrastructure to write tools that need syntactic
and semantic information about a program. This term also relates to a set
of specific tools using this infrastructure (e.g. clang-check). This
document provides information on how to set up and use Clang Tooling for
the LLVM source code.


Introduction

Clang Tooling needs a compilation database to figure out specific build
options for each file. Currently it can create a compilation database
from the compilation_commands.json file, generated by CMake. When
invoking clang tools, you can either specify a path to a build directory
using a command line parameter -p or let Clang Tooling find this
file in your source tree. In either case you need to configure your
build using CMake to use clang tools.




Setup Clang Tooling Using CMake and Make

If you intend to use make to build LLVM, you should have CMake 2.8.6 or
later installed (can be found here [http://cmake.org]).

First, you need to generate Makefiles for LLVM with CMake. You need to
make a build directory and run CMake from it:

$ mkdir your/build/directory
$ cd your/build/directory
$ cmake -DCMAKE_EXPORT_COMPILE_COMMANDS=ON path/to/llvm/sources





If you want to use clang instead of GCC, you can add
-DCMAKE_C_COMPILER=/path/to/clang -DCMAKE_CXX_COMPILER=/path/to/clang++.
You can also use ccmake, which provides a curses interface to configure
CMake variables for lazy people.

As a result, the new compile_commands.json file should appear in the
current directory. You should link it to the LLVM source tree so that
Clang Tooling is able to use it:

$ ln -s $PWD/compile_commands.json path/to/llvm/source/





Now you are ready to build and test LLVM using make:

$ make check-all








Using Clang Tools

After you completed the previous steps, you are ready to run clang tools. If
you have a recent clang installed, you should have clang-check in
$PATH. Try to run it on any .cpp file inside the LLVM source tree:

$ clang-check tools/clang/lib/Tooling/CompilationDatabase.cpp





If you’re using vim, it’s convenient to have clang-check integrated. Put
this into your .vimrc:

function! ClangCheckImpl(cmd)
  if &autowrite | wall | endif
  echo "Running " . a:cmd . " ..."
  let l:output = system(a:cmd)
  cexpr l:output
  cwindow
  let w:quickfix_title = a:cmd
  if v:shell_error != 0
    cc
  endif
  let g:clang_check_last_cmd = a:cmd
endfunction

function! ClangCheck()
  let l:filename = expand('%')
  if l:filename =~ '\.\(cpp\|cxx\|cc\|c\)$'
    call ClangCheckImpl("clang-check " . l:filename)
  elseif exists("g:clang_check_last_cmd")
    call ClangCheckImpl(g:clang_check_last_cmd)
  else
    echo "Can't detect file's compilation arguments and no previous clang-check invocation!"
  endif
endfunction

nmap <silent> <F5> :call ClangCheck()<CR><CR>





When editing a .cpp/.cxx/.cc/.c file, hit F5 to reparse the file. In
case the current file has a different extension (for example, .h), F5
will re-run the last clang-check invocation made from this vim instance
(if any). The output will go into the error window, which is opened
automatically when clang-check finds errors, and can be re-opened with
:cope.

Other clang-check options that can be useful when working with clang
AST:


	-ast-print — Build ASTs and then pretty-print them.

	-ast-dump — Build ASTs and then debug dump them.

	-ast-dump-filter=<string> — Use with -ast-dump or -ast-print to
dump/print only AST declaration nodes having a certain substring in a
qualified name. Use -ast-list to list all filterable declaration node
names.

	-ast-list — Build ASTs and print the list of declaration node qualified
names.



Examples:

$ clang-check tools/clang/tools/clang-check/ClangCheck.cpp -ast-dump -ast-dump-filter ActionFactory::newASTConsumer
Processing: tools/clang/tools/clang-check/ClangCheck.cpp.
Dumping ::ActionFactory::newASTConsumer:
clang::ASTConsumer *newASTConsumer() (CompoundStmt 0x44da290 </home/alexfh/local/llvm/tools/clang/tools/clang-check/ClangCheck.cpp:64:40, line:72:3>
  (IfStmt 0x44d97c8 <line:65:5, line:66:45>
    <<<NULL>>>
      (ImplicitCastExpr 0x44d96d0 <line:65:9> '_Bool':'_Bool' <UserDefinedConversion>
...
$ clang-check tools/clang/tools/clang-check/ClangCheck.cpp -ast-print -ast-dump-filter ActionFactory::newASTConsumer
Processing: tools/clang/tools/clang-check/ClangCheck.cpp.
Printing <anonymous namespace>::ActionFactory::newASTConsumer:
clang::ASTConsumer *newASTConsumer() {
    if (this->ASTList.operator _Bool())
        return clang::CreateASTDeclNodeLister();
    if (this->ASTDump.operator _Bool())
        return clang::CreateASTDumper(this->ASTDumpFilter);
    if (this->ASTPrint.operator _Bool())
        return clang::CreateASTPrinter(&llvm::outs(), this->ASTDumpFilter);
    return new clang::ASTConsumer();
}








(Experimental) Using Ninja Build System

Optionally you can use the Ninja [https://github.com/martine/ninja]
build system instead of make. It is aimed at making your builds faster.
Currently this step will require building Ninja from sources.

To take advantage of using Clang Tools along with Ninja build you need
at least CMake 2.8.9.

Clone the Ninja git repository and build Ninja from sources:

$ git clone git://github.com/martine/ninja.git
$ cd ninja/
$ ./bootstrap.py





This will result in a single binary ninja in the current directory.
It doesn’t require installation and can just be copied to any location
inside $PATH, say /usr/local/bin/:

$ sudo cp ninja /usr/local/bin/
$ sudo chmod a+rx /usr/local/bin/ninja





After doing all of this, you’ll need to generate Ninja build files for
LLVM with CMake. You need to make a build directory and run CMake from
it:

$ mkdir your/build/directory
$ cd your/build/directory
$ cmake -G Ninja -DCMAKE_EXPORT_COMPILE_COMMANDS=ON path/to/llvm/sources





If you want to use clang instead of GCC, you can add
-DCMAKE_C_COMPILER=/path/to/clang -DCMAKE_CXX_COMPILER=/path/to/clang++.
You can also use ccmake, which provides a curses interface to configure
CMake variables in an interactive manner.

As a result, the new compile_commands.json file should appear in the
current directory. You should link it to the LLVM source tree so that
Clang Tooling is able to use it:

$ ln -s $PWD/compile_commands.json path/to/llvm/source/





Now you are ready to build and test LLVM using Ninja:

$ ninja check-all





Other target names can be used in the same way as with make.







          

      

      

    

  

  
    
    
    JSON Compilation Database Format Specification
    
    

    
 
  
  

    
      
          
            
  
JSON Compilation Database Format Specification

This document describes a format for specifying how to replay single
compilations independently of the build system.


Background

Tools based on the C++ Abstract Syntax Tree need full information how to
parse a translation unit. Usually this information is implicitly
available in the build system, but running tools as part of the build
system is not necessarily the best solution:


	Build systems are inherently change driven, so running multiple tools
over the same code base without changing the code does not fit into
the architecture of many build systems.

	Figuring out whether things have changed is often an IO bound
process; this makes it hard to build low latency end user tools based
on the build system.

	Build systems are inherently sequential in the build graph, for
example due to generated source code. While tools that run
independently of the build still need the generated source code to
exist, running tools multiple times over unchanging source does not
require serialization of the runs according to the build dependency
graph.






Supported Systems

Currently CMake [http://cmake.org] (since 2.8.5) supports generation
of compilation databases for Unix Makefile builds (Ninja builds in the
works) with the option CMAKE_EXPORT_COMPILE_COMMANDS.

For projects on Linux, there is an alternative to intercept compiler
calls with a tool called Bear [https://github.com/rizsotto/Bear].

Clang’s tooling interface supports reading compilation databases; see
the LibTooling documentation. libclang and its
python bindings also support this (since clang 3.2); see
CXCompilationDatabase.h.




Format

A compilation database is a JSON file, which consist of an array of
“command objects”, where each command object specifies one way a
translation unit is compiled in the project.

Each command object contains the translation unit’s main file, the
working directory of the compile run and the actual compile command.

Example:

[
  { "directory": "/home/user/llvm/build",
    "command": "/usr/bin/clang++ -Irelative -DSOMEDEF=\"With spaces, quotes and \\-es.\" -c -o file.o file.cc",
    "file": "file.cc" },
  ...
]





The contracts for each field in the command object are:


	directory: The working directory of the compilation. All paths
specified in the command or file fields must be either
absolute or relative to this directory.

	file: The main translation unit source processed by this
compilation step. This is used by tools as the key into the
compilation database. There can be multiple command objects for the
same file, for example if the same source file is compiled with
different configurations.

	command: The compile command executed. After JSON unescaping,
this must be a valid command to rerun the exact compilation step for
the translation unit in the environment the build system uses.
Parameters use shell quoting and shell escaping of quotes, with ‘"‘
and ‘\‘ being the only special characters. Shell expansion is not
supported.






Build System Integration

The convention is to name the file compile_commands.json and put it at
the top of the build directory. Clang tools are pointed to the top of
the build directory to detect the file and use the compilation database
to parse C++ code in the source tree.







          

      

      

    

  

  
    
    
    Overview
    
    

    
 
  
  

    
      
          
            
  
Overview

Clang Tools are standalone command line (and potentially GUI) tools
designed for use by C++ developers who are already using and enjoying
Clang as their compiler. These tools provide developer-oriented
functionality such as fast syntax checking, automatic formatting,
refactoring, etc.

Only a couple of the most basic and fundamental tools are kept in the
primary Clang Subversion project. The rest of the tools are kept in a
side-project so that developers who don’t want or need to build them
don’t. If you want to get access to the extra Clang Tools repository,
simply check it out into the tools tree of your Clang checkout and
follow the usual process for building and working with a combined
LLVM/Clang checkout:


	With Subversion:
	cd llvm/tools/clang/tools

	svn co http://llvm.org/svn/llvm-project/clang-tools-extra/trunk extra





	Or with Git:
	cd llvm/tools/clang/tools

	git clone http://llvm.org/git/clang-tools-extra.git extra







This document describes a high-level overview of the organization of
Clang Tools within the project as well as giving an introduction to some
of the more important tools. However, it should be noted that this
document is currently focused on Clang and Clang Tool developers, not on
end users of these tools.


Clang Tools Organization

Clang Tools are CLI or GUI programs that are intended to be directly
used by C++ developers. That is they are not primarily for use by
Clang developers, although they are hopefully useful to C++ developers
who happen to work on Clang, and we try to actively dogfood their
functionality. They are developed in three components: the underlying
infrastructure for building a standalone tool based on Clang, core
shared logic used by many different tools in the form of refactoring and
rewriting libraries, and the tools themselves.

The underlying infrastructure for Clang Tools is the
LibTooling platform. See its documentation for much
more detailed information about how this infrastructure works. The
common refactoring and rewriting toolkit-style library is also part of
LibTooling organizationally.

A few Clang Tools are developed along side the core Clang libraries as
examples and test cases of fundamental functionality. However, most of
the tools are developed in a side repository to provide easy separation
from the core libraries. We intentionally do not support public
libraries in the side repository, as we want to carefully review and
find good APIs for libraries as they are lifted out of a few tools and
into the core Clang library set.

Regardless of which repository Clang Tools’ code resides in, the
development process and practices for all Clang Tools are exactly those
of Clang itself. They are entirely within the Clang project,
regardless of the version control scheme.




Core Clang Tools

The core set of Clang tools that are within the main repository are
tools that very specifically complement, and allow use and testing of
Clang specific functionality.


clang-check

ClangCheck combines the LibTooling framework for running a
Clang tool with the basic Clang diagnostics by syntax checking specific files
in a fast, command line interface. It can also accept flags to re-display the
diagnostics in different formats with different flags, suitable for use driving
an IDE or editor. Furthermore, it can be used in fixit-mode to directly apply
fixit-hints offered by clang. See How To Setup Clang Tooling For LLVM for
instructions on how to setup and used clang-check.


clang-format

Clang-format is both a library and a stand-alone tool with the goal of automatically reformatting C++ sources files
according to configurable style guides.  To do so, clang-format uses Clang’s
Lexer to transform an input file into a token stream and then changes all
the whitespace around those tokens.  The goal is for clang-format to serve both
as a user tool (ideally with powerful IDE integrations) and as part of other
refactoring tools, e.g. to do a reformatting of all the lines changed during a
renaming.




clang-modernize

clang-modernize migrates C++ code to use C++11 features where appropriate.
Currently it can:


	convert loops to range-based for loops;

	convert null pointer constants (like NULL or 0) to C++11 nullptr;

	replace the type specifier in variable declarations with the auto type specifier;

	add the override specifier to applicable member functions.










Extra Clang Tools

As various categories of Clang Tools are added to the extra repository,
they’ll be tracked here. The focus of this documentation is on the scope
and features of the tools for other tool developers; each tool should
provide its own user-focused documentation.




Ideas for new Tools


	C++ cast conversion tool.  Will convert C-style casts ((type) value) to
appropriate C++ cast (static_cast, const_cast or
reinterpret_cast).



	Non-member begin() and end() conversion tool.  Will convert
foo.begin() into begin(foo) and similarly for end(), where
foo is a standard container.  We could also detect similar patterns for
arrays.



	make_shared / make_unique conversion.  Part of this transformation
can be incorporated into the auto transformation.  Will convert

std::shared_ptr<Foo> sp(new Foo);
std::unique_ptr<Foo> up(new Foo);

func(std::shared_ptr<Foo>(new Foo), bar());





into:

auto sp = std::make_shared<Foo>();
auto up = std::make_unique<Foo>(); // In C++14 mode.

// This also affects correctness.  For the cases where bar() throws,
// make_shared() is safe and the original code may leak.
func(std::make_shared<Foo>(), bar());







	tr1 removal tool.  Will migrate source code from using TR1 library
features to C++11 library.  For example:

#include <tr1/unordered_map>
int main()
{
    std::tr1::unordered_map <int, int> ma;
    std::cout << ma.size () << std::endl;
    return 0;
}





should be rewritten to:

#include <unordered_map>
int main()
{
    std::unordered_map <int, int> ma;
    std::cout << ma.size () << std::endl;
    return 0;
}







	A tool to remove auto.  Will convert auto to an explicit type or add
comments with deduced types.  The motivation is that there are developers
that don’t want to use auto because they are afraid that they might lose
control over their code.



	C++14: less verbose operator function objects (N3421 [http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3421.htm]).
For example:

sort(v.begin(), v.end(), greater<ValueType>());





should be rewritten to:

sort(v.begin(), v.end(), greater<>());















          

      

      

    

  

  
    
    
    ClangCheck
    
    

    
 
  
  

    
      
          
            
  
ClangCheck

ClangCheck is a small wrapper around LibTooling which can be used to
do basic error checking and AST dumping.

$ cat <<EOF > snippet.cc
> void f() {
>   int a = 0
> }
> EOF
$ ~/clang/build/bin/clang-check snippet.cc -ast-dump --
Processing: /Users/danieljasper/clang/llvm/tools/clang/docs/snippet.cc.
/Users/danieljasper/clang/llvm/tools/clang/docs/snippet.cc:2:12: error: expected ';' at end of
      declaration
  int a = 0
           ^
           ;
(TranslationUnitDecl 0x7ff3a3029ed0 <<invalid sloc>>
  (TypedefDecl 0x7ff3a302a410 <<invalid sloc>> __int128_t '__int128')
  (TypedefDecl 0x7ff3a302a470 <<invalid sloc>> __uint128_t 'unsigned __int128')
  (TypedefDecl 0x7ff3a302a830 <<invalid sloc>> __builtin_va_list '__va_list_tag [1]')
  (FunctionDecl 0x7ff3a302a8d0 </Users/danieljasper/clang/llvm/tools/clang/docs/snippet.cc:1:1, line:3:1> f 'void (void)'
    (CompoundStmt 0x7ff3a302aa10 <line:1:10, line:3:1>
      (DeclStmt 0x7ff3a302a9f8 <line:2:3, line:3:1>
        (VarDecl 0x7ff3a302a980 <line:2:3, col:11> a 'int'
          (IntegerLiteral 0x7ff3a302a9d8 <col:11> 'int' 0))))))
1 error generated.
Error while processing snippet.cc.





The ‘–’ at the end is important as it prevents clang-check from search for a
compilation database. For more information on how to setup and use clang-check
in a project, see How To Setup Clang Tooling For LLVM.





          

      

      

    

  

  
    
    
    ClangFormat
    
    

    
 
  
  

    
      
          
            
  
ClangFormat

ClangFormat describes a set of tools that are built on top of
LibFormat. It can support your workflow in a variety of ways including a
standalone tool and editor integrations.


Standalone Tool

clang-format is located in clang/tools/clang-format and can be used
to format C/C++/Obj-C code.

$ clang-format -help
OVERVIEW: A tool to format C/C++/Obj-C code.

If no arguments are specified, it formats the code from standard input
and writes the result to the standard output.
If <file>s are given, it reformats the files. If -i is specified
together with <file>s, the files are edited in-place. Otherwise, the
result is written to the standard output.

USAGE: clang-format [options] [<file> ...]

OPTIONS:

Clang-format options:

  -cursor=<uint>           - The position of the cursor when invoking
                             clang-format from an editor integration
  -dump-config             - Dump configuration options to stdout and exit.
                             Can be used with -style option.
  -i                       - Inplace edit <file>s, if specified.
  -length=<uint>           - Format a range of this length (in bytes).
                             Multiple ranges can be formatted by specifying
                             several -offset and -length pairs.
                             When only a single -offset is specified without
                             -length, clang-format will format up to the end
                             of the file.
                             Can only be used with one input file.
  -lines=<string>          - <start line>:<end line> - format a range of
                             lines (both 1-based).
                             Multiple ranges can be formatted by specifying
                             several -lines arguments.
                             Can't be used with -offset and -length.
                             Can only be used with one input file.
  -offset=<uint>           - Format a range starting at this byte offset.
                             Multiple ranges can be formatted by specifying
                             several -offset and -length pairs.
                             Can only be used with one input file.
  -output-replacements-xml - Output replacements as XML.
  -style=<string>          - Coding style, currently supports:
                               LLVM, Google, Chromium, Mozilla, WebKit.
                             Use -style=file to load style configuration from
                             .clang-format file located in one of the parent
                             directories of the source file (or current
                             directory for stdin).
                             Use -style="{key: value, ...}" to set specific
                             parameters, e.g.:
                               -style="{BasedOnStyle: llvm, IndentWidth: 8}"

General options:

  -help                    - Display available options (-help-hidden for more)
  -help-list               - Display list of available options (-help-list-hidden for more)
  -version                 - Display the version of this program





When the desired code formatting style is different from the available options,
the style can be customized using the -style="{key: value, ...}" option or
by putting your style configuration in the .clang-format or _clang-format
file in your project’s directory and using clang-format -style=file.

An easy way to create the .clang-format file is:

clang-format -style=llvm -dump-config > .clang-format





Available style options are described in Clang-Format Style Options.




Vim Integration

There is an integration for vim which lets you run the
clang-format standalone tool on your current buffer, optionally
selecting regions to reformat. The integration has the form of a python-file
which can be found under clang/tools/clang-format/clang-format.py.

This can be integrated by adding the following to your .vimrc:

map <C-K> :pyf <path-to-this-file>/clang-format.py<cr>
imap <C-K> <c-o>:pyf <path-to-this-file>/clang-format.py<cr>





The first line enables clang-format for NORMAL and VISUAL mode, the
second line adds support for INSERT mode. Change “C-K” to another binding if
you need clang-format on a different key (C-K stands for Ctrl+k).

With this integration you can press the bound key and clang-format will
format the current line in NORMAL and INSERT mode or the selected region in
VISUAL mode. The line or region is extended to the next bigger syntactic
entity.

It operates on the current, potentially unsaved buffer and does not create
or save any files. To revert a formatting, just undo.




Emacs Integration

Similar to the integration for vim, there is an integration for
emacs. It can be found at clang/tools/clang-format/clang-format.el
and used by adding this to your .emacs:

(load "<path-to-clang>/tools/clang-format/clang-format.el")
(global-set-key [C-M-tab] 'clang-format-region)





This binds the function clang-format-region to C-M-tab, which then formats the
current line or selected region.




BBEdit Integration

clang-format cannot be used as a text filter with BBEdit, but works
well via a script. The AppleScript to do this integration can be found at
clang/tools/clang-format/clang-format-bbedit.applescript; place a copy in
~/Library/Application Support/BBEdit/Scripts, and edit the path within it to
point to your local copy of clang-format.

With this integration you can select the script from the Script menu and
clang-format will format the selection. Note that you can rename the
menu item by renaming the script, and can assign the menu item a keyboard
shortcut in the BBEdit preferences, under Menus & Shortcuts.




Visual Studio Integration

Download the latest Visual Studio extension from the alpha build site [http://llvm.org/builds/]. The default key-binding is Ctrl-R,Ctrl-F.




Script for patch reformatting

The python script clang/tools/clang-format-diff.py parses the output of
a unified diff and reformats all contained lines with clang-format.

usage: clang-format-diff.py [-h] [-i] [-p NUM] [-regex PATTERN] [-style STYLE]

Reformat changed lines in diff. Without -i option just output the diff that
would be introduced.

optional arguments:
  -h, --help      show this help message and exit
  -i              apply edits to files instead of displaying a diff
  -p NUM          strip the smallest prefix containing P slashes
  -regex PATTERN  custom pattern selecting file paths to reformat
  -style STYLE    formatting style to apply (LLVM, Google, Chromium, Mozilla,
                  WebKit)





So to reformat all the lines in the latest git commit, just do:

git diff -U0 HEAD^ | clang-format-diff.py -i -p1





In an SVN client, you can do:

svn diff --diff-cmd=diff -x-U0 | clang-format-diff.py -i





The -U0 will create a diff without context lines (the script would format
those as well).







          

      

      

    

  

  
    
    
    Clang-Format Style Options
    
    

    
 
  
  

    
      
          
            
  
Clang-Format Style Options

Clang-Format Style Options describes configurable formatting style options
supported by LibFormat and ClangFormat.

When using clang-format command line utility or
clang::format::reformat(...) functions from code, one can either use one of
the predefined styles (LLVM, Google, Chromium, Mozilla, WebKit) or create a
custom style by configuring specific style options.


Configuring Style with clang-format

clang-format supports two ways to provide custom style options:
directly specify style configuration in the -style= command line option or
use -style=file and put style configuration in the .clang-format or
_clang-format file in the project directory.

When using -style=file, clang-format for each input file will
try to find the .clang-format file located in the closest parent directory
of the input file. When the standard input is used, the search is started from
the current directory.

The .clang-format file uses YAML format:

key1: value1
key2: value2
# A comment.
...





The configuration file can consist of several sections each having different
Language: parameter denoting the programming language this section of the
configuration is targeted at. See the description of the Language option
below for the list of supported languages. The first section may have no
language set, it will set the default style options for all lanugages.
Configuration sections for specific language will override options set in the
default section.

When clang-format formats a file, it auto-detects the language using
the file name. When formatting standard input or a file that doesn’t have the
extension corresponding to its language, -assume-filename= option can be
used to override the file name clang-format uses to detect the
language.

An example of a configuration file for multiple languages:

---
# We'll use defaults from the LLVM style, but with 4 columns indentation.
BasedOnStyle: LLVM
IndentWidth: 4
---
Language: Cpp
# Force pointers to the type for C++.
DerivePointerAlignment: false
PointerAlignment: Left
---
Language: JavaScript
# Use 100 columns for JS.
ColumnLimit: 100
---
Language: Proto
# Don't format .proto files.
DisableFormat: true
...





An easy way to get a valid .clang-format file containing all configuration
options of a certain predefined style is:

clang-format -style=llvm -dump-config > .clang-format





When specifying configuration in the -style= option, the same configuration
is applied for all input files. The format of the configuration is:

-style='{key1: value1, key2: value2, ...}'








Disabling Formatting on a Piece of Code

Clang-format understands also special comments that switch formatting in a
delimited range. The code between a comment // clang-format off or
/* clang-format off */ up to a comment // clang-format on or
/* clang-format on */ will not be formatted. The comments themselves
will be formatted (aligned) normally.

int formatted_code;
// clang-format off
    void    unformatted_code  ;
// clang-format on
void formatted_code_again;








Configuring Style in Code

When using clang::format::reformat(...) functions, the format is specified
by supplying the clang::format::FormatStyle [http://clang.llvm.org/doxygen/structclang_1_1format_1_1FormatStyle.html]
structure.




Configurable Format Style Options

This section lists the supported style options. Value type is specified for
each option. For enumeration types possible values are specified both as a C++
enumeration member (with a prefix, e.g. LS_Auto), and as a value usable in
the configuration (without a prefix: Auto).


	BasedOnStyle (string)

	The style used for all options not specifically set in the configuration.

This option is supported only in the clang-format configuration
(both within -style='{...}' and the .clang-format file).

Possible values:


	LLVM
A style complying with the LLVM coding standards [http://llvm.org/docs/CodingStandards.html]

	Google
A style complying with Google’s C++ style guide [http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml]

	Chromium
A style complying with Chromium’s style guide [http://www.chromium.org/developers/coding-style]

	Mozilla
A style complying with Mozilla’s style guide [https://developer.mozilla.org/en-US/docs/Developer_Guide/Coding_Style]

	WebKit
A style complying with WebKit’s style guide [http://www.webkit.org/coding/coding-style.html]








	AccessModifierOffset (int)

	The extra indent or outdent of access modifiers, e.g. public:.

	AlignAfterOpenBracket (bool)

	If true, horizontally aligns arguments after an open bracket.

This applies to round brackets (parentheses), angle brackets and square
brackets. This will result in formattings like
code
someLongFunction(argument1,
argument2);
endcode



	AlignConsecutiveAssignments (bool)

	If true, aligns consecutive assignments.

This will align the assignment operators of consecutive lines. This
will result in formattings like
code
int aaaa = 12;
int b    = 23;
int ccc  = 23;
endcode



	AlignEscapedNewlinesLeft (bool)

	If true, aligns escaped newlines as far left as possible.
Otherwise puts them into the right-most column.

	AlignOperands (bool)

	If true, horizontally align operands of binary and ternary
expressions.

	AlignTrailingComments (bool)

	If true, aligns trailing comments.

	AllowAllParametersOfDeclarationOnNextLine (bool)

	Allow putting all parameters of a function declaration onto
the next line even if BinPackParameters is false.

	AllowShortBlocksOnASingleLine (bool)

	Allows contracting simple braced statements to a single line.

E.g., this allows if (a) { return; } to be put on a single line.



	AllowShortCaseLabelsOnASingleLine (bool)

	If true, short case labels will be contracted to a single line.

	AllowShortFunctionsOnASingleLine (ShortFunctionStyle)

	Dependent on the value, int f() { return 0; } can be put
on a single line.

Possible values:


	SFS_None (in configuration: None)
Never merge functions into a single line.

	SFS_Empty (in configuration: Empty)
Only merge empty functions.

	SFS_Inline (in configuration: Inline)
Only merge functions defined inside a class. Implies “empty”.

	SFS_All (in configuration: All)
Merge all functions fitting on a single line.





	AllowShortIfStatementsOnASingleLine (bool)

	If true, if (a) return; can be put on a single
line.

	AllowShortLoopsOnASingleLine (bool)

	If true, while (true) continue; can be put on a
single line.

	AlwaysBreakAfterDefinitionReturnType (DefinitionReturnTypeBreakingStyle)

	The function definition return type breaking style to use.

Possible values:


	DRTBS_None (in configuration: None)
Break after return type automatically.
PenaltyReturnTypeOnItsOwnLine is taken into account.

	DRTBS_All (in configuration: All)
Always break after the return type.

	DRTBS_TopLevel (in configuration: TopLevel)
Always break after the return types of top level functions.





	AlwaysBreakBeforeMultilineStrings (bool)

	If true, always break before multiline string literals.

This flag is mean to make cases where there are multiple multiline strings
in a file look more consistent. Thus, it will only take effect if wrapping
the string at that point leads to it being indented
ContinuationIndentWidth spaces from the start of the line.



	AlwaysBreakTemplateDeclarations (bool)

	If true, always break after the template<...> of a
template declaration.

	BinPackArguments (bool)

	If false, a function call’s arguments will either be all on the
same line or will have one line each.

	BinPackParameters (bool)

	If false, a function declaration’s or function definition’s
parameters will either all be on the same line or will have one line each.

	BreakBeforeBinaryOperators (BinaryOperatorStyle)

	The way to wrap binary operators.

Possible values:


	BOS_None (in configuration: None)
Break after operators.

	BOS_NonAssignment (in configuration: NonAssignment)
Break before operators that aren’t assignments.

	BOS_All (in configuration: All)
Break before operators.





	BreakBeforeBraces (BraceBreakingStyle)

	The brace breaking style to use.

Possible values:


	BS_Attach (in configuration: Attach)
Always attach braces to surrounding context.

	BS_Linux (in configuration: Linux)
Like Attach, but break before braces on function, namespace and
class definitions.

	BS_Mozilla (in configuration: Mozilla)
Like Attach, but break before braces on enum, function, and record
definitions.

	BS_Stroustrup (in configuration: Stroustrup)
Like Attach, but break before function definitions, and ‘else’.

	BS_Allman (in configuration: Allman)
Always break before braces.

	BS_GNU (in configuration: GNU)
Always break before braces and add an extra level of indentation to
braces of control statements, not to those of class, function
or other definitions.





	BreakBeforeTernaryOperators (bool)

	If true, ternary operators will be placed after line breaks.

	BreakConstructorInitializersBeforeComma (bool)

	Always break constructor initializers before commas and align
the commas with the colon.

	ColumnLimit (unsigned)

	The column limit.

A column limit of 0 means that there is no column limit. In this case,
clang-format will respect the input’s line breaking decisions within
statements unless they contradict other rules.



	CommentPragmas (std::string)

	A regular expression that describes comments with special meaning,
which should not be split into lines or otherwise changed.

	ConstructorInitializerAllOnOneLineOrOnePerLine (bool)

	If the constructor initializers don’t fit on a line, put each
initializer on its own line.

	ConstructorInitializerIndentWidth (unsigned)

	The number of characters to use for indentation of constructor
initializer lists.

	ContinuationIndentWidth (unsigned)

	Indent width for line continuations.

	Cpp11BracedListStyle (bool)

	If true, format braced lists as best suited for C++11 braced
lists.

Important differences:
- No spaces inside the braced list.
- No line break before the closing brace.
- Indentation with the continuation indent, not with the block indent.

Fundamentally, C++11 braced lists are formatted exactly like function
calls would be formatted in their place. If the braced list follows a name
(e.g. a type or variable name), clang-format formats as if the {} were
the parentheses of a function call with that name. If there is no name,
a zero-length name is assumed.



	DerivePointerAlignment (bool)

	If true, analyze the formatted file for the most common
alignment of & and *. PointerAlignment is then used only as fallback.

	DisableFormat (bool)

	Disables formatting completely.

	ExperimentalAutoDetectBinPacking (bool)

	If true, clang-format detects whether function calls and
definitions are formatted with one parameter per line.

Each call can be bin-packed, one-per-line or inconclusive. If it is
inconclusive, e.g. completely on one line, but a decision needs to be
made, clang-format analyzes whether there are other bin-packed cases in
the input file and act accordingly.

NOTE: This is an experimental flag, that might go away or be renamed. Do
not use this in config files, etc. Use at your own risk.



	ForEachMacros (std::vector<std::string>)

	A vector of macros that should be interpreted as foreach loops
instead of as function calls.

These are expected to be macros of the form:
code
FOREACH(<variable-declaration>, ...)
<loop-body>
endcode

For example: BOOST_FOREACH.



	IndentCaseLabels (bool)

	Indent case labels one level from the switch statement.

When false, use the same indentation level as for the switch statement.
Switch statement body is always indented one level more than case labels.



	IndentWidth (unsigned)

	The number of columns to use for indentation.

	IndentWrappedFunctionNames (bool)

	Indent if a function definition or declaration is wrapped after the
type.

	KeepEmptyLinesAtTheStartOfBlocks (bool)

	If true, empty lines at the start of blocks are kept.

	Language (LanguageKind)

	Language, this format style is targeted at.

Possible values:


	LK_None (in configuration: None)
Do not use.

	LK_Cpp (in configuration: Cpp)
Should be used for C, C++, ObjectiveC, ObjectiveC++.

	LK_Java (in configuration: Java)
Should be used for Java.

	LK_JavaScript (in configuration: JavaScript)
Should be used for JavaScript.

	LK_Proto (in configuration: Proto)
Should be used for Protocol Buffers
(https://developers.google.com/protocol-buffers/).





	MacroBlockBegin (std::string)

	A regular expression matching macros that start a block.

	MacroBlockEnd (std::string)

	A regular expression matching macros that end a block.

	MaxEmptyLinesToKeep (unsigned)

	The maximum number of consecutive empty lines to keep.

	NamespaceIndentation (NamespaceIndentationKind)

	The indentation used for namespaces.

Possible values:


	NI_None (in configuration: None)
Don’t indent in namespaces.

	NI_Inner (in configuration: Inner)
Indent only in inner namespaces (nested in other namespaces).

	NI_All (in configuration: All)
Indent in all namespaces.





	ObjCBlockIndentWidth (unsigned)

	The number of characters to use for indentation of ObjC blocks.

	ObjCSpaceAfterProperty (bool)

	Add a space after @property in Objective-C, i.e. use
\@property (readonly) instead of \@property(readonly).

	ObjCSpaceBeforeProtocolList (bool)

	Add a space in front of an Objective-C protocol list, i.e. use
Foo <Protocol> instead of Foo<Protocol>.

	PenaltyBreakBeforeFirstCallParameter (unsigned)

	The penalty for breaking a function call after “call(”.

	PenaltyBreakComment (unsigned)

	The penalty for each line break introduced inside a comment.

	PenaltyBreakFirstLessLess (unsigned)

	The penalty for breaking before the first <<.

	PenaltyBreakString (unsigned)

	The penalty for each line break introduced inside a string literal.

	PenaltyExcessCharacter (unsigned)

	The penalty for each character outside of the column limit.

	PenaltyReturnTypeOnItsOwnLine (unsigned)

	Penalty for putting the return type of a function onto its own
line.

	PointerAlignment (PointerAlignmentStyle)

	Pointer and reference alignment style.

Possible values:


	PAS_Left (in configuration: Left)
Align pointer to the left.

	PAS_Right (in configuration: Right)
Align pointer to the right.

	PAS_Middle (in configuration: Middle)
Align pointer in the middle.





	SpaceAfterCStyleCast (bool)

	If true, a space may be inserted after C style casts.

	SpaceBeforeAssignmentOperators (bool)

	If false, spaces will be removed before assignment operators.

	SpaceBeforeParens (SpaceBeforeParensOptions)

	Defines in which cases to put a space before opening parentheses.

Possible values:


	SBPO_Never (in configuration: Never)
Never put a space before opening parentheses.

	SBPO_ControlStatements (in configuration: ControlStatements)
Put a space before opening parentheses only after control statement
keywords (for/if/while...).

	SBPO_Always (in configuration: Always)
Always put a space before opening parentheses, except when it’s
prohibited by the syntax rules (in function-like macro definitions) or
when determined by other style rules (after unary operators, opening
parentheses, etc.)





	SpaceInEmptyParentheses (bool)

	If true, spaces may be inserted into ‘()’.

	SpacesBeforeTrailingComments (unsigned)

	The number of spaces before trailing line comments
(// - comments).

This does not affect trailing block comments (/**/ - comments) as those
commonly have different usage patterns and a number of special cases.



	SpacesInAngles (bool)

	If true, spaces will be inserted after ‘<’ and before ‘>’ in
template argument lists

	SpacesInCStyleCastParentheses (bool)

	If true, spaces may be inserted into C style casts.

	SpacesInContainerLiterals (bool)

	If true, spaces are inserted inside container literals (e.g.
ObjC and Javascript array and dict literals).

	SpacesInParentheses (bool)

	If true, spaces will be inserted after ‘(‘ and before ‘)’.

	SpacesInSquareBrackets (bool)

	If true, spaces will be inserted after ‘[‘ and before ‘]’.

	Standard (LanguageStandard)

	Format compatible with this standard, e.g. use
A<A<int> > instead of A<A<int>> for LS_Cpp03.

Possible values:


	LS_Cpp03 (in configuration: Cpp03)
Use C++03-compatible syntax.

	LS_Cpp11 (in configuration: Cpp11)
Use features of C++11 (e.g. A<A<int>> instead of
A<A<int> >).

	LS_Auto (in configuration: Auto)
Automatic detection based on the input.





	TabWidth (unsigned)

	The number of columns used for tab stops.

	UseTab (UseTabStyle)

	The way to use tab characters in the resulting file.

Possible values:


	UT_Never (in configuration: Never)
Never use tab.

	UT_ForIndentation (in configuration: ForIndentation)
Use tabs only for indentation.

	UT_Always (in configuration: Always)
Use tabs whenever we need to fill whitespace that spans at least from
one tab stop to the next one.










Examples

A style similar to the Linux Kernel style [https://www.kernel.org/doc/Documentation/CodingStyle]:

BasedOnStyle: LLVM
IndentWidth: 8
UseTab: Always
BreakBeforeBraces: Linux
AllowShortIfStatementsOnASingleLine: false
IndentCaseLabels: false





The result is (imagine that tabs are used for indentation here):

void test()
{
        switch (x) {
        case 0:
        case 1:
                do_something();
                break;
        case 2:
                do_something_else();
                break;
        default:
                break;
        }
        if (condition)
                do_something_completely_different();

        if (x == y) {
                q();
        } else if (x > y) {
                w();
        } else {
                r();
        }
}





A style similar to the default Visual Studio formatting style:

UseTab: Never
IndentWidth: 4
BreakBeforeBraces: Allman
AllowShortIfStatementsOnASingleLine: false
IndentCaseLabels: false
ColumnLimit: 0





The result is:

void test()
{
    switch (suffix)
    {
    case 0:
    case 1:
        do_something();
        break;
    case 2:
        do_something_else();
        break;
    default:
        break;
    }
    if (condition)
        do_somthing_completely_different();

    if (x == y)
    {
        q();
    }
    else if (x > y)
    {
        w();
    }
    else
    {
        r();
    }
}











          

      

      

    

  

  
    
    
    “Clang” CFE Internals Manual
    
    

    
 
  
  

    
      
          
            
  
“Clang” CFE Internals Manual



	Introduction

	LLVM Support Library

	The Clang “Basic” Library
	The Diagnostics Subsystem
	The Diagnostic*Kinds.td files

	The Format String

	Formatting a Diagnostic Argument

	Producing the Diagnostic

	Fix-It Hints

	The DiagnosticClient Interface

	Adding Translations to Clang





	The SourceLocation and SourceManager classes

	SourceRange and CharSourceRange





	The Driver Library

	Precompiled Headers

	The Frontend Library

	The Lexer and Preprocessor Library
	The Token class

	Annotation Tokens

	The Lexer class

	The TokenLexer class

	The MultipleIncludeOpt class





	The Parser Library

	The AST Library
	The Type class and its subclasses
	Canonical Types





	The QualType class

	Declaration names

	Declaration contexts
	Redeclarations and Overloads

	Lexical and Semantic Contexts

	Transparent Declaration Contexts

	Multiply-Defined Declaration Contexts





	The CFG class
	Basic Blocks

	Entry and Exit Blocks

	Conditional Control-Flow





	Constant Folding in the Clang AST
	Implementation Approach

	Extensions









	The Sema Library

	The CodeGen Library

	How to change Clang
	How to add an attribute
	Attribute Basics

	include/clang/Basic/Attr.td
	Spellings

	Subjects

	Documentation

	Arguments

	Other Properties





	Boilerplate

	Semantic handling





	How to add an expression or statement










Introduction

This document describes some of the more important APIs and internal design
decisions made in the Clang C front-end.  The purpose of this document is to
both capture some of this high level information and also describe some of the
design decisions behind it.  This is meant for people interested in hacking on
Clang, not for end-users.  The description below is categorized by libraries,
and does not describe any of the clients of the libraries.




LLVM Support Library

The LLVM libSupport library provides many underlying libraries and
data-structures [http://llvm.org/docs/ProgrammersManual.html], including
command line option processing, various containers and a system abstraction
layer, which is used for file system access.




The Clang “Basic” Library

This library certainly needs a better name.  The “basic” library contains a
number of low-level utilities for tracking and manipulating source buffers,
locations within the source buffers, diagnostics, tokens, target abstraction,
and information about the subset of the language being compiled for.

Part of this infrastructure is specific to C (such as the TargetInfo
class), other parts could be reused for other non-C-based languages
(SourceLocation, SourceManager, Diagnostics, FileManager).
When and if there is future demand we can figure out if it makes sense to
introduce a new library, move the general classes somewhere else, or introduce
some other solution.

We describe the roles of these classes in order of their dependencies.


The Diagnostics Subsystem

The Clang Diagnostics subsystem is an important part of how the compiler
communicates with the human.  Diagnostics are the warnings and errors produced
when the code is incorrect or dubious.  In Clang, each diagnostic produced has
(at the minimum) a unique ID, an English translation associated with it, a
SourceLocation to “put the caret”, and a severity
(e.g., WARNING or ERROR).  They can also optionally include a number of
arguments to the dianostic (which fill in “%0“‘s in the string) as well as a
number of source ranges that related to the diagnostic.

In this section, we’ll be giving examples produced by the Clang command line
driver, but diagnostics can be rendered in many different ways depending on how the DiagnosticClient interface is
implemented.  A representative example of a diagnostic is:

t.c:38:15: error: invalid operands to binary expression ('int *' and '_Complex float')
P = (P-42) + Gamma*4;
    ~~~~~~ ^ ~~~~~~~


In this example, you can see the English translation, the severity (error), you
can see the source location (the caret (“^”) and file/line/column info),
the source ranges “~~~~”, arguments to the diagnostic (“int*” and
“_Complex float”). You’ll have to believe me that there is a unique ID
backing the diagnostic :).

Getting all of this to happen has several steps and involves many moving
pieces, this section describes them and talks about best practices when adding
a new diagnostic.

The Diagnostic*Kinds.td files

Diagnostics are created by adding an entry to one of the
clang/Basic/Diagnostic*Kinds.td files, depending on what library will be
using it. From this file, tblgen generates the unique ID of the
diagnostic, the severity of the diagnostic and the English translation + format
string.

There is little sanity with the naming of the unique ID’s right now. Some
start with err_, warn_, ext_ to encode the severity into the name.
Since the enum is referenced in the C++ code that produces the diagnostic, it
is somewhat useful for it to be reasonably short.

The severity of the diagnostic comes from the set {NOTE, REMARK,
WARNING,
EXTENSION, EXTWARN, ERROR}. The ERROR severity is used for
diagnostics indicating the program is never acceptable under any circumstances.
When an error is emitted, the AST for the input code may not be fully built.
The EXTENSION and EXTWARN severities are used for extensions to the
language that Clang accepts. This means that Clang fully understands and can
represent them in the AST, but we produce diagnostics to tell the user their
code is non-portable. The difference is that the former are ignored by
default, and the later warn by default. The WARNING severity is used for
constructs that are valid in the currently selected source language but that
are dubious in some way. The REMARK severity provides generic information
about the compilation that is not necessarily related to any dubious code. The
NOTE level is used to staple more information onto previous diagnostics.

These severities are mapped into a smaller set (the Diagnostic::Level
enum, {Ignored, Note, Remark, Warning, Error, Fatal}) of
output
levels by the diagnostics subsystem based on various configuration options.
Clang internally supports a fully fine grained mapping mechanism that allows
you to map almost any diagnostic to the output level that you want. The only
diagnostics that cannot be mapped are NOTEs, which always follow the
severity of the previously emitted diagnostic and ERRORs, which can only
be mapped to Fatal (it is not possible to turn an error into a warning, for
example).

Diagnostic mappings are used in many ways. For example, if the user specifies
-pedantic, EXTENSION maps to Warning, if they specify
-pedantic-errors, it turns into Error. This is used to implement
options like -Wunused_macros, -Wundef etc.

Mapping to Fatal should only be used for diagnostics that are considered so
severe that error recovery won’t be able to recover sensibly from them (thus
spewing a ton of bogus errors). One example of this class of error are failure
to #include a file.

The Format String

The format string for the diagnostic is very simple, but it has some power. It
takes the form of a string in English with markers that indicate where and how
arguments to the diagnostic are inserted and formatted. For example, here are
some simple format strings:

"binary integer literals are an extension"
"format string contains '\\0' within the string body"
"more '%%' conversions than data arguments"
"invalid operands to binary expression (%0 and %1)"
"overloaded '%0' must be a %select{unary|binary|unary or binary}2 operator"
 " (has %1 parameter%s1)"

These examples show some important points of format strings. You can use any
plain ASCII character in the diagnostic string except “%” without a
problem, but these are C strings, so you have to use and be aware of all the C
escape sequences (as in the second example). If you want to produce a “%”
in the output, use the “%%” escape sequence, like the third diagnostic.
Finally, Clang uses the “%...[digit]” sequences to specify where and how
arguments to the diagnostic are formatted.

Arguments to the diagnostic are numbered according to how they are specified by
the C++ code that produces them, and are
referenced by %0 .. %9. If you have more than 10 arguments to your
diagnostic, you are doing something wrong :). Unlike printf, there is no
requirement that arguments to the diagnostic end up in the output in the same
order as they are specified, you could have a format string with “%1 %0”
that swaps them, for example. The text in between the percent and digit are
formatting instructions. If there are no instructions, the argument is just
turned into a string and substituted in.

Here are some “best practices” for writing the English format string:

	Keep the string short. It should ideally fit in the 80 column limit of the
DiagnosticKinds.td file. This avoids the diagnostic wrapping when
printed, and forces you to think about the important point you are conveying
with the diagnostic.

	Take advantage of location information. The user will be able to see the
line and location of the caret, so you don’t need to tell them that the
problem is with the 4th argument to the function: just point to it.

	Do not capitalize the diagnostic string, and do not end it with a period.

	If you need to quote something in the diagnostic string, use single quotes.

Diagnostics should never take random English strings as arguments: you
shouldn’t use “you have a problem with %0” and pass in things like “your
argument” or “your return value” as arguments. Doing this prevents
translating the Clang diagnostics to other
languages (because they’ll get random English words in their otherwise
localized diagnostic). The exceptions to this are C/C++ language keywords
(e.g., auto, const, mutable, etc) and C/C++ operators (/=).
Note that things like “pointer” and “reference” are not keywords. On the other
hand, you can include anything that comes from the user’s source code,
including variable names, types, labels, etc. The “select” format can be
used to achieve this sort of thing in a localizable way, see below.

Formatting a Diagnostic Argument

Arguments to diagnostics are fully typed internally, and come from a couple
different classes: integers, types, names, and random strings. Depending on
the class of the argument, it can be optionally formatted in different ways.
This gives the DiagnosticClient information about what the argument means
without requiring it to use a specific presentation (consider this MVC for
Clang :).

Here are the different diagnostic argument formats currently supported by
Clang:

“s” format

	Example:

	"requires %1 parameter%s1"

	Class:

	Integers

	Description:

	This is a simple formatter for integers that is useful when producing English
diagnostics. When the integer is 1, it prints as nothing. When the integer
is not 1, it prints as “s”. This allows some simple grammatical forms to
be to be handled correctly, and eliminates the need to use gross things like
"requires %1 parameter(s)".

“select” format

	Example:

	"must be a %select{unary|binary|unary or binary}2 operator"

	Class:

	Integers

	Description:

	This format specifier is used to merge multiple related diagnostics together
into one common one, without requiring the difference to be specified as an
English string argument. Instead of specifying the string, the diagnostic
gets an integer argument and the format string selects the numbered option.
In this case, the “%2” value must be an integer in the range [0..2]. If
it is 0, it prints “unary”, if it is 1 it prints “binary” if it is 2, it
prints “unary or binary”. This allows other language translations to
substitute reasonable words (or entire phrases) based on the semantics of the
diagnostic instead of having to do things textually. The selected string
does undergo formatting.

“plural” format

	Example:

	"you have %1 %plural{1:mouse|:mice}1 connected to your computer"

	Class:

	Integers

	Description:

	This is a formatter for complex plural forms. It is designed to handle even
the requirements of languages with very complex plural forms, as many Baltic
languages have. The argument consists of a series of expression/form pairs,
separated by ”:”, where the first form whose expression evaluates to true is
the result of the modifier.

An expression can be empty, in which case it is always true. See the example
at the top. Otherwise, it is a series of one or more numeric conditions,
separated by ”,”. If any condition matches, the expression matches. Each
numeric condition can take one of three forms.

	number: A simple decimal number matches if the argument is the same as the
number. Example: "%plural{1:mouse|:mice}4"

	range: A range in square brackets matches if the argument is within the
range. Then range is inclusive on both ends. Example:
"%plural{0:none|1:one|[2,5]:some|:many}2"

	modulo: A modulo operator is followed by a number, and equals sign and
either a number or a range. The tests are the same as for plain numbers
and ranges, but the argument is taken modulo the number first. Example:
"%plural{%100=0:even hundred|%100=[1,50]:lower half|:everything else}1"

The parser is very unforgiving. A syntax error, even whitespace, will abort,
as will a failure to match the argument against any expression.

“ordinal” format

	Example:

	"ambiguity in %ordinal0 argument"

	Class:

	Integers

	Description:

	This is a formatter which represents the argument number as an ordinal: the
value 1 becomes 1st, 3 becomes 3rd, and so on. Values less
than 1 are not supported. This formatter is currently hard-coded to use
English ordinals.

“objcclass” format

	Example:

	"method %objcclass0 not found"

	Class:

	DeclarationName

	Description:

	This is a simple formatter that indicates the DeclarationName corresponds
to an Objective-C class method selector. As such, it prints the selector
with a leading “+”.

“objcinstance” format

	Example:

	"method %objcinstance0 not found"

	Class:

	DeclarationName

	Description:

	This is a simple formatter that indicates the DeclarationName corresponds
to an Objective-C instance method selector. As such, it prints the selector
with a leading “-”.

“q” format

	Example:

	"candidate found by name lookup is %q0"

	Class:

	NamedDecl *

	Description:

	This formatter indicates that the fully-qualified name of the declaration
should be printed, e.g., “std::vector” rather than “vector”.

“diff” format

	Example:

	"no known conversion %diff{from $ to $|from argument type to parameter type}1,2"

	Class:

	QualType

	Description:

	This formatter takes two QualTypes and attempts to print a template
difference between the two. If tree printing is off, the text inside the
braces before the pipe is printed, with the formatted text replacing the $.
If tree printing is on, the text after the pipe is printed and a type tree is
printed after the diagnostic message.

It is really easy to add format specifiers to the Clang diagnostics system, but
they should be discussed before they are added. If you are creating a lot of
repetitive diagnostics and/or have an idea for a useful formatter, please bring
it up on the cfe-dev mailing list.

Producing the Diagnostic

Now that you’ve created the diagnostic in the Diagnostic*Kinds.td file, you
need to write the code that detects the condition in question and emits the new
diagnostic. Various components of Clang (e.g., the preprocessor, Sema,
etc.) provide a helper function named “Diag”. It creates a diagnostic and
accepts the arguments, ranges, and other information that goes along with it.

For example, the binary expression error comes from code like this:

if (various things that are bad)
 Diag(Loc, diag::err_typecheck_invalid_operands)
 << lex->getType() << rex->getType()
 << lex->getSourceRange() << rex->getSourceRange();

This shows that use of the Diag method: it takes a location (a
SourceLocation object) and a diagnostic enum value
(which matches the name from Diagnostic*Kinds.td). If the diagnostic takes
arguments, they are specified with the << operator: the first argument
becomes %0, the second becomes %1, etc. The diagnostic interface
allows you to specify arguments of many different types, including int and
unsigned for integer arguments, const char* and std::string for
string arguments, DeclarationName and const IdentifierInfo * for names,
QualType for types, etc. SourceRanges are also specified with the
<< operator, but do not have a specific ordering requirement.

As you can see, adding and producing a diagnostic is pretty straightforward.
The hard part is deciding exactly what you need to say to help the user,
picking a suitable wording, and providing the information needed to format it
correctly. The good news is that the call site that issues a diagnostic should
be completely independent of how the diagnostic is formatted and in what
language it is rendered.

Fix-It Hints

In some cases, the front end emits diagnostics when it is clear that some small
change to the source code would fix the problem. For example, a missing
semicolon at the end of a statement or a use of deprecated syntax that is
easily rewritten into a more modern form. Clang tries very hard to emit the
diagnostic and recover gracefully in these and other cases.

However, for these cases where the fix is obvious, the diagnostic can be
annotated with a hint (referred to as a “fix-it hint”) that describes how to
change the code referenced by the diagnostic to fix the problem. For example,
it might add the missing semicolon at the end of the statement or rewrite the
use of a deprecated construct into something more palatable. Here is one such
example from the C++ front end, where we warn about the right-shift operator
changing meaning from C++98 to C++11:

test.cpp:3:7: warning: use of right-shift operator ('>>') in template argument
 will require parentheses in C++11
A<100 >> 2> *a;
 ^
 ()

Here, the fix-it hint is suggesting that parentheses be added, and showing
exactly where those parentheses would be inserted into the source code. The
fix-it hints themselves describe what changes to make to the source code in an
abstract manner, which the text diagnostic printer renders as a line of
“insertions” below the caret line. Other diagnostic clients might choose to render the code differently (e.g., as
markup inline) or even give the user the ability to automatically fix the
problem.

Fix-it hints on errors and warnings need to obey these rules:

	Since they are automatically applied if -Xclang -fixit is passed to the
driver, they should only be used when it’s very likely they match the user’s
intent.

	Clang must recover from errors as if the fix-it had been applied.

If a fix-it can’t obey these rules, put the fix-it on a note. Fix-its on notes
are not applied automatically.

All fix-it hints are described by the FixItHint class, instances of which
should be attached to the diagnostic using the << operator in the same way
that highlighted source ranges and arguments are passed to the diagnostic.
Fix-it hints can be created with one of three constructors:

	FixItHint::CreateInsertion(Loc, Code)

Specifies that the given Code (a string) should be inserted before the
source location Loc.

	FixItHint::CreateRemoval(Range)

Specifies that the code in the given source Range should be removed.

	FixItHint::CreateReplacement(Range, Code)

Specifies that the code in the given source Range should be removed,
and replaced with the given Code string.

The DiagnosticClient Interface

Once code generates a diagnostic with all of the arguments and the rest of the
relevant information, Clang needs to know what to do with it. As previously
mentioned, the diagnostic machinery goes through some filtering to map a
severity onto a diagnostic level, then (assuming the diagnostic is not mapped
to “Ignore”) it invokes an object that implements the DiagnosticClient
interface with the information.

It is possible to implement this interface in many different ways. For
example, the normal Clang DiagnosticClient (named
TextDiagnosticPrinter) turns the arguments into strings (according to the
various formatting rules), prints out the file/line/column information and the
string, then prints out the line of code, the source ranges, and the caret.
However, this behavior isn’t required.

Another implementation of the DiagnosticClient interface is the
TextDiagnosticBuffer class, which is used when Clang is in -verify
mode. Instead of formatting and printing out the diagnostics, this
implementation just captures and remembers the diagnostics as they fly by.
Then -verify compares the list of produced diagnostics to the list of
expected ones. If they disagree, it prints out its own output. Full
documentation for the -verify mode can be found in the Clang API
documentation for VerifyDiagnosticConsumer.

There are many other possible implementations of this interface, and this is
why we prefer diagnostics to pass down rich structured information in
arguments. For example, an HTML output might want declaration names be
linkified to where they come from in the source. Another example is that a GUI
might let you click on typedefs to expand them. This application would want to
pass significantly more information about types through to the GUI than a
simple flat string. The interface allows this to happen.

Adding Translations to Clang

Not possible yet! Diagnostic strings should be written in UTF-8, the client can
translate to the relevant code page if needed. Each translation completely
replaces the format string for the diagnostic.

The SourceLocation and SourceManager classes

Strangely enough, the SourceLocation class represents a location within the
source code of the program. Important design points include:

	sizeof(SourceLocation) must be extremely small, as these are embedded
into many AST nodes and are passed around often. Currently it is 32 bits.

	SourceLocation must be a simple value object that can be efficiently
copied.

	We should be able to represent a source location for any byte of any input
file. This includes in the middle of tokens, in whitespace, in trigraphs,
etc.

	A SourceLocation must encode the current #include stack that was
active when the location was processed. For example, if the location
corresponds to a token, it should contain the set of #includes active
when the token was lexed. This allows us to print the #include stack
for a diagnostic.

	SourceLocation must be able to describe macro expansions, capturing both
the ultimate instantiation point and the source of the original character
data.

In practice, the SourceLocation works together with the SourceManager
class to encode two pieces of information about a location: its spelling
location and its instantiation location. For most tokens, these will be the
same. However, for a macro expansion (or tokens that came from a _Pragma
directive) these will describe the location of the characters corresponding to
the token and the location where the token was used (i.e., the macro
instantiation point or the location of the _Pragma itself).

The Clang front-end inherently depends on the location of a token being tracked
correctly. If it is ever incorrect, the front-end may get confused and die.
The reason for this is that the notion of the “spelling” of a Token in
Clang depends on being able to find the original input characters for the
token. This concept maps directly to the “spelling location” for the token.

SourceRange and CharSourceRange

Clang represents most source ranges by [first, last], where “first” and “last”
each point to the beginning of their respective tokens. For example consider
the SourceRange of the following statement:

x = foo + bar;
^first ^last

To map from this representation to a character-based representation, the “last”
location needs to be adjusted to point to (or past) the end of that token with
either Lexer::MeasureTokenLength() or Lexer::getLocForEndOfToken(). For
the rare cases where character-level source ranges information is needed we use
the CharSourceRange class.

The Driver Library

The clang Driver and library are documented here.

Precompiled Headers

Clang supports two implementations of precompiled headers. The default
implementation, precompiled headers (PCH) uses a
serialized representation of Clang’s internal data structures, encoded with the
LLVM bitstream format [http://llvm.org/docs/BitCodeFormat.html].
Pretokenized headers (PTH), on the other hand, contain a
serialized representation of the tokens encountered when preprocessing a header
(and anything that header includes).

The Frontend Library

The Frontend library contains functionality useful for building tools on top of
the Clang libraries, for example several methods for outputting diagnostics.

The Lexer and Preprocessor Library

The Lexer library contains several tightly-connected classes that are involved
with the nasty process of lexing and preprocessing C source code. The main
interface to this library for outside clients is the large Preprocessor
class. It contains the various pieces of state that are required to coherently
read tokens out of a translation unit.

The core interface to the Preprocessor object (once it is set up) is the
Preprocessor::Lex method, which returns the next Token from
the preprocessor stream. There are two types of token providers that the
preprocessor is capable of reading from: a buffer lexer (provided by the
Lexer class) and a buffered token stream (provided by the
TokenLexer class).

The Token class

The Token class is used to represent a single lexed token. Tokens are
intended to be used by the lexer/preprocess and parser libraries, but are not
intended to live beyond them (for example, they should not live in the ASTs).

Tokens most often live on the stack (or some other location that is efficient
to access) as the parser is running, but occasionally do get buffered up. For
example, macro definitions are stored as a series of tokens, and the C++
front-end periodically needs to buffer tokens up for tentative parsing and
various pieces of look-ahead. As such, the size of a Token matters. On a
32-bit system, sizeof(Token) is currently 16 bytes.

Tokens occur in two forms: annotation tokens and
normal tokens. Normal tokens are those returned by the lexer, annotation
tokens represent semantic information and are produced by the parser, replacing
normal tokens in the token stream. Normal tokens contain the following
information:

	A SourceLocation — This indicates the location of the start of the
token.

	A length — This stores the length of the token as stored in the
SourceBuffer. For tokens that include them, this length includes
trigraphs and escaped newlines which are ignored by later phases of the
compiler. By pointing into the original source buffer, it is always possible
to get the original spelling of a token completely accurately.

	IdentifierInfo — If a token takes the form of an identifier, and if
identifier lookup was enabled when the token was lexed (e.g., the lexer was
not reading in “raw” mode) this contains a pointer to the unique hash value
for the identifier. Because the lookup happens before keyword
identification, this field is set even for language keywords like “for”.

	TokenKind — This indicates the kind of token as classified by the
lexer. This includes things like tok::starequal (for the “*=”
operator), tok::ampamp for the “&&” token, and keyword values (e.g.,
tok::kw_for) for identifiers that correspond to keywords. Note that
some tokens can be spelled multiple ways. For example, C++ supports
“operator keywords”, where things like “and” are treated exactly like the
“&&” operator. In these cases, the kind value is set to tok::ampamp,
which is good for the parser, which doesn’t have to consider both forms. For
something that cares about which form is used (e.g., the preprocessor
“stringize” operator) the spelling indicates the original form.

	Flags — There are currently four flags tracked by the
lexer/preprocessor system on a per-token basis:
	StartOfLine — This was the first token that occurred on its input
source line.

	LeadingSpace — There was a space character either immediately before
the token or transitively before the token as it was expanded through a
macro. The definition of this flag is very closely defined by the
stringizing requirements of the preprocessor.

	DisableExpand — This flag is used internally to the preprocessor to
represent identifier tokens which have macro expansion disabled. This
prevents them from being considered as candidates for macro expansion ever
in the future.

	NeedsCleaning — This flag is set if the original spelling for the
token includes a trigraph or escaped newline. Since this is uncommon,
many pieces of code can fast-path on tokens that did not need cleaning.

One interesting (and somewhat unusual) aspect of normal tokens is that they
don’t contain any semantic information about the lexed value. For example, if
the token was a pp-number token, we do not represent the value of the number
that was lexed (this is left for later pieces of code to decide).
Additionally, the lexer library has no notion of typedef names vs variable
names: both are returned as identifiers, and the parser is left to decide
whether a specific identifier is a typedef or a variable (tracking this
requires scope information among other things). The parser can do this
translation by replacing tokens returned by the preprocessor with “Annotation
Tokens”.

Annotation Tokens

Annotation tokens are tokens that are synthesized by the parser and injected
into the preprocessor’s token stream (replacing existing tokens) to record
semantic information found by the parser. For example, if “foo” is found
to be a typedef, the “foo” tok::identifier token is replaced with an
tok::annot_typename. This is useful for a couple of reasons: 1) this makes
it easy to handle qualified type names (e.g., “foo::bar::baz<42>::t”) in
C++ as a single “token” in the parser. 2) if the parser backtracks, the
reparse does not need to redo semantic analysis to determine whether a token
sequence is a variable, type, template, etc.

Annotation tokens are created by the parser and reinjected into the parser’s
token stream (when backtracking is enabled). Because they can only exist in
tokens that the preprocessor-proper is done with, it doesn’t need to keep
around flags like “start of line” that the preprocessor uses to do its job.
Additionally, an annotation token may “cover” a sequence of preprocessor tokens
(e.g., “a::b::c” is five preprocessor tokens). As such, the valid fields
of an annotation token are different than the fields for a normal token (but
they are multiplexed into the normal Token fields):

	SourceLocation “Location” — The SourceLocation for the annotation
token indicates the first token replaced by the annotation token. In the
example above, it would be the location of the “a” identifier.

	SourceLocation “AnnotationEndLoc” — This holds the location of the last
token replaced with the annotation token. In the example above, it would be
the location of the “c” identifier.

	void* “AnnotationValue” — This contains an opaque object that the
parser gets from Sema. The parser merely preserves the information for
Sema to later interpret based on the annotation token kind.

	TokenKind “Kind” — This indicates the kind of Annotation token this is.
See below for the different valid kinds.

Annotation tokens currently come in three kinds:

	tok::annot_typename: This annotation token represents a resolved
typename token that is potentially qualified. The AnnotationValue field
contains the QualType returned by Sema::getTypeName(), possibly with
source location information attached.

	tok::annot_cxxscope: This annotation token represents a C++ scope
specifier, such as “A::B::”. This corresponds to the grammar
productions “::” and “:: [opt] nested-name-specifier”. The
AnnotationValue pointer is a NestedNameSpecifier * returned by the
Sema::ActOnCXXGlobalScopeSpecifier and
Sema::ActOnCXXNestedNameSpecifier callbacks.

	tok::annot_template_id: This annotation token represents a C++
template-id such as “foo<int, 4>”, where “foo” is the name of a
template. The AnnotationValue pointer is a pointer to a malloc‘d
TemplateIdAnnotation object. Depending on the context, a parsed
template-id that names a type might become a typename annotation token (if
all we care about is the named type, e.g., because it occurs in a type
specifier) or might remain a template-id token (if we want to retain more
source location information or produce a new type, e.g., in a declaration of
a class template specialization). template-id annotation tokens that refer
to a type can be “upgraded” to typename annotation tokens by the parser.

As mentioned above, annotation tokens are not returned by the preprocessor,
they are formed on demand by the parser. This means that the parser has to be
aware of cases where an annotation could occur and form it where appropriate.
This is somewhat similar to how the parser handles Translation Phase 6 of C99:
String Concatenation (see C99 5.1.1.2). In the case of string concatenation,
the preprocessor just returns distinct tok::string_literal and
tok::wide_string_literal tokens and the parser eats a sequence of them
wherever the grammar indicates that a string literal can occur.

In order to do this, whenever the parser expects a tok::identifier or
tok::coloncolon, it should call the TryAnnotateTypeOrScopeToken or
TryAnnotateCXXScopeToken methods to form the annotation token. These
methods will maximally form the specified annotation tokens and replace the
current token with them, if applicable. If the current tokens is not valid for
an annotation token, it will remain an identifier or “::” token.

The Lexer class

The Lexer class provides the mechanics of lexing tokens out of a source
buffer and deciding what they mean. The Lexer is complicated by the fact
that it operates on raw buffers that have not had spelling eliminated (this is
a necessity to get decent performance), but this is countered with careful
coding as well as standard performance techniques (for example, the comment
handling code is vectorized on X86 and PowerPC hosts).

The lexer has a couple of interesting modal features:

	The lexer can operate in “raw” mode. This mode has several features that
make it possible to quickly lex the file (e.g., it stops identifier lookup,
doesn’t specially handle preprocessor tokens, handles EOF differently, etc).
This mode is used for lexing within an “#if 0” block, for example.

	The lexer can capture and return comments as tokens. This is required to
support the -C preprocessor mode, which passes comments through, and is
used by the diagnostic checker to identifier expect-error annotations.

	The lexer can be in ParsingFilename mode, which happens when
preprocessing after reading a #include directive. This mode changes the
parsing of “<” to return an “angled string” instead of a bunch of tokens
for each thing within the filename.

	When parsing a preprocessor directive (after “#”) the
ParsingPreprocessorDirective mode is entered. This changes the parser to
return EOD at a newline.

	The Lexer uses a LangOptions object to know whether trigraphs are
enabled, whether C++ or ObjC keywords are recognized, etc.

In addition to these modes, the lexer keeps track of a couple of other features
that are local to a lexed buffer, which change as the buffer is lexed:

	The Lexer uses BufferPtr to keep track of the current character being
lexed.

	The Lexer uses IsAtStartOfLine to keep track of whether the next
lexed token will start with its “start of line” bit set.

	The Lexer keeps track of the current “#if” directives that are active
(which can be nested).

	The Lexer keeps track of an MultipleIncludeOpt object, which is used to detect whether the buffer uses
the standard “#ifndef XX / #define XX” idiom to prevent multiple
inclusion. If a buffer does, subsequent includes can be ignored if the
“XX” macro is defined.

The TokenLexer class

The TokenLexer class is a token provider that returns tokens from a list of
tokens that came from somewhere else. It typically used for two things: 1)
returning tokens from a macro definition as it is being expanded 2) returning
tokens from an arbitrary buffer of tokens. The later use is used by
_Pragma and will most likely be used to handle unbounded look-ahead for the
C++ parser.

The MultipleIncludeOpt class

The MultipleIncludeOpt class implements a really simple little state
machine that is used to detect the standard “#ifndef XX / #define XX”
idiom that people typically use to prevent multiple inclusion of headers. If a
buffer uses this idiom and is subsequently #include‘d, the preprocessor can
simply check to see whether the guarding condition is defined or not. If so,
the preprocessor can completely ignore the include of the header.

The Parser Library

This library contains a recursive-descent parser that polls tokens from the
preprocessor and notifies a client of the parsing progress.

Historically, the parser used to talk to an abstract Action interface that
had virtual methods for parse events, for example ActOnBinOp(). When Clang
grew C++ support, the parser stopped supporting general Action clients –
it now always talks to the Sema libray. However, the Parser
still accesses AST objects only through opaque types like ExprResult and
StmtResult. Only Sema looks at the AST node contents of these
wrappers.

The AST Library

The Type class and its subclasses

The Type class (and its subclasses) are an important part of the AST.
Types are accessed through the ASTContext class, which implicitly creates
and uniques them as they are needed. Types have a couple of non-obvious
features: 1) they do not capture type qualifiers like const or volatile
(see QualType), and 2) they implicitly capture typedef
information. Once created, types are immutable (unlike decls).

Typedefs in C make semantic analysis a bit more complex than it would be without
them. The issue is that we want to capture typedef information and represent it
in the AST perfectly, but the semantics of operations need to “see through”
typedefs. For example, consider this code:

void func() {
 typedef int foo;
 foo X, *Y;
 typedef foo *bar;
 bar Z;
 *X; // error
 **Y; // error
 **Z; // error
}

The code above is illegal, and thus we expect there to be diagnostics emitted
on the annotated lines. In this example, we expect to get:

test.c:6:1: error: indirection requires pointer operand ('foo' invalid)
 *X; // error
 ^~
test.c:7:1: error: indirection requires pointer operand ('foo' invalid)
 **Y; // error
 ^~~
test.c:8:1: error: indirection requires pointer operand ('foo' invalid)
 **Z; // error
 ^~~

While this example is somewhat silly, it illustrates the point: we want to
retain typedef information where possible, so that we can emit errors about
“std::string” instead of “std::basic_string<char, std:...”. Doing this
requires properly keeping typedef information (for example, the type of X
is “foo”, not “int”), and requires properly propagating it through the
various operators (for example, the type of *Y is “foo”, not
“int”). In order to retain this information, the type of these expressions
is an instance of the TypedefType class, which indicates that the type of
these expressions is a typedef for “foo”.

Representing types like this is great for diagnostics, because the
user-specified type is always immediately available. There are two problems
with this: first, various semantic checks need to make judgements about the
actual structure of a type, ignoring typedefs. Second, we need an efficient
way to query whether two types are structurally identical to each other,
ignoring typedefs. The solution to both of these problems is the idea of
canonical types.

Canonical Types

Every instance of the Type class contains a canonical type pointer. For
simple types with no typedefs involved (e.g., “int”, “int*”,
“int**”), the type just points to itself. For types that have a typedef
somewhere in their structure (e.g., “foo”, “foo*”, “foo**”,
“bar”), the canonical type pointer points to their structurally equivalent
type without any typedefs (e.g., “int”, “int*”, “int**”, and
“int*” respectively).

This design provides a constant time operation (dereferencing the canonical type
pointer) that gives us access to the structure of types. For example, we can
trivially tell that “bar” and “foo*” are the same type by dereferencing
their canonical type pointers and doing a pointer comparison (they both point
to the single “int*” type).

Canonical types and typedef types bring up some complexities that must be
carefully managed. Specifically, the isa/cast/dyn_cast operators
generally shouldn’t be used in code that is inspecting the AST. For example,
when type checking the indirection operator (unary “*” on a pointer), the
type checker must verify that the operand has a pointer type. It would not be
correct to check that with “isa<PointerType>(SubExpr->getType())”, because
this predicate would fail if the subexpression had a typedef type.

The solution to this problem are a set of helper methods on Type, used to
check their properties. In this case, it would be correct to use
“SubExpr->getType()->isPointerType()” to do the check. This predicate will
return true if the canonical type is a pointer, which is true any time the
type is structurally a pointer type. The only hard part here is remembering
not to use the isa/cast/dyn_cast operations.

The second problem we face is how to get access to the pointer type once we
know it exists. To continue the example, the result type of the indirection
operator is the pointee type of the subexpression. In order to determine the
type, we need to get the instance of PointerType that best captures the
typedef information in the program. If the type of the expression is literally
a PointerType, we can return that, otherwise we have to dig through the
typedefs to find the pointer type. For example, if the subexpression had type
“foo*”, we could return that type as the result. If the subexpression had
type “bar”, we want to return “foo*” (note that we do not want
“int*”). In order to provide all of this, Type has a
getAsPointerType() method that checks whether the type is structurally a
PointerType and, if so, returns the best one. If not, it returns a null
pointer.

This structure is somewhat mystical, but after meditating on it, it will make
sense to you :).

The QualType class

The QualType class is designed as a trivial value class that is small,
passed by-value and is efficient to query. The idea of QualType is that it
stores the type qualifiers (const, volatile, restrict, plus some
extended qualifiers required by language extensions) separately from the types
themselves. QualType is conceptually a pair of “Type*” and the bits
for these type qualifiers.

By storing the type qualifiers as bits in the conceptual pair, it is extremely
efficient to get the set of qualifiers on a QualType (just return the field
of the pair), add a type qualifier (which is a trivial constant-time operation
that sets a bit), and remove one or more type qualifiers (just return a
QualType with the bitfield set to empty).

Further, because the bits are stored outside of the type itself, we do not need
to create duplicates of types with different sets of qualifiers (i.e. there is
only a single heap allocated “int” type: “const int” and “volatile
const int” both point to the same heap allocated “int” type). This
reduces the heap size used to represent bits and also means we do not have to
consider qualifiers when uniquing types (Type does not even
contain qualifiers).

In practice, the two most common type qualifiers (const and restrict)
are stored in the low bits of the pointer to the Type object, together with
a flag indicating whether extended qualifiers are present (which must be
heap-allocated). This means that QualType is exactly the same size as a
pointer.

Declaration names

The DeclarationName class represents the name of a declaration in Clang.
Declarations in the C family of languages can take several different forms.
Most declarations are named by simple identifiers, e.g., “f” and “x” in
the function declaration f(int x). In C++, declaration names can also name
class constructors (“Class” in struct Class { Class(); }), class
destructors (“~Class”), overloaded operator names (“operator+”), and
conversion functions (“operator void const *”). In Objective-C,
declaration names can refer to the names of Objective-C methods, which involve
the method name and the parameters, collectively called a selector, e.g.,
“setWidth:height:”. Since all of these kinds of entities — variables,
functions, Objective-C methods, C++ constructors, destructors, and operators
— are represented as subclasses of Clang’s common NamedDecl class,
DeclarationName is designed to efficiently represent any kind of name.

Given a DeclarationName N, N.getNameKind() will produce a value
that describes what kind of name N stores. There are 10 options (all of
the names are inside the DeclarationName class).

Identifier

The name is a simple identifier. Use N.getAsIdentifierInfo() to retrieve
the corresponding IdentifierInfo* pointing to the actual identifier.

ObjCZeroArgSelector, ObjCOneArgSelector, ObjCMultiArgSelector

The name is an Objective-C selector, which can be retrieved as a Selector
instance via N.getObjCSelector(). The three possible name kinds for
Objective-C reflect an optimization within the DeclarationName class:
both zero- and one-argument selectors are stored as a masked
IdentifierInfo pointer, and therefore require very little space, since
zero- and one-argument selectors are far more common than multi-argument
selectors (which use a different structure).

CXXConstructorName

The name is a C++ constructor name. Use N.getCXXNameType() to retrieve
the type that this constructor is meant to construct. The
type is always the canonical type, since all constructors for a given type
have the same name.

CXXDestructorName

The name is a C++ destructor name. Use N.getCXXNameType() to retrieve
the type whose destructor is being named. This type is
always a canonical type.

CXXConversionFunctionName

The name is a C++ conversion function. Conversion functions are named
according to the type they convert to, e.g., “operator void const *”.
Use N.getCXXNameType() to retrieve the type that this conversion function
converts to. This type is always a canonical type.

CXXOperatorName

The name is a C++ overloaded operator name. Overloaded operators are named
according to their spelling, e.g., “operator+” or “operator new []”.
Use N.getCXXOverloadedOperator() to retrieve the overloaded operator (a
value of type OverloadedOperatorKind).

CXXLiteralOperatorName

The name is a C++11 user defined literal operator. User defined
Literal operators are named according to the suffix they define,
e.g., “_foo” for “operator "" _foo”. Use
N.getCXXLiteralIdentifier() to retrieve the corresponding
IdentifierInfo* pointing to the identifier.

CXXUsingDirective

The name is a C++ using directive. Using directives are not really
NamedDecls, in that they all have the same name, but they are
implemented as such in order to store them in DeclContext
effectively.

DeclarationNames are cheap to create, copy, and compare. They require
only a single pointer’s worth of storage in the common cases (identifiers,
zero- and one-argument Objective-C selectors) and use dense, uniqued storage
for the other kinds of names. Two DeclarationNames can be compared for
equality (==, !=) using a simple bitwise comparison, can be ordered
with <, >, <=, and >= (which provide a lexicographical ordering
for normal identifiers but an unspecified ordering for other kinds of names),
and can be placed into LLVM DenseMaps and DenseSets.

DeclarationName instances can be created in different ways depending on
what kind of name the instance will store. Normal identifiers
(IdentifierInfo pointers) and Objective-C selectors (Selector) can be
implicitly converted to DeclarationNames. Names for C++ constructors,
destructors, conversion functions, and overloaded operators can be retrieved
from the DeclarationNameTable, an instance of which is available as
ASTContext::DeclarationNames. The member functions
getCXXConstructorName, getCXXDestructorName,
getCXXConversionFunctionName, and getCXXOperatorName, respectively,
return DeclarationName instances for the four kinds of C++ special function
names.

Declaration contexts

Every declaration in a program exists within some declaration context, such
as a translation unit, namespace, class, or function. Declaration contexts in
Clang are represented by the DeclContext class, from which the various
declaration-context AST nodes (TranslationUnitDecl, NamespaceDecl,
RecordDecl, FunctionDecl, etc.) will derive. The DeclContext class
provides several facilities common to each declaration context:

Source-centric vs. Semantics-centric View of Declarations

DeclContext provides two views of the declarations stored within a
declaration context. The source-centric view accurately represents the
program source code as written, including multiple declarations of entities
where present (see the section Redeclarations and Overloads), while the semantics-centric view represents the program
semantics. The two views are kept synchronized by semantic analysis while
the ASTs are being constructed.

Storage of declarations within that context

Every declaration context can contain some number of declarations. For
example, a C++ class (represented by RecordDecl) contains various member
functions, fields, nested types, and so on. All of these declarations will
be stored within the DeclContext, and one can iterate over the
declarations via [DeclContext::decls_begin(),
DeclContext::decls_end()). This mechanism provides the source-centric
view of declarations in the context.

Lookup of declarations within that context

The DeclContext structure provides efficient name lookup for names within
that declaration context. For example, if N is a namespace we can look
for the name N::f using DeclContext::lookup. The lookup itself is
based on a lazily-constructed array (for declaration contexts with a small
number of declarations) or hash table (for declaration contexts with more
declarations). The lookup operation provides the semantics-centric view of
the declarations in the context.

Ownership of declarations

The DeclContext owns all of the declarations that were declared within
its declaration context, and is responsible for the management of their
memory as well as their (de-)serialization.

All declarations are stored within a declaration context, and one can query
information about the context in which each declaration lives. One can
retrieve the DeclContext that contains a particular Decl using
Decl::getDeclContext. However, see the section
Lexical and Semantic Contexts for more information about how to interpret
this context information.

Redeclarations and Overloads

Within a translation unit, it is common for an entity to be declared several
times. For example, we might declare a function “f” and then later
re-declare it as part of an inlined definition:

void f(int x, int y, int z = 1);

inline void f(int x, int y, int z) { /* ... */ }

The representation of “f” differs in the source-centric and
semantics-centric views of a declaration context. In the source-centric view,
all redeclarations will be present, in the order they occurred in the source
code, making this view suitable for clients that wish to see the structure of
the source code. In the semantics-centric view, only the most recent “f”
will be found by the lookup, since it effectively replaces the first
declaration of “f”.

In the semantics-centric view, overloading of functions is represented
explicitly. For example, given two declarations of a function “g” that are
overloaded, e.g.,

void g();
void g(int);

the DeclContext::lookup operation will return a
DeclContext::lookup_result that contains a range of iterators over
declarations of “g”. Clients that perform semantic analysis on a program
that is not concerned with the actual source code will primarily use this
semantics-centric view.

Lexical and Semantic Contexts

Each declaration has two potentially different declaration contexts: a
lexical context, which corresponds to the source-centric view of the
declaration context, and a semantic context, which corresponds to the
semantics-centric view. The lexical context is accessible via
Decl::getLexicalDeclContext while the semantic context is accessible via
Decl::getDeclContext, both of which return DeclContext pointers. For
most declarations, the two contexts are identical. For example:

class X {
public:
 void f(int x);
};

Here, the semantic and lexical contexts of X::f are the DeclContext
associated with the class X (itself stored as a RecordDecl AST node).
However, we can now define X::f out-of-line:

void X::f(int x = 17) { /* ... */ }

This definition of “f” has different lexical and semantic contexts. The
lexical context corresponds to the declaration context in which the actual
declaration occurred in the source code, e.g., the translation unit containing
X. Thus, this declaration of X::f can be found by traversing the
declarations provided by [decls_begin(), decls_end()) in the
translation unit.

The semantic context of X::f corresponds to the class X, since this
member function is (semantically) a member of X. Lookup of the name f
into the DeclContext associated with X will then return the definition
of X::f (including information about the default argument).

Transparent Declaration Contexts

In C and C++, there are several contexts in which names that are logically
declared inside another declaration will actually “leak” out into the enclosing
scope from the perspective of name lookup. The most obvious instance of this
behavior is in enumeration types, e.g.,

enum Color {
 Red,
 Green,
 Blue
};

Here, Color is an enumeration, which is a declaration context that contains
the enumerators Red, Green, and Blue. Thus, traversing the list of
declarations contained in the enumeration Color will yield Red,
Green, and Blue. However, outside of the scope of Color one can
name the enumerator Red without qualifying the name, e.g.,

Color c = Red;

There are other entities in C++ that provide similar behavior. For example,
linkage specifications that use curly braces:

extern "C" {
 void f(int);
 void g(int);
}
// f and g are visible here

For source-level accuracy, we treat the linkage specification and enumeration
type as a declaration context in which its enclosed declarations (“Red”,
“Green”, and “Blue”; “f” and “g”) are declared. However, these
declarations are visible outside of the scope of the declaration context.

These language features (and several others, described below) have roughly the
same set of requirements: declarations are declared within a particular lexical
context, but the declarations are also found via name lookup in scopes
enclosing the declaration itself. This feature is implemented via
transparent declaration contexts (see
DeclContext::isTransparentContext()), whose declarations are visible in the
nearest enclosing non-transparent declaration context. This means that the
lexical context of the declaration (e.g., an enumerator) will be the
transparent DeclContext itself, as will the semantic context, but the
declaration will be visible in every outer context up to and including the
first non-transparent declaration context (since transparent declaration
contexts can be nested).

The transparent DeclContexts are:

	Enumerations (but not C++11 “scoped enumerations”):

enum Color {
 Red,
 Green,
 Blue
};
// Red, Green, and Blue are in scope

	C++ linkage specifications:

extern "C" {
 void f(int);
 void g(int);
}
// f and g are in scope

	Anonymous unions and structs:

struct LookupTable {
 bool IsVector;
 union {
 std::vector<Item> *Vector;
 std::set<Item> *Set;
 };
};

LookupTable LT;
LT.Vector = 0; // Okay: finds Vector inside the unnamed union

	C++11 inline namespaces:

namespace mylib {
 inline namespace debug {
 class X;
 }
}
mylib::X *xp; // okay: mylib::X refers to mylib::debug::X

Multiply-Defined Declaration Contexts

C++ namespaces have the interesting — and, so far, unique — property that
the namespace can be defined multiple times, and the declarations provided by
each namespace definition are effectively merged (from the semantic point of
view). For example, the following two code snippets are semantically
indistinguishable:

// Snippet #1:
namespace N {
 void f();
}
namespace N {
 void f(int);
}

// Snippet #2:
namespace N {
 void f();
 void f(int);
}

In Clang’s representation, the source-centric view of declaration contexts will
actually have two separate NamespaceDecl nodes in Snippet #1, each of which
is a declaration context that contains a single declaration of “f”.
However, the semantics-centric view provided by name lookup into the namespace
N for “f” will return a DeclContext::lookup_result that contains a
range of iterators over declarations of “f”.

DeclContext manages multiply-defined declaration contexts internally. The
function DeclContext::getPrimaryContext retrieves the “primary” context for
a given DeclContext instance, which is the DeclContext responsible for
maintaining the lookup table used for the semantics-centric view. Given a
DeclContext, one can obtain the set of declaration contexts that are semanticaly
connected to this declaration context, in source order, including this context
(which will be the only result, for non-namespace contexts) via
DeclContext::collectAllContexts. Note that these functions are used
internally within the lookup and insertion methods of the DeclContext, so
the vast majority of clients can ignore them.

The CFG class

The CFG class is designed to represent a source-level control-flow graph
for a single statement (Stmt*). Typically instances of CFG are
constructed for function bodies (usually an instance of CompoundStmt), but
can also be instantiated to represent the control-flow of any class that
subclasses Stmt, which includes simple expressions. Control-flow graphs
are especially useful for performing flow- or path-sensitive [http://en.wikipedia.org/wiki/Data_flow_analysis#Sensitivities] program
analyses on a given function.

Basic Blocks

Concretely, an instance of CFG is a collection of basic blocks. Each basic
block is an instance of CFGBlock, which simply contains an ordered sequence
of Stmt* (each referring to statements in the AST). The ordering of
statements within a block indicates unconditional flow of control from one
statement to the next. Conditional control-flow is represented using edges between basic blocks. The
statements within a given CFGBlock can be traversed using the
CFGBlock::*iterator interface.

A CFG object owns the instances of CFGBlock within the control-flow
graph it represents. Each CFGBlock within a CFG is also uniquely numbered
(accessible via CFGBlock::getBlockID()). Currently the number is based on
the ordering the blocks were created, but no assumptions should be made on how
CFGBlocks are numbered other than their numbers are unique and that they
are numbered from 0..N-1 (where N is the number of basic blocks in the CFG).

Entry and Exit Blocks

Each instance of CFG contains two special blocks: an entry block
(accessible via CFG::getEntry()), which has no incoming edges, and an
exit block (accessible via CFG::getExit()), which has no outgoing edges.
Neither block contains any statements, and they serve the role of providing a
clear entrance and exit for a body of code such as a function body. The
presence of these empty blocks greatly simplifies the implementation of many
analyses built on top of CFGs.

Conditional Control-Flow

Conditional control-flow (such as those induced by if-statements and loops) is
represented as edges between CFGBlocks. Because different C language
constructs can induce control-flow, each CFGBlock also records an extra
Stmt* that represents the terminator of the block. A terminator is
simply the statement that caused the control-flow, and is used to identify the
nature of the conditional control-flow between blocks. For example, in the
case of an if-statement, the terminator refers to the IfStmt object in the
AST that represented the given branch.

To illustrate, consider the following code example:

int foo(int x) {
 x = x + 1;
 if (x > 2)
 x++;
 else {
 x += 2;
 x *= 2;
 }

 return x;
}

After invoking the parser+semantic analyzer on this code fragment, the AST of
the body of foo is referenced by a single Stmt*. We can then construct
an instance of CFG representing the control-flow graph of this function
body by single call to a static class method:

Stmt *FooBody = ...
std::unique_ptr<CFG> FooCFG = CFG::buildCFG(FooBody);

Along with providing an interface to iterate over its CFGBlocks, the
CFG class also provides methods that are useful for debugging and
visualizing CFGs. For example, the method CFG::dump() dumps a
pretty-printed version of the CFG to standard error. This is especially useful
when one is using a debugger such as gdb. For example, here is the output of
FooCFG->dump():

[B5 (ENTRY)]
 Predecessors (0):
 Successors (1): B4

[B4]
 1: x = x + 1
 2: (x > 2)
 T: if [B4.2]
 Predecessors (1): B5
 Successors (2): B3 B2

[B3]
 1: x++
 Predecessors (1): B4
 Successors (1): B1

[B2]
 1: x += 2
 2: x *= 2
 Predecessors (1): B4
 Successors (1): B1

[B1]
 1: return x;
 Predecessors (2): B2 B3
 Successors (1): B0

[B0 (EXIT)]
 Predecessors (1): B1
 Successors (0):

For each block, the pretty-printed output displays for each block the number of
predecessor blocks (blocks that have outgoing control-flow to the given
block) and successor blocks (blocks that have control-flow that have incoming
control-flow from the given block). We can also clearly see the special entry
and exit blocks at the beginning and end of the pretty-printed output. For the
entry block (block B5), the number of predecessor blocks is 0, while for the
exit block (block B0) the number of successor blocks is 0.

The most interesting block here is B4, whose outgoing control-flow represents
the branching caused by the sole if-statement in foo. Of particular
interest is the second statement in the block, (x > 2), and the terminator,
printed as if [B4.2]. The second statement represents the evaluation of
the condition of the if-statement, which occurs before the actual branching of
control-flow. Within the CFGBlock for B4, the Stmt* for the second
statement refers to the actual expression in the AST for (x > 2). Thus
pointers to subclasses of Expr can appear in the list of statements in a
block, and not just subclasses of Stmt that refer to proper C statements.

The terminator of block B4 is a pointer to the IfStmt object in the AST.
The pretty-printer outputs if [B4.2] because the condition expression of
the if-statement has an actual place in the basic block, and thus the
terminator is essentially referring to the expression that is the second
statement of block B4 (i.e., B4.2). In this manner, conditions for
control-flow (which also includes conditions for loops and switch statements)
are hoisted into the actual basic block.

Constant Folding in the Clang AST

There are several places where constants and constant folding matter a lot to
the Clang front-end. First, in general, we prefer the AST to retain the source
code as close to how the user wrote it as possible. This means that if they
wrote “5+4”, we want to keep the addition and two constants in the AST, we
don’t want to fold to “9”. This means that constant folding in various
ways turns into a tree walk that needs to handle the various cases.

However, there are places in both C and C++ that require constants to be
folded. For example, the C standard defines what an “integer constant
expression” (i-c-e) is with very precise and specific requirements. The
language then requires i-c-e’s in a lot of places (for example, the size of a
bitfield, the value for a case statement, etc). For these, we have to be able
to constant fold the constants, to do semantic checks (e.g., verify bitfield
size is non-negative and that case statements aren’t duplicated). We aim for
Clang to be very pedantic about this, diagnosing cases when the code does not
use an i-c-e where one is required, but accepting the code unless running with
-pedantic-errors.

Things get a little bit more tricky when it comes to compatibility with
real-world source code. Specifically, GCC has historically accepted a huge
superset of expressions as i-c-e’s, and a lot of real world code depends on
this unfortuate accident of history (including, e.g., the glibc system
headers). GCC accepts anything its “fold” optimizer is capable of reducing to
an integer constant, which means that the definition of what it accepts changes
as its optimizer does. One example is that GCC accepts things like “case
X-X:” even when X is a variable, because it can fold this to 0.

Another issue are how constants interact with the extensions we support, such
as __builtin_constant_p, __builtin_inf, __extension__ and many
others. C99 obviously does not specify the semantics of any of these
extensions, and the definition of i-c-e does not include them. However, these
extensions are often used in real code, and we have to have a way to reason
about them.

Finally, this is not just a problem for semantic analysis. The code generator
and other clients have to be able to fold constants (e.g., to initialize global
variables) and has to handle a superset of what C99 allows. Further, these
clients can benefit from extended information. For example, we know that
“foo() || 1” always evaluates to true, but we can’t replace the
expression with true because it has side effects.

Implementation Approach

After trying several different approaches, we’ve finally converged on a design
(Note, at the time of this writing, not all of this has been implemented,
consider this a design goal!). Our basic approach is to define a single
recursive method evaluation method (Expr::Evaluate), which is implemented
in AST/ExprConstant.cpp. Given an expression with “scalar” type (integer,
fp, complex, or pointer) this method returns the following information:

	Whether the expression is an integer constant expression, a general constant
that was folded but has no side effects, a general constant that was folded
but that does have side effects, or an uncomputable/unfoldable value.

	If the expression was computable in any way, this method returns the
APValue for the result of the expression.

	If the expression is not evaluatable at all, this method returns information
on one of the problems with the expression. This includes a
SourceLocation for where the problem is, and a diagnostic ID that explains
the problem. The diagnostic should have ERROR type.

	If the expression is not an integer constant expression, this method returns
information on one of the problems with the expression. This includes a
SourceLocation for where the problem is, and a diagnostic ID that
explains the problem. The diagnostic should have EXTENSION type.

This information gives various clients the flexibility that they want, and we
will eventually have some helper methods for various extensions. For example,
Sema should have a Sema::VerifyIntegerConstantExpression method, which
calls Evaluate on the expression. If the expression is not foldable, the
error is emitted, and it would return true. If the expression is not an
i-c-e, the EXTENSION diagnostic is emitted. Finally it would return
false to indicate that the AST is OK.

Other clients can use the information in other ways, for example, codegen can
just use expressions that are foldable in any way.

Extensions

This section describes how some of the various extensions Clang supports
interacts with constant evaluation:

	__extension__: The expression form of this extension causes any
evaluatable subexpression to be accepted as an integer constant expression.

	__builtin_constant_p: This returns true (as an integer constant
expression) if the operand evaluates to either a numeric value (that is, not
a pointer cast to integral type) of integral, enumeration, floating or
complex type, or if it evaluates to the address of the first character of a
string literal (possibly cast to some other type). As a special case, if
__builtin_constant_p is the (potentially parenthesized) condition of a
conditional operator expression (“?:”), only the true side of the
conditional operator is considered, and it is evaluated with full constant
folding.

	__builtin_choose_expr: The condition is required to be an integer
constant expression, but we accept any constant as an “extension of an
extension”. This only evaluates one operand depending on which way the
condition evaluates.

	__builtin_classify_type: This always returns an integer constant
expression.

	__builtin_inf, nan, ...: These are treated just like a floating-point
literal.

	__builtin_abs, copysign, ...: These are constant folded as general
constant expressions.

	__builtin_strlen and strlen: These are constant folded as integer
constant expressions if the argument is a string literal.

The Sema Library

This library is called by the Parser library during parsing to
do semantic analysis of the input. For valid programs, Sema builds an AST for
parsed constructs.

The CodeGen Library

CodeGen takes an AST as input and produces LLVM IR code from it.

How to change Clang

How to add an attribute

Attributes are a form of metadata that can be attached to a program construct,
allowing the programmer to pass semantic information along to the compiler for
various uses. For example, attributes may be used to alter the code generation
for a program construct, or to provide extra semantic information for static
analysis. This document explains how to add a custom attribute to Clang.
Documentation on existing attributes can be found here.

Attribute Basics

Attributes in Clang are handled in three stages: parsing into a parsed attribute
representation, conversion from a parsed attribute into a semantic attribute,
and then the semantic handling of the attribute.

Parsing of the attribute is determined by the various syntactic forms attributes
can take, such as GNU, C++11, and Microsoft style attributes, as well as other
information provided by the table definition of the attribute. Ultimately, the
parsed representation of an attribute object is an AttributeList object.
These parsed attributes chain together as a list of parsed attributes attached
to a declarator or declaration specifier. The parsing of attributes is handled
automatically by Clang, except for attributes spelled as keywords. When
implementing a keyword attribute, the parsing of the keyword and creation of the
AttributeList object must be done manually.

Eventually, Sema::ProcessDeclAttributeList() is called with a Decl and
an AttributeList, at which point the parsed attribute can be transformed
into a semantic attribute. The process by which a parsed attribute is converted
into a semantic attribute depends on the attribute definition and semantic
requirements of the attribute. The end result, however, is that the semantic
attribute object is attached to the Decl object, and can be obtained by a
call to Decl::getAttr<T>().

The structure of the semantic attribute is also governed by the attribute
definition given in Attr.td. This definition is used to automatically generate
functionality used for the implementation of the attribute, such as a class
derived from clang::Attr, information for the parser to use, automated
semantic checking for some attributes, etc.

include/clang/Basic/Attr.td

The first step to adding a new attribute to Clang is to add its definition to
include/clang/Basic/Attr.td [http://llvm.org/viewvc/llvm-project/cfe/trunk/include/clang/Basic/Attr.td?view=markup].
This tablegen definition must derive from the Attr (tablegen, not
semantic) type, or one of its derivatives. Most attributes will derive from the
InheritableAttr type, which specifies that the attribute can be inherited by
later redeclarations of the Decl it is associated with.
InheritableParamAttr is similar to InheritableAttr, except that the
attribute is written on a parameter instead of a declaration. If the attribute
is intended to apply to a type instead of a declaration, such an attribute
should derive from TypeAttr, and will generally not be given an AST
representation. (Note that this document does not cover the creation of type
attributes.) An attribute that inherits from IgnoredAttr is parsed, but will
generate an ignored attribute diagnostic when used, which may be useful when an
attribute is supported by another vendor but not supported by clang.

The definition will specify several key pieces of information, such as the
semantic name of the attribute, the spellings the attribute supports, the
arguments the attribute expects, and more. Most members of the Attr tablegen
type do not require definitions in the derived definition as the default
suffice. However, every attribute must specify at least a spelling list, a
subject list, and a documentation list.

Spellings

All attributes are required to specify a spelling list that denotes the ways in
which the attribute can be spelled. For instance, a single semantic attribute
may have a keyword spelling, as well as a C++11 spelling and a GNU spelling. An
empty spelling list is also permissible and may be useful for attributes which
are created implicitly. The following spellings are accepted:

	Spelling
	Description

	GNU
	Spelled with a GNU-style __attribute__((attr)) syntax and
placement.

	CXX11
	Spelled with a C++-style [[attr]] syntax. If the attribute
is meant to be used by Clang, it should set the namespace to
"clang".

	Declspec
	Spelled with a Microsoft-style __declspec(attr) syntax.

	Keyword
	The attribute is spelled as a keyword, and required custom
parsing.

	GCC
	Specifies two spellings: the first is a GNU-style spelling, and
the second is a C++-style spelling with the gnu namespace.
Attributes should only specify this spelling for attributes
supported by GCC.

	Pragma
	The attribute is spelled as a #pragma, and requires custom
processing within the preprocessor. If the attribute is meant to
be used by Clang, it should set the namespace to "clang".
Note that this spelling is not used for declaration attributes.

Subjects

Attributes appertain to one or more Decl subjects. If the attribute attempts
to attach to a subject that is not in the subject list, a diagnostic is issued
automatically. Whether the diagnostic is a warning or an error depends on how
the attribute’s SubjectList is defined, but the default behavior is to warn.
The diagnostics displayed to the user are automatically determined based on the
subjects in the list, but a custom diagnostic parameter can also be specified in
the SubjectList. The diagnostics generated for subject list violations are
either diag::warn_attribute_wrong_decl_type or
diag::err_attribute_wrong_decl_type, and the parameter enumeration is found
in include/clang/Sema/AttributeList.h [http://llvm.org/viewvc/llvm-project/cfe/trunk/include/clang/Sema/AttributeList.h?view=markup]
If a previously unused Decl node is added to the SubjectList, the logic used
to automatically determine the diagnostic parameter in utils/TableGen/ClangAttrEmitter.cpp [http://llvm.org/viewvc/llvm-project/cfe/trunk/utils/TableGen/ClangAttrEmitter.cpp?view=markup]
may need to be updated.

By default, all subjects in the SubjectList must either be a Decl node defined
in DeclNodes.td, or a statement node defined in StmtNodes.td. However,
more complex subjects can be created by creating a SubsetSubject object.
Each such object has a base subject which it appertains to (which must be a
Decl or Stmt node, and not a SubsetSubject node), and some custom code which is
called when determining whether an attribute appertains to the subject. For
instance, a NonBitField SubsetSubject appertains to a FieldDecl, and
tests whether the given FieldDecl is a bit field. When a SubsetSubject is
specified in a SubjectList, a custom diagnostic parameter must also be provided.

Diagnostic checking for attribute subject lists is automated except when
HasCustomParsing is set to 1.

Documentation

All attributes must have some form of documentation associated with them.
Documentation is table generated on the public web server by a server-side
process that runs daily. Generally, the documentation for an attribute is a
stand-alone definition in include/clang/Basic/AttrDocs.td [http://llvm.org/viewvc/llvm-project/cfe/trunk/include/clang/Basic/AttdDocs.td?view=markup]
that is named after the attribute being documented.

If the attribute is not for public consumption, or is an implicitly-created
attribute that has no visible spelling, the documentation list can specify the
Undocumented object. Otherwise, the attribute should have its documentation
added to AttrDocs.td.

Documentation derives from the Documentation tablegen type. All derived
types must specify a documentation category and the actual documentation itself.
Additionally, it can specify a custom heading for the attribute, though a
default heading will be chosen when possible.

There are four predefined documentation categories: DocCatFunction for
attributes that appertain to function-like subjects, DocCatVariable for
attributes that appertain to variable-like subjects, DocCatType for type
attributes, and DocCatStmt for statement attributes. A custom documentation
category should be used for groups of attributes with similar functionality.
Custom categories are good for providing overview information for the attributes
grouped under it. For instance, the consumed annotation attributes define a
custom category, DocCatConsumed, that explains what consumed annotations are
at a high level.

Documentation content (whether it is for an attribute or a category) is written
using reStructuredText (RST) syntax.

After writing the documentation for the attribute, it should be locally tested
to ensure that there are no issues generating the documentation on the server.
Local testing requires a fresh build of clang-tblgen. To generate the attribute
documentation, execute the following command:

clang-tblgen -gen-attr-docs -I /path/to/clang/include /path/to/clang/include/clang/Basic/Attr.td -o /path/to/clang/docs/AttributeReference.rst

When testing locally, do not commit changes to AttributeReference.rst.
This file is generated by the server automatically, and any changes made to this
file will be overwritten.

Arguments

Attributes may optionally specify a list of arguments that can be passed to the
attribute. Attribute arguments specify both the parsed form and the semantic
form of the attribute. For example, if Args is
[StringArgument<"Arg1">, IntArgument<"Arg2">] then
__attribute__((myattribute("Hello", 3))) will be a valid use; it requires
two arguments while parsing, and the Attr subclass’ constructor for the
semantic attribute will require a string and integer argument.

All arguments have a name and a flag that specifies whether the argument is
optional. The associated C++ type of the argument is determined by the argument
definition type. If the existing argument types are insufficient, new types can
be created, but it requires modifying utils/TableGen/ClangAttrEmitter.cpp [http://llvm.org/viewvc/llvm-project/cfe/trunk/utils/TableGen/ClangAttrEmitter.cpp?view=markup]
to properly support the type.

Other Properties

The Attr definition has other members which control the behavior of the
attribute. Many of them are special-purpose and beyond the scope of this
document, however a few deserve mention.

If the parsed form of the attribute is more complex, or differs from the
semantic form, the HasCustomParsing bit can be set to 1 for the class,
and the parsing code in Parser::ParseGNUAttributeArgs() [http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/Parse/ParseDecl.cpp?view=markup]
can be updated for the special case. Note that this only applies to arguments
with a GNU spelling – attributes with a __declspec spelling currently ignore
this flag and are handled by Parser::ParseMicrosoftDeclSpec.

Note that setting this member to 1 will opt out of common attribute semantic
handling, requiring extra implementation efforts to ensure the attribute
appertains to the appropriate subject, etc.

If the attribute should not be propagated from from a template declaration to an
instantiation of the template, set the Clone member to 0. By default, all
attributes will be cloned to template instantiations.

Attributes that do not require an AST node should set the ASTNode field to
0 to avoid polluting the AST. Note that anything inheriting from
TypeAttr or IgnoredAttr automatically do not generate an AST node. All
other attributes generate an AST node by default. The AST node is the semantic
representation of the attribute.

The LangOpts field specifies a list of language options required by the
attribute. For instance, all of the CUDA-specific attributes specify [CUDA]
for the LangOpts field, and when the CUDA language option is not enabled, an
“attribute ignored” warning diagnostic is emitted. Since language options are
not table generated nodes, new language options must be created manually and
should specify the spelling used by LangOptions class.

Custom accessors can be generated for an attribute based on the spelling list
for that attribute. For instance, if an attribute has two different spellings:
‘Foo’ and ‘Bar’, accessors can be created:
[Accessor<"isFoo", [GNU<"Foo">]>, Accessor<"isBar", [GNU<"Bar">]>]
These accessors will be generated on the semantic form of the attribute,
accepting no arguments and returning a bool.

Attributes that do not require custom semantic handling should set the
SemaHandler field to 0. Note that anything inheriting from
IgnoredAttr automatically do not get a semantic handler. All other
attributes are assumed to use a semantic handler by default. Attributes
without a semantic handler are not given a parsed attribute Kind enumerator.

Target-specific attributes may share a spelling with other attributes in
different targets. For instance, the ARM and MSP430 targets both have an
attribute spelled GNU<"interrupt">, but with different parsing and semantic
requirements. To support this feature, an attribute inheriting from
TargetSpecificAttribute may specify a ParseKind field. This field
should be the same value between all arguments sharing a spelling, and
corresponds to the parsed attribute’s Kind enumerator. This allows
attributes to share a parsed attribute kind, but have distinct semantic
attribute classes. For instance, AttributeList::AT_Interrupt is the shared
parsed attribute kind, but ARMInterruptAttr and MSP430InterruptAttr are the
semantic attributes generated.

By default, when declarations are merging attributes, an attribute will not be
duplicated. However, if an attribute can be duplicated during this merging
stage, set DuplicatesAllowedWhileMerging to 1, and the attribute will
be merged.

By default, attribute arguments are parsed in an evaluated context. If the
arguments for an attribute should be parsed in an unevaluated context (akin to
the way the argument to a sizeof expression is parsed), set
ParseArgumentsAsUnevaluated to 1.

If additional functionality is desired for the semantic form of the attribute,
the AdditionalMembers field specifies code to be copied verbatim into the
semantic attribute class object, with public access.

Boilerplate

All semantic processing of declaration attributes happens in lib/Sema/SemaDeclAttr.cpp [http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/Sema/SemaDeclAttr.cpp?view=markup],
and generally starts in the ProcessDeclAttribute() function. If the
attribute is a “simple” attribute – meaning that it requires no custom semantic
processing aside from what is automatically provided, add a call to
handleSimpleAttribute<YourAttr>(S, D, Attr); to the switch statement.
Otherwise, write a new handleYourAttr() function, and add that to the switch
statement. Please do not implement handling logic directly in the case for
the attribute.

Unless otherwise specified by the attribute definition, common semantic checking
of the parsed attribute is handled automatically. This includes diagnosing
parsed attributes that do not appertain to the given Decl, ensuring the
correct minimum number of arguments are passed, etc.

If the attribute adds additional warnings, define a DiagGroup in
include/clang/Basic/DiagnosticGroups.td [http://llvm.org/viewvc/llvm-project/cfe/trunk/include/clang/Basic/DiagnosticGroups.td?view=markup]
named after the attribute’s Spelling with “_”s replaced by “-“s. If there
is only a single diagnostic, it is permissible to use InGroup<DiagGroup<"your-attribute">>
directly in DiagnosticSemaKinds.td [http://llvm.org/viewvc/llvm-project/cfe/trunk/include/clang/Basic/DiagnosticSemaKinds.td?view=markup]

All semantic diagnostics generated for your attribute, including automatically-
generated ones (such as subjects and argument counts), should have a
corresponding test case.

Semantic handling

Most attributes are implemented to have some effect on the compiler. For
instance, to modify the way code is generated, or to add extra semantic checks
for an analysis pass, etc. Having added the attribute definition and conversion
to the semantic representation for the attribute, what remains is to implement
the custom logic requiring use of the attribute.

The clang::Decl object can be queried for the presence or absence of an
attribute using hasAttr<T>(). To obtain a pointer to the semantic
representation of the attribute, getAttr<T> may be used.

How to add an expression or statement

Expressions and statements are one of the most fundamental constructs within a
compiler, because they interact with many different parts of the AST, semantic
analysis, and IR generation. Therefore, adding a new expression or statement
kind into Clang requires some care. The following list details the various
places in Clang where an expression or statement needs to be introduced, along
with patterns to follow to ensure that the new expression or statement works
well across all of the C languages. We focus on expressions, but statements
are similar.

	Introduce parsing actions into the parser. Recursive-descent parsing is
mostly self-explanatory, but there are a few things that are worth keeping
in mind:
	Keep as much source location information as possible! You’ll want it later
to produce great diagnostics and support Clang’s various features that map
between source code and the AST.

	Write tests for all of the “bad” parsing cases, to make sure your recovery
is good. If you have matched delimiters (e.g., parentheses, square
brackets, etc.), use Parser::BalancedDelimiterTracker to give nice
diagnostics when things go wrong.

	Introduce semantic analysis actions into Sema. Semantic analysis should
always involve two functions: an ActOnXXX function that will be called
directly from the parser, and a BuildXXX function that performs the
actual semantic analysis and will (eventually!) build the AST node. It’s
fairly common for the ActOnCXX function to do very little (often just
some minor translation from the parser’s representation to Sema‘s
representation of the same thing), but the separation is still important:
C++ template instantiation, for example, should always call the BuildXXX
variant. Several notes on semantic analysis before we get into construction
of the AST:
	Your expression probably involves some types and some subexpressions.
Make sure to fully check that those types, and the types of those
subexpressions, meet your expectations. Add implicit conversions where
necessary to make sure that all of the types line up exactly the way you
want them. Write extensive tests to check that you’re getting good
diagnostics for mistakes and that you can use various forms of
subexpressions with your expression.

	When type-checking a type or subexpression, make sure to first check
whether the type is “dependent” (Type::isDependentType()) or whether a
subexpression is type-dependent (Expr::isTypeDependent()). If any of
these return true, then you’re inside a template and you can’t do much
type-checking now. That’s normal, and your AST node (when you get there)
will have to deal with this case. At this point, you can write tests that
use your expression within templates, but don’t try to instantiate the
templates.

	For each subexpression, be sure to call Sema::CheckPlaceholderExpr()
to deal with “weird” expressions that don’t behave well as subexpressions.
Then, determine whether you need to perform lvalue-to-rvalue conversions
(Sema::DefaultLvalueConversions) or the usual unary conversions
(Sema::UsualUnaryConversions), for places where the subexpression is
producing a value you intend to use.

	Your BuildXXX function will probably just return ExprError() at
this point, since you don’t have an AST. That’s perfectly fine, and
shouldn’t impact your testing.

	Introduce an AST node for your new expression. This starts with declaring
the node in include/Basic/StmtNodes.td and creating a new class for your
expression in the appropriate include/AST/Expr*.h header. It’s best to
look at the class for a similar expression to get ideas, and there are some
specific things to watch for:
	If you need to allocate memory, use the ASTContext allocator to
allocate memory. Never use raw malloc or new, and never hold any
resources in an AST node, because the destructor of an AST node is never
called.

	Make sure that getSourceRange() covers the exact source range of your
expression. This is needed for diagnostics and for IDE support.

	Make sure that children() visits all of the subexpressions. This is
important for a number of features (e.g., IDE support, C++ variadic
templates). If you have sub-types, you’ll also need to visit those
sub-types in RecursiveASTVisitor and DataRecursiveASTVisitor.

	Add printing support (StmtPrinter.cpp) for your expression.

	Add profiling support (StmtProfile.cpp) for your AST node, noting the
distinguishing (non-source location) characteristics of an instance of
your expression. Omitting this step will lead to hard-to-diagnose
failures regarding matching of template declarations.

	Add serialization support (ASTReaderStmt.cpp, ASTWriterStmt.cpp)
for your AST node.

	Teach semantic analysis to build your AST node. At this point, you can wire
up your Sema::BuildXXX function to actually create your AST. A few
things to check at this point:
	If your expression can construct a new C++ class or return a new
Objective-C object, be sure to update and then call
Sema::MaybeBindToTemporary for your just-created AST node to be sure
that the object gets properly destructed. An easy way to test this is to
return a C++ class with a private destructor: semantic analysis should
flag an error here with the attempt to call the destructor.

	Inspect the generated AST by printing it using clang -cc1 -ast-print,
to make sure you’re capturing all of the important information about how
the AST was written.

	Inspect the generated AST under clang -cc1 -ast-dump to verify that
all of the types in the generated AST line up the way you want them.
Remember that clients of the AST should never have to “think” to
understand what’s going on. For example, all implicit conversions should
show up explicitly in the AST.

	Write tests that use your expression as a subexpression of other,
well-known expressions. Can you call a function using your expression as
an argument? Can you use the ternary operator?

	Teach code generation to create IR to your AST node. This step is the first
(and only) that requires knowledge of LLVM IR. There are several things to
keep in mind:
	Code generation is separated into scalar/aggregate/complex and
lvalue/rvalue paths, depending on what kind of result your expression
produces. On occasion, this requires some careful factoring of code to
avoid duplication.

	CodeGenFunction contains functions ConvertType and
ConvertTypeForMem that convert Clang’s types (clang::Type* or
clang::QualType) to LLVM types. Use the former for values, and the
later for memory locations: test with the C++ “bool” type to check
this. If you find that you are having to use LLVM bitcasts to make the
subexpressions of your expression have the type that your expression
expects, STOP! Go fix semantic analysis and the AST so that you don’t
need these bitcasts.

	The CodeGenFunction class has a number of helper functions to make
certain operations easy, such as generating code to produce an lvalue or
an rvalue, or to initialize a memory location with a given value. Prefer
to use these functions rather than directly writing loads and stores,
because these functions take care of some of the tricky details for you
(e.g., for exceptions).

	If your expression requires some special behavior in the event of an
exception, look at the push*Cleanup functions in CodeGenFunction
to introduce a cleanup. You shouldn’t have to deal with
exception-handling directly.

	Testing is extremely important in IR generation. Use clang -cc1
-emit-llvm and FileCheck [http://llvm.org/docs/CommandGuide/FileCheck.html] to verify that you’re
generating the right IR.

	Teach template instantiation how to cope with your AST node, which requires
some fairly simple code:
	Make sure that your expression’s constructor properly computes the flags
for type dependence (i.e., the type your expression produces can change
from one instantiation to the next), value dependence (i.e., the constant
value your expression produces can change from one instantiation to the
next), instantiation dependence (i.e., a template parameter occurs
anywhere in your expression), and whether your expression contains a
parameter pack (for variadic templates). Often, computing these flags
just means combining the results from the various types and
subexpressions.

	Add TransformXXX and RebuildXXX functions to the TreeTransform
class template in Sema. TransformXXX should (recursively)
transform all of the subexpressions and types within your expression,
using getDerived().TransformYYY. If all of the subexpressions and
types transform without error, it will then call the RebuildXXX
function, which will in turn call getSema().BuildXXX to perform
semantic analysis and build your expression.

	To test template instantiation, take those tests you wrote to make sure
that you were type checking with type-dependent expressions and dependent
types (from step #2) and instantiate those templates with various types,
some of which type-check and some that don’t, and test the error messages
in each case.

	There are some “extras” that make other features work better. It’s worth
handling these extras to give your expression complete integration into
Clang:
	Add code completion support for your expression in
SemaCodeComplete.cpp.

	If your expression has types in it, or has any “interesting” features
other than subexpressions, extend libclang’s CursorVisitor to provide
proper visitation for your expression, enabling various IDE features such
as syntax highlighting, cross-referencing, and so on. The
c-index-test helper program can be used to test these features.

 Driver Design & Internals

Driver Design & Internals

	Introduction

	Features and Goals
	GCC Compatibility

	Flexible

	Low Overhead

	Simple

	Internal Design and Implementation
	Internals Introduction

	Design Overview

	Driver Stages

	Additional Notes
	The Compilation Object

	Unified Parsing & Pipelining

	ToolChain Argument Translation

	Unused Argument Warnings

	Relation to GCC Driver Concepts

Introduction

This document describes the Clang driver. The purpose of this document
is to describe both the motivation and design goals for the driver, as
well as details of the internal implementation.

Features and Goals

The Clang driver is intended to be a production quality compiler driver
providing access to the Clang compiler and tools, with a command line
interface which is compatible with the gcc driver.

Although the driver is part of and driven by the Clang project, it is
logically a separate tool which shares many of the same goals as Clang:

Features

	GCC Compatibility

	Flexible

	Low Overhead

	Simple

GCC Compatibility

The number one goal of the driver is to ease the adoption of Clang by
allowing users to drop Clang into a build system which was designed to
call GCC. Although this makes the driver much more complicated than
might otherwise be necessary, we decided that being very compatible with
the gcc command line interface was worth it in order to allow users to
quickly test clang on their projects.

Flexible

The driver was designed to be flexible and easily accommodate new uses
as we grow the clang and LLVM infrastructure. As one example, the driver
can easily support the introduction of tools which have an integrated
assembler; something we hope to add to LLVM in the future.

Similarly, most of the driver functionality is kept in a library which
can be used to build other tools which want to implement or accept a gcc
like interface.

Low Overhead

The driver should have as little overhead as possible. In practice, we
found that the gcc driver by itself incurred a small but meaningful
overhead when compiling many small files. The driver doesn’t do much
work compared to a compilation, but we have tried to keep it as
efficient as possible by following a few simple principles:

	Avoid memory allocation and string copying when possible.

	Don’t parse arguments more than once.

	Provide a few simple interfaces for efficiently searching arguments.

Simple

Finally, the driver was designed to be “as simple as possible”, given
the other goals. Notably, trying to be completely compatible with the
gcc driver adds a significant amount of complexity. However, the design
of the driver attempts to mitigate this complexity by dividing the
process into a number of independent stages instead of a single
monolithic task.

Internal Design and Implementation

	Internals Introduction

	Design Overview

	Driver Stages

	Additional Notes

	Relation to GCC Driver Concepts

Internals Introduction

In order to satisfy the stated goals, the driver was designed to
completely subsume the functionality of the gcc executable; that is, the
driver should not need to delegate to gcc to perform subtasks. On
Darwin, this implies that the Clang driver also subsumes the gcc
driver-driver, which is used to implement support for building universal
images (binaries and object files). This also implies that the driver
should be able to call the language specific compilers (e.g. cc1)
directly, which means that it must have enough information to forward
command line arguments to child processes correctly.

Design Overview

The diagram below shows the significant components of the driver
architecture and how they relate to one another. The orange components
represent concrete data structures built by the driver, the green
components indicate conceptually distinct stages which manipulate these
data structures, and the blue components are important helper classes.

[image: Driver Architecture Diagram]

Driver Stages

The driver functionality is conceptually divided into five stages:

	Parse: Option Parsing

The command line argument strings are decomposed into arguments
(Arg instances). The driver expects to understand all available
options, although there is some facility for just passing certain
classes of options through (like -Wl,).

Each argument corresponds to exactly one abstract Option
definition, which describes how the option is parsed along with some
additional metadata. The Arg instances themselves are lightweight and
merely contain enough information for clients to determine which
option they correspond to and their values (if they have additional
parameters).

For example, a command line like “-Ifoo -I foo” would parse to two
Arg instances (a JoinedArg and a SeparateArg instance), but each
would refer to the same Option.

Options are lazily created in order to avoid populating all Option
classes when the driver is loaded. Most of the driver code only needs
to deal with options by their unique ID (e.g., options::OPT_I),

Arg instances themselves do not generally store the values of
parameters. In many cases, this would simply result in creating
unnecessary string copies. Instead, Arg instances are always embedded
inside an ArgList structure, which contains the original vector of
argument strings. Each Arg itself only needs to contain an index into
this vector instead of storing its values directly.

The clang driver can dump the results of this stage using the
-### flag (which must precede any actual command
line arguments). For example:

$ clang -### -Xarch_i386 -fomit-frame-pointer -Wa,-fast -Ifoo -I foo t.c
Option 0 - Name: "-Xarch_", Values: {"i386", "-fomit-frame-pointer"}
Option 1 - Name: "-Wa,", Values: {"-fast"}
Option 2 - Name: "-I", Values: {"foo"}
Option 3 - Name: "-I", Values: {"foo"}
Option 4 - Name: "<input>", Values: {"t.c"}

After this stage is complete the command line should be broken down
into well defined option objects with their appropriate parameters.
Subsequent stages should rarely, if ever, need to do any string
processing.

	Pipeline: Compilation Action Construction

Once the arguments are parsed, the tree of subprocess jobs needed for
the desired compilation sequence are constructed. This involves
determining the input files and their types, what work is to be done
on them (preprocess, compile, assemble, link, etc.), and constructing
a list of Action instances for each task. The result is a list of one
or more top-level actions, each of which generally corresponds to a
single output (for example, an object or linked executable).

The majority of Actions correspond to actual tasks, however there are
two special Actions. The first is InputAction, which simply serves to
adapt an input argument for use as an input to other Actions. The
second is BindArchAction, which conceptually alters the architecture
to be used for all of its input Actions.

The clang driver can dump the results of this stage using the
-ccc-print-phases flag. For example:

$ clang -ccc-print-phases -x c t.c -x assembler t.s
0: input, "t.c", c
1: preprocessor, {0}, cpp-output
2: compiler, {1}, assembler
3: assembler, {2}, object
4: input, "t.s", assembler
5: assembler, {4}, object
6: linker, {3, 5}, image

Here the driver is constructing seven distinct actions, four to
compile the “t.c” input into an object file, two to assemble the
“t.s” input, and one to link them together.

A rather different compilation pipeline is shown here; in this
example there are two top level actions to compile the input files
into two separate object files, where each object file is built using
lipo to merge results built for two separate architectures.

$ clang -ccc-print-phases -c -arch i386 -arch x86_64 t0.c t1.c
0: input, "t0.c", c
1: preprocessor, {0}, cpp-output
2: compiler, {1}, assembler
3: assembler, {2}, object
4: bind-arch, "i386", {3}, object
5: bind-arch, "x86_64", {3}, object
6: lipo, {4, 5}, object
7: input, "t1.c", c
8: preprocessor, {7}, cpp-output
9: compiler, {8}, assembler
10: assembler, {9}, object
11: bind-arch, "i386", {10}, object
12: bind-arch, "x86_64", {10}, object
13: lipo, {11, 12}, object

After this stage is complete the compilation process is divided into
a simple set of actions which need to be performed to produce
intermediate or final outputs (in some cases, like -fsyntax-only,
there is no “real” final output). Phases are well known compilation
steps, such as “preprocess”, “compile”, “assemble”, “link”, etc.

	Bind: Tool & Filename Selection

This stage (in conjunction with the Translate stage) turns the tree
of Actions into a list of actual subprocess to run. Conceptually, the
driver performs a top down matching to assign Action(s) to Tools. The
ToolChain is responsible for selecting the tool to perform a
particular action; once selected the driver interacts with the tool
to see if it can match additional actions (for example, by having an
integrated preprocessor).

Once Tools have been selected for all actions, the driver determines
how the tools should be connected (for example, using an inprocess
module, pipes, temporary files, or user provided filenames). If an
output file is required, the driver also computes the appropriate
file name (the suffix and file location depend on the input types and
options such as -save-temps).

The driver interacts with a ToolChain to perform the Tool bindings.
Each ToolChain contains information about all the tools needed for
compilation for a particular architecture, platform, and operating
system. A single driver invocation may query multiple ToolChains
during one compilation in order to interact with tools for separate
architectures.

The results of this stage are not computed directly, but the driver
can print the results via the -ccc-print-bindings option. For
example:

$ clang -ccc-print-bindings -arch i386 -arch ppc t0.c
"i386-apple-darwin9" - "clang", inputs: ["t0.c"], output: "/tmp/cc-Sn4RKF.s"
"i386-apple-darwin9" - "darwin::Assemble", inputs: ["/tmp/cc-Sn4RKF.s"], output: "/tmp/cc-gvSnbS.o"
"i386-apple-darwin9" - "darwin::Link", inputs: ["/tmp/cc-gvSnbS.o"], output: "/tmp/cc-jgHQxi.out"
"ppc-apple-darwin9" - "gcc::Compile", inputs: ["t0.c"], output: "/tmp/cc-Q0bTox.s"
"ppc-apple-darwin9" - "gcc::Assemble", inputs: ["/tmp/cc-Q0bTox.s"], output: "/tmp/cc-WCdicw.o"
"ppc-apple-darwin9" - "gcc::Link", inputs: ["/tmp/cc-WCdicw.o"], output: "/tmp/cc-HHBEBh.out"
"i386-apple-darwin9" - "darwin::Lipo", inputs: ["/tmp/cc-jgHQxi.out", "/tmp/cc-HHBEBh.out"], output: "a.out"

This shows the tool chain, tool, inputs and outputs which have been
bound for this compilation sequence. Here clang is being used to
compile t0.c on the i386 architecture and darwin specific versions of
the tools are being used to assemble and link the result, but generic
gcc versions of the tools are being used on PowerPC.

	Translate: Tool Specific Argument Translation

Once a Tool has been selected to perform a particular Action, the
Tool must construct concrete Commands which will be executed during
compilation. The main work is in translating from the gcc style
command line options to whatever options the subprocess expects.

Some tools, such as the assembler, only interact with a handful of
arguments and just determine the path of the executable to call and
pass on their input and output arguments. Others, like the compiler
or the linker, may translate a large number of arguments in addition.

The ArgList class provides a number of simple helper methods to
assist with translating arguments; for example, to pass on only the
last of arguments corresponding to some option, or all arguments for
an option.

The result of this stage is a list of Commands (executable paths and
argument strings) to execute.

	Execute

Finally, the compilation pipeline is executed. This is mostly
straightforward, although there is some interaction with options like
-pipe, -pass-exit-codes and -time.

Additional Notes

The Compilation Object

The driver constructs a Compilation object for each set of command line
arguments. The Driver itself is intended to be invariant during
construction of a Compilation; an IDE should be able to construct a
single long lived driver instance to use for an entire build, for
example.

The Compilation object holds information that is particular to each
compilation sequence. For example, the list of used temporary files
(which must be removed once compilation is finished) and result files
(which should be removed if compilation fails).

Unified Parsing & Pipelining

Parsing and pipelining both occur without reference to a Compilation
instance. This is by design; the driver expects that both of these
phases are platform neutral, with a few very well defined exceptions
such as whether the platform uses a driver driver.

ToolChain Argument Translation

In order to match gcc very closely, the clang driver currently allows
tool chains to perform their own translation of the argument list (into
a new ArgList data structure). Although this allows the clang driver to
match gcc easily, it also makes the driver operation much harder to
understand (since the Tools stop seeing some arguments the user
provided, and see new ones instead).

For example, on Darwin -gfull gets translated into two separate
arguments, -g and -fno-eliminate-unused-debug-symbols. Trying to
write Tool logic to do something with -gfull will not work, because
Tool argument translation is done after the arguments have been
translated.

A long term goal is to remove this tool chain specific translation, and
instead force each tool to change its own logic to do the right thing on
the untranslated original arguments.

Unused Argument Warnings

The driver operates by parsing all arguments but giving Tools the
opportunity to choose which arguments to pass on. One downside of this
infrastructure is that if the user misspells some option, or is confused
about which options to use, some command line arguments the user really
cared about may go unused. This problem is particularly important when
using clang as a compiler, since the clang compiler does not support
anywhere near all the options that gcc does, and we want to make sure
users know which ones are being used.

To support this, the driver maintains a bit associated with each
argument of whether it has been used (at all) during the compilation.
This bit usually doesn’t need to be set by hand, as the key ArgList
accessors will set it automatically.

When a compilation is successful (there are no errors), the driver
checks the bit and emits an “unused argument” warning for any arguments
which were never accessed. This is conservative (the argument may not
have been used to do what the user wanted) but still catches the most
obvious cases.

Relation to GCC Driver Concepts

For those familiar with the gcc driver, this section provides a brief
overview of how things from the gcc driver map to the clang driver.

	Driver Driver

The driver driver is fully integrated into the clang driver. The
driver simply constructs additional Actions to bind the architecture
during the Pipeline phase. The tool chain specific argument
translation is responsible for handling -Xarch_.

The one caveat is that this approach requires -Xarch_ not be used
to alter the compilation itself (for example, one cannot provide
-S as an -Xarch_ argument). The driver attempts to reject
such invocations, and overall there isn’t a good reason to abuse
-Xarch_ to that end in practice.

The upside is that the clang driver is more efficient and does little
extra work to support universal builds. It also provides better error
reporting and UI consistency.

	Specs

The clang driver has no direct correspondent for “specs”. The
majority of the functionality that is embedded in specs is in the
Tool specific argument translation routines. The parts of specs which
control the compilation pipeline are generally part of the Pipeline
stage.

	Toolchains

The gcc driver has no direct understanding of tool chains. Each gcc
binary roughly corresponds to the information which is embedded
inside a single ToolChain.

The clang driver is intended to be portable and support complex
compilation environments. All platform and tool chain specific code
should be protected behind either abstract or well defined interfaces
(such as whether the platform supports use as a driver driver).

 Pretokenized Headers (PTH)

Pretokenized Headers (PTH)

This document first describes the low-level interface for using PTH and
then briefly elaborates on its design and implementation. If you are
interested in the end-user view, please see the User’s Manual.

Using Pretokenized Headers with clang (Low-level Interface)

The Clang compiler frontend, clang -cc1, supports three command line
options for generating and using PTH files.

To generate PTH files using clang -cc1, use the option -emit-pth:

$ clang -cc1 test.h -emit-pth -o test.h.pth

This option is transparently used by clang when generating PTH
files. Similarly, PTH files can be used as prefix headers using the
-include-pth option:

$ clang -cc1 -include-pth test.h.pth test.c -o test.s

Alternatively, Clang’s PTH files can be used as a raw “token-cache” (or
“content” cache) of the source included by the original header file.
This means that the contents of the PTH file are searched as substitutes
for any source files that are used by clang -cc1 to process a
source file. This is done by specifying the -token-cache option:

$ cat test.h
#include <stdio.h>
$ clang -cc1 -emit-pth test.h -o test.h.pth
$ cat test.c
#include "test.h"
$ clang -cc1 test.c -o test -token-cache test.h.pth

In this example the contents of stdio.h (and the files it includes)
will be retrieved from test.h.pth, as the PTH file is being used in
this case as a raw cache of the contents of test.h. This is a
low-level interface used to both implement the high-level PTH interface
as well as to provide alternative means to use PTH-style caching.

PTH Design and Implementation

Unlike GCC’s precompiled headers, which cache the full ASTs and
preprocessor state of a header file, Clang’s pretokenized header files
mainly cache the raw lexer tokens that are needed to segment the
stream of characters in a source file into keywords, identifiers, and
operators. Consequently, PTH serves to mainly directly speed up the
lexing and preprocessing of a source file, while parsing and
type-checking must be completely redone every time a PTH file is used.

Basic Design Tradeoffs

In the long term there are plans to provide an alternate PCH
implementation for Clang that also caches the work for parsing and type
checking the contents of header files. The current implementation of PCH
in Clang as pretokenized header files was motivated by the following
factors:

	Language independence

	PTH files work with any language that
Clang’s lexer can handle, including C, Objective-C, and (in the early
stages) C++. This means development on language features at the
parsing level or above (which is basically almost all interesting
pieces) does not require PTH to be modified.

	Simple design

	Relatively speaking, PTH has a simple design and
implementation, making it easy to test. Further, because the
machinery for PTH resides at the lower-levels of the Clang library
stack it is fairly straightforward to profile and optimize.

Further, compared to GCC’s PCH implementation (which is the dominate
precompiled header file implementation that Clang can be directly
compared against) the PTH design in Clang yields several attractive
features:

	Architecture independence

	In contrast to GCC’s PCH files (and
those of several other compilers), Clang’s PTH files are architecture
independent, requiring only a single PTH file when building a
program for multiple architectures.

For example, on Mac OS X one may wish to compile a “universal binary”
that runs on PowerPC, 32-bit Intel (i386), and 64-bit Intel
architectures. In contrast, GCC requires a PCH file for each
architecture, as the definitions of types in the AST are
architecture-specific. Since a Clang PTH file essentially represents
a lexical cache of header files, a single PTH file can be safely used
when compiling for multiple architectures. This can also reduce
compile times because only a single PTH file needs to be generated
during a build instead of several.

	Reduced memory pressure

	Similar to GCC, Clang reads PTH files
via the use of memory mapping (i.e., mmap). Clang, however,
memory maps PTH files as read-only, meaning that multiple invocations
of clang -cc1 can share the same pages in memory from a
memory-mapped PTH file. In comparison, GCC also memory maps its PCH
files but also modifies those pages in memory, incurring the
copy-on-write costs. The read-only nature of PTH can greatly reduce
memory pressure for builds involving multiple cores, thus improving
overall scalability.

	Fast generation

	PTH files can be generated in a small fraction
of the time needed to generate GCC’s PCH files. Since PTH/PCH
generation is a serial operation that typically blocks progress
during a build, faster generation time leads to improved processor
utilization with parallel builds on multicore machines.

Despite these strengths, PTH’s simple design suffers some algorithmic
handicaps compared to other PCH strategies such as those used by GCC.
While PTH can greatly speed up the processing time of a header file, the
amount of work required to process a header file is still roughly linear
in the size of the header file. In contrast, the amount of work done by
GCC to process a precompiled header is (theoretically) constant (the
ASTs for the header are literally memory mapped into the compiler). This
means that only the pieces of the header file that are referenced by the
source file including the header are the only ones the compiler needs to
process during actual compilation. While GCC’s particular implementation
of PCH mitigates some of these algorithmic strengths via the use of
copy-on-write pages, the approach itself can fundamentally dominate at
an algorithmic level, especially when one considers header files of
arbitrary size.

There is also a PCH implementation for Clang based on the lazy
deserialization of ASTs. This approach theoretically has the same
constant-time algorithmic advantages just mentioned but also retains some
of the strengths of PTH such as reduced memory pressure (ideal for
multi-core builds).

Internal PTH Optimizations

While the main optimization employed by PTH is to reduce lexing time of
header files by caching pre-lexed tokens, PTH also employs several other
optimizations to speed up the processing of header files:

	stat caching: PTH files cache information obtained via calls to
stat that clang -cc1 uses to resolve which files are included
by #include directives. This greatly reduces the overhead
involved in context-switching to the kernel to resolve included
files.

	Fast skipping of #ifdef ... #endif chains: PTH files
record the basic structure of nested preprocessor blocks. When the
condition of the preprocessor block is false, all of its tokens are
immediately skipped instead of requiring them to be handled by
Clang’s preprocessor.

 Precompiled Header and Modules Internals

Precompiled Header and Modules Internals

	Using Precompiled Headers with clang

	Design Philosophy

	AST File Contents
	Metadata Block

	Source Manager Block

	Preprocessor Block

	Types Block

	Declarations Block

	Statements and Expressions

	Identifier Table Block

	Method Pool Block

	AST Reader Integration Points

	Chained precompiled headers

	Modules

This document describes the design and implementation of Clang’s precompiled
headers (PCH) and modules. If you are interested in the end-user view, please
see the User’s Manual.

Using Precompiled Headers with clang

The Clang compiler frontend, clang -cc1, supports two command line options
for generating and using PCH files.

To generate PCH files using clang -cc1, use the option -emit-pch:

$ clang -cc1 test.h -emit-pch -o test.h.pch

This option is transparently used by clang when generating PCH files. The
resulting PCH file contains the serialized form of the compiler’s internal
representation after it has completed parsing and semantic analysis. The PCH
file can then be used as a prefix header with the -include-pch
option:

$ clang -cc1 -include-pch test.h.pch test.c -o test.s

Design Philosophy

Precompiled headers are meant to improve overall compile times for projects, so
the design of precompiled headers is entirely driven by performance concerns.
The use case for precompiled headers is relatively simple: when there is a
common set of headers that is included in nearly every source file in the
project, we precompile that bundle of headers into a single precompiled
header (PCH file). Then, when compiling the source files in the project, we
load the PCH file first (as a prefix header), which acts as a stand-in for that
bundle of headers.

A precompiled header implementation improves performance when:

	Loading the PCH file is significantly faster than re-parsing the bundle of
headers stored within the PCH file. Thus, a precompiled header design
attempts to minimize the cost of reading the PCH file. Ideally, this cost
should not vary with the size of the precompiled header file.

	The cost of generating the PCH file initially is not so large that it
counters the per-source-file performance improvement due to eliminating the
need to parse the bundled headers in the first place. This is particularly
important on multi-core systems, because PCH file generation serializes the
build when all compilations require the PCH file to be up-to-date.

Modules, as implemented in Clang, use the same mechanisms as precompiled
headers to save a serialized AST file (one per module) and use those AST
modules. From an implementation standpoint, modules are a generalization of
precompiled headers, lifting a number of restrictions placed on precompiled
headers. In particular, there can only be one precompiled header and it must
be included at the beginning of the translation unit. The extensions to the
AST file format required for modules are discussed in the section on
modules.

Clang’s AST files are designed with a compact on-disk representation, which
minimizes both creation time and the time required to initially load the AST
file. The AST file itself contains a serialized representation of Clang’s
abstract syntax trees and supporting data structures, stored using the same
compressed bitstream as LLVM’s bitcode file format [http://llvm.org/docs/BitCodeFormat.html].

Clang’s AST files are loaded “lazily” from disk. When an AST file is initially
loaded, Clang reads only a small amount of data from the AST file to establish
where certain important data structures are stored. The amount of data read in
this initial load is independent of the size of the AST file, such that a
larger AST file does not lead to longer AST load times. The actual header data
in the AST file — macros, functions, variables, types, etc. — is loaded
only when it is referenced from the user’s code, at which point only that
entity (and those entities it depends on) are deserialized from the AST file.
With this approach, the cost of using an AST file for a translation unit is
proportional to the amount of code actually used from the AST file, rather than
being proportional to the size of the AST file itself.

When given the -print-stats option, Clang produces statistics
describing how much of the AST file was actually loaded from disk. For a
simple “Hello, World!” program that includes the Apple Cocoa.h header
(which is built as a precompiled header), this option illustrates how little of
the actual precompiled header is required:

*** AST File Statistics:
 895/39981 source location entries read (2.238563%)
 19/15315 types read (0.124061%)
 20/82685 declarations read (0.024188%)
 154/58070 identifiers read (0.265197%)
 0/7260 selectors read (0.000000%)
 0/30842 statements read (0.000000%)
 4/8400 macros read (0.047619%)
 1/4995 lexical declcontexts read (0.020020%)
 0/4413 visible declcontexts read (0.000000%)
 0/7230 method pool entries read (0.000000%)
 0 method pool misses

For this small program, only a tiny fraction of the source locations, types,
declarations, identifiers, and macros were actually deserialized from the
precompiled header. These statistics can be useful to determine whether the
AST file implementation can be improved by making more of the implementation
lazy.

Precompiled headers can be chained. When you create a PCH while including an
existing PCH, Clang can create the new PCH by referencing the original file and
only writing the new data to the new file. For example, you could create a PCH
out of all the headers that are very commonly used throughout your project, and
then create a PCH for every single source file in the project that includes the
code that is specific to that file, so that recompiling the file itself is very
fast, without duplicating the data from the common headers for every file. The
mechanisms behind chained precompiled headers are discussed in a later
section.

AST File Contents

An AST file produced by clang is an object file container with a clangast
(COFF) or __clangast (ELF and Mach-O) section containing the serialized AST.
Other target-specific sections in the object file container are used to hold
debug information for the data types defined in the AST. Tools built on top of
libclang that do not need debug information may also produce raw AST files that
only contain the serialized AST.

The clangast section is organized into several different blocks, each of
which contains the serialized representation of a part of Clang’s internal
representation. Each of the blocks corresponds to either a block or a record
within LLVM’s bitstream format [http://llvm.org/docs/BitCodeFormat.html].
The contents of each of these logical blocks are described below.

[image: _images/PCHLayout.png]
The llvm-objdump utility provides a -raw-clang-ast option to extract the
binary contents of the AST section from an object file container.

The llvm-bcanalyzer [http://llvm.org/docs/CommandGuide/llvm-bcanalyzer.html]
utility can be used to examine the actual structure of the bitstream for the AST
section. This information can be used both to help understand the structure of
the AST section and to isolate areas where the AST representation can still be
optimized, e.g., through the introduction of abbreviations.

Metadata Block

The metadata block contains several records that provide information about how
the AST file was built. This metadata is primarily used to validate the use of
an AST file. For example, a precompiled header built for a 32-bit x86 target
cannot be used when compiling for a 64-bit x86 target. The metadata block
contains information about:

	Language options

	Describes the particular language dialect used to compile the AST file,
including major options (e.g., Objective-C support) and more minor options
(e.g., support for “//” comments). The contents of this record correspond to
the LangOptions class.

	Target architecture

	The target triple that describes the architecture, platform, and ABI for
which the AST file was generated, e.g., i386-apple-darwin9.

	AST version

	The major and minor version numbers of the AST file format. Changes in the
minor version number should not affect backward compatibility, while changes
in the major version number imply that a newer compiler cannot read an older
precompiled header (and vice-versa).

	Original file name

	The full path of the header that was used to generate the AST file.

	Predefines buffer

	Although not explicitly stored as part of the metadata, the predefines buffer
is used in the validation of the AST file. The predefines buffer itself
contains code generated by the compiler to initialize the preprocessor state
according to the current target, platform, and command-line options. For
example, the predefines buffer will contain “#define __STDC__ 1” when we
are compiling C without Microsoft extensions. The predefines buffer itself
is stored within the Source Manager Block, but its contents are
verified along with the rest of the metadata.

A chained PCH file (that is, one that references another PCH) and a module
(which may import other modules) have additional metadata containing the list
of all AST files that this AST file depends on. Each of those files will be
loaded along with this AST file.

For chained precompiled headers, the language options, target architecture and
predefines buffer data is taken from the end of the chain, since they have to
match anyway.

Source Manager Block

The source manager block contains the serialized representation of Clang’s
SourceManager class, which handles the mapping from
source locations (as represented in Clang’s abstract syntax tree) into actual
column/line positions within a source file or macro instantiation. The AST
file’s representation of the source manager also includes information about all
of the headers that were (transitively) included when building the AST file.

The bulk of the source manager block is dedicated to information about the
various files, buffers, and macro instantiations into which a source location
can refer. Each of these is referenced by a numeric “file ID”, which is a
unique number (allocated starting at 1) stored in the source location. Clang
serializes the information for each kind of file ID, along with an index that
maps file IDs to the position within the AST file where the information about
that file ID is stored. The data associated with a file ID is loaded only when
required by the front end, e.g., to emit a diagnostic that includes a macro
instantiation history inside the header itself.

The source manager block also contains information about all of the headers
that were included when building the AST file. This includes information about
the controlling macro for the header (e.g., when the preprocessor identified
that the contents of the header dependent on a macro like
LLVM_CLANG_SOURCEMANAGER_H).

Preprocessor Block

The preprocessor block contains the serialized representation of the
preprocessor. Specifically, it contains all of the macros that have been
defined by the end of the header used to build the AST file, along with the
token sequences that comprise each macro. The macro definitions are only read
from the AST file when the name of the macro first occurs in the program. This
lazy loading of macro definitions is triggered by lookups into the
identifier table.

Types Block

The types block contains the serialized representation of all of the types
referenced in the translation unit. Each Clang type node (PointerType,
FunctionProtoType, etc.) has a corresponding record type in the AST file.
When types are deserialized from the AST file, the data within the record is
used to reconstruct the appropriate type node using the AST context.

Each type has a unique type ID, which is an integer that uniquely identifies
that type. Type ID 0 represents the NULL type, type IDs less than
NUM_PREDEF_TYPE_IDS represent predefined types (void, float, etc.),
while other “user-defined” type IDs are assigned consecutively from
NUM_PREDEF_TYPE_IDS upward as the types are encountered. The AST file has
an associated mapping from the user-defined types block to the location within
the types block where the serialized representation of that type resides,
enabling lazy deserialization of types. When a type is referenced from within
the AST file, that reference is encoded using the type ID shifted left by 3
bits. The lower three bits are used to represent the const, volatile,
and restrict qualifiers, as in Clang’s QualType class.

Declarations Block

The declarations block contains the serialized representation of all of the
declarations referenced in the translation unit. Each Clang declaration node
(VarDecl, FunctionDecl, etc.) has a corresponding record type in the
AST file. When declarations are deserialized from the AST file, the data
within the record is used to build and populate a new instance of the
corresponding Decl node. As with types, each declaration node has a
numeric ID that is used to refer to that declaration within the AST file. In
addition, a lookup table provides a mapping from that numeric ID to the offset
within the precompiled header where that declaration is described.

Declarations in Clang’s abstract syntax trees are stored hierarchically. At
the top of the hierarchy is the translation unit (TranslationUnitDecl),
which contains all of the declarations in the translation unit but is not
actually written as a specific declaration node. Its child declarations (such
as functions or struct types) may also contain other declarations inside them,
and so on. Within Clang, each declaration is stored within a declaration
context, as represented by the DeclContext class.
Declaration contexts provide the mechanism to perform name lookup within a
given declaration (e.g., find the member named x in a structure) and
iterate over the declarations stored within a context (e.g., iterate over all
of the fields of a structure for structure layout).

In Clang’s AST file format, deserializing a declaration that is a
DeclContext is a separate operation from deserializing all of the
declarations stored within that declaration context. Therefore, Clang will
deserialize the translation unit declaration without deserializing the
declarations within that translation unit. When required, the declarations
stored within a declaration context will be deserialized. There are two
representations of the declarations within a declaration context, which
correspond to the name-lookup and iteration behavior described above:

	When the front end performs name lookup to find a name x within a given
declaration context (for example, during semantic analysis of the expression
p->x, where p‘s type is defined in the precompiled header), Clang
refers to an on-disk hash table that maps from the names within that
declaration context to the declaration IDs that represent each visible
declaration with that name. The actual declarations will then be
deserialized to provide the results of name lookup.

	When the front end performs iteration over all of the declarations within a
declaration context, all of those declarations are immediately
de-serialized. For large declaration contexts (e.g., the translation unit),
this operation is expensive; however, large declaration contexts are not
traversed in normal compilation, since such a traversal is unnecessary.
However, it is common for the code generator and semantic analysis to
traverse declaration contexts for structs, classes, unions, and
enumerations, although those contexts contain relatively few declarations in
the common case.

Statements and Expressions

Statements and expressions are stored in the AST file in both the types and the declarations blocks,
because every statement or expression will be associated with either a type or
declaration. The actual statement and expression records are stored
immediately following the declaration or type that owns the statement or
expression. For example, the statement representing the body of a function
will be stored directly following the declaration of the function.

As with types and declarations, each statement and expression kind in Clang’s
abstract syntax tree (ForStmt, CallExpr, etc.) has a corresponding
record type in the AST file, which contains the serialized representation of
that statement or expression. Each substatement or subexpression within an
expression is stored as a separate record (which keeps most records to a fixed
size). Within the AST file, the subexpressions of an expression are stored, in
reverse order, prior to the expression that owns those expression, using a form
of Reverse Polish Notation [http://en.wikipedia.org/wiki/Reverse_Polish_notation]. For example, an
expression 3 - 4 + 5 would be represented as follows:

	IntegerLiteral(5)

	IntegerLiteral(4)

	IntegerLiteral(3)

	IntegerLiteral(-)

	IntegerLiteral(+)

	STOP

When reading this representation, Clang evaluates each expression record it
encounters, builds the appropriate abstract syntax tree node, and then pushes
that expression on to a stack. When a record contains N subexpressions —
BinaryOperator has two of them — those expressions are popped from the
top of the stack. The special STOP code indicates that we have reached the end
of a serialized expression or statement; other expression or statement records
may follow, but they are part of a different expression.

Identifier Table Block

The identifier table block contains an on-disk hash table that maps each
identifier mentioned within the AST file to the serialized representation of
the identifier’s information (e.g, the IdentifierInfo structure). The
serialized representation contains:

	The actual identifier string.

	Flags that describe whether this identifier is the name of a built-in, a
poisoned identifier, an extension token, or a macro.

	If the identifier names a macro, the offset of the macro definition within
the Preprocessor Block.

	If the identifier names one or more declarations visible from translation
unit scope, the declaration IDs of these
declarations.

When an AST file is loaded, the AST file reader mechanism introduces itself
into the identifier table as an external lookup source. Thus, when the user
program refers to an identifier that has not yet been seen, Clang will perform
a lookup into the identifier table. If an identifier is found, its contents
(macro definitions, flags, top-level declarations, etc.) will be deserialized,
at which point the corresponding IdentifierInfo structure will have the
same contents it would have after parsing the headers in the AST file.

Within the AST file, the identifiers used to name declarations are represented
with an integral value. A separate table provides a mapping from this integral
value (the identifier ID) to the location within the on-disk hash table where
that identifier is stored. This mapping is used when deserializing the name of
a declaration, the identifier of a token, or any other construct in the AST
file that refers to a name.

Method Pool Block

The method pool block is represented as an on-disk hash table that serves two
purposes: it provides a mapping from the names of Objective-C selectors to the
set of Objective-C instance and class methods that have that particular
selector (which is required for semantic analysis in Objective-C) and also
stores all of the selectors used by entities within the AST file. The design
of the method pool is similar to that of the identifier table: the first time a particular selector is formed
during the compilation of the program, Clang will search in the on-disk hash
table of selectors; if found, Clang will read the Objective-C methods
associated with that selector into the appropriate front-end data structure
(Sema::InstanceMethodPool and Sema::FactoryMethodPool for instance and
class methods, respectively).

As with identifiers, selectors are represented by numeric values within the AST
file. A separate index maps these numeric selector values to the offset of the
selector within the on-disk hash table, and will be used when de-serializing an
Objective-C method declaration (or other Objective-C construct) that refers to
the selector.

AST Reader Integration Points

The “lazy” deserialization behavior of AST files requires their integration
into several completely different submodules of Clang. For example, lazily
deserializing the declarations during name lookup requires that the name-lookup
routines be able to query the AST file to find entities stored there.

For each Clang data structure that requires direct interaction with the AST
reader logic, there is an abstract class that provides the interface between
the two modules. The ASTReader class, which handles the loading of an AST
file, inherits from all of these abstract classes to provide lazy
deserialization of Clang’s data structures. ASTReader implements the
following abstract classes:

	ExternalSLocEntrySource

	This abstract interface is associated with the SourceManager class, and
is used whenever the source manager needs to
load the details of a file, buffer, or macro instantiation.

	IdentifierInfoLookup

	This abstract interface is associated with the IdentifierTable class, and
is used whenever the program source refers to an identifier that has not yet
been seen. In this case, the AST reader searches for this identifier within
its identifier table to load any top-level
declarations or macros associated with that identifier.

	ExternalASTSource

	This abstract interface is associated with the ASTContext class, and is
used whenever the abstract syntax tree nodes need to loaded from the AST
file. It provides the ability to de-serialize declarations and types
identified by their numeric values, read the bodies of functions when
required, and read the declarations stored within a declaration context
(either for iteration or for name lookup).

	ExternalSemaSource

	This abstract interface is associated with the Sema class, and is used
whenever semantic analysis needs to read information from the global
method pool.

Chained precompiled headers

Chained precompiled headers were initially intended to improve the performance
of IDE-centric operations such as syntax highlighting and code completion while
a particular source file is being edited by the user. To minimize the amount
of reparsing required after a change to the file, a form of precompiled header
— called a precompiled preamble — is automatically generated by parsing
all of the headers in the source file, up to and including the last
#include. When only the source file changes (and none of the headers it
depends on), reparsing of that source file can use the precompiled preamble and
start parsing after the #includes, so parsing time is proportional to the
size of the source file (rather than all of its includes). However, the
compilation of that translation unit may already use a precompiled header: in
this case, Clang will create the precompiled preamble as a chained precompiled
header that refers to the original precompiled header. This drastically
reduces the time needed to serialize the precompiled preamble for use in
reparsing.

Chained precompiled headers get their name because each precompiled header can
depend on one other precompiled header, forming a chain of dependencies. A
translation unit will then include the precompiled header that starts the chain
(i.e., nothing depends on it). This linearity of dependencies is important for
the semantic model of chained precompiled headers, because the most-recent
precompiled header can provide information that overrides the information
provided by the precompiled headers it depends on, just like a header file
B.h that includes another header A.h can modify the state produced by
parsing A.h, e.g., by #undef‘ing a macro defined in A.h.

There are several ways in which chained precompiled headers generalize the AST
file model:

	Numbering of IDs

	Many different kinds of entities — identifiers, declarations, types, etc.
— have ID numbers that start at 1 or some other predefined constant and
grow upward. Each precompiled header records the maximum ID number it has
assigned in each category. Then, when a new precompiled header is generated
that depends on (chains to) another precompiled header, it will start
counting at the next available ID number. This way, one can determine, given
an ID number, which AST file actually contains the entity.

	Name lookup

	When writing a chained precompiled header, Clang attempts to write only
information that has changed from the precompiled header on which it is
based. This changes the lookup algorithm for the various tables, such as the
identifier table: the search starts at the
most-recent precompiled header. If no entry is found, lookup then proceeds
to the identifier table in the precompiled header it depends on, and so one.
Once a lookup succeeds, that result is considered definitive, overriding any
results from earlier precompiled headers.

	Update records

	There are various ways in which a later precompiled header can modify the
entities described in an earlier precompiled header. For example, later
precompiled headers can add entries into the various name-lookup tables for
the translation unit or namespaces, or add new categories to an Objective-C
class. Each of these updates is captured in an “update record” that is
stored in the chained precompiled header file and will be loaded along with
the original entity.

Modules

Modules generalize the chained precompiled header model yet further, from a
linear chain of precompiled headers to an arbitrary directed acyclic graph
(DAG) of AST files. All of the same techniques used to make chained
precompiled headers work — ID number, name lookup, update records — are
shared with modules. However, the DAG nature of modules introduce a number of
additional complications to the model:

	Numbering of IDs

	The simple, linear numbering scheme used in chained precompiled headers falls
apart with the module DAG, because different modules may end up with
different numbering schemes for entities they imported from common shared
modules. To account for this, each module file provides information about
which modules it depends on and which ID numbers it assigned to the entities
in those modules, as well as which ID numbers it took for its own new
entities. The AST reader then maps these “local” ID numbers into a “global”
ID number space for the current translation unit, providing a 1-1 mapping
between entities (in whatever AST file they inhabit) and global ID numbers.
If that translation unit is then serialized into an AST file, this mapping
will be stored for use when the AST file is imported.

	Declaration merging

	It is possible for a given entity (from the language’s perspective) to be
declared multiple times in different places. For example, two different
headers can have the declaration of printf or could forward-declare
struct stat. If each of those headers is included in a module, and some
third party imports both of those modules, there is a potentially serious
problem: name lookup for printf or struct stat will find both
declarations, but the AST nodes are unrelated. This would result in a
compilation error, due to an ambiguity in name lookup. Therefore, the AST
reader performs declaration merging according to the appropriate language
semantics, ensuring that the two disjoint declarations are merged into a
single redeclaration chain (with a common canonical declaration), so that it
is as if one of the headers had been included before the other.

	Name Visibility

	Modules allow certain names that occur during module creation to be “hidden”,
so that they are not part of the public interface of the module and are not
visible to its clients. The AST reader maintains a “visible” bit on various
AST nodes (declarations, macros, etc.) to indicate whether that particular
AST node is currently visible; the various name lookup mechanisms in Clang
inspect the visible bit to determine whether that entity, which is still in
the AST (because other, visible AST nodes may depend on it), can actually be
found by name lookup. When a new (sub)module is imported, it may make
existing, non-visible, already-deserialized AST nodes visible; it is the
responsibility of the AST reader to find and update these AST nodes when it
is notified of the import.

 Index

Index

 Symbols
 | C
 | E
 | N

Symbols

 	
 	
 -###

 	command line option

 	
 --help

 	command line option

 	
 -ansi

 	command line option

 	
 -arch <architecture>

 	command line option

 	
 -c

 	command line option

 	
 -D<macroname>=<value>

 	command line option

 	
 -E

 	command line option

 	
 -F<directory>

 	command line option

 	
 -fblocks

 	command line option

 	
 -fborland-extensions

 	command line option

 	
 -fbracket-depth=N

 	command line option

 	
 -fcomment-block-commands=[commands]

 	command line option

 	
 -fcommon

 	command line option

 	
 -fconstexpr-depth=N

 	command line option

 	
 -fdiagnostics-format=clang/msvc/vi

 	command line option

 	
 -fdiagnostics-parseable-fixits

 	command line option

 	
 -fdiagnostics-show-category=none/id/name

 	command line option

 	
 -fdiagnostics-show-template-tree

 	command line option

 	
 -ferror-limit=123

 	command line option

 	
 -fexceptions

 	command line option

 	
 -ffreestanding

 	command line option

 	
 -flax-vector-conversions

 	command line option

 	
 -flto, -emit-llvm

 	command line option

 	
 -fmath-errno

 	command line option

 	
 -fms-extensions

 	command line option

 	
 -fmsc-version=

 	command line option

 	
 -fno-assume-sane-operator-new

 	command line option

 	
 -fno-builtin

 	command line option

 	
 -fno-crash-diagnostics

 	command line option

 	
 -fno-elide-type

 	command line option

 	
 -fno-standalone-debug

 	command line option

 	
 -fobjc-abi-version=version

 	command line option

 	
 -fobjc-gc

 	command line option

 	
 -fobjc-gc-only

 	command line option

 	
 -fobjc-nonfragile-abi

 	command line option

 	
 -fobjc-nonfragile-abi-version=<version>

 	command line option

 	
 -foperator-arrow-depth=N

 	command line option

 	
 -fparse-all-comments

 	command line option

 	
 -fpascal-strings

 	command line option

 	
 -fprofile-generate[=<dirname>]

 	command line option

 	
 -fprofile-use[=<pathname>]

 	command line option

 	
 -fsanitize-undefined-trap-on-error

 	command line option

 	
 -fshow-column, -fshow-source-location, -fcaret-diagnostics, -fdiagnostics-fixit-info, -fdiagnostics-parseable-fixits, -fdiagnostics-print-source-range-info, -fprint-source-range-info, -fdiagnostics-show-option, -fmessage-length

 	command line option

 	
 -fstandalone-debug

 	command line option

 	
 -fstandalone-debug -fno-standalone-debug

 	command line option

 	
 -fsyntax-only

 	command line option

 	
 -ftemplate-backtrace-limit=123

 	command line option

 	
 -ftemplate-depth=N

 	command line option

 	
 -ftime-report

 	command line option

 	
 -ftls-model=<model>

 	command line option

 	
 -ftls-model=[model]

 	command line option

 	
 -ftrap-function=[name]

 	command line option

 	
 -ftrapv

 	command line option

 	
 -fvisibility

 	command line option

 	
 -fwritable-strings

 	command line option

 	
 	
 -g

 	command line option, [1]

 	
 -g0

 	command line option

 	
 -gline-tables-only

 	command line option

 	
 -I<directory>

 	command line option

 	
 -include <filename>

 	command line option

 	
 -integrated-as, -no-integrated-as

 	command line option

 	
 -m[no-]crc

 	command line option

 	
 -march=<cpu>

 	command line option

 	
 -mgeneral-regs-only

 	command line option

 	
 -mhwdiv=[values]

 	command line option

 	
 -miphoneos-version-min

 	command line option

 	
 -mmacosx-version-min=<version>

 	command line option

 	
 -MV

 	command line option

 	
 -nobuiltininc

 	command line option

 	
 -nostdinc

 	command line option

 	
 -nostdlibinc

 	command line option

 	
 -o <file>

 	command line option

 	
 -O0, -O1, -O2, -O3, -Ofast, -Os, -Oz, -O, -O4

 	command line option

 	
 -ObjC, -ObjC++

 	command line option

 	
 -pedantic

 	command line option

 	
 -pedantic-errors

 	command line option

 	
 -print-file-name=<file>

 	command line option

 	
 -print-libgcc-file-name

 	command line option

 	
 -print-prog-name=<name>

 	command line option

 	
 -print-search-dirs

 	command line option

 	
 -Qunused-arguments

 	command line option

 	
 -S

 	command line option

 	
 -save-temps

 	command line option

 	
 -std=<language>

 	command line option

 	
 -stdlib=<library>

 	command line option

 	
 -time

 	command line option

 	
 -trigraphs

 	command line option

 	
 -U<macroname>

 	command line option

 	
 -v

 	command line option

 	
 -w

 	command line option

 	
 -Wa,<args>

 	command line option

 	
 -Wambiguous-member-template

 	command line option

 	
 -Wbind-to-temporary-copy

 	command line option

 	
 -Wdocumentation

 	command line option

 	
 -Werror

 	command line option

 	
 -Weverything

 	command line option

 	
 -Wextra-tokens

 	command line option

 	
 -Wfoo

 	command line option

 	
 -Wl,<args>

 	command line option

 	
 -Wno-documentation-unknown-command

 	command line option

 	
 -Wno-error=foo

 	command line option

 	
 -Wno-foo

 	command line option

 	
 -Wp,<args>

 	command line option

 	
 -Wsystem-headers

 	command line option

 	
 -x <language>

 	command line option

 	
 -Xanalyzer <arg>

 	command line option

 	
 -Xassembler <arg>

 	command line option

 	
 -Xlinker <arg>

 	command line option

 	
 -Xpreprocessor <arg>

 	command line option

C

 	
 	
 command line option

 	-###

 	--help

 	-D<macroname>=<value>

 	-E

 	-F<directory>

 	-I<directory>

 	-MV

 	-O0, -O1, -O2, -O3, -Ofast, -Os, -Oz, -O, -O4

 	-ObjC, -ObjC++

 	-Qunused-arguments

 	-S

 	-U<macroname>

 	-Wa,<args>

 	-Wambiguous-member-template

 	-Wbind-to-temporary-copy

 	-Wdocumentation

 	-Werror

 	-Weverything

 	-Wextra-tokens

 	-Wfoo

 	-Wl,<args>

 	-Wno-documentation-unknown-command

 	-Wno-error=foo

 	-Wno-foo

 	-Wp,<args>

 	-Wsystem-headers

 	-Xanalyzer <arg>

 	-Xassembler <arg>

 	-Xlinker <arg>

 	-Xpreprocessor <arg>

 	-ansi

 	-arch <architecture>

 	-c

 	-fblocks

 	-fborland-extensions

 	-fbracket-depth=N

 	-fcomment-block-commands=[commands]

 	-fcommon

 	-fconstexpr-depth=N

 	-fdiagnostics-format=clang/msvc/vi

 	-fdiagnostics-parseable-fixits

 	-fdiagnostics-show-category=none/id/name

 	-fdiagnostics-show-template-tree

 	-ferror-limit=123

 	-fexceptions

 	-ffreestanding

 	-flax-vector-conversions

 	-flto, -emit-llvm

 	-fmath-errno

 	-fms-extensions

 	-fmsc-version=

 	-fno-assume-sane-operator-new

 	-fno-builtin

 	-fno-crash-diagnostics

 	-fno-elide-type

 	-fno-standalone-debug

 	-fobjc-abi-version=version

 	-fobjc-gc

 	-fobjc-gc-only

 	-fobjc-nonfragile-abi

 	-fobjc-nonfragile-abi-version=<version>

 	-foperator-arrow-depth=N

 	-fparse-all-comments

 	-fpascal-strings

 	-fprofile-generate[=<dirname>]

 	-fprofile-use[=<pathname>]

 	-fsanitize-undefined-trap-on-error

 	-fshow-column, -fshow-source-location, -fcaret-diagnostics, -fdiagnostics-fixit-info, -fdiagnostics-parseable-fixits, -fdiagnostics-print-source-range-info, -fprint-source-range-info, -fdiagnostics-show-option, -fmessage-length

 	-fstandalone-debug

 	-fstandalone-debug -fno-standalone-debug

 	-fsyntax-only

 	-ftemplate-backtrace-limit=123

 	-ftemplate-depth=N

 	-ftime-report

 	-ftls-model=<model>

 	-ftls-model=[model]

 	-ftrap-function=[name]

 	-ftrapv

 	-fvisibility

 	-fwritable-strings

 	-g, [1]

 	-g0

 	-gline-tables-only

 	-include <filename>

 	-integrated-as, -no-integrated-as

 	-m[no-]crc

 	-march=<cpu>

 	-mgeneral-regs-only

 	-mhwdiv=[values]

 	-miphoneos-version-min

 	-mmacosx-version-min=<version>

 	-nobuiltininc

 	-nostdinc

 	-nostdlibinc

 	-o <file>

 	-pedantic

 	-pedantic-errors

 	-print-file-name=<file>

 	-print-libgcc-file-name

 	-print-prog-name=<name>

 	-print-search-dirs

 	-save-temps

 	-std=<language>

 	-stdlib=<library>

 	-time

 	-trigraphs

 	-v

 	-w

 	-x <language>

 	no stage selection option

 	
 	CPATH

E

 	
 	
 environment variable

 	CPATH, [1]

 	C_INCLUDE_PATH,OBJC_INCLUDE_PATH,CPLUS_INCLUDE_PATH,OBJCPLUS_INCLUDE_PATH

 	MACOSX_DEPLOYMENT_TARGET

 	TMPDIR,TEMP,TMP

N

 	
 	
 no stage selection option

 	command line option

_static/file.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/comment-bright.png

_static/down.png

_static/up.png

_static/comment-close.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		Using Clang as a Compiler

 		Clang 3.7 Release Notes

 		Introduction

 		What's New in Clang 3.7?

 		Major New Features

 		Improvements to Clang's diagnostics

 		New Compiler Flags

 		Objective-C Language Changes in Clang

 		Profile Guided Optimization

 		OpenMP Support

 		Internal API Changes

 		Static Analyzer

 		clang-tidy

 		SystemZ

 		Last release which will run on Windows XP and Windows Vista

 		Additional Information

 		Clang Compiler User's Manual

 		Introduction

 		Terminology

 		Basic Usage

 		Command Line Options

 		Options to Control Error and Warning Messages

 		Options to Control Clang Crash Diagnostics

 		Options to Emit Optimization Reports

 		Other Options

 		Language and Target-Independent Features

 		Controlling Errors and Warnings

 		Precompiled Headers

 		Controlling Code Generation

 		Profile Guided Optimization

 		Controlling Size of Debug Information

 		Comment Parsing Options

 		C Language Features

 		Extensions supported by clang

 		Differences between various standard modes

 		GCC extensions not implemented yet

 		Intentionally unsupported GCC extensions

 		Microsoft extensions

 		C++ Language Features

 		Controlling implementation limits

 		Objective-C Language Features

 		Objective-C++ Language Features

 		Target-Specific Features and Limitations

 		CPU Architectures Features and Limitations

 		Operating System Features and Limitations

 		clang-cl

 		Command-Line Options

 		Clang Language Extensions

 		Introduction

 		Feature Checking Macros

 		__has_builtin

 		__has_feature and __has_extension

 		__has_cpp_attribute

 		__has_attribute

 		__has_declspec_attribute

 		__is_identifier

 		Include File Checking Macros

 		__has_include

 		__has_include_next

 		__has_warning

 		Builtin Macros

 		Vectors and Extended Vectors

 		Vector Literals

 		Vector Operations

 		Messages on deprecated and unavailable Attributes

 		Attributes on Enumerators

 		'User-Specified' System Frameworks

 		Checks for Standard Language Features

 		C++98

 		C++11

 		C++1y

 		C11

 		Modules

 		Checks for Type Trait Primitives

 		Blocks

 		Objective-C Features

 		Related result types

 		Automatic reference counting

 		Enumerations with a fixed underlying type

 		Interoperability with C++11 lambdas

 		Object Literals and Subscripting

 		Objective-C Autosynthesis of Properties

 		Objective-C retaining behavior attributes

 		Objective-C++ ABI: protocol-qualifier mangling of parameters

 		Initializer lists for complex numbers in C

 		Builtin Functions

 		__builtin_assume

 		__builtin_readcyclecounter

 		__builtin_shufflevector

 		__builtin_convertvector

 		__builtin_unreachable

 		__sync_swap

 		__builtin_addressof

 		__builtin_operator_new and __builtin_operator_delete

 		Multiprecision Arithmetic Builtins

 		Checked Arithmetic Builtins

 		__c11_atomic builtins

 		Low-level ARM exclusive memory builtins

 		Non-standard C++11 Attributes

 		Target-Specific Extensions

 		ARM/AArch64 Language Extensions

 		X86/X86-64 Language Extensions

 		Extensions for Static Analysis

 		Extensions for Dynamic Analysis

 		Extensions for selectively disabling optimization

 		Extensions for loop hint optimizations

 		Vectorization and Interleaving

 		Loop Unrolling

 		Additional Information

 		Attributes in Clang

 		Introduction

 		AMD GPU Register Attributes

 		amdgpu_num_sgpr

 		amdgpu_num_vgpr

 		Function Attributes

 		interrupt

 		acquire_capability (acquire_shared_capability, clang::acquire_capability, clang::acquire_shared_capability)

 		assert_capability (assert_shared_capability, clang::assert_capability, clang::assert_shared_capability)

 		assume_aligned (gnu::assume_aligned)

 		availability

 		_Noreturn

 		noreturn

 		carries_dependency

 		enable_if

 		flatten (gnu::flatten)

 		format (gnu::format)

 		noduplicate (clang::noduplicate)

 		no_sanitize (clang::no_sanitize)

 		no_sanitize_address (no_address_safety_analysis, gnu::no_address_safety_analysis, gnu::no_sanitize_address)

 		no_sanitize_thread

 		no_sanitize_memory

 		no_split_stack (gnu::no_split_stack)

 		objc_boxable

 		objc_method_family

 		objc_requires_super

 		objc_runtime_name

 		optnone (clang::optnone)

 		overloadable

 		release_capability (release_shared_capability, clang::release_capability, clang::release_shared_capability)

 		target (gnu::target)

 		try_acquire_capability (try_acquire_shared_capability, clang::try_acquire_capability, clang::try_acquire_shared_capability)

 		Variable Attributes

 		init_seg

 		section (gnu::section, __declspec(allocate))

 		tls_model (gnu::tls_model)

 		thread

 		Type Attributes

 		align_value

 		flag_enum

 		__single_inhertiance, __multiple_inheritance, __virtual_inheritance

 		novtable

 		Statement Attributes

 		fallthrough (clang::fallthrough)

 		#pragma clang loop

 		#pragma unroll, #pragma nounroll

 		Calling Conventions

 		fastcall (gnu::fastcall, __fastcall, _fastcall)

 		ms_abi (gnu::ms_abi)

 		pcs (gnu::pcs)

 		regparm (gnu::regparm)

 		stdcall (gnu::stdcall, __stdcall, _stdcall)

 		thiscall (gnu::thiscall, __thiscall, _thiscall)

 		vectorcall (__vectorcall, _vectorcall)

 		Consumed Annotation Checking

 		callable_when

 		consumable

 		param_typestate

 		return_typestate

 		set_typestate

 		test_typestate

 		Type Safety Checking

 		argument_with_type_tag

 		pointer_with_type_tag

 		type_tag_for_datatype

 		OpenCL Address Spaces

 		__constant(constant)

 		__generic(generic)

 		__global(global)

 		__local(local)

 		__private(private)

 		Nullability Attributes

 		nonnull

 		returns_nonnull

 		_Nonnull

 		_Null_unspecified

 		_Nullable

 		Cross-compilation using Clang

 		Introduction

 		Cross compilation issues

 		General Cross-Compilation Options in Clang

 		Target Triple

 		CPU, FPU, ABI

 		Toolchain Options

 		Target-Specific Libraries

 		Multilibs

 		Thread Safety Analysis

 		Introduction

 		Getting Started

 		Running The Analysis

 		Basic Concepts: Capabilities

 		Reference Guide

 		GUARDED_BY(c) and PT_GUARDED_BY(c)

 		REQUIRES(...), REQUIRES_SHARED(...)

 		ACQUIRE(...), ACQUIRE_SHARED(...), RELEASE(...), RELEASE_SHARED(...)

 		EXCLUDES(...)

 		NO_THREAD_SAFETY_ANALYSIS

 		RETURN_CAPABILITY(c)

 		ACQUIRED_BEFORE(...), ACQUIRED_AFTER(...)

 		CAPABILITY(<string>)

 		SCOPED_CAPABILITY

 		TRY_ACQUIRE(<bool>, ...), TRY_ACQUIRE_SHARED(<bool>, ...)

 		ASSERT_CAPABILITY(...) and ASSERT_SHARED_CAPABILITY(...)

 		GUARDED_VAR and PT_GUARDED_VAR

 		Warning flags

 		Negative Capabilities

 		Frequently Asked Questions

 		Known Limitations

 		Lexical scope

 		Private Mutexes

 		No conditionally held locks.

 		No checking inside constructors and destructors.

 		No inlining.

 		No alias analysis.

 		ACQUIRED_BEFORE(...) and ACQUIRED_AFTER(...) are currently unimplemented.

 		mutex.h

 		AddressSanitizer

 		Introduction

 		How to build

 		Usage

 		Symbolizing the Reports

 		Additional Checks

 		Initialization order checking

 		Memory leak detection

 		Issue Suppression

 		Suppressing Reports in External Libraries

 		Conditional Compilation with __has_feature(address_sanitizer)

 		Disabling Instrumentation with __attribute__((no_sanitize(“address”)))

 		Suppressing Errors in Recompiled Code (Blacklist)

 		Limitations

 		Supported Platforms

 		Current Status

 		More Information

 		ThreadSanitizer

 		Introduction

 		How to build

 		Supported Platforms

 		Usage

 		__has_feature(thread_sanitizer)

 		__attribute__((no_sanitize_thread))

 		Blacklist

 		Limitations

 		Current Status

 		More Information

 		MemorySanitizer

 		Introduction

 		How to build

 		Usage

 		__has_feature(memory_sanitizer)

 		__attribute__((no_sanitize_memory))

 		Blacklist

 		Report symbolization

 		Origin Tracking

 		Handling external code

 		Supported Platforms

 		Limitations

 		Current Status

 		More Information

 		DataFlowSanitizer

 		Introduction

 		Usage

 		ABI List

 		Example

 		Current status

 		Design

 		LeakSanitizer

 		Introduction

 		Current status

 		More Information

 		SanitizerCoverage

 		Introduction

 		How to build and run

 		Postprocessing

 		How good is the coverage?

 		Edge coverage

 		Bitset

 		Caller-callee coverage

 		Coverage counters

 		Output directory

 		Sudden death

 		In-process fuzzing

 		Performance

 		Why another coverage?

 		Sanitizer special case list

 		Introduction

 		Goal and usage

 		Example

 		Format

 		Control Flow Integrity

 		Introduction

 		Forward-Edge CFI for Virtual Calls

 		Bad Cast Checking

 		Non-Virtual Member Function Call Checking

 		Design

 		Publications

 		SafeStack

 		Introduction

 		Performance

 		Compatibility

 		Security

 		Usage

 		Supported Platforms

 		Low-level API

 		Design

 		Publications

 		Modules

 		Introduction

 		Problems with the current model

 		Semantic import

 		Problems modules do not solve

 		Using Modules

 		Objective-C Import declaration

 		Includes as imports

 		Module maps

 		Compilation model

 		Command-line parameters

 		Module Semantics

 		Macros

 		Module Map Language

 		Lexical structure

 		Module map file

 		Module declaration

 		Attributes

 		Private Module Map Files

 		Modularizing a Platform

 		Future Directions

 		Where To Learn More About Modules

 		MSVC compatibility

 		ABI features

 		Template instantiation and name lookup

 		Clang “man” pages

 		Basic Commands

 		clang - the Clang C, C++, and Objective-C compiler

 		Frequently Asked Questions (FAQ)

 		Driver

 		I run clang -cc1 ... and get weird errors about missing headers

 		I get errors about some headers being missing (stddef.h, stdarg.h)

 		Choosing the Right Interface for Your Application

 		LibClang

 		Clang Plugins

 		LibTooling

 		External Clang Examples

 		Introduction

 		List of projects and tools

 		Introduction to the Clang AST

 		Introduction

 		Examining the AST

 		AST Context

 		AST Nodes

 		LibTooling

 		Introduction

 		Parsing a code snippet in memory

 		Writing a standalone tool

 		Parsing common tools options

 		Creating and running a ClangTool

 		Putting it together — the first tool

 		Running the tool on some code

 		Builtin includes

 		Linking

 		LibFormat

 		Design

 		Interface

 		Style Options

 		Clang Plugins

 		Introduction

 		Writing a PluginASTAction

 		Registering a plugin

 		Putting it all together

 		Running the plugin

 		How to write RecursiveASTVisitor based ASTFrontendActions.

 		Introduction

 		Creating a FrontendAction

 		Creating an ASTConsumer

 		Using the RecursiveASTVisitor

 		Accessing the SourceManager and ASTContext

 		Putting it all together

 		Tutorial for building tools using LibTooling and LibASTMatchers

 		Step 0: Obtaining Clang

 		Step 1: Create a ClangTool

 		Intermezzo: Learn AST matcher basics

 		Step 2: Using AST matchers

 		Step 3.5: More Complicated Matchers

 		Step 4: Retrieving Matched Nodes

 		Matching the Clang AST

 		Introduction

 		How to create a matcher

 		Binding nodes in match expressions

 		Writing your own matchers

 		VariadicDynCastAllOfMatcher<Base, Derived>

 		AST_MATCHER_P(Type, Name, ParamType, Param)

 		Matcher creation functions

 		How To Setup Clang Tooling For LLVM

 		Introduction

 		Setup Clang Tooling Using CMake and Make

 		Using Clang Tools

 		(Experimental) Using Ninja Build System

 		JSON Compilation Database Format Specification

 		Background

 		Supported Systems

 		Format

 		Build System Integration

 		Overview

 		Clang Tools Organization

 		Core Clang Tools

 		clang-check

 		Extra Clang Tools

 		Ideas for new Tools

 		ClangCheck

 		ClangFormat

 		Standalone Tool

 		Vim Integration

 		Emacs Integration

 		BBEdit Integration

 		Visual Studio Integration

 		Script for patch reformatting

 		Clang-Format Style Options

 		Configuring Style with clang-format

 		Disabling Formatting on a Piece of Code

 		Configuring Style in Code

 		Configurable Format Style Options

 		Examples

 		“Clang” CFE Internals Manual

 		Introduction

 		LLVM Support Library

 		The Clang “Basic” Librar