

Overview

Warning

If you are using a released version of LLVM, see the download page [http://llvm.org/releases/] to find your documentation.

The LLVM compiler infrastructure supports a wide range of projects, from
industrial strength compilers to specialized JIT applications to small
research projects.

Similarly, documentation is broken down into several high-level groupings
targeted at different audiences:

LLVM Design & Overview

Several introductory papers and presentations.

	LLVM Language Reference Manual

	Defines the LLVM intermediate representation.

	Introduction to the LLVM Compiler [http://llvm.org/pubs/2008-10-04-ACAT-LLVM-Intro.html]

	Presentation providing a users introduction to LLVM.

	Intro to LLVM [http://www.aosabook.org/en/llvm.html]

	Book chapter providing a compiler hacker’s introduction to LLVM.

	LLVM: A Compilation Framework for Lifelong Program Analysis & Transformation [http://llvm.org/pubs/2004-01-30-CGO-LLVM.html]

	Design overview.

	LLVM: An Infrastructure for Multi-Stage Optimization [http://llvm.org/pubs/2002-12-LattnerMSThesis.html]

	More details (quite old now).

	Publications mentioning LLVM [http://llvm.org/pubs]

	

User Guides

For those new to the LLVM system.

NOTE: If you are a user who is only interested in using LLVM-based
compilers, you should look into Clang [http://clang.llvm.org] or
DragonEgg [http://dragonegg.llvm.org] instead. The documentation here is
intended for users who have a need to work with the intermediate LLVM
representation.

	Getting Started with the LLVM System

	Discusses how to get up and running quickly with the LLVM infrastructure.
Everything from unpacking and compilation of the distribution to execution
of some tools.

	Building LLVM with CMake

	An addendum to the main Getting Started guide for those using the CMake
build system [http://www.cmake.org].

	How To Build On ARM

	Notes on building and testing LLVM/Clang on ARM.

	How to Cross Compile Compiler-rt Builtins For Arm

	Notes on cross-building and testing the compiler-rt builtins for Arm.

	How To Cross-Compile Clang/LLVM using Clang/LLVM

	Notes on cross-building and testing LLVM/Clang.

	Getting Started with the LLVM System using Microsoft Visual Studio

	An addendum to the main Getting Started guide for those using Visual Studio
on Windows.

	LLVM Tutorial: Table of Contents

	Tutorials about using LLVM. Includes a tutorial about making a custom
language with LLVM.

	LLVM Command Guide

	A reference manual for the LLVM command line utilities (“man” pages for LLVM
tools).

	LLVM’s Analysis and Transform Passes

	A list of optimizations and analyses implemented in LLVM.

	Frequently Asked Questions (FAQ)

	A list of common questions and problems and their solutions.

	Release notes for the current release

	This describes new features, known bugs, and other limitations.

	How to submit an LLVM bug report

	Instructions for properly submitting information about any bugs you run into
in the LLVM system.

	Sphinx Quickstart Template

	A template + tutorial for writing new Sphinx documentation. It is meant
to be read in source form.

	LLVM Testing Infrastructure Guide

	A reference manual for using the LLVM testing infrastructure.

	How to build the C, C++, ObjC, and ObjC++ front end [http://clang.llvm.org/get_started.html]

	Instructions for building the clang front-end from source.

	The LLVM Lexicon

	Definition of acronyms, terms and concepts used in LLVM.

	How To Add Your Build Configuration To LLVM Buildbot Infrastructure

	Instructions for adding new builder to LLVM buildbot master.

	YAML I/O

	A reference guide for using LLVM’s YAML I/O library.

	The Often Misunderstood GEP Instruction

	Answers to some very frequent questions about LLVM’s most frequently
misunderstood instruction.

	Performance Tips for Frontend Authors

	A collection of tips for frontend authors on how to generate IR
which LLVM is able to effectively optimize.

	A guide to Dockerfiles for building LLVM

	A reference for using Dockerfiles provided with LLVM.

Programming Documentation

For developers of applications which use LLVM as a library.

	LLVM Language Reference Manual

	Defines the LLVM intermediate representation and the assembly form of the
different nodes.

	LLVM Atomic Instructions and Concurrency Guide

	Information about LLVM’s concurrency model.

	LLVM Programmer’s Manual

	Introduction to the general layout of the LLVM sourcebase, important classes
and APIs, and some tips & tricks.

	LLVM Extensions

	LLVM-specific extensions to tools and formats LLVM seeks compatibility with.

	CommandLine 2.0 Library Manual

	Provides information on using the command line parsing library.

	LLVM Coding Standards

	Details the LLVM coding standards and provides useful information on writing
efficient C++ code.

	How to set up LLVM-style RTTI for your class hierarchy

	How to make isa<>, dyn_cast<>, etc. available for clients of your
class hierarchy.

	Extending LLVM: Adding instructions, intrinsics, types, etc.

	Look here to see how to add instructions and intrinsics to LLVM.

	Doxygen generated documentation [http://llvm.org/doxygen/]

	(classes [http://llvm.org/doxygen/inherits.html])

Documentation for Go bindings [http://godoc.org/llvm.org/llvm/bindings/go/llvm]

	ViewVC Repository Browser [http://llvm.org/viewvc/]

	

	Architecture & Platform Information for Compiler Writers

	A list of helpful links for compiler writers.

	libFuzzer – a library for coverage-guided fuzz testing.

	A library for writing in-process guided fuzzers.

	Fuzzing LLVM libraries and tools

	Information on writing and using Fuzzers to find bugs in LLVM.

	Scudo Hardened Allocator

	A library that implements a security-hardened malloc().

	Using -opt-bisect-limit to debug optimization errors

	A command line option for debugging optimization-induced failures.

Subsystem Documentation

For API clients and LLVM developers.

	Writing an LLVM Pass

	Information on how to write LLVM transformations and analyses.

	Writing an LLVM Backend

	Information on how to write LLVM backends for machine targets.

	The LLVM Target-Independent Code Generator

	The design and implementation of the LLVM code generator. Useful if you are
working on retargetting LLVM to a new architecture, designing a new codegen
pass, or enhancing existing components.

	Machine IR (MIR) Format Reference Manual

	A reference manual for the MIR serialization format, which is used to test
LLVM’s code generation passes.

	TableGen

	Describes the TableGen tool, which is used heavily by the LLVM code
generator.

	LLVM Alias Analysis Infrastructure

	Information on how to write a new alias analysis implementation or how to
use existing analyses.

	MemorySSA

	Information about the MemorySSA utility in LLVM, as well as how to use it.

	Garbage Collection with LLVM

	The interfaces source-language compilers should use for compiling GC’d
programs.

	Source Level Debugging with LLVM

	This document describes the design and philosophy behind the LLVM
source-level debugger.

	Auto-Vectorization in LLVM

	This document describes the current status of vectorization in LLVM.

	Exception Handling in LLVM

	This document describes the design and implementation of exception handling
in LLVM.

	LLVM bugpoint tool: design and usage

	Automatic bug finder and test-case reducer description and usage
information.

	LLVM Bitcode File Format

	This describes the file format and encoding used for LLVM “bc” files.

	System Library

	This document describes the LLVM System Library (lib/System) and
how to keep LLVM source code portable

	LLVM Link Time Optimization: Design and Implementation

	This document describes the interface between LLVM intermodular optimizer
and the linker and its design

	The LLVM gold plugin

	How to build your programs with link-time optimization on Linux.

	Debugging JIT-ed Code With GDB

	How to debug JITed code with GDB.

	MCJIT Design and Implementation

	Describes the inner workings of MCJIT execution engine.

	LLVM Branch Weight Metadata

	Provides information about Branch Prediction Information.

	LLVM Block Frequency Terminology

	Provides information about terminology used in the BlockFrequencyInfo
analysis pass.

	Segmented Stacks in LLVM

	This document describes segmented stacks and how they are used in LLVM.

	LLVM’s Optional Rich Disassembly Output

	This document describes the optional rich disassembly output syntax.

	How To Use Attributes

	Answers some questions about the new Attributes infrastructure.

	User Guide for NVPTX Back-end

	This document describes using the NVPTX backend to compile GPU kernels.

	User Guide for AMDGPU Backend

	This document describes using the AMDGPU backend to compile GPU kernels.

	Stack maps and patch points in LLVM

	LLVM support for mapping instruction addresses to the location of
values and allowing code to be patched.

	Using ARM NEON instructions in big endian mode

	LLVM’s support for generating NEON instructions on big endian ARM targets is
somewhat nonintuitive. This document explains the implementation and rationale.

	LLVM Code Coverage Mapping Format

	This describes the format and encoding used for LLVM’s code coverage mapping.

	Garbage Collection Safepoints in LLVM

	This describes a set of experimental extensions for garbage
collection support.

	MergeFunctions pass, how it works

	Describes functions merging optimization.

	Design and Usage of the InAlloca Attribute

	Description of the inalloca argument attribute.

	FaultMaps and implicit checks

	LLVM support for folding control flow into faulting machine instructions.

	Compiling CUDA with clang

	LLVM support for CUDA.

	Coroutines in LLVM

	LLVM support for coroutines.

	Global Instruction Selection

	This describes the prototype instruction selection replacement, GlobalISel.

	XRay Instrumentation

	High-level documentation of how to use XRay in LLVM.

	Debugging with XRay

	An example of how to debug an application with XRay.

	The Microsoft PDB File Format

	A detailed description of the Microsoft PDB (Program Database) file format.

	Control Flow Verification Tool Design Document

	A description of the verification tool for Control Flow Integrity.

	Speculative Load Hardening

	A description of the Speculative Load Hardening mitigation for Spectre v1.

Development Process Documentation

Information about LLVM’s development process.

	Contributing to LLVM

	An overview on how to contribute to LLVM.

	LLVM Developer Policy

	The LLVM project’s policy towards developers and their contributions.

	Creating an LLVM Project

	How-to guide and templates for new projects that use the LLVM
infrastructure. The templates (directory organization, Makefiles, and test
tree) allow the project code to be located outside (or inside) the llvm/
tree, while using LLVM header files and libraries.

	LLVMBuild Guide

	Describes the LLVMBuild organization and files used by LLVM to specify
component descriptions.

	How To Release LLVM To The Public

	This is a guide to preparing LLVM releases. Most developers can ignore it.

	How To Validate a New Release

	This is a guide to validate a new release, during the release process. Most developers can ignore it.

	Advice on Packaging LLVM

	Advice on packaging LLVM into a distribution.

	Code Reviews with Phabricator

	Describes how to use the Phabricator code review tool hosted on
http://reviews.llvm.org/ and its command line interface, Arcanist.

Community

LLVM has a thriving community of friendly and helpful developers.
The two primary communication mechanisms in the LLVM community are mailing
lists and IRC.

Mailing Lists

If you can’t find what you need in these docs, try consulting the mailing
lists.

	Developer’s List (llvm-dev) [http://lists.llvm.org/mailman/listinfo/llvm-dev]

	This list is for people who want to be included in technical discussions of
LLVM. People post to this list when they have questions about writing code
for or using the LLVM tools. It is relatively low volume.

	Commits Archive (llvm-commits) [http://lists.llvm.org/pipermail/llvm-commits/]

	This list contains all commit messages that are made when LLVM developers
commit code changes to the repository. It also serves as a forum for
patch review (i.e. send patches here). It is useful for those who want to
stay on the bleeding edge of LLVM development. This list is very high
volume.

	Bugs & Patches Archive (llvm-bugs) [http://lists.llvm.org/pipermail/llvm-bugs/]

	This list gets emailed every time a bug is opened and closed. It is
higher volume than the LLVM-dev list.

	Test Results Archive (llvm-testresults) [http://lists.llvm.org/pipermail/llvm-testresults/]

	A message is automatically sent to this list by every active nightly tester
when it completes. As such, this list gets email several times each day,
making it a high volume list.

	LLVM Announcements List (llvm-announce) [http://lists.llvm.org/mailman/listinfo/llvm-announce]

	This is a low volume list that provides important announcements regarding
LLVM. It gets email about once a month.

IRC

Users and developers of the LLVM project (including subprojects such as Clang)
can be found in #llvm on irc.oftc.net.

This channel has several bots.

	Buildbot reporters

	llvmbb - Bot for the main LLVM buildbot master.
http://lab.llvm.org:8011/console

	bb-chapuni - An individually run buildbot master. http://bb.pgr.jp/console

	smooshlab - Apple’s internal buildbot master.

	robot - Bugzilla linker. %bug <number>

	clang-bot - A geordi [http://www.eelis.net/geordi/] instance running
near-trunk clang instead of gcc.

Community wide proposals

Proposals for massive changes in how the community behaves and how the work flow
can be better.

	LLVM Community Code of Conduct

	Proposal to adopt a code of conduct on the LLVM social spaces (lists, events,
IRC, etc).

	Moving LLVM Projects to GitHub

	Proposal to move from SVN/Git to GitHub.

	Vectorization Plan

	Proposal to model the process and upgrade the infrastructure of LLVM’s Loop Vectorizer.

Indices and tables

	Index

	Search Page

LLVM Language Reference Manual

	Abstract

	Introduction

	Well-Formedness

	Identifiers

	High Level Structure

	Module Structure

	Linkage Types

	Calling Conventions

	Visibility Styles

	DLL Storage Classes

	Thread Local Storage Models

	Runtime Preemption Specifiers

	Structure Types

	Non-Integral Pointer Type

	Global Variables

	Functions

	Aliases

	IFuncs

	Comdats

	Named Metadata

	Parameter Attributes

	Garbage Collector Strategy Names

	Prefix Data

	Prologue Data

	Personality Function

	Attribute Groups

	Function Attributes

	Global Attributes

	Operand Bundles

	Deoptimization Operand Bundles

	Funclet Operand Bundles

	GC Transition Operand Bundles

	Module-Level Inline Assembly

	Data Layout

	Target Triple

	Pointer Aliasing Rules

	Volatile Memory Accesses

	Memory Model for Concurrent Operations

	Atomic Memory Ordering Constraints

	Floating-Point Environment

	Fast-Math Flags

	Use-list Order Directives

	Source Filename

	Type System

	Void Type

	Function Type

	First Class Types

	Single Value Types

	Integer Type

	Floating-Point Types

	X86_mmx Type

	Pointer Type

	Vector Type

	Label Type

	Token Type

	Metadata Type

	Aggregate Types

	Array Type

	Structure Type

	Opaque Structure Types

	Constants

	Simple Constants

	Complex Constants

	Global Variable and Function Addresses

	Undefined Values

	Poison Values

	Addresses of Basic Blocks

	Constant Expressions

	Other Values

	Inline Assembler Expressions

	Inline Asm Constraint String

	Output constraints

	Input constraints

	Indirect inputs and outputs

	Clobber constraints

	Constraint Codes

	Supported Constraint Code List

	Asm template argument modifiers

	Inline Asm Metadata

	Metadata

	Metadata Nodes and Metadata Strings

	Specialized Metadata Nodes

	DICompileUnit

	DIFile

	DIBasicType

	DISubroutineType

	DIDerivedType

	DICompositeType

	DISubrange

	DIEnumerator

	DITemplateTypeParameter

	DITemplateValueParameter

	DINamespace

	DIGlobalVariable

	DISubprogram

	DILexicalBlock

	DILexicalBlockFile

	DILocation

	DILocalVariable

	DIExpression

	DIObjCProperty

	DIImportedEntity

	DIMacro

	DIMacroFile

	‘tbaa’ Metadata

	Semantics

	Representation

	‘tbaa.struct’ Metadata

	‘noalias’ and ‘alias.scope’ Metadata

	‘fpmath’ Metadata

	‘range’ Metadata

	‘absolute_symbol’ Metadata

	‘callees’ Metadata

	‘unpredictable’ Metadata

	‘llvm.loop’

	‘llvm.loop.vectorize’ and ‘llvm.loop.interleave’

	‘llvm.loop.interleave.count’ Metadata

	‘llvm.loop.vectorize.enable’ Metadata

	‘llvm.loop.vectorize.width’ Metadata

	‘llvm.loop.unroll’

	‘llvm.loop.unroll.count’ Metadata

	‘llvm.loop.unroll.disable’ Metadata

	‘llvm.loop.unroll.runtime.disable’ Metadata

	‘llvm.loop.unroll.enable’ Metadata

	‘llvm.loop.unroll.full’ Metadata

	‘llvm.loop.unroll_and_jam’

	‘llvm.loop.unroll_and_jam.count’ Metadata

	‘llvm.loop.unroll_and_jam.disable’ Metadata

	‘llvm.loop.unroll_and_jam.enable’ Metadata

	‘llvm.loop.licm_versioning.disable’ Metadata

	‘llvm.loop.distribute.enable’ Metadata

	‘llvm.mem’

	‘llvm.mem.parallel_loop_access’ Metadata

	‘irr_loop’ Metadata

	‘invariant.group’ Metadata

	‘type’ Metadata

	‘associated’ Metadata

	‘prof’ Metadata

	branch_weights

	function_entry_count

	VP

	Module Flags Metadata

	Objective-C Garbage Collection Module Flags Metadata

	C type width Module Flags Metadata

	Automatic Linker Flags Named Metadata

	ThinLTO Summary

	Module Path Summary Entry

	Global Value Summary Entry

	Function Summary

	Global Variable Summary

	Alias Summary

	Function Flags

	Calls

	Refs

	TypeIdInfo

	TypeTests

	TypeTestAssumeVCalls

	TypeCheckedLoadVCalls

	TypeTestAssumeConstVCalls

	TypeCheckedLoadConstVCalls

	Type ID Summary Entry

	Intrinsic Global Variables

	The ‘llvm.used’ Global Variable

	The ‘llvm.compiler.used’ Global Variable

	The ‘llvm.global_ctors’ Global Variable

	The ‘llvm.global_dtors’ Global Variable

	Instruction Reference

	Terminator Instructions

	‘ret’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘br’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘switch’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Implementation:

	Example:

	‘indirectbr’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Implementation:

	Example:

	‘invoke’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘resume’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘catchswitch’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘catchret’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘cleanupret’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘unreachable’ Instruction

	Syntax:

	Overview:

	Semantics:

	Binary Operations

	‘add’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘fadd’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘sub’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘fsub’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘mul’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘fmul’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘udiv’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘sdiv’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘fdiv’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘urem’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘srem’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘frem’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	Bitwise Binary Operations

	‘shl’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘lshr’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘ashr’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘and’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘or’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘xor’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	Vector Operations

	‘extractelement’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘insertelement’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘shufflevector’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	Aggregate Operations

	‘extractvalue’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘insertvalue’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	Memory Access and Addressing Operations

	‘alloca’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘load’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Examples:

	‘store’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘fence’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘cmpxchg’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘atomicrmw’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘getelementptr’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	Vector of pointers:

	Conversion Operations

	‘trunc .. to’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘zext .. to’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘sext .. to’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘fptrunc .. to’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘fpext .. to’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘fptoui .. to’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘fptosi .. to’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘uitofp .. to’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘sitofp .. to’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘ptrtoint .. to’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘inttoptr .. to’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘bitcast .. to’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘addrspacecast .. to’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	Other Operations

	‘icmp’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘fcmp’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘phi’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘select’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘call’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘va_arg’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘landingpad’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘catchpad’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	‘cleanuppad’ Instruction

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Example:

	Intrinsic Functions

	Variable Argument Handling Intrinsics

	‘llvm.va_start’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.va_end’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.va_copy’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Accurate Garbage Collection Intrinsics

	Experimental Statepoint Intrinsics

	‘llvm.gcroot’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.gcread’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.gcwrite’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Code Generator Intrinsics

	‘llvm.returnaddress’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.addressofreturnaddress’ Intrinsic

	Syntax:

	Overview:

	Semantics:

	‘llvm.frameaddress’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.localescape’ and ‘llvm.localrecover’ Intrinsics

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.read_register’ and ‘llvm.write_register’ Intrinsics

	Syntax:

	Overview:

	Semantics:

	‘llvm.stacksave’ Intrinsic

	Syntax:

	Overview:

	Semantics:

	‘llvm.stackrestore’ Intrinsic

	Syntax:

	Overview:

	Semantics:

	‘llvm.get.dynamic.area.offset’ Intrinsic

	Syntax:

	Overview:

	Semantics:

	‘llvm.prefetch’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.pcmarker’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.readcyclecounter’ Intrinsic

	Syntax:

	Overview:

	Semantics:

	‘llvm.clear_cache’ Intrinsic

	Syntax:

	Overview:

	Semantics:

	‘llvm.instrprof.increment’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.instrprof.increment.step’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.instrprof.value.profile’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.thread.pointer’ Intrinsic

	Syntax:

	Overview:

	Semantics:

	Standard C Library Intrinsics

	‘llvm.memcpy’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.memmove’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.memset.*’ Intrinsics

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.sqrt.*’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.powi.*’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.sin.*’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.cos.*’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.pow.*’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.exp.*’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.exp2.*’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.log.*’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.log10.*’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.log2.*’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.fma.*’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.fabs.*’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.minnum.*’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.maxnum.*’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.copysign.*’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.floor.*’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.ceil.*’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.trunc.*’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.rint.*’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.nearbyint.*’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.round.*’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Bit Manipulation Intrinsics

	‘llvm.bitreverse.*’ Intrinsics

	Syntax:

	Overview:

	Semantics:

	‘llvm.bswap.*’ Intrinsics

	Syntax:

	Overview:

	Semantics:

	‘llvm.ctpop.*’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.ctlz.*’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.cttz.*’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.fshl.*’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Example:

	‘llvm.fshr.*’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Example:

	Arithmetic with Overflow Intrinsics

	‘llvm.sadd.with.overflow.*’ Intrinsics

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Examples:

	‘llvm.uadd.with.overflow.*’ Intrinsics

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Examples:

	‘llvm.ssub.with.overflow.*’ Intrinsics

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Examples:

	‘llvm.usub.with.overflow.*’ Intrinsics

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Examples:

	‘llvm.smul.with.overflow.*’ Intrinsics

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Examples:

	‘llvm.umul.with.overflow.*’ Intrinsics

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Examples:

	Specialised Arithmetic Intrinsics

	‘llvm.canonicalize.*’ Intrinsic

	Syntax:

	Overview:

	‘llvm.fmuladd.*’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Examples:

	Experimental Vector Reduction Intrinsics

	‘llvm.experimental.vector.reduce.add.*’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	‘llvm.experimental.vector.reduce.fadd.*’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Examples:

	‘llvm.experimental.vector.reduce.mul.*’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	‘llvm.experimental.vector.reduce.fmul.*’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Examples:

	‘llvm.experimental.vector.reduce.and.*’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	‘llvm.experimental.vector.reduce.or.*’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	‘llvm.experimental.vector.reduce.xor.*’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	‘llvm.experimental.vector.reduce.smax.*’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	‘llvm.experimental.vector.reduce.smin.*’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	‘llvm.experimental.vector.reduce.umax.*’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	‘llvm.experimental.vector.reduce.umin.*’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	‘llvm.experimental.vector.reduce.fmax.*’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	‘llvm.experimental.vector.reduce.fmin.*’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Half Precision Floating-Point Intrinsics

	‘llvm.convert.to.fp16’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Examples:

	‘llvm.convert.from.fp16’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Examples:

	Debugger Intrinsics

	Exception Handling Intrinsics

	Trampoline Intrinsics

	‘llvm.init.trampoline’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.adjust.trampoline’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Masked Vector Load and Store Intrinsics

	‘llvm.masked.load.*’ Intrinsics

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.masked.store.*’ Intrinsics

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Masked Vector Gather and Scatter Intrinsics

	‘llvm.masked.gather.*’ Intrinsics

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.masked.scatter.*’ Intrinsics

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Masked Vector Expanding Load and Compressing Store Intrinsics

	‘llvm.masked.expandload.*’ Intrinsics

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.masked.compressstore.*’ Intrinsics

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Memory Use Markers

	‘llvm.lifetime.start’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.lifetime.end’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.invariant.start’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.invariant.end’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.launder.invariant.group’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.strip.invariant.group’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Constrained Floating-Point Intrinsics

	‘llvm.experimental.constrained.fadd’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.experimental.constrained.fsub’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.experimental.constrained.fmul’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.experimental.constrained.fdiv’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.experimental.constrained.frem’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.experimental.constrained.fma’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Constrained libm-equivalent Intrinsics

	‘llvm.experimental.constrained.sqrt’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.experimental.constrained.pow’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.experimental.constrained.powi’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.experimental.constrained.sin’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.experimental.constrained.cos’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.experimental.constrained.exp’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.experimental.constrained.exp2’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.experimental.constrained.log’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.experimental.constrained.log10’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.experimental.constrained.log2’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.experimental.constrained.rint’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.experimental.constrained.nearbyint’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	General Intrinsics

	‘llvm.var.annotation’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.ptr.annotation.*’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.annotation.*’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.codeview.annotation’ Intrinsic

	Syntax:

	Arguments:

	‘llvm.trap’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.debugtrap’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.stackprotector’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.stackguard’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.objectsize’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.expect’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.assume’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.ssa_copy’ Intrinsic

	Syntax:

	Arguments:

	Overview:

	‘llvm.type.test’ Intrinsic

	Syntax:

	Arguments:

	Overview:

	‘llvm.type.checked.load’ Intrinsic

	Syntax:

	Arguments:

	Overview:

	‘llvm.donothing’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	‘llvm.experimental.deoptimize’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Lowering:

	‘llvm.experimental.guard’ Intrinsic

	Syntax:

	Overview:

	‘llvm.load.relative’ Intrinsic

	Syntax:

	Overview:

	‘llvm.sideeffect’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Stack Map Intrinsics

	Element Wise Atomic Memory Intrinsics

	‘llvm.memcpy.element.unordered.atomic’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Lowering:

	‘llvm.memmove.element.unordered.atomic’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Lowering:

	‘llvm.memset.element.unordered.atomic’ Intrinsic

	Syntax:

	Overview:

	Arguments:

	Semantics:

	Lowering:

Abstract

This document is a reference manual for the LLVM assembly language. LLVM
is a Static Single Assignment (SSA) based representation that provides
type safety, low-level operations, flexibility, and the capability of
representing ‘all’ high-level languages cleanly. It is the common code
representation used throughout all phases of the LLVM compilation
strategy.

Introduction

The LLVM code representation is designed to be used in three different
forms: as an in-memory compiler IR, as an on-disk bitcode representation
(suitable for fast loading by a Just-In-Time compiler), and as a human
readable assembly language representation. This allows LLVM to provide a
powerful intermediate representation for efficient compiler
transformations and analysis, while providing a natural means to debug
and visualize the transformations. The three different forms of LLVM are
all equivalent. This document describes the human readable
representation and notation.

The LLVM representation aims to be light-weight and low-level while
being expressive, typed, and extensible at the same time. It aims to be
a “universal IR” of sorts, by being at a low enough level that
high-level ideas may be cleanly mapped to it (similar to how
microprocessors are “universal IR’s”, allowing many source languages to
be mapped to them). By providing type information, LLVM can be used as
the target of optimizations: for example, through pointer analysis, it
can be proven that a C automatic variable is never accessed outside of
the current function, allowing it to be promoted to a simple SSA value
instead of a memory location.

Well-Formedness

It is important to note that this document describes ‘well formed’ LLVM
assembly language. There is a difference between what the parser accepts
and what is considered ‘well formed’. For example, the following
instruction is syntactically okay, but not well formed:

%x = add i32 1, %x

because the definition of %x does not dominate all of its uses. The
LLVM infrastructure provides a verification pass that may be used to
verify that an LLVM module is well formed. This pass is automatically
run by the parser after parsing input assembly and by the optimizer
before it outputs bitcode. The violations pointed out by the verifier
pass indicate bugs in transformation passes or input to the parser.

Identifiers

LLVM identifiers come in two basic types: global and local. Global
identifiers (functions, global variables) begin with the '@'
character. Local identifiers (register names, types) begin with the
'%' character. Additionally, there are three different formats for
identifiers, for different purposes:

	Named values are represented as a string of characters with their
prefix. For example, %foo, @DivisionByZero,
%a.really.long.identifier. The actual regular expression used is
‘[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*’. Identifiers that require other
characters in their names can be surrounded with quotes. Special
characters may be escaped using "\xx" where xx is the ASCII
code for the character in hexadecimal. In this way, any character can
be used in a name value, even quotes themselves. The "\01" prefix
can be used on global values to suppress mangling.

	Unnamed values are represented as an unsigned numeric value with
their prefix. For example, %12, @2, %44.

	Constants, which are described in the section Constants below.

LLVM requires that values start with a prefix for two reasons: Compilers
don’t need to worry about name clashes with reserved words, and the set
of reserved words may be expanded in the future without penalty.
Additionally, unnamed identifiers allow a compiler to quickly come up
with a temporary variable without having to avoid symbol table
conflicts.

Reserved words in LLVM are very similar to reserved words in other
languages. There are keywords for different opcodes (‘add’,
‘bitcast’, ‘ret’, etc…), for primitive type names (‘void’,
‘i32’, etc…), and others. These reserved words cannot conflict
with variable names, because none of them start with a prefix character
('%' or '@').

Here is an example of LLVM code to multiply the integer variable
‘%X’ by 8:

The easy way:

%result = mul i32 %X, 8

After strength reduction:

%result = shl i32 %X, 3

And the hard way:

%0 = add i32 %X, %X ; yields i32:%0
%1 = add i32 %0, %0 ; yields i32:%1
%result = add i32 %1, %1

This last way of multiplying %X by 8 illustrates several important
lexical features of LLVM:

	Comments are delimited with a ‘;’ and go until the end of line.

	Unnamed temporaries are created when the result of a computation is
not assigned to a named value.

	Unnamed temporaries are numbered sequentially (using a per-function
incrementing counter, starting with 0). Note that basic blocks and unnamed
function parameters are included in this numbering. For example, if the
entry basic block is not given a label name and all function parameters are
named, then it will get number 0.

It also shows a convention that we follow in this document. When
demonstrating instructions, we will follow an instruction with a comment
that defines the type and name of value produced.

High Level Structure

Module Structure

LLVM programs are composed of Module’s, each of which is a
translation unit of the input programs. Each module consists of
functions, global variables, and symbol table entries. Modules may be
combined together with the LLVM linker, which merges function (and
global variable) definitions, resolves forward declarations, and merges
symbol table entries. Here is an example of the “hello world” module:

; Declare the string constant as a global constant.
@.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"

; External declaration of the puts function
declare i32 @puts(i8* nocapture) nounwind

; Definition of main function
define i32 @main() { ; i32()*
 ; Convert [13 x i8]* to i8*...
 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0

 ; Call puts function to write out the string to stdout.
 call i32 @puts(i8* %cast210)
 ret i32 0
}

; Named metadata
!0 = !{i32 42, null, !"string"}
!foo = !{!0}

This example is made up of a global variable named
“.str”, an external declaration of the “puts” function, a
function definition for “main” and
named metadata “foo”.

In general, a module is made up of a list of global values (where both
functions and global variables are global values). Global values are
represented by a pointer to a memory location (in this case, a pointer
to an array of char, and a pointer to a function), and have one of the
following linkage types.

Linkage Types

All Global Variables and Functions have one of the following types of
linkage:

	private

	Global values with “private” linkage are only directly
accessible by objects in the current module. In particular, linking
code into a module with a private global value may cause the
private to be renamed as necessary to avoid collisions. Because the
symbol is private to the module, all references can be updated. This
doesn’t show up in any symbol table in the object file.

	internal

	Similar to private, but the value shows as a local symbol
(STB_LOCAL in the case of ELF) in the object file. This
corresponds to the notion of the ‘static’ keyword in C.

	available_externally

	Globals with “available_externally” linkage are never emitted into
the object file corresponding to the LLVM module. From the linker’s
perspective, an available_externally global is equivalent to
an external declaration. They exist to allow inlining and other
optimizations to take place given knowledge of the definition of the
global, which is known to be somewhere outside the module. Globals
with available_externally linkage are allowed to be discarded at
will, and allow inlining and other optimizations. This linkage type is
only allowed on definitions, not declarations.

	linkonce

	Globals with “linkonce” linkage are merged with other globals of
the same name when linkage occurs. This can be used to implement
some forms of inline functions, templates, or other code which must
be generated in each translation unit that uses it, but where the
body may be overridden with a more definitive definition later.
Unreferenced linkonce globals are allowed to be discarded. Note
that linkonce linkage does not actually allow the optimizer to
inline the body of this function into callers because it doesn’t
know if this definition of the function is the definitive definition
within the program or whether it will be overridden by a stronger
definition. To enable inlining and other optimizations, use
“linkonce_odr” linkage.

	weak

	“weak” linkage has the same merging semantics as linkonce
linkage, except that unreferenced globals with weak linkage may
not be discarded. This is used for globals that are declared “weak”
in C source code.

	common

	“common” linkage is most similar to “weak” linkage, but they
are used for tentative definitions in C, such as “int X;” at
global scope. Symbols with “common” linkage are merged in the
same way as weak symbols, and they may not be deleted if
unreferenced. common symbols may not have an explicit section,
must have a zero initializer, and may not be marked
‘constant’. Functions and aliases may not have
common linkage.

	appending

	“appending” linkage may only be applied to global variables of
pointer to array type. When two global variables with appending
linkage are linked together, the two global arrays are appended
together. This is the LLVM, typesafe, equivalent of having the
system linker append together “sections” with identical names when
.o files are linked.

Unfortunately this doesn’t correspond to any feature in .o files, so it
can only be used for variables like llvm.global_ctors which llvm
interprets specially.

	extern_weak

	The semantics of this linkage follow the ELF object file model: the
symbol is weak until linked, if not linked, the symbol becomes null
instead of being an undefined reference.

	linkonce_odr, weak_odr

	Some languages allow differing globals to be merged, such as two
functions with different semantics. Other languages, such as
C++, ensure that only equivalent globals are ever merged (the
“one definition rule” — “ODR”). Such languages can use the
linkonce_odr and weak_odr linkage types to indicate that the
global will only be merged with equivalent globals. These linkage
types are otherwise the same as their non-odr versions.

	external

	If none of the above identifiers are used, the global is externally
visible, meaning that it participates in linkage and can be used to
resolve external symbol references.

It is illegal for a function declaration to have any linkage type
other than external or extern_weak.

Calling Conventions

LLVM functions, calls and
invokes can all have an optional calling convention
specified for the call. The calling convention of any pair of dynamic
caller/callee must match, or the behavior of the program is undefined.
The following calling conventions are supported by LLVM, and more may be
added in the future:

	“ccc” - The C calling convention

	This calling convention (the default if no other calling convention
is specified) matches the target C calling conventions. This calling
convention supports varargs function calls and tolerates some
mismatch in the declared prototype and implemented declaration of
the function (as does normal C).

	“fastcc” - The fast calling convention

	This calling convention attempts to make calls as fast as possible
(e.g. by passing things in registers). This calling convention
allows the target to use whatever tricks it wants to produce fast
code for the target, without having to conform to an externally
specified ABI (Application Binary Interface). Tail calls can only
be optimized when this, the GHC or the HiPE convention is
used. This calling convention does not
support varargs and requires the prototype of all callees to exactly
match the prototype of the function definition.

	“coldcc” - The cold calling convention

	This calling convention attempts to make code in the caller as
efficient as possible under the assumption that the call is not
commonly executed. As such, these calls often preserve all registers
so that the call does not break any live ranges in the caller side.
This calling convention does not support varargs and requires the
prototype of all callees to exactly match the prototype of the
function definition. Furthermore the inliner doesn’t consider such function
calls for inlining.

	“cc 10” - GHC convention

	This calling convention has been implemented specifically for use by
the Glasgow Haskell Compiler (GHC) [http://www.haskell.org/ghc].
It passes everything in registers, going to extremes to achieve this
by disabling callee save registers. This calling convention should
not be used lightly but only for specific situations such as an
alternative to the register pinning performance technique often
used when implementing functional programming languages. At the
moment only X86 supports this convention and it has the following
limitations:

	On X86-32 only supports up to 4 bit type parameters. No
floating-point types are supported.

	On X86-64 only supports up to 10 bit type parameters and 6
floating-point parameters.

This calling convention supports tail call
optimization but requires both the
caller and callee are using it.

	“cc 11” - The HiPE calling convention

	This calling convention has been implemented specifically for use by
the High-Performance Erlang
(HiPE) [http://www.it.uu.se/research/group/hipe/] compiler, the
native code compiler of the Ericsson’s Open Source Erlang/OTP
system [http://www.erlang.org/download.shtml]. It uses more
registers for argument passing than the ordinary C calling
convention and defines no callee-saved registers. The calling
convention properly supports tail call
optimization but requires that both the
caller and the callee use it. It uses a register pinning
mechanism, similar to GHC’s convention, for keeping frequently
accessed runtime components pinned to specific hardware registers.
At the moment only X86 supports this convention (both 32 and 64
bit).

	“webkit_jscc” - WebKit’s JavaScript calling convention

	This calling convention has been implemented for WebKit FTL JIT [https://trac.webkit.org/wiki/FTLJIT]. It passes arguments on the
stack right to left (as cdecl does), and returns a value in the
platform’s customary return register.

	“anyregcc” - Dynamic calling convention for code patching

	This is a special convention that supports patching an arbitrary code
sequence in place of a call site. This convention forces the call
arguments into registers but allows them to be dynamically
allocated. This can currently only be used with calls to
llvm.experimental.patchpoint because only this intrinsic records
the location of its arguments in a side table. See Stack maps and patch points in LLVM.

	“preserve_mostcc” - The PreserveMost calling convention

	This calling convention attempts to make the code in the caller as
unintrusive as possible. This convention behaves identically to the C
calling convention on how arguments and return values are passed, but it
uses a different set of caller/callee-saved registers. This alleviates the
burden of saving and recovering a large register set before and after the
call in the caller. If the arguments are passed in callee-saved registers,
then they will be preserved by the callee across the call. This doesn’t
apply for values returned in callee-saved registers.

	On X86-64 the callee preserves all general purpose registers, except for
R11. R11 can be used as a scratch register. Floating-point registers
(XMMs/YMMs) are not preserved and need to be saved by the caller.

The idea behind this convention is to support calls to runtime functions
that have a hot path and a cold path. The hot path is usually a small piece
of code that doesn’t use many registers. The cold path might need to call out to
another function and therefore only needs to preserve the caller-saved
registers, which haven’t already been saved by the caller. The
PreserveMost calling convention is very similar to the cold calling
convention in terms of caller/callee-saved registers, but they are used for
different types of function calls. coldcc is for function calls that are
rarely executed, whereas preserve_mostcc function calls are intended to be
on the hot path and definitely executed a lot. Furthermore preserve_mostcc
doesn’t prevent the inliner from inlining the function call.

This calling convention will be used by a future version of the ObjectiveC
runtime and should therefore still be considered experimental at this time.
Although this convention was created to optimize certain runtime calls to
the ObjectiveC runtime, it is not limited to this runtime and might be used
by other runtimes in the future too. The current implementation only
supports X86-64, but the intention is to support more architectures in the
future.

	“preserve_allcc” - The PreserveAll calling convention

	This calling convention attempts to make the code in the caller even less
intrusive than the PreserveMost calling convention. This calling
convention also behaves identical to the C calling convention on how
arguments and return values are passed, but it uses a different set of
caller/callee-saved registers. This removes the burden of saving and
recovering a large register set before and after the call in the caller. If
the arguments are passed in callee-saved registers, then they will be
preserved by the callee across the call. This doesn’t apply for values
returned in callee-saved registers.

	On X86-64 the callee preserves all general purpose registers, except for
R11. R11 can be used as a scratch register. Furthermore it also preserves
all floating-point registers (XMMs/YMMs).

The idea behind this convention is to support calls to runtime functions
that don’t need to call out to any other functions.

This calling convention, like the PreserveMost calling convention, will be
used by a future version of the ObjectiveC runtime and should be considered
experimental at this time.

	“cxx_fast_tlscc” - The CXX_FAST_TLS calling convention for access functions

	Clang generates an access function to access C++-style TLS. The access
function generally has an entry block, an exit block and an initialization
block that is run at the first time. The entry and exit blocks can access
a few TLS IR variables, each access will be lowered to a platform-specific
sequence.

This calling convention aims to minimize overhead in the caller by
preserving as many registers as possible (all the registers that are
perserved on the fast path, composed of the entry and exit blocks).

This calling convention behaves identical to the C calling convention on
how arguments and return values are passed, but it uses a different set of
caller/callee-saved registers.

Given that each platform has its own lowering sequence, hence its own set
of preserved registers, we can’t use the existing PreserveMost.

	On X86-64 the callee preserves all general purpose registers, except for
RDI and RAX.

	“swiftcc” - This calling convention is used for Swift language.

	
	On X86-64 RCX and R8 are available for additional integer returns, and
XMM2 and XMM3 are available for additional FP/vector returns.

	On iOS platforms, we use AAPCS-VFP calling convention.

	“cc <n>” - Numbered convention

	Any calling convention may be specified by number, allowing
target-specific calling conventions to be used. Target specific
calling conventions start at 64.

More calling conventions can be added/defined on an as-needed basis, to
support Pascal conventions or any other well-known target-independent
convention.

Visibility Styles

All Global Variables and Functions have one of the following visibility
styles:

	“default” - Default style

	On targets that use the ELF object file format, default visibility
means that the declaration is visible to other modules and, in
shared libraries, means that the declared entity may be overridden.
On Darwin, default visibility means that the declaration is visible
to other modules. Default visibility corresponds to “external
linkage” in the language.

	“hidden” - Hidden style

	Two declarations of an object with hidden visibility refer to the
same object if they are in the same shared object. Usually, hidden
visibility indicates that the symbol will not be placed into the
dynamic symbol table, so no other module (executable or shared
library) can reference it directly.

	“protected” - Protected style

	On ELF, protected visibility indicates that the symbol will be
placed in the dynamic symbol table, but that references within the
defining module will bind to the local symbol. That is, the symbol
cannot be overridden by another module.

A symbol with internal or private linkage must have default
visibility.

DLL Storage Classes

All Global Variables, Functions and Aliases can have one of the following
DLL storage class:

	dllimport

	“dllimport” causes the compiler to reference a function or variable via
a global pointer to a pointer that is set up by the DLL exporting the
symbol. On Microsoft Windows targets, the pointer name is formed by
combining __imp_ and the function or variable name.

	dllexport

	“dllexport” causes the compiler to provide a global pointer to a pointer
in a DLL, so that it can be referenced with the dllimport attribute. On
Microsoft Windows targets, the pointer name is formed by combining
__imp_ and the function or variable name. Since this storage class
exists for defining a dll interface, the compiler, assembler and linker know
it is externally referenced and must refrain from deleting the symbol.

Thread Local Storage Models

A variable may be defined as thread_local, which means that it will
not be shared by threads (each thread will have a separated copy of the
variable). Not all targets support thread-local variables. Optionally, a
TLS model may be specified:

	localdynamic

	For variables that are only used within the current shared library.

	initialexec

	For variables in modules that will not be loaded dynamically.

	localexec

	For variables defined in the executable and only used within it.

If no explicit model is given, the “general dynamic” model is used.

The models correspond to the ELF TLS models; see ELF Handling For
Thread-Local Storage [http://people.redhat.com/drepper/tls.pdf] for
more information on under which circumstances the different models may
be used. The target may choose a different TLS model if the specified
model is not supported, or if a better choice of model can be made.

A model can also be specified in an alias, but then it only governs how
the alias is accessed. It will not have any effect in the aliasee.

For platforms without linker support of ELF TLS model, the -femulated-tls
flag can be used to generate GCC compatible emulated TLS code.

Runtime Preemption Specifiers

Global variables, functions and aliases may have an optional runtime preemption
specifier. If a preemption specifier isn’t given explicitly, then a
symbol is assumed to be dso_preemptable.

	dso_preemptable

	Indicates that the function or variable may be replaced by a symbol from
outside the linkage unit at runtime.

	dso_local

	The compiler may assume that a function or variable marked as dso_local
will resolve to a symbol within the same linkage unit. Direct access will
be generated even if the definition is not within this compilation unit.

Structure Types

LLVM IR allows you to specify both “identified” and “literal” structure
types. Literal types are uniqued structurally, but identified types
are never uniqued. An opaque structural type can also be used
to forward declare a type that is not yet available.

An example of an identified structure specification is:

%mytype = type { %mytype*, i32 }

Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
literal types are uniqued in recent versions of LLVM.

Non-Integral Pointer Type

Note: non-integral pointer types are a work in progress, and they should be
considered experimental at this time.

LLVM IR optionally allows the frontend to denote pointers in certain address
spaces as “non-integral” via the datalayout string.
Non-integral pointer types represent pointers that have an unspecified bitwise
representation; that is, the integral representation may be target dependent or
unstable (not backed by a fixed integer).

inttoptr instructions converting integers to non-integral pointer types are
ill-typed, and so are ptrtoint instructions converting values of
non-integral pointer types to integers. Vector versions of said instructions
are ill-typed as well.

Global Variables

Global variables define regions of memory allocated at compilation time
instead of run-time.

Global variable definitions must be initialized.

Global variables in other translation units can also be declared, in which
case they don’t have an initializer.

Either global variable definitions or declarations may have an explicit section
to be placed in and may have an optional explicit alignment specified. If there
is a mismatch between the explicit or inferred section information for the
variable declaration and its definition the resulting behavior is undefined.

A variable may be defined as a global constant, which indicates that
the contents of the variable will never be modified (enabling better
optimization, allowing the global data to be placed in the read-only
section of an executable, etc). Note that variables that need runtime
initialization cannot be marked constant as there is a store to the
variable.

LLVM explicitly allows declarations of global variables to be marked
constant, even if the final definition of the global is not. This
capability can be used to enable slightly better optimization of the
program, but requires the language definition to guarantee that
optimizations based on the ‘constantness’ are valid for the translation
units that do not include the definition.

As SSA values, global variables define pointer values that are in scope
(i.e. they dominate) all basic blocks in the program. Global variables
always define a pointer to their “content” type because they describe a
region of memory, and all memory objects in LLVM are accessed through
pointers.

Global variables can be marked with unnamed_addr which indicates
that the address is not significant, only the content. Constants marked
like this can be merged with other constants if they have the same
initializer. Note that a constant with significant address can be
merged with a unnamed_addr constant, the result being a constant
whose address is significant.

If the local_unnamed_addr attribute is given, the address is known to
not be significant within the module.

A global variable may be declared to reside in a target-specific
numbered address space. For targets that support them, address spaces
may affect how optimizations are performed and/or what target
instructions are used to access the variable. The default address space
is zero. The address space qualifier must precede any other attributes.

LLVM allows an explicit section to be specified for globals. If the
target supports it, it will emit globals to the section specified.
Additionally, the global can placed in a comdat if the target has the necessary
support.

External declarations may have an explicit section specified. Section
information is retained in LLVM IR for targets that make use of this
information. Attaching section information to an external declaration is an
assertion that its definition is located in the specified section. If the
definition is located in a different section, the behavior is undefined.

By default, global initializers are optimized by assuming that global
variables defined within the module are not modified from their
initial values before the start of the global initializer. This is
true even for variables potentially accessible from outside the
module, including those with external linkage or appearing in
@llvm.used or dllexported variables. This assumption may be suppressed
by marking the variable with externally_initialized.

An explicit alignment may be specified for a global, which must be a
power of 2. If not present, or if the alignment is set to zero, the
alignment of the global is set by the target to whatever it feels
convenient. If an explicit alignment is specified, the global is forced
to have exactly that alignment. Targets and optimizers are not allowed
to over-align the global if the global has an assigned section. In this
case, the extra alignment could be observable: for example, code could
assume that the globals are densely packed in their section and try to
iterate over them as an array, alignment padding would break this
iteration. The maximum alignment is 1 << 29.

Globals can also have a DLL storage class,
an optional runtime preemption specifier,
an optional global attributes and
an optional list of attached metadata.

Variables and aliases can have a
Thread Local Storage Model.

Syntax:

@<GlobalVarName> = [Linkage] [PreemptionSpecifier] [Visibility]
 [DLLStorageClass] [ThreadLocal]
 [(unnamed_addr|local_unnamed_addr)] [AddrSpace]
 [ExternallyInitialized]
 <global | constant> <Type> [<InitializerConstant>]
 [, section "name"] [, comdat [($name)]]
 [, align <Alignment>] (, !name !N)*

For example, the following defines a global in a numbered address space
with an initializer, section, and alignment:

@G = addrspace(5) constant float 1.0, section "foo", align 4

The following example just declares a global variable

@G = external global i32

The following example defines a thread-local global with the
initialexec TLS model:

@G = thread_local(initialexec) global i32 0, align 4

Functions

LLVM function definitions consist of the “define” keyword, an
optional linkage type, an optional runtime preemption
specifier, an optional visibility
style, an optional DLL storage class,
an optional calling convention,
an optional unnamed_addr attribute, a return type, an optional
parameter attribute for the return type, a function
name, a (possibly empty) argument list (each with optional parameter
attributes), optional function attributes,
an optional section, an optional alignment,
an optional comdat,
an optional garbage collector name, an optional prefix,
an optional prologue,
an optional personality,
an optional list of attached metadata,
an opening curly brace, a list of basic blocks, and a closing curly brace.

LLVM function declarations consist of the “declare” keyword, an
optional linkage type, an optional visibility style, an optional DLL storage class, an
optional calling convention, an optional unnamed_addr
or local_unnamed_addr attribute, a return type, an optional parameter
attribute for the return type, a function name, a possibly
empty list of arguments, an optional alignment, an optional garbage
collector name, an optional prefix, and an optional
prologue.

A function definition contains a list of basic blocks, forming the CFG (Control
Flow Graph) for the function. Each basic block may optionally start with a label
(giving the basic block a symbol table entry), contains a list of instructions,
and ends with a terminator instruction (such as a branch or
function return). If an explicit label is not provided, a block is assigned an
implicit numbered label, using the next value from the same counter as used for
unnamed temporaries (see above). For example, if a function
entry block does not have an explicit label, it will be assigned label “%0”,
then the first unnamed temporary in that block will be “%1”, etc.

The first basic block in a function is special in two ways: it is
immediately executed on entrance to the function, and it is not allowed
to have predecessor basic blocks (i.e. there can not be any branches to
the entry block of a function). Because the block can have no
predecessors, it also cannot have any PHI nodes.

LLVM allows an explicit section to be specified for functions. If the
target supports it, it will emit functions to the section specified.
Additionally, the function can be placed in a COMDAT.

An explicit alignment may be specified for a function. If not present,
or if the alignment is set to zero, the alignment of the function is set
by the target to whatever it feels convenient. If an explicit alignment
is specified, the function is forced to have at least that much
alignment. All alignments must be a power of 2.

If the unnamed_addr attribute is given, the address is known to not
be significant and two identical functions can be merged.

If the local_unnamed_addr attribute is given, the address is known to
not be significant within the module.

Syntax:

define [linkage] [PreemptionSpecifier] [visibility] [DLLStorageClass]
 [cconv] [ret attrs]
 <ResultType> @<FunctionName> ([argument list])
 [(unnamed_addr|local_unnamed_addr)] [fn Attrs] [section "name"]
 [comdat [($name)]] [align N] [gc] [prefix Constant]
 [prologue Constant] [personality Constant] (!name !N)* { ... }

The argument list is a comma separated sequence of arguments where each
argument is of the following form:

Syntax:

<type> [parameter Attrs] [name]

Aliases

Aliases, unlike function or variables, don’t create any new data. They
are just a new symbol and metadata for an existing position.

Aliases have a name and an aliasee that is either a global value or a
constant expression.

Aliases may have an optional linkage type, an optional
runtime preemption specifier, an optional
visibility style, an optional DLL storage class and an optional tls model.

Syntax:

@<Name> = [Linkage] [PreemptionSpecifier] [Visibility] [DLLStorageClass] [ThreadLocal] [(unnamed_addr|local_unnamed_addr)] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>

The linkage must be one of private, internal, linkonce, weak,
linkonce_odr, weak_odr, external. Note that some system linkers
might not correctly handle dropping a weak symbol that is aliased.

Aliases that are not unnamed_addr are guaranteed to have the same address as
the aliasee expression. unnamed_addr ones are only guaranteed to point
to the same content.

If the local_unnamed_addr attribute is given, the address is known to
not be significant within the module.

Since aliases are only a second name, some restrictions apply, of which
some can only be checked when producing an object file:

	The expression defining the aliasee must be computable at assembly
time. Since it is just a name, no relocations can be used.

	No alias in the expression can be weak as the possibility of the
intermediate alias being overridden cannot be represented in an
object file.

	No global value in the expression can be a declaration, since that
would require a relocation, which is not possible.

IFuncs

IFuncs, like as aliases, don’t create any new data or func. They are just a new
symbol that dynamic linker resolves at runtime by calling a resolver function.

IFuncs have a name and a resolver that is a function called by dynamic linker
that returns address of another function associated with the name.

IFunc may have an optional linkage type and an optional
visibility style.

Syntax:

@<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>

Comdats

Comdat IR provides access to COFF and ELF object file COMDAT functionality.

Comdats have a name which represents the COMDAT key. All global objects that
specify this key will only end up in the final object file if the linker chooses
that key over some other key. Aliases are placed in the same COMDAT that their
aliasee computes to, if any.

Comdats have a selection kind to provide input on how the linker should
choose between keys in two different object files.

Syntax:

$<Name> = comdat SelectionKind

The selection kind must be one of the following:

	any

	The linker may choose any COMDAT key, the choice is arbitrary.

	exactmatch

	The linker may choose any COMDAT key but the sections must contain the
same data.

	largest

	The linker will choose the section containing the largest COMDAT key.

	noduplicates

	The linker requires that only section with this COMDAT key exist.

	samesize

	The linker may choose any COMDAT key but the sections must contain the
same amount of data.

Note that the Mach-O platform doesn’t support COMDATs, and ELF and WebAssembly
only support any as a selection kind.

Here is an example of a COMDAT group where a function will only be selected if
the COMDAT key’s section is the largest:

$foo = comdat largest
@foo = global i32 2, comdat($foo)

define void @bar() comdat($foo) {
 ret void
}

As a syntactic sugar the $name can be omitted if the name is the same as
the global name:

$foo = comdat any
@foo = global i32 2, comdat

In a COFF object file, this will create a COMDAT section with selection kind
IMAGE_COMDAT_SELECT_LARGEST containing the contents of the @foo symbol
and another COMDAT section with selection kind
IMAGE_COMDAT_SELECT_ASSOCIATIVE which is associated with the first COMDAT
section and contains the contents of the @bar symbol.

There are some restrictions on the properties of the global object.
It, or an alias to it, must have the same name as the COMDAT group when
targeting COFF.
The contents and size of this object may be used during link-time to determine
which COMDAT groups get selected depending on the selection kind.
Because the name of the object must match the name of the COMDAT group, the
linkage of the global object must not be local; local symbols can get renamed
if a collision occurs in the symbol table.

The combined use of COMDATS and section attributes may yield surprising results.
For example:

$foo = comdat any
$bar = comdat any
@g1 = global i32 42, section "sec", comdat($foo)
@g2 = global i32 42, section "sec", comdat($bar)

From the object file perspective, this requires the creation of two sections
with the same name. This is necessary because both globals belong to different
COMDAT groups and COMDATs, at the object file level, are represented by
sections.

Note that certain IR constructs like global variables and functions may
create COMDATs in the object file in addition to any which are specified using
COMDAT IR. This arises when the code generator is configured to emit globals
in individual sections (e.g. when -data-sections or -function-sections
is supplied to llc).

Named Metadata

Named metadata is a collection of metadata. Metadata
nodes (but not metadata strings) are the only valid
operands for a named metadata.

	Named metadata are represented as a string of characters with the
metadata prefix. The rules for metadata names are the same as for
identifiers, but quoted names are not allowed. "\xx" type escapes
are still valid, which allows any character to be part of a name.

Syntax:

; Some unnamed metadata nodes, which are referenced by the named metadata.
!0 = !{!"zero"}
!1 = !{!"one"}
!2 = !{!"two"}
; A named metadata.
!name = !{!0, !1, !2}

Parameter Attributes

The return type and each parameter of a function type may have a set of
parameter attributes associated with them. Parameter attributes are
used to communicate additional information about the result or
parameters of a function. Parameter attributes are considered to be part
of the function, not of the function type, so functions with different
parameter attributes can have the same function type.

Parameter attributes are simple keywords that follow the type specified.
If multiple parameter attributes are needed, they are space separated.
For example:

declare i32 @printf(i8* noalias nocapture, ...)
declare i32 @atoi(i8 zeroext)
declare signext i8 @returns_signed_char()

Note that any attributes for the function result (nounwind,
readonly) come immediately after the argument list.

Currently, only the following parameter attributes are defined:

	zeroext

	This indicates to the code generator that the parameter or return
value should be zero-extended to the extent required by the target’s
ABI by the caller (for a parameter) or the callee (for a return value).

	signext

	This indicates to the code generator that the parameter or return
value should be sign-extended to the extent required by the target’s
ABI (which is usually 32-bits) by the caller (for a parameter) or
the callee (for a return value).

	inreg

	This indicates that this parameter or return value should be treated
in a special target-dependent fashion while emitting code for
a function call or return (usually, by putting it in a register as
opposed to memory, though some targets use it to distinguish between
two different kinds of registers). Use of this attribute is
target-specific.

	byval

	This indicates that the pointer parameter should really be passed by
value to the function. The attribute implies that a hidden copy of
the pointee is made between the caller and the callee, so the callee
is unable to modify the value in the caller. This attribute is only
valid on LLVM pointer arguments. It is generally used to pass
structs and arrays by value, but is also valid on pointers to
scalars. The copy is considered to belong to the caller not the
callee (for example, readonly functions should not write to
byval parameters). This is not a valid attribute for return
values.

The byval attribute also supports specifying an alignment with the
align attribute. It indicates the alignment of the stack slot to
form and the known alignment of the pointer specified to the call
site. If the alignment is not specified, then the code generator
makes a target-specific assumption.

inalloca

The inalloca argument attribute allows the caller to take the
address of outgoing stack arguments. An inalloca argument must
be a pointer to stack memory produced by an alloca instruction.
The alloca, or argument allocation, must also be tagged with the
inalloca keyword. Only the last argument may have the inalloca
attribute, and that argument is guaranteed to be passed in memory.

An argument allocation may be used by a call at most once because
the call may deallocate it. The inalloca attribute cannot be
used in conjunction with other attributes that affect argument
storage, like inreg, nest, sret, or byval. The
inalloca attribute also disables LLVM’s implicit lowering of
large aggregate return values, which means that frontend authors
must lower them with sret pointers.

When the call site is reached, the argument allocation must have
been the most recent stack allocation that is still live, or the
behavior is undefined. It is possible to allocate additional stack
space after an argument allocation and before its call site, but it
must be cleared off with llvm.stackrestore.

See Design and Usage of the InAlloca Attribute for more information on how to use this
attribute.

	sret

	This indicates that the pointer parameter specifies the address of a
structure that is the return value of the function in the source
program. This pointer must be guaranteed by the caller to be valid:
loads and stores to the structure may be assumed by the callee not
to trap and to be properly aligned. This is not a valid attribute
for return values.

	align <n>

	This indicates that the pointer value may be assumed by the optimizer to
have the specified alignment.

Note that this attribute has additional semantics when combined with the
byval attribute.

	noalias

	This indicates that objects accessed via pointer values
based on the argument or return value are not also
accessed, during the execution of the function, via pointer values not
based on the argument or return value. The attribute on a return value
also has additional semantics described below. The caller shares the
responsibility with the callee for ensuring that these requirements are met.
For further details, please see the discussion of the NoAlias response in
alias analysis.

Note that this definition of noalias is intentionally similar
to the definition of restrict in C99 for function arguments.

For function return values, C99’s restrict is not meaningful,
while LLVM’s noalias is. Furthermore, the semantics of the noalias
attribute on return values are stronger than the semantics of the attribute
when used on function arguments. On function return values, the noalias
attribute indicates that the function acts like a system memory allocation
function, returning a pointer to allocated storage disjoint from the
storage for any other object accessible to the caller.

	nocapture

	This indicates that the callee does not make any copies of the
pointer that outlive the callee itself. This is not a valid
attribute for return values. Addresses used in volatile operations
are considered to be captured.

	nest

	This indicates that the pointer parameter can be excised using the
trampoline intrinsics. This is not a valid
attribute for return values and can only be applied to one parameter.

	returned

	This indicates that the function always returns the argument as its return
value. This is a hint to the optimizer and code generator used when
generating the caller, allowing value propagation, tail call optimization,
and omission of register saves and restores in some cases; it is not
checked or enforced when generating the callee. The parameter and the
function return type must be valid operands for the
bitcast instruction. This is not a valid attribute for
return values and can only be applied to one parameter.

	nonnull

	This indicates that the parameter or return pointer is not null. This
attribute may only be applied to pointer typed parameters. This is not
checked or enforced by LLVM; if the parameter or return pointer is null,
the behavior is undefined.

	dereferenceable(<n>)

	This indicates that the parameter or return pointer is dereferenceable. This
attribute may only be applied to pointer typed parameters. A pointer that
is dereferenceable can be loaded from speculatively without a risk of
trapping. The number of bytes known to be dereferenceable must be provided
in parentheses. It is legal for the number of bytes to be less than the
size of the pointee type. The nonnull attribute does not imply
dereferenceability (consider a pointer to one element past the end of an
array), however dereferenceable(<n>) does imply nonnull in
addrspace(0) (which is the default address space).

	dereferenceable_or_null(<n>)

	This indicates that the parameter or return value isn’t both
non-null and non-dereferenceable (up to <n> bytes) at the same
time. All non-null pointers tagged with
dereferenceable_or_null(<n>) are dereferenceable(<n>).
For address space 0 dereferenceable_or_null(<n>) implies that
a pointer is exactly one of dereferenceable(<n>) or null,
and in other address spaces dereferenceable_or_null(<n>)
implies that a pointer is at least one of dereferenceable(<n>)
or null (i.e. it may be both null and
dereferenceable(<n>)). This attribute may only be applied to
pointer typed parameters.

	swiftself

	This indicates that the parameter is the self/context parameter. This is not
a valid attribute for return values and can only be applied to one
parameter.

	swifterror

	This attribute is motivated to model and optimize Swift error handling. It
can be applied to a parameter with pointer to pointer type or a
pointer-sized alloca. At the call site, the actual argument that corresponds
to a swifterror parameter has to come from a swifterror alloca or
the swifterror parameter of the caller. A swifterror value (either
the parameter or the alloca) can only be loaded and stored from, or used as
a swifterror argument. This is not a valid attribute for return values
and can only be applied to one parameter.

These constraints allow the calling convention to optimize access to
swifterror variables by associating them with a specific register at
call boundaries rather than placing them in memory. Since this does change
the calling convention, a function which uses the swifterror attribute
on a parameter is not ABI-compatible with one which does not.

These constraints also allow LLVM to assume that a swifterror argument
does not alias any other memory visible within a function and that a
swifterror alloca passed as an argument does not escape.

Garbage Collector Strategy Names

Each function may specify a garbage collector strategy name, which is simply a
string:

define void @f() gc "name" { ... }

The supported values of name includes those built in to LLVM and any provided by loaded plugins. Specifying a GC
strategy will cause the compiler to alter its output in order to support the
named garbage collection algorithm. Note that LLVM itself does not contain a
garbage collector, this functionality is restricted to generating machine code
which can interoperate with a collector provided externally.

Prefix Data

Prefix data is data associated with a function which the code
generator will emit immediately before the function’s entrypoint.
The purpose of this feature is to allow frontends to associate
language-specific runtime metadata with specific functions and make it
available through the function pointer while still allowing the
function pointer to be called.

To access the data for a given function, a program may bitcast the
function pointer to a pointer to the constant’s type and dereference
index -1. This implies that the IR symbol points just past the end of
the prefix data. For instance, take the example of a function annotated
with a single i32,

define void @f() prefix i32 123 { ... }

The prefix data can be referenced as,

%0 = bitcast void* () @f to i32*
%a = getelementptr inbounds i32, i32* %0, i32 -1
%b = load i32, i32* %a

Prefix data is laid out as if it were an initializer for a global variable
of the prefix data’s type. The function will be placed such that the
beginning of the prefix data is aligned. This means that if the size
of the prefix data is not a multiple of the alignment size, the
function’s entrypoint will not be aligned. If alignment of the
function’s entrypoint is desired, padding must be added to the prefix
data.

A function may have prefix data but no body. This has similar semantics
to the available_externally linkage in that the data may be used by the
optimizers but will not be emitted in the object file.

Prologue Data

The prologue attribute allows arbitrary code (encoded as bytes) to
be inserted prior to the function body. This can be used for enabling
function hot-patching and instrumentation.

To maintain the semantics of ordinary function calls, the prologue data must
have a particular format. Specifically, it must begin with a sequence of
bytes which decode to a sequence of machine instructions, valid for the
module’s target, which transfer control to the point immediately succeeding
the prologue data, without performing any other visible action. This allows
the inliner and other passes to reason about the semantics of the function
definition without needing to reason about the prologue data. Obviously this
makes the format of the prologue data highly target dependent.

A trivial example of valid prologue data for the x86 architecture is i8 144,
which encodes the nop instruction:

define void @f() prologue i8 144 { ... }

Generally prologue data can be formed by encoding a relative branch instruction
which skips the metadata, as in this example of valid prologue data for the
x86_64 architecture, where the first two bytes encode jmp .+10:

%0 = type <{ i8, i8, i8* }>

define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }

A function may have prologue data but no body. This has similar semantics
to the available_externally linkage in that the data may be used by the
optimizers but will not be emitted in the object file.

Personality Function

The personality attribute permits functions to specify what function
to use for exception handling.

Attribute Groups

Attribute groups are groups of attributes that are referenced by objects within
the IR. They are important for keeping .ll files readable, because a lot of
functions will use the same set of attributes. In the degenerative case of a
.ll file that corresponds to a single .c file, the single attribute
group will capture the important command line flags used to build that file.

An attribute group is a module-level object. To use an attribute group, an
object references the attribute group’s ID (e.g. #37). An object may refer
to more than one attribute group. In that situation, the attributes from the
different groups are merged.

Here is an example of attribute groups for a function that should always be
inlined, has a stack alignment of 4, and which shouldn’t use SSE instructions:

; Target-independent attributes:
attributes #0 = { alwaysinline alignstack=4 }

; Target-dependent attributes:
attributes #1 = { "no-sse" }

; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
define void @f() #0 #1 { ... }

Function Attributes

Function attributes are set to communicate additional information about
a function. Function attributes are considered to be part of the
function, not of the function type, so functions with different function
attributes can have the same function type.

Function attributes are simple keywords that follow the type specified.
If multiple attributes are needed, they are space separated. For
example:

define void @f() noinline { ... }
define void @f() alwaysinline { ... }
define void @f() alwaysinline optsize { ... }
define void @f() optsize { ... }

	alignstack(<n>)

	This attribute indicates that, when emitting the prologue and
epilogue, the backend should forcibly align the stack pointer.
Specify the desired alignment, which must be a power of two, in
parentheses.

	allocsize(<EltSizeParam>[, <NumEltsParam>])

	This attribute indicates that the annotated function will always return at
least a given number of bytes (or null). Its arguments are zero-indexed
parameter numbers; if one argument is provided, then it’s assumed that at
least CallSite.Args[EltSizeParam] bytes will be available at the
returned pointer. If two are provided, then it’s assumed that
CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam] bytes are
available. The referenced parameters must be integer types. No assumptions
are made about the contents of the returned block of memory.

	alwaysinline

	This attribute indicates that the inliner should attempt to inline
this function into callers whenever possible, ignoring any active
inlining size threshold for this caller.

	builtin

	This indicates that the callee function at a call site should be
recognized as a built-in function, even though the function’s declaration
uses the nobuiltin attribute. This is only valid at call sites for
direct calls to functions that are declared with the nobuiltin
attribute.

	cold

	This attribute indicates that this function is rarely called. When
computing edge weights, basic blocks post-dominated by a cold
function call are also considered to be cold; and, thus, given low
weight.

	convergent

	In some parallel execution models, there exist operations that cannot be
made control-dependent on any additional values. We call such operations
convergent, and mark them with this attribute.

The convergent attribute may appear on functions or call/invoke
instructions. When it appears on a function, it indicates that calls to
this function should not be made control-dependent on additional values.
For example, the intrinsic llvm.nvvm.barrier0 is convergent, so
calls to this intrinsic cannot be made control-dependent on additional
values.

When it appears on a call/invoke, the convergent attribute indicates
that we should treat the call as though we’re calling a convergent
function. This is particularly useful on indirect calls; without this we
may treat such calls as though the target is non-convergent.

The optimizer may remove the convergent attribute on functions when it
can prove that the function does not execute any convergent operations.
Similarly, the optimizer may remove convergent on calls/invokes when it
can prove that the call/invoke cannot call a convergent function.

	inaccessiblememonly

	This attribute indicates that the function may only access memory that
is not accessible by the module being compiled. This is a weaker form
of readnone. If the function reads or writes other memory, the
behavior is undefined.

	inaccessiblemem_or_argmemonly

	This attribute indicates that the function may only access memory that is
either not accessible by the module being compiled, or is pointed to
by its pointer arguments. This is a weaker form of argmemonly. If the
function reads or writes other memory, the behavior is undefined.

	inlinehint

	This attribute indicates that the source code contained a hint that
inlining this function is desirable (such as the “inline” keyword in
C/C++). It is just a hint; it imposes no requirements on the
inliner.

	jumptable

	This attribute indicates that the function should be added to a
jump-instruction table at code-generation time, and that all address-taken
references to this function should be replaced with a reference to the
appropriate jump-instruction-table function pointer. Note that this creates
a new pointer for the original function, which means that code that depends
on function-pointer identity can break. So, any function annotated with
jumptable must also be unnamed_addr.

	minsize

	This attribute suggests that optimization passes and code generator
passes make choices that keep the code size of this function as small
as possible and perform optimizations that may sacrifice runtime
performance in order to minimize the size of the generated code.

	naked

	This attribute disables prologue / epilogue emission for the
function. This can have very system-specific consequences.

	no-jump-tables

	When this attribute is set to true, the jump tables and lookup tables that
can be generated from a switch case lowering are disabled.

	nobuiltin

	This indicates that the callee function at a call site is not recognized as
a built-in function. LLVM will retain the original call and not replace it
with equivalent code based on the semantics of the built-in function, unless
the call site uses the builtin attribute. This is valid at call sites
and on function declarations and definitions.

	noduplicate

	This attribute indicates that calls to the function cannot be
duplicated. A call to a noduplicate function may be moved
within its parent function, but may not be duplicated within
its parent function.

A function containing a noduplicate call may still
be an inlining candidate, provided that the call is not
duplicated by inlining. That implies that the function has
internal linkage and only has one call site, so the original
call is dead after inlining.

	noimplicitfloat

	This attributes disables implicit floating-point instructions.

	noinline

	This attribute indicates that the inliner should never inline this
function in any situation. This attribute may not be used together
with the alwaysinline attribute.

	nonlazybind

	This attribute suppresses lazy symbol binding for the function. This
may make calls to the function faster, at the cost of extra program
startup time if the function is not called during program startup.

	noredzone

	This attribute indicates that the code generator should not use a
red zone, even if the target-specific ABI normally permits it.

	noreturn

	This function attribute indicates that the function never returns
normally. This produces undefined behavior at runtime if the
function ever does dynamically return.

	norecurse

	This function attribute indicates that the function does not call itself
either directly or indirectly down any possible call path. This produces
undefined behavior at runtime if the function ever does recurse.

	nounwind

	This function attribute indicates that the function never raises an
exception. If the function does raise an exception, its runtime
behavior is undefined. However, functions marked nounwind may still
trap or generate asynchronous exceptions. Exception handling schemes
that are recognized by LLVM to handle asynchronous exceptions, such
as SEH, will still provide their implementation defined semantics.

	"null-pointer-is-valid"

	If "null-pointer-is-valid" is set to "true", then null address
in address-space 0 is considered to be a valid address for memory loads and
stores. Any analysis or optimization should not treat dereferencing a
pointer to null as undefined behavior in this function.
Note: Comparing address of a global variable to null may still
evaluate to false because of a limitation in querying this attribute inside
constant expressions.

	optforfuzzing

	This attribute indicates that this function should be optimized
for maximum fuzzing signal.

	optnone

	This function attribute indicates that most optimization passes will skip
this function, with the exception of interprocedural optimization passes.
Code generation defaults to the “fast” instruction selector.
This attribute cannot be used together with the alwaysinline
attribute; this attribute is also incompatible
with the minsize attribute and the optsize attribute.

This attribute requires the noinline attribute to be specified on
the function as well, so the function is never inlined into any caller.
Only functions with the alwaysinline attribute are valid
candidates for inlining into the body of this function.

	optsize

	This attribute suggests that optimization passes and code generator
passes make choices that keep the code size of this function low,
and otherwise do optimizations specifically to reduce code size as
long as they do not significantly impact runtime performance.

	"patchable-function"

	This attribute tells the code generator that the code
generated for this function needs to follow certain conventions that
make it possible for a runtime function to patch over it later.
The exact effect of this attribute depends on its string value,
for which there currently is one legal possibility:

	"prologue-short-redirect" - This style of patchable
function is intended to support patching a function prologue to
redirect control away from the function in a thread safe
manner. It guarantees that the first instruction of the
function will be large enough to accommodate a short jump
instruction, and will be sufficiently aligned to allow being
fully changed via an atomic compare-and-swap instruction.
While the first requirement can be satisfied by inserting large
enough NOP, LLVM can and will try to re-purpose an existing
instruction (i.e. one that would have to be emitted anyway) as
the patchable instruction larger than a short jump.

"prologue-short-redirect" is currently only supported on
x86-64.

This attribute by itself does not imply restrictions on
inter-procedural optimizations. All of the semantic effects the
patching may have to be separately conveyed via the linkage type.

	"probe-stack"

	This attribute indicates that the function will trigger a guard region
in the end of the stack. It ensures that accesses to the stack must be
no further apart than the size of the guard region to a previous
access of the stack. It takes one required string value, the name of
the stack probing function that will be called.

If a function that has a "probe-stack" attribute is inlined into
a function with another "probe-stack" attribute, the resulting
function has the "probe-stack" attribute of the caller. If a
function that has a "probe-stack" attribute is inlined into a
function that has no "probe-stack" attribute at all, the resulting
function has the "probe-stack" attribute of the callee.

	readnone

	On a function, this attribute indicates that the function computes its
result (or decides to unwind an exception) based strictly on its arguments,
without dereferencing any pointer arguments or otherwise accessing
any mutable state (e.g. memory, control registers, etc) visible to
caller functions. It does not write through any pointer arguments
(including byval arguments) and never changes any state visible
to callers. This means while it cannot unwind exceptions by calling
the C++ exception throwing methods (since they write to memory), there may
be non-C++ mechanisms that throw exceptions without writing to LLVM
visible memory.

On an argument, this attribute indicates that the function does not
dereference that pointer argument, even though it may read or write the
memory that the pointer points to if accessed through other pointers.

If a readnone function reads or writes memory visible to the program, or
has other side-effects, the behavior is undefined. If a function reads from
or writes to a readnone pointer argument, the behavior is undefined.

	readonly

	On a function, this attribute indicates that the function does not write
through any pointer arguments (including byval arguments) or otherwise
modify any state (e.g. memory, control registers, etc) visible to
caller functions. It may dereference pointer arguments and read
state that may be set in the caller. A readonly function always
returns the same value (or unwinds an exception identically) when
called with the same set of arguments and global state. This means while it
cannot unwind exceptions by calling the C++ exception throwing methods
(since they write to memory), there may be non-C++ mechanisms that throw
exceptions without writing to LLVM visible memory.

On an argument, this attribute indicates that the function does not write
through this pointer argument, even though it may write to the memory that
the pointer points to.

If a readonly function writes memory visible to the program, or
has other side-effects, the behavior is undefined. If a function writes to
a readonly pointer argument, the behavior is undefined.

	"stack-probe-size"

	This attribute controls the behavior of stack probes: either
the "probe-stack" attribute, or ABI-required stack probes, if any.
It defines the size of the guard region. It ensures that if the function
may use more stack space than the size of the guard region, stack probing
sequence will be emitted. It takes one required integer value, which
is 4096 by default.

If a function that has a "stack-probe-size" attribute is inlined into
a function with another "stack-probe-size" attribute, the resulting
function has the "stack-probe-size" attribute that has the lower
numeric value. If a function that has a "stack-probe-size" attribute is
inlined into a function that has no "stack-probe-size" attribute
at all, the resulting function has the "stack-probe-size" attribute
of the callee.

	"no-stack-arg-probe"

	This attribute disables ABI-required stack probes, if any.

	writeonly

	On a function, this attribute indicates that the function may write to but
does not read from memory.

On an argument, this attribute indicates that the function may write to but
does not read through this pointer argument (even though it may read from
the memory that the pointer points to).

If a writeonly function reads memory visible to the program, or
has other side-effects, the behavior is undefined. If a function reads
from a writeonly pointer argument, the behavior is undefined.

	argmemonly

	This attribute indicates that the only memory accesses inside function are
loads and stores from objects pointed to by its pointer-typed arguments,
with arbitrary offsets. Or in other words, all memory operations in the
function can refer to memory only using pointers based on its function
arguments.

Note that argmemonly can be used together with readonly attribute
in order to specify that function reads only from its arguments.

If an argmemonly function reads or writes memory other than the pointer
arguments, or has other side-effects, the behavior is undefined.

	returns_twice

	This attribute indicates that this function can return twice. The C
setjmp is an example of such a function. The compiler disables
some optimizations (like tail calls) in the caller of these
functions.

	safestack

	This attribute indicates that
SafeStack [http://clang.llvm.org/docs/SafeStack.html]
protection is enabled for this function.

If a function that has a safestack attribute is inlined into a
function that doesn’t have a safestack attribute or which has an
ssp, sspstrong or sspreq attribute, then the resulting
function will have a safestack attribute.

	sanitize_address

	This attribute indicates that AddressSanitizer checks
(dynamic address safety analysis) are enabled for this function.

	sanitize_memory

	This attribute indicates that MemorySanitizer checks (dynamic detection
of accesses to uninitialized memory) are enabled for this function.

	sanitize_thread

	This attribute indicates that ThreadSanitizer checks
(dynamic thread safety analysis) are enabled for this function.

	sanitize_hwaddress

	This attribute indicates that HWAddressSanitizer checks
(dynamic address safety analysis based on tagged pointers) are enabled for
this function.

	speculatable

	This function attribute indicates that the function does not have any
effects besides calculating its result and does not have undefined behavior.
Note that speculatable is not enough to conclude that along any
particular execution path the number of calls to this function will not be
externally observable. This attribute is only valid on functions
and declarations, not on individual call sites. If a function is
incorrectly marked as speculatable and really does exhibit
undefined behavior, the undefined behavior may be observed even
if the call site is dead code.

	ssp

	This attribute indicates that the function should emit a stack
smashing protector. It is in the form of a “canary” — a random value
placed on the stack before the local variables that’s checked upon
return from the function to see if it has been overwritten. A
heuristic is used to determine if a function needs stack protectors
or not. The heuristic used will enable protectors for functions with:

	Character arrays larger than ssp-buffer-size (default 8).

	Aggregates containing character arrays larger than ssp-buffer-size.

	Calls to alloca() with variable sizes or constant sizes greater than
ssp-buffer-size.

Variables that are identified as requiring a protector will be arranged
on the stack such that they are adjacent to the stack protector guard.

If a function that has an ssp attribute is inlined into a
function that doesn’t have an ssp attribute, then the resulting
function will have an ssp attribute.

	sspreq

	This attribute indicates that the function should always emit a
stack smashing protector. This overrides the ssp function
attribute.

Variables that are identified as requiring a protector will be arranged
on the stack such that they are adjacent to the stack protector guard.
The specific layout rules are:

	Large arrays and structures containing large arrays
(>= ssp-buffer-size) are closest to the stack protector.

	Small arrays and structures containing small arrays
(< ssp-buffer-size) are 2nd closest to the protector.

	Variables that have had their address taken are 3rd closest to the
protector.

If a function that has an sspreq attribute is inlined into a
function that doesn’t have an sspreq attribute or which has an
ssp or sspstrong attribute, then the resulting function will have
an sspreq attribute.

	sspstrong

	This attribute indicates that the function should emit a stack smashing
protector. This attribute causes a strong heuristic to be used when
determining if a function needs stack protectors. The strong heuristic
will enable protectors for functions with:

	Arrays of any size and type

	Aggregates containing an array of any size and type.

	Calls to alloca().

	Local variables that have had their address taken.

Variables that are identified as requiring a protector will be arranged
on the stack such that they are adjacent to the stack protector guard.
The specific layout rules are:

	Large arrays and structures containing large arrays
(>= ssp-buffer-size) are closest to the stack protector.

	Small arrays and structures containing small arrays
(< ssp-buffer-size) are 2nd closest to the protector.

	Variables that have had their address taken are 3rd closest to the
protector.

This overrides the ssp function attribute.

If a function that has an sspstrong attribute is inlined into a
function that doesn’t have an sspstrong attribute, then the
resulting function will have an sspstrong attribute.

	strictfp

	This attribute indicates that the function was called from a scope that
requires strict floating-point semantics. LLVM will not attempt any
optimizations that require assumptions about the floating-point rounding
mode or that might alter the state of floating-point status flags that
might otherwise be set or cleared by calling this function.

	"thunk"

	This attribute indicates that the function will delegate to some other
function with a tail call. The prototype of a thunk should not be used for
optimization purposes. The caller is expected to cast the thunk prototype to
match the thunk target prototype.

	uwtable

	This attribute indicates that the ABI being targeted requires that
an unwind table entry be produced for this function even if we can
show that no exceptions passes by it. This is normally the case for
the ELF x86-64 abi, but it can be disabled for some compilation
units.

	nocf_check

	This attribute indicates that no control-flow check will be performed on
the attributed entity. It disables -fcf-protection=<> for a specific
entity to fine grain the HW control flow protection mechanism. The flag
is target independent and currently appertains to a function or function
pointer.

	shadowcallstack

	This attribute indicates that the ShadowCallStack checks are enabled for
the function. The instrumentation checks that the return address for the
function has not changed between the function prolog and eiplog. It is
currently x86_64-specific.

Global Attributes

Attributes may be set to communicate additional information about a global variable.
Unlike function attributes, attributes on a global variable
are grouped into a single attribute group.

Operand Bundles

Operand bundles are tagged sets of SSA values that can be associated
with certain LLVM instructions (currently only call s and
invoke s). In a way they are like metadata, but dropping them is
incorrect and will change program semantics.

Syntax:

operand bundle set ::= '[' operand bundle (, operand bundle)* ']'
operand bundle ::= tag '(' [bundle operand] (, bundle operand)* ')'
bundle operand ::= SSA value
tag ::= string constant

Operand bundles are not part of a function’s signature, and a
given function may be called from multiple places with different kinds
of operand bundles. This reflects the fact that the operand bundles
are conceptually a part of the call (or invoke), not the
callee being dispatched to.

Operand bundles are a generic mechanism intended to support
runtime-introspection-like functionality for managed languages. While
the exact semantics of an operand bundle depend on the bundle tag,
there are certain limitations to how much the presence of an operand
bundle can influence the semantics of a program. These restrictions
are described as the semantics of an “unknown” operand bundle. As
long as the behavior of an operand bundle is describable within these
restrictions, LLVM does not need to have special knowledge of the
operand bundle to not miscompile programs containing it.

	The bundle operands for an unknown operand bundle escape in unknown
ways before control is transferred to the callee or invokee.

	Calls and invokes with operand bundles have unknown read / write
effect on the heap on entry and exit (even if the call target is
readnone or readonly), unless they’re overridden with
callsite specific attributes.

	An operand bundle at a call site cannot change the implementation
of the called function. Inter-procedural optimizations work as
usual as long as they take into account the first two properties.

More specific types of operand bundles are described below.

Deoptimization Operand Bundles

Deoptimization operand bundles are characterized by the "deopt"
operand bundle tag. These operand bundles represent an alternate
“safe” continuation for the call site they’re attached to, and can be
used by a suitable runtime to deoptimize the compiled frame at the
specified call site. There can be at most one "deopt" operand
bundle attached to a call site. Exact details of deoptimization is
out of scope for the language reference, but it usually involves
rewriting a compiled frame into a set of interpreted frames.

From the compiler’s perspective, deoptimization operand bundles make
the call sites they’re attached to at least readonly. They read
through all of their pointer typed operands (even if they’re not
otherwise escaped) and the entire visible heap. Deoptimization
operand bundles do not capture their operands except during
deoptimization, in which case control will not be returned to the
compiled frame.

The inliner knows how to inline through calls that have deoptimization
operand bundles. Just like inlining through a normal call site
involves composing the normal and exceptional continuations, inlining
through a call site with a deoptimization operand bundle needs to
appropriately compose the “safe” deoptimization continuation. The
inliner does this by prepending the parent’s deoptimization
continuation to every deoptimization continuation in the inlined body.
E.g. inlining @f into @g in the following example

define void @f() {
 call void @x() ;; no deopt state
 call void @y() ["deopt"(i32 10)]
 call void @y() ["deopt"(i32 10), "unknown"(i8* null)]
 ret void
}

define void @g() {
 call void @f() ["deopt"(i32 20)]
 ret void
}

will result in

define void @g() {
 call void @x() ;; still no deopt state
 call void @y() ["deopt"(i32 20, i32 10)]
 call void @y() ["deopt"(i32 20, i32 10), "unknown"(i8* null)]
 ret void
}

It is the frontend’s responsibility to structure or encode the
deoptimization state in a way that syntactically prepending the
caller’s deoptimization state to the callee’s deoptimization state is
semantically equivalent to composing the caller’s deoptimization
continuation after the callee’s deoptimization continuation.

Funclet Operand Bundles

Funclet operand bundles are characterized by the "funclet"
operand bundle tag. These operand bundles indicate that a call site
is within a particular funclet. There can be at most one
"funclet" operand bundle attached to a call site and it must have
exactly one bundle operand.

If any funclet EH pads have been “entered” but not “exited” (per the
description in the EH doc),
it is undefined behavior to execute a call or invoke which:

	does not have a "funclet" bundle and is not a call to a nounwind
intrinsic, or

	has a "funclet" bundle whose operand is not the most-recently-entered
not-yet-exited funclet EH pad.

Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
executing a call or invoke with a "funclet" bundle is undefined behavior.

GC Transition Operand Bundles

GC transition operand bundles are characterized by the
"gc-transition" operand bundle tag. These operand bundles mark a
call as a transition between a function with one GC strategy to a
function with a different GC strategy. If coordinating the transition
between GC strategies requires additional code generation at the call
site, these bundles may contain any values that are needed by the
generated code. For more details, see GC Transitions.

Module-Level Inline Assembly

Modules may contain “module-level inline asm” blocks, which corresponds
to the GCC “file scope inline asm” blocks. These blocks are internally
concatenated by LLVM and treated as a single unit, but may be separated
in the .ll file if desired. The syntax is very simple:

module asm "inline asm code goes here"
module asm "more can go here"

The strings can contain any character by escaping non-printable
characters. The escape sequence used is simply “\xx” where “xx” is the
two digit hex code for the number.

Note that the assembly string must be parseable by LLVM’s integrated assembler
(unless it is disabled), even when emitting a .s file.

Data Layout

A module may specify a target specific data layout string that specifies
how data is to be laid out in memory. The syntax for the data layout is
simply:

target datalayout = "layout specification"

The layout specification consists of a list of specifications
separated by the minus sign character (‘-‘). Each specification starts
with a letter and may include other information after the letter to
define some aspect of the data layout. The specifications accepted are
as follows:

	E

	Specifies that the target lays out data in big-endian form. That is,
the bits with the most significance have the lowest address
location.

	e

	Specifies that the target lays out data in little-endian form. That
is, the bits with the least significance have the lowest address
location.

	S<size>

	Specifies the natural alignment of the stack in bits. Alignment
promotion of stack variables is limited to the natural stack
alignment to avoid dynamic stack realignment. The stack alignment
must be a multiple of 8-bits. If omitted, the natural stack
alignment defaults to “unspecified”, which does not prevent any
alignment promotions.

	P<address space>

	Specifies the address space that corresponds to program memory.
Harvard architectures can use this to specify what space LLVM
should place things such as functions into. If omitted, the
program memory space defaults to the default address space of 0,
which corresponds to a Von Neumann architecture that has code
and data in the same space.

	A<address space>

	Specifies the address space of objects created by ‘alloca’.
Defaults to the default address space of 0.

	p[n]:<size>:<abi>:<pref>:<idx>

	This specifies the size of a pointer and its <abi> and
<pref>erred alignments for address space n. The fourth parameter
<idx> is a size of index that used for address calculation. If not
specified, the default index size is equal to the pointer size. All sizes
are in bits. The address space, n, is optional, and if not specified,
denotes the default address space 0. The value of n must be
in the range [1,2^23).

	i<size>:<abi>:<pref>

	This specifies the alignment for an integer type of a given bit
<size>. The value of <size> must be in the range [1,2^23).

	v<size>:<abi>:<pref>

	This specifies the alignment for a vector type of a given bit
<size>.

	f<size>:<abi>:<pref>

	This specifies the alignment for a floating-point type of a given bit
<size>. Only values of <size> that are supported by the target
will work. 32 (float) and 64 (double) are supported on all targets; 80
or 128 (different flavors of long double) are also supported on some
targets.

	a:<abi>:<pref>

	This specifies the alignment for an object of aggregate type.

	m:<mangling>

	If present, specifies that llvm names are mangled in the output. Symbols
prefixed with the mangling escape character \01 are passed through
directly to the assembler without the escape character. The mangling style
options are

	e: ELF mangling: Private symbols get a .L prefix.

	m: Mips mangling: Private symbols get a $ prefix.

	o: Mach-O mangling: Private symbols get L prefix. Other
symbols get a _ prefix.

	x: Windows x86 COFF mangling: Private symbols get the usual prefix.
Regular C symbols get a _ prefix. Functions with __stdcall,
__fastcall, and __vectorcall have custom mangling that appends
@N where N is the number of bytes used to pass parameters. C++ symbols
starting with ? are not mangled in any way.

	w: Windows COFF mangling: Similar to x, except that normal C
symbols do not receive a _ prefix.

	n<size1>:<size2>:<size3>...

	This specifies a set of native integer widths for the target CPU in
bits. For example, it might contain n32 for 32-bit PowerPC,
n32:64 for PowerPC 64, or n8:16:32:64 for X86-64. Elements of
this set are considered to support most general arithmetic operations
efficiently.

	ni:<address space0>:<address space1>:<address space2>...

	This specifies pointer types with the specified address spaces
as Non-Integral Pointer Type s. The 0
address space cannot be specified as non-integral.

On every specification that takes a <abi>:<pref>, specifying the
<pref> alignment is optional. If omitted, the preceding :
should be omitted too and <pref> will be equal to <abi>.

When constructing the data layout for a given target, LLVM starts with a
default set of specifications which are then (possibly) overridden by
the specifications in the datalayout keyword. The default
specifications are given in this list:

	E - big endian

	p:64:64:64 - 64-bit pointers with 64-bit alignment.

	p[n]:64:64:64 - Other address spaces are assumed to be the
same as the default address space.

	S0 - natural stack alignment is unspecified

	i1:8:8 - i1 is 8-bit (byte) aligned

	i8:8:8 - i8 is 8-bit (byte) aligned

	i16:16:16 - i16 is 16-bit aligned

	i32:32:32 - i32 is 32-bit aligned

	i64:32:64 - i64 has ABI alignment of 32-bits but preferred
alignment of 64-bits

	f16:16:16 - half is 16-bit aligned

	f32:32:32 - float is 32-bit aligned

	f64:64:64 - double is 64-bit aligned

	f128:128:128 - quad is 128-bit aligned

	v64:64:64 - 64-bit vector is 64-bit aligned

	v128:128:128 - 128-bit vector is 128-bit aligned

	a:0:64 - aggregates are 64-bit aligned

When LLVM is determining the alignment for a given type, it uses the
following rules:

	If the type sought is an exact match for one of the specifications,
that specification is used.

	If no match is found, and the type sought is an integer type, then
the smallest integer type that is larger than the bitwidth of the
sought type is used. If none of the specifications are larger than
the bitwidth then the largest integer type is used. For example,
given the default specifications above, the i7 type will use the
alignment of i8 (next largest) while both i65 and i256 will use the
alignment of i64 (largest specified).

	If no match is found, and the type sought is a vector type, then the
largest vector type that is smaller than the sought vector type will
be used as a fall back. This happens because <128 x double> can be
implemented in terms of 64 <2 x double>, for example.

The function of the data layout string may not be what you expect.
Notably, this is not a specification from the frontend of what alignment
the code generator should use.

Instead, if specified, the target data layout is required to match what
the ultimate code generator expects. This string is used by the
mid-level optimizers to improve code, and this only works if it matches
what the ultimate code generator uses. There is no way to generate IR
that does not embed this target-specific detail into the IR. If you
don’t specify the string, the default specifications will be used to
generate a Data Layout and the optimization phases will operate
accordingly and introduce target specificity into the IR with respect to
these default specifications.

Target Triple

A module may specify a target triple string that describes the target
host. The syntax for the target triple is simply:

target triple = "x86_64-apple-macosx10.7.0"

The target triple string consists of a series of identifiers delimited
by the minus sign character (‘-‘). The canonical forms are:

ARCHITECTURE-VENDOR-OPERATING_SYSTEM
ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT

This information is passed along to the backend so that it generates
code for the proper architecture. It’s possible to override this on the
command line with the -mtriple command line option.

Pointer Aliasing Rules

Any memory access must be done through a pointer value associated with
an address range of the memory access, otherwise the behavior is
undefined. Pointer values are associated with address ranges according
to the following rules:

	A pointer value is associated with the addresses associated with any
value it is based on.

	An address of a global variable is associated with the address range
of the variable’s storage.

	The result value of an allocation instruction is associated with the
address range of the allocated storage.

	A null pointer in the default address-space is associated with no
address.

	An integer constant other than zero or a pointer value returned from
a function not defined within LLVM may be associated with address
ranges allocated through mechanisms other than those provided by
LLVM. Such ranges shall not overlap with any ranges of addresses
allocated by mechanisms provided by LLVM.

A pointer value is based on another pointer value according to the
following rules:

	A pointer value formed from a scalar getelementptr operation is based on
the pointer-typed operand of the getelementptr.

	The pointer in lane l of the result of a vector getelementptr operation
is based on the pointer in lane l of the vector-of-pointers-typed operand
of the getelementptr.

	The result value of a bitcast is based on the operand of the
bitcast.

	A pointer value formed by an inttoptr is based on all pointer
values that contribute (directly or indirectly) to the computation of
the pointer’s value.

	The “based on” relationship is transitive.

Note that this definition of “based” is intentionally similar to the
definition of “based” in C99, though it is slightly weaker.

LLVM IR does not associate types with memory. The result type of a
load merely indicates the size and alignment of the memory from
which to load, as well as the interpretation of the value. The first
operand type of a store similarly only indicates the size and
alignment of the store.

Consequently, type-based alias analysis, aka TBAA, aka
-fstrict-aliasing, is not applicable to general unadorned LLVM IR.
Metadata may be used to encode additional information
which specialized optimization passes may use to implement type-based
alias analysis.

Volatile Memory Accesses

Certain memory accesses, such as load’s,
store’s, and llvm.memcpy’s may be
marked volatile. The optimizers must not change the number of
volatile operations or change their order of execution relative to other
volatile operations. The optimizers may change the order of volatile
operations relative to non-volatile operations. This is not Java’s
“volatile” and has no cross-thread synchronization behavior.

IR-level volatile loads and stores cannot safely be optimized into
llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
flagged volatile. Likewise, the backend should never split or merge
target-legal volatile load/store instructions.

Rationale

Platforms may rely on volatile loads and stores of natively supported
data width to be executed as single instruction. For example, in C
this holds for an l-value of volatile primitive type with native
hardware support, but not necessarily for aggregate types. The
frontend upholds these expectations, which are intentionally
unspecified in the IR. The rules above ensure that IR transformations
do not violate the frontend’s contract with the language.

Memory Model for Concurrent Operations

The LLVM IR does not define any way to start parallel threads of
execution or to register signal handlers. Nonetheless, there are
platform-specific ways to create them, and we define LLVM IR’s behavior
in their presence. This model is inspired by the C++0x memory model.

For a more informal introduction to this model, see the LLVM Atomic Instructions and Concurrency Guide.

We define a happens-before partial order as the least partial order
that

	Is a superset of single-thread program order, and

	When a synchronizes-with b, includes an edge from a to
b. Synchronizes-with pairs are introduced by platform-specific
techniques, like pthread locks, thread creation, thread joining,
etc., and by atomic instructions. (See also Atomic Memory Ordering
Constraints).

Note that program order does not introduce happens-before edges
between a thread and signals executing inside that thread.

Every (defined) read operation (load instructions, memcpy, atomic
loads/read-modify-writes, etc.) R reads a series of bytes written by
(defined) write operations (store instructions, atomic
stores/read-modify-writes, memcpy, etc.). For the purposes of this
section, initialized globals are considered to have a write of the
initializer which is atomic and happens before any other read or write
of the memory in question. For each byte of a read R, Rbyte
may see any write to the same byte, except:

	If write1 happens before write2, and
write2 happens before Rbyte, then
Rbyte does not see write1.

	If Rbyte happens before write3, then
Rbyte does not see write3.

Given that definition, Rbyte is defined as follows:

	If R is volatile, the result is target-dependent. (Volatile is
supposed to give guarantees which can support sig_atomic_t in
C/C++, and may be used for accesses to addresses that do not behave
like normal memory. It does not generally provide cross-thread
synchronization.)

	Otherwise, if there is no write to the same byte that happens before
Rbyte, Rbyte returns undef for that byte.

	Otherwise, if Rbyte may see exactly one write,
Rbyte returns the value written by that write.

	Otherwise, if R is atomic, and all the writes Rbyte may
see are atomic, it chooses one of the values written. See the Atomic
Memory Ordering Constraints section for additional
constraints on how the choice is made.

	Otherwise Rbyte returns undef.

R returns the value composed of the series of bytes it read. This
implies that some bytes within the value may be undef without
the entire value being undef. Note that this only defines the
semantics of the operation; it doesn’t mean that targets will emit more
than one instruction to read the series of bytes.

Note that in cases where none of the atomic intrinsics are used, this
model places only one restriction on IR transformations on top of what
is required for single-threaded execution: introducing a store to a byte
which might not otherwise be stored is not allowed in general.
(Specifically, in the case where another thread might write to and read
from an address, introducing a store can change a load that may see
exactly one write into a load that may see multiple writes.)

Atomic Memory Ordering Constraints

Atomic instructions (cmpxchg,
atomicrmw, fence,
atomic load, and atomic store) take
ordering parameters that determine which other atomic instructions on
the same address they synchronize with. These semantics are borrowed
from Java and C++0x, but are somewhat more colloquial. If these
descriptions aren’t precise enough, check those specs (see spec
references in the atomics guide).
fence instructions treat these orderings somewhat
differently since they don’t take an address. See that instruction’s
documentation for details.

For a simpler introduction to the ordering constraints, see the
LLVM Atomic Instructions and Concurrency Guide.

	unordered

	The set of values that can be read is governed by the happens-before
partial order. A value cannot be read unless some operation wrote
it. This is intended to provide a guarantee strong enough to model
Java’s non-volatile shared variables. This ordering cannot be
specified for read-modify-write operations; it is not strong enough
to make them atomic in any interesting way.

	monotonic

	In addition to the guarantees of unordered, there is a single
total order for modifications by monotonic operations on each
address. All modification orders must be compatible with the
happens-before order. There is no guarantee that the modification
orders can be combined to a global total order for the whole program
(and this often will not be possible). The read in an atomic
read-modify-write operation (cmpxchg and
atomicrmw) reads the value in the modification
order immediately before the value it writes. If one atomic read
happens before another atomic read of the same address, the later
read must see the same value or a later value in the address’s
modification order. This disallows reordering of monotonic (or
stronger) operations on the same address. If an address is written
monotonic-ally by one thread, and other threads monotonic-ally
read that address repeatedly, the other threads must eventually see
the write. This corresponds to the C++0x/C1x
memory_order_relaxed.

	acquire

	In addition to the guarantees of monotonic, a
synchronizes-with edge may be formed with a release operation.
This is intended to model C++’s memory_order_acquire.

	release

	In addition to the guarantees of monotonic, if this operation
writes a value which is subsequently read by an acquire
operation, it synchronizes-with that operation. (This isn’t a
complete description; see the C++0x definition of a release
sequence.) This corresponds to the C++0x/C1x
memory_order_release.

	acq_rel (acquire+release)

	Acts as both an acquire and release operation on its
address. This corresponds to the C++0x/C1x memory_order_acq_rel.

	seq_cst (sequentially consistent)

	In addition to the guarantees of acq_rel (acquire for an
operation that only reads, release for an operation that only
writes), there is a global total order on all
sequentially-consistent operations on all addresses, which is
consistent with the happens-before partial order and with the
modification orders of all the affected addresses. Each
sequentially-consistent read sees the last preceding write to the
same address in this global order. This corresponds to the C++0x/C1x
memory_order_seq_cst and Java volatile.

If an atomic operation is marked syncscope("singlethread"), it only
synchronizes with and only participates in the seq_cst total orderings of
other operations running in the same thread (for example, in signal handlers).

If an atomic operation is marked syncscope("<target-scope>"), where
<target-scope> is a target specific synchronization scope, then it is target
dependent if it synchronizes with and participates in the seq_cst total
orderings of other operations.

Otherwise, an atomic operation that is not marked syncscope("singlethread")
or syncscope("<target-scope>") synchronizes with and participates in the
seq_cst total orderings of other operations that are not marked
syncscope("singlethread") or syncscope("<target-scope>").

Floating-Point Environment

The default LLVM floating-point environment assumes that floating-point
instructions do not have side effects. Results assume the round-to-nearest
rounding mode. No floating-point exception state is maintained in this
environment. Therefore, there is no attempt to create or preserve invalid
operation (SNaN) or division-by-zero exceptions.

The benefit of this exception-free assumption is that floating-point
operations may be speculated freely without any other fast-math relaxations
to the floating-point model.

Code that requires different behavior than this should use the
Constrained Floating-Point Intrinsics.

Fast-Math Flags

LLVM IR floating-point operations (fadd,
fsub, fmul, fdiv,
frem, fcmp) and call
may use the following flags to enable otherwise unsafe
floating-point transformations.

	nnan

	No NaNs - Allow optimizations to assume the arguments and result are not
NaN. If an argument is a nan, or the result would be a nan, it produces
a poison value instead.

	ninf

	No Infs - Allow optimizations to assume the arguments and result are not
+/-Inf. If an argument is +/-Inf, or the result would be +/-Inf, it
produces a poison value instead.

	nsz

	No Signed Zeros - Allow optimizations to treat the sign of a zero
argument or result as insignificant.

	arcp

	Allow Reciprocal - Allow optimizations to use the reciprocal of an
argument rather than perform division.

	contract

	Allow floating-point contraction (e.g. fusing a multiply followed by an
addition into a fused multiply-and-add).

	afn

	Approximate functions - Allow substitution of approximate calculations for
functions (sin, log, sqrt, etc). See floating-point intrinsic definitions
for places where this can apply to LLVM’s intrinsic math functions.

	reassoc

	Allow reassociation transformations for floating-point instructions.
This may dramatically change results in floating-point.

	fast

	This flag implies all of the others.

Use-list Order Directives

Use-list directives encode the in-memory order of each use-list, allowing the
order to be recreated. <order-indexes> is a comma-separated list of
indexes that are assigned to the referenced value’s uses. The referenced
value’s use-list is immediately sorted by these indexes.

Use-list directives may appear at function scope or global scope. They are not
instructions, and have no effect on the semantics of the IR. When they’re at
function scope, they must appear after the terminator of the final basic block.

If basic blocks have their address taken via blockaddress() expressions,
uselistorder_bb can be used to reorder their use-lists from outside their
function’s scope.

	Syntax

	

uselistorder <ty> <value>, { <order-indexes> }
uselistorder_bb @function, %block { <order-indexes> }

	Examples

	

define void @foo(i32 %arg1, i32 %arg2) {
entry:
 ; ... instructions ...
bb:
 ; ... instructions ...

 ; At function scope.
 uselistorder i32 %arg1, { 1, 0, 2 }
 uselistorder label %bb, { 1, 0 }
}

; At global scope.
uselistorder i32* @global, { 1, 2, 0 }
uselistorder i32 7, { 1, 0 }
uselistorder i32 (i32) @bar, { 1, 0 }
uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }

Source Filename

The source filename string is set to the original module identifier,
which will be the name of the compiled source file when compiling from
source through the clang front end, for example. It is then preserved through
the IR and bitcode.

This is currently necessary to generate a consistent unique global
identifier for local functions used in profile data, which prepends the
source file name to the local function name.

The syntax for the source file name is simply:

source_filename = "/path/to/source.c"

Type System

The LLVM type system is one of the most important features of the
intermediate representation. Being typed enables a number of
optimizations to be performed on the intermediate representation
directly, without having to do extra analyses on the side before the
transformation. A strong type system makes it easier to read the
generated code and enables novel analyses and transformations that are
not feasible to perform on normal three address code representations.

Void Type

	Overview

	

The void type does not represent any value and has no size.

	Syntax

	

void

Function Type

	Overview

	

The function type can be thought of as a function signature. It consists of a
return type and a list of formal parameter types. The return type of a function
type is a void type or first class type — except for label
and metadata types.

	Syntax

	

<returntype> (<parameter list>)

…where ‘<parameter list>’ is a comma-separated list of type
specifiers. Optionally, the parameter list may include a type ..., which
indicates that the function takes a variable number of arguments. Variable
argument functions can access their arguments with the variable argument
handling intrinsic functions. ‘<returntype>’ is any type
except label and metadata.

	Examples

	

	i32 (i32)

	function taking an i32, returning an i32

	float (i16, i32 *) *

	Pointer to a function that takes an i16 and a pointer to i32, returning float.

	i32 (i8*, ...)

	A vararg function that takes at least one pointer to i8 (char in C), which returns an integer. This is the signature for printf in LLVM.

	{i32, i32} (i32)

	A function taking an i32, returning a structure containing two i32 values

First Class Types

The first class types are perhaps the most important.
Values of these types are the only ones which can be produced by
instructions.

Single Value Types

These are the types that are valid in registers from CodeGen’s perspective.

Integer Type

	Overview

	

The integer type is a very simple type that simply specifies an
arbitrary bit width for the integer type desired. Any bit width from 1
bit to 223-1 (about 8 million) can be specified.

	Syntax

	

iN

The number of bits the integer will occupy is specified by the N
value.

Examples:

	i1

	a single-bit integer.

	i32

	a 32-bit integer.

	i1942652

	a really big integer of over 1 million bits.

Floating-Point Types

	Type

	Description

	half

	16-bit floating-point value

	float

	32-bit floating-point value

	double

	64-bit floating-point value

	fp128

	128-bit floating-point value (112-bit mantissa)

	x86_fp80

	80-bit floating-point value (X87)

	ppc_fp128

	128-bit floating-point value (two 64-bits)

The binary format of half, float, double, and fp128 correspond to the
IEEE-754-2008 specifications for binary16, binary32, binary64, and binary128
respectively.

X86_mmx Type

	Overview

	

The x86_mmx type represents a value held in an MMX register on an x86
machine. The operations allowed on it are quite limited: parameters and
return values, load and store, and bitcast. User-specified MMX
instructions are represented as intrinsic or asm calls with arguments
and/or results of this type. There are no arrays, vectors or constants
of this type.

	Syntax

	

x86_mmx

Pointer Type

	Overview

	

The pointer type is used to specify memory locations. Pointers are
commonly used to reference objects in memory.

Pointer types may have an optional address space attribute defining the
numbered address space where the pointed-to object resides. The default
address space is number zero. The semantics of non-zero address spaces
are target-specific.

Note that LLVM does not permit pointers to void (void*) nor does it
permit pointers to labels (label*). Use i8* instead.

	Syntax

	

<type> *

	Examples

	

	[4 x i32]*

	A pointer to array of four i32 values.

	i32 (i32*) *

	A pointer to a function that takes an i32*, returning an i32.

	i32 addrspace(5)*

	A pointer to an i32 value that resides in address space #5.

Vector Type

	Overview

	

A vector type is a simple derived type that represents a vector of
elements. Vector types are used when multiple primitive data are
operated in parallel using a single instruction (SIMD). A vector type
requires a size (number of elements) and an underlying primitive data
type. Vector types are considered first class.

	Syntax

	

< <# elements> x <elementtype> >

The number of elements is a constant integer value larger than 0;
elementtype may be any integer, floating-point or pointer type. Vectors
of size zero are not allowed.

	Examples

	

	<4 x i32>

	Vector of 4 32-bit integer values.

	<8 x float>

	Vector of 8 32-bit floating-point values.

	<2 x i64>

	Vector of 2 64-bit integer values.

	<4 x i64*>

	Vector of 4 pointers to 64-bit integer values.

Label Type

	Overview

	

The label type represents code labels.

	Syntax

	

label

Token Type

	Overview

	

The token type is used when a value is associated with an instruction
but all uses of the value must not attempt to introspect or obscure it.
As such, it is not appropriate to have a phi or
select of type token.

	Syntax

	

token

Metadata Type

	Overview

	

The metadata type represents embedded metadata. No derived types may be
created from metadata except for function arguments.

	Syntax

	

metadata

Aggregate Types

Aggregate Types are a subset of derived types that can contain multiple
member types. Arrays and structs are
aggregate types. Vectors are not considered to be
aggregate types.

Array Type

	Overview

	

The array type is a very simple derived type that arranges elements
sequentially in memory. The array type requires a size (number of
elements) and an underlying data type.

	Syntax

	

[<# elements> x <elementtype>]

The number of elements is a constant integer value; elementtype may
be any type with a size.

	Examples

	

	[40 x i32]

	Array of 40 32-bit integer values.

	[41 x i32]

	Array of 41 32-bit integer values.

	[4 x i8]

	Array of 4 8-bit integer values.

Here are some examples of multidimensional arrays:

	[3 x [4 x i32]]

	3x4 array of 32-bit integer values.

	[12 x [10 x float]]

	12x10 array of single precision floating-point values.

	[2 x [3 x [4 x i16]]]

	2x3x4 array of 16-bit integer values.

There is no restriction on indexing beyond the end of the array implied
by a static type (though there are restrictions on indexing beyond the
bounds of an allocated object in some cases). This means that
single-dimension ‘variable sized array’ addressing can be implemented in
LLVM with a zero length array type. An implementation of ‘pascal style
arrays’ in LLVM could use the type “{ i32, [0 x float]}”, for
example.

Structure Type

	Overview

	

The structure type is used to represent a collection of data members
together in memory. The elements of a structure may be any type that has
a size.

Structures in memory are accessed using ‘load’ and ‘store’ by
getting a pointer to a field with the ‘getelementptr’ instruction.
Structures in registers are accessed using the ‘extractvalue’ and
‘insertvalue’ instructions.

Structures may optionally be “packed” structures, which indicate that
the alignment of the struct is one byte, and that there is no padding
between the elements. In non-packed structs, padding between field types
is inserted as defined by the DataLayout string in the module, which is
required to match what the underlying code generator expects.

Structures can either be “literal” or “identified”. A literal structure
is defined inline with other types (e.g. {i32, i32}*) whereas
identified types are always defined at the top level with a name.
Literal types are uniqued by their contents and can never be recursive
or opaque since there is no way to write one. Identified types can be
recursive, can be opaqued, and are never uniqued.

	Syntax

	

%T1 = type { <type list> } ; Identified normal struct type
%T2 = type <{ <type list> }> ; Identified packed struct type

	Examples

	

	{ i32, i32, i32 }

	A triple of three i32 values

	{ float, i32 (i32) * }

	A pair, where the first element is a float and the second element is a pointer to a function that takes an i32, returning an i32.

	<{ i8, i32 }>

	A packed struct known to be 5 bytes in size.

Opaque Structure Types

	Overview

	

Opaque structure types are used to represent named structure types that
do not have a body specified. This corresponds (for example) to the C
notion of a forward declared structure.

	Syntax

	

%X = type opaque
%52 = type opaque

	Examples

	

	opaque

	An opaque type.

Constants

LLVM has several different basic types of constants. This section
describes them all and their syntax.

Simple Constants

	Boolean constants

	The two strings ‘true’ and ‘false’ are both valid constants
of the i1 type.

	Integer constants

	Standard integers (such as ‘4’) are constants of the
integer type. Negative numbers may be used with
integer types.

	Floating-point constants

	Floating-point constants use standard decimal notation (e.g.
123.421), exponential notation (e.g. 1.23421e+2), or a more precise
hexadecimal notation (see below). The assembler requires the exact
decimal value of a floating-point constant. For example, the
assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
decimal in binary. Floating-point constants must have a
floating-point type.

	Null pointer constants

	The identifier ‘null’ is recognized as a null pointer constant
and must be of pointer type.

	Token constants

	The identifier ‘none’ is recognized as an empty token constant
and must be of token type.

The one non-intuitive notation for constants is the hexadecimal form of
floating-point constants. For example, the form
‘double 0x432ff973cafa8000’ is equivalent to (but harder to read
than) ‘double 4.5e+15’. The only time hexadecimal floating-point
constants are required (and the only time that they are generated by the
disassembler) is when a floating-point constant must be emitted but it
cannot be represented as a decimal floating-point number in a reasonable
number of digits. For example, NaN’s, infinities, and other special
values are represented in their IEEE hexadecimal format so that assembly
and disassembly do not cause any bits to change in the constants.

When using the hexadecimal form, constants of types half, float, and
double are represented using the 16-digit form shown above (which
matches the IEEE754 representation for double); half and float values
must, however, be exactly representable as IEEE 754 half and single
precision, respectively. Hexadecimal format is always used for long
double, and there are three forms of long double. The 80-bit format used
by x86 is represented as 0xK followed by 20 hexadecimal digits. The
128-bit format used by PowerPC (two adjacent doubles) is represented by
0xM followed by 32 hexadecimal digits. The IEEE 128-bit format is
represented by 0xL followed by 32 hexadecimal digits. Long doubles
will only work if they match the long double format on your target.
The IEEE 16-bit format (half precision) is represented by 0xH
followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
(sign bit at the left).

There are no constants of type x86_mmx.

Complex Constants

Complex constants are a (potentially recursive) combination of simple
constants and smaller complex constants.

	Structure constants

	Structure constants are represented with notation similar to
structure type definitions (a comma separated list of elements,
surrounded by braces ({})). For example:
“{ i32 4, float 17.0, i32* @G }”, where “@G” is declared as
“@G = external global i32”. Structure constants must have
structure type, and the number and types of elements
must match those specified by the type.

	Array constants

	Array constants are represented with notation similar to array type
definitions (a comma separated list of elements, surrounded by
square brackets ([])). For example:
“[i32 42, i32 11, i32 74]”. Array constants must have
array type, and the number and types of elements must
match those specified by the type. As a special case, character array
constants may also be represented as a double-quoted string using the c
prefix. For example: “c"Hello World\0A\00"”.

	Vector constants

	Vector constants are represented with notation similar to vector
type definitions (a comma separated list of elements, surrounded by
less-than/greater-than’s (<>)). For example:
“< i32 42, i32 11, i32 74, i32 100 >”. Vector constants
must have vector type, and the number and types of
elements must match those specified by the type.

	Zero initialization

	The string ‘zeroinitializer’ can be used to zero initialize a
value to zero of any type, including scalar and
aggregate types. This is often used to avoid
having to print large zero initializers (e.g. for large arrays) and
is always exactly equivalent to using explicit zero initializers.

	Metadata node

	A metadata node is a constant tuple without types. For example:
“!{!0, !{!2, !0}, !"test"}”. Metadata can reference constant values,
for example: “!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}”.
Unlike other typed constants that are meant to be interpreted as part of
the instruction stream, metadata is a place to attach additional
information such as debug info.

Global Variable and Function Addresses

The addresses of global variables and
functions are always implicitly valid
(link-time) constants. These constants are explicitly referenced when
the identifier for the global is used and always have
pointer type. For example, the following is a legal LLVM
file:

@X = global i32 17
@Y = global i32 42
@Z = global [2 x i32*] [i32* @X, i32* @Y]

Undefined Values

The string ‘undef’ can be used anywhere a constant is expected, and
indicates that the user of the value may receive an unspecified
bit-pattern. Undefined values may be of any type (other than ‘label’
or ‘void’) and be used anywhere a constant is permitted.

Undefined values are useful because they indicate to the compiler that
the program is well defined no matter what value is used. This gives the
compiler more freedom to optimize. Here are some examples of
(potentially surprising) transformations that are valid (in pseudo IR):

 %A = add %X, undef
 %B = sub %X, undef
 %C = xor %X, undef
Safe:
 %A = undef
 %B = undef
 %C = undef

This is safe because all of the output bits are affected by the undef
bits. Any output bit can have a zero or one depending on the input bits.

 %A = or %X, undef
 %B = and %X, undef
Safe:
 %A = -1
 %B = 0
Safe:
 %A = %X ;; By choosing undef as 0
 %B = %X ;; By choosing undef as -1
Unsafe:
 %A = undef
 %B = undef

These logical operations have bits that are not always affected by the
input. For example, if %X has a zero bit, then the output of the
‘and’ operation will always be a zero for that bit, no matter what
the corresponding bit from the ‘undef’ is. As such, it is unsafe to
optimize or assume that the result of the ‘and’ is ‘undef’.
However, it is safe to assume that all bits of the ‘undef’ could be
0, and optimize the ‘and’ to 0. Likewise, it is safe to assume that
all the bits of the ‘undef’ operand to the ‘or’ could be set,
allowing the ‘or’ to be folded to -1.

 %A = select undef, %X, %Y
 %B = select undef, 42, %Y
 %C = select %X, %Y, undef
Safe:
 %A = %X (or %Y)
 %B = 42 (or %Y)
 %C = %Y
Unsafe:
 %A = undef
 %B = undef
 %C = undef

This set of examples shows that undefined ‘select’ (and conditional
branch) conditions can go either way, but they have to come from one
of the two operands. In the %A example, if %X and %Y were
both known to have a clear low bit, then %A would have to have a
cleared low bit. However, in the %C example, the optimizer is
allowed to assume that the ‘undef’ operand could be the same as
%Y, allowing the whole ‘select’ to be eliminated.

 %A = xor undef, undef

 %B = undef
 %C = xor %B, %B

 %D = undef
 %E = icmp slt %D, 4
 %F = icmp gte %D, 4

Safe:
 %A = undef
 %B = undef
 %C = undef
 %D = undef
 %E = undef
 %F = undef

This example points out that two ‘undef’ operands are not
necessarily the same. This can be surprising to people (and also matches
C semantics) where they assume that “X^X” is always zero, even if
X is undefined. This isn’t true for a number of reasons, but the
short answer is that an ‘undef’ “variable” can arbitrarily change
its value over its “live range”. This is true because the variable
doesn’t actually have a live range. Instead, the value is logically
read from arbitrary registers that happen to be around when needed, so
the value is not necessarily consistent over time. In fact, %A and
%C need to have the same semantics or the core LLVM “replace all
uses with” concept would not hold.

 %A = sdiv undef, %X
 %B = sdiv %X, undef
Safe:
 %A = 0
b: unreachable

These examples show the crucial difference between an undefined value
and undefined behavior. An undefined value (like ‘undef’) is
allowed to have an arbitrary bit-pattern. This means that the %A
operation can be constant folded to ‘0’, because the ‘undef’
could be zero, and zero divided by any value is zero.
However, in the second example, we can make a more aggressive
assumption: because the undef is allowed to be an arbitrary value,
we are allowed to assume that it could be zero. Since a divide by zero
has undefined behavior, we are allowed to assume that the operation
does not execute at all. This allows us to delete the divide and all
code after it. Because the undefined operation “can’t happen”, the
optimizer can assume that it occurs in dead code.

a: store undef -> %X
b: store %X -> undef
Safe:
a: <deleted>
b: unreachable

A store of an undefined value can be assumed to not have any effect;
we can assume that the value is overwritten with bits that happen to
match what was already there. However, a store to an undefined
location could clobber arbitrary memory, therefore, it has undefined
behavior.

Poison Values

Poison values are similar to undef values, however
they also represent the fact that an instruction or constant expression
that cannot evoke side effects has nevertheless detected a condition
that results in undefined behavior.

There is currently no way of representing a poison value in the IR; they
only exist when produced by operations such as add with
the nsw flag.

Poison value behavior is defined in terms of value dependence:

	Values other than phi nodes depend on their operands.

	Phi nodes depend on the operand corresponding to
their dynamic predecessor basic block.

	Function arguments depend on the corresponding actual argument values
in the dynamic callers of their functions.

	Call instructions depend on the ret
instructions that dynamically transfer control back to them.

	Invoke instructions depend on the
ret, resume, or exception-throwing
call instructions that dynamically transfer control back to them.

	Non-volatile loads and stores depend on the most recent stores to all
of the referenced memory addresses, following the order in the IR
(including loads and stores implied by intrinsics such as
@llvm.memcpy.)

	An instruction with externally visible side effects depends on the
most recent preceding instruction with externally visible side
effects, following the order in the IR. (This includes volatile
operations.)

	An instruction control-depends on a terminator
instruction if the terminator instruction has
multiple successors and the instruction is always executed when
control transfers to one of the successors, and may not be executed
when control is transferred to another.

	Additionally, an instruction also control-depends on a terminator
instruction if the set of instructions it otherwise depends on would
be different if the terminator had transferred control to a different
successor.

	Dependence is transitive.

Poison values have the same behavior as undef values,
with the additional effect that any instruction that has a dependence
on a poison value has undefined behavior.

Here are some examples:

entry:
 %poison = sub nuw i32 0, 1 ; Results in a poison value.
 %still_poison = and i32 %poison, 0 ; 0, but also poison.
 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned

 store i32 %poison, i32* @g ; Poison value stored to memory.
 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.

 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.

 %narrowaddr = bitcast i32* @g to i16*
 %wideaddr = bitcast i32* @g to i64*
 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.

 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
 br i1 %cmp, label %true, label %end ; Branch to either destination.

true:
 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
 ; it has undefined behavior.
 br label %end

end:
 %p = phi i32 [0, %entry], [1, %true]
 ; Both edges into this PHI are
 ; control-dependent on %cmp, so this
 ; always results in a poison value.

 store volatile i32 0, i32* @g ; This would depend on the store in %true
 ; if %cmp is true, or the store in %entry
 ; otherwise, so this is undefined behavior.

 br i1 %cmp, label %second_true, label %second_end
 ; The same branch again, but this time the
 ; true block doesn't have side effects.

second_true:
 ; No side effects!
 ret void

second_end:
 store volatile i32 0, i32* @g ; This time, the instruction always depends
 ; on the store in %end. Also, it is
 ; control-equivalent to %end, so this is
 ; well-defined (ignoring earlier undefined
 ; behavior in this example).

Addresses of Basic Blocks

blockaddress(@function, %block)

The ‘blockaddress’ constant computes the address of the specified
basic block in the specified function, and always has an i8* type.
Taking the address of the entry block is illegal.

This value only has defined behavior when used as an operand to the
‘indirectbr’ instruction, or for comparisons
against null. Pointer equality tests between labels addresses results in
undefined behavior — though, again, comparison against null is ok, and
no label is equal to the null pointer. This may be passed around as an
opaque pointer sized value as long as the bits are not inspected. This
allows ptrtoint and arithmetic to be performed on these values so
long as the original value is reconstituted before the indirectbr
instruction.

Finally, some targets may provide defined semantics when using the value
as the operand to an inline assembly, but that is target specific.

Constant Expressions

Constant expressions are used to allow expressions involving other
constants to be used as constants. Constant expressions may be of any
first class type and may involve any LLVM operation
that does not have side effects (e.g. load and call are not supported).
The following is the syntax for constant expressions:

	trunc (CST to TYPE)

	Perform the trunc operation on constants.

	zext (CST to TYPE)

	Perform the zext operation on constants.

	sext (CST to TYPE)

	Perform the sext operation on constants.

	fptrunc (CST to TYPE)

	Truncate a floating-point constant to another floating-point type.
The size of CST must be larger than the size of TYPE. Both types
must be floating-point.

	fpext (CST to TYPE)

	Floating-point extend a constant to another type. The size of CST
must be smaller or equal to the size of TYPE. Both types must be
floating-point.

	fptoui (CST to TYPE)

	Convert a floating-point constant to the corresponding unsigned
integer constant. TYPE must be a scalar or vector integer type. CST
must be of scalar or vector floating-point type. Both CST and TYPE
must be scalars, or vectors of the same number of elements. If the
value won’t fit in the integer type, the result is a
poison value.

	fptosi (CST to TYPE)

	Convert a floating-point constant to the corresponding signed
integer constant. TYPE must be a scalar or vector integer type. CST
must be of scalar or vector floating-point type. Both CST and TYPE
must be scalars, or vectors of the same number of elements. If the
value won’t fit in the integer type, the result is a
poison value.

	uitofp (CST to TYPE)

	Convert an unsigned integer constant to the corresponding
floating-point constant. TYPE must be a scalar or vector floating-point
type. CST must be of scalar or vector integer type. Both CST and TYPE must
be scalars, or vectors of the same number of elements.

	sitofp (CST to TYPE)

	Convert a signed integer constant to the corresponding floating-point
constant. TYPE must be a scalar or vector floating-point type.
CST must be of scalar or vector integer type. Both CST and TYPE must
be scalars, or vectors of the same number of elements.

	ptrtoint (CST to TYPE)

	Perform the ptrtoint operation on constants.

	inttoptr (CST to TYPE)

	Perform the inttoptr operation on constants.
This one is really dangerous!

	bitcast (CST to TYPE)

	Convert a constant, CST, to another TYPE.
The constraints of the operands are the same as those for the
bitcast instruction.

	addrspacecast (CST to TYPE)

	Convert a constant pointer or constant vector of pointer, CST, to another
TYPE in a different address space. The constraints of the operands are the
same as those for the addrspacecast instruction.

	getelementptr (TY, CSTPTR, IDX0, IDX1, ...), getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)

	Perform the getelementptr operation on
constants. As with the getelementptr
instruction, the index list may have one or more indexes, which are
required to make sense for the type of “pointer to TY”.

	select (COND, VAL1, VAL2)

	Perform the select operation on constants.

	icmp COND (VAL1, VAL2)

	Perform the icmp operation on constants.

	fcmp COND (VAL1, VAL2)

	Perform the fcmp operation on constants.

	extractelement (VAL, IDX)

	Perform the extractelement operation on
constants.

	insertelement (VAL, ELT, IDX)

	Perform the insertelement operation on
constants.

	shufflevector (VEC1, VEC2, IDXMASK)

	Perform the shufflevector operation on
constants.

	extractvalue (VAL, IDX0, IDX1, ...)

	Perform the extractvalue operation on
constants. The index list is interpreted in a similar manner as
indices in a ‘getelementptr’ operation. At
least one index value must be specified.

	insertvalue (VAL, ELT, IDX0, IDX1, ...)

	Perform the insertvalue operation on constants.
The index list is interpreted in a similar manner as indices in a
‘getelementptr’ operation. At least one index
value must be specified.

	OPCODE (LHS, RHS)

	Perform the specified operation of the LHS and RHS constants. OPCODE
may be any of the binary or bitwise
binary operations. The constraints on operands are
the same as those for the corresponding instruction (e.g. no bitwise
operations on floating-point values are allowed).

Other Values

Inline Assembler Expressions

LLVM supports inline assembler expressions (as opposed to Module-Level
Inline Assembly) through the use of a special value. This value
represents the inline assembler as a template string (containing the
instructions to emit), a list of operand constraints (stored as a string), a
flag that indicates whether or not the inline asm expression has side effects,
and a flag indicating whether the function containing the asm needs to align its
stack conservatively.

The template string supports argument substitution of the operands using “$”
followed by a number, to indicate substitution of the given register/memory
location, as specified by the constraint string. “${NUM:MODIFIER}” may also
be used, where MODIFIER is a target-specific annotation for how to print the
operand (See Asm template argument modifiers).

A literal “$” may be included by using “$$” in the template. To include
other special characters into the output, the usual “\XX” escapes may be
used, just as in other strings. Note that after template substitution, the
resulting assembly string is parsed by LLVM’s integrated assembler unless it is
disabled – even when emitting a .s file – and thus must contain assembly
syntax known to LLVM.

LLVM also supports a few more substitions useful for writing inline assembly:

	${:uid}: Expands to a decimal integer unique to this inline assembly blob.
This substitution is useful when declaring a local label. Many standard
compiler optimizations, such as inlining, may duplicate an inline asm blob.
Adding a blob-unique identifier ensures that the two labels will not conflict
during assembly. This is used to implement GCC’s %= special format
string [https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html].

	${:comment}: Expands to the comment character of the current target’s
assembly dialect. This is usually #, but many targets use other strings,
such as ;, //, or !.

	${:private}: Expands to the assembler private label prefix. Labels with
this prefix will not appear in the symbol table of the assembled object.
Typically the prefix is L, but targets may use other strings. .L is
relatively popular.

LLVM’s support for inline asm is modeled closely on the requirements of Clang’s
GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
modifier codes listed here are similar or identical to those in GCC’s inline asm
support. However, to be clear, the syntax of the template and constraint strings
described here is not the same as the syntax accepted by GCC and Clang, and,
while most constraint letters are passed through as-is by Clang, some get
translated to other codes when converting from the C source to the LLVM
assembly.

An example inline assembler expression is:

i32 (i32) asm "bswap $0", "=r,r"

Inline assembler expressions may only be used as the callee operand
of a call or an invoke instruction.
Thus, typically we have:

%X = call i32 asm "bswap $0", "=r,r"(i32 %Y)

Inline asms with side effects not visible in the constraint list must be
marked as having side effects. This is done through the use of the
‘sideeffect’ keyword, like so:

call void asm sideeffect "eieio", ""()

In some cases inline asms will contain code that will not work unless
the stack is aligned in some way, such as calls or SSE instructions on
x86, yet will not contain code that does that alignment within the asm.
The compiler should make conservative assumptions about what the asm
might contain and should generate its usual stack alignment code in the
prologue if the ‘alignstack’ keyword is present:

call void asm alignstack "eieio", ""()

Inline asms also support using non-standard assembly dialects. The
assumed dialect is ATT. When the ‘inteldialect’ keyword is present,
the inline asm is using the Intel dialect. Currently, ATT and Intel are
the only supported dialects. An example is:

call void asm inteldialect "eieio", ""()

If multiple keywords appear the ‘sideeffect’ keyword must come
first, the ‘alignstack’ keyword second and the ‘inteldialect’
keyword last.

Inline Asm Constraint String

The constraint list is a comma-separated string, each element containing one or
more constraint codes.

For each element in the constraint list an appropriate register or memory
operand will be chosen, and it will be made available to assembly template
string expansion as $0 for the first constraint in the list, $1 for the
second, etc.

There are three different types of constraints, which are distinguished by a
prefix symbol in front of the constraint code: Output, Input, and Clobber. The
constraints must always be given in that order: outputs first, then inputs, then
clobbers. They cannot be intermingled.

There are also three different categories of constraint codes:

	Register constraint. This is either a register class, or a fixed physical
register. This kind of constraint will allocate a register, and if necessary,
bitcast the argument or result to the appropriate type.

	Memory constraint. This kind of constraint is for use with an instruction
taking a memory operand. Different constraints allow for different addressing
modes used by the target.

	Immediate value constraint. This kind of constraint is for an integer or other
immediate value which can be rendered directly into an instruction. The
various target-specific constraints allow the selection of a value in the
proper range for the instruction you wish to use it with.

Output constraints

Output constraints are specified by an “=” prefix (e.g. “=r”). This
indicates that the assembly will write to this operand, and the operand will
then be made available as a return value of the asm expression. Output
constraints do not consume an argument from the call instruction. (Except, see
below about indirect outputs).

Normally, it is expected that no output locations are written to by the assembly
expression until all of the inputs have been read. As such, LLVM may assign
the same register to an output and an input. If this is not safe (e.g. if the
assembly contains two instructions, where the first writes to one output, and
the second reads an input and writes to a second output), then the “&”
modifier must be used (e.g. “=&r”) to specify that the output is an
“early-clobber” output. Marking an output as “early-clobber” ensures that LLVM
will not use the same register for any inputs (other than an input tied to this
output).

Input constraints

Input constraints do not have a prefix – just the constraint codes. Each input
constraint will consume one argument from the call instruction. It is not
permitted for the asm to write to any input register or memory location (unless
that input is tied to an output). Note also that multiple inputs may all be
assigned to the same register, if LLVM can determine that they necessarily all
contain the same value.

Instead of providing a Constraint Code, input constraints may also “tie”
themselves to an output constraint, by providing an integer as the constraint
string. Tied inputs still consume an argument from the call instruction, and
take up a position in the asm template numbering as is usual – they will simply
be constrained to always use the same register as the output they’ve been tied
to. For example, a constraint string of “=r,0” says to assign a register for
output, and use that register as an input as well (it being the 0’th
constraint).

It is permitted to tie an input to an “early-clobber” output. In that case, no
other input may share the same register as the input tied to the early-clobber
(even when the other input has the same value).

You may only tie an input to an output which has a register constraint, not a
memory constraint. Only a single input may be tied to an output.

There is also an “interesting” feature which deserves a bit of explanation: if a
register class constraint allocates a register which is too small for the value
type operand provided as input, the input value will be split into multiple
registers, and all of them passed to the inline asm.

However, this feature is often not as useful as you might think.

Firstly, the registers are not guaranteed to be consecutive. So, on those
architectures that have instructions which operate on multiple consecutive
instructions, this is not an appropriate way to support them. (e.g. the 32-bit
SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
hardware then loads into both the named register, and the next register. This
feature of inline asm would not be useful to support that.)

A few of the targets provide a template string modifier allowing explicit access
to the second register of a two-register operand (e.g. MIPS L, M, and
D). On such an architecture, you can actually access the second allocated
register (yet, still, not any subsequent ones). But, in that case, you’re still
probably better off simply splitting the value into two separate operands, for
clarity. (e.g. see the description of the A constraint on X86, which,
despite existing only for use with this feature, is not really a good idea to
use)

Indirect inputs and outputs

Indirect output or input constraints can be specified by the “*” modifier
(which goes after the “=” in case of an output). This indicates that the asm
will write to or read from the contents of an address provided as an input
argument. (Note that in this way, indirect outputs act more like an input than
an output: just like an input, they consume an argument of the call expression,
rather than producing a return value. An indirect output constraint is an
“output” only in that the asm is expected to write to the contents of the input
memory location, instead of just read from it).

This is most typically used for memory constraint, e.g. “=*m”, to pass the
address of a variable as a value.

It is also possible to use an indirect register constraint, but only on output
(e.g. “=*r”). This will cause LLVM to allocate a register for an output
value normally, and then, separately emit a store to the address provided as
input, after the provided inline asm. (It’s not clear what value this
functionality provides, compared to writing the store explicitly after the asm
statement, and it can only produce worse code, since it bypasses many
optimization passes. I would recommend not using it.)

Clobber constraints

A clobber constraint is indicated by a “~” prefix. A clobber does not
consume an input operand, nor generate an output. Clobbers cannot use any of the
general constraint code letters – they may use only explicit register
constraints, e.g. “~{eax}”. The one exception is that a clobber string of
“~{memory}” indicates that the assembly writes to arbitrary undeclared
memory locations – not only the memory pointed to by a declared indirect
output.

Note that clobbering named registers that are also present in output
constraints is not legal.

Constraint Codes

After a potential prefix comes constraint code, or codes.

A Constraint Code is either a single letter (e.g. “r”), a “^” character
followed by two letters (e.g. “^wc”), or “{” register-name “}”
(e.g. “{eax}”).

The one and two letter constraint codes are typically chosen to be the same as
GCC’s constraint codes.

A single constraint may include one or more than constraint code in it, leaving
it up to LLVM to choose which one to use. This is included mainly for
compatibility with the translation of GCC inline asm coming from clang.

There are two ways to specify alternatives, and either or both may be used in an
inline asm constraint list:

	Append the codes to each other, making a constraint code set. E.g. “im”
or “{eax}m”. This means “choose any of the options in the set”. The
choice of constraint is made independently for each constraint in the
constraint list.

	Use “|” between constraint code sets, creating alternatives. Every
constraint in the constraint list must have the same number of alternative
sets. With this syntax, the same alternative in all of the items in the
constraint list will be chosen together.

Putting those together, you might have a two operand constraint string like
"rm|r,ri|rm". This indicates that if operand 0 is r or m, then
operand 1 may be one of r or i. If operand 0 is r, then operand 1
may be one of r or m. But, operand 0 and 1 cannot both be of type m.

However, the use of either of the alternatives features is NOT recommended, as
LLVM is not able to make an intelligent choice about which one to use. (At the
point it currently needs to choose, not enough information is available to do so
in a smart way.) Thus, it simply tries to make a choice that’s most likely to
compile, not one that will be optimal performance. (e.g., given “rm”, it’ll
always choose to use memory, not registers). And, if given multiple registers,
or multiple register classes, it will simply choose the first one. (In fact, it
doesn’t currently even ensure explicitly specified physical registers are
unique, so specifying multiple physical registers as alternatives, like
{r11}{r12},{r11}{r12}, will assign r11 to both operands, not at all what was
intended.)

Supported Constraint Code List

The constraint codes are, in general, expected to behave the same way they do in
GCC. LLVM’s support is often implemented on an ‘as-needed’ basis, to support C
inline asm code which was supported by GCC. A mismatch in behavior between LLVM
and GCC likely indicates a bug in LLVM.

Some constraint codes are typically supported by all targets:

	r: A register in the target’s general purpose register class.

	m: A memory address operand. It is target-specific what addressing modes
are supported, typical examples are register, or register + register offset,
or register + immediate offset (of some target-specific size).

	i: An integer constant (of target-specific width). Allows either a simple
immediate, or a relocatable value.

	n: An integer constant – not including relocatable values.

	s: An integer constant, but allowing only relocatable values.

	X: Allows an operand of any kind, no constraint whatsoever. Typically
useful to pass a label for an asm branch or call.

	{register-name}: Requires exactly the named physical register.

Other constraints are target-specific:

AArch64:

	z: An immediate integer 0. Outputs WZR or XZR, as appropriate.

	I: An immediate integer valid for an ADD or SUB instruction,
i.e. 0 to 4095 with optional shift by 12.

	J: An immediate integer that, when negated, is valid for an ADD or
SUB instruction, i.e. -1 to -4095 with optional left shift by 12.

	K: An immediate integer that is valid for the ‘bitmask immediate 32’ of a
logical instruction like AND, EOR, or ORR with a 32-bit register.

	L: An immediate integer that is valid for the ‘bitmask immediate 64’ of a
logical instruction like AND, EOR, or ORR with a 64-bit register.

	M: An immediate integer for use with the MOV assembly alias on a
32-bit register. This is a superset of K: in addition to the bitmask
immediate, also allows immediate integers which can be loaded with a single
MOVZ or MOVL instruction.

	N: An immediate integer for use with the MOV assembly alias on a
64-bit register. This is a superset of L.

	Q: Memory address operand must be in a single register (no
offsets). (However, LLVM currently does this for the m constraint as
well.)

	r: A 32 or 64-bit integer register (W* or X*).

	w: A 32, 64, or 128-bit floating-point/SIMD register.

	x: A lower 128-bit floating-point/SIMD register (V0 to V15).

AMDGPU:

	r: A 32 or 64-bit integer register.

	[0-9]v: The 32-bit VGPR register, number 0-9.

	[0-9]s: The 32-bit SGPR register, number 0-9.

All ARM modes:

	Q, Um, Un, Uq, Us, Ut, Uv, Uy: Memory address
operand. Treated the same as operand m, at the moment.

ARM and ARM’s Thumb2 mode:

	j: An immediate integer between 0 and 65535 (valid for MOVW)

	I: An immediate integer valid for a data-processing instruction.

	J: An immediate integer between -4095 and 4095.

	K: An immediate integer whose bitwise inverse is valid for a
data-processing instruction. (Can be used with template modifier “B” to
print the inverted value).

	L: An immediate integer whose negation is valid for a data-processing
instruction. (Can be used with template modifier “n” to print the negated
value).

	M: A power of two or a integer between 0 and 32.

	N: Invalid immediate constraint.

	O: Invalid immediate constraint.

	r: A general-purpose 32-bit integer register (r0-r15).

	l: In Thumb2 mode, low 32-bit GPR registers (r0-r7). In ARM mode, same
as r.

	h: In Thumb2 mode, a high 32-bit GPR register (r8-r15). In ARM mode,
invalid.

	w: A 32, 64, or 128-bit floating-point/SIMD register: s0-s31,
d0-d31, or q0-q15.

	x: A 32, 64, or 128-bit floating-point/SIMD register: s0-s15,
d0-d7, or q0-q3.

	t: A low floating-point/SIMD register: s0-s31, d0-d16, or
q0-q8.

ARM’s Thumb1 mode:

	I: An immediate integer between 0 and 255.

	J: An immediate integer between -255 and -1.

	K: An immediate integer between 0 and 255, with optional left-shift by
some amount.

	L: An immediate integer between -7 and 7.

	M: An immediate integer which is a multiple of 4 between 0 and 1020.

	N: An immediate integer between 0 and 31.

	O: An immediate integer which is a multiple of 4 between -508 and 508.

	r: A low 32-bit GPR register (r0-r7).

	l: A low 32-bit GPR register (r0-r7).

	h: A high GPR register (r0-r7).

	w: A 32, 64, or 128-bit floating-point/SIMD register: s0-s31,
d0-d31, or q0-q15.

	x: A 32, 64, or 128-bit floating-point/SIMD register: s0-s15,
d0-d7, or q0-q3.

	t: A low floating-point/SIMD register: s0-s31, d0-d16, or
q0-q8.

Hexagon:

	o, v: A memory address operand, treated the same as constraint m,
at the moment.

	r: A 32 or 64-bit register.

MSP430:

	r: An 8 or 16-bit register.

MIPS:

	I: An immediate signed 16-bit integer.

	J: An immediate integer zero.

	K: An immediate unsigned 16-bit integer.

	L: An immediate 32-bit integer, where the lower 16 bits are 0.

	N: An immediate integer between -65535 and -1.

	O: An immediate signed 15-bit integer.

	P: An immediate integer between 1 and 65535.

	m: A memory address operand. In MIPS-SE mode, allows a base address
register plus 16-bit immediate offset. In MIPS mode, just a base register.

	R: A memory address operand. In MIPS-SE mode, allows a base address
register plus a 9-bit signed offset. In MIPS mode, the same as constraint
m.

	ZC: A memory address operand, suitable for use in a pref, ll, or
sc instruction on the given subtarget (details vary).

	r, d, y: A 32 or 64-bit GPR register.

	f: A 32 or 64-bit FPU register (F0-F31), or a 128-bit MSA register
(W0-W31). In the case of MSA registers, it is recommended to use the w
argument modifier for compatibility with GCC.

	c: A 32-bit or 64-bit GPR register suitable for indirect jump (always
25).

	l: The lo register, 32 or 64-bit.

	x: Invalid.

NVPTX:

	b: A 1-bit integer register.

	c or h: A 16-bit integer register.

	r: A 32-bit integer register.

	l or N: A 64-bit integer register.

	f: A 32-bit float register.

	d: A 64-bit float register.

PowerPC:

	I: An immediate signed 16-bit integer.

	J: An immediate unsigned 16-bit integer, shifted left 16 bits.

	K: An immediate unsigned 16-bit integer.

	L: An immediate signed 16-bit integer, shifted left 16 bits.

	M: An immediate integer greater than 31.

	N: An immediate integer that is an exact power of 2.

	O: The immediate integer constant 0.

	P: An immediate integer constant whose negation is a signed 16-bit
constant.

	es, o, Q, Z, Zy: A memory address operand, currently
treated the same as m.

	r: A 32 or 64-bit integer register.

	b: A 32 or 64-bit integer register, excluding R0 (that is:
R1-R31).

	f: A 32 or 64-bit float register (F0-F31), or when QPX is enabled, a
128 or 256-bit QPX register (Q0-Q31; aliases the F registers).

	v: For 4 x f32 or 4 x f64 types, when QPX is enabled, a
128 or 256-bit QPX register (Q0-Q31), otherwise a 128-bit
altivec vector register (V0-V31).

	y: Condition register (CR0-CR7).

	wc: An individual CR bit in a CR register.

	wa, wd, wf: Any 128-bit VSX vector register, from the full VSX
register set (overlapping both the floating-point and vector register files).

	ws: A 32 or 64-bit floating-point register, from the full VSX register
set.

Sparc:

	I: An immediate 13-bit signed integer.

	r: A 32-bit integer register.

	f: Any floating-point register on SparcV8, or a floating-point
register in the “low” half of the registers on SparcV9.

	e: Any floating-point register. (Same as f on SparcV8.)

SystemZ:

	I: An immediate unsigned 8-bit integer.

	J: An immediate unsigned 12-bit integer.

	K: An immediate signed 16-bit integer.

	L: An immediate signed 20-bit integer.

	M: An immediate integer 0x7fffffff.

	Q: A memory address operand with a base address and a 12-bit immediate
unsigned displacement.

	R: A memory address operand with a base address, a 12-bit immediate
unsigned displacement, and an index register.

	S: A memory address operand with a base address and a 20-bit immediate
signed displacement.

	T: A memory address operand with a base address, a 20-bit immediate
signed displacement, and an index register.

	r or d: A 32, 64, or 128-bit integer register.

	a: A 32, 64, or 128-bit integer address register (excludes R0, which in an
address context evaluates as zero).

	h: A 32-bit value in the high part of a 64bit data register
(LLVM-specific)

	f: A 32, 64, or 128-bit floating-point register.

X86:

	I: An immediate integer between 0 and 31.

	J: An immediate integer between 0 and 64.

	K: An immediate signed 8-bit integer.

	L: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
0xffffffff.

	M: An immediate integer between 0 and 3.

	N: An immediate unsigned 8-bit integer.

	O: An immediate integer between 0 and 127.

	e: An immediate 32-bit signed integer.

	Z: An immediate 32-bit unsigned integer.

	o, v: Treated the same as m, at the moment.

	q: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
l integer register. On X86-32, this is the a, b, c, and d
registers, and on X86-64, it is all of the integer registers.

	Q: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
h integer register. This is the a, b, c, and d registers.

	r or l: An 8, 16, 32, or 64-bit integer register.

	R: An 8, 16, 32, or 64-bit “legacy” integer register – one which has
existed since i386, and can be accessed without the REX prefix.

	f: A 32, 64, or 80-bit ‘387 FPU stack pseudo-register.

	y: A 64-bit MMX register, if MMX is enabled.

	x: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
operand in a SSE register. If AVX is also enabled, can also be a 256-bit
vector operand in an AVX register. If AVX-512 is also enabled, can also be a
512-bit vector operand in an AVX512 register, Otherwise, an error.

	Y: The same as x, if SSE2 is enabled, otherwise an error.

	A: Special case: allocates EAX first, then EDX, for a single operand (in
32-bit mode, a 64-bit integer operand will get split into two registers). It
is not recommended to use this constraint, as in 64-bit mode, the 64-bit
operand will get allocated only to RAX – if two 32-bit operands are needed,
you’re better off splitting it yourself, before passing it to the asm
statement.

XCore:

	r: A 32-bit integer register.

Asm template argument modifiers

In the asm template string, modifiers can be used on the operand reference, like
“${0:n}”.

The modifiers are, in general, expected to behave the same way they do in
GCC. LLVM’s support is often implemented on an ‘as-needed’ basis, to support C
inline asm code which was supported by GCC. A mismatch in behavior between LLVM
and GCC likely indicates a bug in LLVM.

Target-independent:

	c: Print an immediate integer constant unadorned, without
the target-specific immediate punctuation (e.g. no $ prefix).

	n: Negate and print immediate integer constant unadorned, without the
target-specific immediate punctuation (e.g. no $ prefix).

	l: Print as an unadorned label, without the target-specific label
punctuation (e.g. no $ prefix).

AArch64:

	w: Print a GPR register with a w* name instead of x* name. E.g.,
instead of x30, print w30.

	x: Print a GPR register with a x* name. (this is the default, anyhow).

	b, h, s, d, q: Print a floating-point/SIMD register with a
b*, h*, s*, d*, or q* name, rather than the default of
v*.

AMDGPU:

	r: No effect.

ARM:

	a: Print an operand as an address (with [and] surrounding a
register).

	P: No effect.

	q: No effect.

	y: Print a VFP single-precision register as an indexed double (e.g. print
as d4[1] instead of s9)

	B: Bitwise invert and print an immediate integer constant without #
prefix.

	L: Print the low 16-bits of an immediate integer constant.

	M: Print as a register set suitable for ldm/stm. Also prints all
register operands subsequent to the specified one (!), so use carefully.

	Q: Print the low-order register of a register-pair, or the low-order
register of a two-register operand.

	R: Print the high-order register of a register-pair, or the high-order
register of a two-register operand.

	H: Print the second register of a register-pair. (On a big-endian system,
H is equivalent to Q, and on little-endian system, H is equivalent
to R.)

	e: Print the low doubleword register of a NEON quad register.

	f: Print the high doubleword register of a NEON quad register.

	m: Print the base register of a memory operand without the [and]
adornment.

Hexagon:

	L: Print the second register of a two-register operand. Requires that it
has been allocated consecutively to the first.

	I: Print the letter ‘i’ if the operand is an integer constant, otherwise
nothing. Used to print ‘addi’ vs ‘add’ instructions.

MSP430:

No additional modifiers.

MIPS:

	X: Print an immediate integer as hexadecimal

	x: Print the low 16 bits of an immediate integer as hexadecimal.

	d: Print an immediate integer as decimal.

	m: Subtract one and print an immediate integer as decimal.

	z: Print $0 if an immediate zero, otherwise print normally.

	L: Print the low-order register of a two-register operand, or prints the
address of the low-order word of a double-word memory operand.

	M: Print the high-order register of a two-register operand, or prints the
address of the high-order word of a double-word memory operand.

	D: Print the second register of a two-register operand, or prints the
second word of a double-word memory operand. (On a big-endian system, D is
equivalent to L, and on little-endian system, D is equivalent to
M.)

	w: No effect. Provided for compatibility with GCC which requires this
modifier in order to print MSA registers (W0-W31) with the f
constraint.

NVPTX:

	r: No effect.

PowerPC:

	L: Print the second register of a two-register operand. Requires that it
has been allocated consecutively to the first.

	I: Print the letter ‘i’ if the operand is an integer constant, otherwise
nothing. Used to print ‘addi’ vs ‘add’ instructions.

	y: For a memory operand, prints formatter for a two-register X-form
instruction. (Currently always prints r0,OPERAND).

	U: Prints ‘u’ if the memory operand is an update form, and nothing
otherwise. (NOTE: LLVM does not support update form, so this will currently
always print nothing)

	X: Prints ‘x’ if the memory operand is an indexed form. (NOTE: LLVM does
not support indexed form, so this will currently always print nothing)

Sparc:

	r: No effect.

SystemZ:

SystemZ implements only n, and does not support any of the other
target-independent modifiers.

X86:

	c: Print an unadorned integer or symbol name. (The latter is
target-specific behavior for this typically target-independent modifier).

	A: Print a register name with a ‘*’ before it.

	b: Print an 8-bit register name (e.g. al); do nothing on a memory
operand.

	h: Print the upper 8-bit register name (e.g. ah); do nothing on a
memory operand.

	w: Print the 16-bit register name (e.g. ax); do nothing on a memory
operand.

	k: Print the 32-bit register name (e.g. eax); do nothing on a memory
operand.

	q: Print the 64-bit register name (e.g. rax), if 64-bit registers are
available, otherwise the 32-bit register name; do nothing on a memory operand.

	n: Negate and print an unadorned integer, or, for operands other than an
immediate integer (e.g. a relocatable symbol expression), print a ‘-‘ before
the operand. (The behavior for relocatable symbol expressions is a
target-specific behavior for this typically target-independent modifier)

	H: Print a memory reference with additional offset +8.

	P: Print a memory reference or operand for use as the argument of a call
instruction. (E.g. omit (rip), even though it’s PC-relative.)

XCore:

No additional modifiers.

Inline Asm Metadata

The call instructions that wrap inline asm nodes may have a
“!srcloc” MDNode attached to it that contains a list of constant
integers. If present, the code generator will use the integer as the
location cookie value when report errors through the LLVMContext
error reporting mechanisms. This allows a front-end to correlate backend
errors that occur with inline asm back to the source code that produced
it. For example:

call void asm sideeffect "something bad", ""(), !srcloc !42
...
!42 = !{ i32 1234567 }

It is up to the front-end to make sense of the magic numbers it places
in the IR. If the MDNode contains multiple constants, the code generator
will use the one that corresponds to the line of the asm that the error
occurs on.

Metadata

LLVM IR allows metadata to be attached to instructions in the program
that can convey extra information about the code to the optimizers and
code generator. One example application of metadata is source-level
debug information. There are two metadata primitives: strings and nodes.

Metadata does not have a type, and is not a value. If referenced from a
call instruction, it uses the metadata type.

All metadata are identified in syntax by a exclamation point (‘!’).

Metadata Nodes and Metadata Strings

A metadata string is a string surrounded by double quotes. It can
contain any character by escaping non-printable characters with
“\xx” where “xx” is the two digit hex code. For example:
“!"test\00"”.

Metadata nodes are represented with notation similar to structure
constants (a comma separated list of elements, surrounded by braces and
preceded by an exclamation point). Metadata nodes can have any values as
their operand. For example:

!{ !"test\00", i32 10}

Metadata nodes that aren’t uniqued use the distinct keyword. For example:

!0 = distinct !{!"test\00", i32 10}

distinct nodes are useful when nodes shouldn’t be merged based on their
content. They can also occur when transformations cause uniquing collisions
when metadata operands change.

A named metadata is a collection of
metadata nodes, which can be looked up in the module symbol table. For
example:

!foo = !{!4, !3}

Metadata can be used as function arguments. Here the llvm.dbg.value
intrinsic is using three metadata arguments:

call void @llvm.dbg.value(metadata !24, metadata !25, metadata !26)

Metadata can be attached to an instruction. Here metadata !21 is attached
to the add instruction using the !dbg identifier:

%indvar.next = add i64 %indvar, 1, !dbg !21

Metadata can also be attached to a function or a global variable. Here metadata
!22 is attached to the f1 and f2 functions, and the globals ``g1
and g2 using the !dbg identifier:

declare !dbg !22 void @f1()
define void @f2() !dbg !22 {
 ret void
}

@g1 = global i32 0, !dbg !22
@g2 = external global i32, !dbg !22

A transformation is required to drop any metadata attachment that it does not
know or know it can’t preserve. Currently there is an exception for metadata
attachment to globals for !type and !absolute_symbol which can’t be
unconditionally dropped unless the global is itself deleted.

Metadata attached to a module using named metadata may not be dropped, with
the exception of debug metadata (named metadata with the name !llvm.dbg.*).

More information about specific metadata nodes recognized by the
optimizers and code generator is found below.

Specialized Metadata Nodes

Specialized metadata nodes are custom data structures in metadata (as opposed
to generic tuples). Their fields are labelled, and can be specified in any
order.

These aren’t inherently debug info centric, but currently all the specialized
metadata nodes are related to debug info.

DICompileUnit

DICompileUnit nodes represent a compile unit. The enums:,
retainedTypes:, globals:, imports: and macros: fields are tuples
containing the debug info to be emitted along with the compile unit, regardless
of code optimizations (some nodes are only emitted if there are references to
them from instructions). The debugInfoForProfiling: field is a boolean
indicating whether or not line-table discriminators are updated to provide
more-accurate debug info for profiling results.

!0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
 isOptimized: true, flags: "-O2", runtimeVersion: 2,
 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
 enums: !2, retainedTypes: !3, globals: !4, imports: !5,
 macros: !6, dwoId: 0x0abcd)

Compile unit descriptors provide the root scope for objects declared in a
specific compilation unit. File descriptors are defined using this scope. These
descriptors are collected by a named metadata node !llvm.dbg.cu. They keep
track of global variables, type information, and imported entities (declarations
and namespaces).

DIFile

DIFile nodes represent files. The filename: can include slashes.

!0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir",
 checksumkind: CSK_MD5,
 checksum: "000102030405060708090a0b0c0d0e0f")

Files are sometimes used in scope: fields, and are the only valid target
for file: fields.
Valid values for checksumkind: field are: {CSK_None, CSK_MD5, CSK_SHA1}

DIBasicType

DIBasicType nodes represent primitive types, such as int, bool and
float. tag: defaults to DW_TAG_base_type.

!0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
 encoding: DW_ATE_unsigned_char)
!1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")

The encoding: describes the details of the type. Usually it’s one of the
following:

DW_ATE_address = 1
DW_ATE_boolean = 2
DW_ATE_float = 4
DW_ATE_signed = 5
DW_ATE_signed_char = 6
DW_ATE_unsigned = 7
DW_ATE_unsigned_char = 8

DISubroutineType

DISubroutineType nodes represent subroutine types. Their types: field
refers to a tuple; the first operand is the return type, while the rest are the
types of the formal arguments in order. If the first operand is null, that
represents a function with no return value (such as void foo() {} in C++).

!0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
!1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
!2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)

DIDerivedType

DIDerivedType nodes represent types derived from other types, such as
qualified types.

!0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
 encoding: DW_ATE_unsigned_char)
!1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
 align: 32)

The following tag: values are valid:

DW_TAG_member = 13
DW_TAG_pointer_type = 15
DW_TAG_reference_type = 16
DW_TAG_typedef = 22
DW_TAG_inheritance = 28
DW_TAG_ptr_to_member_type = 31
DW_TAG_const_type = 38
DW_TAG_friend = 42
DW_TAG_volatile_type = 53
DW_TAG_restrict_type = 55
DW_TAG_atomic_type = 71

DW_TAG_member is used to define a member of a composite type. The type of the member is the baseType:. The
offset: is the member’s bit offset. If the composite type has an ODR
identifier: and does not set flags: DIFwdDecl, then the member is
uniqued based only on its name: and scope:.

DW_TAG_inheritance and DW_TAG_friend are used in the elements:
field of composite types to describe parents and
friends.

DW_TAG_typedef is used to provide a name for the baseType:.

DW_TAG_pointer_type, DW_TAG_reference_type, DW_TAG_const_type,
DW_TAG_volatile_type, DW_TAG_restrict_type and DW_TAG_atomic_type
are used to qualify the baseType:.

Note that the void * type is expressed as a type derived from NULL.

DICompositeType

DICompositeType nodes represent types composed of other types, like
structures and unions. elements: points to a tuple of the composed types.

If the source language supports ODR, the identifier: field gives the unique
identifier used for type merging between modules. When specified,
subprogram declarations and member
derived types that reference the ODR-type in their
scope: change uniquing rules.

For a given identifier:, there should only be a single composite type that
does not have flags: DIFlagFwdDecl set. LLVM tools that link modules
together will unique such definitions at parse time via the identifier:
field, even if the nodes are distinct.

!0 = !DIEnumerator(name: "SixKind", value: 7)
!1 = !DIEnumerator(name: "SevenKind", value: 7)
!2 = !DIEnumerator(name: "NegEightKind", value: -8)
!3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
 line: 2, size: 32, align: 32, identifier: "_M4Enum",
 elements: !{!0, !1, !2})

The following tag: values are valid:

DW_TAG_array_type = 1
DW_TAG_class_type = 2
DW_TAG_enumeration_type = 4
DW_TAG_structure_type = 19
DW_TAG_union_type = 23

For DW_TAG_array_type, the elements: should be subrange
descriptors, each representing the range of subscripts at that
level of indexing. The DIFlagVector flag to flags: indicates that an
array type is a native packed vector.

For DW_TAG_enumeration_type, the elements: should be enumerator
descriptors, each representing the definition of an enumeration
value for the set. All enumeration type descriptors are collected in the
enums: field of the compile unit.

For DW_TAG_structure_type, DW_TAG_class_type, and
DW_TAG_union_type, the elements: should be derived types with tag: DW_TAG_member, tag: DW_TAG_inheritance, or
tag: DW_TAG_friend; or subprograms with
isDefinition: false.

DISubrange

DISubrange nodes are the elements for DW_TAG_array_type variants of
DICompositeType.

	count: -1 indicates an empty array.

	count: !9 describes the count with a DILocalVariable.

	count: !11 describes the count with a DIGlobalVariable.

!0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
!1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
!2 = !DISubrange(count: -1) ; empty array.

; Scopes used in rest of example
!6 = !DIFile(filename: "vla.c", directory: "/path/to/file")
!7 = distinct !DICompileUnit(language: DW_LANG_C99, file: !6)
!8 = distinct !DISubprogram(name: "foo", scope: !7, file: !6, line: 5)

; Use of local variable as count value
!9 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
!10 = !DILocalVariable(name: "count", scope: !8, file: !6, line: 42, type: !9)
!11 = !DISubrange(count: !10, lowerBound: 0)

; Use of global variable as count value
!12 = !DIGlobalVariable(name: "count", scope: !8, file: !6, line: 22, type: !9)
!13 = !DISubrange(count: !12, lowerBound: 0)

DIEnumerator

DIEnumerator nodes are the elements for DW_TAG_enumeration_type
variants of DICompositeType.

!0 = !DIEnumerator(name: "SixKind", value: 7)
!1 = !DIEnumerator(name: "SevenKind", value: 7)
!2 = !DIEnumerator(name: "NegEightKind", value: -8)

DITemplateTypeParameter

DITemplateTypeParameter nodes represent type parameters to generic source
language constructs. They are used (optionally) in DICompositeType and
DISubprogram templateParams: fields.

!0 = !DITemplateTypeParameter(name: "Ty", type: !1)

DITemplateValueParameter

DITemplateValueParameter nodes represent value parameters to generic source
language constructs. tag: defaults to DW_TAG_template_value_parameter,
but if specified can also be set to DW_TAG_GNU_template_template_param or
DW_TAG_GNU_template_param_pack. They are used (optionally) in
DICompositeType and DISubprogram templateParams: fields.

!0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)

DINamespace

DINamespace nodes represent namespaces in the source language.

!0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)

DIGlobalVariable

DIGlobalVariable nodes represent global variables in the source language.

!0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
 file: !2, line: 7, type: !3, isLocal: true,
 isDefinition: false, variable: i32* @foo,
 declaration: !4)

All global variables should be referenced by the globals: field of a
compile unit.

DISubprogram

DISubprogram nodes represent functions from the source language. A
DISubprogram may be attached to a function definition using !dbg
metadata. The variables: field points at variables
that must be retained, even if their IR counterparts are optimized out of
the IR. The type: field must point at an DISubroutineType.

When isDefinition: false, subprograms describe a declaration in the type
tree as opposed to a definition of a function. If the scope is a composite
type with an ODR identifier: and that does not set flags: DIFwdDecl,
then the subprogram declaration is uniqued based only on its linkageName:
and scope:.

define void @_Z3foov() !dbg !0 {
 ...
}

!0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
 file: !2, line: 7, type: !3, isLocal: true,
 isDefinition: true, scopeLine: 8,
 containingType: !4,
 virtuality: DW_VIRTUALITY_pure_virtual,
 virtualIndex: 10, flags: DIFlagPrototyped,
 isOptimized: true, unit: !5, templateParams: !6,
 declaration: !7, variables: !8, thrownTypes: !9)

DILexicalBlock

DILexicalBlock nodes describe nested blocks within a subprogram. The line number and column numbers are used to distinguish
two lexical blocks at same depth. They are valid targets for scope:
fields.

!0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)

Usually lexical blocks are distinct to prevent node merging based on
operands.

DILexicalBlockFile

DILexicalBlockFile nodes are used to discriminate between sections of a
lexical block. The file: field can be changed to
indicate textual inclusion, or the discriminator: field can be used to
discriminate between control flow within a single block in the source language.

!0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
!1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
!2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)

DILocation

DILocation nodes represent source debug locations. The scope: field is
mandatory, and points at an DILexicalBlockFile, an
DILexicalBlock, or an DISubprogram.

!0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)

DILocalVariable

DILocalVariable nodes represent local variables in the source language. If
the arg: field is set to non-zero, then this variable is a subprogram
parameter, and it will be included in the variables: field of its
DISubprogram.

!0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
 type: !3, flags: DIFlagArtificial)
!1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
 type: !3)
!2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)

DIExpression

DIExpression nodes represent expressions that are inspired by the DWARF
expression language. They are used in debug intrinsics
(such as llvm.dbg.declare and llvm.dbg.value) to describe how the
referenced LLVM variable relates to the source language variable. Debug
intrinsics are interpreted left-to-right: start by pushing the value/address
operand of the intrinsic onto a stack, then repeatedly push and evaluate
opcodes from the DIExpression until the final variable description is produced.

The current supported opcode vocabulary is limited:

	DW_OP_deref dereferences the top of the expression stack.

	DW_OP_plus pops the last two entries from the expression stack, adds
them together and appends the result to the expression stack.

	DW_OP_minus pops the last two entries from the expression stack, subtracts
the last entry from the second last entry and appends the result to the
expression stack.

	DW_OP_plus_uconst, 93 adds 93 to the working expression.

	DW_OP_LLVM_fragment, 16, 8 specifies the offset and size (16 and 8
here, respectively) of the variable fragment from the working expression. Note
that contrary to DW_OP_bit_piece, the offset is describing the location
within the described source variable.

	DW_OP_swap swaps top two stack entries.

	DW_OP_xderef provides extended dereference mechanism. The entry at the top
of the stack is treated as an address. The second stack entry is treated as an
address space identifier.

	DW_OP_stack_value marks a constant value.

DWARF specifies three kinds of simple location descriptions: Register, memory,
and implicit location descriptions. Note that a location description is
defined over certain ranges of a program, i.e the location of a variable may
change over the course of the program. Register and memory location
descriptions describe the concrete location of a source variable (in the
sense that a debugger might modify its value), whereas implicit locations
describe merely the actual value of a source variable which might not exist
in registers or in memory (see DW_OP_stack_value).

A llvm.dbg.addr or llvm.dbg.declare intrinsic describes an indirect
value (the address) of a source variable. The first operand of the intrinsic
must be an address of some kind. A DIExpression attached to the intrinsic
refines this address to produce a concrete location for the source variable.

A llvm.dbg.value intrinsic describes the direct value of a source variable.
The first operand of the intrinsic may be a direct or indirect value. A
DIExpresion attached to the intrinsic refines the first operand to produce a
direct value. For example, if the first operand is an indirect value, it may be
necessary to insert DW_OP_deref into the DIExpresion in order to produce a
valid debug intrinsic.

Note

A DIExpression is interpreted in the same way regardless of which kind of
debug intrinsic it’s attached to.

!0 = !DIExpression(DW_OP_deref)
!1 = !DIExpression(DW_OP_plus_uconst, 3)
!1 = !DIExpression(DW_OP_constu, 3, DW_OP_plus)
!2 = !DIExpression(DW_OP_bit_piece, 3, 7)
!3 = !DIExpression(DW_OP_deref, DW_OP_constu, 3, DW_OP_plus, DW_OP_LLVM_fragment, 3, 7)
!4 = !DIExpression(DW_OP_constu, 2, DW_OP_swap, DW_OP_xderef)
!5 = !DIExpression(DW_OP_constu, 42, DW_OP_stack_value)

DIObjCProperty

DIObjCProperty nodes represent Objective-C property nodes.

!3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
 getter: "getFoo", attributes: 7, type: !2)

DIImportedEntity

DIImportedEntity nodes represent entities (such as modules) imported into a
compile unit.

!2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
 entity: !1, line: 7)

DIMacro

DIMacro nodes represent definition or undefinition of a macro identifiers.
The name: field is the macro identifier, followed by macro parameters when
defining a function-like macro, and the value field is the token-string
used to expand the macro identifier.

!2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
 value: "((x) + 1)")
!3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")

DIMacroFile

DIMacroFile nodes represent inclusion of source files.
The nodes: field is a list of DIMacro and DIMacroFile nodes that
appear in the included source file.

!2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
 nodes: !3)

‘tbaa’ Metadata

In LLVM IR, memory does not have types, so LLVM’s own type system is not
suitable for doing type based alias analysis (TBAA). Instead, metadata is
added to the IR to describe a type system of a higher level language. This
can be used to implement C/C++ strict type aliasing rules, but it can also
be used to implement custom alias analysis behavior for other languages.

This description of LLVM’s TBAA system is broken into two parts:
Semantics talks about high level issues, and
Representation talks about the metadata
encoding of various entities.

It is always possible to trace any TBAA node to a “root” TBAA node (details
in the Representation section). TBAA
nodes with different roots have an unknown aliasing relationship, and LLVM
conservatively infers MayAlias between them. The rules mentioned in
this section only pertain to TBAA nodes living under the same root.

Semantics

The TBAA metadata system, referred to as “struct path TBAA” (not to be
confused with tbaa.struct), consists of the following high level
concepts: Type Descriptors, further subdivided into scalar type
descriptors and struct type descriptors; and Access Tags.

Type descriptors describe the type system of the higher level language
being compiled. Scalar type descriptors describe types that do not
contain other types. Each scalar type has a parent type, which must also
be a scalar type or the TBAA root. Via this parent relation, scalar types
within a TBAA root form a tree. Struct type descriptors denote types
that contain a sequence of other type descriptors, at known offsets. These
contained type descriptors can either be struct type descriptors themselves
or scalar type descriptors.

Access tags are metadata nodes attached to load and store instructions.
Access tags use type descriptors to describe the location being accessed
in terms of the type system of the higher level language. Access tags are
tuples consisting of a base type, an access type and an offset. The base
type is a scalar type descriptor or a struct type descriptor, the access
type is a scalar type descriptor, and the offset is a constant integer.

The access tag (BaseTy, AccessTy, Offset) can describe one of two
things:

	If BaseTy is a struct type, the tag describes a memory access (load
or store) of a value of type AccessTy contained in the struct type
BaseTy at offset Offset.

	If BaseTy is a scalar type, Offset must be 0 and BaseTy and
AccessTy must be the same; and the access tag describes a scalar
access with scalar type AccessTy.

We first define an ImmediateParent relation on (BaseTy, Offset)
tuples this way:

	If BaseTy is a scalar type then ImmediateParent(BaseTy, 0) is
(ParentTy, 0) where ParentTy is the parent of the scalar type as
described in the TBAA metadata. ImmediateParent(BaseTy, Offset) is
undefined if Offset is non-zero.

	If BaseTy is a struct type then ImmediateParent(BaseTy, Offset)
is (NewTy, NewOffset) where NewTy is the type contained in
BaseTy at offset Offset and NewOffset is Offset adjusted
to be relative within that inner type.

A memory access with an access tag (BaseTy1, AccessTy1, Offset1)
aliases a memory access with an access tag (BaseTy2, AccessTy2,
Offset2) if either (BaseTy1, Offset1) is reachable from (Base2,
Offset2) via the Parent relation or vice versa.

As a concrete example, the type descriptor graph for the following program

struct Inner {
 int i; // offset 0
 float f; // offset 4
};

struct Outer {
 float f; // offset 0
 double d; // offset 4
 struct Inner inner_a; // offset 12
};

void f(struct Outer* outer, struct Inner* inner, float* f, int* i, char* c) {
 outer->f = 0; // tag0: (OuterStructTy, FloatScalarTy, 0)
 outer->inner_a.i = 0; // tag1: (OuterStructTy, IntScalarTy, 12)
 outer->inner_a.f = 0.0; // tag2: (OuterStructTy, FloatScalarTy, 16)
 *f = 0.0; // tag3: (FloatScalarTy, FloatScalarTy, 0)
}

is (note that in C and C++, char can be used to access any arbitrary
type):

Root = "TBAA Root"
CharScalarTy = ("char", Root, 0)
FloatScalarTy = ("float", CharScalarTy, 0)
DoubleScalarTy = ("double", CharScalarTy, 0)
IntScalarTy = ("int", CharScalarTy, 0)
InnerStructTy = {"Inner" (IntScalarTy, 0), (FloatScalarTy, 4)}
OuterStructTy = {"Outer", (FloatScalarTy, 0), (DoubleScalarTy, 4),
 (InnerStructTy, 12)}

with (e.g.) ImmediateParent(OuterStructTy, 12) = (InnerStructTy,
0), ImmediateParent(InnerStructTy, 0) = (IntScalarTy, 0), and
ImmediateParent(IntScalarTy, 0) = (CharScalarTy, 0).

Representation

The root node of a TBAA type hierarchy is an MDNode with 0 operands or
with exactly one MDString operand.

Scalar type descriptors are represented as an MDNode s with two
operands. The first operand is an MDString denoting the name of the
struct type. LLVM does not assign meaning to the value of this operand, it
only cares about it being an MDString. The second operand is an
MDNode which points to the parent for said scalar type descriptor,
which is either another scalar type descriptor or the TBAA root. Scalar
type descriptors can have an optional third argument, but that must be the
constant integer zero.

Struct type descriptors are represented as MDNode s with an odd number
of operands greater than 1. The first operand is an MDString denoting
the name of the struct type. Like in scalar type descriptors the actual
value of this name operand is irrelevant to LLVM. After the name operand,
the struct type descriptors have a sequence of alternating MDNode and
ConstantInt operands. With N starting from 1, the 2N - 1 th operand,
an MDNode, denotes a contained field, and the 2N th operand, a
ConstantInt, is the offset of the said contained field. The offsets
must be in non-decreasing order.

Access tags are represented as MDNode s with either 3 or 4 operands.
The first operand is an MDNode pointing to the node representing the
base type. The second operand is an MDNode pointing to the node
representing the access type. The third operand is a ConstantInt that
states the offset of the access. If a fourth field is present, it must be
a ConstantInt valued at 0 or 1. If it is 1 then the access tag states
that the location being accessed is “constant” (meaning
pointsToConstantMemory should return true; see other useful
AliasAnalysis methods). The TBAA root of
the access type and the base type of an access tag must be the same, and
that is the TBAA root of the access tag.

‘tbaa.struct’ Metadata

The llvm.memcpy is often used to implement
aggregate assignment operations in C and similar languages, however it
is defined to copy a contiguous region of memory, which is more than
strictly necessary for aggregate types which contain holes due to
padding. Also, it doesn’t contain any TBAA information about the fields
of the aggregate.

!tbaa.struct metadata can describe which memory subregions in a
memcpy are padding and what the TBAA tags of the struct are.

The current metadata format is very simple. !tbaa.struct metadata
nodes are a list of operands which are in conceptual groups of three.
For each group of three, the first operand gives the byte offset of a
field in bytes, the second gives its size in bytes, and the third gives
its tbaa tag. e.g.:

!4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }

This describes a struct with two fields. The first is at offset 0 bytes
with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
and has size 4 bytes and has tbaa tag !2.

Note that the fields need not be contiguous. In this example, there is a
4 byte gap between the two fields. This gap represents padding which
does not carry useful data and need not be preserved.

‘noalias’ and ‘alias.scope’ Metadata

noalias and alias.scope metadata provide the ability to specify generic
noalias memory-access sets. This means that some collection of memory access
instructions (loads, stores, memory-accessing calls, etc.) that carry
noalias metadata can specifically be specified not to alias with some other
collection of memory access instructions that carry alias.scope metadata.
Each type of metadata specifies a list of scopes where each scope has an id and
a domain.

When evaluating an aliasing query, if for some domain, the set
of scopes with that domain in one instruction’s alias.scope list is a
subset of (or equal to) the set of scopes for that domain in another
instruction’s noalias list, then the two memory accesses are assumed not to
alias.

Because scopes in one domain don’t affect scopes in other domains, separate
domains can be used to compose multiple independent noalias sets. This is
used for example during inlining. As the noalias function parameters are
turned into noalias scope metadata, a new domain is used every time the
function is inlined.

The metadata identifying each domain is itself a list containing one or two
entries. The first entry is the name of the domain. Note that if the name is a
string then it can be combined across functions and translation units. A
self-reference can be used to create globally unique domain names. A
descriptive string may optionally be provided as a second list entry.

The metadata identifying each scope is also itself a list containing two or
three entries. The first entry is the name of the scope. Note that if the name
is a string then it can be combined across functions and translation units. A
self-reference can be used to create globally unique scope names. A metadata
reference to the scope’s domain is the second entry. A descriptive string may
optionally be provided as a third list entry.

For example,

; Two scope domains:
!0 = !{!0}
!1 = !{!1}

; Some scopes in these domains:
!2 = !{!2, !0}
!3 = !{!3, !0}
!4 = !{!4, !1}

; Some scope lists:
!5 = !{!4} ; A list containing only scope !4
!6 = !{!4, !3, !2}
!7 = !{!3}

; These two instructions don't alias:
%0 = load float, float* %c, align 4, !alias.scope !5
store float %0, float* %arrayidx.i, align 4, !noalias !5

; These two instructions also don't alias (for domain !1, the set of scopes
; in the !alias.scope equals that in the !noalias list):
%2 = load float, float* %c, align 4, !alias.scope !5
store float %2, float* %arrayidx.i2, align 4, !noalias !6

; These two instructions may alias (for domain !0, the set of scopes in
; the !noalias list is not a superset of, or equal to, the scopes in the
; !alias.scope list):
%2 = load float, float* %c, align 4, !alias.scope !6
store float %0, float* %arrayidx.i, align 4, !noalias !7

‘fpmath’ Metadata

fpmath metadata may be attached to any instruction of floating-point
type. It can be used to express the maximum acceptable error in the
result of that instruction, in ULPs, thus potentially allowing the
compiler to use a more efficient but less accurate method of computing
it. ULP is defined as follows:

If x is a real number that lies between two finite consecutive
floating-point numbers a and b, without being equal to one
of them, then ulp(x) = |b - a|, otherwise ulp(x) is the
distance between the two non-equal finite floating-point numbers
nearest x. Moreover, ulp(NaN) is NaN.

The metadata node shall consist of a single positive float type number
representing the maximum relative error, for example:

!0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs

‘range’ Metadata

range metadata may be attached only to load, call and invoke of
integer types. It expresses the possible ranges the loaded value or the value
returned by the called function at this call site is in. If the loaded or
returned value is not in the specified range, the behavior is undefined. The
ranges are represented with a flattened list of integers. The loaded value or
the value returned is known to be in the union of the ranges defined by each
consecutive pair. Each pair has the following properties:

	The type must match the type loaded by the instruction.

	The pair a,b represents the range [a,b).

	Both a and b are constants.

	The range is allowed to wrap.

	The range should not represent the full or empty set. That is,
a!=b.

In addition, the pairs must be in signed order of the lower bound and
they must be non-contiguous.

Examples:

 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
 %d = invoke i8 @bar() to label %cont
 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
...
!0 = !{ i8 0, i8 2 }
!1 = !{ i8 255, i8 2 }
!2 = !{ i8 0, i8 2, i8 3, i8 6 }
!3 = !{ i8 -2, i8 0, i8 3, i8 6 }

‘absolute_symbol’ Metadata

absolute_symbol metadata may be attached to a global variable
declaration. It marks the declaration as a reference to an absolute symbol,
which causes the backend to use absolute relocations for the symbol even
in position independent code, and expresses the possible ranges that the
global variable’s address (not its value) is in, in the same format as
range metadata, with the extension that the pair all-ones,all-ones
may be used to represent the full set.

Example (assuming 64-bit pointers):

 @a = external global i8, !absolute_symbol !0 ; Absolute symbol in range [0,256)
 @b = external global i8, !absolute_symbol !1 ; Absolute symbol in range [0,2^64)

...
!0 = !{ i64 0, i64 256 }
!1 = !{ i64 -1, i64 -1 }

‘callees’ Metadata

callees metadata may be attached to indirect call sites. If callees
metadata is attached to a call site, and any callee is not among the set of
functions provided by the metadata, the behavior is undefined. The intent of
this metadata is to facilitate optimizations such as indirect-call promotion.
For example, in the code below, the call instruction may only target the
add or sub functions:

%result = call i64 %binop(i64 %x, i64 %y), !callees !0

...
!0 = !{i64 (i64, i64)* @add, i64 (i64, i64)* @sub}

‘unpredictable’ Metadata

unpredictable metadata may be attached to any branch or switch
instruction. It can be used to express the unpredictability of control
flow. Similar to the llvm.expect intrinsic, it may be used to alter
optimizations related to compare and branch instructions. The metadata
is treated as a boolean value; if it exists, it signals that the branch
or switch that it is attached to is completely unpredictable.

‘llvm.loop’

It is sometimes useful to attach information to loop constructs. Currently,
loop metadata is implemented as metadata attached to the branch instruction
in the loop latch block. This type of metadata refer to a metadata node that is
guaranteed to be separate for each loop. The loop identifier metadata is
specified with the name llvm.loop.

The loop identifier metadata is implemented using a metadata that refers to
itself to avoid merging it with any other identifier metadata, e.g.,
during module linkage or function inlining. That is, each loop should refer
to their own identification metadata even if they reside in separate functions.
The following example contains loop identifier metadata for two separate loop
constructs:

!0 = !{!0}
!1 = !{!1}

The loop identifier metadata can be used to specify additional
per-loop metadata. Any operands after the first operand can be treated
as user-defined metadata. For example the llvm.loop.unroll.count
suggests an unroll factor to the loop unroller:

 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
...
!0 = !{!0, !1}
!1 = !{!"llvm.loop.unroll.count", i32 4}

‘llvm.loop.vectorize’ and ‘llvm.loop.interleave’

Metadata prefixed with llvm.loop.vectorize or llvm.loop.interleave are
used to control per-loop vectorization and interleaving parameters such as
vectorization width and interleave count. These metadata should be used in
conjunction with llvm.loop loop identification metadata. The
llvm.loop.vectorize and llvm.loop.interleave metadata are only
optimization hints and the optimizer will only interleave and vectorize loops if
it believes it is safe to do so. The llvm.mem.parallel_loop_access metadata
which contains information about loop-carried memory dependencies can be helpful
in determining the safety of these transformations.

‘llvm.loop.interleave.count’ Metadata

This metadata suggests an interleave count to the loop interleaver.
The first operand is the string llvm.loop.interleave.count and the
second operand is an integer specifying the interleave count. For
example:

!0 = !{!"llvm.loop.interleave.count", i32 4}

Note that setting llvm.loop.interleave.count to 1 disables interleaving
multiple iterations of the loop. If llvm.loop.interleave.count is set to 0
then the interleave count will be determined automatically.

‘llvm.loop.vectorize.enable’ Metadata

This metadata selectively enables or disables vectorization for the loop. The
first operand is the string llvm.loop.vectorize.enable and the second operand
is a bit. If the bit operand value is 1 vectorization is enabled. A value of
0 disables vectorization:

!0 = !{!"llvm.loop.vectorize.enable", i1 0}
!1 = !{!"llvm.loop.vectorize.enable", i1 1}

‘llvm.loop.vectorize.width’ Metadata

This metadata sets the target width of the vectorizer. The first
operand is the string llvm.loop.vectorize.width and the second
operand is an integer specifying the width. For example:

!0 = !{!"llvm.loop.vectorize.width", i32 4}

Note that setting llvm.loop.vectorize.width to 1 disables
vectorization of the loop. If llvm.loop.vectorize.width is set to
0 or if the loop does not have this metadata the width will be
determined automatically.

‘llvm.loop.unroll’

Metadata prefixed with llvm.loop.unroll are loop unrolling
optimization hints such as the unroll factor. llvm.loop.unroll
metadata should be used in conjunction with llvm.loop loop
identification metadata. The llvm.loop.unroll metadata are only
optimization hints and the unrolling will only be performed if the
optimizer believes it is safe to do so.

‘llvm.loop.unroll.count’ Metadata

This metadata suggests an unroll factor to the loop unroller. The
first operand is the string llvm.loop.unroll.count and the second
operand is a positive integer specifying the unroll factor. For
example:

!0 = !{!"llvm.loop.unroll.count", i32 4}

If the trip count of the loop is less than the unroll count the loop
will be partially unrolled.

‘llvm.loop.unroll.disable’ Metadata

This metadata disables loop unrolling. The metadata has a single operand
which is the string llvm.loop.unroll.disable. For example:

!0 = !{!"llvm.loop.unroll.disable"}

‘llvm.loop.unroll.runtime.disable’ Metadata

This metadata disables runtime loop unrolling. The metadata has a single
operand which is the string llvm.loop.unroll.runtime.disable. For example:

!0 = !{!"llvm.loop.unroll.runtime.disable"}

‘llvm.loop.unroll.enable’ Metadata

This metadata suggests that the loop should be fully unrolled if the trip count
is known at compile time and partially unrolled if the trip count is not known
at compile time. The metadata has a single operand which is the string
llvm.loop.unroll.enable. For example:

!0 = !{!"llvm.loop.unroll.enable"}

‘llvm.loop.unroll.full’ Metadata

This metadata suggests that the loop should be unrolled fully. The
metadata has a single operand which is the string llvm.loop.unroll.full.
For example:

!0 = !{!"llvm.loop.unroll.full"}

‘llvm.loop.unroll_and_jam’

This metadata is treated very similarly to the llvm.loop.unroll metadata
above, but affect the unroll and jam pass. In addition any loop with
llvm.loop.unroll metadata but no llvm.loop.unroll_and_jam metadata will
disable unroll and jam (so llvm.loop.unroll metadata will be left to the
unroller, plus llvm.loop.unroll.disable metadata will disable unroll and jam
too.)

The metadata for unroll and jam otherwise is the same as for unroll.
llvm.loop.unroll_and_jam.enable, llvm.loop.unroll_and_jam.disable and
llvm.loop.unroll_and_jam.count do the same as for unroll.
llvm.loop.unroll_and_jam.full is not supported. Again these are only hints
and the normal safety checks will still be performed.

‘llvm.loop.unroll_and_jam.count’ Metadata

This metadata suggests an unroll and jam factor to use, similarly to
llvm.loop.unroll.count. The first operand is the string
llvm.loop.unroll_and_jam.count and the second operand is a positive integer
specifying the unroll factor. For example:

!0 = !{!"llvm.loop.unroll_and_jam.count", i32 4}

If the trip count of the loop is less than the unroll count the loop
will be partially unroll and jammed.

‘llvm.loop.unroll_and_jam.disable’ Metadata

This metadata disables loop unroll and jamming. The metadata has a single
operand which is the string llvm.loop.unroll_and_jam.disable. For example:

!0 = !{!"llvm.loop.unroll_and_jam.disable"}

‘llvm.loop.unroll_and_jam.enable’ Metadata

This metadata suggests that the loop should be fully unroll and jammed if the
trip count is known at compile time and partially unrolled if the trip count is
not known at compile time. The metadata has a single operand which is the
string llvm.loop.unroll_and_jam.enable. For example:

!0 = !{!"llvm.loop.unroll_and_jam.enable"}

‘llvm.loop.licm_versioning.disable’ Metadata

This metadata indicates that the loop should not be versioned for the purpose
of enabling loop-invariant code motion (LICM). The metadata has a single operand
which is the string llvm.loop.licm_versioning.disable. For example:

!0 = !{!"llvm.loop.licm_versioning.disable"}

‘llvm.loop.distribute.enable’ Metadata

Loop distribution allows splitting a loop into multiple loops. Currently,
this is only performed if the entire loop cannot be vectorized due to unsafe
memory dependencies. The transformation will attempt to isolate the unsafe
dependencies into their own loop.

This metadata can be used to selectively enable or disable distribution of the
loop. The first operand is the string llvm.loop.distribute.enable and the
second operand is a bit. If the bit operand value is 1 distribution is
enabled. A value of 0 disables distribution:

!0 = !{!"llvm.loop.distribute.enable", i1 0}
!1 = !{!"llvm.loop.distribute.enable", i1 1}

This metadata should be used in conjunction with llvm.loop loop
identification metadata.

‘llvm.mem’

Metadata types used to annotate memory accesses with information helpful
for optimizations are prefixed with llvm.mem.

‘llvm.mem.parallel_loop_access’ Metadata

The llvm.mem.parallel_loop_access metadata refers to a loop identifier,
or metadata containing a list of loop identifiers for nested loops.
The metadata is attached to memory accessing instructions and denotes that
no loop carried memory dependence exist between it and other instructions denoted
with the same loop identifier. The metadata on memory reads also implies that
if conversion (i.e. speculative execution within a loop iteration) is safe.

Precisely, given two instructions m1 and m2 that both have the
llvm.mem.parallel_loop_access metadata, with L1 and L2 being the
set of loops associated with that metadata, respectively, then there is no loop
carried dependence between m1 and m2 for loops in both L1 and
L2.

As a special case, if all memory accessing instructions in a loop have
llvm.mem.parallel_loop_access metadata that refers to that loop, then the
loop has no loop carried memory dependences and is considered to be a parallel
loop.

Note that if not all memory access instructions have such metadata referring to
the loop, then the loop is considered not being trivially parallel. Additional
memory dependence analysis is required to make that determination. As a fail
safe mechanism, this causes loops that were originally parallel to be considered
sequential (if optimization passes that are unaware of the parallel semantics
insert new memory instructions into the loop body).

Example of a loop that is considered parallel due to its correct use of
both llvm.loop and llvm.mem.parallel_loop_access
metadata types that refer to the same loop identifier metadata.

for.body:
 ...
 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
 ...
 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
 ...
 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0

for.end:
...
!0 = !{!0}

It is also possible to have nested parallel loops. In that case the
memory accesses refer to a list of loop identifier metadata nodes instead of
the loop identifier metadata node directly:

outer.for.body:
 ...
 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
 ...
 br label %inner.for.body

inner.for.body:
 ...
 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
 ...
 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
 ...
 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1

inner.for.end:
 ...
 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
 ...
 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2

outer.for.end: ; preds = %for.body
...
!0 = !{!1, !2} ; a list of loop identifiers
!1 = !{!1} ; an identifier for the inner loop
!2 = !{!2} ; an identifier for the outer loop

‘irr_loop’ Metadata

irr_loop metadata may be attached to the terminator instruction of a basic
block that’s an irreducible loop header (note that an irreducible loop has more
than once header basic blocks.) If irr_loop metadata is attached to the
terminator instruction of a basic block that is not really an irreducible loop
header, the behavior is undefined. The intent of this metadata is to improve the
accuracy of the block frequency propagation. For example, in the code below, the
block header0 may have a loop header weight (relative to the other headers of
the irreducible loop) of 100:

header0:
...
br i1 %cmp, label %t1, label %t2, !irr_loop !0

...
!0 = !{"loop_header_weight", i64 100}

Irreducible loop header weights are typically based on profile data.

‘invariant.group’ Metadata

The experimental invariant.group metadata may be attached to
load/store instructions referencing a single metadata with no entries.
The existence of the invariant.group metadata on the instruction tells
the optimizer that every load and store to the same pointer operand
can be assumed to load or store the same
value (but see the llvm.launder.invariant.group intrinsic which affects
when two pointers are considered the same). Pointers returned by bitcast or
getelementptr with only zero indices are considered the same.

Examples:

@unknownPtr = external global i8
...
%ptr = alloca i8
store i8 42, i8* %ptr, !invariant.group !0
call void @foo(i8* %ptr)

%a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
call void @foo(i8* %ptr)

%newPtr = call i8* @getPointer(i8* %ptr)
%c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr

%unknownValue = load i8, i8* @unknownPtr
store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42

call void @foo(i8* %ptr)
%newPtr2 = call i8* @llvm.launder.invariant.group(i8* %ptr)
%d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through launder.invariant.group to get value of %ptr

...
declare void @foo(i8*)
declare i8* @getPointer(i8*)
declare i8* @llvm.launder.invariant.group(i8*)

!0 = !{}

The invariant.group metadata must be dropped when replacing one pointer by
another based on aliasing information. This is because invariant.group is tied
to the SSA value of the pointer operand.

%v = load i8, i8* %x, !invariant.group !0
; if %x mustalias %y then we can replace the above instruction with
%v = load i8, i8* %y

Note that this is an experimental feature, which means that its semantics might
change in the future.

‘type’ Metadata

See Type Metadata.

‘associated’ Metadata

The associated metadata may be attached to a global object
declaration with a single argument that references another global object.

This metadata prevents discarding of the global object in linker GC
unless the referenced object is also discarded. The linker support for
this feature is spotty. For best compatibility, globals carrying this
metadata may also:

	Be in a comdat with the referenced global.

	Be in @llvm.compiler.used.

	Have an explicit section with a name which is a valid C identifier.

It does not have any effect on non-ELF targets.

Example:

$a = comdat any
@a = global i32 1, comdat $a
@b = internal global i32 2, comdat $a, section "abc", !associated !0
!0 = !{i32* @a}

‘prof’ Metadata

The prof metadata is used to record profile data in the IR.
The first operand of the metadata node indicates the profile metadata
type. There are currently 3 types:
branch_weights,
function_entry_count, and
VP.

branch_weights

Branch weight metadata attached to a branch, select, switch or call instruction
represents the likeliness of the associated branch being taken.
For more information, see LLVM Branch Weight Metadata.

function_entry_count

Function entry count metadata can be attached to function definitions
to record the number of times the function is called. Used with BFI
information, it is also used to derive the basic block profile count.
For more information, see LLVM Branch Weight Metadata.

VP

VP (value profile) metadata can be attached to instructions that have
value profile information. Currently this is indirect calls (where it
records the hottest callees) and calls to memory intrinsics such as memcpy,
memmove, and memset (where it records the hottest byte lengths).

Each VP metadata node contains “VP” string, then a uint32_t value for the value
profiling kind, a uint64_t value for the total number of times the instruction
is executed, followed by uint64_t value and execution count pairs.
The value profiling kind is 0 for indirect call targets and 1 for memory
operations. For indirect call targets, each profile value is a hash
of the callee function name, and for memory operations each value is the
byte length.

Note that the value counts do not need to add up to the total count
listed in the third operand (in practice only the top hottest values
are tracked and reported).

Indirect call example:

call void %f(), !prof !1
!1 = !{!"VP", i32 0, i64 1600, i64 7651369219802541373, i64 1030, i64 -4377547752858689819, i64 410}

Note that the VP type is 0 (the second operand), which indicates this is
an indirect call value profile data. The third operand indicates that the
indirect call executed 1600 times. The 4th and 6th operands give the
hashes of the 2 hottest target functions’ names (this is the same hash used
to represent function names in the profile database), and the 5th and 7th
operands give the execution count that each of the respective prior target
functions was called.

Module Flags Metadata

Information about the module as a whole is difficult to convey to LLVM’s
subsystems. The LLVM IR isn’t sufficient to transmit this information.
The llvm.module.flags named metadata exists in order to facilitate
this. These flags are in the form of key / value pairs — much like a
dictionary — making it easy for any subsystem who cares about a flag to
look it up.

The llvm.module.flags metadata contains a list of metadata triplets.
Each triplet has the following form:

	The first element is a behavior flag, which specifies the behavior
when two (or more) modules are merged together, and it encounters two
(or more) metadata with the same ID. The supported behaviors are
described below.

	The second element is a metadata string that is a unique ID for the
metadata. Each module may only have one flag entry for each unique ID (not
including entries with the Require behavior).

	The third element is the value of the flag.

When two (or more) modules are merged together, the resulting
llvm.module.flags metadata is the union of the modules’ flags. That is, for
each unique metadata ID string, there will be exactly one entry in the merged
modules llvm.module.flags metadata table, and the value for that entry will
be determined by the merge behavior flag, as described below. The only exception
is that entries with the Require behavior are always preserved.

The following behaviors are supported:

	Value

	Behavior

	1

	
	Error

	Emits an error if two values disagree, otherwise the resulting value
is that of the operands.

	2

	
	Warning

	Emits a warning if two values disagree. The result value will be the
operand for the flag from the first module being linked.

	3

	
	Require

	Adds a requirement that another module flag be present and have a
specified value after linking is performed. The value must be a
metadata pair, where the first element of the pair is the ID of the
module flag to be restricted, and the second element of the pair is
the value the module flag should be restricted to. This behavior can
be used to restrict the allowable results (via triggering of an
error) of linking IDs with the Override behavior.

	4

	
	Override

	Uses the specified value, regardless of the behavior or value of the
other module. If both modules specify Override, but the values
differ, an error will be emitted.

	5

	
	Append

	Appends the two values, which are required to be metadata nodes.

	6

	
	AppendUnique

	Appends the two values, which are required to be metadata
nodes. However, duplicate entries in the second list are dropped
during the append operation.

	7

	
	Max

	Takes the max of the two values, which are required to be integers.

It is an error for a particular unique flag ID to have multiple behaviors,
except in the case of Require (which adds restrictions on another metadata
value) or Override.

An example of module flags:

!0 = !{ i32 1, !"foo", i32 1 }
!1 = !{ i32 4, !"bar", i32 37 }
!2 = !{ i32 2, !"qux", i32 42 }
!3 = !{ i32 3, !"qux",
 !{
 !"foo", i32 1
 }
}
!llvm.module.flags = !{ !0, !1, !2, !3 }

	Metadata !0 has the ID !"foo" and the value ‘1’. The behavior
if two or more !"foo" flags are seen is to emit an error if their
values are not equal.

	Metadata !1 has the ID !"bar" and the value ‘37’. The
behavior if two or more !"bar" flags are seen is to use the value
‘37’.

	Metadata !2 has the ID !"qux" and the value ‘42’. The
behavior if two or more !"qux" flags are seen is to emit a
warning if their values are not equal.

	Metadata !3 has the ID !"qux" and the value:

!{ !"foo", i32 1 }

The behavior is to emit an error if the llvm.module.flags does not
contain a flag with the ID !"foo" that has the value ‘1’ after linking is
performed.

Objective-C Garbage Collection Module Flags Metadata

On the Mach-O platform, Objective-C stores metadata about garbage
collection in a special section called “image info”. The metadata
consists of a version number and a bitmask specifying what types of
garbage collection are supported (if any) by the file. If two or more
modules are linked together their garbage collection metadata needs to
be merged rather than appended together.

The Objective-C garbage collection module flags metadata consists of the
following key-value pairs:

	Key

	Value

	Objective-C Version

	[Required] — The Objective-C ABI version. Valid values are 1 and 2.

	Objective-C Image Info Version

	[Required] — The version of the image info section. Currently
always 0.

	Objective-C Image Info Section

	[Required] — The section to place the metadata. Valid values are
"__OBJC, __image_info, regular" for Objective-C ABI version 1, and
"__DATA,__objc_imageinfo, regular, no_dead_strip" for
Objective-C ABI version 2.

	Objective-C Garbage Collection

	[Required] — Specifies whether garbage collection is supported or
not. Valid values are 0, for no garbage collection, and 2, for garbage
collection supported.

	Objective-C GC Only

	[Optional] — Specifies that only garbage collection is supported.
If present, its value must be 6. This flag requires that the
Objective-C Garbage Collection flag have the value 2.

Some important flag interactions:

	If a module with Objective-C Garbage Collection set to 0 is
merged with a module with Objective-C Garbage Collection set to
2, then the resulting module has the
Objective-C Garbage Collection flag set to 0.

	A module with Objective-C Garbage Collection set to 0 cannot be
merged with a module with Objective-C GC Only set to 6.

C type width Module Flags Metadata

The ARM backend emits a section into each generated object file describing the
options that it was compiled with (in a compiler-independent way) to prevent
linking incompatible objects, and to allow automatic library selection. Some
of these options are not visible at the IR level, namely wchar_t width and enum
width.

To pass this information to the backend, these options are encoded in module
flags metadata, using the following key-value pairs:

	Key

	Value

	short_wchar

	
	0 — sizeof(wchar_t) == 4

	1 — sizeof(wchar_t) == 2

	short_enum

	
	0 — Enums are at least as large as an int.

	1 — Enums are stored in the smallest integer type which can
represent all of its values.

For example, the following metadata section specifies that the module was
compiled with a wchar_t width of 4 bytes, and the underlying type of an
enum is the smallest type which can represent all of its values:

!llvm.module.flags = !{!0, !1}
!0 = !{i32 1, !"short_wchar", i32 1}
!1 = !{i32 1, !"short_enum", i32 0}

Automatic Linker Flags Named Metadata

Some targets support embedding flags to the linker inside individual object
files. Typically this is used in conjunction with language extensions which
allow source files to explicitly declare the libraries they depend on, and have
these automatically be transmitted to the linker via object files.

These flags are encoded in the IR using named metadata with the name
!llvm.linker.options. Each operand is expected to be a metadata node
which should be a list of other metadata nodes, each of which should be a
list of metadata strings defining linker options.

For example, the following metadata section specifies two separate sets of
linker options, presumably to link against libz and the Cocoa
framework:

!0 = !{ !"-lz" },
!1 = !{ !"-framework", !"Cocoa" } } }
!llvm.linker.options = !{ !0, !1 }

The metadata encoding as lists of lists of options, as opposed to a collapsed
list of options, is chosen so that the IR encoding can use multiple option
strings to specify e.g., a single library, while still having that specifier be
preserved as an atomic element that can be recognized by a target specific
assembly writer or object file emitter.

Each individual option is required to be either a valid option for the target’s
linker, or an option that is reserved by the target specific assembly writer or
object file emitter. No other aspect of these options is defined by the IR.

ThinLTO Summary

Compiling with ThinLTO [https://clang.llvm.org/docs/ThinLTO.html]
causes the building of a compact summary of the module that is emitted into
the bitcode. The summary is emitted into the LLVM assembly and identified
in syntax by a caret (‘^’).

Note that temporarily the summary entries are skipped when parsing the
assembly, although the parsing support is actively being implemented. The
following describes when the summary entries will be parsed once implemented.
The summary will be parsed into a ModuleSummaryIndex object under the
same conditions where summary index is currently built from bitcode.
Specifically, tools that test the Thin Link portion of a ThinLTO compile
(i.e. llvm-lto and llvm-lto2), or when parsing a combined index
for a distributed ThinLTO backend via clang’s “-fthinlto-index=<>” flag.
Additionally, it will be parsed into a bitcode output, along with the Module
IR, via the “llvm-as” tool. Tools that parse the Module IR for the purposes
of optimization (e.g. “clang -x ir” and “opt”), will ignore the
summary entries (just as they currently ignore summary entries in a bitcode
input file).

There are currently 3 types of summary entries in the LLVM assembly:
module paths,
global values, and
type identifiers.

Module Path Summary Entry

Each module path summary entry lists a module containing global values included
in the summary. For a single IR module there will be one such entry, but
in a combined summary index produced during the thin link, there will be
one module path entry per linked module with summary.

Example:

^0 = module: (path: "/path/to/file.o", hash: (2468601609, 1329373163, 1565878005, 638838075, 3148790418))

The path field is a string path to the bitcode file, and the hash
field is the 160-bit SHA-1 hash of the IR bitcode contents, used for
incremental builds and caching.

Global Value Summary Entry

Each global value summary entry corresponds to a global value defined or
referenced by a summarized module.

Example:

^4 = gv: (name: "f"[, summaries: (Summary)[, (Summary)]*]?) ; guid = 14740650423002898831

For declarations, there will not be a summary list. For definitions, a
global value will contain a list of summaries, one per module containing
a definition. There can be multiple entries in a combined summary index
for symbols with weak linkage.

Each Summary format will depend on whether the global value is a
function, variable, or
alias.

Function Summary

If the global value is a function, the Summary entry will look like:

function: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0), insts: 2[, FuncFlags]?[, Calls]?[, TypeIdInfo]?[, Refs]?

The module field includes the summary entry id for the module containing
this definition, and the flags field contains information such as
the linkage type, a flag indicating whether it is legal to import the
definition, whether it is globally live and whether the linker resolved it
to a local definition (the latter two are populated during the thin link).
The insts field contains the number of IR instructions in the function.
Finally, there are several optional fields: FuncFlags,
Calls, TypeIdInfo,
Refs.

Global Variable Summary

If the global value is a variable, the Summary entry will look like:

variable: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0)[, Refs]?

The variable entry contains a subset of the fields in a
function summary, see the descriptions there.

Alias Summary

If the global value is an alias, the Summary entry will look like:

alias: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0), aliasee: ^2)

The module and flags fields are as described for a
function summary. The aliasee field
contains a reference to the global value summary entry of the aliasee.

Function Flags

The optional FuncFlags field looks like:

funcFlags: (readNone: 0, readOnly: 0, noRecurse: 0, returnDoesNotAlias: 0)

If unspecified, flags are assumed to hold the conservative false value of
0.

Calls

The optional Calls field looks like:

calls: ((Callee)[, (Callee)]*)

where each Callee looks like:

callee: ^1[, hotness: None]?[, relbf: 0]?

The callee refers to the summary entry id of the callee. At most one
of hotness (which can take the values Unknown, Cold, None,
Hot, and Critical), and relbf (which holds the integer
branch frequency relative to the entry frequency, scaled down by 2^8)
may be specified. The defaults are Unknown and 0, respectively.

Refs

The optional Refs field looks like:

refs: ((Ref)[, (Ref)]*)

where each Ref contains a reference to the summary id of the referenced
value (e.g. ^1).

TypeIdInfo

The optional TypeIdInfo field, used for
Control Flow Integrity [http://clang.llvm.org/docs/ControlFlowIntegrity.html],
looks like:

typeIdInfo: [(TypeTests)]?[, (TypeTestAssumeVCalls)]?[, (TypeCheckedLoadVCalls)]?[, (TypeTestAssumeConstVCalls)]?[, (TypeCheckedLoadConstVCalls)]?

These optional fields have the following forms:

TypeTests

typeTests: (TypeIdRef[, TypeIdRef]*)

Where each TypeIdRef refers to a type id
by summary id or GUID.

TypeTestAssumeVCalls

typeTestAssumeVCalls: (VFuncId[, VFuncId]*)

Where each VFuncId has the format:

vFuncId: (TypeIdRef, offset: 16)

Where each TypeIdRef refers to a type id
by summary id or GUID preceeded by a guid: tag.

TypeCheckedLoadVCalls

typeCheckedLoadVCalls: (VFuncId[, VFuncId]*)

Where each VFuncId has the format described for TypeTestAssumeVCalls.

TypeTestAssumeConstVCalls

typeTestAssumeConstVCalls: (ConstVCall[, ConstVCall]*)

Where each ConstVCall has the format:

VFuncId, args: (Arg[, Arg]*)

and where each VFuncId has the format described for TypeTestAssumeVCalls,
and each Arg is an integer argument number.

TypeCheckedLoadConstVCalls

typeCheckedLoadConstVCalls: (ConstVCall[, ConstVCall]*)

Where each ConstVCall has the format described for
TypeTestAssumeConstVCalls.

Type ID Summary Entry

Each type id summary entry corresponds to a type identifier resolution
which is generated during the LTO link portion of the compile when building
with Control Flow Integrity [http://clang.llvm.org/docs/ControlFlowIntegrity.html],
so these are only present in a combined summary index.

Example:

^4 = typeid: (name: "_ZTS1A", summary: (typeTestRes: (kind: allOnes, sizeM1BitWidth: 7[, alignLog2: 0]?[, sizeM1: 0]?[, bitMask: 0]?[, inlineBits: 0]?)[, WpdResolutions]?)) ; guid = 7004155349499253778

The typeTestRes gives the type test resolution kind (which may
be unsat, byteArray, inline, single, or allOnes), and
the size-1 bit width. It is followed by optional flags, which default to 0,
and an optional WpdResolutions (whole program devirtualization resolution)
field that looks like:

wpdResolutions: ((offset: 0, WpdRes)[, (offset: 1, WpdRes)]*

where each entry is a mapping from the given byte offset to the whole-program
devirtualization resolution WpdRes, that has one of the following formats:

wpdRes: (kind: branchFunnel)
wpdRes: (kind: singleImpl, singleImplName: "_ZN1A1nEi")
wpdRes: (kind: indir)

Additionally, each wpdRes has an optional resByArg field, which
describes the resolutions for calls with all constant integer arguments:

resByArg: (ResByArg[, ResByArg]*)

where ResByArg is:

args: (Arg[, Arg]*), byArg: (kind: UniformRetVal[, info: 0][, byte: 0][, bit: 0])

Where the kind can be Indir, UniformRetVal, UniqueRetVal
or VirtualConstProp. The info field is only used if the kind
is UniformRetVal (indicates the uniform return value), or
UniqueRetVal (holds the return value associated with the unique vtable
(0 or 1)). The byte and bit fields are only used if the target does
not support the use of absolute symbols to store constants.

Intrinsic Global Variables

LLVM has a number of “magic” global variables that contain data that
affect code generation or other IR semantics. These are documented here.
All globals of this sort should have a section specified as
“llvm.metadata”. This section and all globals that start with
“llvm.” are reserved for use by LLVM.

The ‘llvm.used’ Global Variable

The @llvm.used global is an array which has
appending linkage. This array contains a list of
pointers to named global variables, functions and aliases which may optionally
have a pointer cast formed of bitcast or getelementptr. For example, a legal
use of it is:

@X = global i8 4
@Y = global i32 123

@llvm.used = appending global [2 x i8*] [
 i8* @X,
 i8* bitcast (i32* @Y to i8*)
], section "llvm.metadata"

If a symbol appears in the @llvm.used list, then the compiler, assembler,
and linker are required to treat the symbol as if there is a reference to the
symbol that it cannot see (which is why they have to be named). For example, if
a variable has internal linkage and no references other than that from the
@llvm.used list, it cannot be deleted. This is commonly used to represent
references from inline asms and other things the compiler cannot “see”, and
corresponds to “attribute((used))” in GNU C.

On some targets, the code generator must emit a directive to the
assembler or object file to prevent the assembler and linker from
molesting the symbol.

The ‘llvm.compiler.used’ Global Variable

The @llvm.compiler.used directive is the same as the @llvm.used
directive, except that it only prevents the compiler from touching the
symbol. On targets that support it, this allows an intelligent linker to
optimize references to the symbol without being impeded as it would be
by @llvm.used.

This is a rare construct that should only be used in rare circumstances,
and should not be exposed to source languages.

The ‘llvm.global_ctors’ Global Variable

%0 = type { i32, void ()*, i8* }
@llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]

The @llvm.global_ctors array contains a list of constructor
functions, priorities, and an optional associated global or function.
The functions referenced by this array will be called in ascending order
of priority (i.e. lowest first) when the module is loaded. The order of
functions with the same priority is not defined.

If the third field is present, non-null, and points to a global variable
or function, the initializer function will only run if the associated
data from the current module is not discarded.

The ‘llvm.global_dtors’ Global Variable

%0 = type { i32, void ()*, i8* }
@llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]

The @llvm.global_dtors array contains a list of destructor
functions, priorities, and an optional associated global or function.
The functions referenced by this array will be called in descending
order of priority (i.e. highest first) when the module is unloaded. The
order of functions with the same priority is not defined.

If the third field is present, non-null, and points to a global variable
or function, the destructor function will only run if the associated
data from the current module is not discarded.

Instruction Reference

The LLVM instruction set consists of several different classifications
of instructions: terminator instructions, binary
instructions, bitwise binary
instructions, memory instructions, and
other instructions.

Terminator Instructions

As mentioned previously, every basic block in a
program ends with a “Terminator” instruction, which indicates which
block should be executed after the current block is finished. These
terminator instructions typically yield a ‘void’ value: they produce
control flow, not values (the one exception being the
‘invoke’ instruction).

The terminator instructions are: ‘ret’,
‘br’, ‘switch’,
‘indirectbr’, ‘invoke’,
‘resume’, ‘catchswitch’,
‘catchret’,
‘cleanupret’,
and ‘unreachable’.

‘ret’ Instruction

Syntax:

ret <type> <value> ; Return a value from a non-void function
ret void ; Return from void function

Overview:

The ‘ret’ instruction is used to return control flow (and optionally
a value) from a function back to the caller.

There are two forms of the ‘ret’ instruction: one that returns a
value and then causes control flow, and one that just causes control
flow to occur.

Arguments:

The ‘ret’ instruction optionally accepts a single argument, the
return value. The type of the return value must be a ‘first
class’ type.

A function is not well formed if it it has a non-void
return type and contains a ‘ret’ instruction with no return value or
a return value with a type that does not match its type, or if it has a
void return type and contains a ‘ret’ instruction with a return
value.

Semantics:

When the ‘ret’ instruction is executed, control flow returns back to
the calling function’s context. If the caller is a
“call” instruction, execution continues at the
instruction after the call. If the caller was an
“invoke” instruction, execution continues at the
beginning of the “normal” destination block. If the instruction returns
a value, that value shall set the call or invoke instruction’s return
value.

Example:

ret i32 5 ; Return an integer value of 5
ret void ; Return from a void function
ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2

‘br’ Instruction

Syntax:

br i1 <cond>, label <iftrue>, label <iffalse>
br label <dest> ; Unconditional branch

Overview:

The ‘br’ instruction is used to cause control flow to transfer to a
different basic block in the current function. There are two forms of
this instruction, corresponding to a conditional branch and an
unconditional branch.

Arguments:

The conditional branch form of the ‘br’ instruction takes a single
‘i1’ value and two ‘label’ values. The unconditional form of the
‘br’ instruction takes a single ‘label’ value as a target.

Semantics:

Upon execution of a conditional ‘br’ instruction, the ‘i1’
argument is evaluated. If the value is true, control flows to the
‘iftrue’ label argument. If “cond” is false, control flows
to the ‘iffalse’ label argument.

Example:

Test:
 %cond = icmp eq i32 %a, %b
 br i1 %cond, label %IfEqual, label %IfUnequal
IfEqual:
 ret i32 1
IfUnequal:
 ret i32 0

‘switch’ Instruction

Syntax:

switch <intty> <value>, label <defaultdest> [<intty> <val>, label <dest> ...]

Overview:

The ‘switch’ instruction is used to transfer control flow to one of
several different places. It is a generalization of the ‘br’
instruction, allowing a branch to occur to one of many possible
destinations.

Arguments:

The ‘switch’ instruction uses three parameters: an integer
comparison value ‘value’, a default ‘label’ destination, and an
array of pairs of comparison value constants and ‘label’s. The table
is not allowed to contain duplicate constant entries.

Semantics:

The switch instruction specifies a table of values and destinations.
When the ‘switch’ instruction is executed, this table is searched
for the given value. If the value is found, control flow is transferred
to the corresponding destination; otherwise, control flow is transferred
to the default destination.

Implementation:

Depending on properties of the target machine and the particular
switch instruction, this instruction may be code generated in
different ways. For example, it could be generated as a series of
chained conditional branches or with a lookup table.

Example:

; Emulate a conditional br instruction
%Val = zext i1 %value to i32
switch i32 %Val, label %truedest [i32 0, label %falsedest]

; Emulate an unconditional br instruction
switch i32 0, label %dest []

; Implement a jump table:
switch i32 %val, label %otherwise [i32 0, label %onzero
 i32 1, label %onone
 i32 2, label %ontwo]

‘indirectbr’ Instruction

Syntax:

indirectbr <somety>* <address>, [label <dest1>, label <dest2>, ...]

Overview:

The ‘indirectbr’ instruction implements an indirect branch to a
label within the current function, whose address is specified by
“address”. Address must be derived from a
blockaddress constant.

Arguments:

The ‘address’ argument is the address of the label to jump to. The
rest of the arguments indicate the full set of possible destinations
that the address may point to. Blocks are allowed to occur multiple
times in the destination list, though this isn’t particularly useful.

This destination list is required so that dataflow analysis has an
accurate understanding of the CFG.

Semantics:

Control transfers to the block specified in the address argument. All
possible destination blocks must be listed in the label list, otherwise
this instruction has undefined behavior. This implies that jumps to
labels defined in other functions have undefined behavior as well.

Implementation:

This is typically implemented with a jump through a register.

Example:

indirectbr i8* %Addr, [label %bb1, label %bb2, label %bb3]

‘invoke’ Instruction

Syntax:

<result> = invoke [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
 [operand bundles] to label <normal label> unwind label <exception label>

Overview:

The ‘invoke’ instruction causes control to transfer to a specified
function, with the possibility of control flow transfer to either the
‘normal’ label or the ‘exception’ label. If the callee function
returns with the “ret” instruction, control flow will return to the
“normal” label. If the callee (or any indirect callees) returns via the
“resume” instruction or other exception handling
mechanism, control is interrupted and continued at the dynamically
nearest “exception” label.

The ‘exception’ label is a landing
pad for the exception. As such,
‘exception’ label is required to have the
“landingpad” instruction, which contains the
information about the behavior of the program after unwinding happens,
as its first non-PHI instruction. The restrictions on the
“landingpad” instruction’s tightly couples it to the “invoke”
instruction, so that the important information contained within the
“landingpad” instruction can’t be lost through normal code motion.

Arguments:

This instruction requires several arguments:

	The optional “cconv” marker indicates which calling
convention the call should use. If none is
specified, the call defaults to using C calling conventions.

	The optional Parameter Attributes list for return
values. Only ‘zeroext’, ‘signext’, and ‘inreg’ attributes
are valid here.

	‘ty’: the type of the call instruction itself which is also the
type of the return value. Functions that return no value are marked
void.

	‘fnty’: shall be the signature of the function being invoked. The
argument types must match the types implied by this signature. This
type can be omitted if the function is not varargs.

	‘fnptrval’: An LLVM value containing a pointer to a function to
be invoked. In most cases, this is a direct function invocation, but
indirect invoke’s are just as possible, calling an arbitrary pointer
to function value.

	‘function args’: argument list whose types match the function
signature argument types and parameter attributes. All arguments must
be of first class type. If the function signature
indicates the function accepts a variable number of arguments, the
extra arguments can be specified.

	‘normal label’: the label reached when the called function
executes a ‘ret’ instruction.

	‘exception label’: the label reached when a callee returns via
the resume instruction or other exception handling
mechanism.

	The optional function attributes list.

	The optional operand bundles list.

Semantics:

This instruction is designed to operate as a standard ‘call’
instruction in most regards. The primary difference is that it
establishes an association with a label, which is used by the runtime
library to unwind the stack.

This instruction is used in languages with destructors to ensure that
proper cleanup is performed in the case of either a longjmp or a
thrown exception. Additionally, this is important for implementation of
‘catch’ clauses in high-level languages that support them.

For the purposes of the SSA form, the definition of the value returned
by the ‘invoke’ instruction is deemed to occur on the edge from the
current block to the “normal” label. If the callee unwinds then no
return value is available.

Example:

%retval = invoke i32 @Test(i32 15) to label %Continue
 unwind label %TestCleanup ; i32:retval set
%retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
 unwind label %TestCleanup ; i32:retval set

‘resume’ Instruction

Syntax:

resume <type> <value>

Overview:

The ‘resume’ instruction is a terminator instruction that has no
successors.

Arguments:

The ‘resume’ instruction requires one argument, which must have the
same type as the result of any ‘landingpad’ instruction in the same
function.

Semantics:

The ‘resume’ instruction resumes propagation of an existing
(in-flight) exception whose unwinding was interrupted with a
landingpad instruction.

Example:

resume { i8*, i32 } %exn

‘catchswitch’ Instruction

Syntax:

<resultval> = catchswitch within <parent> [label <handler1>, label <handler2>, ...] unwind to caller
<resultval> = catchswitch within <parent> [label <handler1>, label <handler2>, ...] unwind label <default>

Overview:

The ‘catchswitch’ instruction is used by LLVM’s exception handling system to describe the set of possible catch handlers
that may be executed by the EH personality routine.

Arguments:

The parent argument is the token of the funclet that contains the
catchswitch instruction. If the catchswitch is not inside a funclet,
this operand may be the token none.

The default argument is the label of another basic block beginning with
either a cleanuppad or catchswitch instruction. This unwind destination
must be a legal target with respect to the parent links, as described in
the exception handling documentation.

The handlers are a nonempty list of successor blocks that each begin with a
catchpad instruction.

Semantics:

Executing this instruction transfers control to one of the successors in
handlers, if appropriate, or continues to unwind via the unwind label if
present.

The catchswitch is both a terminator and a “pad” instruction, meaning that
it must be both the first non-phi instruction and last instruction in the basic
block. Therefore, it must be the only non-phi instruction in the block.

Example:

dispatch1:
 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
dispatch2:
 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup

‘catchret’ Instruction

Syntax:

catchret from <token> to label <normal>

Overview:

The ‘catchret’ instruction is a terminator instruction that has a
single successor.

Arguments:

The first argument to a ‘catchret’ indicates which catchpad it
exits. It must be a catchpad.
The second argument to a ‘catchret’ specifies where control will
transfer to next.

Semantics:

The ‘catchret’ instruction ends an existing (in-flight) exception whose
unwinding was interrupted with a catchpad instruction. The
personality function gets a chance to execute arbitrary
code to, for example, destroy the active exception. Control then transfers to
normal.

The token argument must be a token produced by a catchpad instruction.
If the specified catchpad is not the most-recently-entered not-yet-exited
funclet pad (as described in the EH documentation),
the catchret’s behavior is undefined.

Example:

catchret from %catch label %continue

‘cleanupret’ Instruction

Syntax:

cleanupret from <value> unwind label <continue>
cleanupret from <value> unwind to caller

Overview:

The ‘cleanupret’ instruction is a terminator instruction that has
an optional successor.

Arguments:

The ‘cleanupret’ instruction requires one argument, which indicates
which cleanuppad it exits, and must be a cleanuppad.
If the specified cleanuppad is not the most-recently-entered not-yet-exited
funclet pad (as described in the EH documentation),
the cleanupret’s behavior is undefined.

The ‘cleanupret’ instruction also has an optional successor, continue,
which must be the label of another basic block beginning with either a
cleanuppad or catchswitch instruction. This unwind destination must
be a legal target with respect to the parent links, as described in the
exception handling documentation.

Semantics:

The ‘cleanupret’ instruction indicates to the
personality function that one
cleanuppad it transferred control to has ended.
It transfers control to continue or unwinds out of the function.

Example:

cleanupret from %cleanup unwind to caller
cleanupret from %cleanup unwind label %continue

‘unreachable’ Instruction

Syntax:

unreachable

Overview:

The ‘unreachable’ instruction has no defined semantics. This
instruction is used to inform the optimizer that a particular portion of
the code is not reachable. This can be used to indicate that the code
after a no-return function cannot be reached, and other facts.

Semantics:

The ‘unreachable’ instruction has no defined semantics.

Binary Operations

Binary operators are used to do most of the computation in a program.
They require two operands of the same type, execute an operation on
them, and produce a single value. The operands might represent multiple
data, as is the case with the vector data type. The
result value has the same type as its operands.

There are several different binary operators:

‘add’ Instruction

Syntax:

<result> = add <ty> <op1>, <op2> ; yields ty:result
<result> = add nuw <ty> <op1>, <op2> ; yields ty:result
<result> = add nsw <ty> <op1>, <op2> ; yields ty:result
<result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result

Overview:

The ‘add’ instruction returns the sum of its two operands.

Arguments:

The two arguments to the ‘add’ instruction must be
integer or vector of integer values. Both
arguments must have identical types.

Semantics:

The value produced is the integer sum of the two operands.

If the sum has unsigned overflow, the result returned is the
mathematical result modulo 2n, where n is the bit width of
the result.

Because LLVM integers use a two’s complement representation, this
instruction is appropriate for both signed and unsigned integers.

nuw and nsw stand for “No Unsigned Wrap” and “No Signed Wrap”,
respectively. If the nuw and/or nsw keywords are present, the
result value of the add is a poison value if
unsigned and/or signed overflow, respectively, occurs.

Example:

<result> = add i32 4, %var ; yields i32:result = 4 + %var

‘fadd’ Instruction

Syntax:

<result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result

Overview:

The ‘fadd’ instruction returns the sum of its two operands.

Arguments:

The two arguments to the ‘fadd’ instruction must be
floating-point or vector of
floating-point values. Both arguments must have identical types.

Semantics:

The value produced is the floating-point sum of the two operands.
This instruction is assumed to execute in the default floating-point
environment.
This instruction can also take any number of fast-math
flags, which are optimization hints to enable otherwise
unsafe floating-point optimizations:

Example:

<result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var

‘sub’ Instruction

Syntax:

<result> = sub <ty> <op1>, <op2> ; yields ty:result
<result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
<result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
<result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result

Overview:

The ‘sub’ instruction returns the difference of its two operands.

Note that the ‘sub’ instruction is used to represent the ‘neg’
instruction present in most other intermediate representations.

Arguments:

The two arguments to the ‘sub’ instruction must be
integer or vector of integer values. Both
arguments must have identical types.

Semantics:

The value produced is the integer difference of the two operands.

If the difference has unsigned overflow, the result returned is the
mathematical result modulo 2n, where n is the bit width of
the result.

Because LLVM integers use a two’s complement representation, this
instruction is appropriate for both signed and unsigned integers.

nuw and nsw stand for “No Unsigned Wrap” and “No Signed Wrap”,
respectively. If the nuw and/or nsw keywords are present, the
result value of the sub is a poison value if
unsigned and/or signed overflow, respectively, occurs.

Example:

<result> = sub i32 4, %var ; yields i32:result = 4 - %var
<result> = sub i32 0, %val ; yields i32:result = -%var

‘fsub’ Instruction

Syntax:

<result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result

Overview:

The ‘fsub’ instruction returns the difference of its two operands.

Note that the ‘fsub’ instruction is used to represent the ‘fneg’
instruction present in most other intermediate representations.

Arguments:

The two arguments to the ‘fsub’ instruction must be
floating-point or vector of
floating-point values. Both arguments must have identical types.

Semantics:

The value produced is the floating-point difference of the two operands.
This instruction is assumed to execute in the default floating-point
environment.
This instruction can also take any number of fast-math
flags, which are optimization hints to enable otherwise
unsafe floating-point optimizations:

Example:

<result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
<result> = fsub float -0.0, %val ; yields float:result = -%var

‘mul’ Instruction

Syntax:

<result> = mul <ty> <op1>, <op2> ; yields ty:result
<result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
<result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
<result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result

Overview:

The ‘mul’ instruction returns the product of its two operands.

Arguments:

The two arguments to the ‘mul’ instruction must be
integer or vector of integer values. Both
arguments must have identical types.

Semantics:

The value produced is the integer product of the two operands.

If the result of the multiplication has unsigned overflow, the result
returned is the mathematical result modulo 2n, where n is the
bit width of the result.

Because LLVM integers use a two’s complement representation, and the
result is the same width as the operands, this instruction returns the
correct result for both signed and unsigned integers. If a full product
(e.g. i32 * i32 -> i64) is needed, the operands should be
sign-extended or zero-extended as appropriate to the width of the full
product.

nuw and nsw stand for “No Unsigned Wrap” and “No Signed Wrap”,
respectively. If the nuw and/or nsw keywords are present, the
result value of the mul is a poison value if
unsigned and/or signed overflow, respectively, occurs.

Example:

<result> = mul i32 4, %var ; yields i32:result = 4 * %var

‘fmul’ Instruction

Syntax:

<result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result

Overview:

The ‘fmul’ instruction returns the product of its two operands.

Arguments:

The two arguments to the ‘fmul’ instruction must be
floating-point or vector of
floating-point values. Both arguments must have identical types.

Semantics:

The value produced is the floating-point product of the two operands.
This instruction is assumed to execute in the default floating-point
environment.
This instruction can also take any number of fast-math
flags, which are optimization hints to enable otherwise
unsafe floating-point optimizations:

Example:

<result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var

‘udiv’ Instruction

Syntax:

<result> = udiv <ty> <op1>, <op2> ; yields ty:result
<result> = udiv exact <ty> <op1>, <op2> ; yields ty:result

Overview:

The ‘udiv’ instruction returns the quotient of its two operands.

Arguments:

The two arguments to the ‘udiv’ instruction must be
integer or vector of integer values. Both
arguments must have identical types.

Semantics:

The value produced is the unsigned integer quotient of the two operands.

Note that unsigned integer division and signed integer division are
distinct operations; for signed integer division, use ‘sdiv’.

Division by zero is undefined behavior. For vectors, if any element
of the divisor is zero, the operation has undefined behavior.

If the exact keyword is present, the result value of the udiv is
a poison value if %op1 is not a multiple of %op2 (as
such, “((a udiv exact b) mul b) == a”).

Example:

<result> = udiv i32 4, %var ; yields i32:result = 4 / %var

‘sdiv’ Instruction

Syntax:

<result> = sdiv <ty> <op1>, <op2> ; yields ty:result
<result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result

Overview:

The ‘sdiv’ instruction returns the quotient of its two operands.

Arguments:

The two arguments to the ‘sdiv’ instruction must be
integer or vector of integer values. Both
arguments must have identical types.

Semantics:

The value produced is the signed integer quotient of the two operands
rounded towards zero.

Note that signed integer division and unsigned integer division are
distinct operations; for unsigned integer division, use ‘udiv’.

Division by zero is undefined behavior. For vectors, if any element
of the divisor is zero, the operation has undefined behavior.
Overflow also leads to undefined behavior; this is a rare case, but can
occur, for example, by doing a 32-bit division of -2147483648 by -1.

If the exact keyword is present, the result value of the sdiv is
a poison value if the result would be rounded.

Example:

<result> = sdiv i32 4, %var ; yields i32:result = 4 / %var

‘fdiv’ Instruction

Syntax:

<result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result

Overview:

The ‘fdiv’ instruction returns the quotient of its two operands.

Arguments:

The two arguments to the ‘fdiv’ instruction must be
floating-point or vector of
floating-point values. Both arguments must have identical types.

Semantics:

The value produced is the floating-point quotient of the two operands.
This instruction is assumed to execute in the default floating-point
environment.
This instruction can also take any number of fast-math
flags, which are optimization hints to enable otherwise
unsafe floating-point optimizations:

Example:

<result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var

‘urem’ Instruction

Syntax:

<result> = urem <ty> <op1>, <op2> ; yields ty:result

Overview:

The ‘urem’ instruction returns the remainder from the unsigned
division of its two arguments.

Arguments:

The two arguments to the ‘urem’ instruction must be
integer or vector of integer values. Both
arguments must have identical types.

Semantics:

This instruction returns the unsigned integer remainder of a division.
This instruction always performs an unsigned division to get the
remainder.

Note that unsigned integer remainder and signed integer remainder are
distinct operations; for signed integer remainder, use ‘srem’.

Taking the remainder of a division by zero is undefined behavior.
For vectors, if any element of the divisor is zero, the operation has
undefined behavior.

Example:

<result> = urem i32 4, %var ; yields i32:result = 4 % %var

‘srem’ Instruction

Syntax:

<result> = srem <ty> <op1>, <op2> ; yields ty:result

Overview:

The ‘srem’ instruction returns the remainder from the signed
division of its two operands. This instruction can also take
vector versions of the values in which case the elements
must be integers.

Arguments:

The two arguments to the ‘srem’ instruction must be
integer or vector of integer values. Both
arguments must have identical types.

Semantics:

This instruction returns the remainder of a division (where the result
is either zero or has the same sign as the dividend, op1), not the
modulo operator (where the result is either zero or has the same sign
as the divisor, op2) of a value. For more information about the
difference, see The Math
Forum [http://mathforum.org/dr.math/problems/anne.4.28.99.html]. For a
table of how this is implemented in various languages, please see
Wikipedia: modulo
operation [http://en.wikipedia.org/wiki/Modulo_operation].

Note that signed integer remainder and unsigned integer remainder are
distinct operations; for unsigned integer remainder, use ‘urem’.

Taking the remainder of a division by zero is undefined behavior.
For vectors, if any element of the divisor is zero, the operation has
undefined behavior.
Overflow also leads to undefined behavior; this is a rare case, but can
occur, for example, by taking the remainder of a 32-bit division of
-2147483648 by -1. (The remainder doesn’t actually overflow, but this
rule lets srem be implemented using instructions that return both the
result of the division and the remainder.)

Example:

<result> = srem i32 4, %var ; yields i32:result = 4 % %var

‘frem’ Instruction

Syntax:

<result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result

Overview:

The ‘frem’ instruction returns the remainder from the division of
its two operands.

Arguments:

The two arguments to the ‘frem’ instruction must be
floating-point or vector of
floating-point values. Both arguments must have identical types.

Semantics:

The value produced is the floating-point remainder of the two operands.
This is the same output as a libm ‘fmod’ function, but without any
possibility of setting errno. The remainder has the same sign as the
dividend.
This instruction is assumed to execute in the default floating-point
environment.
This instruction can also take any number of fast-math
flags, which are optimization hints to enable otherwise
unsafe floating-point optimizations:

Example:

<result> = frem float 4.0, %var ; yields float:result = 4.0 % %var

Bitwise Binary Operations

Bitwise binary operators are used to do various forms of bit-twiddling
in a program. They are generally very efficient instructions and can
commonly be strength reduced from other instructions. They require two
operands of the same type, execute an operation on them, and produce a
single value. The resulting value is the same type as its operands.

‘shl’ Instruction

Syntax:

<result> = shl <ty> <op1>, <op2> ; yields ty:result
<result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
<result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
<result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result

Overview:

The ‘shl’ instruction returns the first operand shifted to the left
a specified number of bits.

Arguments:

Both arguments to the ‘shl’ instruction must be the same
integer or vector of integer type.
‘op2’ is treated as an unsigned value.

Semantics:

The value produced is op1 * 2op2 mod 2n,
where n is the width of the result. If op2 is (statically or
dynamically) equal to or larger than the number of bits in
op1, this instruction returns a poison value.
If the arguments are vectors, each vector element of op1 is shifted
by the corresponding shift amount in op2.

If the nuw keyword is present, then the shift produces a poison
value if it shifts out any non-zero bits.
If the nsw keyword is present, then the shift produces a poison
value if it shifts out any bits that disagree with the resultant sign bit.

Example:

<result> = shl i32 4, %var ; yields i32: 4 << %var
<result> = shl i32 4, 2 ; yields i32: 16
<result> = shl i32 1, 10 ; yields i32: 1024
<result> = shl i32 1, 32 ; undefined
<result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>

‘lshr’ Instruction

Syntax:

<result> = lshr <ty> <op1>, <op2> ; yields ty:result
<result> = lshr exact <ty> <op1>, <op2> ; yields ty:result

Overview:

The ‘lshr’ instruction (logical shift right) returns the first
operand shifted to the right a specified number of bits with zero fill.

Arguments:

Both arguments to the ‘lshr’ instruction must be the same
integer or vector of integer type.
‘op2’ is treated as an unsigned value.

Semantics:

This instruction always performs a logical shift right operation. The
most significant bits of the result will be filled with zero bits after
the shift. If op2 is (statically or dynamically) equal to or larger
than the number of bits in op1, this instruction returns a poison
value. If the arguments are vectors, each vector element
of op1 is shifted by the corresponding shift amount in op2.

If the exact keyword is present, the result value of the lshr is
a poison value if any of the bits shifted out are non-zero.

Example:

<result> = lshr i32 4, 1 ; yields i32:result = 2
<result> = lshr i32 4, 2 ; yields i32:result = 1
<result> = lshr i8 4, 3 ; yields i8:result = 0
<result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
<result> = lshr i32 1, 32 ; undefined
<result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>

‘ashr’ Instruction

Syntax:

<result> = ashr <ty> <op1>, <op2> ; yields ty:result
<result> = ashr exact <ty> <op1>, <op2> ; yields ty:result

Overview:

The ‘ashr’ instruction (arithmetic shift right) returns the first
operand shifted to the right a specified number of bits with sign
extension.

Arguments:

Both arguments to the ‘ashr’ instruction must be the same
integer or vector of integer type.
‘op2’ is treated as an unsigned value.

Semantics:

This instruction always performs an arithmetic shift right operation,
The most significant bits of the result will be filled with the sign bit
of op1. If op2 is (statically or dynamically) equal to or larger
than the number of bits in op1, this instruction returns a poison
value. If the arguments are vectors, each vector element
of op1 is shifted by the corresponding shift amount in op2.

If the exact keyword is present, the result value of the ashr is
a poison value if any of the bits shifted out are non-zero.

Example:

<result> = ashr i32 4, 1 ; yields i32:result = 2
<result> = ashr i32 4, 2 ; yields i32:result = 1
<result> = ashr i8 4, 3 ; yields i8:result = 0
<result> = ashr i8 -2, 1 ; yields i8:result = -1
<result> = ashr i32 1, 32 ; undefined
<result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>

‘and’ Instruction

Syntax:

<result> = and <ty> <op1>, <op2> ; yields ty:result

Overview:

The ‘and’ instruction returns the bitwise logical and of its two
operands.

Arguments:

The two arguments to the ‘and’ instruction must be
integer or vector of integer values. Both
arguments must have identical types.

Semantics:

The truth table used for the ‘and’ instruction is:

	In0

	In1

	Out

	0

	0

	0

	0

	1

	0

	1

	0

	0

	1

	1

	1

Example:

<result> = and i32 4, %var ; yields i32:result = 4 & %var
<result> = and i32 15, 40 ; yields i32:result = 8
<result> = and i32 4, 8 ; yields i32:result = 0

‘or’ Instruction

Syntax:

<result> = or <ty> <op1>, <op2> ; yields ty:result

Overview:

The ‘or’ instruction returns the bitwise logical inclusive or of its
two operands.

Arguments:

The two arguments to the ‘or’ instruction must be
integer or vector of integer values. Both
arguments must have identical types.

Semantics:

The truth table used for the ‘or’ instruction is:

	In0

	In1

	Out

	0

	0

	0

	0

	1

	1

	1

	0

	1

	1

	1

	1

Example:

<result> = or i32 4, %var ; yields i32:result = 4 | %var
<result> = or i32 15, 40 ; yields i32:result = 47
<result> = or i32 4, 8 ; yields i32:result = 12

‘xor’ Instruction

Syntax:

<result> = xor <ty> <op1>, <op2> ; yields ty:result

Overview:

The ‘xor’ instruction returns the bitwise logical exclusive or of
its two operands. The xor is used to implement the “one’s
complement” operation, which is the “~” operator in C.

Arguments:

The two arguments to the ‘xor’ instruction must be
integer or vector of integer values. Both
arguments must have identical types.

Semantics:

The truth table used for the ‘xor’ instruction is:

	In0

	In1

	Out

	0

	0

	0

	0

	1

	1

	1

	0

	1

	1

	1

	0

Example:

<result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
<result> = xor i32 15, 40 ; yields i32:result = 39
<result> = xor i32 4, 8 ; yields i32:result = 12
<result> = xor i32 %V, -1 ; yields i32:result = ~%V

Vector Operations

LLVM supports several instructions to represent vector operations in a
target-independent manner. These instructions cover the element-access
and vector-specific operations needed to process vectors effectively.
While LLVM does directly support these vector operations, many
sophisticated algorithms will want to use target-specific intrinsics to
take full advantage of a specific target.

‘extractelement’ Instruction

Syntax:

<result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>

Overview:

The ‘extractelement’ instruction extracts a single scalar element
from a vector at a specified index.

Arguments:

The first operand of an ‘extractelement’ instruction is a value of
vector type. The second operand is an index indicating
the position from which to extract the element. The index may be a
variable of any integer type.

Semantics:

The result is a scalar of the same type as the element type of val.
Its value is the value at position idx of val. If idx
exceeds the length of val, the result is a
poison value.

Example:

<result> = extractelement <4 x i32> %vec, i32 0 ; yields i32

‘insertelement’ Instruction

Syntax:

<result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>

Overview:

The ‘insertelement’ instruction inserts a scalar element into a
vector at a specified index.

Arguments:

The first operand of an ‘insertelement’ instruction is a value of
vector type. The second operand is a scalar value whose
type must equal the element type of the first operand. The third operand
is an index indicating the position at which to insert the value. The
index may be a variable of any integer type.

Semantics:

The result is a vector of the same type as val. Its element values
are those of val except at position idx, where it gets the value
elt. If idx exceeds the length of val, the result
is a poison value.

Example:

<result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>

‘shufflevector’ Instruction

Syntax:

<result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>

Overview:

The ‘shufflevector’ instruction constructs a permutation of elements
from two input vectors, returning a vector with the same element type as
the input and length that is the same as the shuffle mask.

Arguments:

The first two operands of a ‘shufflevector’ instruction are vectors
with the same type. The third argument is a shuffle mask whose element
type is always ‘i32’. The result of the instruction is a vector whose
length is the same as the shuffle mask and whose element type is the
same as the element type of the first two operands.

The shuffle mask operand is required to be a constant vector with either
constant integer or undef values.

Semantics:

The elements of the two input vectors are numbered from left to right
across both of the vectors. The shuffle mask operand specifies, for each
element of the result vector, which element of the two input vectors the
result element gets. If the shuffle mask is undef, the result vector is
undef. If any element of the mask operand is undef, that element of the
result is undef. If the shuffle mask selects an undef element from one
of the input vectors, the resulting element is undef.

Example:

<result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
<result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
<result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
<result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>

Aggregate Operations

LLVM supports several instructions for working with
aggregate values.

‘extractvalue’ Instruction

Syntax:

<result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*

Overview:

The ‘extractvalue’ instruction extracts the value of a member field
from an aggregate value.

Arguments:

The first operand of an ‘extractvalue’ instruction is a value of
struct or array type. The other operands are
constant indices to specify which value to extract in a similar manner
as indices in a ‘getelementptr’ instruction.

The major differences to getelementptr indexing are:

	Since the value being indexed is not a pointer, the first index is
omitted and assumed to be zero.

	At least one index must be specified.

	Not only struct indices but also array indices must be in bounds.

Semantics:

The result is the value at the position in the aggregate specified by
the index operands.

Example:

<result> = extractvalue {i32, float} %agg, 0 ; yields i32

‘insertvalue’ Instruction

Syntax:

<result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>

Overview:

The ‘insertvalue’ instruction inserts a value into a member field in
an aggregate value.

Arguments:

The first operand of an ‘insertvalue’ instruction is a value of
struct or array type. The second operand is
a first-class value to insert. The following operands are constant
indices indicating the position at which to insert the value in a
similar manner as indices in a ‘extractvalue’ instruction. The value
to insert must have the same type as the value identified by the
indices.

Semantics:

The result is an aggregate of the same type as val. Its value is
that of val except that the value at the position specified by the
indices is that of elt.

Example:

%agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
%agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
%agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}

Memory Access and Addressing Operations

A key design point of an SSA-based representation is how it represents
memory. In LLVM, no memory locations are in SSA form, which makes things
very simple. This section describes how to read, write, and allocate
memory in LLVM.

‘alloca’ Instruction

Syntax:

<result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] [, addrspace(<num>)] ; yields type addrspace(num)*:result

Overview:

The ‘alloca’ instruction allocates memory on the stack frame of the
currently executing function, to be automatically released when this
function returns to its caller. The object is always allocated in the
address space for allocas indicated in the datalayout.

Arguments:

The ‘alloca’ instruction allocates sizeof(<type>)*NumElements
bytes of memory on the runtime stack, returning a pointer of the
appropriate type to the program. If “NumElements” is specified, it is
the number of elements allocated, otherwise “NumElements” is defaulted
to be one. If a constant alignment is specified, the value result of the
allocation is guaranteed to be aligned to at least that boundary. The
alignment may not be greater than 1 << 29. If not specified, or if
zero, the target can choose to align the allocation on any convenient
boundary compatible with the type.

‘type’ may be any sized type.

Semantics:

Memory is allocated; a pointer is returned. The operation is undefined
if there is insufficient stack space for the allocation. ‘alloca’d
memory is automatically released when the function returns. The
‘alloca’ instruction is commonly used to represent automatic
variables that must have an address available. When the function returns
(either with the ret or resume instructions), the memory is
reclaimed. Allocating zero bytes is legal, but the returned pointer may not
be unique. The order in which memory is allocated (ie., which way the stack
grows) is not specified.

Example:

%ptr = alloca i32 ; yields i32*:ptr
%ptr = alloca i32, i32 4 ; yields i32*:ptr
%ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
%ptr = alloca i32, align 1024 ; yields i32*:ptr

‘load’ Instruction

Syntax:

<result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
<result> = load atomic [volatile] <ty>, <ty>* <pointer> [syncscope("<target-scope>")] <ordering>, align <alignment> [, !invariant.group !<index>]
!<index> = !{ i32 1 }
!<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
!<align_node> = !{ i64 <value_alignment> }

Overview:

The ‘load’ instruction is used to read from memory.

Arguments:

The argument to the load instruction specifies the memory address from which
to load. The type specified must be a first class type of
known size (i.e. not containing an opaque structural type). If
the load is marked as volatile, then the optimizer is not allowed to
modify the number or order of execution of this load with other
volatile operations.

If the load is marked as atomic, it takes an extra ordering and optional syncscope("<target-scope>") argument. The
release and acq_rel orderings are not valid on load instructions.
Atomic loads produce defined results when they may see
multiple atomic stores. The type of the pointee must be an integer, pointer, or
floating-point type whose bit width is a power of two greater than or equal to
eight and less than or equal to a target-specific size limit. align must be
explicitly specified on atomic loads, and the load has undefined behavior if the
alignment is not set to a value which is at least the size in bytes of the
pointee. !nontemporal does not have any defined semantics for atomic loads.

The optional constant align argument specifies the alignment of the
operation (that is, the alignment of the memory address). A value of 0
or an omitted align argument means that the operation has the ABI
alignment for the target. It is the responsibility of the code emitter
to ensure that the alignment information is correct. Overestimating the
alignment results in undefined behavior. Underestimating the alignment
may produce less efficient code. An alignment of 1 is always safe. The
maximum possible alignment is 1 << 29. An alignment value higher
than the size of the loaded type implies memory up to the alignment
value bytes can be safely loaded without trapping in the default
address space. Access of the high bytes can interfere with debugging
tools, so should not be accessed if the function has the
sanitize_thread or sanitize_address attributes.

The optional !nontemporal metadata must reference a single
metadata name <index> corresponding to a metadata node with one
i32 entry of value 1. The existence of the !nontemporal
metadata on the instruction tells the optimizer and code generator
that this load is not expected to be reused in the cache. The code
generator may select special instructions to save cache bandwidth, such
as the MOVNT instruction on x86.

The optional !invariant.load metadata must reference a single
metadata name <index> corresponding to a metadata node with no
entries. If a load instruction tagged with the !invariant.load
metadata is executed, the optimizer may assume the memory location
referenced by the load contains the same value at all points in the
program where the memory location is known to be dereferenceable;
otherwise, the behavior is undefined.

	The optional !invariant.group metadata must reference a single metadata name

	<index> corresponding to a metadata node with no entries.
See invariant.group metadata.

The optional !nonnull metadata must reference a single
metadata name <index> corresponding to a metadata node with no
entries. The existence of the !nonnull metadata on the
instruction tells the optimizer that the value loaded is known to
never be null. If the value is null at runtime, the behavior is undefined.
This is analogous to the nonnull attribute on parameters and return
values. This metadata can only be applied to loads of a pointer type.

The optional !dereferenceable metadata must reference a single metadata
name <deref_bytes_node> corresponding to a metadata node with one i64
entry. The existence of the !dereferenceable metadata on the instruction
tells the optimizer that the value loaded is known to be dereferenceable.
The number of bytes known to be dereferenceable is specified by the integer
value in the metadata node. This is analogous to the ‘’dereferenceable’’
attribute on parameters and return values. This metadata can only be applied
to loads of a pointer type.

The optional !dereferenceable_or_null metadata must reference a single
metadata name <deref_bytes_node> corresponding to a metadata node with one
i64 entry. The existence of the !dereferenceable_or_null metadata on the
instruction tells the optimizer that the value loaded is known to be either
dereferenceable or null.
The number of bytes known to be dereferenceable is specified by the integer
value in the metadata node. This is analogous to the ‘’dereferenceable_or_null’’
attribute on parameters and return values. This metadata can only be applied
to loads of a pointer type.

The optional !align metadata must reference a single metadata name
<align_node> corresponding to a metadata node with one i64 entry.
The existence of the !align metadata on the instruction tells the
optimizer that the value loaded is known to be aligned to a boundary specified
by the integer value in the metadata node. The alignment must be a power of 2.
This is analogous to the ‘’align’’ attribute on parameters and return values.
This metadata can only be applied to loads of a pointer type. If the returned
value is not appropriately aligned at runtime, the behavior is undefined.

Semantics:

The location of memory pointed to is loaded. If the value being loaded
is of scalar type then the number of bytes read does not exceed the
minimum number of bytes needed to hold all bits of the type. For
example, loading an i24 reads at most three bytes. When loading a
value of a type like i20 with a size that is not an integral number
of bytes, the result is undefined if the value was not originally
written using a store of the same type.

Examples:

%ptr = alloca i32 ; yields i32*:ptr
store i32 3, i32* %ptr ; yields void
%val = load i32, i32* %ptr ; yields i32:val = i32 3

‘store’ Instruction

Syntax:

store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
store atomic [volatile] <ty> <value>, <ty>* <pointer> [syncscope("<target-scope>")] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void

Overview:

The ‘store’ instruction is used to write to memory.

Arguments:

There are two arguments to the store instruction: a value to store and an
address at which to store it. The type of the <pointer> operand must be a
pointer to the first class type of the <value>
operand. If the store is marked as volatile, then the optimizer is not
allowed to modify the number or order of execution of this store with other
volatile operations. Only values of first class types of known size (i.e. not containing an opaque
structural type) can be stored.

If the store is marked as atomic, it takes an extra ordering and optional syncscope("<target-scope>") argument. The
acquire and acq_rel orderings aren’t valid on store instructions.
Atomic loads produce defined results when they may see
multiple atomic stores. The type of the pointee must be an integer, pointer, or
floating-point type whose bit width is a power of two greater than or equal to
eight and less than or equal to a target-specific size limit. align must be
explicitly specified on atomic stores, and the store has undefined behavior if
the alignment is not set to a value which is at least the size in bytes of the
pointee. !nontemporal does not have any defined semantics for atomic stores.

The optional constant align argument specifies the alignment of the
operation (that is, the alignment of the memory address). A value of 0
or an omitted align argument means that the operation has the ABI
alignment for the target. It is the responsibility of the code emitter
to ensure that the alignment information is correct. Overestimating the
alignment results in undefined behavior. Underestimating the
alignment may produce less efficient code. An alignment of 1 is always
safe. The maximum possible alignment is 1 << 29. An alignment
value higher than the size of the stored type implies memory up to the
alignment value bytes can be stored to without trapping in the default
address space. Storing to the higher bytes however may result in data
races if another thread can access the same address. Introducing a
data race is not allowed. Storing to the extra bytes is not allowed
even in situations where a data race is known to not exist if the
function has the sanitize_address attribute.

The optional !nontemporal metadata must reference a single metadata
name <index> corresponding to a metadata node with one i32 entry of
value 1. The existence of the !nontemporal metadata on the instruction
tells the optimizer and code generator that this load is not expected to
be reused in the cache. The code generator may select special
instructions to save cache bandwidth, such as the MOVNT instruction on
x86.

The optional !invariant.group metadata must reference a
single metadata name <index>. See invariant.group metadata.

Semantics:

The contents of memory are updated to contain <value> at the
location specified by the <pointer> operand. If <value> is
of scalar type then the number of bytes written does not exceed the
minimum number of bytes needed to hold all bits of the type. For
example, storing an i24 writes at most three bytes. When writing a
value of a type like i20 with a size that is not an integral number
of bytes, it is unspecified what happens to the extra bits that do not
belong to the type, but they will typically be overwritten.

Example:

%ptr = alloca i32 ; yields i32*:ptr
store i32 3, i32* %ptr ; yields void
%val = load i32, i32* %ptr ; yields i32:val = i32 3

‘fence’ Instruction

Syntax:

fence [syncscope("<target-scope>")] <ordering> ; yields void

Overview:

The ‘fence’ instruction is used to introduce happens-before edges
between operations.

Arguments:

‘fence’ instructions take an ordering argument which
defines what synchronizes-with edges they add. They can only be given
acquire, release, acq_rel, and seq_cst orderings.

Semantics:

A fence A which has (at least) release ordering semantics
synchronizes with a fence B with (at least) acquire ordering
semantics if and only if there exist atomic operations X and Y, both
operating on some atomic object M, such that A is sequenced before X, X
modifies M (either directly or through some side effect of a sequence
headed by X), Y is sequenced before B, and Y observes M. This provides a
happens-before dependency between A and B. Rather than an explicit
fence, one (but not both) of the atomic operations X or Y might
provide a release or acquire (resp.) ordering constraint and
still synchronize-with the explicit fence and establish the
happens-before edge.

A fence which has seq_cst ordering, in addition to having both
acquire and release semantics specified above, participates in
the global program order of other seq_cst operations and/or fences.

A fence instruction can also take an optional
“syncscope” argument.

Example:

fence acquire ; yields void
fence syncscope("singlethread") seq_cst ; yields void
fence syncscope("agent") seq_cst ; yields void

‘cmpxchg’ Instruction

Syntax:

cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [syncscope("<target-scope>")] <success ordering> <failure ordering> ; yields { ty, i1 }

Overview:

The ‘cmpxchg’ instruction is used to atomically modify memory. It
loads a value in memory and compares it to a given value. If they are
equal, it tries to store a new value into the memory.

Arguments:

There are three arguments to the ‘cmpxchg’ instruction: an address
to operate on, a value to compare to the value currently be at that
address, and a new value to place at that address if the compared values
are equal. The type of ‘<cmp>’ must be an integer or pointer type whose
bit width is a power of two greater than or equal to eight and less
than or equal to a target-specific size limit. ‘<cmp>’ and ‘<new>’ must
have the same type, and the type of ‘<pointer>’ must be a pointer to
that type. If the cmpxchg is marked as volatile, then the
optimizer is not allowed to modify the number or order of execution of
this cmpxchg with other volatile operations.

The success and failure ordering arguments specify how this
cmpxchg synchronizes with other atomic operations. Both ordering parameters
must be at least monotonic, the ordering constraint on failure must be no
stronger than that on success, and the failure ordering cannot be either
release or acq_rel.

A cmpxchg instruction can also take an optional
“syncscope” argument.

The pointer passed into cmpxchg must have alignment greater than or
equal to the size in memory of the operand.

Semantics:

The contents of memory at the location specified by the ‘<pointer>’ operand
is read and compared to ‘<cmp>’; if the values are equal, ‘<new>’ is
written to the location. The original value at the location is returned,
together with a flag indicating success (true) or failure (false).

If the cmpxchg operation is marked as weak then a spurious failure is
permitted: the operation may not write <new> even if the comparison
matched.

If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
if the value loaded equals cmp.

A successful cmpxchg is a read-modify-write instruction for the purpose of
identifying release sequences. A failed cmpxchg is equivalent to an atomic
load with an ordering parameter determined the second ordering parameter.

Example:

entry:
 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
 br label %loop

loop:
 %cmp = phi i32 [%orig, %entry], [%value_loaded, %loop]
 %squared = mul i32 %cmp, %cmp
 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
 %value_loaded = extractvalue { i32, i1 } %val_success, 0
 %success = extractvalue { i32, i1 } %val_success, 1
 br i1 %success, label %done, label %loop

done:
 ...

‘atomicrmw’ Instruction

Syntax:

atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [syncscope("<target-scope>")] <ordering> ; yields ty

Overview:

The ‘atomicrmw’ instruction is used to atomically modify memory.

Arguments:

There are three arguments to the ‘atomicrmw’ instruction: an
operation to apply, an address whose value to modify, an argument to the
operation. The operation must be one of the following keywords:

	xchg

	add

	sub

	and

	nand

	or

	xor

	max

	min

	umax

	umin

The type of ‘<value>’ must be an integer type whose bit width is a power
of two greater than or equal to eight and less than or equal to a
target-specific size limit. The type of the ‘<pointer>’ operand must
be a pointer to that type. If the atomicrmw is marked as
volatile, then the optimizer is not allowed to modify the number or
order of execution of this atomicrmw with other volatile
operations.

A atomicrmw instruction can also take an optional
“syncscope” argument.

Semantics:

The contents of memory at the location specified by the ‘<pointer>’
operand are atomically read, modified, and written back. The original
value at the location is returned. The modification is specified by the
operation argument:

	xchg: *ptr = val

	add: *ptr = *ptr + val

	sub: *ptr = *ptr - val

	and: *ptr = *ptr & val

	nand: *ptr = ~(*ptr & val)

	or: *ptr = *ptr | val

	xor: *ptr = *ptr ^ val

	max: *ptr = *ptr > val ? *ptr : val (using a signed comparison)

	min: *ptr = *ptr < val ? *ptr : val (using a signed comparison)

	umax: *ptr = *ptr > val ? *ptr : val (using an unsigned
comparison)

	umin: *ptr = *ptr < val ? *ptr : val (using an unsigned
comparison)

Example:

%old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32

‘getelementptr’ Instruction

Syntax:

<result> = getelementptr <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
<result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
<result> = getelementptr <ty>, <ptr vector> <ptrval>, [inrange] <vector index type> <idx>

Overview:

The ‘getelementptr’ instruction is used to get the address of a
subelement of an aggregate data structure. It performs
address calculation only and does not access memory. The instruction can also
be used to calculate a vector of such addresses.

Arguments:

The first argument is always a type used as the basis for the calculations.
The second argument is always a pointer or a vector of pointers, and is the
base address to start from. The remaining arguments are indices
that indicate which of the elements of the aggregate object are indexed.
The interpretation of each index is dependent on the type being indexed
into. The first index always indexes the pointer value given as the
second argument, the second index indexes a value of the type pointed to
(not necessarily the value directly pointed to, since the first index
can be non-zero), etc. The first type indexed into must be a pointer
value, subsequent types can be arrays, vectors, and structs. Note that
subsequent types being indexed into can never be pointers, since that
would require loading the pointer before continuing calculation.

The type of each index argument depends on the type it is indexing into.
When indexing into a (optionally packed) structure, only i32 integer
constants are allowed (when using a vector of indices they must all
be the same i32 integer constant). When indexing into an array,
pointer or vector, integers of any width are allowed, and they are not
required to be constant. These integers are treated as signed values
where relevant.

For example, let’s consider a C code fragment and how it gets compiled
to LLVM:

struct RT {
 char A;
 int B[10][20];
 char C;
};
struct ST {
 int X;
 double Y;
 struct RT Z;
};

int *foo(struct ST *s) {
 return &s[1].Z.B[5][13];
}

The LLVM code generated by Clang is:

%struct.RT = type { i8, [10 x [20 x i32]], i8 }
%struct.ST = type { i32, double, %struct.RT }

define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
entry:
 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
 ret i32* %arrayidx
}

Semantics:

In the example above, the first index is indexing into the
‘%struct.ST*’ type, which is a pointer, yielding a ‘%struct.ST’
= ‘{ i32, double, %struct.RT }’ type, a structure. The second index
indexes into the third element of the structure, yielding a
‘%struct.RT’ = ‘{ i8 , [10 x [20 x i32]], i8 }’ type, another
structure. The third index indexes into the second element of the
structure, yielding a ‘[10 x [20 x i32]]’ type, an array. The two
dimensions of the array are subscripted into, yielding an ‘i32’
type. The ‘getelementptr’ instruction returns a pointer to this
element, thus computing a value of ‘i32*’ type.

Note that it is perfectly legal to index partially through a structure,
returning a pointer to an inner element. Because of this, the LLVM code
for the given testcase is equivalent to:

define i32* @foo(%struct.ST* %s) {
 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
 ret i32* %t5
}

If the inbounds keyword is present, the result value of the
getelementptr is a poison value if the base
pointer is not an in bounds address of an allocated object, or if any
of the addresses that would be formed by successive addition of the
offsets implied by the indices to the base address with infinitely
precise signed arithmetic are not an in bounds address of that
allocated object. The in bounds addresses for an allocated object are
all the addresses that point into the object, plus the address one byte
past the end. The only in bounds address for a null pointer in the
default address-space is the null pointer itself. In cases where the
base is a vector of pointers the inbounds keyword applies to each
of the computations element-wise.

If the inbounds keyword is not present, the offsets are added to the
base address with silently-wrapping two’s complement arithmetic. If the
offsets have a different width from the pointer, they are sign-extended
or truncated to the width of the pointer. The result value of the
getelementptr may be outside the object pointed to by the base
pointer. The result value may not necessarily be used to access memory
though, even if it happens to point into allocated storage. See the
Pointer Aliasing Rules section for more
information.

If the inrange keyword is present before any index, loading from or
storing to any pointer derived from the getelementptr has undefined
behavior if the load or store would access memory outside of the bounds of
the element selected by the index marked as inrange. The result of a
pointer comparison or ptrtoint (including ptrtoint-like operations
involving memory) involving a pointer derived from a getelementptr with
the inrange keyword is undefined, with the exception of comparisons
in the case where both operands are in the range of the element selected
by the inrange keyword, inclusive of the address one past the end of
that element. Note that the inrange keyword is currently only allowed
in constant getelementptr expressions.

The getelementptr instruction is often confusing. For some more insight
into how it works, see the getelementptr FAQ.

Example:

; yields [12 x i8]*:aptr
%aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
; yields i8*:vptr
%vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
; yields i8*:eptr
%eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
; yields i32*:iptr
%iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0

Vector of pointers:

The getelementptr returns a vector of pointers, instead of a single address,
when one or more of its arguments is a vector. In such cases, all vector
arguments should have the same number of elements, and every scalar argument
will be effectively broadcast into a vector during address calculation.

; All arguments are vectors:
; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
%A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets

; Add the same scalar offset to each pointer of a vector:
; A[i] = ptrs[i] + offset*sizeof(i8)
%A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset

; Add distinct offsets to the same pointer:
; A[i] = ptr + offsets[i]*sizeof(i8)
%A = getelementptr i8, i8* %ptr, <4 x i64> %offsets

; In all cases described above the type of the result is <4 x i8*>

The two following instructions are equivalent:

getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
 <4 x i32> %ind4,
 <4 x i64> <i64 13, i64 13, i64 13, i64 13>

getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
 i32 2, i32 1, <4 x i32> %ind4, i64 13

Let’s look at the C code, where the vector version of getelementptr
makes sense:

// Let's assume that we vectorize the following loop:
double *A, *B; int *C;
for (int i = 0; i < size; ++i) {
 A[i] = B[C[i]];
}

; get pointers for 8 elements from array B
%ptrs = getelementptr double, double* %B, <8 x i32> %C
; load 8 elements from array B into A
%A = call <8 x double> @llvm.masked.gather.v8f64.v8p0f64(<8 x double*> %ptrs,
 i32 8, <8 x i1> %mask, <8 x double> %passthru)

Conversion Operations

The instructions in this category are the conversion instructions
(casting) which all take a single operand and a type. They perform
various bit conversions on the operand.

‘trunc .. to’ Instruction

Syntax:

<result> = trunc <ty> <value> to <ty2> ; yields ty2

Overview:

The ‘trunc’ instruction truncates its operand to the type ty2.

Arguments:

The ‘trunc’ instruction takes a value to trunc, and a type to trunc
it to. Both types must be of integer types, or vectors
of the same number of integers. The bit size of the value must be
larger than the bit size of the destination type, ty2. Equal sized
types are not allowed.

Semantics:

The ‘trunc’ instruction truncates the high order bits in value
and converts the remaining bits to ty2. Since the source size must
be larger than the destination size, trunc cannot be a no-op cast.
It will always truncate bits.

Example:

%X = trunc i32 257 to i8 ; yields i8:1
%Y = trunc i32 123 to i1 ; yields i1:true
%Z = trunc i32 122 to i1 ; yields i1:false
%W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>

‘zext .. to’ Instruction

Syntax:

<result> = zext <ty> <value> to <ty2> ; yields ty2

Overview:

The ‘zext’ instruction zero extends its operand to type ty2.

Arguments:

The ‘zext’ instruction takes a value to cast, and a type to cast it
to. Both types must be of integer types, or vectors of
the same number of integers. The bit size of the value must be
smaller than the bit size of the destination type, ty2.

Semantics:

The zext fills the high order bits of the value with zero bits
until it reaches the size of the destination type, ty2.

When zero extending from i1, the result will always be either 0 or 1.

Example:

%X = zext i32 257 to i64 ; yields i64:257
%Y = zext i1 true to i32 ; yields i32:1
%Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>

‘sext .. to’ Instruction

Syntax:

<result> = sext <ty> <value> to <ty2> ; yields ty2

Overview:

The ‘sext’ sign extends value to the type ty2.

Arguments:

The ‘sext’ instruction takes a value to cast, and a type to cast it
to. Both types must be of integer types, or vectors of
the same number of integers. The bit size of the value must be
smaller than the bit size of the destination type, ty2.

Semantics:

The ‘sext’ instruction performs a sign extension by copying the sign
bit (highest order bit) of the value until it reaches the bit size
of the type ty2.

When sign extending from i1, the extension always results in -1 or 0.

Example:

%X = sext i8 -1 to i16 ; yields i16 :65535
%Y = sext i1 true to i32 ; yields i32:-1
%Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>

‘fptrunc .. to’ Instruction

Syntax:

<result> = fptrunc <ty> <value> to <ty2> ; yields ty2

Overview:

The ‘fptrunc’ instruction truncates value to type ty2.

Arguments:

The ‘fptrunc’ instruction takes a floating-point
value to cast and a floating-point type to cast it to.
The size of value must be larger than the size of ty2. This
implies that fptrunc cannot be used to make a no-op cast.

Semantics:

The ‘fptrunc’ instruction casts a value from a larger
floating-point type to a smaller floating-point type.
This instruction is assumed to execute in the default floating-point
environment.

Example:

%X = fptrunc double 16777217.0 to float ; yields float:16777216.0
%Y = fptrunc double 1.0E+300 to half ; yields half:+infinity

‘fpext .. to’ Instruction

Syntax:

<result> = fpext <ty> <value> to <ty2> ; yields ty2

Overview:

The ‘fpext’ extends a floating-point value to a larger floating-point
value.

Arguments:

The ‘fpext’ instruction takes a floating-point
value to cast, and a floating-point type to cast it
to. The source type must be smaller than the destination type.

Semantics:

The ‘fpext’ instruction extends the value from a smaller
floating-point type to a larger floating-point type. The fpext cannot be used to make a
no-op cast because it always changes bits. Use bitcast to make a
no-op cast for a floating-point cast.

Example:

%X = fpext float 3.125 to double ; yields double:3.125000e+00
%Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000

‘fptoui .. to’ Instruction

Syntax:

<result> = fptoui <ty> <value> to <ty2> ; yields ty2

Overview:

The ‘fptoui’ converts a floating-point value to its unsigned
integer equivalent of type ty2.

Arguments:

The ‘fptoui’ instruction takes a value to cast, which must be a
scalar or vector floating-point value, and a type to
cast it to ty2, which must be an integer type. If
ty is a vector floating-point type, ty2 must be a vector integer
type with the same number of elements as ty

Semantics:

The ‘fptoui’ instruction converts its floating-point operand into the nearest (rounding towards zero)
unsigned integer value. If the value cannot fit in ty2, the result
is a poison value.

Example:

%X = fptoui double 123.0 to i32 ; yields i32:123
%Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
%Z = fptoui float 1.04E+17 to i8 ; yields undefined:1

‘fptosi .. to’ Instruction

Syntax:

<result> = fptosi <ty> <value> to <ty2> ; yields ty2

Overview:

The ‘fptosi’ instruction converts floating-point
value to type ty2.

Arguments:

The ‘fptosi’ instruction takes a value to cast, which must be a
scalar or vector floating-point value, and a type to
cast it to ty2, which must be an integer type. If
ty is a vector floating-point type, ty2 must be a vector integer
type with the same number of elements as ty

Semantics:

The ‘fptosi’ instruction converts its floating-point operand into the nearest (rounding towards zero)
signed integer value. If the value cannot fit in ty2, the result
is a poison value.

Example:

%X = fptosi double -123.0 to i32 ; yields i32:-123
%Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
%Z = fptosi float 1.04E+17 to i8 ; yields undefined:1

‘uitofp .. to’ Instruction

Syntax:

<result> = uitofp <ty> <value> to <ty2> ; yields ty2

Overview:

The ‘uitofp’ instruction regards value as an unsigned integer
and converts that value to the ty2 type.

Arguments:

The ‘uitofp’ instruction takes a value to cast, which must be a
scalar or vector integer value, and a type to cast it to
ty2, which must be an floating-point type. If
ty is a vector integer type, ty2 must be a vector floating-point
type with the same number of elements as ty

Semantics:

The ‘uitofp’ instruction interprets its operand as an unsigned
integer quantity and converts it to the corresponding floating-point
value. If the value cannot be exactly represented, it is rounded using
the default rounding mode.

Example:

%X = uitofp i32 257 to float ; yields float:257.0
%Y = uitofp i8 -1 to double ; yields double:255.0

‘sitofp .. to’ Instruction

Syntax:

<result> = sitofp <ty> <value> to <ty2> ; yields ty2

Overview:

The ‘sitofp’ instruction regards value as a signed integer and
converts that value to the ty2 type.

Arguments:

The ‘sitofp’ instruction takes a value to cast, which must be a
scalar or vector integer value, and a type to cast it to
ty2, which must be an floating-point type. If
ty is a vector integer type, ty2 must be a vector floating-point
type with the same number of elements as ty

Semantics:

The ‘sitofp’ instruction interprets its operand as a signed integer
quantity and converts it to the corresponding floating-point value. If the
value cannot be exactly represented, it is rounded using the default rounding
mode.

Example:

%X = sitofp i32 257 to float ; yields float:257.0
%Y = sitofp i8 -1 to double ; yields double:-1.0

‘ptrtoint .. to’ Instruction

Syntax:

<result> = ptrtoint <ty> <value> to <ty2> ; yields ty2

Overview:

The ‘ptrtoint’ instruction converts the pointer or a vector of
pointers value to the integer (or vector of integers) type ty2.

Arguments:

The ‘ptrtoint’ instruction takes a value to cast, which must be
a value of type pointer or a vector of pointers, and a
type to cast it to ty2, which must be an integer or
a vector of integers type.

Semantics:

The ‘ptrtoint’ instruction converts value to integer type
ty2 by interpreting the pointer value as an integer and either
truncating or zero extending that value to the size of the integer type.
If value is smaller than ty2 then a zero extension is done. If
value is larger than ty2 then a truncation is done. If they are
the same size, then nothing is done (no-op cast) other than a type
change.

Example:

%X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
%Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
%Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture

‘inttoptr .. to’ Instruction

Syntax:

<result> = inttoptr <ty> <value> to <ty2> ; yields ty2

Overview:

The ‘inttoptr’ instruction converts an integer value to a
pointer type, ty2.

Arguments:

The ‘inttoptr’ instruction takes an integer value to
cast, and a type to cast it to, which must be a pointer
type.

Semantics:

The ‘inttoptr’ instruction converts value to type ty2 by
applying either a zero extension or a truncation depending on the size
of the integer value. If value is larger than the size of a
pointer then a truncation is done. If value is smaller than the size
of a pointer then a zero extension is done. If they are the same size,
nothing is done (no-op cast).

Example:

%X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
%Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
%Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
%Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers

‘bitcast .. to’ Instruction

Syntax:

<result> = bitcast <ty> <value> to <ty2> ; yields ty2

Overview:

The ‘bitcast’ instruction converts value to type ty2 without
changing any bits.

Arguments:

The ‘bitcast’ instruction takes a value to cast, which must be a
non-aggregate first class value, and a type to cast it to, which must
also be a non-aggregate first class type. The
bit sizes of value and the destination type, ty2, must be
identical. If the source type is a pointer, the destination type must
also be a pointer of the same size. This instruction supports bitwise
conversion of vectors to integers and to vectors of other types (as
long as they have the same size).

Semantics:

The ‘bitcast’ instruction converts value to type ty2. It
is always a no-op cast because no bits change with this
conversion. The conversion is done as if the value had been stored
to memory and read back as type ty2. Pointer (or vector of
pointers) types may only be converted to other pointer (or vector of
pointers) types with the same address space through this instruction.
To convert pointers to other types, use the inttoptr
or ptrtoint instructions first.

Example:

%X = bitcast i8 255 to i8 ; yields i8 :-1
%Y = bitcast i32* %x to sint* ; yields sint*:%x
%Z = bitcast <2 x int> %V to i64; ; yields i64: %V
%Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>

‘addrspacecast .. to’ Instruction

Syntax:

<result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2

Overview:

The ‘addrspacecast’ instruction converts ptrval from pty in
address space n to type pty2 in address space m.

Arguments:

The ‘addrspacecast’ instruction takes a pointer or vector of pointer value
to cast and a pointer type to cast it to, which must have a different
address space.

Semantics:

The ‘addrspacecast’ instruction converts the pointer value
ptrval to type pty2. It can be a no-op cast or a complex
value modification, depending on the target and the address space
pair. Pointer conversions within the same address space must be
performed with the bitcast instruction. Note that if the address space
conversion is legal then both result and operand refer to the same memory
location.

Example:

%X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
%Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
%Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z

Other Operations

The instructions in this category are the “miscellaneous” instructions,
which defy better classification.

‘icmp’ Instruction

Syntax:

<result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result

Overview:

The ‘icmp’ instruction returns a boolean value or a vector of
boolean values based on comparison of its two integer, integer vector,
pointer, or pointer vector operands.

Arguments:

The ‘icmp’ instruction takes three operands. The first operand is
the condition code indicating the kind of comparison to perform. It is
not a value, just a keyword. The possible condition codes are:

	eq: equal

	ne: not equal

	ugt: unsigned greater than

	uge: unsigned greater or equal

	ult: unsigned less than

	ule: unsigned less or equal

	sgt: signed greater than

	sge: signed greater or equal

	slt: signed less than

	sle: signed less or equal

The remaining two arguments must be integer or
pointer or integer vector typed. They
must also be identical types.

Semantics:

The ‘icmp’ compares op1 and op2 according to the condition
code given as cond. The comparison performed always yields either an
i1 or vector of i1 result, as follows:

	eq: yields true if the operands are equal, false
otherwise. No sign interpretation is necessary or performed.

	ne: yields true if the operands are unequal, false
otherwise. No sign interpretation is necessary or performed.

	ugt: interprets the operands as unsigned values and yields
true if op1 is greater than op2.

	uge: interprets the operands as unsigned values and yields
true if op1 is greater than or equal to op2.

	ult: interprets the operands as unsigned values and yields
true if op1 is less than op2.

	ule: interprets the operands as unsigned values and yields
true if op1 is less than or equal to op2.

	sgt: interprets the operands as signed values and yields true
if op1 is greater than op2.

	sge: interprets the operands as signed values and yields true
if op1 is greater than or equal to op2.

	slt: interprets the operands as signed values and yields true
if op1 is less than op2.

	sle: interprets the operands as signed values and yields true
if op1 is less than or equal to op2.

If the operands are pointer typed, the pointer values
are compared as if they were integers.

If the operands are integer vectors, then they are compared element by
element. The result is an i1 vector with the same number of elements
as the values being compared. Otherwise, the result is an i1.

Example:

<result> = icmp eq i32 4, 5 ; yields: result=false
<result> = icmp ne float* %X, %X ; yields: result=false
<result> = icmp ult i16 4, 5 ; yields: result=true
<result> = icmp sgt i16 4, 5 ; yields: result=false
<result> = icmp ule i16 -4, 5 ; yields: result=false
<result> = icmp sge i16 4, 5 ; yields: result=false

‘fcmp’ Instruction

Syntax:

<result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result

Overview:

The ‘fcmp’ instruction returns a boolean value or vector of boolean
values based on comparison of its operands.

If the operands are floating-point scalars, then the result type is a
boolean (i1).

If the operands are floating-point vectors, then the result type is a
vector of boolean with the same number of elements as the operands being
compared.

Arguments:

The ‘fcmp’ instruction takes three operands. The first operand is
the condition code indicating the kind of comparison to perform. It is
not a value, just a keyword. The possible condition codes are:

	false: no comparison, always returns false

	oeq: ordered and equal

	ogt: ordered and greater than

	oge: ordered and greater than or equal

	olt: ordered and less than

	ole: ordered and less than or equal

	one: ordered and not equal

	ord: ordered (no nans)

	ueq: unordered or equal

	ugt: unordered or greater than

	uge: unordered or greater than or equal

	ult: unordered or less than

	ule: unordered or less than or equal

	une: unordered or not equal

	uno: unordered (either nans)

	true: no comparison, always returns true

Ordered means that neither operand is a QNAN while unordered means
that either operand may be a QNAN.

Each of val1 and val2 arguments must be either a floating-point type or a vector of floating-point type.
They must have identical types.

Semantics:

The ‘fcmp’ instruction compares op1 and op2 according to the
condition code given as cond. If the operands are vectors, then the
vectors are compared element by element. Each comparison performed
always yields an i1 result, as follows:

	false: always yields false, regardless of operands.

	oeq: yields true if both operands are not a QNAN and op1
is equal to op2.

	ogt: yields true if both operands are not a QNAN and op1
is greater than op2.

	oge: yields true if both operands are not a QNAN and op1
is greater than or equal to op2.

	olt: yields true if both operands are not a QNAN and op1
is less than op2.

	ole: yields true if both operands are not a QNAN and op1
is less than or equal to op2.

	one: yields true if both operands are not a QNAN and op1
is not equal to op2.

	ord: yields true if both operands are not a QNAN.

	ueq: yields true if either operand is a QNAN or op1 is
equal to op2.

	ugt: yields true if either operand is a QNAN or op1 is
greater than op2.

	uge: yields true if either operand is a QNAN or op1 is
greater than or equal to op2.

	ult: yields true if either operand is a QNAN or op1 is
less than op2.

	ule: yields true if either operand is a QNAN or op1 is
less than or equal to op2.

	une: yields true if either operand is a QNAN or op1 is
not equal to op2.

	uno: yields true if either operand is a QNAN.

	true: always yields true, regardless of operands.

The fcmp instruction can also optionally take any number of
fast-math flags, which are optimization hints to enable
otherwise unsafe floating-point optimizations.

Any set of fast-math flags are legal on an fcmp instruction, but the
only flags that have any effect on its semantics are those that allow
assumptions to be made about the values of input arguments; namely
nnan, ninf, and reassoc. See Fast-Math Flags for more information.

Example:

<result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
<result> = fcmp one float 4.0, 5.0 ; yields: result=true
<result> = fcmp olt float 4.0, 5.0 ; yields: result=true
<result> = fcmp ueq double 1.0, 2.0 ; yields: result=false

‘phi’ Instruction

Syntax:

<result> = phi <ty> [<val0>, <label0>], ...

Overview:

The ‘phi’ instruction is used to implement the φ node in the SSA
graph representing the function.

Arguments:

The type of the incoming values is specified with the first type field.
After this, the ‘phi’ instruction takes a list of pairs as
arguments, with one pair for each predecessor basic block of the current
block. Only values of first class type may be used as
the value arguments to the PHI node. Only labels may be used as the
label arguments.

There must be no non-phi instructions between the start of a basic block
and the PHI instructions: i.e. PHI instructions must be first in a basic
block.

For the purposes of the SSA form, the use of each incoming value is
deemed to occur on the edge from the corresponding predecessor block to
the current block (but after any definition of an ‘invoke’
instruction’s return value on the same edge).

Semantics:

At runtime, the ‘phi’ instruction logically takes on the value
specified by the pair corresponding to the predecessor basic block that
executed just prior to the current block.

Example:

Loop: ; Infinite loop that counts from 0 on up...
 %indvar = phi i32 [0, %LoopHeader], [%nextindvar, %Loop]
 %nextindvar = add i32 %indvar, 1
 br label %Loop

‘select’ Instruction

Syntax:

<result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty

selty is either i1 or {<N x i1>}

Overview:

The ‘select’ instruction is used to choose one value based on a
condition, without IR-level branching.

Arguments:

The ‘select’ instruction requires an ‘i1’ value or a vector of ‘i1’
values indicating the condition, and two values of the same first
class type.

Semantics:

If the condition is an i1 and it evaluates to 1, the instruction returns
the first value argument; otherwise, it returns the second value
argument.

If the condition is a vector of i1, then the value arguments must be
vectors of the same size, and the selection is done element by element.

If the condition is an i1 and the value arguments are vectors of the
same size, then an entire vector is selected.

Example:

%X = select i1 true, i8 17, i8 42 ; yields i8:17

‘call’ Instruction

Syntax:

<result> = [tail | musttail | notail] call [fast-math flags] [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
 [operand bundles]

Overview:

The ‘call’ instruction represents a simple function call.

Arguments:

This instruction requires several arguments:

	The optional tail and musttail markers indicate that the optimizers
should perform tail call optimization. The tail marker is a hint that
can be ignored. The musttail marker
means that the call must be tail call optimized in order for the program to
be correct. The musttail marker provides these guarantees:

	The call will not cause unbounded stack growth if it is part of a
recursive cycle in the call graph.

	Arguments with the inalloca attribute are
forwarded in place.

Both markers imply that the callee does not access allocas from the caller.
The tail marker additionally implies that the callee does not access
varargs from the caller, while musttail implies that varargs from the
caller are passed to the callee. Calls marked musttail must obey the
following additional rules:

	The call must immediately precede a ret instruction,
or a pointer bitcast followed by a ret instruction.

	The ret instruction must return the (possibly bitcasted) value
produced by the call or void.

	The caller and callee prototypes must match. Pointer types of
parameters or return types may differ in pointee type, but not
in address space.

	The calling conventions of the caller and callee must match.

	All ABI-impacting function attributes, such as sret, byval, inreg,
returned, and inalloca, must match.

	The callee must be varargs iff the caller is varargs. Bitcasting a
non-varargs function to the appropriate varargs type is legal so
long as the non-varargs prefixes obey the other rules.

Tail call optimization for calls marked tail is guaranteed to occur if
the following conditions are met:

	Caller and callee both have the calling convention fastcc.

	The call is in tail position (ret immediately follows call and ret
uses value of call or is void).

	Option -tailcallopt is enabled, or
llvm::GuaranteedTailCallOpt is true.

	Platform-specific constraints are
met.

	The optional notail marker indicates that the optimizers should not add
tail or musttail markers to the call. It is used to prevent tail
call optimization from being performed on the call.

	The optional fast-math flags marker indicates that the call has one or more
fast-math flags, which are optimization hints to enable
otherwise unsafe floating-point optimizations. Fast-math flags are only valid
for calls that return a floating-point scalar or vector type.

	The optional “cconv” marker indicates which calling
convention the call should use. If none is
specified, the call defaults to using C calling conventions. The
calling convention of the call must match the calling convention of
the target function, or else the behavior is undefined.

	The optional Parameter Attributes list for return
values. Only ‘zeroext’, ‘signext’, and ‘inreg’ attributes
are valid here.

	‘ty’: the type of the call instruction itself which is also the
type of the return value. Functions that return no value are marked
void.

	‘fnty’: shall be the signature of the function being called. The
argument types must match the types implied by this signature. This
type can be omitted if the function is not varargs.

	‘fnptrval’: An LLVM value containing a pointer to a function to
be called. In most cases, this is a direct function call, but
indirect call’s are just as possible, calling an arbitrary pointer
to function value.

	‘function args’: argument list whose types match the function
signature argument types and parameter attributes. All arguments must
be of first class type. If the function signature
indicates the function accepts a variable number of arguments, the
extra arguments can be specified.

	The optional function attributes list.

	The optional operand bundles list.

Semantics:

The ‘call’ instruction is used to cause control flow to transfer to
a specified function, with its incoming arguments bound to the specified
values. Upon a ‘ret’ instruction in the called function, control
flow continues with the instruction after the function call, and the
return value of the function is bound to the result argument.

Example:

%retval = call i32 @test(i32 %argc)
call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
%X = tail call i32 @foo() ; yields i32
%Y = tail call fastcc i32 @foo() ; yields i32
call void %foo(i8 97 signext)

%struct.A = type { i32, i8 }
%r = call %struct.A @foo() ; yields { i32, i8 }
%gr = extractvalue %struct.A %r, 0 ; yields i32
%gr1 = extractvalue %struct.A %r, 1 ; yields i8
%Z = call void @foo() noreturn ; indicates that %foo never returns normally
%ZZ = call zeroext i32 @bar() ; Return value is %zero extended

llvm treats calls to some functions with names and arguments that match
the standard C99 library as being the C99 library functions, and may
perform optimizations or generate code for them under that assumption.
This is something we’d like to change in the future to provide better
support for freestanding environments and non-C-based languages.

‘va_arg’ Instruction

Syntax:

<resultval> = va_arg <va_list*> <arglist>, <argty>

Overview:

The ‘va_arg’ instruction is used to access arguments passed through
the “variable argument” area of a function call. It is used to implement
the va_arg macro in C.

Arguments:

This instruction takes a va_list* value and the type of the
argument. It returns a value of the specified argument type and
increments the va_list to point to the next argument. The actual
type of va_list is target specific.

Semantics:

The ‘va_arg’ instruction loads an argument of the specified type
from the specified va_list and causes the va_list to point to
the next argument. For more information, see the variable argument
handling Intrinsic Functions.

It is legal for this instruction to be called in a function which does
not take a variable number of arguments, for example, the vfprintf
function.

va_arg is an LLVM instruction instead of an intrinsic
function because it takes a type as an argument.

Example:

See the variable argument processing section.

Note that the code generator does not yet fully support va_arg on many
targets. Also, it does not currently support va_arg with aggregate
types on any target.

‘landingpad’ Instruction

Syntax:

<resultval> = landingpad <resultty> <clause>+
<resultval> = landingpad <resultty> cleanup <clause>*

<clause> := catch <type> <value>
<clause> := filter <array constant type> <array constant>

Overview:

The ‘landingpad’ instruction is used by LLVM’s exception handling
system to specify that a basic block
is a landing pad — one where the exception lands, and corresponds to the
code found in the catch portion of a try/catch sequence. It
defines values supplied by the personality function upon
re-entry to the function. The resultval has the type resultty.

Arguments:

The optional
cleanup flag indicates that the landing pad block is a cleanup.

A clause begins with the clause type — catch or filter — and
contains the global variable representing the “type” that may be caught
or filtered respectively. Unlike the catch clause, the filter
clause takes an array constant as its argument. Use
“[0 x i8**] undef” for a filter which cannot throw. The
‘landingpad’ instruction must contain at least one clause or
the cleanup flag.

Semantics:

The ‘landingpad’ instruction defines the values which are set by the
personality function upon re-entry to the function, and
therefore the “result type” of the landingpad instruction. As with
calling conventions, how the personality function results are
represented in LLVM IR is target specific.

The clauses are applied in order from top to bottom. If two
landingpad instructions are merged together through inlining, the
clauses from the calling function are appended to the list of clauses.
When the call stack is being unwound due to an exception being thrown,
the exception is compared against each clause in turn. If it doesn’t
match any of the clauses, and the cleanup flag is not set, then
unwinding continues further up the call stack.

The landingpad instruction has several restrictions:

	A landing pad block is a basic block which is the unwind destination
of an ‘invoke’ instruction.

	A landing pad block must have a ‘landingpad’ instruction as its
first non-PHI instruction.

	There can be only one ‘landingpad’ instruction within the landing
pad block.

	A basic block that is not a landing pad block may not include a
‘landingpad’ instruction.

Example:

;; A landing pad which can catch an integer.
%res = landingpad { i8*, i32 }
 catch i8** @_ZTIi
;; A landing pad that is a cleanup.
%res = landingpad { i8*, i32 }
 cleanup
;; A landing pad which can catch an integer and can only throw a double.
%res = landingpad { i8*, i32 }
 catch i8** @_ZTIi
 filter [1 x i8**] [@_ZTId]

‘catchpad’ Instruction

Syntax:

<resultval> = catchpad within <catchswitch> [<args>*]

Overview:

The ‘catchpad’ instruction is used by LLVM’s exception handling
system to specify that a basic block
begins a catch handler — one where a personality routine attempts to transfer
control to catch an exception.

Arguments:

The catchswitch operand must always be a token produced by a
catchswitch instruction in a predecessor block. This
ensures that each catchpad has exactly one predecessor block, and it always
terminates in a catchswitch.

The args correspond to whatever information the personality routine
requires to know if this is an appropriate handler for the exception. Control
will transfer to the catchpad if this is the first appropriate handler for
the exception.

The resultval has the type token and is used to match the
catchpad to corresponding catchrets and other nested EH
pads.

Semantics:

When the call stack is being unwound due to an exception being thrown, the
exception is compared against the args. If it doesn’t match, control will
not reach the catchpad instruction. The representation of args is
entirely target and personality function-specific.

Like the landingpad instruction, the catchpad
instruction must be the first non-phi of its parent basic block.

The meaning of the tokens produced and consumed by catchpad and other “pad”
instructions is described in the
Windows exception handling documentation.

When a catchpad has been “entered” but not yet “exited” (as
described in the EH documentation),
it is undefined behavior to execute a call or invoke
that does not carry an appropriate “funclet” bundle.

Example:

dispatch:
 %cs = catchswitch within none [label %handler0] unwind to caller
 ;; A catch block which can catch an integer.
handler0:
 %tok = catchpad within %cs [i8** @_ZTIi]

‘cleanuppad’ Instruction

Syntax:

<resultval> = cleanuppad within <parent> [<args>*]

Overview:

The ‘cleanuppad’ instruction is used by LLVM’s exception handling
system to specify that a basic block
is a cleanup block — one where a personality routine attempts to
transfer control to run cleanup actions.
The args correspond to whatever additional
information the personality function requires to
execute the cleanup.
The resultval has the type token and is used to
match the cleanuppad to corresponding cleanuprets.
The parent argument is the token of the funclet that contains the
cleanuppad instruction. If the cleanuppad is not inside a funclet,
this operand may be the token none.

Arguments:

The instruction takes a list of arbitrary values which are interpreted
by the personality function.

Semantics:

When the call stack is being unwound due to an exception being thrown,
the personality function transfers control to the
cleanuppad with the aid of the personality-specific arguments.
As with calling conventions, how the personality function results are
represented in LLVM IR is target specific.

The cleanuppad instruction has several restrictions:

	A cleanup block is a basic block which is the unwind destination of
an exceptional instruction.

	A cleanup block must have a ‘cleanuppad’ instruction as its
first non-PHI instruction.

	There can be only one ‘cleanuppad’ instruction within the
cleanup block.

	A basic block that is not a cleanup block may not include a
‘cleanuppad’ instruction.

When a cleanuppad has been “entered” but not yet “exited” (as
described in the EH documentation),
it is undefined behavior to execute a call or invoke
that does not carry an appropriate “funclet” bundle.

Example:

%tok = cleanuppad within %cs []

Intrinsic Functions

LLVM supports the notion of an “intrinsic function”. These functions
have well known names and semantics and are required to follow certain
restrictions. Overall, these intrinsics represent an extension mechanism
for the LLVM language that does not require changing all of the
transformations in LLVM when adding to the language (or the bitcode
reader/writer, the parser, etc…).

Intrinsic function names must all start with an “llvm.” prefix. This
prefix is reserved in LLVM for intrinsic names; thus, function names may
not begin with this prefix. Intrinsic functions must always be external
functions: you cannot define the body of intrinsic functions. Intrinsic
functions may only be used in call or invoke instructions: it is illegal
to take the address of an intrinsic function. Additionally, because
intrinsic functions are part of the LLVM language, it is required if any
are added that they be documented here.

Some intrinsic functions can be overloaded, i.e., the intrinsic
represents a family of functions that perform the same operation but on
different data types. Because LLVM can represent over 8 million
different integer types, overloading is used commonly to allow an
intrinsic function to operate on any integer type. One or more of the
argument types or the result type can be overloaded to accept any
integer type. Argument types may also be defined as exactly matching a
previous argument’s type or the result type. This allows an intrinsic
function which accepts multiple arguments, but needs all of them to be
of the same type, to only be overloaded with respect to a single
argument or the result.

Overloaded intrinsics will have the names of its overloaded argument
types encoded into its function name, each preceded by a period. Only
those types which are overloaded result in a name suffix. Arguments
whose type is matched against another type do not. For example, the
llvm.ctpop function can take an integer of any width and returns an
integer of exactly the same integer width. This leads to a family of
functions such as i8 @llvm.ctpop.i8(i8 %val) and
i29 @llvm.ctpop.i29(i29 %val). Only one type, the return type, is
overloaded, and only one type suffix is required. Because the argument’s
type is matched against the return type, it does not require its own
name suffix.

To learn how to add an intrinsic function, please see the Extending
LLVM Guide.

Variable Argument Handling Intrinsics

Variable argument support is defined in LLVM with the
va_arg instruction and these three intrinsic
functions. These functions are related to the similarly named macros
defined in the <stdarg.h> header file.

All of these functions operate on arguments that use a target-specific
value type “va_list”. The LLVM assembly language reference manual
does not define what this type is, so all transformations should be
prepared to handle these functions regardless of the type used.

This example shows how the va_arg instruction and the
variable argument handling intrinsic functions are used.

; This struct is different for every platform. For most platforms,
; it is merely an i8*.
%struct.va_list = type { i8* }

; For Unix x86_64 platforms, va_list is the following struct:
; %struct.va_list = type { i32, i32, i8*, i8* }

define i32 @test(i32 %X, ...) {
 ; Initialize variable argument processing
 %ap = alloca %struct.va_list
 %ap2 = bitcast %struct.va_list* %ap to i8*
 call void @llvm.va_start(i8* %ap2)

 ; Read a single integer argument
 %tmp = va_arg i8* %ap2, i32

 ; Demonstrate usage of llvm.va_copy and llvm.va_end
 %aq = alloca i8*
 %aq2 = bitcast i8** %aq to i8*
 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
 call void @llvm.va_end(i8* %aq2)

 ; Stop processing of arguments.
 call void @llvm.va_end(i8* %ap2)
 ret i32 %tmp
}

declare void @llvm.va_start(i8*)
declare void @llvm.va_copy(i8*, i8*)
declare void @llvm.va_end(i8*)

‘llvm.va_start’ Intrinsic

Syntax:

declare void @llvm.va_start(i8* <arglist>)

Overview:

The ‘llvm.va_start’ intrinsic initializes *<arglist> for
subsequent use by va_arg.

Arguments:

The argument is a pointer to a va_list element to initialize.

Semantics:

The ‘llvm.va_start’ intrinsic works just like the va_start macro
available in C. In a target-dependent way, it initializes the
va_list element to which the argument points, so that the next call
to va_arg will produce the first variable argument passed to the
function. Unlike the C va_start macro, this intrinsic does not need
to know the last argument of the function as the compiler can figure
that out.

‘llvm.va_end’ Intrinsic

Syntax:

declare void @llvm.va_end(i8* <arglist>)

Overview:

The ‘llvm.va_end’ intrinsic destroys *<arglist>, which has been
initialized previously with llvm.va_start or llvm.va_copy.

Arguments:

The argument is a pointer to a va_list to destroy.

Semantics:

The ‘llvm.va_end’ intrinsic works just like the va_end macro
available in C. In a target-dependent way, it destroys the va_list
element to which the argument points. Calls to
llvm.va_start and
llvm.va_copy must be matched exactly with calls to
llvm.va_end.

‘llvm.va_copy’ Intrinsic

Syntax:

declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)

Overview:

The ‘llvm.va_copy’ intrinsic copies the current argument position
from the source argument list to the destination argument list.

Arguments:

The first argument is a pointer to a va_list element to initialize.
The second argument is a pointer to a va_list element to copy from.

Semantics:

The ‘llvm.va_copy’ intrinsic works just like the va_copy macro
available in C. In a target-dependent way, it copies the source
va_list element into the destination va_list element. This
intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
arbitrarily complex and require, for example, memory allocation.

Accurate Garbage Collection Intrinsics

LLVM’s support for Accurate Garbage Collection
(GC) requires the frontend to generate code containing appropriate intrinsic
calls and select an appropriate GC strategy which knows how to lower these
intrinsics in a manner which is appropriate for the target collector.

These intrinsics allow identification of GC roots on the
stack, as well as garbage collector implementations that
require read and write barriers.
Frontends for type-safe garbage collected languages should generate
these intrinsics to make use of the LLVM garbage collectors. For more
details, see Garbage Collection with LLVM.

Experimental Statepoint Intrinsics

LLVM provides an second experimental set of intrinsics for describing garbage
collection safepoints in compiled code. These intrinsics are an alternative
to the llvm.gcroot intrinsics, but are compatible with the ones for
read and write barriers. The
differences in approach are covered in the Garbage Collection with LLVM documentation. The intrinsics themselves are
described in Garbage Collection Safepoints in LLVM.

‘llvm.gcroot’ Intrinsic

Syntax:

declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)

Overview:

The ‘llvm.gcroot’ intrinsic declares the existence of a GC root to
the code generator, and allows some metadata to be associated with it.

Arguments:

The first argument specifies the address of a stack object that contains
the root pointer. The second pointer (which must be either a constant or
a global value address) contains the meta-data to be associated with the
root.

Semantics:

At runtime, a call to this intrinsic stores a null pointer into the
“ptrloc” location. At compile-time, the code generator generates
information to allow the runtime to find the pointer at GC safe points.
The ‘llvm.gcroot’ intrinsic may only be used in a function which
specifies a GC algorithm.

‘llvm.gcread’ Intrinsic

Syntax:

declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)

Overview:

The ‘llvm.gcread’ intrinsic identifies reads of references from heap
locations, allowing garbage collector implementations that require read
barriers.

Arguments:

The second argument is the address to read from, which should be an
address allocated from the garbage collector. The first object is a
pointer to the start of the referenced object, if needed by the language
runtime (otherwise null).

Semantics:

The ‘llvm.gcread’ intrinsic has the same semantics as a load
instruction, but may be replaced with substantially more complex code by
the garbage collector runtime, as needed. The ‘llvm.gcread’
intrinsic may only be used in a function which specifies a GC
algorithm.

‘llvm.gcwrite’ Intrinsic

Syntax:

declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)

Overview:

The ‘llvm.gcwrite’ intrinsic identifies writes of references to heap
locations, allowing garbage collector implementations that require write
barriers (such as generational or reference counting collectors).

Arguments:

The first argument is the reference to store, the second is the start of
the object to store it to, and the third is the address of the field of
Obj to store to. If the runtime does not require a pointer to the
object, Obj may be null.

Semantics:

The ‘llvm.gcwrite’ intrinsic has the same semantics as a store
instruction, but may be replaced with substantially more complex code by
the garbage collector runtime, as needed. The ‘llvm.gcwrite’
intrinsic may only be used in a function which specifies a GC
algorithm.

Code Generator Intrinsics

These intrinsics are provided by LLVM to expose special features that
may only be implemented with code generator support.

‘llvm.returnaddress’ Intrinsic

Syntax:

declare i8* @llvm.returnaddress(i32 <level>)

Overview:

The ‘llvm.returnaddress’ intrinsic attempts to compute a
target-specific value indicating the return address of the current
function or one of its callers.

Arguments:

The argument to this intrinsic indicates which function to return the
address for. Zero indicates the calling function, one indicates its
caller, etc. The argument is required to be a constant integer
value.

Semantics:

The ‘llvm.returnaddress’ intrinsic either returns a pointer
indicating the return address of the specified call frame, or zero if it
cannot be identified. The value returned by this intrinsic is likely to
be incorrect or 0 for arguments other than zero, so it should only be
used for debugging purposes.

Note that calling this intrinsic does not prevent function inlining or
other aggressive transformations, so the value returned may not be that
of the obvious source-language caller.

‘llvm.addressofreturnaddress’ Intrinsic

Syntax:

declare i8* @llvm.addressofreturnaddress()

Overview:

The ‘llvm.addressofreturnaddress’ intrinsic returns a target-specific
pointer to the place in the stack frame where the return address of the
current function is stored.

Semantics:

Note that calling this intrinsic does not prevent function inlining or
other aggressive transformations, so the value returned may not be that
of the obvious source-language caller.

This intrinsic is only implemented for x86.

‘llvm.frameaddress’ Intrinsic

Syntax:

declare i8* @llvm.frameaddress(i32 <level>)

Overview:

The ‘llvm.frameaddress’ intrinsic attempts to return the
target-specific frame pointer value for the specified stack frame.

Arguments:

The argument to this intrinsic indicates which function to return the
frame pointer for. Zero indicates the calling function, one indicates
its caller, etc. The argument is required to be a constant integer
value.

Semantics:

The ‘llvm.frameaddress’ intrinsic either returns a pointer
indicating the frame address of the specified call frame, or zero if it
cannot be identified. The value returned by this intrinsic is likely to
be incorrect or 0 for arguments other than zero, so it should only be
used for debugging purposes.

Note that calling this intrinsic does not prevent function inlining or
other aggressive transformations, so the value returned may not be that
of the obvious source-language caller.

‘llvm.localescape’ and ‘llvm.localrecover’ Intrinsics

Syntax:

declare void @llvm.localescape(...)
declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)

Overview:

The ‘llvm.localescape’ intrinsic escapes offsets of a collection of static
allocas, and the ‘llvm.localrecover’ intrinsic applies those offsets to a
live frame pointer to recover the address of the allocation. The offset is
computed during frame layout of the caller of llvm.localescape.

Arguments:

All arguments to ‘llvm.localescape’ must be pointers to static allocas or
casts of static allocas. Each function can only call ‘llvm.localescape’
once, and it can only do so from the entry block.

The func argument to ‘llvm.localrecover’ must be a constant
bitcasted pointer to a function defined in the current module. The code
generator cannot determine the frame allocation offset of functions defined in
other modules.

The fp argument to ‘llvm.localrecover’ must be a frame pointer of a
call frame that is currently live. The return value of ‘llvm.localaddress’
is one way to produce such a value, but various runtimes also expose a suitable
pointer in platform-specific ways.

The idx argument to ‘llvm.localrecover’ indicates which alloca passed to
‘llvm.localescape’ to recover. It is zero-indexed.

Semantics:

These intrinsics allow a group of functions to share access to a set of local
stack allocations of a one parent function. The parent function may call the
‘llvm.localescape’ intrinsic once from the function entry block, and the
child functions can use ‘llvm.localrecover’ to access the escaped allocas.
The ‘llvm.localescape’ intrinsic blocks inlining, as inlining changes where
the escaped allocas are allocated, which would break attempts to use
‘llvm.localrecover’.

‘llvm.read_register’ and ‘llvm.write_register’ Intrinsics

Syntax:

declare i32 @llvm.read_register.i32(metadata)
declare i64 @llvm.read_register.i64(metadata)
declare void @llvm.write_register.i32(metadata, i32 @value)
declare void @llvm.write_register.i64(metadata, i64 @value)
!0 = !{!"sp\00"}

Overview:

The ‘llvm.read_register’ and ‘llvm.write_register’ intrinsics
provides access to the named register. The register must be valid on
the architecture being compiled to. The type needs to be compatible
with the register being read.

Semantics:

The ‘llvm.read_register’ intrinsic returns the current value of the
register, where possible. The ‘llvm.write_register’ intrinsic sets
the current value of the register, where possible.

This is useful to implement named register global variables that need
to always be mapped to a specific register, as is common practice on
bare-metal programs including OS kernels.

The compiler doesn’t check for register availability or use of the used
register in surrounding code, including inline assembly. Because of that,
allocatable registers are not supported.

Warning: So far it only works with the stack pointer on selected
architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
work is needed to support other registers and even more so, allocatable
registers.

‘llvm.stacksave’ Intrinsic

Syntax:

declare i8* @llvm.stacksave()

Overview:

The ‘llvm.stacksave’ intrinsic is used to remember the current state
of the function stack, for use with
llvm.stackrestore. This is useful for
implementing language features like scoped automatic variable sized
arrays in C99.

Semantics:

This intrinsic returns a opaque pointer value that can be passed to
llvm.stackrestore. When an
llvm.stackrestore intrinsic is executed with a value saved from
llvm.stacksave, it effectively restores the state of the stack to
the state it was in when the llvm.stacksave intrinsic executed. In
practice, this pops any alloca blocks from the stack that
were allocated after the llvm.stacksave was executed.

‘llvm.stackrestore’ Intrinsic

Syntax:

declare void @llvm.stackrestore(i8* %ptr)

Overview:

The ‘llvm.stackrestore’ intrinsic is used to restore the state of
the function stack to the state it was in when the corresponding
llvm.stacksave intrinsic executed. This is
useful for implementing language features like scoped automatic variable
sized arrays in C99.

Semantics:

See the description for llvm.stacksave.

‘llvm.get.dynamic.area.offset’ Intrinsic

Syntax:

declare i32 @llvm.get.dynamic.area.offset.i32()
declare i64 @llvm.get.dynamic.area.offset.i64()

Overview:

The ‘llvm.get.dynamic.area.offset.*’ intrinsic family is used to
get the offset from native stack pointer to the address of the most
recent dynamic alloca on the caller’s stack. These intrinsics are
intendend for use in combination with
llvm.stacksave to get a
pointer to the most recent dynamic alloca. This is useful, for example,
for AddressSanitizer’s stack unpoisoning routines.

Semantics:

These intrinsics return a non-negative integer value that can be used to
get the address of the most recent dynamic alloca, allocated by alloca
on the caller’s stack. In particular, for targets where stack grows downwards,
adding this offset to the native stack pointer would get the address of the most
recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
complicated, because subtracting this value from stack pointer would get the address
one past the end of the most recent dynamic alloca.

Although for most targets llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>
returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
compile-time-known constant value.

The return value type of llvm.get.dynamic.area.offset
must match the target’s default address space’s (address space 0) pointer type.

‘llvm.prefetch’ Intrinsic

Syntax:

declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)

Overview:

The ‘llvm.prefetch’ intrinsic is a hint to the code generator to
insert a prefetch instruction if supported; otherwise, it is a noop.
Prefetches have no effect on the behavior of the program but can change
its performance characteristics.

Arguments:

address is the address to be prefetched, rw is the specifier
determining if the fetch should be for a read (0) or write (1), and
locality is a temporal locality specifier ranging from (0) - no
locality, to (3) - extremely local keep in cache. The cache type
specifies whether the prefetch is performed on the data (1) or
instruction (0) cache. The rw, locality and cache type
arguments must be constant integers.

Semantics:

This intrinsic does not modify the behavior of the program. In
particular, prefetches cannot trap and do not produce a value. On
targets that support this intrinsic, the prefetch can provide hints to
the processor cache for better performance.

‘llvm.pcmarker’ Intrinsic

Syntax:

declare void @llvm.pcmarker(i32 <id>)

Overview:

The ‘llvm.pcmarker’ intrinsic is a method to export a Program
Counter (PC) in a region of code to simulators and other tools. The
method is target specific, but it is expected that the marker will use
exported symbols to transmit the PC of the marker. The marker makes no
guarantees that it will remain with any specific instruction after
optimizations. It is possible that the presence of a marker will inhibit
optimizations. The intended use is to be inserted after optimizations to
allow correlations of simulation runs.

Arguments:

id is a numerical id identifying the marker.

Semantics:

This intrinsic does not modify the behavior of the program. Backends
that do not support this intrinsic may ignore it.

‘llvm.readcyclecounter’ Intrinsic

Syntax:

declare i64 @llvm.readcyclecounter()

Overview:

The ‘llvm.readcyclecounter’ intrinsic provides access to the cycle
counter register (or similar low latency, high accuracy clocks) on those
targets that support it. On X86, it should map to RDTSC. On Alpha, it
should map to RPCC. As the backing counters overflow quickly (on the
order of 9 seconds on alpha), this should only be used for small
timings.

Semantics:

When directly supported, reading the cycle counter should not modify any
memory. Implementations are allowed to either return a application
specific value or a system wide value. On backends without support, this
is lowered to a constant 0.

Note that runtime support may be conditional on the privilege-level code is
running at and the host platform.

‘llvm.clear_cache’ Intrinsic

Syntax:

declare void @llvm.clear_cache(i8*, i8*)

Overview:

The ‘llvm.clear_cache’ intrinsic ensures visibility of modifications
in the specified range to the execution unit of the processor. On
targets with non-unified instruction and data cache, the implementation
flushes the instruction cache.

Semantics:

On platforms with coherent instruction and data caches (e.g. x86), this
intrinsic is a nop. On platforms with non-coherent instruction and data
cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
instructions or a system call, if cache flushing requires special
privileges.

The default behavior is to emit a call to __clear_cache from the run
time library.

This instrinsic does not empty the instruction pipeline. Modifications
of the current function are outside the scope of the intrinsic.

‘llvm.instrprof.increment’ Intrinsic

Syntax:

declare void @llvm.instrprof.increment(i8* <name>, i64 <hash>,
 i32 <num-counters>, i32 <index>)

Overview:

The ‘llvm.instrprof.increment’ intrinsic can be emitted by a
frontend for use with instrumentation based profiling. These will be
lowered by the -instrprof pass to generate execution counts of a
program at runtime.

Arguments:

The first argument is a pointer to a global variable containing the
name of the entity being instrumented. This should generally be the
(mangled) function name for a set of counters.

The second argument is a hash value that can be used by the consumer
of the profile data to detect changes to the instrumented source, and
the third is the number of counters associated with name. It is an
error if hash or num-counters differ between two instances of
instrprof.increment that refer to the same name.

The last argument refers to which of the counters for name should
be incremented. It should be a value between 0 and num-counters.

Semantics:

This intrinsic represents an increment of a profiling counter. It will
cause the -instrprof pass to generate the appropriate data
structures and the code to increment the appropriate value, in a
format that can be written out by a compiler runtime and consumed via
the llvm-profdata tool.

‘llvm.instrprof.increment.step’ Intrinsic

Syntax:

declare void @llvm.instrprof.increment.step(i8* <name>, i64 <hash>,
 i32 <num-counters>,
 i32 <index>, i64 <step>)

Overview:

The ‘llvm.instrprof.increment.step’ intrinsic is an extension to
the ‘llvm.instrprof.increment’ intrinsic with an additional fifth
argument to specify the step of the increment.

Arguments:

The first four arguments are the same as ‘llvm.instrprof.increment’
intrinsic.

The last argument specifies the value of the increment of the counter variable.

Semantics:

See description of ‘llvm.instrprof.increment’ instrinsic.

‘llvm.instrprof.value.profile’ Intrinsic

Syntax:

declare void @llvm.instrprof.value.profile(i8* <name>, i64 <hash>,
 i64 <value>, i32 <value_kind>,
 i32 <index>)

Overview:

The ‘llvm.instrprof.value.profile’ intrinsic can be emitted by a
frontend for use with instrumentation based profiling. This will be
lowered by the -instrprof pass to find out the target values,
instrumented expressions take in a program at runtime.

Arguments:

The first argument is a pointer to a global variable containing the
name of the entity being instrumented. name should generally be the
(mangled) function name for a set of counters.

The second argument is a hash value that can be used by the consumer
of the profile data to detect changes to the instrumented source. It
is an error if hash differs between two instances of
llvm.instrprof.* that refer to the same name.

The third argument is the value of the expression being profiled. The profiled
expression’s value should be representable as an unsigned 64-bit value. The
fourth argument represents the kind of value profiling that is being done. The
supported value profiling kinds are enumerated through the
InstrProfValueKind type declared in the
<include/llvm/ProfileData/InstrProf.h> header file. The last argument is the
index of the instrumented expression within name. It should be >= 0.

Semantics:

This intrinsic represents the point where a call to a runtime routine
should be inserted for value profiling of target expressions. -instrprof
pass will generate the appropriate data structures and replace the
llvm.instrprof.value.profile intrinsic with the call to the profile
runtime library with proper arguments.

‘llvm.thread.pointer’ Intrinsic

Syntax:

declare i8* @llvm.thread.pointer()

Overview:

The ‘llvm.thread.pointer’ intrinsic returns the value of the thread
pointer.

Semantics:

The ‘llvm.thread.pointer’ intrinsic returns a pointer to the TLS area
for the current thread. The exact semantics of this value are target
specific: it may point to the start of TLS area, to the end, or somewhere
in the middle. Depending on the target, this intrinsic may read a register,
call a helper function, read from an alternate memory space, or perform
other operations necessary to locate the TLS area. Not all targets support
this intrinsic.

Standard C Library Intrinsics

LLVM provides intrinsics for a few important standard C library
functions. These intrinsics allow source-language front-ends to pass
information about the alignment of the pointer arguments to the code
generator, providing opportunity for more efficient code generation.

‘llvm.memcpy’ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.memcpy on any
integer bit width and for different address spaces. Not all targets
support all bit widths however.

declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
 i32 <len>, i1 <isvolatile>)
declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
 i64 <len>, i1 <isvolatile>)

Overview:

The ‘llvm.memcpy.*’ intrinsics copy a block of memory from the
source location to the destination location.

Note that, unlike the standard libc function, the llvm.memcpy.*
intrinsics do not return a value, takes extra isvolatile
arguments and the pointers can be in specified address spaces.

Arguments:

The first argument is a pointer to the destination, the second is a
pointer to the source. The third argument is an integer argument
specifying the number of bytes to copy, and the fourth is a
boolean indicating a volatile access.

The align parameter attribute can be provided
for the first and second arguments.

If the isvolatile parameter is true, the llvm.memcpy call is
a volatile operation. The detailed access behavior is not
very cleanly specified and it is unwise to depend on it.

Semantics:

The ‘llvm.memcpy.*’ intrinsics copy a block of memory from the
source location to the destination location, which are not allowed to
overlap. It copies “len” bytes of memory over. If the argument is known
to be aligned to some boundary, this can be specified as the fourth
argument, otherwise it should be set to 0 or 1 (both meaning no alignment).

‘llvm.memmove’ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.memmove on any integer
bit width and for different address space. Not all targets support all
bit widths however.

declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
 i32 <len>, i1 <isvolatile>)
declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
 i64 <len>, i1 <isvolatile>)

Overview:

The ‘llvm.memmove.*’ intrinsics move a block of memory from the
source location to the destination location. It is similar to the
‘llvm.memcpy’ intrinsic but allows the two memory locations to
overlap.

Note that, unlike the standard libc function, the llvm.memmove.*
intrinsics do not return a value, takes an extra isvolatile
argument and the pointers can be in specified address spaces.

Arguments:

The first argument is a pointer to the destination, the second is a
pointer to the source. The third argument is an integer argument
specifying the number of bytes to copy, and the fourth is a
boolean indicating a volatile access.

The align parameter attribute can be provided
for the first and second arguments.

If the isvolatile parameter is true, the llvm.memmove call
is a volatile operation. The detailed access behavior is
not very cleanly specified and it is unwise to depend on it.

Semantics:

The ‘llvm.memmove.*’ intrinsics copy a block of memory from the
source location to the destination location, which may overlap. It
copies “len” bytes of memory over. If the argument is known to be
aligned to some boundary, this can be specified as the fourth argument,
otherwise it should be set to 0 or 1 (both meaning no alignment).

‘llvm.memset.*’ Intrinsics

Syntax:

This is an overloaded intrinsic. You can use llvm.memset on any integer
bit width and for different address spaces. However, not all targets
support all bit widths.

declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
 i32 <len>, i1 <isvolatile>)
declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
 i64 <len>, i1 <isvolatile>)

Overview:

The ‘llvm.memset.*’ intrinsics fill a block of memory with a
particular byte value.

Note that, unlike the standard libc function, the llvm.memset
intrinsic does not return a value and takes an extra volatile
argument. Also, the destination can be in an arbitrary address space.

Arguments:

The first argument is a pointer to the destination to fill, the second
is the byte value with which to fill it, the third argument is an
integer argument specifying the number of bytes to fill, and the fourth
is a boolean indicating a volatile access.

The align parameter attribute can be provided
for the first arguments.

If the isvolatile parameter is true, the llvm.memset call is
a volatile operation. The detailed access behavior is not
very cleanly specified and it is unwise to depend on it.

Semantics:

The ‘llvm.memset.*’ intrinsics fill “len” bytes of memory starting
at the destination location.

‘llvm.sqrt.*’ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.sqrt on any
floating-point or vector of floating-point type. Not all targets support
all types however.

declare float @llvm.sqrt.f32(float %Val)
declare double @llvm.sqrt.f64(double %Val)
declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
declare fp128 @llvm.sqrt.f128(fp128 %Val)
declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)

Overview:

The ‘llvm.sqrt’ intrinsics return the square root of the specified value.

Arguments:

The argument and return value are floating-point numbers of the same type.

Semantics:

Return the same value as a corresponding libm ‘sqrt’ function but without
trapping or setting errno. For types specified by IEEE-754, the result
matches a conforming libm implementation.

When specified with the fast-math-flag ‘afn’, the result may be approximated
using a less accurate calculation.

‘llvm.powi.*’ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.powi on any
floating-point or vector of floating-point type. Not all targets support
all types however.

declare float @llvm.powi.f32(float %Val, i32 %power)
declare double @llvm.powi.f64(double %Val, i32 %power)
declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)

Overview:

The ‘llvm.powi.*’ intrinsics return the first operand raised to the
specified (positive or negative) power. The order of evaluation of
multiplications is not defined. When a vector of floating-point type is
used, the second argument remains a scalar integer value.

Arguments:

The second argument is an integer power, and the first is a value to
raise to that power.

Semantics:

This function returns the first value raised to the second power with an
unspecified sequence of rounding operations.

‘llvm.sin.*’ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.sin on any
floating-point or vector of floating-point type. Not all targets support
all types however.

declare float @llvm.sin.f32(float %Val)
declare double @llvm.sin.f64(double %Val)
declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
declare fp128 @llvm.sin.f128(fp128 %Val)
declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)

Overview:

The ‘llvm.sin.*’ intrinsics return the sine of the operand.

Arguments:

The argument and return value are floating-point numbers of the same type.

Semantics:

Return the same value as a corresponding libm ‘sin’ function but without
trapping or setting errno.

When specified with the fast-math-flag ‘afn’, the result may be approximated
using a less accurate calculation.

‘llvm.cos.*’ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.cos on any
floating-point or vector of floating-point type. Not all targets support
all types however.

declare float @llvm.cos.f32(float %Val)
declare double @llvm.cos.f64(double %Val)
declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
declare fp128 @llvm.cos.f128(fp128 %Val)
declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)

Overview:

The ‘llvm.cos.*’ intrinsics return the cosine of the operand.

Arguments:

The argument and return value are floating-point numbers of the same type.

Semantics:

Return the same value as a corresponding libm ‘cos’ function but without
trapping or setting errno.

When specified with the fast-math-flag ‘afn’, the result may be approximated
using a less accurate calculation.

‘llvm.pow.*’ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.pow on any
floating-point or vector of floating-point type. Not all targets support
all types however.

declare float @llvm.pow.f32(float %Val, float %Power)
declare double @llvm.pow.f64(double %Val, double %Power)
declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)

Overview:

The ‘llvm.pow.*’ intrinsics return the first operand raised to the
specified (positive or negative) power.

Arguments:

The arguments and return value are floating-point numbers of the same type.

Semantics:

Return the same value as a corresponding libm ‘pow’ function but without
trapping or setting errno.

When specified with the fast-math-flag ‘afn’, the result may be approximated
using a less accurate calculation.

‘llvm.exp.*’ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.exp on any
floating-point or vector of floating-point type. Not all targets support
all types however.

declare float @llvm.exp.f32(float %Val)
declare double @llvm.exp.f64(double %Val)
declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
declare fp128 @llvm.exp.f128(fp128 %Val)
declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)

Overview:

The ‘llvm.exp.*’ intrinsics compute the base-e exponential of the specified
value.

Arguments:

The argument and return value are floating-point numbers of the same type.

Semantics:

Return the same value as a corresponding libm ‘exp’ function but without
trapping or setting errno.

When specified with the fast-math-flag ‘afn’, the result may be approximated
using a less accurate calculation.

‘llvm.exp2.*’ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.exp2 on any
floating-point or vector of floating-point type. Not all targets support
all types however.

declare float @llvm.exp2.f32(float %Val)
declare double @llvm.exp2.f64(double %Val)
declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
declare fp128 @llvm.exp2.f128(fp128 %Val)
declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)

Overview:

The ‘llvm.exp2.*’ intrinsics compute the base-2 exponential of the
specified value.

Arguments:

The argument and return value are floating-point numbers of the same type.

Semantics:

Return the same value as a corresponding libm ‘exp2’ function but without
trapping or setting errno.

When specified with the fast-math-flag ‘afn’, the result may be approximated
using a less accurate calculation.

‘llvm.log.*’ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.log on any
floating-point or vector of floating-point type. Not all targets support
all types however.

declare float @llvm.log.f32(float %Val)
declare double @llvm.log.f64(double %Val)
declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
declare fp128 @llvm.log.f128(fp128 %Val)
declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)

Overview:

The ‘llvm.log.*’ intrinsics compute the base-e logarithm of the specified
value.

Arguments:

The argument and return value are floating-point numbers of the same type.

Semantics:

Return the same value as a corresponding libm ‘log’ function but without
trapping or setting errno.

When specified with the fast-math-flag ‘afn’, the result may be approximated
using a less accurate calculation.

‘llvm.log10.*’ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.log10 on any
floating-point or vector of floating-point type. Not all targets support
all types however.

declare float @llvm.log10.f32(float %Val)
declare double @llvm.log10.f64(double %Val)
declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
declare fp128 @llvm.log10.f128(fp128 %Val)
declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)

Overview:

The ‘llvm.log10.*’ intrinsics compute the base-10 logarithm of the
specified value.

Arguments:

The argument and return value are floating-point numbers of the same type.

Semantics:

Return the same value as a corresponding libm ‘log10’ function but without
trapping or setting errno.

When specified with the fast-math-flag ‘afn’, the result may be approximated
using a less accurate calculation.

‘llvm.log2.*’ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.log2 on any
floating-point or vector of floating-point type. Not all targets support
all types however.

declare float @llvm.log2.f32(float %Val)
declare double @llvm.log2.f64(double %Val)
declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
declare fp128 @llvm.log2.f128(fp128 %Val)
declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)

Overview:

The ‘llvm.log2.*’ intrinsics compute the base-2 logarithm of the specified
value.

Arguments:

The argument and return value are floating-point numbers of the same type.

Semantics:

Return the same value as a corresponding libm ‘log2’ function but without
trapping or setting errno.

When specified with the fast-math-flag ‘afn’, the result may be approximated
using a less accurate calculation.

‘llvm.fma.*’ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.fma on any
floating-point or vector of floating-point type. Not all targets support
all types however.

declare float @llvm.fma.f32(float %a, float %b, float %c)
declare double @llvm.fma.f64(double %a, double %b, double %c)
declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)

Overview:

The ‘llvm.fma.*’ intrinsics perform the fused multiply-add operation.

Arguments:

The arguments and return value are floating-point numbers of the same type.

Semantics:

Return the same value as a corresponding libm ‘fma’ function but without
trapping or setting errno.

When specified with the fast-math-flag ‘afn’, the result may be approximated
using a less accurate calculation.

‘llvm.fabs.*’ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.fabs on any
floating-point or vector of floating-point type. Not all targets support
all types however.

declare float @llvm.fabs.f32(float %Val)
declare double @llvm.fabs.f64(double %Val)
declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
declare fp128 @llvm.fabs.f128(fp128 %Val)
declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)

Overview:

The ‘llvm.fabs.*’ intrinsics return the absolute value of the
operand.

Arguments:

The argument and return value are floating-point numbers of the same
type.

Semantics:

This function returns the same values as the libm fabs functions
would, and handles error conditions in the same way.

‘llvm.minnum.*’ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.minnum on any
floating-point or vector of floating-point type. Not all targets support
all types however.

declare float @llvm.minnum.f32(float %Val0, float %Val1)
declare double @llvm.minnum.f64(double %Val0, double %Val1)
declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)

Overview:

The ‘llvm.minnum.*’ intrinsics return the minimum of the two
arguments.

Arguments:

The arguments and return value are floating-point numbers of the same
type.

Semantics:

Follows the IEEE-754 semantics for minNum, which also match for libm’s
fmin.

If either operand is a NaN, returns the other non-NaN operand. Returns
NaN only if both operands are NaN. If the operands compare equal,
returns a value that compares equal to both operands. This means that
fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.

‘llvm.maxnum.*’ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.maxnum on any
floating-point or vector of floating-point type. Not all targets support
all types however.

declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
declare double @llvm.maxnum.f64(double %Val0, double %Val1)
declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)

Overview:

The ‘llvm.maxnum.*’ intrinsics return the maximum of the two
arguments.

Arguments:

The arguments and return value are floating-point numbers of the same
type.

Semantics:

Follows the IEEE-754 semantics for maxNum, which also match for libm’s
fmax.

If either operand is a NaN, returns the other non-NaN operand. Returns
NaN only if both operands are NaN. If the operands compare equal,
returns a value that compares equal to both operands. This means that
fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.

‘llvm.copysign.*’ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.copysign on any
floating-point or vector of floating-point type. Not all targets support
all types however.

declare float @llvm.copysign.f32(float %Mag, float %Sgn)
declare double @llvm.copysign.f64(double %Mag, double %Sgn)
declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)

Overview:

The ‘llvm.copysign.*’ intrinsics return a value with the magnitude of the
first operand and the sign of the second operand.

Arguments:

The arguments and return value are floating-point numbers of the same
type.

Semantics:

This function returns the same values as the libm copysign
functions would, and handles error conditions in the same way.

‘llvm.floor.*’ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.floor on any
floating-point or vector of floating-point type. Not all targets support
all types however.

declare float @llvm.floor.f32(float %Val)
declare double @llvm.floor.f64(double %Val)
declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
declare fp128 @llvm.floor.f128(fp128 %Val)
declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)

Overview:

The ‘llvm.floor.*’ intrinsics return the floor of the operand.

Arguments:

The argument and return value are floating-point numbers of the same
type.

Semantics:

This function returns the same values as the libm floor functions
would, and handles error conditions in the same way.

‘llvm.ceil.*’ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.ceil on any
floating-point or vector of floating-point type. Not all targets support
all types however.

declare float @llvm.ceil.f32(float %Val)
declare double @llvm.ceil.f64(double %Val)
declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
declare fp128 @llvm.ceil.f128(fp128 %Val)
declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)

Overview:

The ‘llvm.ceil.*’ intrinsics return the ceiling of the operand.

Arguments:

The argument and return value are floating-point numbers of the same
type.

Semantics:

This function returns the same values as the libm ceil functions
would, and handles error conditions in the same way.

‘llvm.trunc.*’ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.trunc on any
floating-point or vector of floating-point type. Not all targets support
all types however.

declare float @llvm.trunc.f32(float %Val)
declare double @llvm.trunc.f64(double %Val)
declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
declare fp128 @llvm.trunc.f128(fp128 %Val)
declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)

Overview:

The ‘llvm.trunc.*’ intrinsics returns the operand rounded to the
nearest integer not larger in magnitude than the operand.

Arguments:

The argument and return value are floating-point numbers of the same
type.

Semantics:

This function returns the same values as the libm trunc functions
would, and handles error conditions in the same way.

‘llvm.rint.*’ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.rint on any
floating-point or vector of floating-point type. Not all targets support
all types however.

declare float @llvm.rint.f32(float %Val)
declare double @llvm.rint.f64(double %Val)
declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
declare fp128 @llvm.rint.f128(fp128 %Val)
declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)

Overview:

The ‘llvm.rint.*’ intrinsics returns the operand rounded to the
nearest integer. It may raise an inexact floating-point exception if the
operand isn’t an integer.

Arguments:

The argument and return value are floating-point numbers of the same
type.

Semantics:

This function returns the same values as the libm rint functions
would, and handles error conditions in the same way.

‘llvm.nearbyint.*’ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.nearbyint on any
floating-point or vector of floating-point type. Not all targets support
all types however.

declare float @llvm.nearbyint.f32(float %Val)
declare double @llvm.nearbyint.f64(double %Val)
declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
declare fp128 @llvm.nearbyint.f128(fp128 %Val)
declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)

Overview:

The ‘llvm.nearbyint.*’ intrinsics returns the operand rounded to the
nearest integer.

Arguments:

The argument and return value are floating-point numbers of the same
type.

Semantics:

This function returns the same values as the libm nearbyint
functions would, and handles error conditions in the same way.

‘llvm.round.*’ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.round on any
floating-point or vector of floating-point type. Not all targets support
all types however.

declare float @llvm.round.f32(float %Val)
declare double @llvm.round.f64(double %Val)
declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
declare fp128 @llvm.round.f128(fp128 %Val)
declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)

Overview:

The ‘llvm.round.*’ intrinsics returns the operand rounded to the
nearest integer.

Arguments:

The argument and return value are floating-point numbers of the same
type.

Semantics:

This function returns the same values as the libm round
functions would, and handles error conditions in the same way.

Bit Manipulation Intrinsics

LLVM provides intrinsics for a few important bit manipulation
operations. These allow efficient code generation for some algorithms.

‘llvm.bitreverse.*’ Intrinsics

Syntax:

This is an overloaded intrinsic function. You can use bitreverse on any
integer type.

declare i16 @llvm.bitreverse.i16(i16 <id>)
declare i32 @llvm.bitreverse.i32(i32 <id>)
declare i64 @llvm.bitreverse.i64(i64 <id>)

Overview:

The ‘llvm.bitreverse’ family of intrinsics is used to reverse the
bitpattern of an integer value; for example 0b10110110 becomes
0b01101101.

Semantics:

The llvm.bitreverse.iN intrinsic returns an iN value that has bit
M in the input moved to bit N-M in the output.

‘llvm.bswap.*’ Intrinsics

Syntax:

This is an overloaded intrinsic function. You can use bswap on any
integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).

declare i16 @llvm.bswap.i16(i16 <id>)
declare i32 @llvm.bswap.i32(i32 <id>)
declare i64 @llvm.bswap.i64(i64 <id>)

Overview:

The ‘llvm.bswap’ family of intrinsics is used to byte swap integer
values with an even number of bytes (positive multiple of 16 bits).
These are useful for performing operations on data that is not in the
target’s native byte order.

Semantics:

The llvm.bswap.i16 intrinsic returns an i16 value that has the high
and low byte of the input i16 swapped. Similarly, the llvm.bswap.i32
intrinsic returns an i32 value that has the four bytes of the input i32
swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
returned i32 will have its bytes in 3, 2, 1, 0 order. The
llvm.bswap.i48, llvm.bswap.i64 and other intrinsics extend this
concept to additional even-byte lengths (6 bytes, 8 bytes and more,
respectively).

‘llvm.ctpop.*’ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.ctpop on any integer
bit width, or on any vector with integer elements. Not all targets
support all bit widths or vector types, however.

declare i8 @llvm.ctpop.i8(i8 <src>)
declare i16 @llvm.ctpop.i16(i16 <src>)
declare i32 @llvm.ctpop.i32(i32 <src>)
declare i64 @llvm.ctpop.i64(i64 <src>)
declare i256 @llvm.ctpop.i256(i256 <src>)
declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)

Overview:

The ‘llvm.ctpop’ family of intrinsics counts the number of bits set
in a value.

Arguments:

The only argument is the value to be counted. The argument may be of any
integer type, or a vector with integer elements. The return type must
match the argument type.

Semantics:

The ‘llvm.ctpop’ intrinsic counts the 1’s in a variable, or within
each element of a vector.

‘llvm.ctlz.*’ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.ctlz on any
integer bit width, or any vector whose elements are integers. Not all
targets support all bit widths or vector types, however.

declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)

Overview:

The ‘llvm.ctlz’ family of intrinsic functions counts the number of
leading zeros in a variable.

Arguments:

The first argument is the value to be counted. This argument may be of
any integer type, or a vector with integer element type. The return
type must match the first argument type.

The second argument must be a constant and is a flag to indicate whether
the intrinsic should ensure that a zero as the first argument produces a
defined result. Historically some architectures did not provide a
defined result for zero values as efficiently, and many algorithms are
now predicated on avoiding zero-value inputs.

Semantics:

The ‘llvm.ctlz’ intrinsic counts the leading (most significant)
zeros in a variable, or within each element of the vector. If
src == 0 then the result is the size in bits of the type of src
if is_zero_undef == 0 and undef otherwise. For example,
llvm.ctlz(i32 2) = 30.

‘llvm.cttz.*’ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.cttz on any
integer bit width, or any vector of integer elements. Not all targets
support all bit widths or vector types, however.

declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)

Overview:

The ‘llvm.cttz’ family of intrinsic functions counts the number of
trailing zeros.

Arguments:

The first argument is the value to be counted. This argument may be of
any integer type, or a vector with integer element type. The return
type must match the first argument type.

The second argument must be a constant and is a flag to indicate whether
the intrinsic should ensure that a zero as the first argument produces a
defined result. Historically some architectures did not provide a
defined result for zero values as efficiently, and many algorithms are
now predicated on avoiding zero-value inputs.

Semantics:

The ‘llvm.cttz’ intrinsic counts the trailing (least significant)
zeros in a variable, or within each element of a vector. If src == 0
then the result is the size in bits of the type of src if
is_zero_undef == 0 and undef otherwise. For example,
llvm.cttz(2) = 1.

‘llvm.fshl.*’ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.fshl on any
integer bit width or any vector of integer elements. Not all targets
support all bit widths or vector types, however.

declare i8 @llvm.fshl.i8 (i8 %a, i8 %b, i8 %c)
declare i67 @llvm.fshl.i67(i67 %a, i67 %b, i67 %c)
declare <2 x i32> @llvm.fshl.v2i32(<2 x i32> %a, <2 x i32> %b, <2 x i32> %c)

Overview:

The ‘llvm.fshl’ family of intrinsic functions performs a funnel shift left:
the first two values are concatenated as { %a : %b } (%a is the most significant
bits of the wide value), the combined value is shifted left, and the most
significant bits are extracted to produce a result that is the same size as the
original arguments. If the first 2 arguments are identical, this is equivalent
to a rotate left operation. For vector types, the operation occurs for each
element of the vector. The shift argument is treated as an unsigned amount
modulo the element size of the arguments.

Arguments:

The first two arguments are the values to be concatenated. The third
argument is the shift amount. The arguments may be any integer type or a
vector with integer element type. All arguments and the return value must
have the same type.

Example:

%r = call i8 @llvm.fshl.i8(i8 %x, i8 %y, i8 %z) ; %r = i8: msb_extract((concat(x, y) << (z % 8)), 8)
%r = call i8 @llvm.fshl.i8(i8 255, i8 0, i8 15) ; %r = i8: 128 (0b10000000)
%r = call i8 @llvm.fshl.i8(i8 15, i8 15, i8 11) ; %r = i8: 120 (0b01111000)
%r = call i8 @llvm.fshl.i8(i8 0, i8 255, i8 8) ; %r = i8: 0 (0b00000000)

‘llvm.fshr.*’ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.fshr on any
integer bit width or any vector of integer elements. Not all targets
support all bit widths or vector types, however.

declare i8 @llvm.fshr.i8 (i8 %a, i8 %b, i8 %c)
declare i67 @llvm.fshr.i67(i67 %a, i67 %b, i67 %c)
declare <2 x i32> @llvm.fshr.v2i32(<2 x i32> %a, <2 x i32> %b, <2 x i32> %c)

Overview:

The ‘llvm.fshr’ family of intrinsic functions performs a funnel shift right:
the first two values are concatenated as { %a : %b } (%a is the most significant
bits of the wide value), the combined value is shifted right, and the least
significant bits are extracted to produce a result that is the same size as the
original arguments. If the first 2 arguments are identical, this is equivalent
to a rotate right operation. For vector types, the operation occurs for each
element of the vector. The shift argument is treated as an unsigned amount
modulo the element size of the arguments.

Arguments:

The first two arguments are the values to be concatenated. The third
argument is the shift amount. The arguments may be any integer type or a
vector with integer element type. All arguments and the return value must
have the same type.

Example:

%r = call i8 @llvm.fshr.i8(i8 %x, i8 %y, i8 %z) ; %r = i8: lsb_extract((concat(x, y) >> (z % 8)), 8)
%r = call i8 @llvm.fshr.i8(i8 255, i8 0, i8 15) ; %r = i8: 254 (0b11111110)
%r = call i8 @llvm.fshr.i8(i8 15, i8 15, i8 11) ; %r = i8: 225 (0b11100001)
%r = call i8 @llvm.fshr.i8(i8 0, i8 255, i8 8) ; %r = i8: 255 (0b11111111)

Arithmetic with Overflow Intrinsics

LLVM provides intrinsics for fast arithmetic overflow checking.

Each of these intrinsics returns a two-element struct. The first
element of this struct contains the result of the corresponding
arithmetic operation modulo 2n, where n is the bit width of
the result. Therefore, for example, the first element of the struct
returned by llvm.sadd.with.overflow.i32 is always the same as the
result of a 32-bit add instruction with the same operands, where
the add is not modified by an nsw or nuw flag.

The second element of the result is an i1 that is 1 if the
arithmetic operation overflowed and 0 otherwise. An operation
overflows if, for any values of its operands A and B and for
any N larger than the operands’ width, ext(A op B) to iN is
not equal to (ext(A) to iN) op (ext(B) to iN) where ext is
sext for signed overflow and zext for unsigned overflow, and
op is the underlying arithmetic operation.

The behavior of these intrinsics is well-defined for all argument
values.

‘llvm.sadd.with.overflow.*’ Intrinsics

Syntax:

This is an overloaded intrinsic. You can use llvm.sadd.with.overflow
on any integer bit width.

declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)

Overview:

The ‘llvm.sadd.with.overflow’ family of intrinsic functions perform
a signed addition of the two arguments, and indicate whether an overflow
occurred during the signed summation.

Arguments:

The arguments (%a and %b) and the first element of the result structure
may be of integer types of any bit width, but they must have the same
bit width. The second element of the result structure must be of type
i1. %a and %b are the two values that will undergo signed
addition.

Semantics:

The ‘llvm.sadd.with.overflow’ family of intrinsic functions perform
a signed addition of the two variables. They return a structure — the
first element of which is the signed summation, and the second element
of which is a bit specifying if the signed summation resulted in an
overflow.

Examples:

%res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
%sum = extractvalue {i32, i1} %res, 0
%obit = extractvalue {i32, i1} %res, 1
br i1 %obit, label %overflow, label %normal

‘llvm.uadd.with.overflow.*’ Intrinsics

Syntax:

This is an overloaded intrinsic. You can use llvm.uadd.with.overflow
on any integer bit width.

declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)

Overview:

The ‘llvm.uadd.with.overflow’ family of intrinsic functions perform
an unsigned addition of the two arguments, and indicate whether a carry
occurred during the unsigned summation.

Arguments:

The arguments (%a and %b) and the first element of the result structure
may be of integer types of any bit width, but they must have the same
bit width. The second element of the result structure must be of type
i1. %a and %b are the two values that will undergo unsigned
addition.

Semantics:

The ‘llvm.uadd.with.overflow’ family of intrinsic functions perform
an unsigned addition of the two arguments. They return a structure — the
first element of which is the sum, and the second element of which is a
bit specifying if the unsigned summation resulted in a carry.

Examples:

%res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
%sum = extractvalue {i32, i1} %res, 0
%obit = extractvalue {i32, i1} %res, 1
br i1 %obit, label %carry, label %normal

‘llvm.ssub.with.overflow.*’ Intrinsics

Syntax:

This is an overloaded intrinsic. You can use llvm.ssub.with.overflow
on any integer bit width.

declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)

Overview:

The ‘llvm.ssub.with.overflow’ family of intrinsic functions perform
a signed subtraction of the two arguments, and indicate whether an
overflow occurred during the signed subtraction.

Arguments:

The arguments (%a and %b) and the first element of the result structure
may be of integer types of any bit width, but they must have the same
bit width. The second element of the result structure must be of type
i1. %a and %b are the two values that will undergo signed
subtraction.

Semantics:

The ‘llvm.ssub.with.overflow’ family of intrinsic functions perform
a signed subtraction of the two arguments. They return a structure — the
first element of which is the subtraction, and the second element of
which is a bit specifying if the signed subtraction resulted in an
overflow.

Examples:

%res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
%sum = extractvalue {i32, i1} %res, 0
%obit = extractvalue {i32, i1} %res, 1
br i1 %obit, label %overflow, label %normal

‘llvm.usub.with.overflow.*’ Intrinsics

Syntax:

This is an overloaded intrinsic. You can use llvm.usub.with.overflow
on any integer bit width.

declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)

Overview:

The ‘llvm.usub.with.overflow’ family of intrinsic functions perform
an unsigned subtraction of the two arguments, and indicate whether an
overflow occurred during the unsigned subtraction.

Arguments:

The arguments (%a and %b) and the first element of the result structure
may be of integer types of any bit width, but they must have the same
bit width. The second element of the result structure must be of type
i1. %a and %b are the two values that will undergo unsigned
subtraction.

Semantics:

The ‘llvm.usub.with.overflow’ family of intrinsic functions perform
an unsigned subtraction of the two arguments. They return a structure —
the first element of which is the subtraction, and the second element of
which is a bit specifying if the unsigned subtraction resulted in an
overflow.

Examples:

%res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
%sum = extractvalue {i32, i1} %res, 0
%obit = extractvalue {i32, i1} %res, 1
br i1 %obit, label %overflow, label %normal

‘llvm.smul.with.overflow.*’ Intrinsics

Syntax:

This is an overloaded intrinsic. You can use llvm.smul.with.overflow
on any integer bit width.

declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)

Overview:

The ‘llvm.smul.with.overflow’ family of intrinsic functions perform
a signed multiplication of the two arguments, and indicate whether an
overflow occurred during the signed multiplication.

Arguments:

The arguments (%a and %b) and the first element of the result structure
may be of integer types of any bit width, but they must have the same
bit width. The second element of the result structure must be of type
i1. %a and %b are the two values that will undergo signed
multiplication.

Semantics:

The ‘llvm.smul.with.overflow’ family of intrinsic functions perform
a signed multiplication of the two arguments. They return a structure —
the first element of which is the multiplication, and the second element
of which is a bit specifying if the signed multiplication resulted in an
overflow.

Examples:

%res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
%sum = extractvalue {i32, i1} %res, 0
%obit = extractvalue {i32, i1} %res, 1
br i1 %obit, label %overflow, label %normal

‘llvm.umul.with.overflow.*’ Intrinsics

Syntax:

This is an overloaded intrinsic. You can use llvm.umul.with.overflow
on any integer bit width.

declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)

Overview:

The ‘llvm.umul.with.overflow’ family of intrinsic functions perform
a unsigned multiplication of the two arguments, and indicate whether an
overflow occurred during the unsigned multiplication.

Arguments:

The arguments (%a and %b) and the first element of the result structure
may be of integer types of any bit width, but they must have the same
bit width. The second element of the result structure must be of type
i1. %a and %b are the two values that will undergo unsigned
multiplication.

Semantics:

The ‘llvm.umul.with.overflow’ family of intrinsic functions perform
an unsigned multiplication of the two arguments. They return a structure —
the first element of which is the multiplication, and the second
element of which is a bit specifying if the unsigned multiplication
resulted in an overflow.

Examples:

%res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
%sum = extractvalue {i32, i1} %res, 0
%obit = extractvalue {i32, i1} %res, 1
br i1 %obit, label %overflow, label %normal

Specialised Arithmetic Intrinsics

‘llvm.canonicalize.*’ Intrinsic

Syntax:

declare float @llvm.canonicalize.f32(float %a)
declare double @llvm.canonicalize.f64(double %b)

Overview:

The ‘llvm.canonicalize.*’ intrinsic returns the platform specific canonical
encoding of a floating-point number. This canonicalization is useful for
implementing certain numeric primitives such as frexp. The canonical encoding is
defined by IEEE-754-2008 to be:

2.1.8 canonical encoding: The preferred encoding of a floating-point
representation in a format. Applied to declets, significands of finite
numbers, infinities, and NaNs, especially in decimal formats.

This operation can also be considered equivalent to the IEEE-754-2008
conversion of a floating-point value to the same format. NaNs are handled
according to section 6.2.

Examples of non-canonical encodings:

	x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
converted to a canonical representation per hardware-specific protocol.

	Many normal decimal floating-point numbers have non-canonical alternative
encodings.

	Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
These are treated as non-canonical encodings of zero and will be flushed to
a zero of the same sign by this operation.

Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
default exception handling must signal an invalid exception, and produce a
quiet NaN result.

This function should always be implementable as multiplication by 1.0, provided
that the compiler does not constant fold the operation. Likewise, division by
1.0 and llvm.minnum(x, x) are possible implementations. Addition with
-0.0 is also sufficient provided that the rounding mode is not -Infinity.

@llvm.canonicalize must preserve the equality relation. That is:

	(@llvm.canonicalize(x) == x) is equivalent to (x == x)

	(@llvm.canonicalize(x) == @llvm.canonicalize(y)) is equivalent to
to (x == y)

Additionally, the sign of zero must be conserved:
@llvm.canonicalize(-0.0) = -0.0 and @llvm.canonicalize(+0.0) = +0.0

The payload bits of a NaN must be conserved, with two exceptions.
First, environments which use only a single canonical representation of NaN
must perform said canonicalization. Second, SNaNs must be quieted per the
usual methods.

The canonicalization operation may be optimized away if:

	The input is known to be canonical. For example, it was produced by a
floating-point operation that is required by the standard to be canonical.

	The result is consumed only by (or fused with) other floating-point
operations. That is, the bits of the floating-point value are not examined.

‘llvm.fmuladd.*’ Intrinsic

Syntax:

declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
declare double @llvm.fmuladd.f64(double %a, double %b, double %c)

Overview:

The ‘llvm.fmuladd.*’ intrinsic functions represent multiply-add
expressions that can be fused if the code generator determines that (a) the
target instruction set has support for a fused operation, and (b) that the
fused operation is more efficient than the equivalent, separate pair of mul
and add instructions.

Arguments:

The ‘llvm.fmuladd.*’ intrinsics each take three arguments: two
multiplicands, a and b, and an addend c.

Semantics:

The expression:

%0 = call float @llvm.fmuladd.f32(%a, %b, %c)

is equivalent to the expression a * b + c, except that rounding will
not be performed between the multiplication and addition steps if the
code generator fuses the operations. Fusion is not guaranteed, even if
the target platform supports it. If a fused multiply-add is required the
corresponding llvm.fma.* intrinsic function should be used
instead. This never sets errno, just as ‘llvm.fma.*’.

Examples:

%r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c

Experimental Vector Reduction Intrinsics

Horizontal reductions of vectors can be expressed using the following
intrinsics. Each one takes a vector operand as an input and applies its
respective operation across all elements of the vector, returning a single
scalar result of the same element type.

‘llvm.experimental.vector.reduce.add.*’ Intrinsic

Syntax:

declare i32 @llvm.experimental.vector.reduce.add.i32.v4i32(<4 x i32> %a)
declare i64 @llvm.experimental.vector.reduce.add.i64.v2i64(<2 x i64> %a)

Overview:

The ‘llvm.experimental.vector.reduce.add.*’ intrinsics do an integer ADD
reduction of a vector, returning the result as a scalar. The return type matches
the element-type of the vector input.

Arguments:

The argument to this intrinsic must be a vector of integer values.

‘llvm.experimental.vector.reduce.fadd.*’ Intrinsic

Syntax:

declare float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %a)
declare double @llvm.experimental.vector.reduce.fadd.f64.v2f64(double %acc, <2 x double> %a)

Overview:

The ‘llvm.experimental.vector.reduce.fadd.*’ intrinsics do a floating-point
ADD reduction of a vector, returning the result as a scalar. The return type
matches the element-type of the vector input.

If the intrinsic call has fast-math flags, then the reduction will not preserve
the associativity of an equivalent scalarized counterpart. If it does not have
fast-math flags, then the reduction will be ordered, implying that the
operation respects the associativity of a scalarized reduction.

Arguments:

The first argument to this intrinsic is a scalar accumulator value, which is
only used when there are no fast-math flags attached. This argument may be undef
when fast-math flags are used.

The second argument must be a vector of floating-point values.

Examples:

%fast = call fast float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
%ord = call float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction

‘llvm.experimental.vector.reduce.mul.*’ Intrinsic

Syntax:

declare i32 @llvm.experimental.vector.reduce.mul.i32.v4i32(<4 x i32> %a)
declare i64 @llvm.experimental.vector.reduce.mul.i64.v2i64(<2 x i64> %a)

Overview:

The ‘llvm.experimental.vector.reduce.mul.*’ intrinsics do an integer MUL
reduction of a vector, returning the result as a scalar. The return type matches
the element-type of the vector input.

Arguments:

The argument to this intrinsic must be a vector of integer values.

‘llvm.experimental.vector.reduce.fmul.*’ Intrinsic

Syntax:

declare float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %a)
declare double @llvm.experimental.vector.reduce.fmul.f64.v2f64(double %acc, <2 x double> %a)

Overview:

The ‘llvm.experimental.vector.reduce.fmul.*’ intrinsics do a floating-point
MUL reduction of a vector, returning the result as a scalar. The return type
matches the element-type of the vector input.

If the intrinsic call has fast-math flags, then the reduction will not preserve
the associativity of an equivalent scalarized counterpart. If it does not have
fast-math flags, then the reduction will be ordered, implying that the
operation respects the associativity of a scalarized reduction.

Arguments:

The first argument to this intrinsic is a scalar accumulator value, which is
only used when there are no fast-math flags attached. This argument may be undef
when fast-math flags are used.

The second argument must be a vector of floating-point values.

Examples:

%fast = call fast float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
%ord = call float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction

‘llvm.experimental.vector.reduce.and.*’ Intrinsic

Syntax:

declare i32 @llvm.experimental.vector.reduce.and.i32.v4i32(<4 x i32> %a)

Overview:

The ‘llvm.experimental.vector.reduce.and.*’ intrinsics do a bitwise AND
reduction of a vector, returning the result as a scalar. The return type matches
the element-type of the vector input.

Arguments:

The argument to this intrinsic must be a vector of integer values.

‘llvm.experimental.vector.reduce.or.*’ Intrinsic

Syntax:

declare i32 @llvm.experimental.vector.reduce.or.i32.v4i32(<4 x i32> %a)

Overview:

The ‘llvm.experimental.vector.reduce.or.*’ intrinsics do a bitwise OR reduction
of a vector, returning the result as a scalar. The return type matches the
element-type of the vector input.

Arguments:

The argument to this intrinsic must be a vector of integer values.

‘llvm.experimental.vector.reduce.xor.*’ Intrinsic

Syntax:

declare i32 @llvm.experimental.vector.reduce.xor.i32.v4i32(<4 x i32> %a)

Overview:

The ‘llvm.experimental.vector.reduce.xor.*’ intrinsics do a bitwise XOR
reduction of a vector, returning the result as a scalar. The return type matches
the element-type of the vector input.

Arguments:

The argument to this intrinsic must be a vector of integer values.

‘llvm.experimental.vector.reduce.smax.*’ Intrinsic

Syntax:

declare i32 @llvm.experimental.vector.reduce.smax.i32.v4i32(<4 x i32> %a)

Overview:

The ‘llvm.experimental.vector.reduce.smax.*’ intrinsics do a signed integer
MAX reduction of a vector, returning the result as a scalar. The return type
matches the element-type of the vector input.

Arguments:

The argument to this intrinsic must be a vector of integer values.

‘llvm.experimental.vector.reduce.smin.*’ Intrinsic

Syntax:

declare i32 @llvm.experimental.vector.reduce.smin.i32.v4i32(<4 x i32> %a)

Overview:

The ‘llvm.experimental.vector.reduce.smin.*’ intrinsics do a signed integer
MIN reduction of a vector, returning the result as a scalar. The return type
matches the element-type of the vector input.

Arguments:

The argument to this intrinsic must be a vector of integer values.

‘llvm.experimental.vector.reduce.umax.*’ Intrinsic

Syntax:

declare i32 @llvm.experimental.vector.reduce.umax.i32.v4i32(<4 x i32> %a)

Overview:

The ‘llvm.experimental.vector.reduce.umax.*’ intrinsics do an unsigned
integer MAX reduction of a vector, returning the result as a scalar. The
return type matches the element-type of the vector input.

Arguments:

The argument to this intrinsic must be a vector of integer values.

‘llvm.experimental.vector.reduce.umin.*’ Intrinsic

Syntax:

declare i32 @llvm.experimental.vector.reduce.umin.i32.v4i32(<4 x i32> %a)

Overview:

The ‘llvm.experimental.vector.reduce.umin.*’ intrinsics do an unsigned
integer MIN reduction of a vector, returning the result as a scalar. The
return type matches the element-type of the vector input.

Arguments:

The argument to this intrinsic must be a vector of integer values.

‘llvm.experimental.vector.reduce.fmax.*’ Intrinsic

Syntax:

declare float @llvm.experimental.vector.reduce.fmax.f32.v4f32(<4 x float> %a)
declare double @llvm.experimental.vector.reduce.fmax.f64.v2f64(<2 x double> %a)

Overview:

The ‘llvm.experimental.vector.reduce.fmax.*’ intrinsics do a floating-point
MAX reduction of a vector, returning the result as a scalar. The return type
matches the element-type of the vector input.

If the intrinsic call has the nnan fast-math flag then the operation can
assume that NaNs are not present in the input vector.

Arguments:

The argument to this intrinsic must be a vector of floating-point values.

‘llvm.experimental.vector.reduce.fmin.*’ Intrinsic

Syntax:

declare float @llvm.experimental.vector.reduce.fmin.f32.v4f32(<4 x float> %a)
declare double @llvm.experimental.vector.reduce.fmin.f64.v2f64(<2 x double> %a)

Overview:

The ‘llvm.experimental.vector.reduce.fmin.*’ intrinsics do a floating-point
MIN reduction of a vector, returning the result as a scalar. The return type
matches the element-type of the vector input.

If the intrinsic call has the nnan fast-math flag then the operation can
assume that NaNs are not present in the input vector.

Arguments:

The argument to this intrinsic must be a vector of floating-point values.

Half Precision Floating-Point Intrinsics

For most target platforms, half precision floating-point is a
storage-only format. This means that it is a dense encoding (in memory)
but does not support computation in the format.

This means that code must first load the half-precision floating-point
value as an i16, then convert it to float with
llvm.convert.from.fp16. Computation can
then be performed on the float value (including extending to double
etc). To store the value back to memory, it is first converted to float
if needed, then converted to i16 with
llvm.convert.to.fp16, then storing as an
i16 value.

‘llvm.convert.to.fp16’ Intrinsic

Syntax:

declare i16 @llvm.convert.to.fp16.f32(float %a)
declare i16 @llvm.convert.to.fp16.f64(double %a)

Overview:

The ‘llvm.convert.to.fp16’ intrinsic function performs a conversion from a
conventional floating-point type to half precision floating-point format.

Arguments:

The intrinsic function contains single argument - the value to be
converted.

Semantics:

The ‘llvm.convert.to.fp16’ intrinsic function performs a conversion from a
conventional floating-point format to half precision floating-point format. The
return value is an i16 which contains the converted number.

Examples:

%res = call i16 @llvm.convert.to.fp16.f32(float %a)
store i16 %res, i16* @x, align 2

‘llvm.convert.from.fp16’ Intrinsic

Syntax:

declare float @llvm.convert.from.fp16.f32(i16 %a)
declare double @llvm.convert.from.fp16.f64(i16 %a)

Overview:

The ‘llvm.convert.from.fp16’ intrinsic function performs a
conversion from half precision floating-point format to single precision
floating-point format.

Arguments:

The intrinsic function contains single argument - the value to be
converted.

Semantics:

The ‘llvm.convert.from.fp16’ intrinsic function performs a
conversion from half single precision floating-point format to single
precision floating-point format. The input half-float value is
represented by an i16 value.

Examples:

%a = load i16, i16* @x, align 2
%res = call float @llvm.convert.from.fp16(i16 %a)

Debugger Intrinsics

The LLVM debugger intrinsics (which all start with llvm.dbg.
prefix), are described in the LLVM Source Level
Debugging
document.

Exception Handling Intrinsics

The LLVM exception handling intrinsics (which all start with
llvm.eh. prefix), are described in the LLVM Exception
Handling document.

Trampoline Intrinsics

These intrinsics make it possible to excise one parameter, marked with
the nest attribute, from a function. The result is a
callable function pointer lacking the nest parameter - the caller does
not need to provide a value for it. Instead, the value to use is stored
in advance in a “trampoline”, a block of memory usually allocated on the
stack, which also contains code to splice the nest value into the
argument list. This is used to implement the GCC nested function address
extension.

For example, if the function is i32 f(i8* nest %c, i32 %x, i32 %y)
then the resulting function pointer has signature i32 (i32, i32)*.
It can be created as follows:

%tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
%tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
%p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
%fp = bitcast i8* %p to i32 (i32, i32)*

The call %val = call i32 %fp(i32 %x, i32 %y) is then equivalent to
%val = call i32 %f(i8* %nval, i32 %x, i32 %y).

‘llvm.init.trampoline’ Intrinsic

Syntax:

declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)

Overview:

This fills the memory pointed to by tramp with executable code,
turning it into a trampoline.

Arguments:

The llvm.init.trampoline intrinsic takes three arguments, all
pointers. The tramp argument must point to a sufficiently large and
sufficiently aligned block of memory; this memory is written to by the
intrinsic. Note that the size and the alignment are target-specific -
LLVM currently provides no portable way of determining them, so a
front-end that generates this intrinsic needs to have some
target-specific knowledge. The func argument must hold a function
bitcast to an i8*.

Semantics:

The block of memory pointed to by tramp is filled with target
dependent code, turning it into a function. Then tramp needs to be
passed to llvm.adjust.trampoline to get a pointer which can
be bitcast (to a new function) and called. The new
function’s signature is the same as that of func with any arguments
marked with the nest attribute removed. At most one such nest
argument is allowed, and it must be of pointer type. Calling the new
function is equivalent to calling func with the same argument list,
but with nval used for the missing nest argument. If, after
calling llvm.init.trampoline, the memory pointed to by tramp is
modified, then the effect of any later call to the returned function
pointer is undefined.

‘llvm.adjust.trampoline’ Intrinsic

Syntax:

declare i8* @llvm.adjust.trampoline(i8* <tramp>)

Overview:

This performs any required machine-specific adjustment to the address of
a trampoline (passed as tramp).

Arguments:

tramp must point to a block of memory which already has trampoline
code filled in by a previous call to
llvm.init.trampoline.

Semantics:

On some architectures the address of the code to be executed needs to be
different than the address where the trampoline is actually stored. This
intrinsic returns the executable address corresponding to tramp
after performing the required machine specific adjustments. The pointer
returned can then be bitcast and executed.

Masked Vector Load and Store Intrinsics

LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the “off” lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.

‘llvm.masked.load.*’ Intrinsics

Syntax:

This is an overloaded intrinsic. The loaded data is a vector of any integer, floating-point or pointer data type.

declare <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
declare <2 x double> @llvm.masked.load.v2f64.p0v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
;; The data is a vector of pointers to double
declare <8 x double*> @llvm.masked.load.v8p0f64.p0v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
;; The data is a vector of function pointers
declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f.p0v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)

Overview:

Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the ‘passthru’ operand.

Arguments:

The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the ‘passthru’ operand are the same vector types.

Semantics:

The ‘llvm.masked.load’ intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
The result of this operation is equivalent to a regular vector load instruction followed by a ‘select’ between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.

%res = call <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)

;; The result of the two following instructions is identical aside from potential memory access exception
%loadlal = load <16 x float>, <16 x float>* %ptr, align 4
%res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru

‘llvm.masked.store.*’ Intrinsics

Syntax:

This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating-point or pointer data type.

declare void @llvm.masked.store.v8i32.p0v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
declare void @llvm.masked.store.v16f32.p0v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
;; The data is a vector of pointers to double
declare void @llvm.masked.store.v8p0f64.p0v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
;; The data is a vector of function pointers
declare void @llvm.masked.store.v4p0f_i32f.p0v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)

Overview:

Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.

Arguments:

The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.

Semantics:

The ‘llvm.masked.store’ intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.

call void @llvm.masked.store.v16f32.p0v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)

;; The result of the following instructions is identical aside from potential data races and memory access exceptions
%oldval = load <16 x float>, <16 x float>* %ptr, align 4
%res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
store <16 x float> %res, <16 x float>* %ptr, align 4

Masked Vector Gather and Scatter Intrinsics

LLVM provides intrinsics for vector gather and scatter operations. They are similar to Masked Vector Load and Store, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the “off” lanes are not accessed. When all bits are off, no memory is accessed.

‘llvm.masked.gather.*’ Intrinsics

Syntax:

This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating-point or pointer data type gathered together into one vector.

declare <16 x float> @llvm.masked.gather.v16f32.v16p0f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
declare <2 x double> @llvm.masked.gather.v2f64.v2p1f64 (<2 x double addrspace(1)*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
declare <8 x float*> @llvm.masked.gather.v8p0f32.v8p0p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)

Overview:

Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers ‘ptrs’. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the ‘passthru’ operand.

Arguments:

The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the ‘passthru’ operand are the same vector types.

Semantics:

The ‘llvm.masked.gather’ intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.

%res = call <4 x double> @llvm.masked.gather.v4f64.v4p0f64 (<4 x double*> %ptrs, i32 8, <4 x i1> <i1 true, i1 true, i1 true, i1 true>, <4 x double> undef)

;; The gather with all-true mask is equivalent to the following instruction sequence
%ptr0 = extractelement <4 x double*> %ptrs, i32 0
%ptr1 = extractelement <4 x double*> %ptrs, i32 1
%ptr2 = extractelement <4 x double*> %ptrs, i32 2
%ptr3 = extractelement <4 x double*> %ptrs, i32 3

%val0 = load double, double* %ptr0, align 8
%val1 = load double, double* %ptr1, align 8
%val2 = load double, double* %ptr2, align 8
%val3 = load double, double* %ptr3, align 8

%vec0 = insertelement <4 x double>undef, %val0, 0
%vec01 = insertelement <4 x double>%vec0, %val1, 1
%vec012 = insertelement <4 x double>%vec01, %val2, 2
%vec0123 = insertelement <4 x double>%vec012, %val3, 3

‘llvm.masked.scatter.*’ Intrinsics

Syntax:

This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating-point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.

declare void @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
declare void @llvm.masked.scatter.v16f32.v16p1f32 (<16 x float> <value>, <16 x float addrspace(1)*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
declare void @llvm.masked.scatter.v4p0f64.v4p0p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)

Overview:

Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.

Arguments:

The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.

Semantics:

The ‘llvm.masked.scatter’ intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.

;; This instruction unconditionally stores data vector in multiple addresses
call @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)

;; It is equivalent to a list of scalar stores
%val0 = extractelement <8 x i32> %value, i32 0
%val1 = extractelement <8 x i32> %value, i32 1
..
%val7 = extractelement <8 x i32> %value, i32 7
%ptr0 = extractelement <8 x i32*> %ptrs, i32 0
%ptr1 = extractelement <8 x i32*> %ptrs, i32 1
..
%ptr7 = extractelement <8 x i32*> %ptrs, i32 7
;; Note: the order of the following stores is important when they overlap:
store i32 %val0, i32* %ptr0, align 4
store i32 %val1, i32* %ptr1, align 4
..
store i32 %val7, i32* %ptr7, align 4

Masked Vector Expanding Load and Compressing Store Intrinsics

LLVM provides intrinsics for expanding load and compressing store operations. Data selected from a vector according to a mask is stored in consecutive memory addresses (compressed store), and vice-versa (expanding load). These operations effective map to “if (cond.i) a[j++] = v.i” and “if (cond.i) v.i = a[j++]” patterns, respectively. Note that when the mask starts with ‘1’ bits followed by ‘0’ bits, these operations are identical to llvm.masked.store and llvm.masked.load.

‘llvm.masked.expandload.*’ Intrinsics

Syntax:

This is an overloaded intrinsic. Several values of integer, floating point or pointer data type are loaded from consecutive memory addresses and stored into the elements of a vector according to the mask.

declare <16 x float> @llvm.masked.expandload.v16f32 (float* <ptr>, <16 x i1> <mask>, <16 x float> <passthru>)
declare <2 x i64> @llvm.masked.expandload.v2i64 (i64* <ptr>, <2 x i1> <mask>, <2 x i64> <passthru>)

Overview:

Reads a number of scalar values sequentially from memory location provided in ‘ptr’ and spreads them in a vector. The ‘mask’ holds a bit for each vector lane. The number of elements read from memory is equal to the number of ‘1’ bits in the mask. The loaded elements are positioned in the destination vector according to the sequence of ‘1’ and ‘0’ bits in the mask. E.g., if the mask vector is ‘10010001’, “explandload” reads 3 values from memory addresses ptr, ptr+1, ptr+2 and places them in lanes 0, 3 and 7 accordingly. The masked-off lanes are filled by elements from the corresponding lanes of the ‘passthru’ operand.

Arguments:

The first operand is the base pointer for the load. It has the same underlying type as the element of the returned vector. The second operand, mask, is a vector of boolean values with the same number of elements as the return type. The third is a pass-through value that is used to fill the masked-off lanes of the result. The return type and the type of the ‘passthru’ operand have the same vector type.

Semantics:

The ‘llvm.masked.expandload’ intrinsic is designed for reading multiple scalar values from adjacent memory addresses into possibly non-adjacent vector lanes. It is useful for targets that support vector expanding loads and allows vectorizing loop with cross-iteration dependency like in the following example:

// In this loop we load from B and spread the elements into array A.
double *A, B; int *C;
for (int i = 0; i < size; ++i) {
 if (C[i] != 0)
 A[i] = B[j++];
}

; Load several elements from array B and expand them in a vector.
; The number of loaded elements is equal to the number of '1' elements in the Mask.
%Tmp = call <8 x double> @llvm.masked.expandload.v8f64(double* %Bptr, <8 x i1> %Mask, <8 x double> undef)
; Store the result in A
call void @llvm.masked.store.v8f64.p0v8f64(<8 x double> %Tmp, <8 x double>* %Aptr, i32 8, <8 x i1> %Mask)

; %Bptr should be increased on each iteration according to the number of '1' elements in the Mask.
%MaskI = bitcast <8 x i1> %Mask to i8
%MaskIPopcnt = call i8 @llvm.ctpop.i8(i8 %MaskI)
%MaskI64 = zext i8 %MaskIPopcnt to i64
%BNextInd = add i64 %BInd, %MaskI64

Other targets may support this intrinsic differently, for example, by lowering it into a sequence of conditional scalar load operations and shuffles.
If all mask elements are ‘1’, the intrinsic behavior is equivalent to the regular unmasked vector load.

‘llvm.masked.compressstore.*’ Intrinsics

Syntax:

This is an overloaded intrinsic. A number of scalar values of integer, floating point or pointer data type are collected from an input vector and stored into adjacent memory addresses. A mask defines which elements to collect from the vector.

declare void @llvm.masked.compressstore.v8i32 (<8 x i32> <value>, i32* <ptr>, <8 x i1> <mask>)
declare void @llvm.masked.compressstore.v16f32 (<16 x float> <value>, float* <ptr>, <16 x i1> <mask>)

Overview:

Selects elements from input vector ‘value’ according to the ‘mask’. All selected elements are written into adjacent memory addresses starting at address ‘ptr’, from lower to higher. The mask holds a bit for each vector lane, and is used to select elements to be stored. The number of elements to be stored is equal to the number of active bits in the mask.

Arguments:

The first operand is the input vector, from which elements are collected and written to memory. The second operand is the base pointer for the store, it has the same underlying type as the element of the input vector operand. The third operand is the mask, a vector of boolean values. The mask and the input vector must have the same number of vector elements.

Semantics:

The ‘llvm.masked.compressstore’ intrinsic is designed for compressing data in memory. It allows to collect elements from possibly non-adjacent lanes of a vector and store them contiguously in memory in one IR operation. It is useful for targets that support compressing store operations and allows vectorizing loops with cross-iteration dependences like in the following example:

// In this loop we load elements from A and store them consecutively in B
double *A, B; int *C;
for (int i = 0; i < size; ++i) {
 if (C[i] != 0)
 B[j++] = A[i]
}

; Load elements from A.
%Tmp = call <8 x double> @llvm.masked.load.v8f64.p0v8f64(<8 x double>* %Aptr, i32 8, <8 x i1> %Mask, <8 x double> undef)
; Store all selected elements consecutively in array B
call <void> @llvm.masked.compressstore.v8f64(<8 x double> %Tmp, double* %Bptr, <8 x i1> %Mask)

; %Bptr should be increased on each iteration according to the number of '1' elements in the Mask.
%MaskI = bitcast <8 x i1> %Mask to i8
%MaskIPopcnt = call i8 @llvm.ctpop.i8(i8 %MaskI)
%MaskI64 = zext i8 %MaskIPopcnt to i64
%BNextInd = add i64 %BInd, %MaskI64

Other targets may support this intrinsic differently, for example, by lowering it into a sequence of branches that guard scalar store operations.

Memory Use Markers

This class of intrinsics provides information about the lifetime of
memory objects and ranges where variables are immutable.

‘llvm.lifetime.start’ Intrinsic

Syntax:

declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)

Overview:

The ‘llvm.lifetime.start’ intrinsic specifies the start of a memory
object’s lifetime.

Arguments:

The first argument is a constant integer representing the size of the
object, or -1 if it is variable sized. The second argument is a pointer
to the object.

Semantics:

This intrinsic indicates that before this point in the code, the value
of the memory pointed to by ptr is dead. This means that it is known
to never be used and has an undefined value. A load from the pointer
that precedes this intrinsic can be replaced with 'undef'.

‘llvm.lifetime.end’ Intrinsic

Syntax:

declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)

Overview:

The ‘llvm.lifetime.end’ intrinsic specifies the end of a memory
object’s lifetime.

Arguments:

The first argument is a constant integer representing the size of the
object, or -1 if it is variable sized. The second argument is a pointer
to the object.

Semantics:

This intrinsic indicates that after this point in the code, the value of
the memory pointed to by ptr is dead. This means that it is known to
never be used and has an undefined value. Any stores into the memory
object following this intrinsic may be removed as dead.

‘llvm.invariant.start’ Intrinsic

Syntax:

This is an overloaded intrinsic. The memory object can belong to any address space.

declare {}* @llvm.invariant.start.p0i8(i64 <size>, i8* nocapture <ptr>)

Overview:

The ‘llvm.invariant.start’ intrinsic specifies that the contents of
a memory object will not change.

Arguments:

The first argument is a constant integer representing the size of the
object, or -1 if it is variable sized. The second argument is a pointer
to the object.

Semantics:

This intrinsic indicates that until an llvm.invariant.end that uses
the return value, the referenced memory location is constant and
unchanging.

‘llvm.invariant.end’ Intrinsic

Syntax:

This is an overloaded intrinsic. The memory object can belong to any address space.

declare void @llvm.invariant.end.p0i8({}* <start>, i64 <size>, i8* nocapture <ptr>)

Overview:

The ‘llvm.invariant.end’ intrinsic specifies that the contents of a
memory object are mutable.

Arguments:

The first argument is the matching llvm.invariant.start intrinsic.
The second argument is a constant integer representing the size of the
object, or -1 if it is variable sized and the third argument is a
pointer to the object.

Semantics:

This intrinsic indicates that the memory is mutable again.

‘llvm.launder.invariant.group’ Intrinsic

Syntax:

This is an overloaded intrinsic. The memory object can belong to any address
space. The returned pointer must belong to the same address space as the
argument.

declare i8* @llvm.launder.invariant.group.p0i8(i8* <ptr>)

Overview:

The ‘llvm.launder.invariant.group’ intrinsic can be used when an invariant
established by invariant.group metadata no longer holds, to obtain a new
pointer value that carries fresh invariant group information. It is an
experimental intrinsic, which means that its semantics might change in the
future.

Arguments:

The llvm.launder.invariant.group takes only one argument, which is a pointer
to the memory.

Semantics:

Returns another pointer that aliases its argument but which is considered different
for the purposes of load/store invariant.group metadata.
It does not read any accessible memory and the execution can be speculated.

‘llvm.strip.invariant.group’ Intrinsic

Syntax:

This is an overloaded intrinsic. The memory object can belong to any address
space. The returned pointer must belong to the same address space as the
argument.

declare i8* @llvm.strip.invariant.group.p0i8(i8* <ptr>)

Overview:

The ‘llvm.strip.invariant.group’ intrinsic can be used when an invariant
established by invariant.group metadata no longer holds, to obtain a new pointer
value that does not carry the invariant information. It is an experimental
intrinsic, which means that its semantics might change in the future.

Arguments:

The llvm.strip.invariant.group takes only one argument, which is a pointer
to the memory.

Semantics:

Returns another pointer that aliases its argument but which has no associated
invariant.group metadata.
It does not read any memory and can be speculated.

Constrained Floating-Point Intrinsics

These intrinsics are used to provide special handling of floating-point
operations when specific rounding mode or floating-point exception behavior is
required. By default, LLVM optimization passes assume that the rounding mode is
round-to-nearest and that floating-point exceptions will not be monitored.
Constrained FP intrinsics are used to support non-default rounding modes and
accurately preserve exception behavior without compromising LLVM’s ability to
optimize FP code when the default behavior is used.

Each of these intrinsics corresponds to a normal floating-point operation. The
first two arguments and the return value are the same as the corresponding FP
operation.

The third argument is a metadata argument specifying the rounding mode to be
assumed. This argument must be one of the following strings:

"round.dynamic"
"round.tonearest"
"round.downward"
"round.upward"
"round.towardzero"

If this argument is “round.dynamic” optimization passes must assume that the
rounding mode is unknown and may change at runtime. No transformations that
depend on rounding mode may be performed in this case.

The other possible values for the rounding mode argument correspond to the
similarly named IEEE rounding modes. If the argument is any of these values
optimization passes may perform transformations as long as they are consistent
with the specified rounding mode.

For example, ‘x-0’->’x’ is not a valid transformation if the rounding mode is
“round.downward” or “round.dynamic” because if the value of ‘x’ is +0 then
‘x-0’ should evaluate to ‘-0’ when rounding downward. However, this
transformation is legal for all other rounding modes.

For values other than “round.dynamic” optimization passes may assume that the
actual runtime rounding mode (as defined in a target-specific manner) matches
the specified rounding mode, but this is not guaranteed. Using a specific
non-dynamic rounding mode which does not match the actual rounding mode at
runtime results in undefined behavior.

The fourth argument to the constrained floating-point intrinsics specifies the
required exception behavior. This argument must be one of the following
strings:

"fpexcept.ignore"
"fpexcept.maytrap"
"fpexcept.strict"

If this argument is “fpexcept.ignore” optimization passes may assume that the
exception status flags will not be read and that floating-point exceptions will
be masked. This allows transformations to be performed that may change the
exception semantics of the original code. For example, FP operations may be
speculatively executed in this case whereas they must not be for either of the
other possible values of this argument.

If the exception behavior argument is “fpexcept.maytrap” optimization passes
must avoid transformations that may raise exceptions that would not have been
raised by the original code (such as speculatively executing FP operations), but
passes are not required to preserve all exceptions that are implied by the
original code. For example, exceptions may be potentially hidden by constant
folding.

If the exception behavior argument is “fpexcept.strict” all transformations must
strictly preserve the floating-point exception semantics of the original code.
Any FP exception that would have been raised by the original code must be raised
by the transformed code, and the transformed code must not raise any FP
exceptions that would not have been raised by the original code. This is the
exception behavior argument that will be used if the code being compiled reads
the FP exception status flags, but this mode can also be used with code that
unmasks FP exceptions.

The number and order of floating-point exceptions is NOT guaranteed. For
example, a series of FP operations that each may raise exceptions may be
vectorized into a single instruction that raises each unique exception a single
time.

‘llvm.experimental.constrained.fadd’ Intrinsic

Syntax:

declare <type>
@llvm.experimental.constrained.fadd(<type> <op1>, <type> <op2>,
 metadata <rounding mode>,
 metadata <exception behavior>)

Overview:

The ‘llvm.experimental.constrained.fadd’ intrinsic returns the sum of its
two operands.

Arguments:

The first two arguments to the ‘llvm.experimental.constrained.fadd’
intrinsic must be floating-point or vector
of floating-point values. Both arguments must have identical types.

The third and fourth arguments specify the rounding mode and exception
behavior as described above.

Semantics:

The value produced is the floating-point sum of the two value operands and has
the same type as the operands.

‘llvm.experimental.constrained.fsub’ Intrinsic

Syntax:

declare <type>
@llvm.experimental.constrained.fsub(<type> <op1>, <type> <op2>,
 metadata <rounding mode>,
 metadata <exception behavior>)

Overview:

The ‘llvm.experimental.constrained.fsub’ intrinsic returns the difference
of its two operands.

Arguments:

The first two arguments to the ‘llvm.experimental.constrained.fsub’
intrinsic must be floating-point or vector
of floating-point values. Both arguments must have identical types.

The third and fourth arguments specify the rounding mode and exception
behavior as described above.

Semantics:

The value produced is the floating-point difference of the two value operands
and has the same type as the operands.

‘llvm.experimental.constrained.fmul’ Intrinsic

Syntax:

declare <type>
@llvm.experimental.constrained.fmul(<type> <op1>, <type> <op2>,
 metadata <rounding mode>,
 metadata <exception behavior>)

Overview:

The ‘llvm.experimental.constrained.fmul’ intrinsic returns the product of
its two operands.

Arguments:

The first two arguments to the ‘llvm.experimental.constrained.fmul’
intrinsic must be floating-point or vector
of floating-point values. Both arguments must have identical types.

The third and fourth arguments specify the rounding mode and exception
behavior as described above.

Semantics:

The value produced is the floating-point product of the two value operands and
has the same type as the operands.

‘llvm.experimental.constrained.fdiv’ Intrinsic

Syntax:

declare <type>
@llvm.experimental.constrained.fdiv(<type> <op1>, <type> <op2>,
 metadata <rounding mode>,
 metadata <exception behavior>)

Overview:

The ‘llvm.experimental.constrained.fdiv’ intrinsic returns the quotient of
its two operands.

Arguments:

The first two arguments to the ‘llvm.experimental.constrained.fdiv’
intrinsic must be floating-point or vector
of floating-point values. Both arguments must have identical types.

The third and fourth arguments specify the rounding mode and exception
behavior as described above.

Semantics:

The value produced is the floating-point quotient of the two value operands and
has the same type as the operands.

‘llvm.experimental.constrained.frem’ Intrinsic

Syntax:

declare <type>
@llvm.experimental.constrained.frem(<type> <op1>, <type> <op2>,
 metadata <rounding mode>,
 metadata <exception behavior>)

Overview:

The ‘llvm.experimental.constrained.frem’ intrinsic returns the remainder
from the division of its two operands.

Arguments:

The first two arguments to the ‘llvm.experimental.constrained.frem’
intrinsic must be floating-point or vector
of floating-point values. Both arguments must have identical types.

The third and fourth arguments specify the rounding mode and exception
behavior as described above. The rounding mode argument has no effect, since
the result of frem is never rounded, but the argument is included for
consistency with the other constrained floating-point intrinsics.

Semantics:

The value produced is the floating-point remainder from the division of the two
value operands and has the same type as the operands. The remainder has the
same sign as the dividend.

‘llvm.experimental.constrained.fma’ Intrinsic

Syntax:

declare <type>
@llvm.experimental.constrained.fma(<type> <op1>, <type> <op2>, <type> <op3>,
 metadata <rounding mode>,
 metadata <exception behavior>)

Overview:

The ‘llvm.experimental.constrained.fma’ intrinsic returns the result of a
fused-multiply-add operation on its operands.

Arguments:

The first three arguments to the ‘llvm.experimental.constrained.fma’
intrinsic must be floating-point or vector of floating-point values. All arguments must have identical types.

The fourth and fifth arguments specify the rounding mode and exception behavior
as described above.

Semantics:

The result produced is the product of the first two operands added to the third
operand computed with infinite precision, and then rounded to the target
precision.

Constrained libm-equivalent Intrinsics

In addition to the basic floating-point operations for which constrained
intrinsics are described above, there are constrained versions of various
operations which provide equivalent behavior to a corresponding libm function.
These intrinsics allow the precise behavior of these operations with respect to
rounding mode and exception behavior to be controlled.

As with the basic constrained floating-point intrinsics, the rounding mode
and exception behavior arguments only control the behavior of the optimizer.
They do not change the runtime floating-point environment.

‘llvm.experimental.constrained.sqrt’ Intrinsic

Syntax:

declare <type>
@llvm.experimental.constrained.sqrt(<type> <op1>,
 metadata <rounding mode>,
 metadata <exception behavior>)

Overview:

The ‘llvm.experimental.constrained.sqrt’ intrinsic returns the square root
of the specified value, returning the same value as the libm ‘sqrt’
functions would, but without setting errno.

Arguments:

The first argument and the return type are floating-point numbers of the same
type.

The second and third arguments specify the rounding mode and exception
behavior as described above.

Semantics:

This function returns the nonnegative square root of the specified value.
If the value is less than negative zero, a floating-point exception occurs
and the return value is architecture specific.

‘llvm.experimental.constrained.pow’ Intrinsic

Syntax:

declare <type>
@llvm.experimental.constrained.pow(<type> <op1>, <type> <op2>,
 metadata <rounding mode>,
 metadata <exception behavior>)

Overview:

The ‘llvm.experimental.constrained.pow’ intrinsic returns the first operand
raised to the (positive or negative) power specified by the second operand.

Arguments:

The first two arguments and the return value are floating-point numbers of the
same type. The second argument specifies the power to which the first argument
should be raised.

The third and fourth arguments specify the rounding mode and exception
behavior as described above.

Semantics:

This function returns the first value raised to the second power,
returning the same values as the libm pow functions would, and
handles error conditions in the same way.

‘llvm.experimental.constrained.powi’ Intrinsic

Syntax:

declare <type>
@llvm.experimental.constrained.powi(<type> <op1>, i32 <op2>,
 metadata <rounding mode>,
 metadata <exception behavior>)

Overview:

The ‘llvm.experimental.constrained.powi’ intrinsic returns the first operand
raised to the (positive or negative) power specified by the second operand. The
order of evaluation of multiplications is not defined. When a vector of
floating-point type is used, the second argument remains a scalar integer value.

Arguments:

The first argument and the return value are floating-point numbers of the same
type. The second argument is a 32-bit signed integer specifying the power to
which the first argument should be raised.

The third and fourth arguments specify the rounding mode and exception
behavior as described above.

Semantics:

This function returns the first value raised to the second power with an
unspecified sequence of rounding operations.

‘llvm.experimental.constrained.sin’ Intrinsic

Syntax:

declare <type>
@llvm.experimental.constrained.sin(<type> <op1>,
 metadata <rounding mode>,
 metadata <exception behavior>)

Overview:

The ‘llvm.experimental.constrained.sin’ intrinsic returns the sine of the
first operand.

Arguments:

The first argument and the return type are floating-point numbers of the same
type.

The second and third arguments specify the rounding mode and exception
behavior as described above.

Semantics:

This function returns the sine of the specified operand, returning the
same values as the libm sin functions would, and handles error
conditions in the same way.

‘llvm.experimental.constrained.cos’ Intrinsic

Syntax:

declare <type>
@llvm.experimental.constrained.cos(<type> <op1>,
 metadata <rounding mode>,
 metadata <exception behavior>)

Overview:

The ‘llvm.experimental.constrained.cos’ intrinsic returns the cosine of the
first operand.

Arguments:

The first argument and the return type are floating-point numbers of the same
type.

The second and third arguments specify the rounding mode and exception
behavior as described above.

Semantics:

This function returns the cosine of the specified operand, returning the
same values as the libm cos functions would, and handles error
conditions in the same way.

‘llvm.experimental.constrained.exp’ Intrinsic

Syntax:

declare <type>
@llvm.experimental.constrained.exp(<type> <op1>,
 metadata <rounding mode>,
 metadata <exception behavior>)

Overview:

The ‘llvm.experimental.constrained.exp’ intrinsic computes the base-e
exponential of the specified value.

Arguments:

The first argument and the return value are floating-point numbers of the same
type.

The second and third arguments specify the rounding mode and exception
behavior as described above.

Semantics:

This function returns the same values as the libm exp functions
would, and handles error conditions in the same way.

‘llvm.experimental.constrained.exp2’ Intrinsic

Syntax:

declare <type>
@llvm.experimental.constrained.exp2(<type> <op1>,
 metadata <rounding mode>,
 metadata <exception behavior>)

Overview:

The ‘llvm.experimental.constrained.exp2’ intrinsic computes the base-2
exponential of the specified value.

Arguments:

The first argument and the return value are floating-point numbers of the same
type.

The second and third arguments specify the rounding mode and exception
behavior as described above.

Semantics:

This function returns the same values as the libm exp2 functions
would, and handles error conditions in the same way.

‘llvm.experimental.constrained.log’ Intrinsic

Syntax:

declare <type>
@llvm.experimental.constrained.log(<type> <op1>,
 metadata <rounding mode>,
 metadata <exception behavior>)

Overview:

The ‘llvm.experimental.constrained.log’ intrinsic computes the base-e
logarithm of the specified value.

Arguments:

The first argument and the return value are floating-point numbers of the same
type.

The second and third arguments specify the rounding mode and exception
behavior as described above.

Semantics:

This function returns the same values as the libm log functions
would, and handles error conditions in the same way.

‘llvm.experimental.constrained.log10’ Intrinsic

Syntax:

declare <type>
@llvm.experimental.constrained.log10(<type> <op1>,
 metadata <rounding mode>,
 metadata <exception behavior>)

Overview:

The ‘llvm.experimental.constrained.log10’ intrinsic computes the base-10
logarithm of the specified value.

Arguments:

The first argument and the return value are floating-point numbers of the same
type.

The second and third arguments specify the rounding mode and exception
behavior as described above.

Semantics:

This function returns the same values as the libm log10 functions
would, and handles error conditions in the same way.

‘llvm.experimental.constrained.log2’ Intrinsic

Syntax:

declare <type>
@llvm.experimental.constrained.log2(<type> <op1>,
 metadata <rounding mode>,
 metadata <exception behavior>)

Overview:

The ‘llvm.experimental.constrained.log2’ intrinsic computes the base-2
logarithm of the specified value.

Arguments:

The first argument and the return value are floating-point numbers of the same
type.

The second and third arguments specify the rounding mode and exception
behavior as described above.

Semantics:

This function returns the same values as the libm log2 functions
would, and handles error conditions in the same way.

‘llvm.experimental.constrained.rint’ Intrinsic

Syntax:

declare <type>
@llvm.experimental.constrained.rint(<type> <op1>,
 metadata <rounding mode>,
 metadata <exception behavior>)

Overview:

The ‘llvm.experimental.constrained.rint’ intrinsic returns the first
operand rounded to the nearest integer. It may raise an inexact floating-point
exception if the operand is not an integer.

Arguments:

The first argument and the return value are floating-point numbers of the same
type.

The second and third arguments specify the rounding mode and exception
behavior as described above.

Semantics:

This function returns the same values as the libm rint functions
would, and handles error conditions in the same way. The rounding mode is
described, not determined, by the rounding mode argument. The actual rounding
mode is determined by the runtime floating-point environment. The rounding
mode argument is only intended as information to the compiler.

‘llvm.experimental.constrained.nearbyint’ Intrinsic

Syntax:

declare <type>
@llvm.experimental.constrained.nearbyint(<type> <op1>,
 metadata <rounding mode>,
 metadata <exception behavior>)

Overview:

The ‘llvm.experimental.constrained.nearbyint’ intrinsic returns the first
operand rounded to the nearest integer. It will not raise an inexact
floating-point exception if the operand is not an integer.

Arguments:

The first argument and the return value are floating-point numbers of the same
type.

The second and third arguments specify the rounding mode and exception
behavior as described above.

Semantics:

This function returns the same values as the libm nearbyint functions
would, and handles error conditions in the same way. The rounding mode is
described, not determined, by the rounding mode argument. The actual rounding
mode is determined by the runtime floating-point environment. The rounding
mode argument is only intended as information to the compiler.

General Intrinsics

This class of intrinsics is designed to be generic and has no specific
purpose.

‘llvm.var.annotation’ Intrinsic

Syntax:

declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)

Overview:

The ‘llvm.var.annotation’ intrinsic.

Arguments:

The first argument is a pointer to a value, the second is a pointer to a
global string, the third is a pointer to a global string which is the
source file name, and the last argument is the line number.

Semantics:

This intrinsic allows annotation of local variables with arbitrary
strings. This can be useful for special purpose optimizations that want
to look for these annotations. These have no other defined use; they are
ignored by code generation and optimization.

‘llvm.ptr.annotation.*’ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use ‘llvm.ptr.annotation’ on a
pointer to an integer of any width. NOTE you must specify an address space for
the pointer. The identifier for the default address space is the integer
‘0’.

declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)

Overview:

The ‘llvm.ptr.annotation’ intrinsic.

Arguments:

The first argument is a pointer to an integer value of arbitrary bitwidth
(result of some expression), the second is a pointer to a global string, the
third is a pointer to a global string which is the source file name, and the
last argument is the line number. It returns the value of the first argument.

Semantics:

This intrinsic allows annotation of a pointer to an integer with arbitrary
strings. This can be useful for special purpose optimizations that want to look
for these annotations. These have no other defined use; they are ignored by code
generation and optimization.

‘llvm.annotation.*’ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use ‘llvm.annotation’ on
any integer bit width.

declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)

Overview:

The ‘llvm.annotation’ intrinsic.

Arguments:

The first argument is an integer value (result of some expression), the
second is a pointer to a global string, the third is a pointer to a
global string which is the source file name, and the last argument is
the line number. It returns the value of the first argument.

Semantics:

This intrinsic allows annotations to be put on arbitrary expressions
with arbitrary strings. This can be useful for special purpose
optimizations that want to look for these annotations. These have no
other defined use; they are ignored by code generation and optimization.

‘llvm.codeview.annotation’ Intrinsic

Syntax:

This annotation emits a label at its program point and an associated
S_ANNOTATION codeview record with some additional string metadata. This is
used to implement MSVC’s __annotation intrinsic. It is marked
noduplicate, so calls to this intrinsic prevent inlining and should be
considered expensive.

declare void @llvm.codeview.annotation(metadata)

Arguments:

The argument should be an MDTuple containing any number of MDStrings.

‘llvm.trap’ Intrinsic

Syntax:

declare void @llvm.trap() noreturn nounwind

Overview:

The ‘llvm.trap’ intrinsic.

Arguments:

None.

Semantics:

This intrinsic is lowered to the target dependent trap instruction. If
the target does not have a trap instruction, this intrinsic will be
lowered to a call of the abort() function.

‘llvm.debugtrap’ Intrinsic

Syntax:

declare void @llvm.debugtrap() nounwind

Overview:

The ‘llvm.debugtrap’ intrinsic.

Arguments:

None.

Semantics:

This intrinsic is lowered to code which is intended to cause an
execution trap with the intention of requesting the attention of a
debugger.

‘llvm.stackprotector’ Intrinsic

Syntax:

declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)

Overview:

The llvm.stackprotector intrinsic takes the guard and stores it
onto the stack at slot. The stack slot is adjusted to ensure that it
is placed on the stack before local variables.

Arguments:

The llvm.stackprotector intrinsic requires two pointer arguments.
The first argument is the value loaded from the stack guard
@__stack_chk_guard. The second variable is an alloca that has
enough space to hold the value of the guard.

Semantics:

This intrinsic causes the prologue/epilogue inserter to force the position of
the AllocaInst stack slot to be before local variables on the stack. This is
to ensure that if a local variable on the stack is overwritten, it will destroy
the value of the guard. When the function exits, the guard on the stack is
checked against the original guard by llvm.stackprotectorcheck. If they are
different, then llvm.stackprotectorcheck causes the program to abort by
calling the __stack_chk_fail() function.

‘llvm.stackguard’ Intrinsic

Syntax:

declare i8* @llvm.stackguard()

Overview:

The llvm.stackguard intrinsic returns the system stack guard value.

It should not be generated by frontends, since it is only for internal usage.
The reason why we create this intrinsic is that we still support IR form Stack
Protector in FastISel.

Arguments:

None.

Semantics:

On some platforms, the value returned by this intrinsic remains unchanged
between loads in the same thread. On other platforms, it returns the same
global variable value, if any, e.g. @__stack_chk_guard.

Currently some platforms have IR-level customized stack guard loading (e.g.
X86 Linux) that is not handled by llvm.stackguard(), while they should be
in the future.

‘llvm.objectsize’ Intrinsic

Syntax:

declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>, i1 <nullunknown>)
declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>, i1 <nullunknown>)

Overview:

The llvm.objectsize intrinsic is designed to provide information to
the optimizers to determine at compile time whether a) an operation
(like memcpy) will overflow a buffer that corresponds to an object, or
b) that a runtime check for overflow isn’t necessary. An object in this
context means an allocation of a specific class, structure, array, or
other object.

Arguments:

The llvm.objectsize intrinsic takes three arguments. The first argument is
a pointer to or into the object. The second argument determines whether
llvm.objectsize returns 0 (if true) or -1 (if false) when the object size
is unknown. The third argument controls how llvm.objectsize acts when
null in address space 0 is used as its pointer argument. If it’s false,
llvm.objectsize reports 0 bytes available when given null. Otherwise, if
the null is in a non-zero address space or if true is given for the
third argument of llvm.objectsize, we assume its size is unknown.

The second and third arguments only accept constants.

Semantics:

The llvm.objectsize intrinsic is lowered to a constant representing
the size of the object concerned. If the size cannot be determined at
compile time, llvm.objectsize returns i32/i64 -1 or 0 (depending
on the min argument).

‘llvm.expect’ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.expect on any
integer bit width.

declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)

Overview:

The llvm.expect intrinsic provides information about expected (the
most probable) value of val, which can be used by optimizers.

Arguments:

The llvm.expect intrinsic takes two arguments. The first argument is
a value. The second argument is an expected value, this needs to be a
constant value, variables are not allowed.

Semantics:

This intrinsic is lowered to the val.

‘llvm.assume’ Intrinsic

Syntax:

declare void @llvm.assume(i1 %cond)

Overview:

The llvm.assume allows the optimizer to assume that the provided
condition is true. This information can then be used in simplifying other parts
of the code.

Arguments:

The condition which the optimizer may assume is always true.

Semantics:

The intrinsic allows the optimizer to assume that the provided condition is
always true whenever the control flow reaches the intrinsic call. No code is
generated for this intrinsic, and instructions that contribute only to the
provided condition are not used for code generation. If the condition is
violated during execution, the behavior is undefined.

Note that the optimizer might limit the transformations performed on values
used by the llvm.assume intrinsic in order to preserve the instructions
only used to form the intrinsic’s input argument. This might prove undesirable
if the extra information provided by the llvm.assume intrinsic does not cause
sufficient overall improvement in code quality. For this reason,
llvm.assume should not be used to document basic mathematical invariants
that the optimizer can otherwise deduce or facts that are of little use to the
optimizer.

‘llvm.ssa_copy’ Intrinsic

Syntax:

declare type @llvm.ssa_copy(type %operand) returned(1) readnone

Arguments:

The first argument is an operand which is used as the returned value.

Overview:

The llvm.ssa_copy intrinsic can be used to attach information to
operations by copying them and giving them new names. For example,
the PredicateInfo utility uses it to build Extended SSA form, and
attach various forms of information to operands that dominate specific
uses. It is not meant for general use, only for building temporary
renaming forms that require value splits at certain points.

‘llvm.type.test’ Intrinsic

Syntax:

declare i1 @llvm.type.test(i8* %ptr, metadata %type) nounwind readnone

Arguments:

The first argument is a pointer to be tested. The second argument is a
metadata object representing a type identifier.

Overview:

The llvm.type.test intrinsic tests whether the given pointer is associated
with the given type identifier.

‘llvm.type.checked.load’ Intrinsic

Syntax:

declare {i8*, i1} @llvm.type.checked.load(i8* %ptr, i32 %offset, metadata %type) argmemonly nounwind readonly

Arguments:

The first argument is a pointer from which to load a function pointer. The
second argument is the byte offset from which to load the function pointer. The
third argument is a metadata object representing a type identifier.

Overview:

The llvm.type.checked.load intrinsic safely loads a function pointer from a
virtual table pointer using type metadata. This intrinsic is used to implement
control flow integrity in conjunction with virtual call optimization. The
virtual call optimization pass will optimize away llvm.type.checked.load
intrinsics associated with devirtualized calls, thereby removing the type
check in cases where it is not needed to enforce the control flow integrity
constraint.

If the given pointer is associated with a type metadata identifier, this
function returns true as the second element of its return value. (Note that
the function may also return true if the given pointer is not associated
with a type metadata identifier.) If the function’s return value’s second
element is true, the following rules apply to the first element:

	If the given pointer is associated with the given type metadata identifier,
it is the function pointer loaded from the given byte offset from the given
pointer.

	If the given pointer is not associated with the given type metadata
identifier, it is one of the following (the choice of which is unspecified):

	The function pointer that would have been loaded from an arbitrarily chosen
(through an unspecified mechanism) pointer associated with the type
metadata.

	If the function has a non-void return type, a pointer to a function that
returns an unspecified value without causing side effects.

If the function’s return value’s second element is false, the value of the
first element is undefined.

‘llvm.donothing’ Intrinsic

Syntax:

declare void @llvm.donothing() nounwind readnone

Overview:

The llvm.donothing intrinsic doesn’t perform any operation. It’s one of only
three intrinsics (besides llvm.experimental.patchpoint and
llvm.experimental.gc.statepoint) that can be called with an invoke
instruction.

Arguments:

None.

Semantics:

This intrinsic does nothing, and it’s removed by optimizers and ignored
by codegen.

‘llvm.experimental.deoptimize’ Intrinsic

Syntax:

declare type @llvm.experimental.deoptimize(...) ["deopt"(...)]

Overview:

This intrinsic, together with deoptimization operand bundles, allow frontends to express transfer of control and
frame-local state from the currently executing (typically more specialized,
hence faster) version of a function into another (typically more generic, hence
slower) version.

In languages with a fully integrated managed runtime like Java and JavaScript
this intrinsic can be used to implement “uncommon trap” or “side exit” like
functionality. In unmanaged languages like C and C++, this intrinsic can be
used to represent the slow paths of specialized functions.

Arguments:

The intrinsic takes an arbitrary number of arguments, whose meaning is
decided by the lowering strategy.

Semantics:

The @llvm.experimental.deoptimize intrinsic executes an attached
deoptimization continuation (denoted using a deoptimization
operand bundle) and returns the value returned by
the deoptimization continuation. Defining the semantic properties of
the continuation itself is out of scope of the language reference –
as far as LLVM is concerned, the deoptimization continuation can
invoke arbitrary side effects, including reading from and writing to
the entire heap.

Deoptimization continuations expressed using "deopt" operand bundles always
continue execution to the end of the physical frame containing them, so all
calls to @llvm.experimental.deoptimize must be in “tail position”:

	@llvm.experimental.deoptimize cannot be invoked.

	The call must immediately precede a ret instruction.

	The ret instruction must return the value produced by the
@llvm.experimental.deoptimize call if there is one, or void.

Note that the above restrictions imply that the return type for a call to
@llvm.experimental.deoptimize will match the return type of its immediate
caller.

The inliner composes the "deopt" continuations of the caller into the
"deopt" continuations present in the inlinee, and also updates calls to this
intrinsic to return directly from the frame of the function it inlined into.

All declarations of @llvm.experimental.deoptimize must share the
same calling convention.

Lowering:

Calls to @llvm.experimental.deoptimize are lowered to calls to the
symbol __llvm_deoptimize (it is the frontend’s responsibility to
ensure that this symbol is defined). The call arguments to
@llvm.experimental.deoptimize are lowered as if they were formal
arguments of the specified types, and not as varargs.

‘llvm.experimental.guard’ Intrinsic

Syntax:

declare void @llvm.experimental.guard(i1, ...) ["deopt"(...)]

Overview:

This intrinsic, together with deoptimization operand bundles, allows frontends to express guards or checks on
optimistic assumptions made during compilation. The semantics of
@llvm.experimental.guard is defined in terms of
@llvm.experimental.deoptimize – its body is defined to be
equivalent to:

define void @llvm.experimental.guard(i1 %pred, <args...>) {
 %realPred = and i1 %pred, undef
 br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]

leave:
 call void @llvm.experimental.deoptimize(<args...>) ["deopt"()]
 ret void

continue:
 ret void
}

with the optional [, !make.implicit !{}] present if and only if it
is present on the call site. For more details on !make.implicit,
see FaultMaps and implicit checks.

In words, @llvm.experimental.guard executes the attached
"deopt" continuation if (but not only if) its first argument
is false. Since the optimizer is allowed to replace the undef
with an arbitrary value, it can optimize guard to fail “spuriously”,
i.e. without the original condition being false (hence the “not only
if”); and this allows for “check widening” type optimizations.

@llvm.experimental.guard cannot be invoked.

‘llvm.load.relative’ Intrinsic

Syntax:

declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly

Overview:

This intrinsic loads a 32-bit value from the address %ptr + %offset,
adds %ptr to that value and returns it. The constant folder specifically
recognizes the form of this intrinsic and the constant initializers it may
load from; if a loaded constant initializer is known to have the form
i32 trunc(x - %ptr), the intrinsic call is folded to x.

LLVM provides that the calculation of such a constant initializer will
not overflow at link time under the medium code model if x is an
unnamed_addr function. However, it does not provide this guarantee for
a constant initializer folded into a function body. This intrinsic can be
used to avoid the possibility of overflows when loading from such a constant.

‘llvm.sideeffect’ Intrinsic

Syntax:

declare void @llvm.sideeffect() inaccessiblememonly nounwind

Overview:

The llvm.sideeffect intrinsic doesn’t perform any operation. Optimizers
treat it as having side effects, so it can be inserted into a loop to
indicate that the loop shouldn’t be assumed to terminate (which could
potentially lead to the loop being optimized away entirely), even if it’s
an infinite loop with no other side effects.

Arguments:

None.

Semantics:

This intrinsic actually does nothing, but optimizers must assume that it
has externally observable side effects.

Stack Map Intrinsics

LLVM provides experimental intrinsics to support runtime patching
mechanisms commonly desired in dynamic language JITs. These intrinsics
are described in Stack maps and patch points in LLVM.

Element Wise Atomic Memory Intrinsics

These intrinsics are similar to the standard library memory intrinsics except
that they perform memory transfer as a sequence of atomic memory accesses.

‘llvm.memcpy.element.unordered.atomic’ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.memcpy.element.unordered.atomic on
any integer bit width and for different address spaces. Not all targets
support all bit widths however.

declare void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i32(i8* <dest>,
 i8* <src>,
 i32 <len>,
 i32 <element_size>)
declare void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i64(i8* <dest>,
 i8* <src>,
 i64 <len>,
 i32 <element_size>)

Overview:

The ‘llvm.memcpy.element.unordered.atomic.*’ intrinsic is a specialization of the
‘llvm.memcpy.*’ intrinsic. It differs in that the dest and src are treated
as arrays with elements that are exactly element_size bytes, and the copy between
buffers uses a sequence of unordered atomic load/store operations
that are a positive integer multiple of the element_size in size.

Arguments:

The first three arguments are the same as they are in the @llvm.memcpy
intrinsic, with the added constraint that len is required to be a positive integer
multiple of the element_size. If len is not a positive integer multiple of
element_size, then the behaviour of the intrinsic is undefined.

element_size must be a compile-time constant positive power of two no greater than
target-specific atomic access size limit.

For each of the input pointers align parameter attribute must be specified. It
must be a power of two no less than the element_size. Caller guarantees that
both the source and destination pointers are aligned to that boundary.

Semantics:

The ‘llvm.memcpy.element.unordered.atomic.*’ intrinsic copies len bytes of
memory from the source location to the destination location. These locations are not
allowed to overlap. The memory copy is performed as a sequence of load/store operations
where each access is guaranteed to be a multiple of element_size bytes wide and
aligned at an element_size boundary.

The order of the copy is unspecified. The same value may be read from the source
buffer many times, but only one write is issued to the destination buffer per
element. It is well defined to have concurrent reads and writes to both source and
destination provided those reads and writes are unordered atomic when specified.

This intrinsic does not provide any additional ordering guarantees over those
provided by a set of unordered loads from the source location and stores to the
destination.

Lowering:

In the most general case call to the ‘llvm.memcpy.element.unordered.atomic.*’ is
lowered to a call to the symbol __llvm_memcpy_element_unordered_atomic_*. Where ‘*’
is replaced with an actual element size.

Optimizer is allowed to inline memory copy when it’s profitable to do so.

‘llvm.memmove.element.unordered.atomic’ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use
llvm.memmove.element.unordered.atomic on any integer bit width and for
different address spaces. Not all targets support all bit widths however.

declare void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i32(i8* <dest>,
 i8* <src>,
 i32 <len>,
 i32 <element_size>)
declare void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i64(i8* <dest>,
 i8* <src>,
 i64 <len>,
 i32 <element_size>)

Overview:

The ‘llvm.memmove.element.unordered.atomic.*’ intrinsic is a specialization
of the ‘llvm.memmove.*’ intrinsic. It differs in that the dest and
src are treated as arrays with elements that are exactly element_size
bytes, and the copy between buffers uses a sequence of
unordered atomic load/store operations that are a positive
integer multiple of the element_size in size.

Arguments:

The first three arguments are the same as they are in the
@llvm.memmove intrinsic, with the added constraint that
len is required to be a positive integer multiple of the element_size.
If len is not a positive integer multiple of element_size, then the
behaviour of the intrinsic is undefined.

element_size must be a compile-time constant positive power of two no
greater than a target-specific atomic access size limit.

For each of the input pointers the align parameter attribute must be
specified. It must be a power of two no less than the element_size. Caller
guarantees that both the source and destination pointers are aligned to that
boundary.

Semantics:

The ‘llvm.memmove.element.unordered.atomic.*’ intrinsic copies len bytes
of memory from the source location to the destination location. These locations
are allowed to overlap. The memory copy is performed as a sequence of load/store
operations where each access is guaranteed to be a multiple of element_size
bytes wide and aligned at an element_size boundary.

The order of the copy is unspecified. The same value may be read from the source
buffer many times, but only one write is issued to the destination buffer per
element. It is well defined to have concurrent reads and writes to both source
and destination provided those reads and writes are unordered atomic when
specified.

This intrinsic does not provide any additional ordering guarantees over those
provided by a set of unordered loads from the source location and stores to the
destination.

Lowering:

In the most general case call to the
‘llvm.memmove.element.unordered.atomic.*’ is lowered to a call to the symbol
__llvm_memmove_element_unordered_atomic_*. Where ‘*’ is replaced with an
actual element size.

The optimizer is allowed to inline the memory copy when it’s profitable to do so.

‘llvm.memset.element.unordered.atomic’ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.memset.element.unordered.atomic on
any integer bit width and for different address spaces. Not all targets
support all bit widths however.

declare void @llvm.memset.element.unordered.atomic.p0i8.i32(i8* <dest>,
 i8 <value>,
 i32 <len>,
 i32 <element_size>)
declare void @llvm.memset.element.unordered.atomic.p0i8.i64(i8* <dest>,
 i8 <value>,
 i64 <len>,
 i32 <element_size>)

Overview:

The ‘llvm.memset.element.unordered.atomic.*’ intrinsic is a specialization of the
‘llvm.memset.*’ intrinsic. It differs in that the dest is treated as an array
with elements that are exactly element_size bytes, and the assignment to that array
uses uses a sequence of unordered atomic store operations
that are a positive integer multiple of the element_size in size.

Arguments:

The first three arguments are the same as they are in the @llvm.memset
intrinsic, with the added constraint that len is required to be a positive integer
multiple of the element_size. If len is not a positive integer multiple of
element_size, then the behaviour of the intrinsic is undefined.

element_size must be a compile-time constant positive power of two no greater than
target-specific atomic access size limit.

The dest input pointer must have the align parameter attribute specified. It
must be a power of two no less than the element_size. Caller guarantees that
the destination pointer is aligned to that boundary.

Semantics:

The ‘llvm.memset.element.unordered.atomic.*’ intrinsic sets the len bytes of
memory starting at the destination location to the given value. The memory is
set with a sequence of store operations where each access is guaranteed to be a
multiple of element_size bytes wide and aligned at an element_size boundary.

The order of the assignment is unspecified. Only one write is issued to the
destination buffer per element. It is well defined to have concurrent reads and
writes to the destination provided those reads and writes are unordered atomic
when specified.

This intrinsic does not provide any additional ordering guarantees over those
provided by a set of unordered stores to the destination.

Lowering:

In the most general case call to the ‘llvm.memset.element.unordered.atomic.*’ is
lowered to a call to the symbol __llvm_memset_element_unordered_atomic_*. Where ‘*’
is replaced with an actual element size.

The optimizer is allowed to inline the memory assignment when it’s profitable to do so.

Building LLVM with CMake

	Introduction

	Quick start

	Basic CMake usage

	Options and variables

	Frequently-used CMake variables

	LLVM-specific variables

	CMake Caches

	Executing the test suite

	Cross compiling

	Embedding LLVM in your project

	Developing LLVM passes out of source

	Compiler/Platform-specific topics

	Microsoft Visual C++

Introduction

CMake [http://www.cmake.org/] is a cross-platform build-generator tool. CMake
does not build the project, it generates the files needed by your build tool
(GNU make, Visual Studio, etc.) for building LLVM.

If you are a new contributor, please start with the Getting Started with the LLVM System
page. This page is geared for existing contributors moving from the
legacy configure/make system.

If you are really anxious about getting a functional LLVM build, go to the
Quick start section. If you are a CMake novice, start with Basic CMake usage
and then go back to the Quick start section once you know what you are doing. The
Options and variables section is a reference for customizing your build. If
you already have experience with CMake, this is the recommended starting point.

This page is geared towards users of the LLVM CMake build. If you’re looking for
information about modifying the LLVM CMake build system you may want to see the
CMake Primer page. It has a basic overview of the CMake language.

Quick start

We use here the command-line, non-interactive CMake interface.

	Download [http://www.cmake.org/cmake/resources/software.html] and install
CMake. Version 3.4.3 is the minimum required.

	Open a shell. Your development tools must be reachable from this shell
through the PATH environment variable.

	Create a build directory. Building LLVM in the source
directory is not supported. cd to this directory:

$ mkdir mybuilddir
$ cd mybuilddir

	Execute this command in the shell replacing path/to/llvm/source/root with
the path to the root of your LLVM source tree:

$ cmake path/to/llvm/source/root

CMake will detect your development environment, perform a series of tests, and
generate the files required for building LLVM. CMake will use default values
for all build parameters. See the Options and variables section for
a list of build parameters that you can modify.

This can fail if CMake can’t detect your toolset, or if it thinks that the
environment is not sane enough. In this case, make sure that the toolset that
you intend to use is the only one reachable from the shell, and that the shell
itself is the correct one for your development environment. CMake will refuse
to build MinGW makefiles if you have a POSIX shell reachable through the PATH
environment variable, for instance. You can force CMake to use a given build
tool; for instructions, see the Usage section, below.

	After CMake has finished running, proceed to use IDE project files, or start
the build from the build directory:

$ cmake --build .

The --build option tells cmake to invoke the underlying build
tool (make, ninja, xcodebuild, msbuild, etc.)

The underlying build tool can be invoked directly, of course, but
the --build option is portable.

	After LLVM has finished building, install it from the build directory:

$ cmake --build . --target install

The --target option with install parameter in addition to
the --build option tells cmake to build the install target.

It is possible to set a different install prefix at installation time
by invoking the cmake_install.cmake script generated in the
build directory:

$ cmake -DCMAKE_INSTALL_PREFIX=/tmp/llvm -P cmake_install.cmake

Basic CMake usage

This section explains basic aspects of CMake
which you may need in your day-to-day usage.

CMake comes with extensive documentation, in the form of html files, and as
online help accessible via the cmake executable itself. Execute cmake
--help for further help options.

CMake allows you to specify a build tool (e.g., GNU make, Visual Studio,
or Xcode). If not specified on the command line, CMake tries to guess which
build tool to use, based on your environment. Once it has identified your
build tool, CMake uses the corresponding Generator to create files for your
build tool (e.g., Makefiles or Visual Studio or Xcode project files). You can
explicitly specify the generator with the command line option -G "Name of the
generator". To see a list of the available generators on your system, execute

$ cmake --help

This will list the generator names at the end of the help text.

Generators’ names are case-sensitive, and may contain spaces. For this reason,
you should enter them exactly as they are listed in the cmake --help
output, in quotes. For example, to generate project files specifically for
Visual Studio 12, you can execute:

$ cmake -G "Visual Studio 12" path/to/llvm/source/root

For a given development platform there can be more than one adequate
generator. If you use Visual Studio, “NMake Makefiles” is a generator you can use
for building with NMake. By default, CMake chooses the most specific generator
supported by your development environment. If you want an alternative generator,
you must tell this to CMake with the -G option.

Options and variables

Variables customize how the build will be generated. Options are boolean
variables, with possible values ON/OFF. Options and variables are defined on the
CMake command line like this:

$ cmake -DVARIABLE=value path/to/llvm/source

You can set a variable after the initial CMake invocation to change its
value. You can also undefine a variable:

$ cmake -UVARIABLE path/to/llvm/source

Variables are stored in the CMake cache. This is a file named CMakeCache.txt
stored at the root of your build directory that is generated by cmake.
Editing it yourself is not recommended.

Variables are listed in the CMake cache and later in this document with
the variable name and type separated by a colon. You can also specify the
variable and type on the CMake command line:

$ cmake -DVARIABLE:TYPE=value path/to/llvm/source

Frequently-used CMake variables

Here are some of the CMake variables that are used often, along with a
brief explanation and LLVM-specific notes. For full documentation, consult the
CMake manual, or execute cmake --help-variable VARIABLE_NAME.

	CMAKE_BUILD_TYPE:STRING

	Sets the build type for make-based generators. Possible values are
Release, Debug, RelWithDebInfo and MinSizeRel. If you are using an IDE such as
Visual Studio, you should use the IDE settings to set the build type.
Be aware that Release and RelWithDebInfo use different optimization levels on
most platforms.

	CMAKE_INSTALL_PREFIX:PATH

	Path where LLVM will be installed if “make install” is invoked or the
“install” target is built.

	LLVM_LIBDIR_SUFFIX:STRING

	Extra suffix to append to the directory where libraries are to be
installed. On a 64-bit architecture, one could use -DLLVM_LIBDIR_SUFFIX=64
to install libraries to /usr/lib64.

	CMAKE_C_FLAGS:STRING

	Extra flags to use when compiling C source files.

	CMAKE_CXX_FLAGS:STRING

	Extra flags to use when compiling C++ source files.

LLVM-specific variables

	LLVM_TARGETS_TO_BUILD:STRING

	Semicolon-separated list of targets to build, or all for building all
targets. Case-sensitive. Defaults to all. Example:
-DLLVM_TARGETS_TO_BUILD="X86;PowerPC".

	LLVM_BUILD_TOOLS:BOOL

	Build LLVM tools. Defaults to ON. Targets for building each tool are generated
in any case. You can build a tool separately by invoking its target. For
example, you can build llvm-as with a Makefile-based system by executing make
llvm-as at the root of your build directory.

	LLVM_INCLUDE_TOOLS:BOOL

	Generate build targets for the LLVM tools. Defaults to ON. You can use this
option to disable the generation of build targets for the LLVM tools.

	LLVM_INSTALL_BINUTILS_SYMLINKS:BOOL

	Install symlinks from the binutils tool names to the corresponding LLVM tools.
For example, ar will be symlinked to llvm-ar.

	LLVM_BUILD_EXAMPLES:BOOL

	Build LLVM examples. Defaults to OFF. Targets for building each example are
generated in any case. See documentation for LLVM_BUILD_TOOLS above for more
details.

	LLVM_INCLUDE_EXAMPLES:BOOL

	Generate build targets for the LLVM examples. Defaults to ON. You can use this
option to disable the generation of build targets for the LLVM examples.

	LLVM_BUILD_TESTS:BOOL

	Build LLVM unit tests. Defaults to OFF. Targets for building each unit test
are generated in any case. You can build a specific unit test using the
targets defined under unittests, such as ADTTests, IRTests, SupportTests,
etc. (Search for add_llvm_unittest in the subdirectories of unittests
for a complete list of unit tests.) It is possible to build all unit tests
with the target UnitTests.

	LLVM_INCLUDE_TESTS:BOOL

	Generate build targets for the LLVM unit tests. Defaults to ON. You can use
this option to disable the generation of build targets for the LLVM unit
tests.

	LLVM_APPEND_VC_REV:BOOL

	Embed version control revision info (svn revision number or Git revision id).
The version info is provided by the LLVM_REVISION macro in
llvm/include/llvm/Support/VCSRevision.h. Developers using git who don’t
need revision info can disable this option to avoid re-linking most binaries
after a branch switch. Defaults to ON.

	LLVM_ENABLE_THREADS:BOOL

	Build with threads support, if available. Defaults to ON.

	LLVM_ENABLE_CXX1Y:BOOL

	Build in C++1y mode, if available. Defaults to OFF.

	LLVM_ENABLE_ASSERTIONS:BOOL

	Enables code assertions. Defaults to ON if and only if CMAKE_BUILD_TYPE
is Debug.

	LLVM_ENABLE_EH:BOOL

	Build LLVM with exception-handling support. This is necessary if you wish to
link against LLVM libraries and make use of C++ exceptions in your own code
that need to propagate through LLVM code. Defaults to OFF.

	LLVM_ENABLE_EXPENSIVE_CHECKS:BOOL

	Enable additional time/memory expensive checking. Defaults to OFF.

	LLVM_ENABLE_PIC:BOOL

	Add the -fPIC flag to the compiler command-line, if the compiler supports
this flag. Some systems, like Windows, do not need this flag. Defaults to ON.

	LLVM_ENABLE_RTTI:BOOL

	Build LLVM with run-time type information. Defaults to OFF.

	LLVM_ENABLE_WARNINGS:BOOL

	Enable all compiler warnings. Defaults to ON.

	LLVM_ENABLE_PEDANTIC:BOOL

	Enable pedantic mode. This disables compiler-specific extensions, if
possible. Defaults to ON.

	LLVM_ENABLE_WERROR:BOOL

	Stop and fail the build, if a compiler warning is triggered. Defaults to OFF.

	LLVM_ABI_BREAKING_CHECKS:STRING

	Used to decide if LLVM should be built with ABI breaking checks or
not. Allowed values are WITH_ASSERTS (default), FORCE_ON and
FORCE_OFF. WITH_ASSERTS turns on ABI breaking checks in an
assertion enabled build. FORCE_ON (FORCE_OFF) turns them on
(off) irrespective of whether normal (NDEBUG-based) assertions are
enabled or not. A version of LLVM built with ABI breaking checks
is not ABI compatible with a version built without it.

	LLVM_BUILD_32_BITS:BOOL

	Build 32-bit executables and libraries on 64-bit systems. This option is
available only on some 64-bit Unix systems. Defaults to OFF.

	LLVM_TARGET_ARCH:STRING

	LLVM target to use for native code generation. This is required for JIT
generation. It defaults to “host”, meaning that it shall pick the architecture
of the machine where LLVM is being built. If you are cross-compiling, set it
to the target architecture name.

	LLVM_TABLEGEN:STRING

	Full path to a native TableGen executable (usually named llvm-tblgen). This is
intended for cross-compiling: if the user sets this variable, no native
TableGen will be created.

	LLVM_LIT_ARGS:STRING

	Arguments given to lit. make check and make clang-test are affected.
By default, '-sv --no-progress-bar' on Visual C++ and Xcode, '-sv' on
others.

	LLVM_LIT_TOOLS_DIR:PATH

	The path to GnuWin32 tools for tests. Valid on Windows host. Defaults to
the empty string, in which case lit will look for tools needed for tests
(e.g. grep, sort, etc.) in your %PATH%. If GnuWin32 is not in your
%PATH%, then you can set this variable to the GnuWin32 directory so that
lit can find tools needed for tests in that directory.

	LLVM_ENABLE_FFI:BOOL

	Indicates whether the LLVM Interpreter will be linked with the Foreign Function
Interface library (libffi) in order to enable calling external functions.
If the library or its headers are installed in a custom
location, you can also set the variables FFI_INCLUDE_DIR and
FFI_LIBRARY_DIR to the directories where ffi.h and libffi.so can be found,
respectively. Defaults to OFF.

	LLVM_EXTERNAL_{CLANG,LLD,POLLY}_SOURCE_DIR:PATH

	These variables specify the path to the source directory for the external
LLVM projects Clang, lld, and Polly, respectively, relative to the top-level
source directory. If the in-tree subdirectory for an external project
exists (e.g., llvm/tools/clang for Clang), then the corresponding variable
will not be used. If the variable for an external project does not point
to a valid path, then that project will not be built.

	LLVM_ENABLE_PROJECTS:STRING

	Semicolon-separated list of projects to build, or all for building all
(clang, libcxx, libcxxabi, lldb, compiler-rt, lld, polly) projects.
This flag assumes that projects are checked out side-by-side and not nested,
i.e. clang needs to be in parallel of llvm instead of nested in llvm/tools.
This feature allows to have one build for only LLVM and another for clang+llvm
using the same source checkout.

	LLVM_EXTERNAL_PROJECTS:STRING

	Semicolon-separated list of additional external projects to build as part of
llvm. For each project LLVM_EXTERNAL_<NAME>_SOURCE_DIR have to be specified
with the path for the source code of the project. Example:
-DLLVM_EXTERNAL_PROJECTS="Foo;Bar"
-DLLVM_EXTERNAL_FOO_SOURCE_DIR=/src/foo
-DLLVM_EXTERNAL_BAR_SOURCE_DIR=/src/bar.

	LLVM_USE_OPROFILE:BOOL

	Enable building OProfile JIT support. Defaults to OFF.

	LLVM_PROFDATA_FILE:PATH

	Path to a profdata file to pass into clang’s -fprofile-instr-use flag. This
can only be specified if you’re building with clang.

	LLVM_USE_INTEL_JITEVENTS:BOOL

	Enable building support for Intel JIT Events API. Defaults to OFF.

	LLVM_ENABLE_LIBPFM:BOOL

	Enable building with libpfm to support hardware counter measurements in LLVM
tools.
Defaults to ON.

LLVM_USE_PERF:BOOL
Enable building support for Perf (linux profiling tool) JIT support. Defaults to OFF.

	LLVM_ENABLE_ZLIB:BOOL

	Enable building with zlib to support compression/uncompression in LLVM tools.
Defaults to ON.

	LLVM_ENABLE_DIA_SDK:BOOL

	Enable building with MSVC DIA SDK for PDB debugging support. Available
only with MSVC. Defaults to ON.

	LLVM_USE_SANITIZER:STRING

	Define the sanitizer used to build LLVM binaries and tests. Possible values
are Address, Memory, MemoryWithOrigins, Undefined, Thread,
and Address;Undefined. Defaults to empty string.

	LLVM_ENABLE_LTO:STRING

	Add -flto or -flto= flags to the compile and link command
lines, enabling link-time optimization. Possible values are Off,
On, Thin and Full. Defaults to OFF.

	LLVM_USE_LINKER:STRING

	Add -fuse-ld={name} to the link invocation. The possible value depend on
your compiler, for clang the value can be an absolute path to your custom
linker, otherwise clang will prefix the name with ld. and apply its usual
search. For example to link LLVM with the Gold linker, cmake can be invoked
with -DLLVM_USE_LINKER=gold.

	LLVM_ENABLE_LLD:BOOL

	This option is equivalent to -DLLVM_USE_LINKER=lld, except during a 2-stage
build where a dependency is added from the first stage to the second ensuring
that lld is built before stage2 begins.

	LLVM_PARALLEL_COMPILE_JOBS:STRING

	Define the maximum number of concurrent compilation jobs.

	LLVM_PARALLEL_LINK_JOBS:STRING

	Define the maximum number of concurrent link jobs.

	LLVM_BUILD_DOCS:BOOL

	Adds all enabled documentation targets (i.e. Doxgyen and Sphinx targets) as
dependencies of the default build targets. This results in all of the (enabled)
documentation targets being as part of a normal build. If the install
target is run then this also enables all built documentation targets to be
installed. Defaults to OFF. To enable a particular documentation target, see
see LLVM_ENABLE_SPHINX and LLVM_ENABLE_DOXYGEN.

	LLVM_ENABLE_DOXYGEN:BOOL

	Enables the generation of browsable HTML documentation using doxygen.
Defaults to OFF.

	LLVM_ENABLE_DOXYGEN_QT_HELP:BOOL

	Enables the generation of a Qt Compressed Help file. Defaults to OFF.
This affects the make target doxygen-llvm. When enabled, apart from
the normal HTML output generated by doxygen, this will produce a QCH file
named org.llvm.qch. You can then load this file into Qt Creator.
This option is only useful in combination with -DLLVM_ENABLE_DOXYGEN=ON;
otherwise this has no effect.

	LLVM_DOXYGEN_QCH_FILENAME:STRING

	The filename of the Qt Compressed Help file that will be generated when
-DLLVM_ENABLE_DOXYGEN=ON and
-DLLVM_ENABLE_DOXYGEN_QT_HELP=ON are given. Defaults to
org.llvm.qch.
This option is only useful in combination with
-DLLVM_ENABLE_DOXYGEN_QT_HELP=ON;
otherwise it has no effect.

	LLVM_DOXYGEN_QHP_NAMESPACE:STRING

	Namespace under which the intermediate Qt Help Project file lives. See Qt
Help Project [http://qt-project.org/doc/qt-4.8/qthelpproject.html#custom-filters]
for more information. Defaults to “org.llvm”. This option is only useful in
combination with -DLLVM_ENABLE_DOXYGEN_QT_HELP=ON; otherwise
it has no effect.

	LLVM_DOXYGEN_QHP_CUST_FILTER_NAME:STRING

	See Qt Help Project [http://qt-project.org/doc/qt-4.8/qthelpproject.html#custom-filters] for
more information. Defaults to the CMake variable ${PACKAGE_STRING} which
is a combination of the package name and version string. This filter can then
be used in Qt Creator to select only documentation from LLVM when browsing
through all the help files that you might have loaded. This option is only
useful in combination with -DLLVM_ENABLE_DOXYGEN_QT_HELP=ON;
otherwise it has no effect.

	LLVM_DOXYGEN_QHELPGENERATOR_PATH:STRING

	The path to the qhelpgenerator executable. Defaults to whatever CMake’s
find_program() can find. This option is only useful in combination with
-DLLVM_ENABLE_DOXYGEN_QT_HELP=ON; otherwise it has no
effect.

	LLVM_DOXYGEN_SVG:BOOL

	Uses .svg files instead of .png files for graphs in the Doxygen output.
Defaults to OFF.

	LLVM_INSTALL_DOXYGEN_HTML_DIR:STRING

	The path to install Doxygen-generated HTML documentation to. This path can
either be absolute or relative to the CMAKE_INSTALL_PREFIX. Defaults to
share/doc/llvm/doxygen-html.

	LLVM_ENABLE_SPHINX:BOOL

	If specified, CMake will search for the sphinx-build executable and will make
the SPHINX_OUTPUT_HTML and SPHINX_OUTPUT_MAN CMake options available.
Defaults to OFF.

	SPHINX_EXECUTABLE:STRING

	The path to the sphinx-build executable detected by CMake.
For installation instructions, see
http://www.sphinx-doc.org/en/latest/install.html

	SPHINX_OUTPUT_HTML:BOOL

	If enabled (and LLVM_ENABLE_SPHINX is enabled) then the targets for
building the documentation as html are added (but not built by default unless
LLVM_BUILD_DOCS is enabled). There is a target for each project in the
source tree that uses sphinx (e.g. docs-llvm-html, docs-clang-html
and docs-lld-html). Defaults to ON.

	SPHINX_OUTPUT_MAN:BOOL

	If enabled (and LLVM_ENABLE_SPHINX is enabled) the targets for building
the man pages are added (but not built by default unless LLVM_BUILD_DOCS
is enabled). Currently the only target added is docs-llvm-man. Defaults
to ON.

	SPHINX_WARNINGS_AS_ERRORS:BOOL

	If enabled then sphinx documentation warnings will be treated as
errors. Defaults to ON.

	LLVM_INSTALL_SPHINX_HTML_DIR:STRING

	The path to install Sphinx-generated HTML documentation to. This path can
either be absolute or relative to the CMAKE_INSTALL_PREFIX. Defaults to
share/doc/llvm/html.

	LLVM_INSTALL_OCAMLDOC_HTML_DIR:STRING

	The path to install OCamldoc-generated HTML documentation to. This path can
either be absolute or relative to the CMAKE_INSTALL_PREFIX. Defaults to
share/doc/llvm/ocaml-html.

	LLVM_CREATE_XCODE_TOOLCHAIN:BOOL

	OS X Only: If enabled CMake will generate a target named
‘install-xcode-toolchain’. This target will create a directory at
$CMAKE_INSTALL_PREFIX/Toolchains containing an xctoolchain directory which can
be used to override the default system tools.

	LLVM_BUILD_LLVM_DYLIB:BOOL

	If enabled, the target for building the libLLVM shared library is added.
This library contains all of LLVM’s components in a single shared library.
Defaults to OFF. This cannot be used in conjunction with BUILD_SHARED_LIBS.
Tools will only be linked to the libLLVM shared library if LLVM_LINK_LLVM_DYLIB
is also ON.
The components in the library can be customised by setting LLVM_DYLIB_COMPONENTS
to a list of the desired components.

	LLVM_LINK_LLVM_DYLIB:BOOL

	If enabled, tools will be linked with the libLLVM shared library. Defaults
to OFF. Setting LLVM_LINK_LLVM_DYLIB to ON also sets LLVM_BUILD_LLVM_DYLIB
to ON.

	BUILD_SHARED_LIBS:BOOL

	Flag indicating if each LLVM component (e.g. Support) is built as a shared
library (ON) or as a static library (OFF). Its default value is OFF. On
Windows, shared libraries may be used when building with MinGW, including
mingw-w64, but not when building with the Microsoft toolchain.

Note

BUILD_SHARED_LIBS is only recommended for use by LLVM developers.
If you want to build LLVM as a shared library, you should use the
LLVM_BUILD_LLVM_DYLIB option.

	LLVM_OPTIMIZED_TABLEGEN:BOOL

	If enabled and building a debug or asserts build the CMake build system will
generate a Release build tree to build a fully optimized tablegen for use
during the build. Enabling this option can significantly speed up build times
especially when building LLVM in Debug configurations.

	LLVM_REVERSE_ITERATION:BOOL

	If enabled, all supported unordered llvm containers would be iterated in
reverse order. This is useful for uncovering non-determinism caused by
iteration of unordered containers.

	LLVM_BUILD_INSTRUMENTED_COVERAGE:BOOL

	If enabled, source-based code coverage [http://clang.llvm.org/docs/SourceBasedCodeCoverage.html] instrumentation
is enabled while building llvm.

	LLVM_CCACHE_BUILD:BOOL

	If enabled and the ccache program is available, then LLVM will be
built using ccache to speed up rebuilds of LLVM and its components.
Defaults to OFF. The size and location of the cache maintained
by ccache can be adjusted via the LLVM_CCACHE_MAXSIZE and LLVM_CCACHE_DIR
options, which are passed to the CCACHE_MAXSIZE and CCACHE_DIR environment
variables, respectively.

CMake Caches

Recently LLVM and Clang have been adding some more complicated build system
features. Utilizing these new features often involves a complicated chain of
CMake variables passed on the command line. Clang provides a collection of CMake
cache scripts to make these features more approachable.

CMake cache files are utilized using CMake’s -C flag:

$ cmake -C <path to cache file> <path to sources>

CMake cache scripts are processed in an isolated scope, only cached variables
remain set when the main configuration runs. CMake cached variables do not reset
variables that are already set unless the FORCE option is specified.

A few notes about CMake Caches:

	Order of command line arguments is important

	-D arguments specified before -C are set before the cache is processed and
can be read inside the cache file

	-D arguments specified after -C are set after the cache is processed and
are unset inside the cache file

	All -D arguments will override cache file settings

	CMAKE_TOOLCHAIN_FILE is evaluated after both the cache file and the command
line arguments

	It is recommended that all -D options should be specified before -C

For more information about some of the advanced build configurations supported
via Cache files see Advanced Build Configurations.

Executing the test suite

Testing is performed when the check-all target is built. For instance, if you are
using Makefiles, execute this command in the root of your build directory:

$ make check-all

On Visual Studio, you may run tests by building the project “check-all”.
For more information about testing, see the LLVM Testing Infrastructure Guide.

Cross compiling

See this wiki page [http://www.vtk.org/Wiki/CMake_Cross_Compiling] for
generic instructions on how to cross-compile with CMake. It goes into detailed
explanations and may seem daunting, but it is not. On the wiki page there are
several examples including toolchain files. Go directly to this section [http://www.vtk.org/Wiki/CMake_Cross_Compiling#Information_how_to_set_up_various_cross_compiling_toolchains]
for a quick solution.

Also see the LLVM-specific variables section for variables used when
cross-compiling.

Embedding LLVM in your project

From LLVM 3.5 onwards both the CMake and autoconf/Makefile build systems export
LLVM libraries as importable CMake targets. This means that clients of LLVM can
now reliably use CMake to develop their own LLVM-based projects against an
installed version of LLVM regardless of how it was built.

Here is a simple example of a CMakeLists.txt file that imports the LLVM libraries
and uses them to build a simple application simple-tool.

cmake_minimum_required(VERSION 3.4.3)
project(SimpleProject)

find_package(LLVM REQUIRED CONFIG)

message(STATUS "Found LLVM ${LLVM_PACKAGE_VERSION}")
message(STATUS "Using LLVMConfig.cmake in: ${LLVM_DIR}")

Set your project compile flags.
E.g. if using the C++ header files
you will need to enable C++11 support
for your compiler.

include_directories(${LLVM_INCLUDE_DIRS})
add_definitions(${LLVM_DEFINITIONS})

Now build our tools
add_executable(simple-tool tool.cpp)

Find the libraries that correspond to the LLVM components
that we wish to use
llvm_map_components_to_libnames(llvm_libs support core irreader)

Link against LLVM libraries
target_link_libraries(simple-tool ${llvm_libs})

The find_package(...) directive when used in CONFIG mode (as in the above
example) will look for the LLVMConfig.cmake file in various locations (see
cmake manual for details). It creates a LLVM_DIR cache entry to save the
directory where LLVMConfig.cmake is found or allows the user to specify the
directory (e.g. by passing -DLLVM_DIR=/usr/lib/cmake/llvm to
the cmake command or by setting it directly in ccmake or cmake-gui).

This file is available in two different locations.

	<INSTALL_PREFIX>/lib/cmake/llvm/LLVMConfig.cmake where
<INSTALL_PREFIX> is the install prefix of an installed version of LLVM.
On Linux typically this is /usr/lib/cmake/llvm/LLVMConfig.cmake.

	<LLVM_BUILD_ROOT>/lib/cmake/llvm/LLVMConfig.cmake where
<LLVM_BUILD_ROOT> is the root of the LLVM build tree. Note: this is only
available when building LLVM with CMake.

If LLVM is installed in your operating system’s normal installation prefix (e.g.
on Linux this is usually /usr/) find_package(LLVM ...) will
automatically find LLVM if it is installed correctly. If LLVM is not installed
or you wish to build directly against the LLVM build tree you can use
LLVM_DIR as previously mentioned.

The LLVMConfig.cmake file sets various useful variables. Notable variables
include

	LLVM_CMAKE_DIR

	The path to the LLVM CMake directory (i.e. the directory containing
LLVMConfig.cmake).

	LLVM_DEFINITIONS

	A list of preprocessor defines that should be used when building against LLVM.

	LLVM_ENABLE_ASSERTIONS

	This is set to ON if LLVM was built with assertions, otherwise OFF.

	LLVM_ENABLE_EH

	This is set to ON if LLVM was built with exception handling (EH) enabled,
otherwise OFF.

	LLVM_ENABLE_RTTI

	This is set to ON if LLVM was built with run time type information (RTTI),
otherwise OFF.

	LLVM_INCLUDE_DIRS

	A list of include paths to directories containing LLVM header files.

	LLVM_PACKAGE_VERSION

	The LLVM version. This string can be used with CMake conditionals, e.g., if
(${LLVM_PACKAGE_VERSION} VERSION_LESS "3.5").

	LLVM_TOOLS_BINARY_DIR

	The path to the directory containing the LLVM tools (e.g. llvm-as).

Notice that in the above example we link simple-tool against several LLVM
libraries. The list of libraries is determined by using the
llvm_map_components_to_libnames() CMake function. For a list of available
components look at the output of running llvm-config --components.

Note that for LLVM < 3.5 llvm_map_components_to_libraries() was
used instead of llvm_map_components_to_libnames(). This is now deprecated
and will be removed in a future version of LLVM.

Developing LLVM passes out of source

It is possible to develop LLVM passes out of LLVM’s source tree (i.e. against an
installed or built LLVM). An example of a project layout is provided below.

<project dir>/
 |
 CMakeLists.txt
 <pass name>/
 |
 CMakeLists.txt
 Pass.cpp
 ...

Contents of <project dir>/CMakeLists.txt:

find_package(LLVM REQUIRED CONFIG)

add_definitions(${LLVM_DEFINITIONS})
include_directories(${LLVM_INCLUDE_DIRS})

add_subdirectory(<pass name>)

Contents of <project dir>/<pass name>/CMakeLists.txt:

add_library(LLVMPassname MODULE Pass.cpp)

Note if you intend for this pass to be merged into the LLVM source tree at some
point in the future it might make more sense to use LLVM’s internal
add_llvm_loadable_module function instead by…

Adding the following to <project dir>/CMakeLists.txt (after
find_package(LLVM ...))

list(APPEND CMAKE_MODULE_PATH "${LLVM_CMAKE_DIR}")
include(AddLLVM)

And then changing <project dir>/<pass name>/CMakeLists.txt to

add_llvm_loadable_module(LLVMPassname
 Pass.cpp
)

When you are done developing your pass, you may wish to integrate it
into the LLVM source tree. You can achieve it in two easy steps:

	Copying <pass name> folder into <LLVM root>/lib/Transform directory.

	Adding add_subdirectory(<pass name>) line into
<LLVM root>/lib/Transform/CMakeLists.txt.

Compiler/Platform-specific topics

Notes for specific compilers and/or platforms.

Microsoft Visual C++

	LLVM_COMPILER_JOBS:STRING

	Specifies the maximum number of parallel compiler jobs to use per project
when building with msbuild or Visual Studio. Only supported for the Visual
Studio 2010 CMake generator. 0 means use all processors. Default is 0.

CMake Primer

	Introduction

	10,000 ft View

	Scripting Overview

	Variables, Types, and Scope

	Dereferencing

	Lists

	Lists of Lists

	Other Types

	Scope

	Control Flow

	If, ElseIf, Else

	Loops

	Modules, Functions and Macros

	Modules

	Argument Handling

	Functions Vs Macros

	LLVM Project Wrappers

	Useful Built-in Commands

Warning

Disclaimer: This documentation is written by LLVM project contributors not
anyone affiliated with the CMake project. This document may contain
inaccurate terminology, phrasing, or technical details. It is provided with
the best intentions.

Introduction

The LLVM project and many of the core projects built on LLVM build using CMake.
This document aims to provide a brief overview of CMake for developers modifying
LLVM projects or building their own projects on top of LLVM.

The official CMake language references is available in the cmake-language
manpage and cmake-language online documentation [https://cmake.org/cmake/help/v3.4/manual/cmake-language.7.html].

10,000 ft View

CMake is a tool that reads script files in its own language that describe how a
software project builds. As CMake evaluates the scripts it constructs an
internal representation of the software project. Once the scripts have been
fully processed, if there are no errors, CMake will generate build files to
actually build the project. CMake supports generating build files for a variety
of command line build tools as well as for popular IDEs.

When a user runs CMake it performs a variety of checks similar to how autoconf
worked historically. During the checks and the evaluation of the build
description scripts CMake caches values into the CMakeCache. This is useful
because it allows the build system to skip long-running checks during
incremental development. CMake caching also has some drawbacks, but that will be
discussed later.

Scripting Overview

CMake’s scripting language has a very simple grammar. Every language construct
is a command that matches the pattern _name_(_args_). Commands come in three
primary types: language-defined (commands implemented in C++ in CMake), defined
functions, and defined macros. The CMake distribution also contains a suite of
CMake modules that contain definitions for useful functionality.

The example below is the full CMake build for building a C++ “Hello World”
program. The example uses only CMake language-defined functions.

cmake_minimum_required(VERSION 3.2)
project(HelloWorld)
add_executable(HelloWorld HelloWorld.cpp)

The CMake language provides control flow constructs in the form of foreach loops
and if blocks. To make the example above more complicated you could add an if
block to define “APPLE” when targeting Apple platforms:

cmake_minimum_required(VERSION 3.2)
project(HelloWorld)
add_executable(HelloWorld HelloWorld.cpp)
if(APPLE)
 target_compile_definitions(HelloWorld PUBLIC APPLE)
endif()

Variables, Types, and Scope

Dereferencing

In CMake variables are “stringly” typed. All variables are represented as
strings throughout evaluation. Wrapping a variable in ${} dereferences it
and results in a literal substitution of the name for the value. CMake refers to
this as “variable evaluation” in their documentation. Dereferences are performed
before the command being called receives the arguments. This means
dereferencing a list results in multiple separate arguments being passed to the
command.

Variable dereferences can be nested and be used to model complex data. For
example:

set(var_name var1)
set(${var_name} foo) # same as "set(var1 foo)"
set(${${var_name}}_var bar) # same as "set(foo_var bar)"

Dereferencing an unset variable results in an empty expansion. It is a common
pattern in CMake to conditionally set variables knowing that it will be used in
code paths that the variable isn’t set. There are examples of this throughout
the LLVM CMake build system.

An example of variable empty expansion is:

if(APPLE)
 set(extra_sources Apple.cpp)
endif()
add_executable(HelloWorld HelloWorld.cpp ${extra_sources})

In this example the extra_sources variable is only defined if you’re
targeting an Apple platform. For all other targets the extra_sources will be
evaluated as empty before add_executable is given its arguments.

Lists

In CMake lists are semi-colon delimited strings, and it is strongly advised that
you avoid using semi-colons in lists; it doesn’t go smoothly. A few examples of
defining lists:

Creates a list with members a, b, c, and d
set(my_list a b c d)
set(my_list "a;b;c;d")

Creates a string "a b c d"
set(my_string "a b c d")

Lists of Lists

One of the more complicated patterns in CMake is lists of lists. Because a list
cannot contain an element with a semi-colon to construct a list of lists you
make a list of variable names that refer to other lists. For example:

set(list_of_lists a b c)
set(a 1 2 3)
set(b 4 5 6)
set(c 7 8 9)

With this layout you can iterate through the list of lists printing each value
with the following code:

foreach(list_name IN LISTS list_of_lists)
 foreach(value IN LISTS ${list_name})
 message(${value})
 endforeach()
endforeach()

You’ll notice that the inner foreach loop’s list is doubly dereferenced. This is
because the first dereference turns list_name into the name of the sub-list
(a, b, or c in the example), then the second dereference is to get the value of
the list.

This pattern is used throughout CMake, the most common example is the compiler
flags options, which CMake refers to using the following variable expansions:
CMAKE_${LANGUAGE}_FLAGS and CMAKE_${LANGUAGE}_FLAGS_${CMAKE_BUILD_TYPE}.

Other Types

Variables that are cached or specified on the command line can have types
associated with them. The variable’s type is used by CMake’s UI tool to display
the right input field. A variable’s type generally doesn’t impact evaluation,
however CMake does have special handling for some variables such as PATH.
You can read more about the special handling in CMake’s set documentation [https://cmake.org/cmake/help/v3.5/command/set.html#set-cache-entry].

Scope

CMake inherently has a directory-based scoping. Setting a variable in a
CMakeLists file, will set the variable for that file, and all subdirectories.
Variables set in a CMake module that is included in a CMakeLists file will be
set in the scope they are included from, and all subdirectories.

When a variable that is already set is set again in a subdirectory it overrides
the value in that scope and any deeper subdirectories.

The CMake set command provides two scope-related options. PARENT_SCOPE sets a
variable into the parent scope, and not the current scope. The CACHE option sets
the variable in the CMakeCache, which results in it being set in all scopes. The
CACHE option will not set a variable that already exists in the CACHE unless the
FORCE option is specified.

In addition to directory-based scope, CMake functions also have their own scope.
This means variables set inside functions do not bleed into the parent scope.
This is not true of macros, and it is for this reason LLVM prefers functions
over macros whenever reasonable.

Note

Unlike C-based languages, CMake’s loop and control flow blocks do not have
their own scopes.

Control Flow

CMake features the same basic control flow constructs you would expect in any
scripting language, but there are a few quirks because, as with everything in
CMake, control flow constructs are commands.

If, ElseIf, Else

Note

For the full documentation on the CMake if command go
here [https://cmake.org/cmake/help/v3.4/command/if.html]. That resource is
far more complete.

In general CMake if blocks work the way you’d expect:

if(<condition>)
 message("do stuff")
elseif(<condition>)
 message("do other stuff")
else()
 message("do other other stuff")
endif()

The single most important thing to know about CMake’s if blocks coming from a C
background is that they do not have their own scope. Variables set inside
conditional blocks persist after the endif().

Loops

The most common form of the CMake foreach block is:

foreach(var ...)
 message("do stuff")
endforeach()

The variable argument portion of the foreach block can contain dereferenced
lists, values to iterate, or a mix of both:

foreach(var foo bar baz)
 message(${var})
endforeach()
prints:
foo
bar
baz

set(my_list 1 2 3)
foreach(var ${my_list})
 message(${var})
endforeach()
prints:
1
2
3

foreach(var ${my_list} out_of_bounds)
 message(${var})
endforeach()
prints:
1
2
3
out_of_bounds

There is also a more modern CMake foreach syntax. The code below is equivalent
to the code above:

foreach(var IN ITEMS foo bar baz)
 message(${var})
endforeach()
prints:
foo
bar
baz

set(my_list 1 2 3)
foreach(var IN LISTS my_list)
 message(${var})
endforeach()
prints:
1
2
3

foreach(var IN LISTS my_list ITEMS out_of_bounds)
 message(${var})
endforeach()
prints:
1
2
3
out_of_bounds

Similar to the conditional statements, these generally behave how you would
expect, and they do not have their own scope.

CMake also supports while loops, although they are not widely used in LLVM.

Modules, Functions and Macros

Modules

Modules are CMake’s vehicle for enabling code reuse. CMake modules are just
CMake script files. They can contain code to execute on include as well as
definitions for commands.

In CMake macros and functions are universally referred to as commands, and they
are the primary method of defining code that can be called multiple times.

In LLVM we have several CMake modules that are included as part of our
distribution for developers who don’t build our project from source. Those
modules are the fundamental pieces needed to build LLVM-based projects with
CMake. We also rely on modules as a way of organizing the build system’s
functionality for maintainability and re-use within LLVM projects.

Argument Handling

When defining a CMake command handling arguments is very useful. The examples
in this section will all use the CMake function block, but this all applies
to the macro block as well.

CMake commands can have named arguments that are requried at every call site. In
addition, all commands will implicitly accept a variable number of extra
arguments (In C parlance, all commands are varargs functions). When a command is
invoked with extra arguments (beyond the named ones) CMake will store the full
list of arguments (both named and unnamed) in a list named ARGV, and the
sublist of unnamed arguments in ARGN. Below is a trivial example of
providing a wrapper function for CMake’s built in function add_dependencies.

function(add_deps target)
 add_dependencies(${target} ${ARGN})
endfunction()

This example defines a new macro named add_deps which takes a required first
argument, and just calls another function passing through the first argument and
all trailing arguments.

CMake provides a module CMakeParseArguments which provides an implementation
of advanced argument parsing. We use this all over LLVM, and it is recommended
for any function that has complex argument-based behaviors or optional
arguments. CMake’s official documentation for the module is in the
cmake-modules manpage, and is also available at the
cmake-modules online documentation [https://cmake.org/cmake/help/v3.4/module/CMakeParseArguments.html].

Note

As of CMake 3.5 the cmake_parse_arguments command has become a native command
and the CMakeParseArguments module is empty and only left around for
compatibility.

Functions Vs Macros

Functions and Macros look very similar in how they are used, but there is one
fundamental difference between the two. Functions have their own scope, and
macros don’t. This means variables set in macros will bleed out into the calling
scope. That makes macros suitable for defining very small bits of functionality
only.

The other difference between CMake functions and macros is how arguments are
passed. Arguments to macros are not set as variables, instead dereferences to
the parameters are resolved across the macro before executing it. This can
result in some unexpected behavior if using unreferenced variables. For example:

macro(print_list my_list)
 foreach(var IN LISTS my_list)
 message("${var}")
 endforeach()
endmacro()

set(my_list a b c d)
set(my_list_of_numbers 1 2 3 4)
print_list(my_list_of_numbers)
prints:
a
b
c
d

Generally speaking this issue is uncommon because it requires using
non-dereferenced variables with names that overlap in the parent scope, but it
is important to be aware of because it can lead to subtle bugs.

LLVM Project Wrappers

LLVM projects provide lots of wrappers around critical CMake built-in commands.
We use these wrappers to provide consistent behaviors across LLVM components
and to reduce code duplication.

We generally (but not always) follow the convention that commands prefaced with
llvm_ are intended to be used only as building blocks for other commands.
Wrapper commands that are intended for direct use are generally named following
with the project in the middle of the command name (i.e. add_llvm_executable
is the wrapper for add_executable). The LLVM add_* wrapper functions are
all defined in AddLLVM.cmake which is installed as part of the LLVM
distribution. It can be included and used by any LLVM sub-project that requires
LLVM.

Note

Not all LLVM projects require LLVM for all use cases. For example compiler-rt
can be built without LLVM, and the compiler-rt sanitizer libraries are used
with GCC.

Useful Built-in Commands

CMake has a bunch of useful built-in commands. This document isn’t going to
go into details about them because The CMake project has excellent
documentation. To highlight a few useful functions see:

	add_custom_command [https://cmake.org/cmake/help/v3.4/command/add_custom_command.html]

	add_custom_target [https://cmake.org/cmake/help/v3.4/command/add_custom_target.html]

	file [https://cmake.org/cmake/help/v3.4/command/file.html]

	list [https://cmake.org/cmake/help/v3.4/command/list.html]

	math [https://cmake.org/cmake/help/v3.4/command/math.html]

	string [https://cmake.org/cmake/help/v3.4/command/string.html]

The full documentation for CMake commands is in the cmake-commands manpage
and available on CMake’s website [https://cmake.org/cmake/help/v3.4/manual/cmake-commands.7.html]

Advanced Build Configurations

	Introduction

	Bootstrap Builds

	Apple Clang Builds (A More Complex Bootstrap)

	Multi-stage PGO

	3-Stage Non-Determinism

Introduction

CMake [http://www.cmake.org/] is a cross-platform build-generator tool. CMake
does not build the project, it generates the files needed by your build tool
(GNU make, Visual Studio, etc.) for building LLVM.

If you are a new contributor, please start with the Getting Started with the LLVM System or
Building LLVM with CMake pages. This page is intended for users doing more complex builds.

Many of the examples below are written assuming specific CMake Generators.
Unless otherwise explicitly called out these commands should work with any CMake
generator.

Bootstrap Builds

The Clang CMake build system supports bootstrap (aka multi-stage) builds. At a
high level a multi-stage build is a chain of builds that pass data from one
stage into the next. The most common and simple version of this is a traditional
bootstrap build.

In a simple two-stage bootstrap build, we build clang using the system compiler,
then use that just-built clang to build clang again. In CMake this simplest form
of a bootstrap build can be configured with a single option,
CLANG_ENABLE_BOOTSTRAP.

$ cmake -G Ninja -DCLANG_ENABLE_BOOTSTRAP=On <path to source>
$ ninja stage2

This command itself isn’t terribly useful because it assumes default
configurations for each stage. The next series of examples utilize CMake cache
scripts to provide more complex options.

The clang build system refers to builds as stages. A stage1 build is a standard
build using the compiler installed on the host, and a stage2 build is built
using the stage1 compiler. This nomenclature holds up to more stages too. In
general a stage*n* build is built using the output from stage*n-1*.

Apple Clang Builds (A More Complex Bootstrap)

Apple’s Clang builds are a slightly more complicated example of the simple
bootstrapping scenario. Apple Clang is built using a 2-stage build.

The stage1 compiler is a host-only compiler with some options set. The stage1
compiler is a balance of optimization vs build time because it is a throwaway.
The stage2 compiler is the fully optimized compiler intended to ship to users.

Setting up these compilers requires a lot of options. To simplify the
configuration the Apple Clang build settings are contained in CMake Cache files.
You can build an Apple Clang compiler using the following commands:

$ cmake -G Ninja -C <path to clang>/cmake/caches/Apple-stage1.cmake <path to source>
$ ninja stage2-distribution

This CMake invocation configures the stage1 host compiler, and sets
CLANG_BOOTSTRAP_CMAKE_ARGS to pass the Apple-stage2.cmake cache script to the
stage2 configuration step.

When you build the stage2-distribution target it builds the minimal stage1
compiler and required tools, then configures and builds the stage2 compiler
based on the settings in Apple-stage2.cmake.

This pattern of using cache scripts to set complex settings, and specifically to
make later stage builds include cache scripts is common in our more advanced
build configurations.

Multi-stage PGO

Profile-Guided Optimizations (PGO) is a really great way to optimize the code
clang generates. Our multi-stage PGO builds are a workflow for generating PGO
profiles that can be used to optimize clang.

At a high level, the way PGO works is that you build an instrumented compiler,
then you run the instrumented compiler against sample source files. While the
instrumented compiler runs it will output a bunch of files containing
performance counters (.profraw files). After generating all the profraw files
you use llvm-profdata to merge the files into a single profdata file that you
can feed into the LLVM_PROFDATA_FILE option.

Our PGO.cmake cache script automates that whole process. You can use it by
running:

$ cmake -G Ninja -C <path_to_clang>/cmake/caches/PGO.cmake <source dir>
$ ninja stage2-instrumented-generate-profdata

If you let that run for a few hours or so, it will place a profdata file in your
build directory. This takes a really long time because it builds clang twice,
and you must have compiler-rt in your build tree.

This process uses any source files under the perf-training directory as training
data as long as the source files are marked up with LIT-style RUN lines.

After it finishes you can use “find . -name clang.profdata” to find it, but it
should be at a path something like:

<build dir>/tools/clang/stage2-instrumented-bins/utils/perf-training/clang.profdata

You can feed that file into the LLVM_PROFDATA_FILE option when you build your
optimized compiler.

The PGO came cache has a slightly different stage naming scheme than other
multi-stage builds. It generates three stages; stage1, stage2-instrumented, and
stage2. Both of the stage2 builds are built using the stage1 compiler.

The PGO came cache generates the following additional targets:

	stage2-instrumented

	Builds a stage1 x86 compiler, runtime, and required tools (llvm-config,
llvm-profdata) then uses that compiler to build an instrumented stage2 compiler.

	stage2-instrumented-generate-profdata

	Depends on “stage2-instrumented” and will use the instrumented compiler to
generate profdata based on the training files in <clang>/utils/perf-training

	stage2

	Depends of “stage2-instrumented-generate-profdata” and will use the stage1
compiler with the stage2 profdata to build a PGO-optimized compiler.

	stage2-check-llvm

	Depends on stage2 and runs check-llvm using the stage2 compiler.

	stage2-check-clang

	Depends on stage2 and runs check-clang using the stage2 compiler.

	stage2-check-all

	Depends on stage2 and runs check-all using the stage2 compiler.

	stage2-test-suite

	Depends on stage2 and runs the test-suite using the stage3 compiler (requires
in-tree test-suite).

3-Stage Non-Determinism

In the ancient lore of compilers non-determinism is like the multi-headed hydra.
Whenever its head pops up, terror and chaos ensue.

Historically one of the tests to verify that a compiler was deterministic would
be a three stage build. The idea of a three stage build is you take your sources
and build a compiler (stage1), then use that compiler to rebuild the sources
(stage2), then you use that compiler to rebuild the sources a third time
(stage3) with an identical configuration to the stage2 build. At the end of
this, you have a stage2 and stage3 compiler that should be bit-for-bit
identical.

You can perform one of these 3-stage builds with LLVM & clang using the
following commands:

$ cmake -G Ninja -C <path_to_clang>/cmake/caches/3-stage.cmake <source dir>
$ ninja stage3

After the build you can compare the stage2 & stage3 compilers. We have a bot
setup here [http://lab.llvm.org:8011/builders/clang-3stage-ubuntu] that runs
this build and compare configuration.

How To Build On ARM

Introduction

This document contains information about building/testing LLVM and
Clang on an ARM machine.

This document is NOT tailored to help you cross-compile LLVM/Clang
to ARM on another architecture, for example an x86_64 machine. To find
out more about cross-compiling, please check How To Cross-Compile Clang/LLVM using Clang/LLVM.

Notes On Building LLVM/Clang on ARM

Here are some notes on building/testing LLVM/Clang on ARM. Note that
ARM encompasses a wide variety of CPUs; this advice is primarily based
on the ARMv6 and ARMv7 architectures and may be inapplicable to older chips.

	The most popular Linaro/Ubuntu OS’s for ARM boards, e.g., the
Pandaboard, have become hard-float platforms. There are a number of
choices when using CMake. Autoconf usage is deprecated as of 3.8.

Building LLVM/Clang in Relese mode is preferred since it consumes
a lot less memory. Otherwise, the building process will very likely
fail due to insufficient memory. It’s also a lot quicker to only build
the relevant back-ends (ARM and AArch64), since it’s very unlikely that
you’ll use an ARM board to cross-compile to other arches. If you’re
running Compiler-RT tests, also include the x86 back-end, or some tests
will fail.

cmake $LLVM_SRC_DIR -DCMAKE_BUILD_TYPE=Release \
 -DLLVM_TARGETS_TO_BUILD="ARM;X86;AArch64"

Other options you can use are:

Use Ninja instead of Make: "-G Ninja"
Build with assertions on: "-DLLVM_ENABLE_ASSERTIONS=True"
Force Python2: "-DPYTHON_EXECUTABLE=/usr/bin/python2"
Local (non-sudo) install path: "-DCMAKE_INSTALL_PREFIX=$HOME/llvm/instal"
CPU flags: "DCMAKE_C_FLAGS=-mcpu=cortex-a15" (same for CXX_FLAGS)

After that, just typing make -jN or ninja will build everything.
make -jN check-all or ninja check-all will run all compiler tests. For
running the test suite, please refer to LLVM Testing Infrastructure Guide.

	If you are building LLVM/Clang on an ARM board with 1G of memory or less,
please use gold rather then GNU ld. In any case it is probably a good
idea to set up a swap partition, too.

$ sudo ln -sf /usr/bin/ld /usr/bin/ld.gold

	ARM development boards can be unstable and you may experience that cores
are disappearing, caches being flushed on every big.LITTLE switch, and
other similar issues. To help ease the effect of this, set the Linux
scheduler to “performance” on all cores using this little script:

The code below requires the package 'cpufrequtils' to be installed.
for ((cpu=0; cpu<`grep -c proc /proc/cpuinfo`; cpu++)); do
 sudo cpufreq-set -c $cpu -g performance
done

Remember to turn that off after the build, or you may risk burning your
CPU. Most modern kernels don’t need that, so only use it if you have
problems.

	Running the build on SD cards is ok, but they are more prone to failures
than good quality USB sticks, and those are more prone to failures than
external hard-drives (those are also a lot faster). So, at least, you
should consider to buy a fast USB stick. On systems with a fast eMMC,
that’s a good option too.

	Make sure you have a decent power supply (dozens of dollars worth) that can
provide at least 4 amperes, this is especially important if you use USB
devices with your board. Externally powered USB/SATA harddrives are even
better than having a good power supply.

How to Cross Compile Compiler-rt Builtins For Arm

Introduction

This document contains information about building and testing the builtins part
of compiler-rt for an Arm target, from an x86_64 Linux machine.

While this document concentrates on Arm and Linux the general principles should
apply to other targets supported by compiler-rt. Further contributions for other
targets are welcome.

The instructions in this document depend on libraries and programs external to
LLVM, there are many ways to install and configure these dependencies so you
may need to adapt the instructions here to fit your own local situation.

Prerequisites

In this use case we’ll be using CMake on a Debian-based Linux system,
cross-compiling from an x86_64 host to a hard-float Armv7-A target. We’ll be
using as many of the LLVM tools as we can, but it is possible to use GNU
equivalents.

	A build of LLVM/clang for the llvm-tools and llvm-config

	The qemu-arm user mode emulator

	An arm-linux-gnueabihf sysroot

See https://compiler-rt.llvm.org/ for more information about the dependencies
on clang and LLVM.

qemu-arm should be available as a package for your Linux distribution.

The most complicated of the prequisites to satisfy is the arm-linux-gnueabihf
sysroot. The How To Cross-Compile Clang/LLVM using Clang/LLVM has information about how to use the
Linux distributions multiarch support to fulfill the dependencies for building
LLVM. Alternatively, as building and testing just the compiler-rt builtins
requires fewer dependencies than LLVM, it is possible to use the Linaro
arm-linux-gnueabihf gcc installation as our sysroot.

Building compiler-rt builtins for Arm

We will be doing a standalone build of compiler-rt using the following cmake
options.

	path/to/llvm/projects/compiler-rt

	-DCOMPILER_RT_BUILD_BUILTINS=ON

	-DCOMPILER_RT_BUILD_SANITIZERS=OFF

	-DCOMPILER_RT_BUILD_XRAY=OFF

	-DCOMPILER_RT_BUILD_LIBFUZZER=OFF

	-DCOMPILER_RT_BUILD_PROFILE=OFF

	-DCMAKE_C_COMPILER=/path/to/clang

	-DCMAKE_AR=/path/to/llvm-ar

	-DCMAKE_NM=/path/to/llvm-nm

	-DCMAKE_RANLIB=/path/to/llvm-ranlib

	-DCMAKE_EXE_LINKER_FLAGS="-fuse-ld=lld"

	-DCMAKE_C_COMPILER_TARGET="arm-linux-gnueabihf"

	-DCOMPILER_RT_DEFAULT_TARGET_ONLY=ON

	-DLLVM_CONFIG_PATH=/path/to/llvm-config

	-DCMAKE_C_FLAGS="build-c-flags"

The build-c-flags need to be sufficient to pass the C-make compiler check and
to compile compiler-rt. When using a GCC 7 Linaro arm-linux-gnueabihf
installation the following flags are needed:

	--target=arm-linux-gnueabihf

	--march=armv7a

	--gcc-toolchain=/path/to/dir/toolchain

	--sysroot=/path/to/toolchain/arm-linux-gnueabihf/libc

Depending on how your sysroot is laid out, you may not need --gcc-toolchain.
For example if you have added armhf as an architecture using your Linux
distributions multiarch support then you should be able to use --sysroot=/.

Once cmake has completed the builtins can be built with ninja builtins

Testing compiler-rt builtins using qemu-arm

To test the builtins library we need to add a few more cmake flags to enable
testing and set up the compiler and flags for test case. We must also tell
cmake that we wish to run the tests on qemu-arm.

	-DCOMPILER_RT_EMULATOR="qemu-arm -L /path/to/armhf/sysroot

	-DCOMPILER_RT_INCLUDE_TESTS=ON

	-DCOMPILER_RT_TEST_COMPILER="/path/to/clang"

	-DCOMPILER_RT_TEST_COMPILER_CFLAGS="test-c-flags"

The /path/to/armhf/sysroot should be the same as the one passed to
--sysroot in the “build-c-flags”.

The “test-c-flags” can be the same as the “build-c-flags”, with the addition
of "-fuse-ld=lld if you wish to use lld to link the tests.

Once cmake has completed the tests can be built and run using
ninja check-builtins

Modifications for other Targets

Arm Soft-Float Target

The instructions for the Arm hard-float target can be used for the soft-float
target by substituting soft-float equivalents for the sysroot and target. The
target to use is:

	-DCMAKE_C_COMPILER_TARGET=arm-linux-gnueabi

Depending on whether you want to use floating point instructions or not you
may need extra c-flags such as -mfloat-abi=softfp for use of floating-point
instructions, and -mfloat-abi=soft -mfpu=none for software floating-point
emulation.

AArch64 Target

The instructions for Arm can be used for AArch64 by substituting AArch64
equivalents for the sysroot, emulator and target.

	-DCMAKE_C_COMPILER_TARGET=aarch64-linux-gnu

	-DCOMPILER_RT_EMULATOR="qemu-aarch64 -L /path/to/aarch64/sysroot

The CMAKE_C_FLAGS and COMPILER_RT_TEST_COMPILER_CFLAGS may also need:
"--sysroot=/path/to/aarch64/sysroot --gcc-toolchain=/path/to/gcc-toolchain"

Armv6-m, Armv7-m and Armv7E-M targets

If you wish to build, but not test compiler-rt for Armv6-M, Armv7-M or Armv7E-M
then the easiest way is to use the BaremetalARM.cmake recipe in
clang/cmake/caches.

You will need a bare metal sysroot such as that provided by the GNU ARM
Embedded toolchain.

The libraries can be built with the cmake options:

	-DBAREMETAL_ARMV6M_SYSROOT=/path/to/bare/metal/sysroot

	-DBAREMETAL_ARMV7M_SYSROOT=/path/to/bare/metal/sysroot

	-DBAREMETAL_ARMV7EM_SYSROOT=/path/to/bare/metal/sysroot

	-C /path/to/llvm/source/tools/clang/cmake/caches/BaremetalARM.cmake

Note that for the recipe to work the compiler-rt source must be checked out
into the directory llvm/runtimes and not llvm/projects.

To build and test the libraries using a similar method to Armv7-A is possible
but more difficult. The main problems are:

	There isn’t a qemu-arm user-mode emulator for bare-metal systems. The qemu-system-arm can be used but this is significantly more difficult to setup.

	The target to compile compiler-rt have the suffix -none-eabi. This uses the BareMetal driver in clang and by default won’t find the libraries needed to pass the cmake compiler check.

As the Armv6-M, Armv7-M and Armv7E-M builds of compiler-rt only use instructions
that are supported on Armv7-A we can still get most of the value of running the
tests using the same qemu-arm that we used for Armv7-A by building and
running the test cases for Armv7-A but using the builtins compiled for
Armv6-M, Armv7-M or Armv7E-M. This will not catch instructions that are
supported on Armv7-A but not Armv6-M, Armv7-M and Armv7E-M.

To get the cmake compile test to pass the libraries needed to successfully link
the test application will need to be manually added to CMAKE_CFLAGS.
Alternatively if you are using version 3.6 or above of cmake you can use
CMAKE_TRY_COMPILE_TARGET=STATIC_LIBRARY to skip the link step.

	-DCMAKE_TRY_COMPILE_TARGET_TYPE=STATIC_LIBRARY

	-DCOMPILER_RT_OS_DIR="baremetal"

	-DCOMPILER_RT_BUILD_BUILTINS=ON

	-DCOMPILER_RT_BUILD_SANITIZERS=OFF

	-DCOMPILER_RT_BUILD_XRAY=OFF

	-DCOMPILER_RT_BUILD_LIBFUZZER=OFF

	-DCOMPILER_RT_BUILD_PROFILE=OFF

	-DCMAKE_C_COMPILER=${host_install_dir}/bin/clang

	-DCMAKE_C_COMPILER_TARGET="your *-none-eabi target"

	-DCMAKE_AR=/path/to/llvm-ar

	-DCMAKE_NM=/path/to/llvm-nm

	-DCMAKE_RANLIB=/path/to/llvm-ranlib

	-DCOMPILER_RT_BAREMETAL_BUILD=ON

	-DCOMPILER_RT_DEFAULT_TARGET_ONLY=ON

	-DLLVM_CONFIG_PATH=/path/to/llvm-config

	-DCMAKE_C_FLAGS="build-c-flags"

	-DCMAKE_ASM_FLAGS="${arm_cflags}"

	-DCOMPILER_RT_EMULATOR="qemu-arm -L /path/to/armv7-A/sysroot"

	-DCOMPILER_RT_INCLUDE_TESTS=ON

	-DCOMPILER_RT_TEST_COMPILER="/path/to/clang"

	-DCOMPILER_RT_TEST_COMPILER_CFLAGS="test-c-flags"

The Armv6-M builtins will use the soft-float ABI. When compiling the tests for
Armv7-A we must include "-mthumb -mfloat-abi=soft -mfpu=none" in the
test-c-flags. We must use an Armv7-A soft-float abi sysroot for qemu-arm.

Unfortunately at time of writing the Armv7-M and Armv7E-M builds of
compiler-rt will always include assembler files including floating point
instructions. This means that building for a cpu without a floating point unit
requires something like removing the arm_Thumb1_VFPv2_SOURCES from the
arm_Thumb1_SOURCES in builtins/CMakeLists.txt. The float-abi of the compiler-rt
library must be matched by the float abi of the Armv7-A sysroot used by
qemu-arm.

Depending on the linker used for the test cases you may encounter BuildAttribute
mismatches between the M-profile objects from compiler-rt and the A-profile
objects from the test. The lld linker does not check the BuildAttributes so it
can be used to link the tests by adding -fuse-ld=lld to the
COMPILER_RT_TEST_COMPILER_CFLAGS.

How To Cross-Compile Clang/LLVM using Clang/LLVM

Introduction

This document contains information about building LLVM and
Clang on host machine, targeting another platform.

For more information on how to use Clang as a cross-compiler,
please check http://clang.llvm.org/docs/CrossCompilation.html.

TODO: Add MIPS and other platforms to this document.

Cross-Compiling from x86_64 to ARM

In this use case, we’ll be using CMake and Ninja, on a Debian-based Linux
system, cross-compiling from an x86_64 host (most Intel and AMD chips
nowadays) to a hard-float ARM target (most ARM targets nowadays).

The packages you’ll need are:

	cmake

	ninja-build (from backports in Ubuntu)

	gcc-4.7-arm-linux-gnueabihf

	gcc-4.7-multilib-arm-linux-gnueabihf

	binutils-arm-linux-gnueabihf

	libgcc1-armhf-cross

	libsfgcc1-armhf-cross

	libstdc++6-armhf-cross

	libstdc++6-4.7-dev-armhf-cross

Configuring CMake

For more information on how to configure CMake for LLVM/Clang,
see Building LLVM with CMake.

The CMake options you need to add are:

	-DCMAKE_CROSSCOMPILING=True

	-DCMAKE_INSTALL_PREFIX=<install-dir>

	-DLLVM_TABLEGEN=<path-to-host-bin>/llvm-tblgen

	-DCLANG_TABLEGEN=<path-to-host-bin>/clang-tblgen

	-DLLVM_DEFAULT_TARGET_TRIPLE=arm-linux-gnueabihf

	-DLLVM_TARGET_ARCH=ARM

	-DLLVM_TARGETS_TO_BUILD=ARM

If you’re compiling with GCC, you can use architecture options for your target,
and the compiler driver will detect everything that it needs:

	-DCMAKE_CXX_FLAGS='-march=armv7-a -mcpu=cortex-a9 -mfloat-abi=hard'

However, if you’re using Clang, the driver might not be up-to-date with your
specific Linux distribution, version or GCC layout, so you’ll need to fudge.

In addition to the ones above, you’ll also need:

	'-target arm-linux-gnueabihf' or whatever is the triple of your cross GCC.

	'--sysroot=/usr/arm-linux-gnueabihf', '--sysroot=/opt/gcc/arm-linux-gnueabihf'
or whatever is the location of your GCC’s sysroot (where /lib, /bin etc are).

	Appropriate use of -I and -L, depending on how the cross GCC is installed,
and where are the libraries and headers.

The TableGen options are required to compile it with the host compiler,
so you’ll need to compile LLVM (or at least llvm-tblgen) to your host
platform before you start. The CXX flags define the target, cpu (which in this case
defaults to fpu=VFP3 with NEON), and forcing the hard-float ABI. If you’re
using Clang as a cross-compiler, you will also have to set --sysroot
to make sure it picks the correct linker.

When using Clang, it’s important that you choose the triple to be identical
to the GCC triple and the sysroot. This will make it easier for Clang to
find the correct tools and include headers. But that won’t mean all headers and
libraries will be found. You’ll still need to use -I and -L to locate
those extra ones, depending on your distribution.

Most of the time, what you want is to have a native compiler to the
platform itself, but not others. So there’s rarely a point in compiling
all back-ends. For that reason, you should also set the
TARGETS_TO_BUILD to only build the back-end you’re targeting to.

You must set the CMAKE_INSTALL_PREFIX, otherwise a ninja install
will copy ARM binaries to your root filesystem, which is not what you
want.

Hacks

There are some bugs in current LLVM, which require some fiddling before
running CMake:

	If you’re using Clang as the cross-compiler, there is a problem in
the LLVM ARM back-end that is producing absolute relocations on
position-independent code (R_ARM_THM_MOVW_ABS_NC), so for now, you
should disable PIC:

-DLLVM_ENABLE_PIC=False

This is not a problem, since Clang/LLVM libraries are statically
linked anyway, it shouldn’t affect much.

	The ARM libraries won’t be installed in your system.
But the CMake prepare step, which checks for
dependencies, will check the host libraries, not the target
ones. Below there’s a list of some dependencies, but your project could
have more, or this document could be outdated. You’ll see the errors
while linking as an indication of that.

Debian based distros have a way to add multiarch, which adds
a new architecture and allows you to install packages for those
systems. See https://wiki.debian.org/Multiarch/HOWTO for more info.

But not all distros will have that, and possibly not an easy way to
install them in any anyway, so you’ll have to build/download
them separately.

A quick way of getting the libraries is to download them from
a distribution repository, like Debian (http://packages.debian.org/jessie/),
and download the missing libraries. Note that the libXXX
will have the shared objects (.so) and the libXXX-dev will
give you the headers and the static (.a) library. Just in
case, download both.

The ones you need for ARM are: libtinfo, zlib1g,
libxml2 and liblzma. In the Debian repository you’ll
find downloads for all architectures.

After you download and unpack all .deb packages, copy all
.so and .a to a directory, make the appropriate
symbolic links (if necessary), and add the relevant -L
and -I paths to -DCMAKE_CXX_FLAGS above.

Running CMake and Building

Finally, if you’re using your platform compiler, run:

$ cmake -G Ninja <source-dir> <options above>

If you’re using Clang as the cross-compiler, run:

$ CC='clang' CXX='clang++' cmake -G Ninja <source-dir> <options above>

If you have clang/clang++ on the path, it should just work, and special
Ninja files will be created in the build directory. I strongly suggest
you to run cmake on a separate build directory, not inside the
source tree.

To build, simply type:

$ ninja

It should automatically find out how many cores you have, what are
the rules that needs building and will build the whole thing.

You can’t run ninja check-all on this tree because the created
binaries are targeted to ARM, not x86_64.

Installing and Using

After the LLVM/Clang has built successfully, you should install it
via:

$ ninja install

which will create a sysroot on the install-dir. You can then tar
that directory into a binary with the full triple name (for easy
identification), like:

$ ln -sf <install-dir> arm-linux-gnueabihf-clang
$ tar zchf arm-linux-gnueabihf-clang.tar.gz arm-linux-gnueabihf-clang

If you copy that tarball to your target board, you’ll be able to use
it for running the test-suite, for example. Follow the guidelines at
http://llvm.org/docs/lnt/quickstart.html, unpack the tarball in the
test directory, and use options:

$./sandbox/bin/python sandbox/bin/lnt runtest nt \
 --sandbox sandbox \
 --test-suite `pwd`/test-suite \
 --cc `pwd`/arm-linux-gnueabihf-clang/bin/clang \
 --cxx `pwd`/arm-linux-gnueabihf-clang/bin/clang++

Remember to add the -jN options to lnt to the number of CPUs
on your board. Also, the path to your clang has to be absolute, so
you’ll need the pwd trick above.

LLVM Command Guide

The following documents are command descriptions for all of the LLVM tools.
These pages describe how to use the LLVM commands and what their options are.
Note that these pages do not describe all of the options available for all
tools. To get a complete listing, pass the --help (general options) or
--help-hidden (general and debugging options) arguments to the tool you are
interested in.

Basic Commands

	llvm-as - LLVM assembler

	llvm-dis - LLVM disassembler

	opt - LLVM optimizer

	llc - LLVM static compiler

	lli - directly execute programs from LLVM bitcode

	llvm-link - LLVM bitcode linker

	llvm-ar - LLVM archiver

	llvm-lib - LLVM lib.exe compatible library tool

	llvm-nm - list LLVM bitcode and object file’s symbol table

	llvm-config - Print LLVM compilation options

	llvm-diff - LLVM structural ‘diff’

	llvm-cov - emit coverage information

	llvm-profdata - Profile data tool

	llvm-stress - generate random .ll files

	llvm-symbolizer - convert addresses into source code locations

	llvm-dwarfdump - dump and verify DWARF debug information

	dsymutil - manipulate archived DWARF debug symbol files

	llvm-mca - LLVM Machine Code Analyzer

Debugging Tools

	bugpoint - automatic test case reduction tool

	llvm-extract - extract a function from an LLVM module

	llvm-bcanalyzer - LLVM bitcode analyzer

Developer Tools

	FileCheck - Flexible pattern matching file verifier

	tblgen - Target Description To C++ Code Generator

	lit - LLVM Integrated Tester

	llvm-build - LLVM Project Build Utility

	llvm-exegesis - LLVM Machine Instruction Benchmark

	llvm-pdbutil - PDB File forensics and diagnostics

	llvm-readobj - LLVM Object Reader

llvm-as - LLVM assembler

SYNOPSIS

llvm-as [options] [filename]

DESCRIPTION

llvm-as is the LLVM assembler. It reads a file containing human-readable
LLVM assembly language, translates it to LLVM bitcode, and writes the result
into a file or to standard output.

If filename is omitted or is -, then llvm-as reads its input from
standard input.

If an output file is not specified with the -o option, then
llvm-as sends its output to a file or standard output by following
these rules:

	If the input is standard input, then the output is standard output.

	If the input is a file that ends with .ll, then the output file is of the
same name, except that the suffix is changed to .bc.

	If the input is a file that does not end with the .ll suffix, then the
output file has the same name as the input file, except that the .bc
suffix is appended.

OPTIONS

	-f

	Enable binary output on terminals. Normally, llvm-as will refuse to
write raw bitcode output if the output stream is a terminal. With this option,
llvm-as will write raw bitcode regardless of the output device.

	-help

	Print a summary of command line options.

	-o filename

	Specify the output file name. If filename is -, then llvm-as
sends its output to standard output.

EXIT STATUS

If llvm-as succeeds, it will exit with 0. Otherwise, if an error occurs, it
will exit with a non-zero value.

SEE ALSO

llvm-dis|llvm-dis, gccas|gccas

llvm-dis - LLVM disassembler

SYNOPSIS

llvm-dis [options] [filename]

DESCRIPTION

The llvm-dis command is the LLVM disassembler. It takes an LLVM
bitcode file and converts it into human-readable LLVM assembly language.

If filename is omitted or specified as -, llvm-dis reads its
input from standard input.

If the input is being read from standard input, then llvm-dis
will send its output to standard output by default. Otherwise, the
output will be written to a file named after the input file, with
a .ll suffix added (any existing .bc suffix will first be
removed). You can override the choice of output file using the
-o option.

OPTIONS

-f

Enable binary output on terminals. Normally, llvm-dis will refuse to
write raw bitcode output if the output stream is a terminal. With this option,
llvm-dis will write raw bitcode regardless of the output device.

-help

Print a summary of command line options.

-o filename

Specify the output file name. If filename is -, then the output is sent
to standard output.

EXIT STATUS

If llvm-dis succeeds, it will exit with 0. Otherwise, if an error
occurs, it will exit with a non-zero value.

SEE ALSO

llvm-as|llvm-as

opt - LLVM optimizer

SYNOPSIS

opt [options] [filename]

DESCRIPTION

The opt command is the modular LLVM optimizer and analyzer. It
takes LLVM source files as input, runs the specified optimizations or analyses
on it, and then outputs the optimized file or the analysis results. The
function of opt depends on whether the -analyze option is
given.

When -analyze is specified, opt performs various analyses
of the input source. It will usually print the results on standard output, but
in a few cases, it will print output to standard error or generate a file with
the analysis output, which is usually done when the output is meant for another
program.

While -analyze is not given, opt attempts to produce an
optimized output file. The optimizations available via opt depend
upon what libraries were linked into it as well as any additional libraries
that have been loaded with the -load option. Use the -help
option to determine what optimizations you can use.

If filename is omitted from the command line or is “-“, opt
reads its input from standard input. Inputs can be in either the LLVM assembly
language format (.ll) or the LLVM bitcode format (.bc).

If an output filename is not specified with the -o option,
opt writes its output to the standard output.

OPTIONS

	
-f

	Enable binary output on terminals. Normally, opt will refuse to
write raw bitcode output if the output stream is a terminal. With this option,
opt will write raw bitcode regardless of the output device.

	
-help

	Print a summary of command line options.

	
-o <filename>

	Specify the output filename.

	
-S

	Write output in LLVM intermediate language (instead of bitcode).

	
-{passname}

	opt provides the ability to run any of LLVM’s optimization or
analysis passes in any order. The -help option lists all the passes
available. The order in which the options occur on the command line are the
order in which they are executed (within pass constraints).

	
-disable-inlining

	This option simply removes the inlining pass from the standard list.

	
-disable-opt

	This option is only meaningful when -std-link-opts is given. It
disables most passes.

	
-strip-debug

	This option causes opt to strip debug information from the module before
applying other optimizations. It is essentially the same as -strip
but it ensures that stripping of debug information is done first.

	
-verify-each

	This option causes opt to add a verify pass after every pass otherwise
specified on the command line (including -verify). This is useful
for cases where it is suspected that a pass is creating an invalid module but
it is not clear which pass is doing it.

	
-stats

	Print statistics.

	
-time-passes

	Record the amount of time needed for each pass and print it to standard
error.

	
-debug

	If this is a debug build, this option will enable debug printouts from passes
which use the LLVM_DEBUG() macro. See the LLVM Programmer’s Manual, section #DEBUG for more information.

	
-load=<plugin>

	Load the dynamic object plugin. This object should register new
optimization or analysis passes. Once loaded, the object will add new command
line options to enable various optimizations or analyses. To see the new
complete list of optimizations, use the -help and -load
options together. For example:

opt -load=plugin.so -help

	
-p

	Print module after each transformation.

EXIT STATUS

If opt succeeds, it will exit with 0. Otherwise, if an error
occurs, it will exit with a non-zero value.

llc - LLVM static compiler

SYNOPSIS

llc [options] [filename]

DESCRIPTION

The llc command compiles LLVM source inputs into assembly language
for a specified architecture. The assembly language output can then be passed
through a native assembler and linker to generate a native executable.

The choice of architecture for the output assembly code is automatically
determined from the input file, unless the -march option is used to
override the default.

OPTIONS

If filename is “-” or omitted, llc reads from standard input.
Otherwise, it will from filename. Inputs can be in either the LLVM assembly
language format (.ll) or the LLVM bitcode format (.bc).

If the -o option is omitted, then llc will send its output
to standard output if the input is from standard input. If the -o
option specifies “-“, then the output will also be sent to standard output.

If no -o option is specified and an input file other than “-” is
specified, then llc creates the output filename by taking the input
filename, removing any existing .bc extension, and adding a .s suffix.

Other llc options are described below.

End-user Options

	
-help

	Print a summary of command line options.

	
-O=uint

	Generate code at different optimization levels. These correspond to the
-O0, -O1, -O2, and -O3 optimization levels used by
clang.

	
-mtriple=<target triple>

	Override the target triple specified in the input file with the specified
string.

	
-march=<arch>

	Specify the architecture for which to generate assembly, overriding the target
encoded in the input file. See the output of llc -help for a list of
valid architectures. By default this is inferred from the target triple or
autodetected to the current architecture.

	
-mcpu=<cpuname>

	Specify a specific chip in the current architecture to generate code for.
By default this is inferred from the target triple and autodetected to
the current architecture. For a list of available CPUs, use:

llvm-as < /dev/null | llc -march=xyz -mcpu=help

	
-filetype=<output file type>

	Specify what kind of output llc should generated. Options are: asm
for textual assembly ('.s'), obj for native object files ('.o')
and null for not emitting anything (for performance testing).

Note that not all targets support all options.

	
-mattr=a1,+a2,-a3,...

	Override or control specific attributes of the target, such as whether SIMD
operations are enabled or not. The default set of attributes is set by the
current CPU. For a list of available attributes, use:

llvm-as < /dev/null | llc -march=xyz -mattr=help

	
--disable-fp-elim

	Disable frame pointer elimination optimization.

	
--disable-excess-fp-precision

	Disable optimizations that may produce excess precision for floating point.
Note that this option can dramatically slow down code on some systems
(e.g. X86).

	
--enable-no-infs-fp-math

	Enable optimizations that assume no Inf values.

	
--enable-no-nans-fp-math

	Enable optimizations that assume no NAN values.

	
--enable-unsafe-fp-math

	Enable optimizations that make unsafe assumptions about IEEE math (e.g. that
addition is associative) or may not work for all input ranges. These
optimizations allow the code generator to make use of some instructions which
would otherwise not be usable (such as fsin on X86).

	
--stats

	Print statistics recorded by code-generation passes.

	
--time-passes

	Record the amount of time needed for each pass and print a report to standard
error.

	
--load=<dso_path>

	Dynamically load dso_path (a path to a dynamically shared object) that
implements an LLVM target. This will permit the target name to be used with
the -march option so that code can be generated for that target.

	
-meabi=[default|gnu|4|5]

	Specify which EABI version should conform to. Valid EABI versions are gnu,
4 and 5. Default value (default) depends on the triple.

	
-stack-size-section

	Emit the .stack_sizes section which contains stack size metadata. The section
contains an array of pairs of function symbol values (pointer size) and stack
sizes (unsigned LEB128). The stack size values only include the space allocated
in the function prologue. Functions with dynamic stack allocations are not
included.

Tuning/Configuration Options

	
--print-machineinstrs

	Print generated machine code between compilation phases (useful for debugging).

	
--regalloc=<allocator>

	Specify the register allocator to use.
Valid register allocators are:

basic

Basic register allocator.

fast

Fast register allocator. It is the default for unoptimized code.

greedy

Greedy register allocator. It is the default for optimized code.

pbqp

Register allocator based on ‘Partitioned Boolean Quadratic Programming’.

	
--spiller=<spiller>

	Specify the spiller to use for register allocators that support it. Currently
this option is used only by the linear scan register allocator. The default
spiller is local. Valid spillers are:

simple

Simple spiller

local

Local spiller

Intel IA-32-specific Options

	
--x86-asm-syntax=[att|intel]

	Specify whether to emit assembly code in AT&T syntax (the default) or Intel
syntax.

EXIT STATUS

If llc succeeds, it will exit with 0. Otherwise, if an error
occurs, it will exit with a non-zero value.

SEE ALSO

lli

lli - directly execute programs from LLVM bitcode

SYNOPSIS

lli [options] [filename] [program args]

DESCRIPTION

lli directly executes programs in LLVM bitcode format. It takes a program
in LLVM bitcode format and executes it using a just-in-time compiler or an
interpreter.

lli is not an emulator. It will not execute IR of different architectures
and it can only interpret (or JIT-compile) for the host architecture.

The JIT compiler takes the same arguments as other tools, like llc,
but they don’t necessarily work for the interpreter.

If filename is not specified, then lli reads the LLVM bitcode for the
program from standard input.

The optional args specified on the command line are passed to the program as
arguments.

GENERAL OPTIONS

	
-fake-argv0=executable

	Override the argv[0] value passed into the executing program.

	
-force-interpreter={false,true}

	If set to true, use the interpreter even if a just-in-time compiler is available
for this architecture. Defaults to false.

	
-help

	Print a summary of command line options.

	
-load=pluginfilename

	Causes lli to load the plugin (shared object) named pluginfilename and use
it for optimization.

	
-stats

	Print statistics from the code-generation passes. This is only meaningful for
the just-in-time compiler, at present.

	
-time-passes

	Record the amount of time needed for each code-generation pass and print it to
standard error.

	
-version

	Print out the version of lli and exit without doing anything else.

TARGET OPTIONS

	
-mtriple=target triple

	Override the target triple specified in the input bitcode file with the
specified string. This may result in a crash if you pick an
architecture which is not compatible with the current system.

	
-march=arch

	Specify the architecture for which to generate assembly, overriding the target
encoded in the bitcode file. See the output of llc -help for a list of
valid architectures. By default this is inferred from the target triple or
autodetected to the current architecture.

	
-mcpu=cpuname

	Specify a specific chip in the current architecture to generate code for.
By default this is inferred from the target triple and autodetected to
the current architecture. For a list of available CPUs, use:
llvm-as < /dev/null | llc -march=xyz -mcpu=help

	
-mattr=a1,+a2,-a3,...

	Override or control specific attributes of the target, such as whether SIMD
operations are enabled or not. The default set of attributes is set by the
current CPU. For a list of available attributes, use:
llvm-as < /dev/null | llc -march=xyz -mattr=help

FLOATING POINT OPTIONS

	
-disable-excess-fp-precision

	Disable optimizations that may increase floating point precision.

	
-enable-no-infs-fp-math

	Enable optimizations that assume no Inf values.

	
-enable-no-nans-fp-math

	Enable optimizations that assume no NAN values.

	
-enable-unsafe-fp-math

	Causes lli to enable optimizations that may decrease floating point
precision.

	
-soft-float

	Causes lli to generate software floating point library calls instead of
equivalent hardware instructions.

CODE GENERATION OPTIONS

	
-code-model=model

	Choose the code model from:

default: Target default code model
small: Small code model
kernel: Kernel code model
medium: Medium code model
large: Large code model

	
-disable-post-RA-scheduler

	Disable scheduling after register allocation.

	
-disable-spill-fusing

	Disable fusing of spill code into instructions.

	
-jit-enable-eh

	Exception handling should be enabled in the just-in-time compiler.

	
-join-liveintervals

	Coalesce copies (default=true).

	
-nozero-initialized-in-bss

	Don’t place zero-initialized symbols into the BSS section.

	
-pre-RA-sched=scheduler

	Instruction schedulers available (before register allocation):

=default: Best scheduler for the target
=none: No scheduling: breadth first sequencing
=simple: Simple two pass scheduling: minimize critical path and maximize processor utilization
=simple-noitin: Simple two pass scheduling: Same as simple except using generic latency
=list-burr: Bottom-up register reduction list scheduling
=list-tdrr: Top-down register reduction list scheduling
=list-td: Top-down list scheduler -print-machineinstrs - Print generated machine code

	
-regalloc=allocator

	Register allocator to use (default=linearscan)

=bigblock: Big-block register allocator
=linearscan: linear scan register allocator =local - local register allocator
=simple: simple register allocator

	
-relocation-model=model

	Choose relocation model from:

=default: Target default relocation model
=static: Non-relocatable code =pic - Fully relocatable, position independent code
=dynamic-no-pic: Relocatable external references, non-relocatable code

	
-spiller

	Spiller to use (default=local)

=simple: simple spiller
=local: local spiller

	
-x86-asm-syntax=syntax

	Choose style of code to emit from X86 backend:

=att: Emit AT&T-style assembly
=intel: Emit Intel-style assembly

EXIT STATUS

If lli fails to load the program, it will exit with an exit code of 1.
Otherwise, it will return the exit code of the program it executes.

SEE ALSO

llc

llvm-link - LLVM bitcode linker

SYNOPSIS

llvm-link [options] filename …

DESCRIPTION

llvm-link takes several LLVM bitcode files and links them together
into a single LLVM bitcode file. It writes the output file to standard output,
unless the -o option is used to specify a filename.

OPTIONS

	
-f

	Enable binary output on terminals. Normally, llvm-link will refuse
to write raw bitcode output if the output stream is a terminal. With this
option, llvm-link will write raw bitcode regardless of the output
device.

	
-o filename

	Specify the output file name. If filename is “-“, then
llvm-link will write its output to standard output.

	
-S

	Write output in LLVM intermediate language (instead of bitcode).

	
-d

	If specified, llvm-link prints a human-readable version of the
output bitcode file to standard error.

	
-help

	Print a summary of command line options.

	
-v

	Verbose mode. Print information about what llvm-link is doing.
This typically includes a message for each bitcode file linked in and for each
library found.

EXIT STATUS

If llvm-link succeeds, it will exit with 0. Otherwise, if an error
occurs, it will exit with a non-zero value.

llvm-ar - LLVM archiver

SYNOPSIS

llvm-ar [-]{dmpqrtx}[Rabfikou] [relpos] [count] <archive> [files…]

DESCRIPTION

The llvm-ar command is similar to the common Unix utility, ar. It
archives several files together into a single file. The intent for this is
to produce archive libraries by LLVM bitcode that can be linked into an
LLVM program. However, the archive can contain any kind of file. By default,
llvm-ar generates a symbol table that makes linking faster because
only the symbol table needs to be consulted, not each individual file member
of the archive.

The llvm-ar command can be used to read SVR4, GNU and BSD style archive
files. However, right now it can only write in the GNU format. If an
SVR4 or BSD style archive is used with the r (replace) or q (quick
update) operations, the archive will be reconstructed in GNU format.

Here’s where llvm-ar departs from previous ar implementations:

Symbol Table

Since llvm-ar supports bitcode files. The symbol table it creates
is in GNU format and includes both native and bitcode files.

Long Paths

Currently llvm-ar can read GNU and BSD long file names, but only writes
archives with the GNU format.

OPTIONS

The options to llvm-ar are compatible with other ar implementations.
However, there are a few modifiers (R) that are not found in other ar
implementations. The options to llvm-ar specify a single basic operation to
perform on the archive, a variety of modifiers for that operation, the name of
the archive file, and an optional list of file names. These options are used to
determine how llvm-ar should process the archive file.

The Operations and Modifiers are explained in the sections below. The minimal
set of options is at least one operator and the name of the archive. Typically
archive files end with a .a suffix, but this is not required. Following
the archive-name comes a list of files that indicate the specific members
of the archive to operate on. If the files option is not specified, it
generally means either “none” or “all” members, depending on the operation.

Operations

d

Delete files from the archive. No modifiers are applicable to this operation.
The files options specify which members should be removed from the
archive. It is not an error if a specified file does not appear in the archive.
If no files are specified, the archive is not modified.

m[abi]

Move files from one location in the archive to another. The a, b, and
i modifiers apply to this operation. The files will all be moved
to the location given by the modifiers. If no modifiers are used, the files
will be moved to the end of the archive. If no files are specified, the
archive is not modified.

p

Print files to the standard output. This operation simply prints the
files indicated to the standard output. If no files are
specified, the entire archive is printed. Printing bitcode files is
ill-advised as they might confuse your terminal settings. The p
operation never modifies the archive.

q

Quickly append files to the end of the archive. This operation quickly adds the
files to the archive without checking for duplicates that should be
removed first. If no files are specified, the archive is not modified.
Because of the way that llvm-ar constructs the archive file, its dubious
whether the q operation is any faster than the r operation.

r[abu]

Replace or insert file members. The a, b, and u
modifiers apply to this operation. This operation will replace existing
files or insert them at the end of the archive if they do not exist. If no
files are specified, the archive is not modified.

t[v]

Print the table of contents. Without any modifiers, this operation just prints
the names of the members to the standard output. With the v modifier,
llvm-ar also prints out the file type (B=bitcode, S=symbol
table, blank=regular file), the permission mode, the owner and group, the
size, and the date. If any files are specified, the listing is only for
those files. If no files are specified, the table of contents for the
whole archive is printed.

x[oP]

Extract archive members back to files. The o modifier applies to this
operation. This operation retrieves the indicated files from the archive
and writes them back to the operating system’s file system. If no
files are specified, the entire archive is extract.

Modifiers (operation specific)

The modifiers below are specific to certain operations. See the Operations
section (above) to determine which modifiers are applicable to which operations.

[a]

When inserting or moving member files, this option specifies the destination of
the new files as being after the relpos member. If relpos is not found,
the files are placed at the end of the archive.

[b]

When inserting or moving member files, this option specifies the destination of
the new files as being before the relpos member. If relpos is not
found, the files are placed at the end of the archive. This modifier is
identical to the i modifier.

[i]

A synonym for the b option.

[o]

When extracting files, this option will cause llvm-ar to preserve the
original modification times of the files it writes.

[u]

When replacing existing files in the archive, only replace those files that have
a time stamp than the time stamp of the member in the archive.

Modifiers (generic)

The modifiers below may be applied to any operation.

[c]

For all operations, llvm-ar will always create the archive if it doesn’t
exist. Normally, llvm-ar will print a warning message indicating that the
archive is being created. Using this modifier turns off that warning.

[s]

This modifier requests that an archive index (or symbol table) be added to the
archive. This is the default mode of operation. The symbol table will contain
all the externally visible functions and global variables defined by all the
bitcode files in the archive.

[S]

This modifier is the opposite of the s modifier. It instructs llvm-ar to
not build the symbol table. If both s and S are used, the last modifier to
occur in the options will prevail.

[v]

This modifier instructs llvm-ar to be verbose about what it is doing. Each
editing operation taken against the archive will produce a line of output saying
what is being done.

STANDARDS

The llvm-ar utility is intended to provide a superset of the IEEE Std 1003.2
(POSIX.2) functionality for ar. llvm-ar can read both SVR4 and BSD4.4 (or
Mac OS X) archives. If the f modifier is given to the x or r operations
then llvm-ar will write SVR4 compatible archives. Without this modifier,
llvm-ar will write BSD4.4 compatible archives that have long names
immediately after the header and indicated using the “#1/ddd” notation for the
name in the header.

FILE FORMAT

The file format for LLVM Archive files is similar to that of BSD 4.4 or Mac OSX
archive files. In fact, except for the symbol table, the ar commands on those
operating systems should be able to read LLVM archive files. The details of the
file format follow.

Each archive begins with the archive magic number which is the eight printable
characters “!<arch>n” where n represents the newline character (0x0A).
Following the magic number, the file is composed of even length members that
begin with an archive header and end with a n padding character if necessary
(to make the length even). Each file member is composed of a header (defined
below), an optional newline-terminated “long file name” and the contents of
the file.

The fields of the header are described in the items below. All fields of the
header contain only ASCII characters, are left justified and are right padded
with space characters.

name - char[16]

This field of the header provides the name of the archive member. If the name is
longer than 15 characters or contains a slash (/) character, then this field
contains #1/nnn where nnn provides the length of the name and the #1/
is literal. In this case, the actual name of the file is provided in the nnn
bytes immediately following the header. If the name is 15 characters or less, it
is contained directly in this field and terminated with a slash (/) character.

date - char[12]

This field provides the date of modification of the file in the form of a
decimal encoded number that provides the number of seconds since the epoch
(since 00:00:00 Jan 1, 1970) per Posix specifications.

uid - char[6]

This field provides the user id of the file encoded as a decimal ASCII string.
This field might not make much sense on non-Unix systems. On Unix, it is the
same value as the st_uid field of the stat structure returned by the stat(2)
operating system call.

gid - char[6]

This field provides the group id of the file encoded as a decimal ASCII string.
This field might not make much sense on non-Unix systems. On Unix, it is the
same value as the st_gid field of the stat structure returned by the stat(2)
operating system call.

mode - char[8]

This field provides the access mode of the file encoded as an octal ASCII
string. This field might not make much sense on non-Unix systems. On Unix, it
is the same value as the st_mode field of the stat structure returned by the
stat(2) operating system call.

size - char[10]

This field provides the size of the file, in bytes, encoded as a decimal ASCII
string.

fmag - char[2]

This field is the archive file member magic number. Its content is always the
two characters back tick (0x60) and newline (0x0A). This provides some measure
utility in identifying archive files that have been corrupted.

offset - vbr encoded 32-bit integer

The offset item provides the offset into the archive file where the bitcode
member is stored that is associated with the symbol. The offset value is 0
based at the start of the first “normal” file member. To derive the actual
file offset of the member, you must add the number of bytes occupied by the file
signature (8 bytes) and the symbol tables. The value of this item is encoded
using variable bit rate encoding to reduce the size of the symbol table.
Variable bit rate encoding uses the high bit (0x80) of each byte to indicate
if there are more bytes to follow. The remaining 7 bits in each byte carry bits
from the value. The final byte does not have the high bit set.

length - vbr encoded 32-bit integer

The length item provides the length of the symbol that follows. Like this
offset item, the length is variable bit rate encoded.

symbol - character array

The symbol item provides the text of the symbol that is associated with the
offset. The symbol is not terminated by any character. Its length is provided
by the length field. Note that is allowed (but unwise) to use non-printing
characters (even 0x00) in the symbol. This allows for multiple encodings of
symbol names.

EXIT STATUS

If llvm-ar succeeds, it will exit with 0. A usage error, results
in an exit code of 1. A hard (file system typically) error results in an
exit code of 2. Miscellaneous or unknown errors result in an
exit code of 3.

SEE ALSO

ar(1)

llvm-lib - LLVM lib.exe compatible library tool

SYNOPSIS

llvm-lib [/libpath:<path>] [/out:<output>] [/llvmlibthin]
[/ignore] [/machine] [/nologo] [files…]

DESCRIPTION

The llvm-lib command is intended to be a lib.exe compatible
tool. See https://msdn.microsoft.com/en-us/library/7ykb2k5f for the
general description.

llvm-lib has the following extensions:

	Bitcode files in symbol tables.
llvm-lib includes symbols from both bitcode files and regular
object files in the symbol table.

	Creating thin archives.
The /llvmlibthin option causes llvm-lib to create thin archive
that contain only the symbol table and the header for the various
members. These files are much smaller, but are not compatible with
link.exe (lld can handle them).

llvm-nm - list LLVM bitcode and object file’s symbol table

SYNOPSIS

llvm-nm [options] [filenames…]

DESCRIPTION

The llvm-nm utility lists the names of symbols from the LLVM bitcode
files, object files, or ar archives containing them, named on the
command line. Each symbol is listed along with some simple information about
its provenance. If no file name is specified, or - is used as a file name,
llvm-nm will process a file on its standard input stream.

llvm-nm’s default output format is the traditional BSD nm
output format. Each such output record consists of an (optional) 8-digit
hexadecimal address, followed by a type code character, followed by a name, for
each symbol. One record is printed per line; fields are separated by spaces.
When the address is omitted, it is replaced by 8 spaces.

Type code characters currently supported, and their meanings, are as follows:

U

Named object is referenced but undefined in this bitcode file

C

Common (multiple definitions link together into one def)

W

Weak reference (multiple definitions link together into zero or one definitions)

t

Local function (text) object

T

Global function (text) object

d

Local data object

D

Global data object

?

Something unrecognizable

Because LLVM bitcode files typically contain objects that are not considered to
have addresses until they are linked into an executable image or dynamically
compiled “just-in-time”, llvm-nm does not print an address for any
symbol in an LLVM bitcode file, even symbols which are defined in the bitcode
file.

OPTIONS

	
-B (default)

	Use BSD output format. Alias for –format=bsd.

	
-P

	Use POSIX.2 output format. Alias for –format=posix.

	
--debug-syms, -a

	Show all symbols, even debugger only.

	
--defined-only

	Print only symbols defined in this file (as opposed to
symbols which may be referenced by objects in this file, but not
defined in this file.)

	
--dynamic, -D

	Display dynamic symbols instead of normal symbols.

	
--extern-only, -g

	Print only symbols whose definitions are external; that is, accessible
from other files.

	
--no-weak, -W

	Don’t print any weak symbols in the output.

	
--format=format, -f format

	Select an output format; format may be sysv, posix, or bsd. The default
is bsd.

	
-help

	Print a summary of command-line options and their meanings.

	
--no-sort, -p

	Shows symbols in order encountered.

	
--numeric-sort, -n, -v

	Sort symbols by address.

	
--print-file-name, -A, -o

	Precede each symbol with the file it came from.

	
--print-size, -S

	Show symbol size instead of address.

	
--size-sort

	Sort symbols by size.

	
--undefined-only, -u

	Print only symbols referenced but not defined in this file.

	
--radix=RADIX, -t

	Specify the radix of the symbol address(es). Values accepted d(decimal),
x(hexadecomal) and o(octal).

BUGS

	llvm-nm does not support the full set of arguments that GNU
nm does.

EXIT STATUS

llvm-nm exits with an exit code of zero.

SEE ALSO

llvm-dis, ar(1), nm(1)

llvm-config - Print LLVM compilation options

SYNOPSIS

llvm-config option [components…]

DESCRIPTION

llvm-config makes it easier to build applications that use LLVM. It can
print the compiler flags, linker flags and object libraries needed to link
against LLVM.

EXAMPLES

To link against the JIT:

g++ `llvm-config --cxxflags` -o HowToUseJIT.o -c HowToUseJIT.cpp
g++ `llvm-config --ldflags` -o HowToUseJIT HowToUseJIT.o \
 `llvm-config --libs engine bcreader scalaropts`

OPTIONS

–version

Print the version number of LLVM.

-help

Print a summary of llvm-config arguments.

–prefix

Print the installation prefix for LLVM.

–src-root

Print the source root from which LLVM was built.

–obj-root

Print the object root used to build LLVM.

–bindir

Print the installation directory for LLVM binaries.

–includedir

Print the installation directory for LLVM headers.

–libdir

Print the installation directory for LLVM libraries.

–cxxflags

Print the C++ compiler flags needed to use LLVM headers.

–ldflags

Print the flags needed to link against LLVM libraries.

–libs

Print all the libraries needed to link against the specified LLVM
components, including any dependencies.

–libnames

Similar to –libs, but prints the bare filenames of the libraries
without -l or pathnames. Useful for linking against a not-yet-installed
copy of LLVM.

–libfiles

Similar to –libs, but print the full path to each library file. This is
useful when creating makefile dependencies, to ensure that a tool is relinked if
any library it uses changes.

–components

Print all valid component names.

–targets-built

Print the component names for all targets supported by this copy of LLVM.

–build-mode

Print the build mode used when LLVM was built (e.g. Debug or Release)

COMPONENTS

To print a list of all available components, run llvm-config
–components. In most cases, components correspond directly to LLVM
libraries. Useful “virtual” components include:

all

Includes all LLVM libraries. The default if no components are specified.

backend

Includes either a native backend or the C backend.

engine

Includes either a native JIT or the bitcode interpreter.

EXIT STATUS

If llvm-config succeeds, it will exit with 0. Otherwise, if an error
occurs, it will exit with a non-zero value.

llvm-diff - LLVM structural ‘diff’

SYNOPSIS

llvm-diff [options] module 1 module 2 [global name …]

DESCRIPTION

llvm-diff compares the structure of two LLVM modules, primarily
focusing on differences in function definitions. Insignificant
differences, such as changes in the ordering of globals or in the
names of local values, are ignored.

An input module will be interpreted as an assembly file if its name
ends in ‘.ll’; otherwise it will be read in as a bitcode file.

If a list of global names is given, just the values with those names
are compared; otherwise, all global values are compared, and
diagnostics are produced for globals which only appear in one module
or the other.

llvm-diff compares two functions by comparing their basic blocks,
beginning with the entry blocks. If the terminators seem to match,
then the corresponding successors are compared; otherwise they are
ignored. This algorithm is very sensitive to changes in control flow,
which tend to stop any downstream changes from being detected.

llvm-diff is intended as a debugging tool for writers of LLVM
passes and frontends. It does not have a stable output format.

EXIT STATUS

If llvm-diff finds no differences between the modules, it will exit
with 0 and produce no output. Otherwise it will exit with a non-zero
value.

BUGS

Many important differences, like changes in linkage or function
attributes, are not diagnosed.

Changes in memory behavior (for example, coalescing loads) can cause
massive detected differences in blocks.

llvm-cov - emit coverage information

SYNOPSIS

llvm-cov command [args…]

DESCRIPTION

The llvm-cov tool shows code coverage information for
programs that are instrumented to emit profile data. It can be used to
work with gcov-style coverage or with clang’s instrumentation
based profiling.

If the program is invoked with a base name of gcov, it will behave as if
the llvm-cov gcov command were called. Otherwise, a command should
be provided.

COMMANDS

	gcov

	show

	report

	export

GCOV COMMAND

SYNOPSIS

llvm-cov gcov [options] SOURCEFILE

DESCRIPTION

The llvm-cov gcov tool reads code coverage data files and displays
the coverage information for a specified source file. It is compatible with the
gcov tool from version 4.2 of GCC and may also be compatible with some
later versions of gcov.

To use llvm-cov gcov, you must first build an instrumented version
of your application that collects coverage data as it runs. Compile with the
-fprofile-arcs and -ftest-coverage options to add the
instrumentation. (Alternatively, you can use the --coverage option, which
includes both of those other options.) You should compile with debugging
information (-g) and without optimization (-O0); otherwise, the
coverage data cannot be accurately mapped back to the source code.

At the time you compile the instrumented code, a .gcno data file will be
generated for each object file. These .gcno files contain half of the
coverage data. The other half of the data comes from .gcda files that are
generated when you run the instrumented program, with a separate .gcda
file for each object file. Each time you run the program, the execution counts
are summed into any existing .gcda files, so be sure to remove any old
files if you do not want their contents to be included.

By default, the .gcda files are written into the same directory as the
object files, but you can override that by setting the GCOV_PREFIX and
GCOV_PREFIX_STRIP environment variables. The GCOV_PREFIX_STRIP
variable specifies a number of directory components to be removed from the
start of the absolute path to the object file directory. After stripping those
directories, the prefix from the GCOV_PREFIX variable is added. These
environment variables allow you to run the instrumented program on a machine
where the original object file directories are not accessible, but you will
then need to copy the .gcda files back to the object file directories
where llvm-cov gcov expects to find them.

Once you have generated the coverage data files, run llvm-cov gcov
for each main source file where you want to examine the coverage results. This
should be run from the same directory where you previously ran the
compiler. The results for the specified source file are written to a file named
by appending a .gcov suffix. A separate output file is also created for
each file included by the main source file, also with a .gcov suffix added.

The basic content of an .gcov output file is a copy of the source file with
an execution count and line number prepended to every line. The execution
count is shown as - if a line does not contain any executable code. If
a line contains code but that code was never executed, the count is displayed
as #####.

OPTIONS

	
-a, --all-blocks

	Display all basic blocks. If there are multiple blocks for a single line of
source code, this option causes llvm-cov to show the count for each block
instead of just one count for the entire line.

	
-b, --branch-probabilities

	Display conditional branch probabilities and a summary of branch information.

	
-c, --branch-counts

	Display branch counts instead of probabilities (requires -b).

	
-f, --function-summaries

	Show a summary of coverage for each function instead of just one summary for
an entire source file.

	
--help

	Display available options (–help-hidden for more).

	
-l, --long-file-names

	For coverage output of files included from the main source file, add the
main file name followed by ## as a prefix to the output file names. This
can be combined with the –preserve-paths option to use complete paths for
both the main file and the included file.

	
-n, --no-output

	Do not output any .gcov files. Summary information is still
displayed.

	
-o=<DIR|FILE>, --object-directory=<DIR>, --object-file=<FILE>

	Find objects in DIR or based on FILE’s path. If you specify a particular
object file, the coverage data files are expected to have the same base name
with .gcno and .gcda extensions. If you specify a directory, the
files are expected in that directory with the same base name as the source
file.

	
-p, --preserve-paths

	Preserve path components when naming the coverage output files. In addition
to the source file name, include the directories from the path to that
file. The directories are separate by # characters, with . directories
removed and .. directories replaced by ^ characters. When used with
the –long-file-names option, this applies to both the main file name and the
included file name.

	
-u, --unconditional-branches

	Include unconditional branches in the output for the –branch-probabilities
option.

	
-version

	Display the version of llvm-cov.

EXIT STATUS

llvm-cov gcov returns 1 if it cannot read input files. Otherwise,
it exits with zero.

SHOW COMMAND

SYNOPSIS

llvm-cov show [options] -instr-profile PROFILE BIN [-object BIN,…] [[-object BIN]] [SOURCES]

DESCRIPTION

The llvm-cov show command shows line by line coverage of the
binaries BIN,… using the profile data PROFILE. It can optionally be
filtered to only show the coverage for the files listed in SOURCES.

To use llvm-cov show, you need a program that is compiled with
instrumentation to emit profile and coverage data. To build such a program with
clang use the -fprofile-instr-generate and -fcoverage-mapping
flags. If linking with the clang driver, pass -fprofile-instr-generate
to the link stage to make sure the necessary runtime libraries are linked in.

The coverage information is stored in the built executable or library itself,
and this is what you should pass to llvm-cov show as a BIN
argument. The profile data is generated by running this instrumented program
normally. When the program exits it will write out a raw profile file,
typically called default.profraw, which can be converted to a format that
is suitable for the PROFILE argument using the llvm-profdata merge
tool.

OPTIONS

	
-show-line-counts

	Show the execution counts for each line. Defaults to true, unless another
-show option is used.

	
-show-expansions

	Expand inclusions, such as preprocessor macros or textual inclusions, inline
in the display of the source file. Defaults to false.

	
-show-instantiations

	For source regions that are instantiated multiple times, such as templates in
C++, show each instantiation separately as well as the combined summary.
Defaults to true.

	
-show-regions

	Show the execution counts for each region by displaying a caret that points to
the character where the region starts. Defaults to false.

	
-show-line-counts-or-regions

	Show the execution counts for each line if there is only one region on the
line, but show the individual regions if there are multiple on the line.
Defaults to false.

	
-use-color

	Enable or disable color output. By default this is autodetected.

	
-arch=[*NAMES*]

	Specify a list of architectures such that the Nth entry in the list
corresponds to the Nth specified binary. If the covered object is a universal
binary, this specifies the architecture to use. It is an error to specify an
architecture that is not included in the universal binary or to use an
architecture that does not match a non-universal binary.

	
-name=<NAME>

	Show code coverage only for functions with the given name.

	
-name-whitelist=<FILE>

	Show code coverage only for functions listed in the given file. Each line in
the file should start with whitelist_fun:, immediately followed by the name
of the function to accept. This name can be a wildcard expression.

	
-name-regex=<PATTERN>

	Show code coverage only for functions that match the given regular expression.

	
-ignore-filename-regex=<PATTERN>

	Skip source code files with file paths that match the given regular expression.

	
-format=<FORMAT>

	Use the specified output format. The supported formats are: “text”, “html”.

	
-tab-size=<TABSIZE>

	Replace tabs with <TABSIZE> spaces when preparing reports. Currently, this is
only supported for the html format.

	
-output-dir=PATH

	Specify a directory to write coverage reports into. If the directory does not
exist, it is created. When used in function view mode (i.e when -name or
-name-regex are used to select specific functions), the report is written to
PATH/functions.EXTENSION. When used in file view mode, a report for each file
is written to PATH/REL_PATH_TO_FILE.EXTENSION.

	
-Xdemangler=<TOOL>|<TOOL-OPTION>

	Specify a symbol demangler. This can be used to make reports more
human-readable. This option can be specified multiple times to supply
arguments to the demangler (e.g -Xdemangler c++filt -Xdemangler -n for C++).
The demangler is expected to read a newline-separated list of symbols from
stdin and write a newline-separated list of the same length to stdout.

	
-num-threads=N, -j=N

	Use N threads to write file reports (only applicable when -output-dir is
specified). When N=0, llvm-cov auto-detects an appropriate number of threads to
use. This is the default.

	
-line-coverage-gt=<N>

	Show code coverage only for functions with line coverage greater than the
given threshold.

	
-line-coverage-lt=<N>

	Show code coverage only for functions with line coverage less than the given
threshold.

	
-region-coverage-gt=<N>

	Show code coverage only for functions with region coverage greater than the
given threshold.

	
-region-coverage-lt=<N>

	Show code coverage only for functions with region coverage less than the given
threshold.

	
-path-equivalence=<from>,<to>

	Map the paths in the coverage data to local source file paths. This allows you
to generate the coverage data on one machine, and then use llvm-cov on a
different machine where you have the same files on a different path.

REPORT COMMAND

SYNOPSIS

llvm-cov report [options] -instr-profile PROFILE BIN [-object BIN,…] [[-object BIN]] [SOURCES]

DESCRIPTION

The llvm-cov report command displays a summary of the coverage of
the binaries BIN,… using the profile data PROFILE. It can optionally be
filtered to only show the coverage for the files listed in SOURCES.

If no source files are provided, a summary line is printed for each file in the
coverage data. If any files are provided, summaries can be shown for each
function in the listed files if the -show-functions option is enabled.

For information on compiling programs for coverage and generating profile data,
see SHOW COMMAND.

OPTIONS

	
-use-color[=VALUE]

	Enable or disable color output. By default this is autodetected.

	
-arch=<name>

	If the covered binary is a universal binary, select the architecture to use.
It is an error to specify an architecture that is not included in the
universal binary or to use an architecture that does not match a
non-universal binary.

	
-show-functions

	Show coverage summaries for each function. Defaults to false.

	
-show-instantiation-summary

	Show statistics for all function instantiations. Defaults to false.

	
-ignore-filename-regex=<PATTERN>

	Skip source code files with file paths that match the given regular expression.

EXPORT COMMAND

SYNOPSIS

llvm-cov export [options] -instr-profile PROFILE BIN [-object BIN,…] [[-object BIN]] [SOURCES]

DESCRIPTION

The llvm-cov export command exports regions, functions, expansions,
and summaries of the coverage of the binaries BIN,… using the profile data
PROFILE as JSON. It can optionally be filtered to only export the coverage
for the files listed in SOURCES.

For information on compiling programs for coverage and generating profile data,
see SHOW COMMAND.

OPTIONS

	
-arch=<name>

	If the covered binary is a universal binary, select the architecture to use.
It is an error to specify an architecture that is not included in the
universal binary or to use an architecture that does not match a
non-universal binary.

	
-summary-only

	Export only summary information for each file in the coverage data. This mode
will not export coverage information for smaller units such as individual
functions or regions. The result will be the same as produced by :program:
llvm-cov report command, but presented in JSON format rather than text.

	
-ignore-filename-regex=<PATTERN>

	Skip source code files with file paths that match the given regular expression.

llvm-profdata - Profile data tool

SYNOPSIS

llvm-profdata command [args…]

DESCRIPTION

The llvm-profdata tool is a small utility for working with profile
data files.

COMMANDS

	merge

	show

MERGE

SYNOPSIS

llvm-profdata merge [options] [filename…]

DESCRIPTION

llvm-profdata merge takes several profile data files
generated by PGO instrumentation and merges them together into a single
indexed profile data file.

By default profile data is merged without modification. This means that the
relative importance of each input file is proportional to the number of samples
or counts it contains. In general, the input from a longer training run will be
interpreted as relatively more important than a shorter run. Depending on the
nature of the training runs it may be useful to adjust the weight given to each
input file by using the -weighted-input option.

Profiles passed in via -weighted-input, -input-files, or via positional
arguments are processed once for each time they are seen.

OPTIONS

	
-help

	Print a summary of command line options.

	
-output=output, -o=output

	Specify the output file name. Output cannot be - as the resulting
indexed profile data can’t be written to standard output.

	
-weighted-input=weight,filename

	Specify an input file name along with a weight. The profile counts of the
supplied filename will be scaled (multiplied) by the supplied
weight, where where weight is a decimal integer >= 1.
Input files specified without using this option are assigned a default
weight of 1. Examples are shown below.

	
-input-files=path, -f=path

	Specify a file which contains a list of files to merge. The entries in this
file are newline-separated. Lines starting with ‘#’ are skipped. Entries may
be of the form <filename> or <weight>,<filename>.

	
-instr (default)

	Specify that the input profile is an instrumentation-based profile.

	
-sample

	Specify that the input profile is a sample-based profile.

The format of the generated file can be generated in one of three ways:

	
-binary (default)

	

Emit the profile using a binary encoding. For instrumentation-based profile
the output format is the indexed binary format.

	
-text

	

Emit the profile in text mode. This option can also be used with both
sample-based and instrumentation-based profile. When this option is used
the profile will be dumped in the text format that is parsable by the profile
reader.

	
-gcc

	

Emit the profile using GCC’s gcov format (Not yet supported).

	
-sparse[=true|false]

	Do not emit function records with 0 execution count. Can only be used in
conjunction with -instr. Defaults to false, since it can inhibit compiler
optimization during PGO.

	
-num-threads=N, -j=N

	Use N threads to perform profile merging. When N=0, llvm-profdata auto-detects
an appropriate number of threads to use. This is the default.

EXAMPLES

Basic Usage

Merge three profiles:

llvm-profdata merge foo.profdata bar.profdata baz.profdata -output merged.profdata

Weighted Input

The input file foo.profdata is especially important, multiply its counts by 10:

llvm-profdata merge -weighted-input=10,foo.profdata bar.profdata baz.profdata -output merged.profdata

Exactly equivalent to the previous invocation (explicit form; useful for programmatic invocation):

llvm-profdata merge -weighted-input=10,foo.profdata -weighted-input=1,bar.profdata -weighted-input=1,baz.profdata -output merged.profdata

SHOW

SYNOPSIS

llvm-profdata show [options] [filename]

DESCRIPTION

llvm-profdata show takes a profile data file and displays the
information about the profile counters for this file and
for any of the specified function(s).

If filename is omitted or is -, then llvm-profdata show reads its
input from standard input.

OPTIONS

	
-all-functions

	Print details for every function.

	
-counts

	Print the counter values for the displayed functions.

	
-function=string

	Print details for a function if the function’s name contains the given string.

	
-help

	Print a summary of command line options.

	
-output=output, -o=output

	Specify the output file name. If output is - or it isn’t specified,
then the output is sent to standard output.

	
-instr (default)

	Specify that the input profile is an instrumentation-based profile.

	
-text

	Instruct the profile dumper to show profile counts in the text format of the
instrumentation-based profile data representation. By default, the profile
information is dumped in a more human readable form (also in text) with
annotations.

	
-topn=n

	Instruct the profile dumper to show the top n functions with the
hottest basic blocks in the summary section. By default, the topn functions
are not dumped.

	
-sample

	Specify that the input profile is a sample-based profile.

	
-memop-sizes

	Show the profiled sizes of the memory intrinsic calls for shown functions.

EXIT STATUS

llvm-profdata returns 1 if the command is omitted or is invalid,
if it cannot read input files, or if there is a mismatch between their data.

llvm-stress - generate random .ll files

SYNOPSIS

llvm-stress [-size=filesize] [-seed=initialseed] [-o=outfile]

DESCRIPTION

The llvm-stress tool is used to generate random .ll files that
can be used to test different components of LLVM.

OPTIONS

	
-o filename

	Specify the output filename.

	
-size size

	Specify the size of the generated .ll file.

	
-seed seed

	Specify the seed to be used for the randomly generated instructions.

EXIT STATUS

llvm-stress returns 0.

llvm-symbolizer - convert addresses into source code locations

SYNOPSIS

llvm-symbolizer [options]

DESCRIPTION

llvm-symbolizer reads object file names and addresses from standard
input and prints corresponding source code locations to standard output.
If object file is specified in command line, llvm-symbolizer
processes only addresses from standard input, the rest is output verbatim.
This program uses debug info sections and symbol table in the object files.

EXAMPLE

$ cat addr.txt
a.out 0x4004f4
/tmp/b.out 0x400528
/tmp/c.so 0x710
/tmp/mach_universal_binary:i386 0x1f84
/tmp/mach_universal_binary:x86_64 0x100000f24
$ llvm-symbolizer < addr.txt
main
/tmp/a.cc:4

f(int, int)
/tmp/b.cc:11

h_inlined_into_g
/tmp/header.h:2
g_inlined_into_f
/tmp/header.h:7
f_inlined_into_main
/tmp/source.cc:3
main
/tmp/source.cc:8

_main
/tmp/source_i386.cc:8

_main
/tmp/source_x86_64.cc:8
$ cat addr2.txt
0x4004f4
0x401000
$ llvm-symbolizer -obj=a.out < addr2.txt
main
/tmp/a.cc:4

foo(int)
/tmp/a.cc:12
$cat addr.txt
0x40054d
$llvm-symbolizer -inlining -print-address -pretty-print -obj=addr.exe < addr.txt
0x40054d: inc at /tmp/x.c:3:3
 (inlined by) main at /tmp/x.c:9:0
$llvm-symbolizer -inlining -pretty-print -obj=addr.exe < addr.txt
inc at /tmp/x.c:3:3
 (inlined by) main at /tmp/x.c:9:0

OPTIONS

	
-obj

	Path to object file to be symbolized.

	
-functions=[none|short|linkage]

	Specify the way function names are printed (omit function name,
print short function name, or print full linkage name, respectively).
Defaults to linkage.

	
-use-symbol-table

	Prefer function names stored in symbol table to function names
in debug info sections. Defaults to true.

	
-demangle

	Print demangled function names. Defaults to true.

	
-inlining

	If a source code location is in an inlined function, prints all the
inlnied frames. Defaults to true.

	
-default-arch

	If a binary contains object files for multiple architectures (e.g. it is a
Mach-O universal binary), symbolize the object file for a given architecture.
You can also specify architecture by writing binary_name:arch_name in the
input (see example above). If architecture is not specified in either way,
address will not be symbolized. Defaults to empty string.

	
-dsym-hint=<path/to/file.dSYM>

	(Darwin-only flag). If the debug info for a binary isn’t present in the default
location, look for the debug info at the .dSYM path provided via the
-dsym-hint flag. This flag can be used multiple times.

	
-print-address

	Print address before the source code location. Defaults to false.

	
-pretty-print

	Print human readable output. If -inlining is specified, enclosing scope is
prefixed by (inlined by). Refer to listed examples.

EXIT STATUS

llvm-symbolizer returns 0. Other exit codes imply internal program error.

llvm-dwarfdump - dump and verify DWARF debug information

SYNOPSIS

llvm-dwarfdump [options] [filename …]

DESCRIPTION

llvm-dwarfdump parses DWARF sections in object files,
archives, and .dSYM bundles and prints their contents in
human-readable form. Only the .debug_info section is printed unless one of
the section-specific options or --all is specified.

OPTIONS

	
-a, --all

	Disassemble all supported DWARF sections.

	
--arch=<arch>

	Dump DWARF debug information for the specified CPU architecture.
Architectures may be specified by name or by number. This
option can be specified multiple times, once for each desired
architecture. All CPU architectures will be printed by
default.

	
-c, --show-children

	Show a debug info entry’s children when using
the --debug-info, --find,
and --name options.

	
-f <name>, --find=<name>

	Search for the exact text <name> in the accelerator tables
and print the matching debug information entries.
When there is no accelerator tables or the name of the DIE
you are looking for is not found in the accelerator tables,
try using the slower but more complete --name option.

	
-F, --show-form

	Show DWARF form types after the DWARF attribute types.

	
-h, --help

	Show help and usage for this command.

	
-i, --ignore-case

	Ignore case distinctions in when searching entries by name
or by regular expression.

	
-n <pattern>, --name=<pattern>

	Find and print all debug info entries whose name
(DW_AT_name attribute) matches the exact text in
<pattern>. Use the --regex option to have
<pattern> become a regular expression for more flexible
pattern matching.

	
--lookup=<address>

	Lookup <address> in the debug information and print out the file,
function, block, and line table details.

	
-o <path>, --out-file=<path>

	Redirect output to a file specified by <path>.

	
-p, --show-parents

	Show a debug info entry’s parent objects when using the
--debug-info, --find, and
--name options.

	
-r <n>, --recurse-depth=<n>

	Only recurse to a maximum depth of <n> when dumping debug info
entries.

	
--statistics

	Collect debug info quality metrics and print the results
as machine-readable single-line JSON output.

	
-x, --regex

	Treat any <pattern> strings as regular expressions when searching
instead of just as an exact string match.

	
-u, --uuid

	Show the UUID for each architecture.

	
--diff

	Dump the output in a format that is more friendly for comparing
DWARF output from two different files.

	
-v, --verbose

	Display verbose information when dumping. This can help to debug
DWARF issues.

	
--verify

	Verify the structure of the DWARF information by verifying the
compile unit chains, DIE relationships graph, address
ranges, and more.

	
--version

	Display the version of the tool.

	
--debug-abbrev, --debug-aranges, --debug-cu-index, --debug-frame [=<offset>], --debug-gnu-pubnames, --debug-gnu-pubtypes, --debug-info [=<offset>], --debug-line [=<offset>], --debug-loc [=<offset>], --debug-macro, --debug-pubnames, --debug-pubtypes, --debug-ranges, --debug-str, --debug-str-offsets, --debug-tu-index, --debug-types, --eh-frame, --gdb-index, --apple-names, --apple-types, --apple-namespaces, --apple-objc

	Dump the specified DWARF section by name. Only the
.debug_info section is shown by default. Some entries
support adding an =<offset> as a way to provide an
optional offset of the exact entry to dump within the
respective section. When an offset is provided, only the
entry at that offset will be dumped, else the entire
section will be dumped. Children of items at a specific
offset can be dumped by also using the
--show-children option where applicable.

EXIT STATUS

llvm-dwarfdump returns 0 if the input files were parsed and dumped
successfully. Otherwise, it returns 1.

SEE ALSO

dsymutil(1)

dsymutil - manipulate archived DWARF debug symbol files

SYNOPSIS

dsymutil [options] executable

DESCRIPTION

dsymutil links the DWARF debug information found in the object files
for an executable executable by using debug symbols information contained in
its symbol table. By default, the linked debug information is placed in a
.dSYM bundle with the same name as the executable.

OPTIONS

	
--arch=<arch>

	Link DWARF debug information only for specified CPU architecture types.
Architectures may be specified by name. When using this option, an error will
be returned if any architectures can not be properly linked. This option can
be specified multiple times, once for each desired architecture. All CPU
architectures will be linked by default and any architectures that can’t be
properly linked will cause dsymutil to return an error.

	
--dump-debug-map

	Dump the executable’s debug-map (the list of the object files containing the
debug information) in YAML format and exit. Not DWARF link will take place.

	
-f, --flat

	Produce a flat dSYM file. A .dwarf extension will be appended to the
executable name unless the output file is specified using the -o option.

	
-z, --minimize

	When used when creating a dSYM file, this option will suppress the emission of
the .debug_inlines, .debug_pubnames, and .debug_pubtypes sections since
dsymutil currently has better equivalents: .apple_names and .apple_types. When
used in conjunction with –update option, this option will cause redundant
accelerator tables to be removed.

	
--no-odr

	Do not use ODR (One Definition Rule) for uniquing C++ types.

	
--no-output

	Do the link in memory, but do not emit the result file.

	
--no-swiftmodule-timestamp

	Don’t check the timestamp for swiftmodule files.

	
-j <n>, --num-threads=<n>

	Specifies the maximum number (n) of simultaneous threads to use when
linking multiple architectures.

	
-o <filename>

	Specifies an alternate path to place the dSYM bundle. The default dSYM
bundle path is created by appending .dSYM to the executable name.

	
--oso-prepend-path=<path>

	Specifies a path to prepend to all debug symbol object file paths.

	
--papertrail

	When running dsymutil as part of your build system, it can be desirable for
warnings to be part of the end product, rather than just being emitted to the
output stream. When enabled warnings are embedded in the linked DWARF debug
information.

	
-s, --symtab

	Dumps the symbol table found in executable or object file(s) and exits.

	
--toolchain

	Embed the toolchain in the dSYM bundle’s property list.

	
-u, --update

	Update an existing dSYM file to contain the latest accelerator tables and
other DWARF optimizations. This option will rebuild the ‘.apple_names’ and
‘.apple_types’ hashed accelerator tables.

	
-v, --verbose

	Display verbose information when linking.

	
--version

	Display the version of the tool.

	
-y

	Treat executable as a YAML debug-map rather than an executable.

EXIT STATUS

dsymutil returns 0 if the DWARF debug information was linked
successfully. Otherwise, it returns 1.

SEE ALSO

llvm-dwarfdump(1)

llvm-mca - LLVM Machine Code Analyzer

SYNOPSIS

llvm-mca [options] [input]

DESCRIPTION

llvm-mca is a performance analysis tool that uses information
available in LLVM (e.g. scheduling models) to statically measure the performance
of machine code in a specific CPU.

Performance is measured in terms of throughput as well as processor resource
consumption. The tool currently works for processors with an out-of-order
backend, for which there is a scheduling model available in LLVM.

The main goal of this tool is not just to predict the performance of the code
when run on the target, but also help with diagnosing potential performance
issues.

Given an assembly code sequence, llvm-mca estimates the Instructions
Per Cycle (IPC), as well as hardware resource pressure. The analysis and
reporting style were inspired by the IACA tool from Intel.

For example, you can compile code with clang, output assembly, and pipe it
directly into llvm-mca for analysis:

$ clang foo.c -O2 -target x86_64-unknown-unknown -S -o - | llvm-mca -mcpu=btver2

Or for Intel syntax:

$ clang foo.c -O2 -target x86_64-unknown-unknown -mllvm -x86-asm-syntax=intel -S -o - | llvm-mca -mcpu=btver2

OPTIONS

If input is “-” or omitted, llvm-mca reads from standard
input. Otherwise, it will read from the specified filename.

If the -o option is omitted, then llvm-mca will send its output
to standard output if the input is from standard input. If the -o
option specifies “-“, then the output will also be sent to standard output.

	
-help

	Print a summary of command line options.

	
-mtriple=<target triple>

	Specify a target triple string.

	
-march=<arch>

	Specify the architecture for which to analyze the code. It defaults to the
host default target.

	
-mcpu=<cpuname>

	Specify the processor for which to analyze the code. By default, the cpu name
is autodetected from the host.

	
-output-asm-variant=<variant id>

	Specify the output assembly variant for the report generated by the tool.
On x86, possible values are [0, 1]. A value of 0 (vic. 1) for this flag enables
the AT&T (vic. Intel) assembly format for the code printed out by the tool in
the analysis report.

	
-dispatch=<width>

	Specify a different dispatch width for the processor. The dispatch width
defaults to field ‘IssueWidth’ in the processor scheduling model. If width is
zero, then the default dispatch width is used.

	
-register-file-size=<size>

	Specify the size of the register file. When specified, this flag limits how
many physical registers are available for register renaming purposes. A value
of zero for this flag means “unlimited number of physical registers”.

	
-iterations=<number of iterations>

	Specify the number of iterations to run. If this flag is set to 0, then the
tool sets the number of iterations to a default value (i.e. 100).

	
-noalias=<bool>

	If set, the tool assumes that loads and stores don’t alias. This is the
default behavior.

	
-lqueue=<load queue size>

	Specify the size of the load queue in the load/store unit emulated by the tool.
By default, the tool assumes an unbound number of entries in the load queue.
A value of zero for this flag is ignored, and the default load queue size is
used instead.

	
-squeue=<store queue size>

	Specify the size of the store queue in the load/store unit emulated by the
tool. By default, the tool assumes an unbound number of entries in the store
queue. A value of zero for this flag is ignored, and the default store queue
size is used instead.

	
-timeline

	Enable the timeline view.

	
-timeline-max-iterations=<iterations>

	Limit the number of iterations to print in the timeline view. By default, the
timeline view prints information for up to 10 iterations.

	
-timeline-max-cycles=<cycles>

	Limit the number of cycles in the timeline view. By default, the number of
cycles is set to 80.

	
-resource-pressure

	Enable the resource pressure view. This is enabled by default.

	
-register-file-stats

	Enable register file usage statistics.

	
-dispatch-stats

	Enable extra dispatch statistics. This view collects and analyzes instruction
dispatch events, as well as static/dynamic dispatch stall events. This view
is disabled by default.

	
-scheduler-stats

	Enable extra scheduler statistics. This view collects and analyzes instruction
issue events. This view is disabled by default.

	
-retire-stats

	Enable extra retire control unit statistics. This view is disabled by default.

	
-instruction-info

	Enable the instruction info view. This is enabled by default.

	
-all-stats

	Print all hardware statistics. This enables extra statistics related to the
dispatch logic, the hardware schedulers, the register file(s), and the retire
control unit. This option is disabled by default.

	
-all-views

	Enable all the view.

	
-instruction-tables

	Prints resource pressure information based on the static information
available from the processor model. This differs from the resource pressure
view because it doesn’t require that the code is simulated. It instead prints
the theoretical uniform distribution of resource pressure for every
instruction in sequence.

EXIT STATUS

llvm-mca returns 0 on success. Otherwise, an error message is printed
to standard error, and the tool returns 1.

USING MARKERS TO ANALYZE SPECIFIC CODE BLOCKS

llvm-mca allows for the optional usage of special code comments to
mark regions of the assembly code to be analyzed. A comment starting with
substring LLVM-MCA-BEGIN marks the beginning of a code region. A comment
starting with substring LLVM-MCA-END marks the end of a code region. For
example:

LLVM-MCA-BEGIN My Code Region
 ...
LLVM-MCA-END

Multiple regions can be specified provided that they do not overlap. A code
region can have an optional description. If no user-defined region is specified,
then llvm-mca assumes a default region which contains every
instruction in the input file. Every region is analyzed in isolation, and the
final performance report is the union of all the reports generated for every
code region.

Inline assembly directives may be used from source code to annotate the
assembly text:

int foo(int a, int b) {
 __asm volatile("# LLVM-MCA-BEGIN foo");
 a += 42;
 __asm volatile("# LLVM-MCA-END");
 a *= b;
 return a;
}

HOW LLVM-MCA WORKS

llvm-mca takes assembly code as input. The assembly code is parsed
into a sequence of MCInst with the help of the existing LLVM target assembly
parsers. The parsed sequence of MCInst is then analyzed by a Pipeline module
to generate a performance report.

The Pipeline module simulates the execution of the machine code sequence in a
loop of iterations (default is 100). During this process, the pipeline collects
a number of execution related statistics. At the end of this process, the
pipeline generates and prints a report from the collected statistics.

Here is an example of a performance report generated by the tool for a
dot-product of two packed float vectors of four elements. The analysis is
conducted for target x86, cpu btver2. The following result can be produced via
the following command using the example located at
test/tools/llvm-mca/X86/BtVer2/dot-product.s:

$ llvm-mca -mtriple=x86_64-unknown-unknown -mcpu=btver2 -iterations=300 dot-product.s

Iterations: 300
Instructions: 900
Total Cycles: 610
Dispatch Width: 2
IPC: 1.48
Block RThroughput: 2.0

Instruction Info:
[1]: #uOps
[2]: Latency
[3]: RThroughput
[4]: MayLoad
[5]: MayStore
[6]: HasSideEffects (U)

[1] [2] [3] [4] [5] [6] Instructions:
 1 2 1.00 vmulps %xmm0, %xmm1, %xmm2
 1 3 1.00 vhaddps %xmm2, %xmm2, %xmm3
 1 3 1.00 vhaddps %xmm3, %xmm3, %xmm4

Resources:
[0] - JALU0
[1] - JALU1
[2] - JDiv
[3] - JFPA
[4] - JFPM
[5] - JFPU0
[6] - JFPU1
[7] - JLAGU
[8] - JMul
[9] - JSAGU
[10] - JSTC
[11] - JVALU0
[12] - JVALU1
[13] - JVIMUL

Resource pressure per iteration:
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13]
 - - - 2.00 1.00 2.00 1.00 - - - - - - -

Resource pressure by instruction:
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] Instructions:
 - - - - 1.00 - 1.00 - - - - - - - vmulps %xmm0, %xmm1, %xmm2
 - - - 1.00 - 1.00 - - - - - - - - vhaddps %xmm2, %xmm2, %xmm3
 - - - 1.00 - 1.00 - - - - - - - - vhaddps %xmm3, %xmm3, %xmm4

According to this report, the dot-product kernel has been executed 300 times,
for a total of 900 dynamically executed instructions.

The report is structured in three main sections. The first section collects a
few performance numbers; the goal of this section is to give a very quick
overview of the performance throughput. In this example, the two important
performance indicators are IPC and Block RThroughput (Block Reciprocal
Throughput).

IPC is computed dividing the total number of simulated instructions by the total
number of cycles. A delta between Dispatch Width and IPC is an indicator of a
performance issue. In the absence of loop-carried data dependencies, the
observed IPC tends to a theoretical maximum which can be computed by dividing
the number of instructions of a single iteration by the Block RThroughput.

IPC is bounded from above by the dispatch width. That is because the dispatch
width limits the maximum size of a dispatch group. IPC is also limited by the
amount of hardware parallelism. The availability of hardware resources affects
the resource pressure distribution, and it limits the number of instructions
that can be executed in parallel every cycle. A delta between Dispatch
Width and the theoretical maximum IPC is an indicator of a performance
bottleneck caused by the lack of hardware resources. In general, the lower the
Block RThroughput, the better.

In this example, Instructions per iteration/Block RThroughput is 1.50. Since
there are no loop-carried dependencies, the observed IPC is expected to approach
1.50 when the number of iterations tends to infinity. The delta between the
Dispatch Width (2.00), and the theoretical maximum IPC (1.50) is an indicator of
a performance bottleneck caused by the lack of hardware resources, and the
Resource pressure view can help to identify the problematic resource usage.

The second section of the report shows the latency and reciprocal
throughput of every instruction in the sequence. That section also reports
extra information related to the number of micro opcodes, and opcode properties
(i.e., ‘MayLoad’, ‘MayStore’, and ‘HasSideEffects’).

The third section is the Resource pressure view. This view reports
the average number of resource cycles consumed every iteration by instructions
for every processor resource unit available on the target. Information is
structured in two tables. The first table reports the number of resource cycles
spent on average every iteration. The second table correlates the resource
cycles to the machine instruction in the sequence. For example, every iteration
of the instruction vmulps always executes on resource unit [6]
(JFPU1 - floating point pipeline #1), consuming an average of 1 resource cycle
per iteration. Note that on AMD Jaguar, vector floating-point multiply can
only be issued to pipeline JFPU1, while horizontal floating-point additions can
only be issued to pipeline JFPU0.

The resource pressure view helps with identifying bottlenecks caused by high
usage of specific hardware resources. Situations with resource pressure mainly
concentrated on a few resources should, in general, be avoided. Ideally,
pressure should be uniformly distributed between multiple resources.

Timeline View

The timeline view produces a detailed report of each instruction’s state
transitions through an instruction pipeline. This view is enabled by the
command line option -timeline. As instructions transition through the
various stages of the pipeline, their states are depicted in the view report.
These states are represented by the following characters:

	D : Instruction dispatched.

	e : Instruction executing.

	E : Instruction executed.

	R : Instruction retired.

	= : Instruction already dispatched, waiting to be executed.

	- : Instruction executed, waiting to be retired.

Below is the timeline view for a subset of the dot-product example located in
test/tools/llvm-mca/X86/BtVer2/dot-product.s and processed by
llvm-mca using the following command:

$ llvm-mca -mtriple=x86_64-unknown-unknown -mcpu=btver2 -iterations=3 -timeline dot-product.s

Timeline view:
 012345
Index 0123456789

[0,0] DeeER. . . vmulps %xmm0, %xmm1, %xmm2
[0,1] D==eeeER . . vhaddps %xmm2, %xmm2, %xmm3
[0,2] .D====eeeER . vhaddps %xmm3, %xmm3, %xmm4
[1,0] .DeeE-----R . vmulps %xmm0, %xmm1, %xmm2
[1,1] . D=eeeE---R . vhaddps %xmm2, %xmm2, %xmm3
[1,2] . D====eeeER . vhaddps %xmm3, %xmm3, %xmm4
[2,0] . DeeE-----R . vmulps %xmm0, %xmm1, %xmm2
[2,1] . D====eeeER . vhaddps %xmm2, %xmm2, %xmm3
[2,2] . D======eeeER vhaddps %xmm3, %xmm3, %xmm4

Average Wait times (based on the timeline view):
[0]: Executions
[1]: Average time spent waiting in a scheduler's queue
[2]: Average time spent waiting in a scheduler's queue while ready
[3]: Average time elapsed from WB until retire stage

 [0] [1] [2] [3]
0. 3 1.0 1.0 3.3 vmulps %xmm0, %xmm1, %xmm2
1. 3 3.3 0.7 1.0 vhaddps %xmm2, %xmm2, %xmm3
2. 3 5.7 0.0 0.0 vhaddps %xmm3, %xmm3, %xmm4

The timeline view is interesting because it shows instruction state changes
during execution. It also gives an idea of how the tool processes instructions
executed on the target, and how their timing information might be calculated.

The timeline view is structured in two tables. The first table shows
instructions changing state over time (measured in cycles); the second table
(named Average Wait times) reports useful timing statistics, which should
help diagnose performance bottlenecks caused by long data dependencies and
sub-optimal usage of hardware resources.

An instruction in the timeline view is identified by a pair of indices, where
the first index identifies an iteration, and the second index is the
instruction index (i.e., where it appears in the code sequence). Since this
example was generated using 3 iterations: -iterations=3, the iteration
indices range from 0-2 inclusively.

Excluding the first and last column, the remaining columns are in cycles.
Cycles are numbered sequentially starting from 0.

From the example output above, we know the following:

	Instruction [1,0] was dispatched at cycle 1.

	Instruction [1,0] started executing at cycle 2.

	Instruction [1,0] reached the write back stage at cycle 4.

	Instruction [1,0] was retired at cycle 10.

Instruction [1,0] (i.e., vmulps from iteration #1) does not have to wait in the
scheduler’s queue for the operands to become available. By the time vmulps is
dispatched, operands are already available, and pipeline JFPU1 is ready to
serve another instruction. So the instruction can be immediately issued on the
JFPU1 pipeline. That is demonstrated by the fact that the instruction only
spent 1cy in the scheduler’s queue.

There is a gap of 5 cycles between the write-back stage and the retire event.
That is because instructions must retire in program order, so [1,0] has to wait
for [0,2] to be retired first (i.e., it has to wait until cycle 10).

In the example, all instructions are in a RAW (Read After Write) dependency
chain. Register %xmm2 written by vmulps is immediately used by the first
vhaddps, and register %xmm3 written by the first vhaddps is used by the second
vhaddps. Long data dependencies negatively impact the ILP (Instruction Level
Parallelism).

In the dot-product example, there are anti-dependencies introduced by
instructions from different iterations. However, those dependencies can be
removed at register renaming stage (at the cost of allocating register aliases,
and therefore consuming physical registers).

Table Average Wait times helps diagnose performance issues that are caused by
the presence of long latency instructions and potentially long data dependencies
which may limit the ILP. Note that llvm-mca, by default, assumes at
least 1cy between the dispatch event and the issue event.

When the performance is limited by data dependencies and/or long latency
instructions, the number of cycles spent while in the ready state is expected
to be very small when compared with the total number of cycles spent in the
scheduler’s queue. The difference between the two counters is a good indicator
of how large of an impact data dependencies had on the execution of the
instructions. When performance is mostly limited by the lack of hardware
resources, the delta between the two counters is small. However, the number of
cycles spent in the queue tends to be larger (i.e., more than 1-3cy),
especially when compared to other low latency instructions.

Extra Statistics to Further Diagnose Performance Issues

The -all-stats command line option enables extra statistics and performance
counters for the dispatch logic, the reorder buffer, the retire control unit,
and the register file.

Below is an example of -all-stats output generated by llvm-mca
for the dot-product example discussed in the previous sections.

Dynamic Dispatch Stall Cycles:
RAT - Register unavailable: 0
RCU - Retire tokens unavailable: 0
SCHEDQ - Scheduler full: 272
LQ - Load queue full: 0
SQ - Store queue full: 0
GROUP - Static restrictions on the dispatch group: 0

Dispatch Logic - number of cycles where we saw N instructions dispatched:
[# dispatched], [# cycles]
 0, 24 (3.9%)
 1, 272 (44.6%)
 2, 314 (51.5%)

Schedulers - number of cycles where we saw N instructions issued:
[# issued], [# cycles]
 0, 7 (1.1%)
 1, 306 (50.2%)
 2, 297 (48.7%)

Scheduler's queue usage:
JALU01, 0/20
JFPU01, 18/18
JLSAGU, 0/12

Retire Control Unit - number of cycles where we saw N instructions retired:
[# retired], [# cycles]
 0, 109 (17.9%)
 1, 102 (16.7%)
 2, 399 (65.4%)

Register File statistics:
Total number of mappings created: 900
Max number of mappings used: 35

* Register File #1 -- JFpuPRF:
 Number of physical registers: 72
 Total number of mappings created: 900
 Max number of mappings used: 35

* Register File #2 -- JIntegerPRF:
 Number of physical registers: 64
 Total number of mappings created: 0
 Max number of mappings used: 0

If we look at the Dynamic Dispatch Stall Cycles table, we see the counter for
SCHEDQ reports 272 cycles. This counter is incremented every time the dispatch
logic is unable to dispatch a group of two instructions because the scheduler’s
queue is full.

Looking at the Dispatch Logic table, we see that the pipeline was only able to
dispatch two instructions 51.5% of the time. The dispatch group was limited to
one instruction 44.6% of the cycles, which corresponds to 272 cycles. The
dispatch statistics are displayed by either using the command option
-all-stats or -dispatch-stats.

The next table, Schedulers, presents a histogram displaying a count,
representing the number of instructions issued on some number of cycles. In
this case, of the 610 simulated cycles, single instructions were issued 306
times (50.2%) and there were 7 cycles where no instructions were issued.

The Scheduler’s queue usage table shows that the maximum number of buffer
entries (i.e., scheduler queue entries) used at runtime. Resource JFPU01
reached its maximum (18 of 18 queue entries). Note that AMD Jaguar implements
three schedulers:

	JALU01 - A scheduler for ALU instructions.

	JFPU01 - A scheduler floating point operations.

	JLSAGU - A scheduler for address generation.

The dot-product is a kernel of three floating point instructions (a vector
multiply followed by two horizontal adds). That explains why only the floating
point scheduler appears to be used.

A full scheduler queue is either caused by data dependency chains or by a
sub-optimal usage of hardware resources. Sometimes, resource pressure can be
mitigated by rewriting the kernel using different instructions that consume
different scheduler resources. Schedulers with a small queue are less resilient
to bottlenecks caused by the presence of long data dependencies. The scheduler
statistics are displayed by using the command option -all-stats or
-scheduler-stats.

The next table, Retire Control Unit, presents a histogram displaying a count,
representing the number of instructions retired on some number of cycles. In
this case, of the 610 simulated cycles, two instructions were retired during the
same cycle 399 times (65.4%) and there were 109 cycles where no instructions
were retired. The retire statistics are displayed by using the command option
-all-stats or -retire-stats.

The last table presented is Register File statistics. Each physical register
file (PRF) used by the pipeline is presented in this table. In the case of AMD
Jaguar, there are two register files, one for floating-point registers (JFpuPRF)
and one for integer registers (JIntegerPRF). The table shows that of the 900
instructions processed, there were 900 mappings created. Since this dot-product
example utilized only floating point registers, the JFPuPRF was responsible for
creating the 900 mappings. However, we see that the pipeline only used a
maximum of 35 of 72 available register slots at any given time. We can conclude
that the floating point PRF was the only register file used for the example, and
that it was never resource constrained. The register file statistics are
displayed by using the command option -all-stats or
-register-file-stats.

In this example, we can conclude that the IPC is mostly limited by data
dependencies, and not by resource pressure.

Instruction Flow

This section describes the instruction flow through the default pipeline of
llvm-mca, as well as the functional units involved in the process.

The default pipeline implements the following sequence of stages used to
process instructions.

	Dispatch (Instruction is dispatched to the schedulers).

	Issue (Instruction is issued to the processor pipelines).

	Write Back (Instruction is executed, and results are written back).

	Retire (Instruction is retired; writes are architecturally committed).

The default pipeline only models the out-of-order portion of a processor.
Therefore, the instruction fetch and decode stages are not modeled. Performance
bottlenecks in the frontend are not diagnosed. llvm-mca assumes that
instructions have all been decoded and placed into a queue before the simulation
start. Also, llvm-mca does not model branch prediction.

Instruction Dispatch

During the dispatch stage, instructions are picked in program order from a
queue of already decoded instructions, and dispatched in groups to the
simulated hardware schedulers.

The size of a dispatch group depends on the availability of the simulated
hardware resources. The processor dispatch width defaults to the value
of the IssueWidth in LLVM’s scheduling model.

An instruction can be dispatched if:

	The size of the dispatch group is smaller than processor’s dispatch width.

	There are enough entries in the reorder buffer.

	There are enough physical registers to do register renaming.

	The schedulers are not full.

Scheduling models can optionally specify which register files are available on
the processor. llvm-mca uses that information to initialize register
file descriptors. Users can limit the number of physical registers that are
globally available for register renaming by using the command option
-register-file-size. A value of zero for this option means unbounded. By
knowing how many registers are available for renaming, the tool can predict
dispatch stalls caused by the lack of physical registers.

The number of reorder buffer entries consumed by an instruction depends on the
number of micro-opcodes specified for that instruction by the target scheduling
model. The reorder buffer is responsible for tracking the progress of
instructions that are “in-flight”, and retiring them in program order. The
number of entries in the reorder buffer defaults to the value specified by field
MicroOpBufferSize in the target scheduling model.

Instructions that are dispatched to the schedulers consume scheduler buffer
entries. llvm-mca queries the scheduling model to determine the set
of buffered resources consumed by an instruction. Buffered resources are
treated like scheduler resources.

Instruction Issue

Each processor scheduler implements a buffer of instructions. An instruction
has to wait in the scheduler’s buffer until input register operands become
available. Only at that point, does the instruction becomes eligible for
execution and may be issued (potentially out-of-order) for execution.
Instruction latencies are computed by llvm-mca with the help of the
scheduling model.

llvm-mca’s scheduler is designed to simulate multiple processor
schedulers. The scheduler is responsible for tracking data dependencies, and
dynamically selecting which processor resources are consumed by instructions.
It delegates the management of processor resource units and resource groups to a
resource manager. The resource manager is responsible for selecting resource
units that are consumed by instructions. For example, if an instruction
consumes 1cy of a resource group, the resource manager selects one of the
available units from the group; by default, the resource manager uses a
round-robin selector to guarantee that resource usage is uniformly distributed
between all units of a group.

llvm-mca’s scheduler internally groups instructions into three sets:

	WaitSet: a set of instructions whose operands are not ready.

	ReadySet: a set of instructions ready to execute.

	IssuedSet: a set of instructions executing.

Depending on the operands availability, instructions that are dispatched to the
scheduler are either placed into the WaitSet or into the ReadySet.

Every cycle, the scheduler checks if instructions can be moved from the WaitSet
to the ReadySet, and if instructions from the ReadySet can be issued to the
underlying pipelines. The algorithm prioritizes older instructions over younger
instructions.

Write-Back and Retire Stage

Issued instructions are moved from the ReadySet to the IssuedSet. There,
instructions wait until they reach the write-back stage. At that point, they
get removed from the queue and the retire control unit is notified.

When instructions are executed, the retire control unit flags the instruction as
“ready to retire.”

Instructions are retired in program order. The register file is notified of the
retirement so that it can free the physical registers that were allocated for
the instruction during the register renaming stage.

Load/Store Unit and Memory Consistency Model

To simulate an out-of-order execution of memory operations, llvm-mca
utilizes a simulated load/store unit (LSUnit) to simulate the speculative
execution of loads and stores.

Each load (or store) consumes an entry in the load (or store) queue. Users can
specify flags -lqueue and -squeue to limit the number of entries in the
load and store queues respectively. The queues are unbounded by default.

The LSUnit implements a relaxed consistency model for memory loads and stores.
The rules are:

	A younger load is allowed to pass an older load only if there are no
intervening stores or barriers between the two loads.

	A younger load is allowed to pass an older store provided that the load does
not alias with the store.

	A younger store is not allowed to pass an older store.

	A younger store is not allowed to pass an older load.

By default, the LSUnit optimistically assumes that loads do not alias
(-noalias=true) store operations. Under this assumption, younger loads are
always allowed to pass older stores. Essentially, the LSUnit does not attempt
to run any alias analysis to predict when loads and stores do not alias with
each other.

Note that, in the case of write-combining memory, rule 3 could be relaxed to
allow reordering of non-aliasing store operations. That being said, at the
moment, there is no way to further relax the memory model (-noalias is the
only option). Essentially, there is no option to specify a different memory
type (e.g., write-back, write-combining, write-through; etc.) and consequently
to weaken, or strengthen, the memory model.

Other limitations are:

	The LSUnit does not know when store-to-load forwarding may occur.

	The LSUnit does not know anything about cache hierarchy and memory types.

	The LSUnit does not know how to identify serializing operations and memory
fences.

The LSUnit does not attempt to predict if a load or store hits or misses the L1
cache. It only knows if an instruction “MayLoad” and/or “MayStore.” For
loads, the scheduling model provides an “optimistic” load-to-use latency (which
usually matches the load-to-use latency for when there is a hit in the L1D).

llvm-mca does not know about serializing operations or memory-barrier
like instructions. The LSUnit conservatively assumes that an instruction which
has both “MayLoad” and unmodeled side effects behaves like a “soft”
load-barrier. That means, it serializes loads without forcing a flush of the
load queue. Similarly, instructions that “MayStore” and have unmodeled side
effects are treated like store barriers. A full memory barrier is a “MayLoad”
and “MayStore” instruction with unmodeled side effects. This is inaccurate, but
it is the best that we can do at the moment with the current information
available in LLVM.

A load/store barrier consumes one entry of the load/store queue. A load/store
barrier enforces ordering of loads/stores. A younger load cannot pass a load
barrier. Also, a younger store cannot pass a store barrier. A younger load
has to wait for the memory/load barrier to execute. A load/store barrier is
“executed” when it becomes the oldest entry in the load/store queue(s). That
also means, by construction, all of the older loads/stores have been executed.

In conclusion, the full set of load/store consistency rules are:

	A store may not pass a previous store.

	A store may not pass a previous load (regardless of -noalias).

	A store has to wait until an older store barrier is fully executed.

	A load may pass a previous load.

	A load may not pass a previous store unless -noalias is set.

	A load has to wait until an older load barrier is fully executed.

bugpoint - automatic test case reduction tool

SYNOPSIS

bugpoint [options] [input LLVM ll/bc files] [LLVM passes] –args
program arguments

DESCRIPTION

bugpoint narrows down the source of problems in LLVM tools and passes. It
can be used to debug three types of failures: optimizer crashes, miscompilations
by optimizers, or bad native code generation (including problems in the static
and JIT compilers). It aims to reduce large test cases to small, useful ones.
For more information on the design and inner workings of bugpoint, as well as
advice for using bugpoint, see LLVM bugpoint tool: design and usage in the LLVM
distribution.

OPTIONS

–additional-so library

Load the dynamic shared object library into the test program whenever it is
run. This is useful if you are debugging programs which depend on non-LLVM
libraries (such as the X or curses libraries) to run.

–append-exit-code={true,false}

Append the test programs exit code to the output file so that a change in exit
code is considered a test failure. Defaults to false.

–args program args

Pass all arguments specified after –args to the test program whenever it runs.
Note that if any of the program args start with a “-“, you should use:

bugpoint [bugpoint args] --args -- [program args]

The “--” right after the –args option tells bugpoint to consider
any options starting with “-” to be part of the –args option, not as
options to bugpoint itself.

–tool-args tool args

Pass all arguments specified after –tool-args to the LLVM tool under test
(llc, lli, etc.) whenever it runs. You should use this option in the
following way:

bugpoint [bugpoint args] --tool-args -- [tool args]

The “--” right after the –tool-args option tells bugpoint to
consider any options starting with “-” to be part of the –tool-args
option, not as options to bugpoint itself. (See –args, above.)

–safe-tool-args tool args

Pass all arguments specified after –safe-tool-args to the “safe” execution
tool.

–gcc-tool-args gcc tool args

Pass all arguments specified after –gcc-tool-args to the invocation of
gcc.

–opt-args opt args

Pass all arguments specified after –opt-args to the invocation of opt.

–disable-{dce,simplifycfg}

Do not run the specified passes to clean up and reduce the size of the test
program. By default, bugpoint uses these passes internally when attempting to
reduce test programs. If you’re trying to find a bug in one of these passes,
bugpoint may crash.

–enable-valgrind

Use valgrind to find faults in the optimization phase. This will allow
bugpoint to find otherwise asymptomatic problems caused by memory
mis-management.

-find-bugs

Continually randomize the specified passes and run them on the test program
until a bug is found or the user kills bugpoint.

-help

Print a summary of command line options.

–input filename

Open filename and redirect the standard input of the test program, whenever
it runs, to come from that file.

–load plugin

Load the dynamic object plugin into bugpoint itself. This object should
register new optimization passes. Once loaded, the object will add new command
line options to enable various optimizations. To see the new complete list of
optimizations, use the -help and –load options together; for example:

bugpoint --load myNewPass.so -help

–mlimit megabytes

Specifies an upper limit on memory usage of the optimization and codegen. Set
to zero to disable the limit.

–output filename

Whenever the test program produces output on its standard output stream, it
should match the contents of filename (the “reference output”). If you
do not use this option, bugpoint will attempt to generate a reference output
by compiling the program with the “safe” backend and running it.

–run-{int,jit,llc,custom}

Whenever the test program is compiled, bugpoint should generate code for it
using the specified code generator. These options allow you to choose the
interpreter, the JIT compiler, the static native code compiler, or a
custom command (see –exec-command) respectively.

–safe-{llc,custom}

When debugging a code generator, bugpoint should use the specified code
generator as the “safe” code generator. This is a known-good code generator
used to generate the “reference output” if it has not been provided, and to
compile portions of the program that as they are excluded from the testcase.
These options allow you to choose the
static native code compiler, or a custom command, (see –exec-command)
respectively. The interpreter and the JIT backends cannot currently
be used as the “safe” backends.

–exec-command command

This option defines the command to use with the –run-custom and
–safe-custom options to execute the bitcode testcase. This can
be useful for cross-compilation.

–compile-command command

This option defines the command to use with the –compile-custom
option to compile the bitcode testcase. The command should exit with a
failure exit code if the file is “interesting” and should exit with a
success exit code (i.e. 0) otherwise (this is the same as if it crashed on
“interesting” inputs).

This can be useful for
testing compiler output without running any link or execute stages. To
generate a reduced unit test, you may add CHECK directives to the
testcase and pass the name of an executable compile-command script in this form:

#!/bin/sh
llc "$@"
not FileCheck [bugpoint input file].ll < bugpoint-test-program.s

This script will “fail” as long as FileCheck passes. So the result
will be the minimum bitcode that passes FileCheck.

–safe-path path

This option defines the path to the command to execute with the
–safe-{int,jit,llc,custom}
option.

–verbose-errors={true,false}

The default behavior of bugpoint is to print “<crash>” when it finds a reduced
test that crashes compilation. This flag prints the output of the crashing
program to stderr. This is useful to make sure it is the same error being
tracked down and not a different error that happens to crash the compiler as
well. Defaults to false.

EXIT STATUS

If bugpoint succeeds in finding a problem, it will exit with 0. Otherwise,
if an error occurs, it will exit with a non-zero value.

SEE ALSO

opt|opt

llvm-extract - extract a function from an LLVM module

SYNOPSIS

llvm-extract [options] –func function-name [filename]

DESCRIPTION

The llvm-extract command takes the name of a function and extracts
it from the specified LLVM bitcode file. It is primarily used as a debugging
tool to reduce test cases from larger programs that are triggering a bug.

In addition to extracting the bitcode of the specified function,
llvm-extract will also remove unreachable global variables,
prototypes, and unused types.

The llvm-extract command reads its input from standard input if
filename is omitted or if filename is -. The output is always written to
standard output, unless the -o option is specified (see below).

OPTIONS

-f

Enable binary output on terminals. Normally, llvm-extract will
refuse to write raw bitcode output if the output stream is a terminal. With
this option, llvm-extract will write raw bitcode regardless of the
output device.

–func function-name

Extract the function named function-name from the LLVM bitcode. May be
specified multiple times to extract multiple functions at once.

–rfunc function-regular-expr

Extract the function(s) matching function-regular-expr from the LLVM bitcode.
All functions matching the regular expression will be extracted. May be
specified multiple times.

–glob global-name

Extract the global variable named global-name from the LLVM bitcode. May be
specified multiple times to extract multiple global variables at once.

–rglob glob-regular-expr

Extract the global variable(s) matching global-regular-expr from the LLVM
bitcode. All global variables matching the regular expression will be
extracted. May be specified multiple times.

-help

Print a summary of command line options.

-o filename

Specify the output filename. If filename is “-” (the default), then
llvm-extract sends its output to standard output.

-S

Write output in LLVM intermediate language (instead of bitcode).

EXIT STATUS

If llvm-extract succeeds, it will exit with 0. Otherwise, if an error
occurs, it will exit with a non-zero value.

SEE ALSO

bugpoint

llvm-bcanalyzer - LLVM bitcode analyzer

SYNOPSIS

llvm-bcanalyzer [options] [filename]

DESCRIPTION

The llvm-bcanalyzer command is a small utility for analyzing bitcode
files. The tool reads a bitcode file (such as generated with the
llvm-as tool) and produces a statistical report on the contents of
the bitcode file. The tool can also dump a low level but human readable
version of the bitcode file. This tool is probably not of much interest or
utility except for those working directly with the bitcode file format. Most
LLVM users can just ignore this tool.

If filename is omitted or is -, then llvm-bcanalyzer reads its
input from standard input. This is useful for combining the tool into a
pipeline. Output is written to the standard output.

OPTIONS

	
-nodetails

	Causes llvm-bcanalyzer to abbreviate its output by writing out only
a module level summary. The details for individual functions are not
displayed.

	
-dump

	Causes llvm-bcanalyzer to dump the bitcode in a human readable
format. This format is significantly different from LLVM assembly and
provides details about the encoding of the bitcode file.

	
-verify

	Causes llvm-bcanalyzer to verify the module produced by reading the
bitcode. This ensures that the statistics generated are based on a consistent
module.

	
-help

	Print a summary of command line options.

EXIT STATUS

If llvm-bcanalyzer succeeds, it will exit with 0. Otherwise, if an
error occurs, it will exit with a non-zero value, usually 1.

SUMMARY OUTPUT DEFINITIONS

The following items are always printed by llvm-bcanalyzer. They comprize the
summary output.

Bitcode Analysis Of Module

This just provides the name of the module for which bitcode analysis is being
generated.

Bitcode Version Number

The bitcode version (not LLVM version) of the file read by the analyzer.

File Size

The size, in bytes, of the entire bitcode file.

Module Bytes

The size, in bytes, of the module block. Percentage is relative to File Size.

Function Bytes

The size, in bytes, of all the function blocks. Percentage is relative to File
Size.

Global Types Bytes

The size, in bytes, of the Global Types Pool. Percentage is relative to File
Size. This is the size of the definitions of all types in the bitcode file.

Constant Pool Bytes

The size, in bytes, of the Constant Pool Blocks Percentage is relative to File
Size.

Module Globals Bytes

Ths size, in bytes, of the Global Variable Definitions and their initializers.
Percentage is relative to File Size.

Instruction List Bytes

The size, in bytes, of all the instruction lists in all the functions.
Percentage is relative to File Size. Note that this value is also included in
the Function Bytes.

Compaction Table Bytes

The size, in bytes, of all the compaction tables in all the functions.
Percentage is relative to File Size. Note that this value is also included in
the Function Bytes.

Symbol Table Bytes

The size, in bytes, of all the symbol tables in all the functions. Percentage is
relative to File Size. Note that this value is also included in the Function
Bytes.

Dependent Libraries Bytes

The size, in bytes, of the list of dependent libraries in the module. Percentage
is relative to File Size. Note that this value is also included in the Module
Global Bytes.

Number Of Bitcode Blocks

The total number of blocks of any kind in the bitcode file.

Number Of Functions

The total number of function definitions in the bitcode file.

Number Of Types

The total number of types defined in the Global Types Pool.

Number Of Constants

The total number of constants (of any type) defined in the Constant Pool.

Number Of Basic Blocks

The total number of basic blocks defined in all functions in the bitcode file.

Number Of Instructions

The total number of instructions defined in all functions in the bitcode file.

Number Of Long Instructions

The total number of long instructions defined in all functions in the bitcode
file. Long instructions are those taking greater than 4 bytes. Typically long
instructions are GetElementPtr with several indices, PHI nodes, and calls to
functions with large numbers of arguments.

Number Of Operands

The total number of operands used in all instructions in the bitcode file.

Number Of Compaction Tables

The total number of compaction tables in all functions in the bitcode file.

Number Of Symbol Tables

The total number of symbol tables in all functions in the bitcode file.

Number Of Dependent Libs

The total number of dependent libraries found in the bitcode file.

Total Instruction Size

The total size of the instructions in all functions in the bitcode file.

Average Instruction Size

The average number of bytes per instruction across all functions in the bitcode
file. This value is computed by dividing Total Instruction Size by Number Of
Instructions.

Maximum Type Slot Number

The maximum value used for a type’s slot number. Larger slot number values take
more bytes to encode.

Maximum Value Slot Number

The maximum value used for a value’s slot number. Larger slot number values take
more bytes to encode.

Bytes Per Value

The average size of a Value definition (of any type). This is computed by
dividing File Size by the total number of values of any type.

Bytes Per Global

The average size of a global definition (constants and global variables).

Bytes Per Function

The average number of bytes per function definition. This is computed by
dividing Function Bytes by Number Of Functions.

of VBR 32-bit Integers

The total number of 32-bit integers encoded using the Variable Bit Rate
encoding scheme.

of VBR 64-bit Integers

The total number of 64-bit integers encoded using the Variable Bit Rate encoding
scheme.

of VBR Compressed Bytes

The total number of bytes consumed by the 32-bit and 64-bit integers that use
the Variable Bit Rate encoding scheme.

of VBR Expanded Bytes

The total number of bytes that would have been consumed by the 32-bit and 64-bit
integers had they not been compressed with the Variable Bit Rage encoding
scheme.

Bytes Saved With VBR

The total number of bytes saved by using the Variable Bit Rate encoding scheme.
The percentage is relative to # of VBR Expanded Bytes.

DETAILED OUTPUT DEFINITIONS

The following definitions occur only if the -nodetails option was not given.
The detailed output provides additional information on a per-function basis.

Type

The type signature of the function.

Byte Size

The total number of bytes in the function’s block.

Basic Blocks

The number of basic blocks defined by the function.

Instructions

The number of instructions defined by the function.

Long Instructions

The number of instructions using the long instruction format in the function.

Operands

The number of operands used by all instructions in the function.

Instruction Size

The number of bytes consumed by instructions in the function.

Average Instruction Size

The average number of bytes consumed by the instructions in the function.
This value is computed by dividing Instruction Size by Instructions.

Bytes Per Instruction

The average number of bytes used by the function per instruction. This value
is computed by dividing Byte Size by Instructions. Note that this is not the
same as Average Instruction Size. It computes a number relative to the total
function size not just the size of the instruction list.

Number of VBR 32-bit Integers

The total number of 32-bit integers found in this function (for any use).

Number of VBR 64-bit Integers

The total number of 64-bit integers found in this function (for any use).

Number of VBR Compressed Bytes

The total number of bytes in this function consumed by the 32-bit and 64-bit
integers that use the Variable Bit Rate encoding scheme.

Number of VBR Expanded Bytes

The total number of bytes in this function that would have been consumed by
the 32-bit and 64-bit integers had they not been compressed with the Variable
Bit Rate encoding scheme.

Bytes Saved With VBR

The total number of bytes saved in this function by using the Variable Bit
Rate encoding scheme. The percentage is relative to # of VBR Expanded Bytes.

SEE ALSO

llvm-dis - LLVM disassembler, LLVM Bitcode File Format

FileCheck - Flexible pattern matching file verifier

SYNOPSIS

FileCheck match-filename [–check-prefix=XXX] [–strict-whitespace]

DESCRIPTION

FileCheck reads two files (one from standard input, and one
specified on the command line) and uses one to verify the other. This
behavior is particularly useful for the testsuite, which wants to verify that
the output of some tool (e.g. llc) contains the expected information
(for example, a movsd from esp or whatever is interesting). This is similar to
using grep, but it is optimized for matching multiple different
inputs in one file in a specific order.

The match-filename file specifies the file that contains the patterns to
match. The file to verify is read from standard input unless the
--input-file option is used.

OPTIONS

	
-help

	Print a summary of command line options.

	
--check-prefix prefix

	FileCheck searches the contents of match-filename for patterns to
match. By default, these patterns are prefixed with “CHECK:”.
If you’d like to use a different prefix (e.g. because the same input
file is checking multiple different tool or options), the
--check-prefix argument allows you to specify one or more
prefixes to match. Multiple prefixes are useful for tests which might
change for different run options, but most lines remain the same.

	
--check-prefixes prefix1,prefix2,...

	An alias of --check-prefix that allows multiple prefixes to be
specified as a comma separated list.

	
--input-file filename

	File to check (defaults to stdin).

	
--match-full-lines

	By default, FileCheck allows matches of anywhere on a line. This
option will require all positive matches to cover an entire
line. Leading and trailing whitespace is ignored, unless
--strict-whitespace is also specified. (Note: negative
matches from CHECK-NOT are not affected by this option!)

Passing this option is equivalent to inserting {{^ *}} or
{{^}} before, and {{ *$}} or {{$}} after every positive
check pattern.

	
--strict-whitespace

	By default, FileCheck canonicalizes input horizontal whitespace (spaces and
tabs) which causes it to ignore these differences (a space will match a tab).
The --strict-whitespace argument disables this behavior. End-of-line
sequences are canonicalized to UNIX-style \n in all modes.

	
--implicit-check-not check-pattern

	Adds implicit negative checks for the specified patterns between positive
checks. The option allows writing stricter tests without stuffing them with
CHECK-NOTs.

For example, “--implicit-check-not warning:” can be useful when testing
diagnostic messages from tools that don’t have an option similar to clang
-verify. With this option FileCheck will verify that input does not contain
warnings not covered by any CHECK: patterns.

	
--dump-input-on-failure

	When the check fails, dump all of the original input.

	
--enable-var-scope

	Enables scope for regex variables.

Variables with names that start with $ are considered global and
remain set throughout the file.

All other variables get undefined after each encountered CHECK-LABEL.

	
-D<VAR=VALUE>

	Sets a filecheck variable VAR with value VALUE that can be used in
CHECK: lines.

	
-version

	Show the version number of this program.

	
-v

	Print directive pattern matches.

	
-vv

	Print information helpful in diagnosing internal FileCheck issues, such as
discarded overlapping CHECK-DAG: matches, implicit EOF pattern matches,
and CHECK-NOT: patterns that do not have matches. Implies -v.

	
--allow-deprecated-dag-overlap

	Enable overlapping among matches in a group of consecutive CHECK-DAG:
directives. This option is deprecated and is only provided for convenience
as old tests are migrated to the new non-overlapping CHECK-DAG:
implementation.

EXIT STATUS

If FileCheck verifies that the file matches the expected contents,
it exits with 0. Otherwise, if not, or if an error occurs, it will exit with a
non-zero value.

TUTORIAL

FileCheck is typically used from LLVM regression tests, being invoked on the RUN
line of the test. A simple example of using FileCheck from a RUN line looks
like this:

; RUN: llvm-as < %s | llc -march=x86-64 | FileCheck %s

This syntax says to pipe the current file (“%s”) into llvm-as, pipe
that into llc, then pipe the output of llc into FileCheck. This
means that FileCheck will be verifying its standard input (the llc output)
against the filename argument specified (the original .ll file specified by
“%s”). To see how this works, let’s look at the rest of the .ll file
(after the RUN line):

define void @sub1(i32* %p, i32 %v) {
entry:
; CHECK: sub1:
; CHECK: subl
 %0 = tail call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %p, i32 %v)
 ret void
}

define void @inc4(i64* %p) {
entry:
; CHECK: inc4:
; CHECK: incq
 %0 = tail call i64 @llvm.atomic.load.add.i64.p0i64(i64* %p, i64 1)
 ret void
}

Here you can see some “CHECK:” lines specified in comments. Now you can
see how the file is piped into llvm-as, then llc, and the machine code
output is what we are verifying. FileCheck checks the machine code output to
verify that it matches what the “CHECK:” lines specify.

The syntax of the “CHECK:” lines is very simple: they are fixed strings that
must occur in order. FileCheck defaults to ignoring horizontal whitespace
differences (e.g. a space is allowed to match a tab) but otherwise, the contents
of the “CHECK:” line is required to match some thing in the test file exactly.

One nice thing about FileCheck (compared to grep) is that it allows merging
test cases together into logical groups. For example, because the test above
is checking for the “sub1:” and “inc4:” labels, it will not match
unless there is a “subl” in between those labels. If it existed somewhere
else in the file, that would not count: “grep subl” matches if “subl”
exists anywhere in the file.

The FileCheck -check-prefix option

The FileCheck -check-prefix option allows multiple test
configurations to be driven from one .ll file. This is useful in many
circumstances, for example, testing different architectural variants with
llc. Here’s a simple example:

; RUN: llvm-as < %s | llc -mtriple=i686-apple-darwin9 -mattr=sse41 \
; RUN: | FileCheck %s -check-prefix=X32
; RUN: llvm-as < %s | llc -mtriple=x86_64-apple-darwin9 -mattr=sse41 \
; RUN: | FileCheck %s -check-prefix=X64

define <4 x i32> @pinsrd_1(i32 %s, <4 x i32> %tmp) nounwind {
 %tmp1 = insertelement <4 x i32>; %tmp, i32 %s, i32 1
 ret <4 x i32> %tmp1
; X32: pinsrd_1:
; X32: pinsrd $1, 4(%esp), %xmm0

; X64: pinsrd_1:
; X64: pinsrd $1, %edi, %xmm0
}

In this case, we’re testing that we get the expected code generation with
both 32-bit and 64-bit code generation.

The “CHECK-NEXT:” directive

Sometimes you want to match lines and would like to verify that matches
happen on exactly consecutive lines with no other lines in between them. In
this case, you can use “CHECK:” and “CHECK-NEXT:” directives to specify
this. If you specified a custom check prefix, just use “<PREFIX>-NEXT:”.
For example, something like this works as you’d expect:

define void @t2(<2 x double>* %r, <2 x double>* %A, double %B) {
 %tmp3 = load <2 x double>* %A, align 16
 %tmp7 = insertelement <2 x double> undef, double %B, i32 0
 %tmp9 = shufflevector <2 x double> %tmp3,
 <2 x double> %tmp7,
 <2 x i32> < i32 0, i32 2 >
 store <2 x double> %tmp9, <2 x double>* %r, align 16
 ret void

; CHECK: t2:
; CHECK: movl 8(%esp), %eax
; CHECK-NEXT: movapd (%eax), %xmm0
; CHECK-NEXT: movhpd 12(%esp), %xmm0
; CHECK-NEXT: movl 4(%esp), %eax
; CHECK-NEXT: movapd %xmm0, (%eax)
; CHECK-NEXT: ret
}

“CHECK-NEXT:” directives reject the input unless there is exactly one
newline between it and the previous directive. A “CHECK-NEXT:” cannot be
the first directive in a file.

The “CHECK-SAME:” directive

Sometimes you want to match lines and would like to verify that matches happen
on the same line as the previous match. In this case, you can use “CHECK:”
and “CHECK-SAME:” directives to specify this. If you specified a custom
check prefix, just use “<PREFIX>-SAME:”.

“CHECK-SAME:” is particularly powerful in conjunction with “CHECK-NOT:”
(described below).

For example, the following works like you’d expect:

!0 = !DILocation(line: 5, scope: !1, inlinedAt: !2)

; CHECK: !DILocation(line: 5,
; CHECK-NOT: column:
; CHECK-SAME: scope: ![[SCOPE:[0-9]+]]

“CHECK-SAME:” directives reject the input if there are any newlines between
it and the previous directive. A “CHECK-SAME:” cannot be the first
directive in a file.

The “CHECK-EMPTY:” directive

If you need to check that the next line has nothing on it, not even whitespace,
you can use the “CHECK-EMPTY:” directive.

declare void @foo()

declare void @bar()
; CHECK: foo
; CHECK-EMPTY:
; CHECK-NEXT: bar

Just like “CHECK-NEXT:” the directive will fail if there is more than one
newline before it finds the next blank line, and it cannot be the first
directive in a file.

The “CHECK-NOT:” directive

The “CHECK-NOT:” directive is used to verify that a string doesn’t occur
between two matches (or before the first match, or after the last match). For
example, to verify that a load is removed by a transformation, a test like this
can be used:

define i8 @coerce_offset0(i32 %V, i32* %P) {
 store i32 %V, i32* %P

 %P2 = bitcast i32* %P to i8*
 %P3 = getelementptr i8* %P2, i32 2

 %A = load i8* %P3
 ret i8 %A
; CHECK: @coerce_offset0
; CHECK-NOT: load
; CHECK: ret i8
}

The “CHECK-DAG:” directive

If it’s necessary to match strings that don’t occur in a strictly sequential
order, “CHECK-DAG:” could be used to verify them between two matches (or
before the first match, or after the last match). For example, clang emits
vtable globals in reverse order. Using CHECK-DAG:, we can keep the checks
in the natural order:

// RUN: %clang_cc1 %s -emit-llvm -o - | FileCheck %s

struct Foo { virtual void method(); };
Foo f; // emit vtable
// CHECK-DAG: @_ZTV3Foo =

struct Bar { virtual void method(); };
Bar b;
// CHECK-DAG: @_ZTV3Bar =

CHECK-NOT: directives could be mixed with CHECK-DAG: directives to
exclude strings between the surrounding CHECK-DAG: directives. As a result,
the surrounding CHECK-DAG: directives cannot be reordered, i.e. all
occurrences matching CHECK-DAG: before CHECK-NOT: must not fall behind
occurrences matching CHECK-DAG: after CHECK-NOT:. For example,

; CHECK-DAG: BEFORE
; CHECK-NOT: NOT
; CHECK-DAG: AFTER

This case will reject input strings where BEFORE occurs after AFTER.

With captured variables, CHECK-DAG: is able to match valid topological
orderings of a DAG with edges from the definition of a variable to its use.
It’s useful, e.g., when your test cases need to match different output
sequences from the instruction scheduler. For example,

; CHECK-DAG: add [[REG1:r[0-9]+]], r1, r2
; CHECK-DAG: add [[REG2:r[0-9]+]], r3, r4
; CHECK: mul r5, [[REG1]], [[REG2]]

In this case, any order of that two add instructions will be allowed.

If you are defining and using variables in the same CHECK-DAG: block,
be aware that the definition rule can match after its use.

So, for instance, the code below will pass:

; CHECK-DAG: vmov.32 [[REG2:d[0-9]+]][0]
; CHECK-DAG: vmov.32 [[REG2]][1]
vmov.32 d0[1]
vmov.32 d0[0]

While this other code, will not:

; CHECK-DAG: vmov.32 [[REG2:d[0-9]+]][0]
; CHECK-DAG: vmov.32 [[REG2]][1]
vmov.32 d1[1]
vmov.32 d0[0]

While this can be very useful, it’s also dangerous, because in the case of
register sequence, you must have a strong order (read before write, copy before
use, etc). If the definition your test is looking for doesn’t match (because
of a bug in the compiler), it may match further away from the use, and mask
real bugs away.

In those cases, to enforce the order, use a non-DAG directive between DAG-blocks.

A CHECK-DAG: directive skips matches that overlap the matches of any
preceding CHECK-DAG: directives in the same CHECK-DAG: block. Not only
is this non-overlapping behavior consistent with other directives, but it’s
also necessary to handle sets of non-unique strings or patterns. For example,
the following directives look for unordered log entries for two tasks in a
parallel program, such as the OpenMP runtime:

// CHECK-DAG: [[THREAD_ID:[0-9]+]]: task_begin
// CHECK-DAG: [[THREAD_ID]]: task_end
//
// CHECK-DAG: [[THREAD_ID:[0-9]+]]: task_begin
// CHECK-DAG: [[THREAD_ID]]: task_end

The second pair of directives is guaranteed not to match the same log entries
as the first pair even though the patterns are identical and even if the text
of the log entries is identical because the thread ID manages to be reused.

The “CHECK-LABEL:” directive

Sometimes in a file containing multiple tests divided into logical blocks, one
or more CHECK: directives may inadvertently succeed by matching lines in a
later block. While an error will usually eventually be generated, the check
flagged as causing the error may not actually bear any relationship to the
actual source of the problem.

In order to produce better error messages in these cases, the “CHECK-LABEL:”
directive can be used. It is treated identically to a normal CHECK
directive except that FileCheck makes an additional assumption that a line
matched by the directive cannot also be matched by any other check present in
match-filename; this is intended to be used for lines containing labels or
other unique identifiers. Conceptually, the presence of CHECK-LABEL divides
the input stream into separate blocks, each of which is processed independently,
preventing a CHECK: directive in one block matching a line in another block.
If --enable-var-scope is in effect, all local variables are cleared at the
beginning of the block.

For example,

define %struct.C* @C_ctor_base(%struct.C* %this, i32 %x) {
entry:
; CHECK-LABEL: C_ctor_base:
; CHECK: mov [[SAVETHIS:r[0-9]+]], r0
; CHECK: bl A_ctor_base
; CHECK: mov r0, [[SAVETHIS]]
 %0 = bitcast %struct.C* %this to %struct.A*
 %call = tail call %struct.A* @A_ctor_base(%struct.A* %0)
 %1 = bitcast %struct.C* %this to %struct.B*
 %call2 = tail call %struct.B* @B_ctor_base(%struct.B* %1, i32 %x)
 ret %struct.C* %this
}

define %struct.D* @D_ctor_base(%struct.D* %this, i32 %x) {
entry:
; CHECK-LABEL: D_ctor_base:

The use of CHECK-LABEL: directives in this case ensures that the three
CHECK: directives only accept lines corresponding to the body of the
@C_ctor_base function, even if the patterns match lines found later in
the file. Furthermore, if one of these three CHECK: directives fail,
FileCheck will recover by continuing to the next block, allowing multiple test
failures to be detected in a single invocation.

There is no requirement that CHECK-LABEL: directives contain strings that
correspond to actual syntactic labels in a source or output language: they must
simply uniquely match a single line in the file being verified.

CHECK-LABEL: directives cannot contain variable definitions or uses.

FileCheck Pattern Matching Syntax

All FileCheck directives take a pattern to match.
For most uses of FileCheck, fixed string matching is perfectly sufficient. For
some things, a more flexible form of matching is desired. To support this,
FileCheck allows you to specify regular expressions in matching strings,
surrounded by double braces: {{yourregex}}. FileCheck implements a POSIX
regular expression matcher; it supports Extended POSIX regular expressions
(ERE). Because we want to use fixed string matching for a majority of what we
do, FileCheck has been designed to support mixing and matching fixed string
matching with regular expressions. This allows you to write things like this:

; CHECK: movhpd {{[0-9]+}}(%esp), {{%xmm[0-7]}}

In this case, any offset from the ESP register will be allowed, and any xmm
register will be allowed.

Because regular expressions are enclosed with double braces, they are
visually distinct, and you don’t need to use escape characters within the double
braces like you would in C. In the rare case that you want to match double
braces explicitly from the input, you can use something ugly like
{{[{][{]}} as your pattern.

FileCheck Variables

It is often useful to match a pattern and then verify that it occurs again
later in the file. For codegen tests, this can be useful to allow any register,
but verify that that register is used consistently later. To do this,
FileCheck allows named variables to be defined and substituted into
patterns. Here is a simple example:

; CHECK: test5:
; CHECK: notw [[REGISTER:%[a-z]+]]
; CHECK: andw {{.*}}[[REGISTER]]

The first check line matches a regex %[a-z]+ and captures it into the
variable REGISTER. The second line verifies that whatever is in
REGISTER occurs later in the file after an “andw”. FileCheck
variable references are always contained in [[]] pairs, and their names can
be formed with the regex [a-zA-Z_][a-zA-Z0-9_]*. If a colon follows the name,
then it is a definition of the variable; otherwise, it is a use.

FileCheck variables can be defined multiple times, and uses always
get the latest value. Variables can also be used later on the same line they
were defined on. For example:

; CHECK: op [[REG:r[0-9]+]], [[REG]]

Can be useful if you want the operands of op to be the same register,
and don’t care exactly which register it is.

If --enable-var-scope is in effect, variables with names that
start with $ are considered to be global. All others variables are
local. All local variables get undefined at the beginning of each
CHECK-LABEL block. Global variables are not affected by CHECK-LABEL.
This makes it easier to ensure that individual tests are not affected
by variables set in preceding tests.

FileCheck Expressions

Sometimes there’s a need to verify output which refers line numbers of the
match file, e.g. when testing compiler diagnostics. This introduces a certain
fragility of the match file structure, as “CHECK:” lines contain absolute
line numbers in the same file, which have to be updated whenever line numbers
change due to text addition or deletion.

To support this case, FileCheck allows using [[@LINE]],
[[@LINE+<offset>]], [[@LINE-<offset>]] expressions in patterns. These
expressions expand to a number of the line where a pattern is located (with an
optional integer offset).

This way match patterns can be put near the relevant test lines and include
relative line number references, for example:

// CHECK: test.cpp:[[@LINE+4]]:6: error: expected ';' after top level declarator
// CHECK-NEXT: {{^int a}}
// CHECK-NEXT: {{^ \^}}
// CHECK-NEXT: {{^ ;}}
int a

Matching Newline Characters

To match newline characters in regular expressions the character class
[[:space:]] can be used. For example, the following pattern:

// CHECK: DW_AT_location [DW_FORM_sec_offset] ([[DLOC:0x[0-9a-f]+]]){{[[:space:]].*}}"intd"

matches output of the form (from llvm-dwarfdump):

DW_AT_location [DW_FORM_sec_offset] (0x00000233)
DW_AT_name [DW_FORM_strp] (.debug_str[0x000000c9] = "intd")

letting us set the FileCheck variable DLOC to the desired value
0x00000233, extracted from the line immediately preceding “intd”.

tblgen - Target Description To C++ Code Generator

SYNOPSIS

tblgen [options] [filename]

DESCRIPTION

tblgen translates from target description (.td) files into C++
code that can be included in the definition of an LLVM target library. Most
users of LLVM will not need to use this program. It is only for assisting with
writing an LLVM target backend.

The input and output of tblgen is beyond the scope of this short
introduction; please see the introduction to TableGen.

The filename argument specifies the name of a Target Description (.td)
file to read as input.

OPTIONS

	
-help

	Print a summary of command line options.

	
-o filename

	Specify the output file name. If filename is -, then
tblgen sends its output to standard output.

	
-I directory

	Specify where to find other target description files for inclusion. The
directory value should be a full or partial path to a directory that
contains target description files.

	
-asmparsernum N

	Make -gen-asm-parser emit assembly writer number N.

	
-asmwriternum N

	Make -gen-asm-writer emit assembly writer number N.

	
-class className

	Print the enumeration list for this class.

	
-print-records

	Print all records to standard output (default).

	
-dump-json

	Print a JSON representation of all records, suitable for further
automated processing.

	
-print-enums

	Print enumeration values for a class.

	
-print-sets

	Print expanded sets for testing DAG exprs.

	
-gen-emitter

	Generate machine code emitter.

	
-gen-register-info

	Generate registers and register classes info.

	
-gen-instr-info

	Generate instruction descriptions.

	
-gen-asm-writer

	Generate the assembly writer.

	
-gen-disassembler

	Generate disassembler.

	
-gen-pseudo-lowering

	Generate pseudo instruction lowering.

	
-gen-dag-isel

	Generate a DAG (Directed Acycle Graph) instruction selector.

	
-gen-asm-matcher

	Generate assembly instruction matcher.

	
-gen-dfa-packetizer

	Generate DFA Packetizer for VLIW targets.

	
-gen-fast-isel

	Generate a “fast” instruction selector.

	
-gen-subtarget

	Generate subtarget enumerations.

	
-gen-intrinsic-enums

	Generate intrinsic enums.

	
-gen-intrinsic-impl

	Generate intrinsic implementation.

	
-gen-tgt-intrinsic

	Generate target intrinsic information.

	
-gen-enhanced-disassembly-info

	Generate enhanced disassembly info.

	
-version

	Show the version number of this program.

EXIT STATUS

If tblgen succeeds, it will exit with 0. Otherwise, if an error
occurs, it will exit with a non-zero value.

lit - LLVM Integrated Tester

SYNOPSIS

lit [options] [tests]

DESCRIPTION

lit is a portable tool for executing LLVM and Clang style test
suites, summarizing their results, and providing indication of failures.
lit is designed to be a lightweight testing tool with as simple a
user interface as possible.

lit should be run with one or more tests to run specified on the
command line. Tests can be either individual test files or directories to
search for tests (see TEST DISCOVERY).

Each specified test will be executed (potentially in parallel) and once all
tests have been run lit will print summary information on the number
of tests which passed or failed (see TEST STATUS RESULTS). The
lit program will execute with a non-zero exit code if any tests
fail.

By default lit will use a succinct progress display and will only
print summary information for test failures. See OUTPUT OPTIONS for
options controlling the lit progress display and output.

lit also includes a number of options for controlling how tests are
executed (specific features may depend on the particular test format). See
EXECUTION OPTIONS for more information.

Finally, lit also supports additional options for only running a
subset of the options specified on the command line, see
SELECTION OPTIONS for more information.

Users interested in the lit architecture or designing a
lit testing implementation should see LIT INFRASTRUCTURE.

GENERAL OPTIONS

	
-h, --help

	Show the lit help message.

	
-j N, --threads=N

	Run N tests in parallel. By default, this is automatically chosen to
match the number of detected available CPUs.

	
--config-prefix=NAME

	Search for NAME.cfg and NAME.site.cfg when searching for
test suites, instead of lit.cfg and lit.site.cfg.

	
-D NAME[=VALUE], --param NAME[=VALUE]

	Add a user defined parameter NAME with the given VALUE (or the empty
string if not given). The meaning and use of these parameters is test suite
dependent.

OUTPUT OPTIONS

	
-q, --quiet

	Suppress any output except for test failures.

	
-s, --succinct

	Show less output, for example don’t show information on tests that pass.

	
-v, --verbose

	Show more information on test failures, for example the entire test output
instead of just the test result.

	
-vv, --echo-all-commands

	Echo all commands to stdout, as they are being executed.
This can be valuable for debugging test failures, as the last echoed command
will be the one which has failed.
lit normally inserts a no-op command (: in the case of bash)
with argument 'RUN: at line N' before each command pipeline, and this
option also causes those no-op commands to be echoed to stdout to help you
locate the source line of the failed command.
This option implies --verbose.

	
-a, --show-all

	Show more information about all tests, for example the entire test
commandline and output.

	
--no-progress-bar

	Do not use curses based progress bar.

	
--show-unsupported

	Show the names of unsupported tests.

	
--show-xfail

	Show the names of tests that were expected to fail.

EXECUTION OPTIONS

	
--path=PATH

	Specify an additional PATH to use when searching for executables in tests.

	
--vg

	Run individual tests under valgrind (using the memcheck tool). The
--error-exitcode argument for valgrind is used so that valgrind failures
will cause the program to exit with a non-zero status.

When this option is enabled, lit will also automatically provide a
“valgrind” feature that can be used to conditionally disable (or expect
failure in) certain tests.

	
--vg-arg=ARG

	When --vg is used, specify an additional argument to pass to
valgrind itself.

	
--vg-leak

	When --vg is used, enable memory leak checks. When this option is
enabled, lit will also automatically provide a “vg_leak”
feature that can be used to conditionally disable (or expect failure in)
certain tests.

	
--time-tests

	Track the wall time individual tests take to execute and includes the results
in the summary output. This is useful for determining which tests in a test
suite take the most time to execute. Note that this option is most useful
with -j 1.

SELECTION OPTIONS

	
--max-tests=N

	Run at most N tests and then terminate.

	
--max-time=N

	Spend at most N seconds (approximately) running tests and then terminate.

	
--shuffle

	Run the tests in a random order.

	
--num-shards=M

	Divide the set of selected tests into M equal-sized subsets or
“shards”, and run only one of them. Must be used with the
--run-shard=N option, which selects the shard to run. The environment
variable LIT_NUM_SHARDS can also be used in place of this
option. These two options provide a coarse mechanism for paritioning large
testsuites, for parallel execution on separate machines (say in a large
testing farm).

	
--run-shard=N

	Select which shard to run, assuming the --num-shards=M option was
provided. The two options must be used together, and the value of N
must be in the range 1..M. The environment variable
LIT_RUN_SHARD can also be used in place of this option.

	
--filter=REGEXP

	Run only those tests whose name matches the regular expression specified in
REGEXP. The environment variable LIT_FILTER can be also used in place
of this option, which is especially useful in environments where the call
to lit is issued indirectly.

ADDITIONAL OPTIONS

	
--debug

	Run lit in debug mode, for debugging configuration issues and
lit itself.

	
--show-suites

	List the discovered test suites and exit.

	
--show-tests

	List all of the discovered tests and exit.

EXIT STATUS

lit will exit with an exit code of 1 if there are any FAIL or XPASS
results. Otherwise, it will exit with the status 0. Other exit codes are used
for non-test related failures (for example a user error or an internal program
error).

TEST DISCOVERY

The inputs passed to lit can be either individual tests, or entire
directories or hierarchies of tests to run. When lit starts up, the
first thing it does is convert the inputs into a complete list of tests to run
as part of test discovery.

In the lit model, every test must exist inside some test suite.
lit resolves the inputs specified on the command line to test suites
by searching upwards from the input path until it finds a lit.cfg or
lit.site.cfg file. These files serve as both a marker of test suites
and as configuration files which lit loads in order to understand
how to find and run the tests inside the test suite.

Once lit has mapped the inputs into test suites it traverses the
list of inputs adding tests for individual files and recursively searching for
tests in directories.

This behavior makes it easy to specify a subset of tests to run, while still
allowing the test suite configuration to control exactly how tests are
interpreted. In addition, lit always identifies tests by the test
suite they are in, and their relative path inside the test suite. For
appropriately configured projects, this allows lit to provide
convenient and flexible support for out-of-tree builds.

TEST STATUS RESULTS

Each test ultimately produces one of the following six results:

PASS

The test succeeded.

XFAIL

The test failed, but that is expected. This is used for test formats which allow
specifying that a test does not currently work, but wish to leave it in the test
suite.

XPASS

The test succeeded, but it was expected to fail. This is used for tests which
were specified as expected to fail, but are now succeeding (generally because
the feature they test was broken and has been fixed).

FAIL

The test failed.

UNRESOLVED

The test result could not be determined. For example, this occurs when the test
could not be run, the test itself is invalid, or the test was interrupted.

UNSUPPORTED

The test is not supported in this environment. This is used by test formats
which can report unsupported tests.

Depending on the test format tests may produce additional information about
their status (generally only for failures). See the OUTPUT OPTIONS
section for more information.

LIT INFRASTRUCTURE

This section describes the lit testing architecture for users interested in
creating a new lit testing implementation, or extending an existing one.

lit proper is primarily an infrastructure for discovering and running
arbitrary tests, and to expose a single convenient interface to these
tests. lit itself doesn’t know how to run tests, rather this logic is
defined by test suites.

TEST SUITES

As described in TEST DISCOVERY, tests are always located inside a test
suite. Test suites serve to define the format of the tests they contain, the
logic for finding those tests, and any additional information to run the tests.

lit identifies test suites as directories containing lit.cfg or
lit.site.cfg files (see also --config-prefix). Test suites are
initially discovered by recursively searching up the directory hierarchy for
all the input files passed on the command line. You can use
--show-suites to display the discovered test suites at startup.

Once a test suite is discovered, its config file is loaded. Config files
themselves are Python modules which will be executed. When the config file is
executed, two important global variables are predefined:

lit_config

The global lit configuration object (a LitConfig instance), which defines
the builtin test formats, global configuration parameters, and other helper
routines for implementing test configurations.

config

This is the config object (a TestingConfig instance) for the test suite,
which the config file is expected to populate. The following variables are also
available on the config object, some of which must be set by the config and
others are optional or predefined:

name [required] The name of the test suite, for use in reports and
diagnostics.

test_format [required] The test format object which will be used to
discover and run tests in the test suite. Generally this will be a builtin test
format available from the lit.formats module.

test_source_root The filesystem path to the test suite root. For out-of-dir
builds this is the directory that will be scanned for tests.

test_exec_root For out-of-dir builds, the path to the test suite root inside
the object directory. This is where tests will be run and temporary output files
placed.

environment A dictionary representing the environment to use when executing
tests in the suite.

suffixes For lit test formats which scan directories for tests, this
variable is a list of suffixes to identify test files. Used by: ShTest.

substitutions For lit test formats which substitute variables into a test
script, the list of substitutions to perform. Used by: ShTest.

unsupported Mark an unsupported directory, all tests within it will be
reported as unsupported. Used by: ShTest.

parent The parent configuration, this is the config object for the directory
containing the test suite, or None.

root The root configuration. This is the top-most lit configuration in
the project.

pipefail Normally a test using a shell pipe fails if any of the commands
on the pipe fail. If this is not desired, setting this variable to false
makes the test fail only if the last command in the pipe fails.

available_features A set of features that can be used in XFAIL,
REQUIRES, and UNSUPPORTED directives.

TEST DISCOVERY

Once test suites are located, lit recursively traverses the source
directory (following test_source_root) looking for tests. When lit
enters a sub-directory, it first checks to see if a nested test suite is
defined in that directory. If so, it loads that test suite recursively,
otherwise it instantiates a local test config for the directory (see
LOCAL CONFIGURATION FILES).

Tests are identified by the test suite they are contained within, and the
relative path inside that suite. Note that the relative path may not refer to
an actual file on disk; some test formats (such as GoogleTest) define
“virtual tests” which have a path that contains both the path to the actual
test file and a subpath to identify the virtual test.

LOCAL CONFIGURATION FILES

When lit loads a subdirectory in a test suite, it instantiates a
local test configuration by cloning the configuration for the parent directory
— the root of this configuration chain will always be a test suite. Once the
test configuration is cloned lit checks for a lit.local.cfg file
in the subdirectory. If present, this file will be loaded and can be used to
specialize the configuration for each individual directory. This facility can
be used to define subdirectories of optional tests, or to change other
configuration parameters — for example, to change the test format, or the
suffixes which identify test files.

PRE-DEFINED SUBSTITUTIONS

lit provides various patterns that can be used with the RUN command.
These are defined in TestRunner.py. The base set of substitutions are:

	Macro

	Substitution

	%s

	source path (path to the file currently being run)

	%S

	source dir (directory of the file currently being run)

	%p

	same as %S

	%{pathsep}

	path separator

	%t

	temporary file name unique to the test

	%T

	temporary directory unique to the test

	%%

	%

Other substitutions are provided that are variations on this base set and
further substitution patterns can be defined by each test module. See the
modules LOCAL CONFIGURATION FILES.

More detailed information on substitutions can be found in the
LLVM Testing Infrastructure Guide.

TEST RUN OUTPUT FORMAT

The lit output for a test run conforms to the following schema, in
both short and verbose modes (although in short mode no PASS lines will be
shown). This schema has been chosen to be relatively easy to reliably parse by
a machine (for example in buildbot log scraping), and for other tools to
generate.

Each test result is expected to appear on a line that matches:

<result code>: <test name> (<progress info>)

where <result-code> is a standard test result such as PASS, FAIL, XFAIL,
XPASS, UNRESOLVED, or UNSUPPORTED. The performance result codes of IMPROVED and
REGRESSED are also allowed.

The <test name> field can consist of an arbitrary string containing no
newline.

The <progress info> field can be used to report progress information such
as (1/300) or can be empty, but even when empty the parentheses are required.

Each test result may include additional (multiline) log information in the
following format:

<log delineator> TEST '(<test name>)' <trailing delineator>
... log message ...
<log delineator>

where <test name> should be the name of a preceding reported test, <log
delineator> is a string of “*” characters at least four characters long
(the recommended length is 20), and <trailing delineator> is an arbitrary
(unparsed) string.

The following is an example of a test run output which consists of four tests A,
B, C, and D, and a log message for the failing test C:

PASS: A (1 of 4)
PASS: B (2 of 4)
FAIL: C (3 of 4)
******************** TEST 'C' FAILED ********************
Test 'C' failed as a result of exit code 1.

PASS: D (4 of 4)

LIT EXAMPLE TESTS

The lit distribution contains several example implementations of
test suites in the ExampleTests directory.

SEE ALSO

valgrind(1)

llvm-build - LLVM Project Build Utility

SYNOPSIS

llvm-build [options]

DESCRIPTION

llvm-build is a tool for working with LLVM projects that use the LLVMBuild
system for describing their components.

At heart, llvm-build is responsible for loading, verifying, and manipulating
the project’s component data. The tool is primarily designed for use in
implementing build systems and tools which need access to the project structure
information.

OPTIONS

-h, –help

Print the builtin program help.

–source-root=PATH

If given, load the project at the given source root path. If this option is not
given, the location of the project sources will be inferred from the location of
the llvm-build script itself.

–print-tree

Print the component tree for the project.

–write-library-table

Write out the C++ fragment which defines the components, library names, and
required libraries. This C++ fragment is built into llvm-config|llvm-config
in order to provide clients with the list of required libraries for arbitrary
component combinations.

–write-llvmbuild

Write out new LLVMBuild.txt files based on the loaded components. This is
useful for auto-upgrading the schema of the files. llvm-build will try to a
limited extent to preserve the comments which were written in the original
source file, although at this time it only preserves block comments that precede
the section names in the LLVMBuild files.

–write-cmake-fragment

Write out the LLVMBuild in the form of a CMake fragment, so it can easily be
consumed by the CMake based build system. The exact contents and format of this
file are closely tied to how LLVMBuild is integrated with CMake, see LLVM’s
top-level CMakeLists.txt.

–write-make-fragment

Write out the LLVMBuild in the form of a Makefile fragment, so it can easily be
consumed by a Make based build system. The exact contents and format of this
file are closely tied to how LLVMBuild is integrated with the Makefiles, see
LLVM’s Makefile.rules.

–llvmbuild-source-root=PATH

If given, expect the LLVMBuild files for the project to be rooted at the
given path, instead of inside the source tree itself. This option is primarily
designed for use in conjunction with –write-llvmbuild to test changes to
LLVMBuild schema.

EXIT STATUS

llvm-build exits with 0 if operation was successful. Otherwise, it will exist
with a non-zero value.

llvm-exegesis - LLVM Machine Instruction Benchmark

SYNOPSIS

llvm-exegesis [options]

DESCRIPTION

llvm-exegesis is a benchmarking tool that uses information available
in LLVM to measure host machine instruction characteristics like latency or port
decomposition.

Given an LLVM opcode name and a benchmarking mode, llvm-exegesis
generates a code snippet that makes execution as serial (resp. as parallel) as
possible so that we can measure the latency (resp. uop decomposition) of the
instruction.
The code snippet is jitted and executed on the host subtarget. The time taken
(resp. resource usage) is measured using hardware performance counters. The
result is printed out as YAML to the standard output.

The main goal of this tool is to automatically (in)validate the LLVM’s TableDef
scheduling models. To that end, we also provide analysis of the results.

EXAMPLES: benchmarking

Assume you have an X86-64 machine. To measure the latency of a single
instruction, run:

$ llvm-exegesis -mode=latency -opcode-name=ADD64rr

Measuring the uop decomposition of an instruction works similarly:

$ llvm-exegesis -mode=uops -opcode-name=ADD64rr

The output is a YAML document (the default is to write to stdout, but you can
redirect the output to a file using -benchmarks-file):

key:
 opcode_name: ADD64rr
 mode: latency
 config: ''
cpu_name: haswell
llvm_triple: x86_64-unknown-linux-gnu
num_repetitions: 10000
measurements:
 - { key: latency, value: 1.0058, debug_string: '' }
error: ''
info: 'explicit self cycles, selecting one aliasing configuration.
Snippet:
ADD64rr R8, R8, R10
'
...

To measure the latency of all instructions for the host architecture, run:

#!/bin/bash
readonly INSTRUCTIONS=$(($(grep INSTRUCTION_LIST_END build/lib/Target/X86/X86GenInstrInfo.inc | cut -f2 -d=) - 1))
for INSTRUCTION in $(seq 1 ${INSTRUCTIONS});
do
 ./build/bin/llvm-exegesis -mode=latency -opcode-index=${INSTRUCTION} | sed -n '/---/,$p'
done

FIXME: Provide an llvm-exegesis option to test all instructions.

EXAMPLES: analysis

Assuming you have a set of benchmarked instructions (either latency or uops) as
YAML in file /tmp/benchmarks.yaml, you can analyze the results using the
following command:

 $ llvm-exegesis -mode=analysis \
-benchmarks-file=/tmp/benchmarks.yaml \
-analysis-clusters-output-file=/tmp/clusters.csv \
-analysis-inconsistencies-output-file=/tmp/inconsistencies.txt

This will group the instructions into clusters with the same performance
characteristics. The clusters will be written out to /tmp/clusters.csv in the
following format:

cluster_id,opcode_name,config,sched_class
...
2,ADD32ri8_DB,,WriteALU,1.00
2,ADD32ri_DB,,WriteALU,1.01
2,ADD32rr,,WriteALU,1.01
2,ADD32rr_DB,,WriteALU,1.00
2,ADD32rr_REV,,WriteALU,1.00
2,ADD64i32,,WriteALU,1.01
2,ADD64ri32,,WriteALU,1.01
2,MOVSX64rr32,,BSWAP32r_BSWAP64r_MOVSX64rr32,1.00
2,VPADDQYrr,,VPADDBYrr_VPADDDYrr_VPADDQYrr_VPADDWYrr_VPSUBBYrr_VPSUBDYrr_VPSUBQYrr_VPSUBWYrr,1.02
2,VPSUBQYrr,,VPADDBYrr_VPADDDYrr_VPADDQYrr_VPADDWYrr_VPSUBBYrr_VPSUBDYrr_VPSUBQYrr_VPSUBWYrr,1.01
2,ADD64ri8,,WriteALU,1.00
2,SETBr,,WriteSETCC,1.01
...

llvm-exegesis will also analyze the clusters to point out
inconsistencies in the scheduling information. The output is an html file. For
example, /tmp/inconsistencies.html will contain messages like the following :

[image: ../_images/llvm-exegesis-analysis.png]
Note that the scheduling class names will be resolved only when
llvm-exegesis is compiled in debug mode, else only the class id will
be shown. This does not invalidate any of the analysis results though.

OPTIONS

	
-help

	Print a summary of command line options.

	
-opcode-index=<LLVM opcode index>

	Specify the opcode to measure, by index.
Either opcode-index or opcode-name must be set.

	
-opcode-name=<LLVM opcode name>

	Specify the opcode to measure, by name.
Either opcode-index or opcode-name must be set.

	
-mode=[latency|uops|analysis]

	Specify the run mode.

	
-num-repetitions=<Number of repetition>

	Specify the number of repetitions of the asm snippet.
Higher values lead to more accurate measurements but lengthen the benchmark.

	
-benchmarks-file=</path/to/file>

	File to read (analysis mode) or write (latency/uops modes) benchmark
results. “-” uses stdin/stdout.

	
-analysis-clusters-output-file=</path/to/file>

	If provided, write the analysis clusters as CSV to this file. “-” prints to
stdout.

	
-analysis-inconsistencies-output-file=</path/to/file>

	If non-empty, write inconsistencies found during analysis to this file. -
prints to stdout.

	
-analysis-numpoints=<dbscan numPoints parameter>

	Specify the numPoints parameters to be used for DBSCAN clustering
(analysis mode).

	
-analysis-espilon=<dbscan epsilon parameter>

	Specify the numPoints parameters to be used for DBSCAN clustering
(analysis mode).

	
-ignore-invalid-sched-class=false

	If set, ignore instructions that do not have a sched class (class idx = 0).

EXIT STATUS

llvm-exegesis returns 0 on success. Otherwise, an error message is
printed to standard error, and the tool returns a non 0 value.

llvm-pdbutil - PDB File forensics and diagnostics

	Synopsis

	Description

	Subcommands

	pretty

	Summary

	Options

	Filtering and Sorting Options

	Symbol Type Options

	Other Options

	dump

	Summary

	Options

	MSF Container Options

	Module & File Options

	Symbol Options

	Type Record Options

	Miscellaneous Options

	bytes

	Summary

	Options

	MSF File Options

	PDB Stream Options

	DBI Stream Options

	Module Options

	Type Record Options

	pdb2yaml

	Summary

	Options

	yaml2pdb

	Summary

	Options

	merge

	Summary

	Options

Synopsis

llvm-pdbutil [subcommand] [options]

Description

Display types, symbols, CodeView records, and other information from a
PDB file, as well as manipulate and create PDB files. llvm-pdbutil
is normally used by FileCheck-based tests to test LLVM’s PDB reading and
writing functionality, but can also be used for general PDB file investigation
and forensics, or as a replacement for cvdump.

Subcommands

llvm-pdbutil is separated into several subcommands each tailored to
a different purpose. A brief summary of each command follows, with more detail
in the sections that follow.

	pretty - Dump symbol and type information in a format that
tries to look as much like the original source code as possible.

	dump - Dump low level types and structures from the PDB
file, including CodeView records, hash tables, PDB streams, etc.

	bytes - Dump data from the PDB file’s streams, records,
types, symbols, etc as raw bytes.

	yaml2pdb - Given a yaml description of a PDB file, produce
a valid PDB file that matches that description.

	pdb2yaml - For a given PDB file, produce a YAML
description of some or all of the file in a way that the PDB can be
reconstructed.

	merge - Given two PDBs, produce a third PDB that is the
result of merging the two input PDBs.

pretty

Important

The pretty subcommand is built on the Windows DIA SDK, and as such is not
supported on non-Windows platforms.

USAGE: llvm-pdbutil pretty [options] <input PDB file>

Summary

The pretty subcommand displays a very high level representation of your
program’s debug info. Since it is built on the Windows DIA SDK which is the
standard API that Windows tools and debuggers query debug information, it
presents a more authoritative view of how a debugger is going to interpret your
debug information than a mode which displays low-level CodeView records.

Options

Filtering and Sorting Options

Note

exclude filters take priority over include filters. So if a filter
matches both an include and an exclude rule, then it is excluded.

	
-exclude-compilands=<string>

	When dumping compilands, compiland source-file contributions, or per-compiland
symbols, this option instructs llvm-pdbutil to omit any compilands that
match the specified regular expression.

	
-exclude-symbols=<string>

	When dumping global, public, or per-compiland symbols, this option instructs
llvm-pdbutil to omit any symbols that match the specified regular
expression.

	
-exclude-types=<string>

	When dumping types, this option instructs llvm-pdbutil to omit any types
that match the specified regular expression.

	
-include-compilands=<string>

	When dumping compilands, compiland source-file contributions, or per-compiland
symbols, limit the initial search to only those compilands that match the
specified regular expression.

	
-include-symbols=<string>

	When dumping global, public, or per-compiland symbols, limit the initial
search to only those symbols that match the specified regular expression.

	
-include-types=<string>

	When dumping types, limit the initial search to only those types that match
the specified regular expression.

	
-min-class-padding=<uint>

	Only display types that have at least the specified amount of alignment
padding, accounting for padding in base classes and aggregate field members.

	
-min-class-padding-imm=<uint>

	Only display types that have at least the specified amount of alignment
padding, ignoring padding in base classes and aggregate field members.

	
-min-type-size=<uint>

	Only display types T where sizeof(T) is greater than or equal to the specified
amount.

	
-no-compiler-generated

	Don’t show compiler generated types and symbols

	
-no-enum-definitions

	When dumping an enum, don’t show the full enum (e.g. the individual enumerator
values).

	
-no-system-libs

	Don’t show symbols from system libraries

Symbol Type Options

	
-all

	Implies all other options in this category.

	
-class-definitions=<format>

	Displays class definitions in the specified format.

=all - Display all class members including data, constants, typedefs, functions, etc (default)
=layout - Only display members that contribute to class size.
=none - Don't display class definitions (e.g. only display the name and base list)

	
-class-order

	Displays classes in the specified order.

=none - Undefined / no particular sort order (default)
=name - Sort classes by name
=size - Sort classes by size
=padding - Sort classes by amount of padding
=padding-pct - Sort classes by percentage of space consumed by padding
=padding-imm - Sort classes by amount of immediate padding
=padding-pct-imm - Sort classes by percentage of space consumed by immediate padding

	
-class-recurse-depth=<uint>

	When dumping class definitions, stop after recursing the specified number of times. The
default is 0, which is no limit.

	
-classes

	Display classes

	
-compilands

	Display compilands (e.g. object files)

	
-enums

	Display enums

	
-externals

	Dump external (e.g. exported) symbols

	
-globals

	Dump global symbols

	
-lines

	Dump the mappings between source lines and code addresses.

	
-module-syms

	Display symbols (variables, functions, etc) for each compiland

	
-sym-types=<types>

	Type of symbols to dump when -globals, -externals, or -module-syms is
specified. (default all)

=thunks - Display thunk symbols
=data - Display data symbols
=funcs - Display function symbols
=all - Display all symbols (default)

	
-symbol-order=<order>

	For symbols dumped via the -module-syms, -globals, or -externals options, sort
the results in specified order.

=none - Undefined / no particular sort order
=name - Sort symbols by name
=size - Sort symbols by size

	
-typedefs

	Display typedef types

	
-types

	Display all types (implies -classes, -enums, -typedefs)

Other Options

	
-color-output

	Force color output on or off. By default, color if used if outputting to a
terminal.

	
-load-address=<uint>

	When displaying relative virtual addresses, assume the process is loaded at the
given address and display what would be the absolute address.

dump

USAGE: llvm-pdbutil dump [options] <input PDB file>

Summary

The dump subcommand displays low level information about the structure of a
PDB file. It is used heavily by LLVM’s testing infrastructure, but can also be
used for PDB forensics. It serves a role similar to that of Microsoft’s
cvdump tool.

Note

The dump subcommand exposes internal details of the file format. As
such, the reader should be familiar with The PDB File Format before using this
command.

Options

MSF Container Options

	
-streams

	dump a summary of all of the streams in the PDB file.

	
-stream-blocks

	In conjunction with -streams, add information to the output about
what blocks the specified stream occupies.

	
-summary

	Dump MSF and PDB header information.

Module & File Options

	
-modi=<uint>

	For all options that dump information from each module/compiland, limit to
the specified module.

	
-files

	Dump the source files that contribute to each displayed module.

	
-il

	Dump inlinee line information (DEBUG_S_INLINEELINES CodeView subsection)

	
-l

	Dump line information (DEBUG_S_LINES CodeView subsection)

	
-modules

	Dump compiland information

	
-xme

	Dump cross module exports (DEBUG_S_CROSSSCOPEEXPORTS CodeView subsection)

	
-xmi

	Dump cross module imports (DEBUG_S_CROSSSCOPEIMPORTS CodeView subsection)

Symbol Options

	
-globals

	dump global symbol records

	
-global-extras

	dump additional information about the globals, such as hash buckets and hash
values.

	
-publics

	dump public symbol records

	
-public-extras

	dump additional information about the publics, such as hash buckets and hash
values.

	
-symbols

	dump symbols (functions, variables, etc) for each module dumped.

	
-sym-data

	For each symbol record dumped as a result of the -symbols option,
display the full bytes of the record in binary as well.

Type Record Options

	
-types

	Dump CodeView type records from TPI stream

	
-type-extras

	Dump additional information from the TPI stream, such as hashes and the type
index offsets array.

	
-type-data

	For each type record dumped, display the full bytes of the record in binary as
well.

	
-type-index=<uint>

	Only dump types with the specified type index.

	
-ids

	Dump CodeView type records from IPI stream.

	
-id-extras

	Dump additional information from the IPI stream, such as hashes and the type
index offsets array.

	
-id-data

	For each ID record dumped, display the full bytes of the record in binary as
well.

	
-id-index=<uint>

	only dump ID records with the specified hexadecimal type index.

	
-dependents

	When used in conjunction with -type-index or -id-index,
dumps the entire dependency graph for the specified index instead of just the
single record with the specified index. For example, if type index 0x4000 is
a function whose return type has index 0x3000, and you specify
-dependents=0x4000, then this would dump both records (as well as any other
dependents in the tree).

Miscellaneous Options

	
-all

	Implies most other options.

	
-section-contribs

	Dump section contributions.

	
-section-headers

	Dump image section headers.

	
-section-map

	Dump section map.

	
-string-table

	Dump PDB string table.

bytes

USAGE: llvm-pdbutil bytes [options] <input PDB file>

Summary

Like the dump subcommand, the bytes subcommand displays low level
information about the structure of a PDB file, but it is used for even deeper
forensics. The bytes subcommand finds various structures in a PDB file
based on the command line options specified, and dumps them in hex. Someone
working on support for emitting PDBs would use this heavily, for example, to
compare one PDB against another PDB to ensure byte-for-byte compatibility. It
is not enough to simply compare the bytes of an entire file, or an entire stream
because it’s perfectly fine for the same structure to exist at different
locations in two different PDBs, and “finding” the structure is half the battle.

Options

MSF File Options

	
-block-range=<start[-end]>

	Dump binary data from specified range of MSF file blocks.

	
-byte-range=<start[-end]>

	Dump binary data from specified range of bytes in the file.

	
-fpm

	Dump the MSF free page map.

	
-stream-data=<string>

	Dump binary data from the specified streams. Format is SN[:Start][@Size].
For example, -stream-data=7:3@12 dumps 12 bytes from stream 7, starting
at offset 3 in the stream.

PDB Stream Options

	
-name-map

	Dump bytes of PDB Name Map

DBI Stream Options

	
-ec

	Dump the edit and continue map substream of the DBI stream.

	
-files

	Dump the file info substream of the DBI stream.

	
-modi

	Dump the modi substream of the DBI stream.

	
-sc

	Dump section contributions substream of the DBI stream.

	
-sm

	Dump the section map from the DBI stream.

	
-type-server

	Dump the type server map from the DBI stream.

Module Options

	
-mod=<uint>

	Limit all options in this category to the specified module index. By default,
options in this category will dump bytes from all modules.

	
-chunks

	Dump the bytes of each module’s C13 debug subsection.

	
-split-chunks

	When specified with -chunks, split the C13 debug subsection into a
separate chunk for each subsection type, and dump them separately.

	
-syms

	Dump the symbol record substream from each module.

Type Record Options

	
-id=<uint>

	Dump the record from the IPI stream with the given type index.

	
-type=<uint>

	Dump the record from the TPI stream with the given type index.

pdb2yaml

USAGE: llvm-pdbutil pdb2yaml [options] <input PDB file>

Summary

Options

yaml2pdb

USAGE: llvm-pdbutil yaml2pdb [options] <input YAML file>

Summary

Generate a PDB file from a YAML description. The YAML syntax is not described
here. Instead, use llvm-pdbutil pdb2yaml and
examine the output for an example starting point.

Options

	
-pdb=<file-name>

	

Write the resulting PDB to the specified file.

merge

USAGE: llvm-pdbutil merge [options] <input PDB file 1> <input PDB file 2>

Summary

Merge two PDB files into a single file.

Options

	
-pdb=<file-name>

	

Write the resulting PDB to the specified file.

llvm-readobj - LLVM Object Reader

SYNOPSIS

llvm-readobj [options] [input…]

DESCRIPTION

The llvm-readobj tool displays low-level format-specific information
about one or more object files. The tool and its output is primarily designed
for use in FileCheck-based tests.

OPTIONS

If input is “-” or omitted, llvm-readobj reads from standard
input. Otherwise, it will read from the specified filenames.

	
-help

	Print a summary of command line options.

	
-version

	Display the version of this program

	
-file-headers, -h

	Display file headers.

	
-sections, -s

	Display all sections.

	
-section-data, -sd

	When used with -sections, display section data for each section shown.

	
-section-relocations, -sr

	When used with -sections, display relocations for each section shown.

	
-section-symbols, -st

	When used with -sections, display symbols for each section shown.

	
-relocations, -r

	Display the relocation entries in the file.

	
-symbols, -t

	Display the symbol table.

	
-dyn-symbols

	Display the dynamic symbol table (only for ELF object files).

	
-unwind, -u

	Display unwind information.

	
-expand-relocs

	When used with -relocations, display each relocation in an expanded
multi-line format.

	
-dynamic-table

	Display the ELF .dynamic section table (only for ELF object files).

	
-needed-libs

	Display the needed libraries (only for ELF object files).

	
-program-headers

	Display the ELF program headers (only for ELF object files).

	
-elf-section-groups, -g

	Display section groups (only for ELF object files).

EXIT STATUS

llvm-readobj returns 0.

Getting Started with the LLVM System

	Overview

	Getting Started Quickly (A Summary)

	Requirements

	Hardware

	Software

	Host C++ Toolchain, both Compiler and Standard Library

	Getting a Modern Host C++ Toolchain

	Getting Started with LLVM

	Terminology and Notation

	Unpacking the LLVM Archives

	Checkout LLVM from Subversion

	Git Mirror

	Sending patches with Git

	For developers to work with git-svn

	For developers to work with a git monorepo

	Local LLVM Configuration

	Compiling the LLVM Suite Source Code

	Cross-Compiling LLVM

	The Location of LLVM Object Files

	Optional Configuration Items

	Directory Layout

	llvm/examples

	llvm/include

	llvm/lib

	llvm/projects

	llvm/test

	test-suite

	llvm/tools

	llvm/utils

	An Example Using the LLVM Tool Chain

	Example with clang

	Common Problems

	Links

Overview

Welcome to LLVM! In order to get started, you first need to know some basic
information.

First, LLVM comes in three pieces. The first piece is the LLVM suite. This
contains all of the tools, libraries, and header files needed to use LLVM. It
contains an assembler, disassembler, bitcode analyzer and bitcode optimizer. It
also contains basic regression tests that can be used to test the LLVM tools and
the Clang front end.

The second piece is the Clang [http://clang.llvm.org/] front end. This
component compiles C, C++, Objective C, and Objective C++ code into LLVM
bitcode. Once compiled into LLVM bitcode, a program can be manipulated with the
LLVM tools from the LLVM suite.

There is a third, optional piece called Test Suite. It is a suite of programs
with a testing harness that can be used to further test LLVM’s functionality
and performance.

Getting Started Quickly (A Summary)

The LLVM Getting Started documentation may be out of date. So, the Clang
Getting Started [http://clang.llvm.org/get_started.html] page might also be a
good place to start.

Here’s the short story for getting up and running quickly with LLVM:

	Read the documentation.

	Read the documentation.

	Remember that you were warned twice about reading the documentation.

	In particular, the relative paths specified are important.

	Checkout LLVM:

	cd where-you-want-llvm-to-live

	svn co http://llvm.org/svn/llvm-project/llvm/trunk llvm

	Checkout Clang:

	cd where-you-want-llvm-to-live

	cd llvm/tools

	svn co http://llvm.org/svn/llvm-project/cfe/trunk clang

	Checkout Extra Clang Tools [Optional]:

	cd where-you-want-llvm-to-live

	cd llvm/tools/clang/tools

	svn co http://llvm.org/svn/llvm-project/clang-tools-extra/trunk extra

	Checkout LLD linker [Optional]:

	cd where-you-want-llvm-to-live

	cd llvm/tools

	svn co http://llvm.org/svn/llvm-project/lld/trunk lld

	Checkout Polly Loop Optimizer [Optional]:

	cd where-you-want-llvm-to-live

	cd llvm/tools

	svn co http://llvm.org/svn/llvm-project/polly/trunk polly

	Checkout Compiler-RT (required to build the sanitizers) [Optional]:

	cd where-you-want-llvm-to-live

	cd llvm/projects

	svn co http://llvm.org/svn/llvm-project/compiler-rt/trunk compiler-rt

	Checkout Libomp (required for OpenMP support) [Optional]:

	cd where-you-want-llvm-to-live

	cd llvm/projects

	svn co http://llvm.org/svn/llvm-project/openmp/trunk openmp

	Checkout libcxx and libcxxabi [Optional]:

	cd where-you-want-llvm-to-live

	cd llvm/projects

	svn co http://llvm.org/svn/llvm-project/libcxx/trunk libcxx

	svn co http://llvm.org/svn/llvm-project/libcxxabi/trunk libcxxabi

	Get the Test Suite Source Code [Optional]

	cd where-you-want-llvm-to-live

	cd llvm/projects

	svn co http://llvm.org/svn/llvm-project/test-suite/trunk test-suite

	Configure and build LLVM and Clang:

Warning: Make sure you’ve checked out all of the source code
before trying to configure with cmake. cmake does not pickup newly
added source directories in incremental builds.

The build uses CMake. LLVM requires CMake 3.4.3 to build. It
is generally recommended to use a recent CMake, especially if you’re
generating Ninja build files. This is because the CMake project is constantly
improving the quality of the generators, and the Ninja generator gets a lot
of attention.

	cd where you want to build llvm

	mkdir build

	cd build

	cmake -G <generator> [options] <path to llvm sources>

Some common generators are:

	Unix Makefiles — for generating make-compatible parallel makefiles.

	Ninja — for generating Ninja [https://ninja-build.org]
build files. Most llvm developers use Ninja.

	Visual Studio — for generating Visual Studio projects and
solutions.

	Xcode — for generating Xcode projects.

Some Common options:

	-DCMAKE_INSTALL_PREFIX=directory — Specify for directory the full
pathname of where you want the LLVM tools and libraries to be installed
(default /usr/local).

	-DCMAKE_BUILD_TYPE=type — Valid options for type are Debug,
Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

	-DLLVM_ENABLE_ASSERTIONS=On — Compile with assertion checks enabled
(default is Yes for Debug builds, No for all other build types).

	Run your build tool of choice!

	The default target (i.e. make) will build all of LLVM

	The check-all target (i.e. make check-all) will run the
regression tests to ensure everything is in working order.

	CMake will generate build targets for each tool and library, and most
LLVM sub-projects generate their own check-<project> target.

	Running a serial build will be slow. Make sure you run a
parallel build; for make, use make -j.

	For more information see CMake

	If you get an “internal compiler error (ICE)” or test failures, see
below.

Consult the Getting Started with LLVM section for detailed information on
configuring and compiling LLVM. Go to Directory Layout to learn about the
layout of the source code tree.

Requirements

Before you begin to use the LLVM system, review the requirements given below.
This may save you some trouble by knowing ahead of time what hardware and
software you will need.

Hardware

LLVM is known to work on the following host platforms:

	OS

	Arch

	Compilers

	Linux

	x861

	GCC, Clang

	Linux

	amd64

	GCC, Clang

	Linux

	ARM4

	GCC, Clang

	Linux

	PowerPC

	GCC, Clang

	Solaris

	V9 (Ultrasparc)

	GCC

	FreeBSD

	x861

	GCC, Clang

	FreeBSD

	amd64

	GCC, Clang

	NetBSD

	x861

	GCC, Clang

	NetBSD

	amd64

	GCC, Clang

	MacOS X2

	PowerPC

	GCC

	MacOS X

	x86

	GCC, Clang

	Cygwin/Win32

	x861, 3

	GCC

	Windows

	x861

	Visual Studio

	Windows x64

	x86-64

	Visual Studio

Note

	Code generation supported for Pentium processors and up

	Code generation supported for 32-bit ABI only

	To use LLVM modules on Win32-based system, you may configure LLVM
with -DBUILD_SHARED_LIBS=On.

	MCJIT not working well pre-v7, old JIT engine not supported any more.

Note that Debug builds require a lot of time and disk space. An LLVM-only build
will need about 1-3 GB of space. A full build of LLVM and Clang will need around
15-20 GB of disk space. The exact space requirements will vary by system. (It
is so large because of all the debugging information and the fact that the
libraries are statically linked into multiple tools).

If you are space-constrained, you can build only selected tools or only
selected targets. The Release build requires considerably less space.

The LLVM suite may compile on other platforms, but it is not guaranteed to do
so. If compilation is successful, the LLVM utilities should be able to
assemble, disassemble, analyze, and optimize LLVM bitcode. Code generation
should work as well, although the generated native code may not work on your
platform.

Software

Compiling LLVM requires that you have several software packages installed. The
table below lists those required packages. The Package column is the usual name
for the software package that LLVM depends on. The Version column provides
“known to work” versions of the package. The Notes column describes how LLVM
uses the package and provides other details.

	Package

	Version

	Notes

	GNU Make [http://savannah.gnu.org/projects/make]

	3.79, 3.79.1

	Makefile/build processor

	GCC [http://gcc.gnu.org/]

	>=4.8.0

	C/C++ compiler1

	python [http://www.python.org/]

	>=2.7

	Automated test suite2

	zlib [http://zlib.net]

	>=1.2.3.4

	Compression library3

Note

	Only the C and C++ languages are needed so there’s no need to build the
other languages for LLVM’s purposes. See below for specific version
info.

	Only needed if you want to run the automated test suite in the
llvm/test directory.

	Optional, adds compression / uncompression capabilities to selected LLVM
tools.

Additionally, your compilation host is expected to have the usual plethora of
Unix utilities. Specifically:

	ar — archive library builder

	bzip2 — bzip2 command for distribution generation

	bunzip2 — bunzip2 command for distribution checking

	chmod — change permissions on a file

	cat — output concatenation utility

	cp — copy files

	date — print the current date/time

	echo — print to standard output

	egrep — extended regular expression search utility

	find — find files/dirs in a file system

	grep — regular expression search utility

	gzip — gzip command for distribution generation

	gunzip — gunzip command for distribution checking

	install — install directories/files

	mkdir — create a directory

	mv — move (rename) files

	ranlib — symbol table builder for archive libraries

	rm — remove (delete) files and directories

	sed — stream editor for transforming output

	sh — Bourne shell for make build scripts

	tar — tape archive for distribution generation

	test — test things in file system

	unzip — unzip command for distribution checking

	zip — zip command for distribution generation

Host C++ Toolchain, both Compiler and Standard Library

LLVM is very demanding of the host C++ compiler, and as such tends to expose
bugs in the compiler. We are also planning to follow improvements and
developments in the C++ language and library reasonably closely. As such, we
require a modern host C++ toolchain, both compiler and standard library, in
order to build LLVM.

For the most popular host toolchains we check for specific minimum versions in
our build systems:

	Clang 3.1

	GCC 4.8

	Visual Studio 2015 (Update 3)

Anything older than these toolchains may work, but will require forcing the
build system with a special option and is not really a supported host platform.
Also note that older versions of these compilers have often crashed or
miscompiled LLVM.

For less widely used host toolchains such as ICC or xlC, be aware that a very
recent version may be required to support all of the C++ features used in LLVM.

We track certain versions of software that are known to fail when used as
part of the host toolchain. These even include linkers at times.

GNU ld 2.16.X. Some 2.16.X versions of the ld linker will produce very long
warning messages complaining that some “.gnu.linkonce.t.*” symbol was
defined in a discarded section. You can safely ignore these messages as they are
erroneous and the linkage is correct. These messages disappear using ld 2.17.

GNU binutils 2.17: Binutils 2.17 contains a bug [http://sourceware.org/bugzilla/show_bug.cgi?id=3111] which causes huge link
times (minutes instead of seconds) when building LLVM. We recommend upgrading
to a newer version (2.17.50.0.4 or later).

GNU Binutils 2.19.1 Gold: This version of Gold contained a bug [http://sourceware.org/bugzilla/show_bug.cgi?id=9836] which causes
intermittent failures when building LLVM with position independent code. The
symptom is an error about cyclic dependencies. We recommend upgrading to a
newer version of Gold.

Getting a Modern Host C++ Toolchain

This section mostly applies to Linux and older BSDs. On Mac OS X, you should
have a sufficiently modern Xcode, or you will likely need to upgrade until you
do. Windows does not have a “system compiler”, so you must install either Visual
Studio 2015 or a recent version of mingw64. FreeBSD 10.0 and newer have a modern
Clang as the system compiler.

However, some Linux distributions and some other or older BSDs sometimes have
extremely old versions of GCC. These steps attempt to help you upgrade you
compiler even on such a system. However, if at all possible, we encourage you
to use a recent version of a distribution with a modern system compiler that
meets these requirements. Note that it is tempting to install a prior
version of Clang and libc++ to be the host compiler, however libc++ was not
well tested or set up to build on Linux until relatively recently. As
a consequence, this guide suggests just using libstdc++ and a modern GCC as the
initial host in a bootstrap, and then using Clang (and potentially libc++).

The first step is to get a recent GCC toolchain installed. The most common
distribution on which users have struggled with the version requirements is
Ubuntu Precise, 12.04 LTS. For this distribution, one easy option is to install
the toolchain testing PPA [https://launchpad.net/~ubuntu-toolchain-r/+archive/test] and use it to install a modern GCC. There is
a really nice discussions of this on the ask ubuntu stack exchange [http://askubuntu.com/questions/271388/how-to-install-gcc-4-8-in-ubuntu-12-04-from-the-terminal]. However,
not all users can use PPAs and there are many other distributions, so it may be
necessary (or just useful, if you’re here you are doing compiler development
after all) to build and install GCC from source. It is also quite easy to do
these days.

Easy steps for installing GCC 4.8.2:

% wget https://ftp.gnu.org/gnu/gcc/gcc-4.8.2/gcc-4.8.2.tar.bz2
% wget https://ftp.gnu.org/gnu/gcc/gcc-4.8.2/gcc-4.8.2.tar.bz2.sig
% wget https://ftp.gnu.org/gnu/gnu-keyring.gpg
% signature_invalid=`gpg --verify --no-default-keyring --keyring ./gnu-keyring.gpg gcc-4.8.2.tar.bz2.sig`
% if [$signature_invalid]; then echo "Invalid signature" ; exit 1 ; fi
% tar -xvjf gcc-4.8.2.tar.bz2
% cd gcc-4.8.2
% ./contrib/download_prerequisites
% cd ..
% mkdir gcc-4.8.2-build
% cd gcc-4.8.2-build
% $PWD/../gcc-4.8.2/configure --prefix=$HOME/toolchains --enable-languages=c,c++
% make -j$(nproc)
% make install

For more details, check out the excellent GCC wiki entry [http://gcc.gnu.org/wiki/InstallingGCC], where I got most
of this information from.

Once you have a GCC toolchain, configure your build of LLVM to use the new
toolchain for your host compiler and C++ standard library. Because the new
version of libstdc++ is not on the system library search path, you need to pass
extra linker flags so that it can be found at link time (-L) and at runtime
(-rpath). If you are using CMake, this invocation should produce working
binaries:

% mkdir build
% cd build
% CC=$HOME/toolchains/bin/gcc CXX=$HOME/toolchains/bin/g++ \
 cmake .. -DCMAKE_CXX_LINK_FLAGS="-Wl,-rpath,$HOME/toolchains/lib64 -L$HOME/toolchains/lib64"

If you fail to set rpath, most LLVM binaries will fail on startup with a message
from the loader similar to libstdc++.so.6: version `GLIBCXX_3.4.20' not
found. This means you need to tweak the -rpath linker flag.

When you build Clang, you will need to give it access to modern C++11
standard library in order to use it as your new host in part of a bootstrap.
There are two easy ways to do this, either build (and install) libc++ along
with Clang and then use it with the -stdlib=libc++ compile and link flag,
or install Clang into the same prefix ($HOME/toolchains above) as GCC.
Clang will look within its own prefix for libstdc++ and use it if found. You
can also add an explicit prefix for Clang to look in for a GCC toolchain with
the --gcc-toolchain=/opt/my/gcc/prefix flag, passing it to both compile and
link commands when using your just-built-Clang to bootstrap.

Getting Started with LLVM

The remainder of this guide is meant to get you up and running with LLVM and to
give you some basic information about the LLVM environment.

The later sections of this guide describe the general layout of the LLVM
source tree, a simple example using the LLVM tool chain, and links to find
more information about LLVM or to get help via e-mail.

Terminology and Notation

Throughout this manual, the following names are used to denote paths specific to
the local system and working environment. These are not environment variables
you need to set but just strings used in the rest of this document below. In
any of the examples below, simply replace each of these names with the
appropriate pathname on your local system. All these paths are absolute:

SRC_ROOT

This is the top level directory of the LLVM source tree.

OBJ_ROOT

This is the top level directory of the LLVM object tree (i.e. the tree where
object files and compiled programs will be placed. It can be the same as
SRC_ROOT).

Unpacking the LLVM Archives

If you have the LLVM distribution, you will need to unpack it before you can
begin to compile it. LLVM is distributed as a set of two files: the LLVM suite
and the LLVM GCC front end compiled for your platform. There is an additional
test suite that is optional. Each file is a TAR archive that is compressed with
the gzip program.

The files are as follows, with x.y marking the version number:

llvm-x.y.tar.gz

Source release for the LLVM libraries and tools.

llvm-test-x.y.tar.gz

Source release for the LLVM test-suite.

Checkout LLVM from Subversion

If you have access to our Subversion repository, you can get a fresh copy of the
entire source code. All you need to do is check it out from Subversion as
follows:

	cd where-you-want-llvm-to-live

	Read-Only: svn co http://llvm.org/svn/llvm-project/llvm/trunk llvm

	Read-Write: svn co https://user@llvm.org/svn/llvm-project/llvm/trunk llvm

This will create an ‘llvm’ directory in the current directory and fully
populate it with the LLVM source code, Makefiles, test directories, and local
copies of documentation files.

If you want to get a specific release (as opposed to the most recent revision),
you can check it out from the ‘tags’ directory (instead of ‘trunk’). The
following releases are located in the following subdirectories of the ‘tags’
directory:

	Release 3.5.0 and later: RELEASE_350/final and so on

	Release 2.9 through 3.4: RELEASE_29/final and so on

	Release 1.1 through 2.8: RELEASE_11 and so on

	Release 1.0: RELEASE_1

If you would like to get the LLVM test suite (a separate package as of 1.4), you
get it from the Subversion repository:

% cd llvm/projects
% svn co http://llvm.org/svn/llvm-project/test-suite/trunk test-suite

By placing it in the llvm/projects, it will be automatically configured by
the LLVM cmake configuration.

Git Mirror

Git mirrors are available for a number of LLVM subprojects. These mirrors sync
automatically with each Subversion commit and contain all necessary git-svn
marks (so, you can recreate git-svn metadata locally). Note that right now
mirrors reflect only trunk for each project.

Note

On Windows, first you will want to do git config --global core.autocrlf
false before you clone. This goes a long way toward ensuring that
line-endings will be handled correctly (the LLVM project mostly uses Linux
line-endings).

You can do the read-only Git clone of LLVM via:

% git clone https://git.llvm.org/git/llvm.git/

If you want to check out clang too, run:

% cd llvm/tools
% git clone https://git.llvm.org/git/clang.git/

If you want to check out compiler-rt (required to build the sanitizers), run:

% cd llvm/projects
% git clone https://git.llvm.org/git/compiler-rt.git/

If you want to check out libomp (required for OpenMP support), run:

% cd llvm/projects
% git clone https://git.llvm.org/git/openmp.git/

If you want to check out libcxx and libcxxabi (optional), run:

% cd llvm/projects
% git clone https://git.llvm.org/git/libcxx.git/
% git clone https://git.llvm.org/git/libcxxabi.git/

If you want to check out the Test Suite Source Code (optional), run:

% cd llvm/projects
% git clone https://git.llvm.org/git/test-suite.git/

Since the upstream repository is in Subversion, you should use git
pull --rebase instead of git pull to avoid generating a non-linear history
in your clone. To configure git pull to pass --rebase by default on the
master branch, run the following command:

% git config branch.master.rebase true

Sending patches with Git

Please read Developer Policy, too.

Assume master points the upstream and mybranch points your working
branch, and mybranch is rebased onto master. At first you may check
sanity of whitespaces:

% git diff --check master..mybranch

The easiest way to generate a patch is as below:

% git diff master..mybranch > /path/to/mybranch.diff

It is a little different from svn-generated diff. git-diff-generated diff has
prefixes like a/ and b/. Don’t worry, most developers might know it
could be accepted with patch -p1 -N.

But you may generate patchset with git-format-patch. It generates by-each-commit
patchset. To generate patch files to attach to your article:

% git format-patch --no-attach master..mybranch -o /path/to/your/patchset

If you would like to send patches directly, you may use git-send-email or
git-imap-send. Here is an example to generate the patchset in Gmail’s [Drafts].

% git format-patch --attach master..mybranch --stdout | git imap-send

Then, your .git/config should have [imap] sections.

[imap]
 host = imaps://imap.gmail.com
 user = your.gmail.account@gmail.com
 pass = himitsu!
 port = 993
 sslverify = false
; in English
 folder = "[Gmail]/Drafts"
; example for Japanese, "Modified UTF-7" encoded.
 folder = "[Gmail]/&Tgtm+DBN-"
; example for Traditional Chinese
 folder = "[Gmail]/&g0l6Pw-"

For developers to work with git-svn

To set up clone from which you can submit code using git-svn, run:

% git clone https://git.llvm.org/git/llvm.git/
% cd llvm
% git svn init https://llvm.org/svn/llvm-project/llvm/trunk --username=<username>
% git config svn-remote.svn.fetch :refs/remotes/origin/master
% git svn rebase -l # -l avoids fetching ahead of the git mirror.

If you have clang too:
% cd tools
% git clone https://git.llvm.org/git/clang.git/
% cd clang
% git svn init https://llvm.org/svn/llvm-project/cfe/trunk --username=<username>
% git config svn-remote.svn.fetch :refs/remotes/origin/master
% git svn rebase -l

Likewise for compiler-rt, libomp and test-suite.

To update this clone without generating git-svn tags that conflict with the
upstream Git repo, run:

% git fetch && (cd tools/clang && git fetch) # Get matching revisions of both trees.
% git checkout master
% git svn rebase -l
% (cd tools/clang &&
 git checkout master &&
 git svn rebase -l)

Likewise for compiler-rt, libomp and test-suite.

This leaves your working directories on their master branches, so you’ll need to
checkout each working branch individually and rebase it on top of its
parent branch.

For those who wish to be able to update an llvm repo/revert patches easily using
git-svn, please look in the directory for the scripts git-svnup and
git-svnrevert.

To perform the aforementioned update steps go into your source directory and
just type git-svnup or git svnup and everything will just work.

If one wishes to revert a commit with git-svn, but do not want the git hash to
escape into the commit message, one can use the script git-svnrevert or
git svnrevert which will take in the git hash for the commit you want to
revert, look up the appropriate svn revision, and output a message where all
references to the git hash have been replaced with the svn revision.

To commit back changes via git-svn, use git svn dcommit:

% git svn dcommit

Note that git-svn will create one SVN commit for each Git commit you have pending,
so squash and edit each commit before executing dcommit to make sure they all
conform to the coding standards and the developers’ policy.

On success, dcommit will rebase against the HEAD of SVN, so to avoid conflict,
please make sure your current branch is up-to-date (via fetch/rebase) before
proceeding.

The git-svn metadata can get out of sync after you mess around with branches and
dcommit. When that happens, git svn dcommit stops working, complaining
about files with uncommitted changes. The fix is to rebuild the metadata:

% rm -rf .git/svn
% git svn rebase -l

Please, refer to the Git-SVN manual (man git-svn) for more information.

For developers to work with a git monorepo

Note

This set-up is using an unofficial mirror hosted on GitHub, use with caution.

To set up a clone of all the llvm projects using a unified repository:

% export TOP_LEVEL_DIR=`pwd`
% git clone https://github.com/llvm-project/llvm-project-20170507/ llvm-project
% cd llvm-project
% git config branch.master.rebase true

You can configure various build directory from this clone, starting with a build
of LLVM alone:

% cd $TOP_LEVEL_DIR
% mkdir llvm-build && cd llvm-build
% cmake -GNinja ../llvm-project/llvm

Or lldb:

% cd $TOP_LEVEL_DIR
% mkdir lldb-build && cd lldb-build
% cmake -GNinja ../llvm-project/llvm -DLLVM_ENABLE_PROJECTS=lldb

Or a combination of multiple projects:

% cd $TOP_LEVEL_DIR
% mkdir clang-build && cd clang-build
% cmake -GNinja ../llvm-project/llvm -DLLVM_ENABLE_PROJECTS="clang;libcxx;libcxxabi"

A helper script is provided in llvm/utils/git-svn/git-llvm. After you add it
to your path, you can push committed changes upstream with git llvm push.

% export PATH=$PATH:$TOP_LEVEL_DIR/llvm-project/llvm/utils/git-svn/
% git llvm push

While this is using SVN under the hood, it does not require any interaction from
you with git-svn.
After a few minutes, git pull should get back the changes as they were
committed. Note that a current limitation is that git does not directly
record file rename, and thus it is propagated to SVN as a combination of
delete-add instead of a file rename.

The SVN revision of each monorepo commit can be found in the commit notes. git
does not fetch notes by default. The following commands will fetch the notes and
configure git to fetch future notes. Use git notes show $commit to look up
the SVN revision of a git commit. The notes show up git log, and searching
the log is currently the recommended way to look up the git commit for a given
SVN revision.

% git config --add remote.origin.fetch +refs/notes/commits:refs/notes/commits
% git fetch

If you are using arc to interact with Phabricator, you need to manually put it
at the root of the checkout:

% cd $TOP_LEVEL_DIR
% cp llvm/.arcconfig ./
% mkdir -p .git/info/
% echo .arcconfig >> .git/info/exclude

Local LLVM Configuration

Once checked out from the Subversion repository, the LLVM suite source code must
be configured before being built. This process uses CMake.
Unlinke the normal configure script, CMake
generates the build files in whatever format you request as well as various
*.inc files, and llvm/include/Config/config.h.

Variables are passed to cmake on the command line using the format
-D<variable name>=<value>. The following variables are some common options
used by people developing LLVM.

	Variable

	Purpose

	CMAKE_C_COMPILER

	Tells cmake which C compiler to use. By
default, this will be /usr/bin/cc.

	CMAKE_CXX_COMPILER

	Tells cmake which C++ compiler to use. By
default, this will be /usr/bin/c++.

	CMAKE_BUILD_TYPE

	Tells cmake what type of build you are trying
to generate files for. Valid options are Debug,
Release, RelWithDebInfo, and MinSizeRel. Default
is Debug.

	CMAKE_INSTALL_PREFIX

	Specifies the install directory to target when
running the install action of the build files.

	LLVM_TARGETS_TO_BUILD

	A semicolon delimited list controlling which
targets will be built and linked into llc. This is
equivalent to the --enable-targets option in
the configure script. The default list is defined
as LLVM_ALL_TARGETS, and can be set to include
out-of-tree targets. The default value includes:
AArch64, AMDGPU, ARM, BPF, Hexagon, Mips,
MSP430, NVPTX, PowerPC, Sparc, SystemZ, X86,
XCore.

	LLVM_ENABLE_DOXYGEN

	Build doxygen-based documentation from the source
code This is disabled by default because it is
slow and generates a lot of output.

	LLVM_ENABLE_SPHINX

	Build sphinx-based documentation from the source
code. This is disabled by default because it is
slow and generates a lot of output. Sphinx version
1.5 or later recommended.

	LLVM_BUILD_LLVM_DYLIB

	Generate libLLVM.so. This library contains a
default set of LLVM components that can be
overridden with LLVM_DYLIB_COMPONENTS. The
default contains most of LLVM and is defined in
tools/llvm-shlib/CMakelists.txt.

	LLVM_OPTIMIZED_TABLEGEN

	Builds a release tablegen that gets used during
the LLVM build. This can dramatically speed up
debug builds.

To configure LLVM, follow these steps:

	Change directory into the object root directory:

% cd OBJ_ROOT

	Run the cmake:

% cmake -G "Unix Makefiles" -DCMAKE_INSTALL_PREFIX=/install/path
 [other options] SRC_ROOT

Compiling the LLVM Suite Source Code

Unlike with autotools, with CMake your build type is defined at configuration.
If you want to change your build type, you can re-run cmake with the following
invocation:

% cmake -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=type SRC_ROOT

Between runs, CMake preserves the values set for all options. CMake has the
following build types defined:

Debug

These builds are the default. The build system will compile the tools and
libraries unoptimized, with debugging information, and asserts enabled.

Release

For these builds, the build system will compile the tools and libraries
with optimizations enabled and not generate debug info. CMakes default
optimization level is -O3. This can be configured by setting the
CMAKE_CXX_FLAGS_RELEASE variable on the CMake command line.

RelWithDebInfo

These builds are useful when debugging. They generate optimized binaries with
debug information. CMakes default optimization level is -O2. This can be
configured by setting the CMAKE_CXX_FLAGS_RELWITHDEBINFO variable on the
CMake command line.

Once you have LLVM configured, you can build it by entering the OBJ_ROOT
directory and issuing the following command:

% make

If the build fails, please check here to see if you are using a version of
GCC that is known not to compile LLVM.

If you have multiple processors in your machine, you may wish to use some of the
parallel build options provided by GNU Make. For example, you could use the
command:

% make -j2

There are several special targets which are useful when working with the LLVM
source code:

make clean

Removes all files generated by the build. This includes object files,
generated C/C++ files, libraries, and executables.

make install

Installs LLVM header files, libraries, tools, and documentation in a hierarchy
under $PREFIX, specified with CMAKE_INSTALL_PREFIX, which
defaults to /usr/local.

make docs-llvm-html

If configured with -DLLVM_ENABLE_SPHINX=On, this will generate a directory
at OBJ_ROOT/docs/html which contains the HTML formatted documentation.

Cross-Compiling LLVM

It is possible to cross-compile LLVM itself. That is, you can create LLVM
executables and libraries to be hosted on a platform different from the platform
where they are built (a Canadian Cross build). To generate build files for
cross-compiling CMake provides a variable CMAKE_TOOLCHAIN_FILE which can
define compiler flags and variables used during the CMake test operations.

The result of such a build is executables that are not runnable on the build
host but can be executed on the target. As an example the following CMake
invocation can generate build files targeting iOS. This will work on Mac OS X
with the latest Xcode:

% cmake -G "Ninja" -DCMAKE_OSX_ARCHITECTURES="armv7;armv7s;arm64"
 -DCMAKE_TOOLCHAIN_FILE=<PATH_TO_LLVM>/cmake/platforms/iOS.cmake
 -DCMAKE_BUILD_TYPE=Release -DLLVM_BUILD_RUNTIME=Off -DLLVM_INCLUDE_TESTS=Off
 -DLLVM_INCLUDE_EXAMPLES=Off -DLLVM_ENABLE_BACKTRACES=Off [options]
 <PATH_TO_LLVM>

Note: There are some additional flags that need to be passed when building for
iOS due to limitations in the iOS SDK.

Check How To Cross-Compile Clang/LLVM using Clang/LLVM and Clang docs on how to cross-compile in general [http://clang.llvm.org/docs/CrossCompilation.html] for more information
about cross-compiling.

The Location of LLVM Object Files

The LLVM build system is capable of sharing a single LLVM source tree among
several LLVM builds. Hence, it is possible to build LLVM for several different
platforms or configurations using the same source tree.

	Change directory to where the LLVM object files should live:

% cd OBJ_ROOT

	Run cmake:

% cmake -G "Unix Makefiles" SRC_ROOT

The LLVM build will create a structure underneath OBJ_ROOT that matches the
LLVM source tree. At each level where source files are present in the source
tree there will be a corresponding CMakeFiles directory in the OBJ_ROOT.
Underneath that directory there is another directory with a name ending in
.dir under which you’ll find object files for each source.

For example:

% cd llvm_build_dir
% find lib/Support/ -name APFloat*
lib/Support/CMakeFiles/LLVMSupport.dir/APFloat.cpp.o

Optional Configuration Items

If you’re running on a Linux system that supports the binfmt_misc [http://en.wikipedia.org/wiki/binfmt_misc]
module, and you have root access on the system, you can set your system up to
execute LLVM bitcode files directly. To do this, use commands like this (the
first command may not be required if you are already using the module):

% mount -t binfmt_misc none /proc/sys/fs/binfmt_misc
% echo ':llvm:M::BC::/path/to/lli:' > /proc/sys/fs/binfmt_misc/register
% chmod u+x hello.bc (if needed)
% ./hello.bc

This allows you to execute LLVM bitcode files directly. On Debian, you can also
use this command instead of the ‘echo’ command above:

% sudo update-binfmts --install llvm /path/to/lli --magic 'BC'

Directory Layout

One useful source of information about the LLVM source base is the LLVM doxygen [http://www.doxygen.org/] documentation available at
http://llvm.org/doxygen/. The following is a brief introduction to code
layout:

llvm/examples

Simple examples using the LLVM IR and JIT.

llvm/include

Public header files exported from the LLVM library. The three main subdirectories:

llvm/include/llvm

All LLVM-specific header files, and subdirectories for different portions of
LLVM: Analysis, CodeGen, Target, Transforms, etc…

llvm/include/llvm/Support

Generic support libraries provided with LLVM but not necessarily specific to
LLVM. For example, some C++ STL utilities and a Command Line option processing
library store header files here.

llvm/include/llvm/Config

Header files configured by the configure script.
They wrap “standard” UNIX and C header files. Source code can include these
header files which automatically take care of the conditional #includes that
the configure script generates.

llvm/lib

Most source files are here. By putting code in libraries, LLVM makes it easy to
share code among the tools.

llvm/lib/IR/

Core LLVM source files that implement core classes like Instruction and
BasicBlock.

llvm/lib/AsmParser/

Source code for the LLVM assembly language parser library.

llvm/lib/Bitcode/

Code for reading and writing bitcode.

llvm/lib/Analysis/

A variety of program analyses, such as Call Graphs, Induction Variables,
Natural Loop Identification, etc.

llvm/lib/Transforms/

IR-to-IR program transformations, such as Aggressive Dead Code Elimination,
Sparse Conditional Constant Propagation, Inlining, Loop Invariant Code Motion,
Dead Global Elimination, and many others.

llvm/lib/Target/

Files describing target architectures for code generation. For example,
llvm/lib/Target/X86 holds the X86 machine description.

llvm/lib/CodeGen/

The major parts of the code generator: Instruction Selector, Instruction
Scheduling, and Register Allocation.

llvm/lib/MC/

(FIXME: T.B.D.) ….?

llvm/lib/ExecutionEngine/

Libraries for directly executing bitcode at runtime in interpreted and
JIT-compiled scenarios.

llvm/lib/Support/

Source code that corresponding to the header files in llvm/include/ADT/
and llvm/include/Support/.

llvm/projects

Projects not strictly part of LLVM but shipped with LLVM. This is also the
directory for creating your own LLVM-based projects which leverage the LLVM
build system.

llvm/test

Feature and regression tests and other sanity checks on LLVM infrastructure. These
are intended to run quickly and cover a lot of territory without being exhaustive.

test-suite

A comprehensive correctness, performance, and benchmarking test suite for LLVM.
Comes in a separate Subversion module because not every LLVM user is interested
in such a comprehensive suite. For details see the Testing Guide document.

llvm/tools

Executables built out of the libraries
above, which form the main part of the user interface. You can always get help
for a tool by typing tool_name -help. The following is a brief introduction
to the most important tools. More detailed information is in
the Command Guide.

bugpoint

bugpoint is used to debug optimization passes or code generation backends
by narrowing down the given test case to the minimum number of passes and/or
instructions that still cause a problem, whether it is a crash or
miscompilation. See HowToSubmitABug.html for more information on using
bugpoint.

llvm-ar

The archiver produces an archive containing the given LLVM bitcode files,
optionally with an index for faster lookup.

llvm-as

The assembler transforms the human readable LLVM assembly to LLVM bitcode.

llvm-dis

The disassembler transforms the LLVM bitcode to human readable LLVM assembly.

llvm-link

llvm-link, not surprisingly, links multiple LLVM modules into a single
program.

lli

lli is the LLVM interpreter, which can directly execute LLVM bitcode
(although very slowly…). For architectures that support it (currently x86,
Sparc, and PowerPC), by default, lli will function as a Just-In-Time
compiler (if the functionality was compiled in), and will execute the code
much faster than the interpreter.

llc

llc is the LLVM backend compiler, which translates LLVM bitcode to a
native code assembly file.

opt

opt reads LLVM bitcode, applies a series of LLVM to LLVM transformations
(which are specified on the command line), and outputs the resultant
bitcode. ‘opt -help’ is a good way to get a list of the
program transformations available in LLVM.

opt can also run a specific analysis on an input LLVM bitcode
file and print the results. Primarily useful for debugging
analyses, or familiarizing yourself with what an analysis does.

llvm/utils

Utilities for working with LLVM source code; some are part of the build process
because they are code generators for parts of the infrastructure.

codegen-diff

codegen-diff finds differences between code that LLC
generates and code that LLI generates. This is useful if you are
debugging one of them, assuming that the other generates correct output. For
the full user manual, run `perldoc codegen-diff'.

emacs/

Emacs and XEmacs syntax highlighting for LLVM assembly files and TableGen
description files. See the README for information on using them.

getsrcs.sh

Finds and outputs all non-generated source files,
useful if one wishes to do a lot of development across directories
and does not want to find each file. One way to use it is to run,
for example: xemacs `utils/getsources.sh` from the top of the LLVM source
tree.

llvmgrep

Performs an egrep -H -n on each source file in LLVM and
passes to it a regular expression provided on llvmgrep’s command
line. This is an efficient way of searching the source base for a
particular regular expression.

makellvm

Compiles all files in the current directory, then
compiles and links the tool that is the first argument. For example, assuming
you are in llvm/lib/Target/Sparc, if makellvm is in your
path, running makellvm llc will make a build of the current
directory, switch to directory llvm/tools/llc and build it, causing a
re-linking of LLC.

TableGen/

Contains the tool used to generate register
descriptions, instruction set descriptions, and even assemblers from common
TableGen description files.

vim/

vim syntax-highlighting for LLVM assembly files
and TableGen description files. See the README for how to use them.

An Example Using the LLVM Tool Chain

This section gives an example of using LLVM with the Clang front end.

Example with clang

	First, create a simple C file, name it ‘hello.c’:

#include <stdio.h>

int main() {
 printf("hello world\n");
 return 0;
}

	Next, compile the C file into a native executable:

% clang hello.c -o hello

Note

Clang works just like GCC by default. The standard -S and -c arguments
work as usual (producing a native .s or .o file, respectively).

	Next, compile the C file into an LLVM bitcode file:

% clang -O3 -emit-llvm hello.c -c -o hello.bc

The -emit-llvm option can be used with the -S or -c options to emit an LLVM
.ll or .bc file (respectively) for the code. This allows you to use
the standard LLVM tools on the bitcode file.

	Run the program in both forms. To run the program, use:

% ./hello

and

% lli hello.bc

The second examples shows how to invoke the LLVM JIT, lli.

	Use the llvm-dis utility to take a look at the LLVM assembly code:

% llvm-dis < hello.bc | less

	Compile the program to native assembly using the LLC code generator:

% llc hello.bc -o hello.s

	Assemble the native assembly language file into a program:

% /opt/SUNWspro/bin/cc -xarch=v9 hello.s -o hello.native # On Solaris

% gcc hello.s -o hello.native # On others

	Execute the native code program:

% ./hello.native

Note that using clang to compile directly to native code (i.e. when the
-emit-llvm option is not present) does steps 6/7/8 for you.

Common Problems

If you are having problems building or using LLVM, or if you have any other
general questions about LLVM, please consult the Frequently Asked
Questions page.

Links

This document is just an introduction on how to use LLVM to do some simple
things… there are many more interesting and complicated things that you can do
that aren’t documented here (but we’ll gladly accept a patch if you want to
write something up!). For more information about LLVM, check out:

	LLVM Homepage [http://llvm.org/]

	LLVM Doxygen Tree [http://llvm.org/doxygen/]

	Starting a Project that Uses LLVM [http://llvm.org/docs/Projects.html]

Getting Started with the LLVM System using Microsoft Visual Studio

	Overview

	Requirements

	Hardware

	Software

	Getting Started

	An Example Using the LLVM Tool Chain

	Common Problems

	Links

Overview

Welcome to LLVM on Windows! This document only covers LLVM on Windows using
Visual Studio, not mingw or cygwin. In order to get started, you first need to
know some basic information.

There are many different projects that compose LLVM. The first piece is the
LLVM suite. This contains all of the tools, libraries, and header files needed
to use LLVM. It contains an assembler, disassembler, bitcode analyzer and
bitcode optimizer. It also contains basic regression tests that can be used to
test the LLVM tools and the Clang front end.

The second piece is the Clang [http://clang.llvm.org/] front end. This
component compiles C, C++, Objective C, and Objective C++ code into LLVM
bitcode. Clang typically uses LLVM libraries to optimize the bitcode and emit
machine code. LLVM fully supports the COFF object file format, which is
compatible with all other existing Windows toolchains.

The last major part of LLVM, the execution Test Suite, does not run on Windows,
and this document does not discuss it.

Additional information about the LLVM directory structure and tool chain
can be found on the main Getting Started with the LLVM System page.

Requirements

Before you begin to use the LLVM system, review the requirements given
below. This may save you some trouble by knowing ahead of time what hardware
and software you will need.

Hardware

Any system that can adequately run Visual Studio 2015 is fine. The LLVM
source tree and object files, libraries and executables will consume
approximately 3GB.

Software

You will need Visual Studio 2015 or higher, with the latest Update installed.

You will also need the CMake [http://www.cmake.org/] build system since it
generates the project files you will use to build with.

If you would like to run the LLVM tests you will need Python [http://www.python.org/]. Version 2.7 and newer are known to work. You will
need GnuWin32 [http://gnuwin32.sourceforge.net/] tools, too.

Do not install the LLVM directory tree into a path containing spaces (e.g.
C:\Documents and Settings\...) as the configure step will fail.

Getting Started

Here’s the short story for getting up and running quickly with LLVM:

	Read the documentation.

	Seriously, read the documentation.

	Remember that you were warned twice about reading the documentation.

	Get the Source Code

	With the distributed files:

	cd <where-you-want-llvm-to-live>

	gunzip --stdout llvm-VERSION.tar.gz | tar -xvf -
(or use WinZip)

	cd llvm

	With anonymous Subversion access:

Note: some regression tests require Unix-style line ending (\n). To
pass all regression tests, please add two lines enable-auto-props = yes
and * = svn:mime-type=application/octet-stream to
C:\Users\<username>\AppData\Roaming\Subversion\config.

	cd <where-you-want-llvm-to-live>

	svn co http://llvm.org/svn/llvm-project/llvm/trunk llvm

	cd llvm

	Use CMake [http://www.cmake.org/] to generate up-to-date project files:

	Once CMake is installed then the simplest way is to just start the
CMake GUI, select the directory where you have LLVM extracted to, and
the default options should all be fine. One option you may really
want to change, regardless of anything else, might be the
CMAKE_INSTALL_PREFIX setting to select a directory to INSTALL to
once compiling is complete, although installation is not mandatory for
using LLVM. Another important option is LLVM_TARGETS_TO_BUILD,
which controls the LLVM target architectures that are included on the
build.

	If CMake complains that it cannot find the compiler, make sure that
you have the Visual Studio C++ Tools installed, not just Visual Studio
itself (trying to create a C++ project in Visual Studio will generally
download the C++ tools if they haven’t already been).

	See the LLVM CMake guide for detailed information about
how to configure the LLVM build.

	CMake generates project files for all build types. To select a specific
build type, use the Configuration manager from the VS IDE or the
/property:Configuration command line option when using MSBuild.

	By default, the Visual Studio project files generated by CMake use the
32-bit toolset. If you are developing on a 64-bit version of Windows and
want to use the 64-bit toolset, pass the -Thost=x64 flag when
generating the Visual Studio solution. This requires CMake 3.8.0 or later.

	Start Visual Studio

	In the directory you created the project files will have an llvm.sln
file, just double-click on that to open Visual Studio.

	Build the LLVM Suite:

	The projects may still be built individually, but to build them all do
not just select all of them in batch build (as some are meant as
configuration projects), but rather select and build just the
ALL_BUILD project to build everything, or the INSTALL project,
which first builds the ALL_BUILD project, then installs the LLVM
headers, libs, and other useful things to the directory set by the
CMAKE_INSTALL_PREFIX setting when you first configured CMake.

	The Fibonacci project is a sample program that uses the JIT. Modify the
project’s debugging properties to provide a numeric command line argument
or run it from the command line. The program will print the
corresponding fibonacci value.

	Test LLVM in Visual Studio:

	If %PATH% does not contain GnuWin32, you may specify
LLVM_LIT_TOOLS_DIR on CMake for the path to GnuWin32.

	You can run LLVM tests by merely building the project “check”. The test
results will be shown in the VS output window.

	Test LLVM on the command line:

	The LLVM tests can be run by changing directory to the llvm source
directory and running:

C:\..\llvm> python ..\build\bin\llvm-lit --param build_config=Win32 --param build_mode=Debug --param llvm_site_config=../build/test/lit.site.cfg test

This example assumes that Python is in your PATH variable, you
have built a Win32 Debug version of llvm with a standard out of
line build. You should not see any unexpected failures, but will
see many unsupported tests and expected failures.

A specific test or test directory can be run with:

C:\..\llvm> python ..\build\bin\llvm-lit --param build_config=Win32 --param build_mode=Debug --param llvm_site_config=../build/test/lit.site.cfg test/path/to/test

An Example Using the LLVM Tool Chain

	First, create a simple C file, name it ‘hello.c’:

#include <stdio.h>
int main() {
 printf("hello world\n");
 return 0;
}

	Next, compile the C file into an LLVM bitcode file:

C:\..> clang -c hello.c -emit-llvm -o hello.bc

This will create the result file hello.bc which is the LLVM bitcode
that corresponds the compiled program and the library facilities that
it required. You can execute this file directly using lli tool,
compile it to native assembly with the llc, optimize or analyze it
further with the opt tool, etc.

Alternatively you can directly output an executable with clang with:

C:\..> clang hello.c -o hello.exe

The -o hello.exe is required because clang currently outputs a.out
when neither -o nor -c are given.

	Run the program using the just-in-time compiler:

C:\..> lli hello.bc

	Use the llvm-dis utility to take a look at the LLVM assembly code:

C:\..> llvm-dis < hello.bc | more

	Compile the program to object code using the LLC code generator:

C:\..> llc -filetype=obj hello.bc

	Link to binary using Microsoft link:

C:\..> link hello.obj -defaultlib:libcmt

	Execute the native code program:

C:\..> hello.exe

Common Problems

If you are having problems building or using LLVM, or if you have any other
general questions about LLVM, please consult the Frequently Asked Questions page.

Links

This document is just an introduction to how to use LLVM to do some simple
things… there are many more interesting and complicated things that you can
do that aren’t documented here (but we’ll gladly accept a patch if you want to
write something up!). For more information about LLVM, check out:

	LLVM homepage [http://llvm.org/]

	LLVM doxygen tree [http://llvm.org/doxygen/]

Frequently Asked Questions (FAQ)

	License

	Does the University of Illinois Open Source License really qualify as an “open source” license?

	Can I modify LLVM source code and redistribute the modified source?

	Can I modify the LLVM source code and redistribute binaries or other tools based on it, without redistributing the source?

	Source Code

	In what language is LLVM written?

	How portable is the LLVM source code?

	What API do I use to store a value to one of the virtual registers in LLVM IR’s SSA representation?

	Source Languages

	What source languages are supported?

	I’d like to write a self-hosting LLVM compiler. How should I interface with the LLVM middle-end optimizers and back-end code generators?

	What support is there for a higher level source language constructs for building a compiler?

	I don’t understand the GetElementPtr instruction. Help!

	Using the C and C++ Front Ends

	Can I compile C or C++ code to platform-independent LLVM bitcode?

	Questions about code generated by the demo page

	What is this llvm.global_ctors and _GLOBAL__I_a... stuff that happens when I #include <iostream>?

	Where did all of my code go??

	What is this “undef” thing that shows up in my code?

	Why does instcombine + simplifycfg turn a call to a function with a mismatched calling convention into “unreachable”? Why not make the verifier reject it?

License

Does the University of Illinois Open Source License really qualify as an “open source” license?

Yes, the license is certified [http://www.opensource.org/licenses/UoI-NCSA.php] by the Open Source
Initiative (OSI).

Can I modify LLVM source code and redistribute the modified source?

Yes. The modified source distribution must retain the copyright notice and
follow the three bulleted conditions listed in the LLVM license [http://llvm.org/svn/llvm-project/llvm/trunk/LICENSE.TXT].

Can I modify the LLVM source code and redistribute binaries or other tools based on it, without redistributing the source?

Yes. This is why we distribute LLVM under a less restrictive license than GPL,
as explained in the first question above.

Source Code

In what language is LLVM written?

All of the LLVM tools and libraries are written in C++ with extensive use of
the STL.

How portable is the LLVM source code?

The LLVM source code should be portable to most modern Unix-like operating
systems. Most of the code is written in standard C++ with operating system
services abstracted to a support library. The tools required to build and
test LLVM have been ported to a plethora of platforms.

Some porting problems may exist in the following areas:

	The autoconf/makefile build system relies heavily on UNIX shell tools,
like the Bourne Shell and sed. Porting to systems without these tools
(MacOS 9, Plan 9) will require more effort.

What API do I use to store a value to one of the virtual registers in LLVM IR’s SSA representation?

In short: you can’t. It’s actually kind of a silly question once you grok
what’s going on. Basically, in code like:

%result = add i32 %foo, %bar

, %result is just a name given to the Value of the add
instruction. In other words, %result is the add instruction. The
“assignment” doesn’t explicitly “store” anything to any “virtual register”;
the “=” is more like the mathematical sense of equality.

Longer explanation: In order to generate a textual representation of the
IR, some kind of name has to be given to each instruction so that other
instructions can textually reference it. However, the isomorphic in-memory
representation that you manipulate from C++ has no such restriction since
instructions can simply keep pointers to any other Value’s that they
reference. In fact, the names of dummy numbered temporaries like %1 are
not explicitly represented in the in-memory representation at all (see
Value::getName()).

Source Languages

What source languages are supported?

LLVM currently has full support for C and C++ source languages through
Clang [http://clang.llvm.org/]. Many other language frontends have
been written using LLVM, and an incomplete list is available at
projects with LLVM [http://llvm.org/ProjectsWithLLVM/].

I’d like to write a self-hosting LLVM compiler. How should I interface with the LLVM middle-end optimizers and back-end code generators?

Your compiler front-end will communicate with LLVM by creating a module in the
LLVM intermediate representation (IR) format. Assuming you want to write your
language’s compiler in the language itself (rather than C++), there are 3
major ways to tackle generating LLVM IR from a front-end:

	Call into the LLVM libraries code using your language’s FFI (foreign
function interface).

	for: best tracks changes to the LLVM IR, .ll syntax, and .bc format

	for: enables running LLVM optimization passes without a emit/parse
overhead

	for: adapts well to a JIT context

	against: lots of ugly glue code to write

	Emit LLVM assembly from your compiler’s native language.

	for: very straightforward to get started

	against: the .ll parser is slower than the bitcode reader when
interfacing to the middle end

	against: it may be harder to track changes to the IR

	Emit LLVM bitcode from your compiler’s native language.

	for: can use the more-efficient bitcode reader when interfacing to the
middle end

	against: you’ll have to re-engineer the LLVM IR object model and bitcode
writer in your language

	against: it may be harder to track changes to the IR

If you go with the first option, the C bindings in include/llvm-c should help
a lot, since most languages have strong support for interfacing with C. The
most common hurdle with calling C from managed code is interfacing with the
garbage collector. The C interface was designed to require very little memory
management, and so is straightforward in this regard.

What support is there for a higher level source language constructs for building a compiler?

Currently, there isn’t much. LLVM supports an intermediate representation
which is useful for code representation but will not support the high level
(abstract syntax tree) representation needed by most compilers. There are no
facilities for lexical nor semantic analysis.

I don’t understand the GetElementPtr instruction. Help!

See The Often Misunderstood GEP Instruction.

Using the C and C++ Front Ends

Can I compile C or C++ code to platform-independent LLVM bitcode?

No. C and C++ are inherently platform-dependent languages. The most obvious
example of this is the preprocessor. A very common way that C code is made
portable is by using the preprocessor to include platform-specific code. In
practice, information about other platforms is lost after preprocessing, so
the result is inherently dependent on the platform that the preprocessing was
targeting.

Another example is sizeof. It’s common for sizeof(long) to vary
between platforms. In most C front-ends, sizeof is expanded to a
constant immediately, thus hard-wiring a platform-specific detail.

Also, since many platforms define their ABIs in terms of C, and since LLVM is
lower-level than C, front-ends currently must emit platform-specific IR in
order to have the result conform to the platform ABI.

Questions about code generated by the demo page

What is this llvm.global_ctors and _GLOBAL__I_a... stuff that happens when I #include <iostream>?

If you #include the <iostream> header into a C++ translation unit,
the file will probably use the std::cin/std::cout/… global objects.
However, C++ does not guarantee an order of initialization between static
objects in different translation units, so if a static ctor/dtor in your .cpp
file used std::cout, for example, the object would not necessarily be
automatically initialized before your use.

To make std::cout and friends work correctly in these scenarios, the STL
that we use declares a static object that gets created in every translation
unit that includes <iostream>. This object has a static constructor
and destructor that initializes and destroys the global iostream objects
before they could possibly be used in the file. The code that you see in the
.ll file corresponds to the constructor and destructor registration code.

If you would like to make it easier to understand the LLVM code generated
by the compiler in the demo page, consider using printf() instead of
iostreams to print values.

Where did all of my code go??

If you are using the LLVM demo page, you may often wonder what happened to
all of the code that you typed in. Remember that the demo script is running
the code through the LLVM optimizers, so if your code doesn’t actually do
anything useful, it might all be deleted.

To prevent this, make sure that the code is actually needed. For example, if
you are computing some expression, return the value from the function instead
of leaving it in a local variable. If you really want to constrain the
optimizer, you can read from and assign to volatile global variables.

What is this “undef” thing that shows up in my code?

undef is the LLVM way of representing a value that is not defined. You
can get these if you do not initialize a variable before you use it. For
example, the C function:

int X() { int i; return i; }

Is compiled to “ret i32 undef” because “i” never has a value specified
for it.

Why does instcombine + simplifycfg turn a call to a function with a mismatched calling convention into “unreachable”? Why not make the verifier reject it?

This is a common problem run into by authors of front-ends that are using
custom calling conventions: you need to make sure to set the right calling
convention on both the function and on each call to the function. For
example, this code:

define fastcc void @foo() {
 ret void
}
define void @bar() {
 call void @foo()
 ret void
}

Is optimized to:

define fastcc void @foo() {
 ret void
}
define void @bar() {
 unreachable
}

… with “opt -instcombine -simplifycfg”. This often bites people because
“all their code disappears”. Setting the calling convention on the caller and
callee is required for indirect calls to work, so people often ask why not
make the verifier reject this sort of thing.

The answer is that this code has undefined behavior, but it is not illegal.
If we made it illegal, then every transformation that could potentially create
this would have to ensure that it doesn’t, and there is valid code that can
create this sort of construct (in dead code). The sorts of things that can
cause this to happen are fairly contrived, but we still need to accept them.
Here’s an example:

define fastcc void @foo() {
 ret void
}
define internal void @bar(void()* %FP, i1 %cond) {
 br i1 %cond, label %T, label %F
T:
 call void %FP()
 ret void
F:
 call fastcc void %FP()
 ret void
}
define void @test() {
 %X = or i1 false, false
 call void @bar(void()* @foo, i1 %X)
 ret void
}

In this example, “test” always passes @foo/false into bar, which
ensures that it is dynamically called with the right calling conv (thus, the
code is perfectly well defined). If you run this through the inliner, you
get this (the explicit “or” is there so that the inliner doesn’t dead code
eliminate a bunch of stuff):

define fastcc void @foo() {
 ret void
}
define void @test() {
 %X = or i1 false, false
 br i1 %X, label %T.i, label %F.i
T.i:
 call void @foo()
 br label %bar.exit
F.i:
 call fastcc void @foo()
 br label %bar.exit
bar.exit:
 ret void
}

Here you can see that the inlining pass made an undefined call to @foo
with the wrong calling convention. We really don’t want to make the inliner
have to know about this sort of thing, so it needs to be valid code. In this
case, dead code elimination can trivially remove the undefined code. However,
if %X was an input argument to @test, the inliner would produce this:

define fastcc void @foo() {
 ret void
}

define void @test(i1 %X) {
 br i1 %X, label %T.i, label %F.i
T.i:
 call void @foo()
 br label %bar.exit
F.i:
 call fastcc void @foo()
 br label %bar.exit
bar.exit:
 ret void
}

The interesting thing about this is that %X must be false for the
code to be well-defined, but no amount of dead code elimination will be able
to delete the broken call as unreachable. However, since
instcombine/simplifycfg turns the undefined call into unreachable, we
end up with a branch on a condition that goes to unreachable: a branch to
unreachable can never happen, so “-inline -instcombine -simplifycfg” is
able to produce:

define fastcc void @foo() {
 ret void
}
define void @test(i1 %X) {
F.i:
 call fastcc void @foo()
 ret void
}

The LLVM Lexicon

Note

This document is a work in progress!

Definitions

A

	ADCE

	Aggressive Dead Code Elimination

	AST

	Abstract Syntax Tree.

Due to Clang’s influence (mostly the fact that parsing and semantic
analysis are so intertwined for C and especially C++), the typical
working definition of AST in the LLVM community is roughly “the
compiler’s first complete symbolic (as opposed to textual)
representation of an input program”.
As such, an “AST” might be a more general graph instead of a “tree”
(consider the symbolic representation for the type of a typical “linked
list node”). This working definition is closer to what some authors
call an “annotated abstract syntax tree”.

Consult your favorite compiler book or search engine for more details.

B

	BB Vectorization

	Basic-Block Vectorization

	BDCE

	Bit-tracking dead code elimination. Some bit-wise instructions (shifts,
ands, ors, etc.) “kill” some of their input bits – that is, they make it
such that those bits can be either zero or one without affecting control or
data flow of a program. The BDCE pass removes instructions that only
compute these dead bits.

	BURS

	Bottom Up Rewriting System — A method of instruction selection for code
generation. An example is the BURG [http://www.program-transformation.org/Transform/BURG] tool.

C

	CFI

	Call Frame Information. Used in DWARF debug info and in C++ unwind info
to show how the function prolog lays out the stack frame.

	CIE

	Common Information Entry. A kind of CFI used to reduce the size of FDEs.
The compiler creates a CIE which contains the information common across all
the FDEs. Each FDE then points to its CIE.

	CSE

	Common Subexpression Elimination. An optimization that removes common
subexpression compuation. For example (a+b)*(a+b) has two subexpressions
that are the same: (a+b). This optimization would perform the addition
only once and then perform the multiply (but only if it’s computationally
correct/safe).

D

	DAG

	Directed Acyclic Graph

	Derived Pointer

	A pointer to the interior of an object, such that a garbage collector is
unable to use the pointer for reachability analysis. While a derived pointer
is live, the corresponding object pointer must be kept in a root, otherwise
the collector might free the referenced object. With copying collectors,
derived pointers pose an additional hazard that they may be invalidated at
any safe point. This term is used in opposition to object pointer.

	DSA

	Data Structure Analysis

	DSE

	Dead Store Elimination

F

	FCA

	First Class Aggregate

	FDE

	Frame Description Entry. A kind of CFI used to describe the stack frame of
one function.

G

	GC

	Garbage Collection. The practice of using reachability analysis instead of
explicit memory management to reclaim unused memory.

	GEP

	GetElementPtr. An LLVM IR instruction that is used to get the address
of a subelement of an aggregate data structure. It is documented in detail
here [http://llvm.org/docs/GetElementPtr.html].

	GVN

	Global Value Numbering. GVN is a pass that partitions values computed by a
function into congruence classes. Values ending up in the same congruence
class are guaranteed to be the same for every execution of the program.
In that respect, congruency is a compile-time approximation of equivalence
of values at runtime.

H

	Heap

	In garbage collection, the region of memory which is managed using
reachability analysis.

I

	ICE

	Internal Compiler Error. This abbreviation is used to describe errors
that occur in LLVM or Clang as they are compiling source code. For example,
if a valid C++ source program were to trigger an assert in Clang when
compiled, that could be referred to as an “ICE”.

	IPA

	Inter-Procedural Analysis. Refers to any variety of code analysis that
occurs between procedures, functions or compilation units (modules).

	IPO

	Inter-Procedural Optimization. Refers to any variety of code optimization
that occurs between procedures, functions or compilation units (modules).

	ISel

	Instruction Selection

L

	LCSSA

	Loop-Closed Static Single Assignment Form

	LGTM

	“Looks Good To Me”. In a review thread, this indicates that the
reviewer thinks that the patch is okay to commit.

	LICM

	Loop Invariant Code Motion

	LSDA

	Language Specific Data Area. C++ “zero cost” unwinding is built on top a
generic unwinding mechanism. As the unwinder walks each frame, it calls
a “personality” function to do language specific analysis. Each function’s
FDE points to an optional LSDA which is passed to the personality function.
For C++, the LSDA contain info about the type and location of catch
statements in that function.

	Load-VN

	Load Value Numbering

	LTO

	Link-Time Optimization

M

	MC

	Machine Code

N

	NFC

	“No functional change”. Used in a commit message to indicate that a patch
is a pure refactoring/cleanup.
Usually used in the first line, so it is visible without opening the
actual commit email.

O

	Object Pointer

	A pointer to an object such that the garbage collector is able to trace
references contained within the object. This term is used in opposition to
derived pointer.

P

	PR

	Problem report. A bug filed on the LLVM Bug Tracking System [https://bugs.llvm.org/enter_bug.cgi].

	PRE

	Partial Redundancy Elimination

R

RAUW

Replace All Uses With. The functions User::replaceUsesOfWith(),
Value::replaceAllUsesWith(), and
Constant::replaceUsesOfWithOnConstant() implement the replacement of one
Value with another by iterating over its def/use chain and fixing up all of
the pointers to point to the new value. See
also def/use chains.

	Reassociation

	Rearranging associative expressions to promote better redundancy elimination
and other optimization. For example, changing (A+B-A) into (B+A-A),
permitting it to be optimized into (B+0) then (B).

	Root

	In garbage collection, a pointer variable lying outside of the heap from
which the collector begins its reachability analysis. In the context of code
generation, “root” almost always refers to a “stack root” — a local or
temporary variable within an executing function.

	RPO

	Reverse postorder

S

	Safe Point

	In garbage collection, it is necessary to identify stack roots so that
reachability analysis may proceed. It may be infeasible to provide this
information for every instruction, so instead the information may is
calculated only at designated safe points. With a copying collector,
derived pointers must not be retained across safe points and object
pointers must be reloaded from stack roots.

	SDISel

	Selection DAG Instruction Selection.

	SCC

	Strongly Connected Component

	SCCP

	Sparse Conditional Constant Propagation

	SLP

	Superword-Level Parallelism, same as Basic-Block Vectorization.

	Splat

	Splat refers to a vector of identical scalar elements.

The term is based on the PowerPC Altivec instructions that provided
this functionality in hardware. For example, “vsplth” and the corresponding
software intrinsic “vec_splat()”. Examples of other hardware names for this
action include “duplicate” (ARM) and “broadcast” (x86).

	SRoA

	Scalar Replacement of Aggregates

	SSA

	Static Single Assignment

	Stack Map

	In garbage collection, metadata emitted by the code generator which
identifies roots within the stack frame of an executing function.

T

	TBAA

	Type-Based Alias Analysis

How To Add Your Build Configuration To LLVM Buildbot Infrastructure

Introduction

This document contains information about adding a build configuration and
buildslave to private slave builder to LLVM Buildbot Infrastructure.

Buildmasters

There are two buildmasters running.

	The main buildmaster at http://lab.llvm.org:8011. All builders attached
to this machine will notify commit authors every time they break the build.

	The staging buildbot at http://lab.llvm.org:8014. All builders attached
to this machine will be completely silent by default when the build is broken.
Builders for experimental backends should generally be attached to this
buildmaster.

Steps To Add Builder To LLVM Buildbot

Volunteers can provide their build machines to work as build slaves to
public LLVM Buildbot.

Here are the steps you can follow to do so:

	Check the existing build configurations to make sure the one you are
interested in is not covered yet or gets built on your computer much
faster than on the existing one. We prefer faster builds so developers
will get feedback sooner after changes get committed.

	The computer you will be registering with the LLVM buildbot
infrastructure should have all dependencies installed and you can
actually build your configuration successfully. Please check what degree
of parallelism (-j param) would give the fastest build. You can build
multiple configurations on one computer.

	Install buildslave (currently we are using buildbot version 0.8.5).
Depending on the platform, buildslave could be available to download and
install with your package manager, or you can download it directly from
http://trac.buildbot.net and install it manually.

	Create a designated user account, your buildslave will be running under,
and set appropriate permissions.

	Choose the buildslave root directory (all builds will be placed under
it), buildslave access name and password the build master will be using
to authenticate your buildslave.

	Create a buildslave in context of that buildslave account. Point it to
the lab.llvm.org port 9990 (see Buildbot documentation,
Creating a slave [http://docs.buildbot.net/current/tutorial/firstrun.html#creating-a-slave]
for more details) by running the following command:

$ buildslave create-slave <buildslave-root-directory> \
 lab.llvm.org:9990 \
 <buildslave-access-name> <buildslave-access-password>

To point a slave to silent master please use lab.llvm.org:9994 instead
of lab.llvm.org:9990.

	Fill the buildslave description and admin name/e-mail. Here is an
example of the buildslave description:

Windows 7 x64
Core i7 (2.66GHz), 16GB of RAM

g++.exe (TDM-1 mingw32) 4.4.0
GNU Binutils 2.19.1
cmake version 2.8.4
Microsoft(R) 32-bit C/C++ Optimizing Compiler Version 16.00.40219.01 for 80x86

	Make sure you can actually start the buildslave successfully. Then set
up your buildslave to start automatically at the start up time. See the
buildbot documentation for help. You may want to restart your computer
to see if it works.

	Send a patch which adds your build slave and your builder to zorg.

	slaves are added to buildbot/osuosl/master/config/slaves.py

	builders are added to buildbot/osuosl/master/config/builders.py

Please make sure your builder name and its builddir are unique through the file.

It is possible to whitelist email addresses to unconditionally receive notifications
on build failure; for this you’ll need to add an InformativeMailNotifier to
buildbot/osuosl/master/config/status.py. This is particularly useful for the
staging buildmaster which is silent otherwise.

	Send the buildslave access name and the access password directly to
Galina Kistanova, and wait till she
will let you know that your changes are applied and buildmaster is
reconfigured.

	Check the status of your buildslave on the Waterfall Display [http://lab.llvm.org:8011/waterfall] to make sure it is connected, and
http://lab.llvm.org:8011/buildslaves/<your-buildslave-name> to see
if administrator contact and slave information are correct.

	Wait for the first build to succeed and enjoy.

yaml2obj

yaml2obj takes a YAML description of an object file and converts it to a binary
file.

$ yaml2obj input-file

Outputs the binary to stdout.

COFF Syntax

Here’s a sample COFF file.

header:
 Machine: IMAGE_FILE_MACHINE_I386 # (0x14C)

sections:
 - Name: .text
 Characteristics: [IMAGE_SCN_CNT_CODE
 , IMAGE_SCN_ALIGN_16BYTES
 , IMAGE_SCN_MEM_EXECUTE
 , IMAGE_SCN_MEM_READ
] # 0x60500020
 SectionData:
 "\x83\xEC\x0C\xC7\x44\x24\x08\x00\x00\x00\x00\xC7\x04\x24\x00\x00\x00\x00\xE8\x00\x00\x00\x00\xE8\x00\x00\x00\x00\x8B\x44\x24\x08\x83\xC4\x0C\xC3" # |....D$.......$...............D$.....|

symbols:
 - Name: .text
 Value: 0
 SectionNumber: 1
 SimpleType: IMAGE_SYM_TYPE_NULL # (0)
 ComplexType: IMAGE_SYM_DTYPE_NULL # (0)
 StorageClass: IMAGE_SYM_CLASS_STATIC # (3)
 NumberOfAuxSymbols: 1
 AuxiliaryData:
 "\x24\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00" # |$.................|

 - Name: _main
 Value: 0
 SectionNumber: 1
 SimpleType: IMAGE_SYM_TYPE_NULL # (0)
 ComplexType: IMAGE_SYM_DTYPE_NULL # (0)
 StorageClass: IMAGE_SYM_CLASS_EXTERNAL # (2)

Here’s a simplified Kwalify [http://www.kuwata-lab.com/kwalify/ruby/users-guide.html] schema with an extension to allow alternate types.

type: map
 mapping:
 header:
 type: map
 mapping:
 Machine: [{type: str, enum:
 [IMAGE_FILE_MACHINE_UNKNOWN
 , IMAGE_FILE_MACHINE_AM33
 , IMAGE_FILE_MACHINE_AMD64
 , IMAGE_FILE_MACHINE_ARM
 , IMAGE_FILE_MACHINE_ARMNT
 , IMAGE_FILE_MACHINE_ARM64
 , IMAGE_FILE_MACHINE_EBC
 , IMAGE_FILE_MACHINE_I386
 , IMAGE_FILE_MACHINE_IA64
 , IMAGE_FILE_MACHINE_M32R
 , IMAGE_FILE_MACHINE_MIPS16
 , IMAGE_FILE_MACHINE_MIPSFPU
 , IMAGE_FILE_MACHINE_MIPSFPU16
 , IMAGE_FILE_MACHINE_POWERPC
 , IMAGE_FILE_MACHINE_POWERPCFP
 , IMAGE_FILE_MACHINE_R4000
 , IMAGE_FILE_MACHINE_SH3
 , IMAGE_FILE_MACHINE_SH3DSP
 , IMAGE_FILE_MACHINE_SH4
 , IMAGE_FILE_MACHINE_SH5
 , IMAGE_FILE_MACHINE_THUMB
 , IMAGE_FILE_MACHINE_WCEMIPSV2
]}
 , {type: int}
]
 Characteristics:
 - type: seq
 sequence:
 - type: str
 enum: [IMAGE_FILE_RELOCS_STRIPPED
 , IMAGE_FILE_EXECUTABLE_IMAGE
 , IMAGE_FILE_LINE_NUMS_STRIPPED
 , IMAGE_FILE_LOCAL_SYMS_STRIPPED
 , IMAGE_FILE_AGGRESSIVE_WS_TRIM
 , IMAGE_FILE_LARGE_ADDRESS_AWARE
 , IMAGE_FILE_BYTES_REVERSED_LO
 , IMAGE_FILE_32BIT_MACHINE
 , IMAGE_FILE_DEBUG_STRIPPED
 , IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP
 , IMAGE_FILE_NET_RUN_FROM_SWAP
 , IMAGE_FILE_SYSTEM
 , IMAGE_FILE_DLL
 , IMAGE_FILE_UP_SYSTEM_ONLY
 , IMAGE_FILE_BYTES_REVERSED_HI
]
 - type: int
 sections:
 type: seq
 sequence:
 - type: map
 mapping:
 Name: {type: str}
 Characteristics:
 - type: seq
 sequence:
 - type: str
 enum: [IMAGE_SCN_TYPE_NO_PAD
 , IMAGE_SCN_CNT_CODE
 , IMAGE_SCN_CNT_INITIALIZED_DATA
 , IMAGE_SCN_CNT_UNINITIALIZED_DATA
 , IMAGE_SCN_LNK_OTHER
 , IMAGE_SCN_LNK_INFO
 , IMAGE_SCN_LNK_REMOVE
 , IMAGE_SCN_LNK_COMDAT
 , IMAGE_SCN_GPREL
 , IMAGE_SCN_MEM_PURGEABLE
 , IMAGE_SCN_MEM_16BIT
 , IMAGE_SCN_MEM_LOCKED
 , IMAGE_SCN_MEM_PRELOAD
 , IMAGE_SCN_ALIGN_1BYTES
 , IMAGE_SCN_ALIGN_2BYTES
 , IMAGE_SCN_ALIGN_4BYTES
 , IMAGE_SCN_ALIGN_8BYTES
 , IMAGE_SCN_ALIGN_16BYTES
 , IMAGE_SCN_ALIGN_32BYTES
 , IMAGE_SCN_ALIGN_64BYTES
 , IMAGE_SCN_ALIGN_128BYTES
 , IMAGE_SCN_ALIGN_256BYTES
 , IMAGE_SCN_ALIGN_512BYTES
 , IMAGE_SCN_ALIGN_1024BYTES
 , IMAGE_SCN_ALIGN_2048BYTES
 , IMAGE_SCN_ALIGN_4096BYTES
 , IMAGE_SCN_ALIGN_8192BYTES
 , IMAGE_SCN_LNK_NRELOC_OVFL
 , IMAGE_SCN_MEM_DISCARDABLE
 , IMAGE_SCN_MEM_NOT_CACHED
 , IMAGE_SCN_MEM_NOT_PAGED
 , IMAGE_SCN_MEM_SHARED
 , IMAGE_SCN_MEM_EXECUTE
 , IMAGE_SCN_MEM_READ
 , IMAGE_SCN_MEM_WRITE
]
 - type: int
 SectionData: {type: str}
 symbols:
 type: seq
 sequence:
 - type: map
 mapping:
 Name: {type: str}
 Value: {type: int}
 SectionNumber: {type: int}
 SimpleType: [{type: str, enum: [IMAGE_SYM_TYPE_NULL
 , IMAGE_SYM_TYPE_VOID
 , IMAGE_SYM_TYPE_CHAR
 , IMAGE_SYM_TYPE_SHORT
 , IMAGE_SYM_TYPE_INT
 , IMAGE_SYM_TYPE_LONG
 , IMAGE_SYM_TYPE_FLOAT
 , IMAGE_SYM_TYPE_DOUBLE
 , IMAGE_SYM_TYPE_STRUCT
 , IMAGE_SYM_TYPE_UNION
 , IMAGE_SYM_TYPE_ENUM
 , IMAGE_SYM_TYPE_MOE
 , IMAGE_SYM_TYPE_BYTE
 , IMAGE_SYM_TYPE_WORD
 , IMAGE_SYM_TYPE_UINT
 , IMAGE_SYM_TYPE_DWORD
]}
 , {type: int}
]
 ComplexType: [{type: str, enum: [IMAGE_SYM_DTYPE_NULL
 , IMAGE_SYM_DTYPE_POINTER
 , IMAGE_SYM_DTYPE_FUNCTION
 , IMAGE_SYM_DTYPE_ARRAY
]}
 , {type: int}
]
 StorageClass: [{type: str, enum:
 [IMAGE_SYM_CLASS_END_OF_FUNCTION
 , IMAGE_SYM_CLASS_NULL
 , IMAGE_SYM_CLASS_AUTOMATIC
 , IMAGE_SYM_CLASS_EXTERNAL
 , IMAGE_SYM_CLASS_STATIC
 , IMAGE_SYM_CLASS_REGISTER
 , IMAGE_SYM_CLASS_EXTERNAL_DEF
 , IMAGE_SYM_CLASS_LABEL
 , IMAGE_SYM_CLASS_UNDEFINED_LABEL
 , IMAGE_SYM_CLASS_MEMBER_OF_STRUCT
 , IMAGE_SYM_CLASS_ARGUMENT
 , IMAGE_SYM_CLASS_STRUCT_TAG
 , IMAGE_SYM_CLASS_MEMBER_OF_UNION
 , IMAGE_SYM_CLASS_UNION_TAG
 , IMAGE_SYM_CLASS_TYPE_DEFINITION
 , IMAGE_SYM_CLASS_UNDEFINED_STATIC
 , IMAGE_SYM_CLASS_ENUM_TAG
 , IMAGE_SYM_CLASS_MEMBER_OF_ENUM
 , IMAGE_SYM_CLASS_REGISTER_PARAM
 , IMAGE_SYM_CLASS_BIT_FIELD
 , IMAGE_SYM_CLASS_BLOCK
 , IMAGE_SYM_CLASS_FUNCTION
 , IMAGE_SYM_CLASS_END_OF_STRUCT
 , IMAGE_SYM_CLASS_FILE
 , IMAGE_SYM_CLASS_SECTION
 , IMAGE_SYM_CLASS_WEAK_EXTERNAL
 , IMAGE_SYM_CLASS_CLR_TOKEN
]}
 , {type: int}
]

How to submit an LLVM bug report

Introduction - Got bugs?

If you’re working with LLVM and run into a bug, we definitely want to know
about it. This document describes what you can do to increase the odds of
getting it fixed quickly.

Basically you have to do two things at a minimum. First, decide whether
the bug crashes the compiler (or an LLVM pass), or if the
compiler is miscompiling the program (i.e., the
compiler successfully produces an executable, but it doesn’t run right).
Based on what type of bug it is, follow the instructions in the linked
section to narrow down the bug so that the person who fixes it will be able
to find the problem more easily.

Once you have a reduced test-case, go to the LLVM Bug Tracking System [https://bugs.llvm.org/enter_bug.cgi] and fill out the form with the
necessary details (note that you don’t need to pick a category, just use
the “new-bugs” category if you’re not sure). The bug description should
contain the following information:

	All information necessary to reproduce the problem.

	The reduced test-case that triggers the bug.

	The location where you obtained LLVM (if not from our Subversion
repository).

Thanks for helping us make LLVM better!

Crashing Bugs

More often than not, bugs in the compiler cause it to crash—often due to
an assertion failure of some sort. The most important piece of the puzzle
is to figure out if it is crashing in the Clang front-end or if it is one of
the LLVM libraries (e.g. the optimizer or code generator) that has
problems.

To figure out which component is crashing (the front-end, optimizer or code
generator), run the clang command line as you were when the crash
occurred, but with the following extra command line options:

	-O0 -emit-llvm: If clang still crashes when passed these
options (which disable the optimizer and code generator), then the crash
is in the front-end. Jump ahead to the section on front-end bugs.

	-emit-llvm: If clang crashes with this option (which disables
the code generator), you found an optimizer bug. Jump ahead to
compile-time optimization bugs.

	Otherwise, you have a code generator crash. Jump ahead to code
generator bugs.

Front-end bugs

If the problem is in the front-end, you should re-run the same clang
command that resulted in the crash, but add the -save-temps option.
The compiler will crash again, but it will leave behind a foo.i file
(containing preprocessed C source code) and possibly foo.s for each
compiled foo.c file. Send us the foo.i file, along with the options
you passed to clang, and a brief description of the error it caused.

The delta [http://delta.tigris.org/] tool helps to reduce the
preprocessed file down to the smallest amount of code that still replicates
the problem. You’re encouraged to use delta to reduce the code to make the
developers’ lives easier. This website [http://gcc.gnu.org/wiki/A_guide_to_testcase_reduction] has instructions
on the best way to use delta.

Compile-time optimization bugs

If you find that a bug crashes in the optimizer, compile your test-case to a
.bc file by passing “-emit-llvm -O0 -c -o foo.bc”.
Then run:

opt -O3 -debug-pass=Arguments foo.bc -disable-output

This command should do two things: it should print out a list of passes, and
then it should crash in the same way as clang. If it doesn’t crash, please
follow the instructions for a front-end bug.

If this does crash, then you should be able to debug this with the following
bugpoint command:

bugpoint foo.bc <list of passes printed by opt>

Please run this, then file a bug with the instructions and reduced .bc
files that bugpoint emits. If something goes wrong with bugpoint, please
submit the “foo.bc” file and the list of passes printed by opt.

Code generator bugs

If you find a bug that crashes clang in the code generator, compile your
source file to a .bc file by passing “-emit-llvm -c -o foo.bc” to
clang (in addition to the options you already pass). Once your have
foo.bc, one of the following commands should fail:

	llc foo.bc

	llc foo.bc -relocation-model=pic

	llc foo.bc -relocation-model=static

If none of these crash, please follow the instructions for a front-end
bug. If one of these do crash, you should be able to reduce this with
one of the following bugpoint command lines (use the one corresponding to
the command above that failed):

	bugpoint -run-llc foo.bc

	bugpoint -run-llc foo.bc --tool-args -relocation-model=pic

	bugpoint -run-llc foo.bc --tool-args -relocation-model=static

Please run this, then file a bug with the instructions and reduced .bc file
that bugpoint emits. If something goes wrong with bugpoint, please submit
the “foo.bc” file and the option that llc crashes with.

Miscompilations

If clang successfully produces an executable, but that executable
doesn’t run right, this is either a bug in the code or a bug in the
compiler. The first thing to check is to make sure it is not using
undefined behavior (e.g. reading a variable before it is defined). In
particular, check to see if the program valgrind [http://valgrind.org/]’s clean, passes purify, or some other memory
checker tool. Many of the “LLVM bugs” that we have chased down ended up
being bugs in the program being compiled, not LLVM.

Once you determine that the program itself is not buggy, you should choose
which code generator you wish to compile the program with (e.g. LLC or the JIT)
and optionally a series of LLVM passes to run. For example:

bugpoint -run-llc [... optzn passes ...] file-to-test.bc --args -- [program arguments]

bugpoint will try to narrow down your list of passes to the one pass that
causes an error, and simplify the bitcode file as much as it can to assist
you. It will print a message letting you know how to reproduce the
resulting error.

Incorrect code generation

Similarly to debugging incorrect compilation by mis-behaving passes, you
can debug incorrect code generation by either LLC or the JIT, using
bugpoint. The process bugpoint follows in this case is to try to
narrow the code down to a function that is miscompiled by one or the other
method, but since for correctness, the entire program must be run,
bugpoint will compile the code it deems to not be affected with the C
Backend, and then link in the shared object it generates.

To debug the JIT:

bugpoint -run-jit -output=[correct output file] [bitcode file] \
 --tool-args -- [arguments to pass to lli] \
 --args -- [program arguments]

Similarly, to debug the LLC, one would run:

bugpoint -run-llc -output=[correct output file] [bitcode file] \
 --tool-args -- [arguments to pass to llc] \
 --args -- [program arguments]

Special note: if you are debugging MultiSource or SPEC tests that
already exist in the llvm/test hierarchy, there is an easier way to
debug the JIT, LLC, and CBE, using the pre-written Makefile targets, which
will pass the program options specified in the Makefiles:

cd llvm/test/../../program
make bugpoint-jit

At the end of a successful bugpoint run, you will be presented
with two bitcode files: a safe file which can be compiled with the C
backend and the test file which either LLC or the JIT
mis-codegenerates, and thus causes the error.

To reproduce the error that bugpoint found, it is sufficient to do
the following:

	Regenerate the shared object from the safe bitcode file:

llc -march=c safe.bc -o safe.c
gcc -shared safe.c -o safe.so

	If debugging LLC, compile test bitcode native and link with the shared
object:

llc test.bc -o test.s
gcc test.s safe.so -o test.llc
./test.llc [program options]

	If debugging the JIT, load the shared object and supply the test
bitcode:

lli -load=safe.so test.bc [program options]

Sphinx Quickstart Template

Introduction and Quickstart

This document is meant to get you writing documentation as fast as possible
even if you have no previous experience with Sphinx. The goal is to take
someone in the state of “I want to write documentation and get it added to
LLVM’s docs” and turn that into useful documentation mailed to llvm-commits
with as little nonsense as possible.

You can find this document in docs/SphinxQuickstartTemplate.rst. You
should copy it, open the new file in your text editor, write your docs, and
then send the new document to llvm-commits for review.

Focus on content. It is easy to fix the Sphinx (reStructuredText) syntax
later if necessary, although reStructuredText tries to imitate common
plain-text conventions so it should be quite natural. A basic knowledge of
reStructuredText syntax is useful when writing the document, so the last
~half of this document (starting with Example Section) gives examples
which should cover 99% of use cases.

Let me say that again: focus on content. But if you really need to verify
Sphinx’s output, see docs/README.txt for information.

Once you have finished with the content, please send the .rst file to
llvm-commits for review.

Guidelines

Try to answer the following questions in your first section:

	Why would I want to read this document?

	What should I know to be able to follow along with this document?

	What will I have learned by the end of this document?

Common names for the first section are Introduction, Overview, or
Background.

If possible, make your document a “how to”. Give it a name HowTo*.rst
like the other “how to” documents. This format is usually the easiest
for another person to understand and also the most useful.

You generally should not be writing documentation other than a “how to”
unless there is already a “how to” about your topic. The reason for this
is that without a “how to” document to read first, it is difficult for a
person to understand a more advanced document.

Focus on content (yes, I had to say it again).

The rest of this document shows example reStructuredText markup constructs
that are meant to be read by you in your text editor after you have copied
this file into a new file for the documentation you are about to write.

Example Section

Your text can be emphasized, bold, or monospace.

Use blank lines to separate paragraphs.

Headings (like Example Section just above) give your document its
structure. Use the same kind of adornments (e.g. ====== vs. ------)
as are used in this document. The adornment must be the same length as the
text above it. For Vim users, variations of yypVr= might be handy.

Example Subsection

Make a link like this [http://llvm.org/]. There is also a more
sophisticated syntax which can be more readable [http://en.wikipedia.org/wiki/LLVM] for longer links since
it disrupts the flow less. You can put the .. _`link text`: <URL> block
pretty much anywhere later in the document.

Lists can be made like this:

	A list starting with #. will be automatically numbered.

	This is a second list element.

	Use indentation to create nested lists.

You can also use unordered lists.

	Stuff.

	Deeper stuff.

	More stuff.

Example Subsubsection

You can make blocks of code like this:

int main() {
 return 0;
}

For a shell session, use a console code block (some existing docs use
bash):

$ echo "Goodbye cruel world!"
$ rm -rf /

If you need to show LLVM IR use the llvm code block.

define i32 @test1() {
entry:
 ret i32 0
}

Some other common code blocks you might need are c, objc, make,
and cmake. If you need something beyond that, you can look at the full
list [http://pygments.org/docs/lexers/] of supported code blocks.

However, don’t waste time fiddling with syntax highlighting when you could
be adding meaningful content. When in doubt, show preformatted text
without any syntax highlighting like this:

 .
 +:.
 ..:: ::
 .++:+:: ::+:.:.
 .:+ :
 ::.::..:: .+.
 ..:+ :: :
......+:. ..
 :++. .. :
 .+:::+:: :
 + ::
 +.: .::+.
 ...+. .: .
 .++:..
 ...

Hopefully you won’t need to be this deep

If you need to do fancier things than what has been shown in this document,
you can mail the list or check Sphinx’s reStructuredText Primer [http://sphinx.pocoo.org/rest.html].

Markdown Quickstart Template

Introduction and Quickstart

This document is meant to get you writing documentation as fast as possible
even if you have no previous experience with Markdown. The goal is to take
someone in the state of “I want to write documentation and get it added to
LLVM’s docs” and turn that into useful documentation mailed to llvm-commits
with as little nonsense as possible.

You can find this document in docs/MarkdownQuickstartTemplate.md. You
should copy it, open the new file in your text editor, write your docs, and
then send the new document to llvm-commits for review.

Focus on content. It is easy to fix the Markdown syntax
later if necessary, although Markdown tries to imitate common
plain-text conventions so it should be quite natural. A basic knowledge of
Markdown syntax is useful when writing the document, so the last
~half of this document (starting with Example Section) gives examples
which should cover 99% of use cases.

Let me say that again: focus on content. But if you really need to verify
Sphinx’s output, see docs/README.txt for information.

Once you have finished with the content, please send the .md file to
llvm-commits for review.

Guidelines

Try to answer the following questions in your first section:

	Why would I want to read this document?

	What should I know to be able to follow along with this document?

	What will I have learned by the end of this document?

Common names for the first section are Introduction, Overview, or
Background.

If possible, make your document a “how to”. Give it a name HowTo*.md
like the other “how to” documents. This format is usually the easiest
for another person to understand and also the most useful.

You generally should not be writing documentation other than a “how to”
unless there is already a “how to” about your topic. The reason for this
is that without a “how to” document to read first, it is difficult for a
person to understand a more advanced document.

Focus on content (yes, I had to say it again).

The rest of this document shows example Markdown markup constructs
that are meant to be read by you in your text editor after you have copied
this file into a new file for the documentation you are about to write.

Example Section

Your text can be emphasized, bold, or monospace.

Use blank lines to separate paragraphs.

Headings (like Example Section just above) give your document its
structure.

Example Subsection

Make a link like this [http://llvm.org/]. There is also a more
sophisticated syntax which can be more readable [http://en.wikipedia.org/wiki/LLVM] for longer links since
it disrupts the flow less. You can put the [link name]: <URL> block
pretty much anywhere later in the document.

Lists can be made like this:

	A list starting with [0-9]. will be automatically numbered.

	This is a second list element.

	Use indentation to create nested lists.

You can also use unordered lists.

	Stuff.

	Deeper stuff.

	More stuff.

Example Subsubsection

You can make blocks of code like this:

int main() {
 return 0;
}

As an extension to markdown, you can also specify a highlighter to use.

int main() {
 return 0;
}

For a shell session, use a console code block.

$ echo "Goodbye cruel world!"
$ rm -rf /

If you need to show LLVM IR use the llvm code block.

define i32 @test1() {
entry:
 ret i32 0
}

Some other common code blocks you might need are c, objc, make,
and cmake. If you need something beyond that, you can look at the full
list [http://pygments.org/docs/lexers/] of supported code blocks.

However, don’t waste time fiddling with syntax highlighting when you could
be adding meaningful content. When in doubt, show preformatted text
without any syntax highlighting like this:

 .
 +:.
 ..:: ::
 .++:+:: ::+:.:.
 .:+ :
 ::.::..:: .+.
 ..:+ :: :
......+:. ..
 :++. .. :
 .+:::+:: :
 + ::
 +.: .::+.
 ...+. .: .
 .++:..
 ...

Hopefully you won’t need to be this deep

If you need to do fancier things than what has been shown in this document,
you can mail the list or check the Common Mark spec [http://spec.commonmark.org/0.28/]. Sphinx specific
integration documentation can be found in the recommonmark docs [http://recommonmark.readthedocs.io/en/latest/index.html].

Code Reviews with Phabricator

	Sign up

	Requesting a review via the command line

	Requesting a review via the web interface

	Reviewing code with Phabricator

	Committing a change

	Subversion and Arcanist

	git-svn and Arcanist

	Abandoning a change

	Status

If you prefer to use a web user interface for code reviews, you can now submit
your patches for Clang and LLVM at LLVM’s Phabricator [http://reviews.llvm.org] instance.

While Phabricator is a useful tool for some, the relevant -commits mailing list
is the system of record for all LLVM code review. The mailing list should be
added as a subscriber on all reviews, and Phabricator users should be prepared
to respond to free-form comments in mail sent to the commits list.

Sign up

To get started with Phabricator, navigate to http://reviews.llvm.org and
click the power icon in the top right. You can register with a GitHub account,
a Google account, or you can create your own profile.

Make sure that the email address registered with Phabricator is subscribed
to the relevant -commits mailing list. If you are not subscribed to the commit
list, all mail sent by Phabricator on your behalf will be held for moderation.

Note that if you use your Subversion user name as Phabricator user name,
Phabricator will automatically connect your submits to your Phabricator user in
the Code Repository Browser [http://reviews.llvm.org/diffusion/].

Requesting a review via the command line

Phabricator has a tool called Arcanist to upload patches from
the command line. To get you set up, follow the
Arcanist Quick Start [https://secure.phabricator.com/book/phabricator/article/arcanist_quick_start/] instructions.

You can learn more about how to use arc to interact with
Phabricator in the Arcanist User Guide [https://secure.phabricator.com/book/phabricator/article/arcanist/].

Requesting a review via the web interface

The tool to create and review patches in Phabricator is called
Differential.

Note that you can upload patches created through various diff tools,
including git and svn. To make reviews easier, please always include
as much context as possible with your diff! Don’t worry, Phabricator
will automatically send a diff with a smaller context in the review
email, but having the full file in the web interface will help the
reviewer understand your code.

To get a full diff, use one of the following commands (or just use Arcanist
to upload your patch):

	git show HEAD -U999999 > mypatch.patch

	git format-patch -U999999 @{u}

	svn diff --diff-cmd=diff -x -U999999

To upload a new patch:

	Click Differential.

	Click + Create Diff.

	Paste the text diff or browse to the patch file. Click Create Diff.

	Leave this first Repository field blank. (We’ll fill in the Repository
later, when sending the review.)

	Leave the drop down on Create a new Revision… and click Continue.

	Enter a descriptive title and summary. The title and summary are usually
in the form of a commit message.

	Add reviewers (see below for advice). (If you set the Repository field
correctly, llvm-commits or cfe-commits will be subscribed automatically;
otherwise, you will have to manually subscribe them.)

	In the Repository field, enter the name of the project (LLVM, Clang,
etc.) to which the review should be sent.

	Click Save.

To submit an updated patch:

	Click Differential.

	Click + Create Diff.

	Paste the updated diff or browse to the updated patch file. Click Create Diff.

	Select the review you want to from the Attach To dropdown and click
Continue.

	Leave the Repository field blank. (We previously filled out the Repository
for the review request.)

	Add comments about the changes in the new diff. Click Save.

Choosing reviewers: You typically pick one or two people as initial reviewers.
This choice is not crucial, because you are merely suggesting and not requiring
them to participate. Many people will see the email notification on cfe-commits
or llvm-commits, and if the subject line suggests the patch is something they
should look at, they will.

Here are a couple of ways to pick the initial reviewer(s):

	Use svn blame and the commit log to find names of people who have
recently modified the same area of code that you are modifying.

	Look in CODE_OWNERS.TXT to see who might be responsible for that area.

	If you’ve discussed the change on a dev list, the people who participated
might be appropriate reviewers.

Even if you think the code owner is the busiest person in the world, it’s still
okay to put them as a reviewer. Being the code owner means they have accepted
responsibility for making sure the review happens.

Reviewing code with Phabricator

Phabricator allows you to add inline comments as well as overall comments
to a revision. To add an inline comment, select the lines of code you want
to comment on by clicking and dragging the line numbers in the diff pane.
When you have added all your comments, scroll to the bottom of the page and
click the Submit button.

You can add overall comments in the text box at the bottom of the page.
When you’re done, click the Submit button.

Phabricator has many useful features, for example allowing you to select
diffs between different versions of the patch as it was reviewed in the
Revision Update History. Most features are self descriptive - explore, and
if you have a question, drop by on #llvm in IRC to get help.

Note that as e-mail is the system of reference for code reviews, and some
people prefer it over a web interface, we do not generate automated mail
when a review changes state, for example by clicking “Accept Revision” in
the web interface. Thus, please type LGTM into the comment box to accept
a change from Phabricator.

Committing a change

Once a patch has been reviewed and approved on Phabricator it can then be
committed to trunk. If you do not have commit access, someone has to
commit the change for you (with attribution). It is sufficient to add
a comment to the approved review indicating you cannot commit the patch
yourself. If you have commit access, there are multiple workflows to commit the
change. Whichever method you follow it is recommended that your commit message
ends with the line:

Differential Revision: <URL>

where <URL> is the URL for the code review, starting with
http://reviews.llvm.org/.

This allows people reading the version history to see the review for
context. This also allows Phabricator to detect the commit, close the
review, and add a link from the review to the commit.

Note that if you use the Arcanist tool the Differential Revision line will
be added automatically. If you don’t want to use Arcanist, you can add the
Differential Revision line (as the last line) to the commit message
yourself.

Using the Arcanist tool can simplify the process of committing reviewed code
as it will retrieve reviewers, the Differential Revision, etc from the review
and place it in the commit message. Several methods of using Arcanist to commit
code are given below. If you do not wish to use Arcanist then simply commit
the reviewed patch as you would normally.

Note that if you commit the change without using Arcanist and forget to add the
Differential Revision line to your commit message then it is recommended
that you close the review manually. In the web UI, under “Leap Into Action” put
the SVN revision number in the Comment, set the Action to “Close Revision” and
click Submit. Note the review must have been Accepted first.

Subversion and Arcanist

On a clean Subversion working copy run the following (where <Revision> is
the Phabricator review number):

arc patch D<Revision>
arc commit --revision D<Revision>

The first command will take the latest version of the reviewed patch and apply it to the working
copy. The second command will commit this revision to trunk.

git-svn and Arcanist

This presumes that the git repository has been configured as described in For developers to work with git-svn.

On a clean Git repository on an up to date master branch run the
following (where <Revision> is the Phabricator review number):

arc patch D<Revision>

This will create a new branch called arcpatch-D<Revision> based on the
current master and will create a commit corresponding to D<Revision> with a
commit message derived from information in the Phabricator review.

Check you are happy with the commit message and amend it if necessary. Now switch to
the master branch and add the new commit to it and commit it to trunk. This
can be done by running the following:

git checkout master
git merge --ff-only arcpatch-D<Revision>
git svn dcommit

Abandoning a change

If you decide you should not commit the patch, you should explicitly abandon
the review so that reviewers don’t think it is still open. In the web UI,
scroll to the bottom of the page where normally you would enter an overall
comment. In the drop-down Action list, which defaults to “Comment,” you should
select “Abandon Revision” and then enter a comment explaining why. Click the
Submit button to finish closing the review.

Status

Please let us know whether you like it and what could be improved! We’re still
working on setting up a bug tracker, but you can email klimek-at-google-dot-com
and chandlerc-at-gmail-dot-com and CC the llvm-dev mailing list with questions
until then. We also could use help implementing improvements. This sadly is
really painful and hard because the Phabricator codebase is in PHP and not as
testable as you might like. However, we’ve put exactly what we’re deploying up
on an llvm-reviews GitHub project [https://github.com/r4nt/llvm-reviews/] where folks can hack on it and post pull
requests. We’re looking into what the right long-term hosting for this is, but
note that it is a derivative of an existing open source project, and so not
trivially a good fit for an official LLVM project.

LLVM Testing Infrastructure Guide

	Overview

	Requirements

	LLVM testing infrastructure organization

	Regression tests

	test-suite

	Debugging Information tests

	Quick start

	Regression tests

	Debugging Information tests

	Regression test structure

	Writing new regression tests

	Extra files

	Fragile tests

	Platform-Specific Tests

	Constraining test execution

	Substitutions

	Options

	Other Features

	test-suite Overview

	test-suite Quickstart

	test-suite Makefiles

Overview

This document is the reference manual for the LLVM testing
infrastructure. It documents the structure of the LLVM testing
infrastructure, the tools needed to use it, and how to add and run
tests.

Requirements

In order to use the LLVM testing infrastructure, you will need all of the
software required to build LLVM, as well as Python [http://python.org] 2.7 or
later.

If you intend to run the test-suite, you will also
need a development version of zlib (zlib1g-dev is known to work on several Linux
distributions).

LLVM testing infrastructure organization

The LLVM testing infrastructure contains two major categories of tests:
regression tests and whole programs. The regression tests are contained
inside the LLVM repository itself under llvm/test and are expected
to always pass – they should be run before every commit.

The whole programs tests are referred to as the “LLVM test suite” (or
“test-suite”) and are in the test-suite module in subversion. For
historical reasons, these tests are also referred to as the “nightly
tests” in places, which is less ambiguous than “test-suite” and remains
in use although we run them much more often than nightly.

Regression tests

The regression tests are small pieces of code that test a specific
feature of LLVM or trigger a specific bug in LLVM. The language they are
written in depends on the part of LLVM being tested. These tests are driven by
the Lit testing tool (which is part of LLVM), and
are located in the llvm/test directory.

Typically when a bug is found in LLVM, a regression test containing just
enough code to reproduce the problem should be written and placed
somewhere underneath this directory. For example, it can be a small
piece of LLVM IR distilled from an actual application or benchmark.

test-suite

The test suite contains whole programs, which are pieces of code which
can be compiled and linked into a stand-alone program that can be
executed. These programs are generally written in high level languages
such as C or C++.

These programs are compiled using a user specified compiler and set of
flags, and then executed to capture the program output and timing
information. The output of these programs is compared to a reference
output to ensure that the program is being compiled correctly.

In addition to compiling and executing programs, whole program tests
serve as a way of benchmarking LLVM performance, both in terms of the
efficiency of the programs generated as well as the speed with which
LLVM compiles, optimizes, and generates code.

The test-suite is located in the test-suite Subversion module.

Debugging Information tests

The test suite contains tests to check quality of debugging information.
The test are written in C based languages or in LLVM assembly language.

These tests are compiled and run under a debugger. The debugger output
is checked to validate of debugging information. See README.txt in the
test suite for more information . This test suite is located in the
debuginfo-tests Subversion module.

Quick start

The tests are located in two separate Subversion modules. The
regressions tests are in the main “llvm” module under the directory
llvm/test (so you get these tests for free with the main LLVM tree).
Use make check-all to run the regression tests after building LLVM.

The more comprehensive test suite that includes whole programs in C and C++
is in the test-suite module. See test-suite Quickstart for more information on running these tests.

Regression tests

To run all of the LLVM regression tests use the check-llvm target:

% make check-llvm

If you have Clang [http://clang.llvm.org/] checked out and built, you
can run the LLVM and Clang tests simultaneously using:

% make check-all

To run the tests with Valgrind (Memcheck by default), use the LIT_ARGS make
variable to pass the required options to lit. For example, you can use:

% make check LIT_ARGS="-v --vg --vg-leak"

to enable testing with valgrind and with leak checking enabled.

To run individual tests or subsets of tests, you can use the llvm-lit
script which is built as part of LLVM. For example, to run the
Integer/BitPacked.ll test by itself you can run:

% llvm-lit ~/llvm/test/Integer/BitPacked.ll

or to run all of the ARM CodeGen tests:

% llvm-lit ~/llvm/test/CodeGen/ARM

For more information on using the lit tool, see llvm-lit --help
or the lit man page.

Debugging Information tests

To run debugging information tests simply checkout the tests inside
clang/test directory.

% cd clang/test
% svn co http://llvm.org/svn/llvm-project/debuginfo-tests/trunk debuginfo-tests

These tests are already set up to run as part of clang regression tests.

Regression test structure

The LLVM regression tests are driven by lit and are located in the
llvm/test directory.

This directory contains a large array of small tests that exercise
various features of LLVM and to ensure that regressions do not occur.
The directory is broken into several sub-directories, each focused on a
particular area of LLVM.

Writing new regression tests

The regression test structure is very simple, but does require some
information to be set. This information is gathered via configure
and is written to a file, test/lit.site.cfg in the build directory.
The llvm/test Makefile does this work for you.

In order for the regression tests to work, each directory of tests must
have a lit.local.cfg file. lit looks for this file to determine
how to run the tests. This file is just Python code and thus is very
flexible, but we’ve standardized it for the LLVM regression tests. If
you’re adding a directory of tests, just copy lit.local.cfg from
another directory to get running. The standard lit.local.cfg simply
specifies which files to look in for tests. Any directory that contains
only directories does not need the lit.local.cfg file. Read the Lit
documentation for more information.

Each test file must contain lines starting with “RUN:” that tell lit
how to run it. If there are no RUN lines, lit will issue an error
while running a test.

RUN lines are specified in the comments of the test program using the
keyword RUN followed by a colon, and lastly the command (pipeline)
to execute. Together, these lines form the “script” that lit
executes to run the test case. The syntax of the RUN lines is similar to a
shell’s syntax for pipelines including I/O redirection and variable
substitution. However, even though these lines may look like a shell
script, they are not. RUN lines are interpreted by lit.
Consequently, the syntax differs from shell in a few ways. You can specify
as many RUN lines as needed.

lit performs substitution on each RUN line to replace LLVM tool names
with the full paths to the executable built for each tool (in
$(LLVM_OBJ_ROOT)/$(BuildMode)/bin). This ensures that lit does
not invoke any stray LLVM tools in the user’s path during testing.

Each RUN line is executed on its own, distinct from other lines unless
its last character is \. This continuation character causes the RUN
line to be concatenated with the next one. In this way you can build up
long pipelines of commands without making huge line lengths. The lines
ending in \ are concatenated until a RUN line that doesn’t end in
\ is found. This concatenated set of RUN lines then constitutes one
execution. lit will substitute variables and arrange for the pipeline
to be executed. If any process in the pipeline fails, the entire line (and
test case) fails too.

Below is an example of legal RUN lines in a .ll file:

; RUN: llvm-as < %s | llvm-dis > %t1
; RUN: llvm-dis < %s.bc-13 > %t2
; RUN: diff %t1 %t2

As with a Unix shell, the RUN lines permit pipelines and I/O
redirection to be used.

There are some quoting rules that you must pay attention to when writing
your RUN lines. In general nothing needs to be quoted. lit won’t
strip off any quote characters so they will get passed to the invoked program.
To avoid this use curly braces to tell lit that it should treat
everything enclosed as one value.

In general, you should strive to keep your RUN lines as simple as possible,
using them only to run tools that generate textual output you can then examine.
The recommended way to examine output to figure out if the test passes is using
the FileCheck tool. [The usage of grep in RUN
lines is deprecated - please do not send or commit patches that use it.]

Put related tests into a single file rather than having a separate file per
test. Check if there are files already covering your feature and consider
adding your code there instead of creating a new file.

Extra files

If your test requires extra files besides the file containing the RUN:
lines, the idiomatic place to put them is in a subdirectory Inputs.
You can then refer to the extra files as %S/Inputs/foo.bar.

For example, consider test/Linker/ident.ll. The directory structure is
as follows:

test/
 Linker/
 ident.ll
 Inputs/
 ident.a.ll
 ident.b.ll

For convenience, these are the contents:

;;;;; ident.ll:

; RUN: llvm-link %S/Inputs/ident.a.ll %S/Inputs/ident.b.ll -S | FileCheck %s

; Verify that multiple input llvm.ident metadata are linked together.

; CHECK-DAG: !llvm.ident = !{!0, !1, !2}
; CHECK-DAG: "Compiler V1"
; CHECK-DAG: "Compiler V2"
; CHECK-DAG: "Compiler V3"

;;;;; Inputs/ident.a.ll:

!llvm.ident = !{!0, !1}
!0 = metadata !{metadata !"Compiler V1"}
!1 = metadata !{metadata !"Compiler V2"}

;;;;; Inputs/ident.b.ll:

!llvm.ident = !{!0}
!0 = metadata !{metadata !"Compiler V3"}

For symmetry reasons, ident.ll is just a dummy file that doesn’t
actually participate in the test besides holding the RUN: lines.

Note

Some existing tests use RUN: true in extra files instead of just
putting the extra files in an Inputs/ directory. This pattern is
deprecated.

Fragile tests

It is easy to write a fragile test that would fail spuriously if the tool being
tested outputs a full path to the input file. For example, opt by
default outputs a ModuleID:

$ cat example.ll
define i32 @main() nounwind {
 ret i32 0
}

$ opt -S /path/to/example.ll
; ModuleID = '/path/to/example.ll'

define i32 @main() nounwind {
 ret i32 0
}

ModuleID can unexpectedly match against CHECK lines. For example:

; RUN: opt -S %s | FileCheck

define i32 @main() nounwind {
 ; CHECK-NOT: load
 ret i32 0
}

This test will fail if placed into a download directory.

To make your tests robust, always use opt ... < %s in the RUN line.
opt does not output a ModuleID when input comes from stdin.

Platform-Specific Tests

Whenever adding tests that require the knowledge of a specific platform,
either related to code generated, specific output or back-end features,
you must make sure to isolate the features, so that buildbots that
run on different architectures (and don’t even compile all back-ends),
don’t fail.

The first problem is to check for target-specific output, for example sizes
of structures, paths and architecture names, for example:

	Tests containing Windows paths will fail on Linux and vice-versa.

	Tests that check for x86_64 somewhere in the text will fail anywhere else.

	Tests where the debug information calculates the size of types and structures.

Also, if the test rely on any behaviour that is coded in any back-end, it must
go in its own directory. So, for instance, code generator tests for ARM go
into test/CodeGen/ARM and so on. Those directories contain a special
lit configuration file that ensure all tests in that directory will
only run if a specific back-end is compiled and available.

For instance, on test/CodeGen/ARM, the lit.local.cfg is:

config.suffixes = ['.ll', '.c', '.cpp', '.test']
if not 'ARM' in config.root.targets:
 config.unsupported = True

Other platform-specific tests are those that depend on a specific feature
of a specific sub-architecture, for example only to Intel chips that support AVX2.

For instance, test/CodeGen/X86/psubus.ll tests three sub-architecture
variants:

; RUN: llc -mcpu=core2 < %s | FileCheck %s -check-prefix=SSE2
; RUN: llc -mcpu=corei7-avx < %s | FileCheck %s -check-prefix=AVX1
; RUN: llc -mcpu=core-avx2 < %s | FileCheck %s -check-prefix=AVX2

And the checks are different:

; SSE2: @test1
; SSE2: psubusw LCPI0_0(%rip), %xmm0
; AVX1: @test1
; AVX1: vpsubusw LCPI0_0(%rip), %xmm0, %xmm0
; AVX2: @test1
; AVX2: vpsubusw LCPI0_0(%rip), %xmm0, %xmm0

So, if you’re testing for a behaviour that you know is platform-specific or
depends on special features of sub-architectures, you must add the specific
triple, test with the specific FileCheck and put it into the specific
directory that will filter out all other architectures.

Constraining test execution

Some tests can be run only in specific configurations, such as
with debug builds or on particular platforms. Use REQUIRES
and UNSUPPORTED to control when the test is enabled.

Some tests are expected to fail. For example, there may be a known bug
that the test detect. Use XFAIL to mark a test as an expected failure.
An XFAIL test will be successful if its execution fails, and
will be a failure if its execution succeeds.

; This test will be only enabled in the build with asserts.
; REQUIRES: asserts
; This test is disabled on Linux.
; UNSUPPORTED: -linux-
; This test is expected to fail on PowerPC.
; XFAIL: powerpc

REQUIRES and UNSUPPORTED and XFAIL all accept a comma-separated
list of boolean expressions. The values in each expression may be:

	Features added to config.available_features by
configuration files such as lit.cfg.

	Substrings of the target triple (UNSUPPORTED and XFAIL only).

REQUIRES enables the test if all expressions are true.

UNSUPPORTED disables the test if any expression is true.

XFAIL expects the test to fail if any expression is true.

As a special case, XFAIL: * is expected to fail everywhere.

; This test is disabled on Windows,
; and is disabled on Linux, except for Android Linux.
; UNSUPPORTED: windows, linux && !android
; This test is expected to fail on both PowerPC and ARM.
; XFAIL: powerpc || arm

Substitutions

Besides replacing LLVM tool names the following substitutions are performed in
RUN lines:

	%%

	Replaced by a single %. This allows escaping other substitutions.

	%s

	File path to the test case’s source. This is suitable for passing on the
command line as the input to an LLVM tool.

Example: /home/user/llvm/test/MC/ELF/foo_test.s

	%S

	Directory path to the test case’s source.

Example: /home/user/llvm/test/MC/ELF

	%t

	File path to a temporary file name that could be used for this test case.
The file name won’t conflict with other test cases. You can append to it
if you need multiple temporaries. This is useful as the destination of
some redirected output.

Example: /home/user/llvm.build/test/MC/ELF/Output/foo_test.s.tmp

	%T

	Directory of %t. Deprecated. Shouldn’t be used, because it can be easily
misused and cause race conditions between tests.

Use rm -rf %t && mkdir %t instead if a temporary directory is necessary.

Example: /home/user/llvm.build/test/MC/ELF/Output

%{pathsep}

Expands to the path separator, i.e. : (or ; on Windows).

%/s, %/S, %/t, %/T:

Act like the corresponding substitution above but replace any \
character with a /. This is useful to normalize path separators.

Example: %s: C:\Desktop Files/foo_test.s.tmp

Example: %/s: C:/Desktop Files/foo_test.s.tmp

%:s, %:S, %:t, %:T:

Act like the corresponding substitution above but remove colons at
the beginning of Windows paths. This is useful to allow concatenation
of absolute paths on Windows to produce a legal path.

Example: %s: C:\Desktop Files\foo_test.s.tmp

Example: %:s: C\Desktop Files\foo_test.s.tmp

LLVM-specific substitutions:

	%shlibext

	The suffix for the host platforms shared library files. This includes the
period as the first character.

Example: .so (Linux), .dylib (OS X), .dll (Windows)

	%exeext

	The suffix for the host platforms executable files. This includes the
period as the first character.

Example: .exe (Windows), empty on Linux.

	%(line), %(line+<number>), %(line-<number>)

	The number of the line where this substitution is used, with an optional
integer offset. This can be used in tests with multiple RUN lines, which
reference test file’s line numbers.

Clang-specific substitutions:

	%clang

	Invokes the Clang driver.

	%clang_cpp

	Invokes the Clang driver for C++.

	%clang_cl

	Invokes the CL-compatible Clang driver.

	%clangxx

	Invokes the G++-compatible Clang driver.

	%clang_cc1

	Invokes the Clang frontend.

	%itanium_abi_triple, %ms_abi_triple

	These substitutions can be used to get the current target triple adjusted to
the desired ABI. For example, if the test suite is running with the
i686-pc-win32 target, %itanium_abi_triple will expand to
i686-pc-mingw32. This allows a test to run with a specific ABI without
constraining it to a specific triple.

To add more substituations, look at test/lit.cfg or lit.local.cfg.

Options

The llvm lit configuration allows to customize some things with user options:

	llc, opt, …

	Substitute the respective llvm tool name with a custom command line. This
allows to specify custom paths and default arguments for these tools.
Example:

% llvm-lit “-Dllc=llc -verify-machineinstrs”

	run_long_tests

	Enable the execution of long running tests.

	llvm_site_config

	Load the specified lit configuration instead of the default one.

Other Features

To make RUN line writing easier, there are several helper programs. These
helpers are in the PATH when running tests, so you can just call them using
their name. For example:

	not

	This program runs its arguments and then inverts the result code from it.
Zero result codes become 1. Non-zero result codes become 0.

To make the output more useful, lit will scan
the lines of the test case for ones that contain a pattern that matches
PR[0-9]+. This is the syntax for specifying a PR (Problem Report) number
that is related to the test case. The number after “PR” specifies the
LLVM bugzilla number. When a PR number is specified, it will be used in
the pass/fail reporting. This is useful to quickly get some context when
a test fails.

Finally, any line that contains “END.” will cause the special
interpretation of lines to terminate. This is generally done right after
the last RUN: line. This has two side effects:

	it prevents special interpretation of lines that are part of the test
program, not the instructions to the test case, and

	it speeds things up for really big test cases by avoiding
interpretation of the remainder of the file.

test-suite Overview

The test-suite module contains a number of programs that can be
compiled and executed. The test-suite includes reference outputs for
all of the programs, so that the output of the executed program can be
checked for correctness.

test-suite tests are divided into three types of tests: MultiSource,
SingleSource, and External.

	test-suite/SingleSource

The SingleSource directory contains test programs that are only a
single source file in size. These are usually small benchmark
programs or small programs that calculate a particular value. Several
such programs are grouped together in each directory.

	test-suite/MultiSource

The MultiSource directory contains subdirectories which contain
entire programs with multiple source files. Large benchmarks and
whole applications go here.

	test-suite/External

The External directory contains Makefiles for building code that is
external to (i.e., not distributed with) LLVM. The most prominent
members of this directory are the SPEC 95 and SPEC 2000 benchmark
suites. The External directory does not contain these actual
tests, but only the Makefiles that know how to properly compile these
programs from somewhere else. When using LNT, use the
--test-externals option to include these tests in the results.

test-suite Quickstart

The modern way of running the test-suite is focused on testing and
benchmarking complete compilers using the
LNT [http://llvm.org/docs/lnt] testing infrastructure.

For more information on using LNT to execute the test-suite, please
see the LNT Quickstart [http://llvm.org/docs/lnt/quickstart.html]
documentation.

test-suite Makefiles

Historically, the test-suite was executed using a complicated setup
of Makefiles. The LNT based approach above is recommended for most
users, but there are some testing scenarios which are not supported by
the LNT approach. In addition, LNT currently uses the Makefile setup
under the covers and so developers who are interested in how LNT works
under the hood may want to understand the Makefile based setup.

For more information on the test-suite Makefile setup, please see
the Test Suite Makefile Guide.

LLVM test-suite Guide

	Overview

	Test suite Structure

	Running the test suite via CMake

	Running the test suite via Makefiles (deprecated)

	Configuring External Tests

	Running different tests

	Generating test output

	Writing custom tests for the test suite

Overview

This document describes the features of the Makefile-based LLVM
test-suite as well as the cmake based replacement. This way of interacting
with the test-suite is deprecated in favor of running the test-suite using LNT,
but may continue to prove useful for some users. See the Testing
Guide’s test-suite Quickstart section for more
information.

Test suite Structure

The test-suite module contains a number of programs that can be
compiled with LLVM and executed. These programs are compiled using the
native compiler and various LLVM backends. The output from the program
compiled with the native compiler is assumed correct; the results from
the other programs are compared to the native program output and pass if
they match.

When executing tests, it is usually a good idea to start out with a
subset of the available tests or programs. This makes test run times
smaller at first and later on this is useful to investigate individual
test failures. To run some test only on a subset of programs, simply
change directory to the programs you want tested and run gmake
there. Alternatively, you can run a different test using the TEST
variable to change what tests or run on the selected programs (see below
for more info).

In addition for testing correctness, the test-suite directory also
performs timing tests of various LLVM optimizations. It also records
compilation times for the compilers and the JIT. This information can be
used to compare the effectiveness of LLVM’s optimizations and code
generation.

test-suite tests are divided into three types of tests: MultiSource,
SingleSource, and External.

	test-suite/SingleSource

The SingleSource directory contains test programs that are only a
single source file in size. These are usually small benchmark
programs or small programs that calculate a particular value. Several
such programs are grouped together in each directory.

	test-suite/MultiSource

The MultiSource directory contains subdirectories which contain
entire programs with multiple source files. Large benchmarks and
whole applications go here.

	test-suite/External

The External directory contains Makefiles for building code that is
external to (i.e., not distributed with) LLVM. The most prominent
members of this directory are the SPEC 95 and SPEC 2000 benchmark
suites. The External directory does not contain these actual
tests, but only the Makefiles that know how to properly compile these
programs from somewhere else. The presence and location of these
external programs is configured by the test-suite configure
script.

Each tree is then subdivided into several categories, including
applications, benchmarks, regression tests, code that is strange
grammatically, etc. These organizations should be relatively self
explanatory.

Some tests are known to fail. Some are bugs that we have not fixed yet;
others are features that we haven’t added yet (or may never add). In the
regression tests, the result for such tests will be XFAIL (eXpected
FAILure). In this way, you can tell the difference between an expected
and unexpected failure.

The tests in the test suite have no such feature at this time. If the
test passes, only warnings and other miscellaneous output will be
generated. If a test fails, a large <program> FAILED message will be
displayed. This will help you separate benign warnings from actual test
failures.

Running the test suite via CMake

To run the test suite, you need to use the following steps:

	The test suite uses the lit test runner to run the test-suite,
you need to have lit installed first. Check out LLVM and install lit:

% svn co http://llvm.org/svn/llvm-project/llvm/trunk llvm
% cd llvm/utils/lit
% sudo python setup.py install # Or without sudo, install in virtual-env.
running install
running bdist_egg
running egg_info
writing lit.egg-info/PKG-INFO
...
% lit --version
lit 0.5.0dev

	Check out the test-suite module with:

% svn co http://llvm.org/svn/llvm-project/test-suite/trunk test-suite

	Use CMake to configure the test suite in a new directory. You cannot build
the test suite in the source tree.

% mkdir test-suite-build
% cd test-suite-build
% cmake ../test-suite

	Build the benchmarks, using the makefiles CMake generated.

% make
Scanning dependencies of target timeit-target
[0%] Building C object tools/CMakeFiles/timeit-target.dir/timeit.c.o
[0%] Linking C executable timeit-target
[0%] Built target timeit-target
Scanning dependencies of target fpcmp-host
[0%] [TEST_SUITE_HOST_CC] Building host executable fpcmp
[0%] Built target fpcmp-host
Scanning dependencies of target timeit-host
[0%] [TEST_SUITE_HOST_CC] Building host executable timeit
[0%] Built target timeit-host

	Run the tests with lit:

% lit -v -j 1 . -o results.json
-- Testing: 474 tests, 1 threads --
PASS: test-suite :: MultiSource/Applications/ALAC/decode/alacconvert-decode.test (1 of 474)
********** TEST 'test-suite :: MultiSource/Applications/ALAC/decode/alacconvert-decode.test' RESULTS **********
compile_time: 0.2192
exec_time: 0.0462
hash: "59620e187c6ac38b36382685ccd2b63b"
size: 83348

PASS: test-suite :: MultiSource/Applications/ALAC/encode/alacconvert-encode.test (2 of 474)

Running the test suite via Makefiles (deprecated)

First, all tests are executed within the LLVM object directory tree.
They are not executed inside of the LLVM source tree. This is because
the test suite creates temporary files during execution.

To run the test suite, you need to use the following steps:

	cd into the llvm/projects directory in your source tree.

	Check out the test-suite module with:

% svn co http://llvm.org/svn/llvm-project/test-suite/trunk test-suite

This will get the test suite into llvm/projects/test-suite.

	Configure and build llvm.

	Configure and build llvm-gcc.

	Install llvm-gcc somewhere.

	Re-configure llvm from the top level of each build tree (LLVM
object directory tree) in which you want to run the test suite, just
as you do before building LLVM.

During the re-configuration, you must either: (1) have llvm-gcc
you just built in your path, or (2) specify the directory where your
just-built llvm-gcc is installed using
--with-llvmgccdir=$LLVM_GCC_DIR.

You must also tell the configure machinery that the test suite is
available so it can be configured for your build tree:

% cd $LLVM_OBJ_ROOT ; $LLVM_SRC_ROOT/configure [--with-llvmgccdir=$LLVM_GCC_DIR]

[Remember that $LLVM_GCC_DIR is the directory where you
installed llvm-gcc, not its src or obj directory.]

	You can now run the test suite from your build tree as follows:

% cd $LLVM_OBJ_ROOT/projects/test-suite
% make

Note that the second and third steps only need to be done once. After
you have the suite checked out and configured, you don’t need to do it
again (unless the test code or configure script changes).

Configuring External Tests

In order to run the External tests in the test-suite module, you
must specify –with-externals. This must be done during the
re-configuration step (see above), and the llvm re-configuration
must recognize the previously-built llvm-gcc. If any of these is
missing or neglected, the External tests won’t work.

	–with-externals

	–with-externals=<directory>

This tells LLVM where to find any external tests. They are expected to
be in specifically named subdirectories of <directory>. If
directory is left unspecified, configure uses the default value
/home/vadve/shared/benchmarks/speccpu2000/benchspec. Subdirectory
names known to LLVM include:

	spec95

	speccpu2000

	speccpu2006

	povray31

Others are added from time to time, and can be determined from
configure.

Running different tests

In addition to the regular “whole program” tests, the test-suite
module also provides a mechanism for compiling the programs in different
ways. If the variable TEST is defined on the gmake command line, the
test system will include a Makefile named
TEST.<value of TEST variable>.Makefile. This Makefile can modify
build rules to yield different results.

For example, the LLVM nightly tester uses TEST.nightly.Makefile to
create the nightly test reports. To run the nightly tests, run
gmake TEST=nightly.

There are several TEST Makefiles available in the tree. Some of them are
designed for internal LLVM research and will not work outside of the
LLVM research group. They may still be valuable, however, as a guide to
writing your own TEST Makefile for any optimization or analysis passes
that you develop with LLVM.

Generating test output

There are a number of ways to run the tests and generate output. The
most simple one is simply running gmake with no arguments. This will
compile and run all programs in the tree using a number of different
methods and compare results. Any failures are reported in the output,
but are likely drowned in the other output. Passes are not reported
explicitly.

Somewhat better is running gmake TEST=sometest test, which runs the
specified test and usually adds per-program summaries to the output
(depending on which sometest you use). For example, the nightly test
explicitly outputs TEST-PASS or TEST-FAIL for every test after each
program. Though these lines are still drowned in the output, it’s easy
to grep the output logs in the Output directories.

Even better are the report and report.format targets (where
format is one of html, csv, text or graphs). The
exact contents of the report are dependent on which TEST you are
running, but the text results are always shown at the end of the run and
the results are always stored in the report.<type>.format file (when
running with TEST=<type>). The report also generate a file
called report.<type>.raw.out containing the output of the entire
test run.

Writing custom tests for the test suite

Assuming you can run the test suite, (e.g.
“gmake TEST=nightly report” should work), it is really easy to run
optimizations or code generator components against every program in the
tree, collecting statistics or running custom checks for correctness. At
base, this is how the nightly tester works, it’s just one example of a
general framework.

Lets say that you have an LLVM optimization pass, and you want to see
how many times it triggers. First thing you should do is add an LLVM
statistic to your pass, which will
tally counts of things you care about.

Following this, you can set up a test and a report that collects these
and formats them for easy viewing. This consists of two files, a
“test-suite/TEST.XXX.Makefile” fragment (where XXX is the name of
your test) and a “test-suite/TEST.XXX.report” file that indicates
how to format the output into a table. There are many example reports of
various levels of sophistication included with the test suite, and the
framework is very general.

If you are interested in testing an optimization pass, check out the
“libcalls” test as an example. It can be run like this:

% cd llvm/projects/test-suite/MultiSource/Benchmarks # or some other level
% make TEST=libcalls report

This will do a bunch of stuff, then eventually print a table like this:

Name | total | #exit |
...
FreeBench/analyzer/analyzer | 51 | 6 |
FreeBench/fourinarow/fourinarow | 1 | 1 |
FreeBench/neural/neural | 19 | 9 |
FreeBench/pifft/pifft | 5 | 3 |
MallocBench/cfrac/cfrac | 1 | * |
MallocBench/espresso/espresso | 52 | 12 |
MallocBench/gs/gs | 4 | * |
Prolangs-C/TimberWolfMC/timberwolfmc | 302 | * |
Prolangs-C/agrep/agrep | 33 | 12 |
Prolangs-C/allroots/allroots | * | * |
Prolangs-C/assembler/assembler | 47 | * |
Prolangs-C/bison/mybison | 74 | * |
...

This basically is grepping the -stats output and displaying it in a
table. You can also use the “TEST=libcalls report.html” target to get
the table in HTML form, similarly for report.csv and report.tex.

The source for this is in test-suite/TEST.libcalls.*. The format is
pretty simple: the Makefile indicates how to run the test (in this case,
“opt -simplify-libcalls -stats”), and the report contains one line
for each column of the output. The first value is the header for the
column and the second is the regex to grep the output of the command
for. There are lots of example reports that can do fancy stuff.

LLVM Tutorial: Table of Contents

Kaleidoscope: Implementing a Language with LLVM

	1. Kaleidoscope: Tutorial Introduction and the Lexer

	2. Kaleidoscope: Implementing a Parser and AST

	3. Kaleidoscope: Code generation to LLVM IR

	4. Kaleidoscope: Adding JIT and Optimizer Support

	5. Kaleidoscope: Extending the Language: Control Flow

	6. Kaleidoscope: Extending the Language: User-defined Operators

	7. Kaleidoscope: Extending the Language: Mutable Variables

	8. Kaleidoscope: Compiling to Object Code

	9. Kaleidoscope: Adding Debug Information

	10. Kaleidoscope: Conclusion and other useful LLVM tidbits

Kaleidoscope: Implementing a Language with LLVM in Objective Caml

	1. Kaleidoscope: Tutorial Introduction and the Lexer

	2. Kaleidoscope: Implementing a Parser and AST

	3. Kaleidoscope: Code generation to LLVM IR

	4. Kaleidoscope: Adding JIT and Optimizer Support

	5. Kaleidoscope: Extending the Language: Control Flow

	6. Kaleidoscope: Extending the Language: User-defined Operators

	7. Kaleidoscope: Extending the Language: Mutable Variables

	8. Kaleidoscope: Conclusion and other useful LLVM tidbits

Building a JIT in LLVM

	1. Building a JIT: Starting out with KaleidoscopeJIT

	2. Building a JIT: Adding Optimizations – An introduction to ORC Layers

	3. Building a JIT: Per-function Lazy Compilation

	4. Building a JIT: Extreme Laziness - Using Compile Callbacks to JIT from ASTs

	5. Building a JIT: Remote-JITing – Process Isolation and Laziness at a Distance

External Tutorials

	Tutorial: Creating an LLVM Backend for the Cpu0 Architecture [http://jonathan2251.github.com/lbd/]

	A step-by-step tutorial for developing an LLVM backend. Under
active development at https://github.com/Jonathan2251/lbd (please
contribute!).

	Howto: Implementing LLVM Integrated Assembler [http://www.embecosm.com/appnotes/ean10/ean10-howto-llvmas-1.0.html]

	A simple guide for how to implement an LLVM integrated assembler for an
architecture.

Advanced Topics

	Writing an Optimization for LLVM [http://llvm.org/pubs/2004-09-22-LCPCLLVMTutorial.html]

1. Kaleidoscope: Tutorial Introduction and the Lexer

	Tutorial Introduction

	The Basic Language

	The Lexer

1.1. Tutorial Introduction

Welcome to the “Implementing a language with LLVM” tutorial. This
tutorial runs through the implementation of a simple language, showing
how fun and easy it can be. This tutorial will get you up and started as
well as help to build a framework you can extend to other languages. The
code in this tutorial can also be used as a playground to hack on other
LLVM specific things.

The goal of this tutorial is to progressively unveil our language,
describing how it is built up over time. This will let us cover a fairly
broad range of language design and LLVM-specific usage issues, showing
and explaining the code for it all along the way, without overwhelming
you with tons of details up front.

It is useful to point out ahead of time that this tutorial is really
about teaching compiler techniques and LLVM specifically, not about
teaching modern and sane software engineering principles. In practice,
this means that we’ll take a number of shortcuts to simplify the
exposition. For example, the code uses global variables
all over the place, doesn’t use nice design patterns like
visitors [http://en.wikipedia.org/wiki/Visitor_pattern], etc… but
it is very simple. If you dig in and use the code as a basis for future
projects, fixing these deficiencies shouldn’t be hard.

I’ve tried to put this tutorial together in a way that makes chapters
easy to skip over if you are already familiar with or are uninterested
in the various pieces. The structure of the tutorial is:

	Chapter #1: Introduction to the Kaleidoscope
language, and the definition of its Lexer - This shows where we are
going and the basic functionality that we want it to do. In order to
make this tutorial maximally understandable and hackable, we choose
to implement everything in C++ instead of using lexer and parser
generators. LLVM obviously works just fine with such tools, feel free
to use one if you prefer.

	Chapter #2: Implementing a Parser and AST -
With the lexer in place, we can talk about parsing techniques and
basic AST construction. This tutorial describes recursive descent
parsing and operator precedence parsing. Nothing in Chapters 1 or 2
is LLVM-specific, the code doesn’t even link in LLVM at this point.
:)

	Chapter #3: Code generation to LLVM IR - With
the AST ready, we can show off how easy generation of LLVM IR really
is.

	Chapter #4: Adding JIT and Optimizer Support
- Because a lot of people are interested in using LLVM as a JIT,
we’ll dive right into it and show you the 3 lines it takes to add JIT
support. LLVM is also useful in many other ways, but this is one
simple and “sexy” way to show off its power. :)

	Chapter #5: Extending the Language: Control
Flow - With the language up and running, we show how to extend it
with control flow operations (if/then/else and a ‘for’ loop). This
gives us a chance to talk about simple SSA construction and control
flow.

	Chapter #6: Extending the Language:
User-defined Operators - This is a silly but fun chapter that talks
about extending the language to let the user program define their own
arbitrary unary and binary operators (with assignable precedence!).
This lets us build a significant piece of the “language” as library
routines.

	Chapter #7: Extending the Language: Mutable
Variables - This chapter talks about adding user-defined local
variables along with an assignment operator. The interesting part
about this is how easy and trivial it is to construct SSA form in
LLVM: no, LLVM does not require your front-end to construct SSA
form!

	Chapter #8: Compiling to Object Files - This
chapter explains how to take LLVM IR and compile it down to object
files.

	Chapter #9: Extending the Language: Debug
Information - Having built a decent little programming language with
control flow, functions and mutable variables, we consider what it
takes to add debug information to standalone executables. This debug
information will allow you to set breakpoints in Kaleidoscope
functions, print out argument variables, and call functions - all
from within the debugger!

	Chapter #10: Conclusion and other useful LLVM
tidbits - This chapter wraps up the series by talking about
potential ways to extend the language, but also includes a bunch of
pointers to info about “special topics” like adding garbage
collection support, exceptions, debugging, support for “spaghetti
stacks”, and a bunch of other tips and tricks.

By the end of the tutorial, we’ll have written a bit less than 1000 lines
of non-comment, non-blank, lines of code. With this small amount of
code, we’ll have built up a very reasonable compiler for a non-trivial
language including a hand-written lexer, parser, AST, as well as code
generation support with a JIT compiler. While other systems may have
interesting “hello world” tutorials, I think the breadth of this
tutorial is a great testament to the strengths of LLVM and why you
should consider it if you’re interested in language or compiler design.

A note about this tutorial: we expect you to extend the language and
play with it on your own. Take the code and go crazy hacking away at it,
compilers don’t need to be scary creatures - it can be a lot of fun to
play with languages!

1.2. The Basic Language

This tutorial will be illustrated with a toy language that we’ll call
“Kaleidoscope [http://en.wikipedia.org/wiki/Kaleidoscope]” (derived
from “meaning beautiful, form, and view”). Kaleidoscope is a procedural
language that allows you to define functions, use conditionals, math,
etc. Over the course of the tutorial, we’ll extend Kaleidoscope to
support the if/then/else construct, a for loop, user defined operators,
JIT compilation with a simple command line interface, etc.

Because we want to keep things simple, the only datatype in Kaleidoscope
is a 64-bit floating point type (aka ‘double’ in C parlance). As such,
all values are implicitly double precision and the language doesn’t
require type declarations. This gives the language a very nice and
simple syntax. For example, the following simple example computes
Fibonacci numbers: [http://en.wikipedia.org/wiki/Fibonacci_number]

Compute the x'th fibonacci number.
def fib(x)
 if x < 3 then
 1
 else
 fib(x-1)+fib(x-2)

This expression will compute the 40th number.
fib(40)

We also allow Kaleidoscope to call into standard library functions (the
LLVM JIT makes this completely trivial). This means that you can use the
‘extern’ keyword to define a function before you use it (this is also
useful for mutually recursive functions). For example:

extern sin(arg);
extern cos(arg);
extern atan2(arg1 arg2);

atan2(sin(.4), cos(42))

A more interesting example is included in Chapter 6 where we write a
little Kaleidoscope application that displays a Mandelbrot
Set at various levels of magnification.

Lets dive into the implementation of this language!

1.3. The Lexer

When it comes to implementing a language, the first thing needed is the
ability to process a text file and recognize what it says. The
traditional way to do this is to use a
“lexer [http://en.wikipedia.org/wiki/Lexical_analysis]” (aka
‘scanner’) to break the input up into “tokens”. Each token returned by
the lexer includes a token code and potentially some metadata (e.g. the
numeric value of a number). First, we define the possibilities:

// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
// of these for known things.
enum Token {
 tok_eof = -1,

 // commands
 tok_def = -2,
 tok_extern = -3,

 // primary
 tok_identifier = -4,
 tok_number = -5,
};

static std::string IdentifierStr; // Filled in if tok_identifier
static double NumVal; // Filled in if tok_number

Each token returned by our lexer will either be one of the Token enum
values or it will be an ‘unknown’ character like ‘+’, which is returned
as its ASCII value. If the current token is an identifier, the
IdentifierStr global variable holds the name of the identifier. If
the current token is a numeric literal (like 1.0), NumVal holds its
value. Note that we use global variables for simplicity, this is not the
best choice for a real language implementation :).

The actual implementation of the lexer is a single function named
gettok. The gettok function is called to return the next token
from standard input. Its definition starts as:

/// gettok - Return the next token from standard input.
static int gettok() {
 static int LastChar = ' ';

 // Skip any whitespace.
 while (isspace(LastChar))
 LastChar = getchar();

gettok works by calling the C getchar() function to read
characters one at a time from standard input. It eats them as it
recognizes them and stores the last character read, but not processed,
in LastChar. The first thing that it has to do is ignore whitespace
between tokens. This is accomplished with the loop above.

The next thing gettok needs to do is recognize identifiers and
specific keywords like “def”. Kaleidoscope does this with this simple
loop:

if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
 IdentifierStr = LastChar;
 while (isalnum((LastChar = getchar())))
 IdentifierStr += LastChar;

 if (IdentifierStr == "def")
 return tok_def;
 if (IdentifierStr == "extern")
 return tok_extern;
 return tok_identifier;
}

Note that this code sets the ‘IdentifierStr’ global whenever it
lexes an identifier. Also, since language keywords are matched by the
same loop, we handle them here inline. Numeric values are similar:

if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
 std::string NumStr;
 do {
 NumStr += LastChar;
 LastChar = getchar();
 } while (isdigit(LastChar) || LastChar == '.');

 NumVal = strtod(NumStr.c_str(), 0);
 return tok_number;
}

This is all pretty straight-forward code for processing input. When
reading a numeric value from input, we use the C strtod function to
convert it to a numeric value that we store in NumVal. Note that
this isn’t doing sufficient error checking: it will incorrectly read
“1.23.45.67” and handle it as if you typed in “1.23”. Feel free to
extend it :). Next we handle comments:

if (LastChar == '#') {
 // Comment until end of line.
 do
 LastChar = getchar();
 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');

 if (LastChar != EOF)
 return gettok();
}

We handle comments by skipping to the end of the line and then return
the next token. Finally, if the input doesn’t match one of the above
cases, it is either an operator character like ‘+’ or the end of the
file. These are handled with this code:

 // Check for end of file. Don't eat the EOF.
 if (LastChar == EOF)
 return tok_eof;

 // Otherwise, just return the character as its ascii value.
 int ThisChar = LastChar;
 LastChar = getchar();
 return ThisChar;
}

With this, we have the complete lexer for the basic Kaleidoscope
language (the full code listing for the Lexer
is available in the next chapter of the tutorial).
Next we’ll build a simple parser that uses this to build an Abstract
Syntax Tree. When we have that, we’ll include a
driver so that you can use the lexer and parser together.

Next: Implementing a Parser and AST

2. Kaleidoscope: Implementing a Parser and AST

	Chapter 2 Introduction

	The Abstract Syntax Tree (AST)

	Parser Basics

	Basic Expression Parsing

	Binary Expression Parsing

	Parsing the Rest

	The Driver

	Conclusions

	Full Code Listing

2.1. Chapter 2 Introduction

Welcome to Chapter 2 of the “Implementing a language with
LLVM” tutorial. This chapter shows you how to use the
lexer, built in Chapter 1, to build a full
parser [http://en.wikipedia.org/wiki/Parsing] for our Kaleidoscope
language. Once we have a parser, we’ll define and build an Abstract
Syntax Tree [http://en.wikipedia.org/wiki/Abstract_syntax_tree] (AST).

The parser we will build uses a combination of Recursive Descent
Parsing [http://en.wikipedia.org/wiki/Recursive_descent_parser] and
Operator-Precedence
Parsing [http://en.wikipedia.org/wiki/Operator-precedence_parser] to
parse the Kaleidoscope language (the latter for binary expressions and
the former for everything else). Before we get to parsing though, let’s
talk about the output of the parser: the Abstract Syntax Tree.

2.2. The Abstract Syntax Tree (AST)

The AST for a program captures its behavior in such a way that it is
easy for later stages of the compiler (e.g. code generation) to
interpret. We basically want one object for each construct in the
language, and the AST should closely model the language. In
Kaleidoscope, we have expressions, a prototype, and a function object.
We’ll start with expressions first:

/// ExprAST - Base class for all expression nodes.
class ExprAST {
public:
 virtual ~ExprAST() {}
};

/// NumberExprAST - Expression class for numeric literals like "1.0".
class NumberExprAST : public ExprAST {
 double Val;

public:
 NumberExprAST(double Val) : Val(Val) {}
};

The code above shows the definition of the base ExprAST class and one
subclass which we use for numeric literals. The important thing to note
about this code is that the NumberExprAST class captures the numeric
value of the literal as an instance variable. This allows later phases
of the compiler to know what the stored numeric value is.

Right now we only create the AST, so there are no useful accessor
methods on them. It would be very easy to add a virtual method to pretty
print the code, for example. Here are the other expression AST node
definitions that we’ll use in the basic form of the Kaleidoscope
language:

/// VariableExprAST - Expression class for referencing a variable, like "a".
class VariableExprAST : public ExprAST {
 std::string Name;

public:
 VariableExprAST(const std::string &Name) : Name(Name) {}
};

/// BinaryExprAST - Expression class for a binary operator.
class BinaryExprAST : public ExprAST {
 char Op;
 std::unique_ptr<ExprAST> LHS, RHS;

public:
 BinaryExprAST(char op, std::unique_ptr<ExprAST> LHS,
 std::unique_ptr<ExprAST> RHS)
 : Op(op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
};

/// CallExprAST - Expression class for function calls.
class CallExprAST : public ExprAST {
 std::string Callee;
 std::vector<std::unique_ptr<ExprAST>> Args;

public:
 CallExprAST(const std::string &Callee,
 std::vector<std::unique_ptr<ExprAST>> Args)
 : Callee(Callee), Args(std::move(Args)) {}
};

This is all (intentionally) rather straight-forward: variables capture
the variable name, binary operators capture their opcode (e.g. ‘+’), and
calls capture a function name as well as a list of any argument
expressions. One thing that is nice about our AST is that it captures
the language features without talking about the syntax of the language.
Note that there is no discussion about precedence of binary operators,
lexical structure, etc.

For our basic language, these are all of the expression nodes we’ll
define. Because it doesn’t have conditional control flow, it isn’t
Turing-complete; we’ll fix that in a later installment. The two things
we need next are a way to talk about the interface to a function, and a
way to talk about functions themselves:

/// PrototypeAST - This class represents the "prototype" for a function,
/// which captures its name, and its argument names (thus implicitly the number
/// of arguments the function takes).
class PrototypeAST {
 std::string Name;
 std::vector<std::string> Args;

public:
 PrototypeAST(const std::string &name, std::vector<std::string> Args)
 : Name(name), Args(std::move(Args)) {}

 const std::string &getName() const { return Name; }
};

/// FunctionAST - This class represents a function definition itself.
class FunctionAST {
 std::unique_ptr<PrototypeAST> Proto;
 std::unique_ptr<ExprAST> Body;

public:
 FunctionAST(std::unique_ptr<PrototypeAST> Proto,
 std::unique_ptr<ExprAST> Body)
 : Proto(std::move(Proto)), Body(std::move(Body)) {}
};

In Kaleidoscope, functions are typed with just a count of their
arguments. Since all values are double precision floating point, the
type of each argument doesn’t need to be stored anywhere. In a more
aggressive and realistic language, the “ExprAST” class would probably
have a type field.

With this scaffolding, we can now talk about parsing expressions and
function bodies in Kaleidoscope.

2.3. Parser Basics

Now that we have an AST to build, we need to define the parser code to
build it. The idea here is that we want to parse something like “x+y”
(which is returned as three tokens by the lexer) into an AST that could
be generated with calls like this:

auto LHS = llvm::make_unique<VariableExprAST>("x");
auto RHS = llvm::make_unique<VariableExprAST>("y");
auto Result = std::make_unique<BinaryExprAST>('+', std::move(LHS),
 std::move(RHS));

In order to do this, we’ll start by defining some basic helper routines:

/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
/// token the parser is looking at. getNextToken reads another token from the
/// lexer and updates CurTok with its results.
static int CurTok;
static int getNextToken() {
 return CurTok = gettok();
}

This implements a simple token buffer around the lexer. This allows us
to look one token ahead at what the lexer is returning. Every function
in our parser will assume that CurTok is the current token that needs to
be parsed.

/// LogError* - These are little helper functions for error handling.
std::unique_ptr<ExprAST> LogError(const char *Str) {
 fprintf(stderr, "LogError: %s\n", Str);
 return nullptr;
}
std::unique_ptr<PrototypeAST> LogErrorP(const char *Str) {
 LogError(Str);
 return nullptr;
}

The LogError routines are simple helper routines that our parser will
use to handle errors. The error recovery in our parser will not be the
best and is not particular user-friendly, but it will be enough for our
tutorial. These routines make it easier to handle errors in routines
that have various return types: they always return null.

With these basic helper functions, we can implement the first piece of
our grammar: numeric literals.

2.4. Basic Expression Parsing

We start with numeric literals, because they are the simplest to
process. For each production in our grammar, we’ll define a function
which parses that production. For numeric literals, we have:

/// numberexpr ::= number
static std::unique_ptr<ExprAST> ParseNumberExpr() {
 auto Result = llvm::make_unique<NumberExprAST>(NumVal);
 getNextToken(); // consume the number
 return std::move(Result);
}

This routine is very simple: it expects to be called when the current
token is a tok_number token. It takes the current number value,
creates a NumberExprAST node, advances the lexer to the next token,
and finally returns.

There are some interesting aspects to this. The most important one is
that this routine eats all of the tokens that correspond to the
production and returns the lexer buffer with the next token (which is
not part of the grammar production) ready to go. This is a fairly
standard way to go for recursive descent parsers. For a better example,
the parenthesis operator is defined like this:

/// parenexpr ::= '(' expression ')'
static std::unique_ptr<ExprAST> ParseParenExpr() {
 getNextToken(); // eat (.
 auto V = ParseExpression();
 if (!V)
 return nullptr;

 if (CurTok != ')')
 return LogError("expected ')'");
 getNextToken(); // eat).
 return V;
}

This function illustrates a number of interesting things about the
parser:

1) It shows how we use the LogError routines. When called, this function
expects that the current token is a ‘(‘ token, but after parsing the
subexpression, it is possible that there is no ‘)’ waiting. For example,
if the user types in “(4 x” instead of “(4)”, the parser should emit an
error. Because errors can occur, the parser needs a way to indicate that
they happened: in our parser, we return null on an error.

2) Another interesting aspect of this function is that it uses recursion
by calling ParseExpression (we will soon see that
ParseExpression can call ParseParenExpr). This is powerful
because it allows us to handle recursive grammars, and keeps each
production very simple. Note that parentheses do not cause construction
of AST nodes themselves. While we could do it this way, the most
important role of parentheses are to guide the parser and provide
grouping. Once the parser constructs the AST, parentheses are not
needed.

The next simple production is for handling variable references and
function calls:

/// identifierexpr
/// ::= identifier
/// ::= identifier '(' expression* ')'
static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
 std::string IdName = IdentifierStr;

 getNextToken(); // eat identifier.

 if (CurTok != '(') // Simple variable ref.
 return llvm::make_unique<VariableExprAST>(IdName);

 // Call.
 getNextToken(); // eat (
 std::vector<std::unique_ptr<ExprAST>> Args;
 if (CurTok != ')') {
 while (1) {
 if (auto Arg = ParseExpression())
 Args.push_back(std::move(Arg));
 else
 return nullptr;

 if (CurTok == ')')
 break;

 if (CurTok != ',')
 return LogError("Expected ')' or ',' in argument list");
 getNextToken();
 }
 }

 // Eat the ')'.
 getNextToken();

 return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
}

This routine follows the same style as the other routines. (It expects
to be called if the current token is a tok_identifier token). It
also has recursion and error handling. One interesting aspect of this is
that it uses look-ahead to determine if the current identifier is a
stand alone variable reference or if it is a function call expression.
It handles this by checking to see if the token after the identifier is
a ‘(‘ token, constructing either a VariableExprAST or
CallExprAST node as appropriate.

Now that we have all of our simple expression-parsing logic in place, we
can define a helper function to wrap it together into one entry point.
We call this class of expressions “primary” expressions, for reasons
that will become more clear later in the
tutorial. In order to parse an arbitrary
primary expression, we need to determine what sort of expression it is:

/// primary
/// ::= identifierexpr
/// ::= numberexpr
/// ::= parenexpr
static std::unique_ptr<ExprAST> ParsePrimary() {
 switch (CurTok) {
 default:
 return LogError("unknown token when expecting an expression");
 case tok_identifier:
 return ParseIdentifierExpr();
 case tok_number:
 return ParseNumberExpr();
 case '(':
 return ParseParenExpr();
 }
}

Now that you see the definition of this function, it is more obvious why
we can assume the state of CurTok in the various functions. This uses
look-ahead to determine which sort of expression is being inspected, and
then parses it with a function call.

Now that basic expressions are handled, we need to handle binary
expressions. They are a bit more complex.

2.5. Binary Expression Parsing

Binary expressions are significantly harder to parse because they are
often ambiguous. For example, when given the string “x+y*z”, the parser
can choose to parse it as either “(x+y)*z” or “x+(y*z)”. With common
definitions from mathematics, we expect the later parse, because “*”
(multiplication) has higher precedence than “+” (addition).

There are many ways to handle this, but an elegant and efficient way is
to use Operator-Precedence
Parsing [http://en.wikipedia.org/wiki/Operator-precedence_parser].
This parsing technique uses the precedence of binary operators to guide
recursion. To start with, we need a table of precedences:

/// BinopPrecedence - This holds the precedence for each binary operator that is
/// defined.
static std::map<char, int> BinopPrecedence;

/// GetTokPrecedence - Get the precedence of the pending binary operator token.
static int GetTokPrecedence() {
 if (!isascii(CurTok))
 return -1;

 // Make sure it's a declared binop.
 int TokPrec = BinopPrecedence[CurTok];
 if (TokPrec <= 0) return -1;
 return TokPrec;
}

int main() {
 // Install standard binary operators.
 // 1 is lowest precedence.
 BinopPrecedence['<'] = 10;
 BinopPrecedence['+'] = 20;
 BinopPrecedence['-'] = 20;
 BinopPrecedence['*'] = 40; // highest.
 ...
}

For the basic form of Kaleidoscope, we will only support 4 binary
operators (this can obviously be extended by you, our brave and intrepid
reader). The GetTokPrecedence function returns the precedence for
the current token, or -1 if the token is not a binary operator. Having a
map makes it easy to add new operators and makes it clear that the
algorithm doesn’t depend on the specific operators involved, but it
would be easy enough to eliminate the map and do the comparisons in the
GetTokPrecedence function. (Or just use a fixed-size array).

With the helper above defined, we can now start parsing binary
expressions. The basic idea of operator precedence parsing is to break
down an expression with potentially ambiguous binary operators into
pieces. Consider, for example, the expression “a+b+(c+d)*e*f+g”.
Operator precedence parsing considers this as a stream of primary
expressions separated by binary operators. As such, it will first parse
the leading primary expression “a”, then it will see the pairs [+, b]
[+, (c+d)] [*, e] [*, f] and [+, g]. Note that because parentheses are
primary expressions, the binary expression parser doesn’t need to worry
about nested subexpressions like (c+d) at all.

To start, an expression is a primary expression potentially followed by
a sequence of [binop,primaryexpr] pairs:

/// expression
/// ::= primary binoprhs
///
static std::unique_ptr<ExprAST> ParseExpression() {
 auto LHS = ParsePrimary();
 if (!LHS)
 return nullptr;

 return ParseBinOpRHS(0, std::move(LHS));
}

ParseBinOpRHS is the function that parses the sequence of pairs for
us. It takes a precedence and a pointer to an expression for the part
that has been parsed so far. Note that “x” is a perfectly valid
expression: As such, “binoprhs” is allowed to be empty, in which case it
returns the expression that is passed into it. In our example above, the
code passes the expression for “a” into ParseBinOpRHS and the
current token is “+”.

The precedence value passed into ParseBinOpRHS indicates the
minimal operator precedence that the function is allowed to eat. For
example, if the current pair stream is [+, x] and ParseBinOpRHS is
passed in a precedence of 40, it will not consume any tokens (because
the precedence of ‘+’ is only 20). With this in mind, ParseBinOpRHS
starts with:

/// binoprhs
/// ::= ('+' primary)*
static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
 std::unique_ptr<ExprAST> LHS) {
 // If this is a binop, find its precedence.
 while (1) {
 int TokPrec = GetTokPrecedence();

 // If this is a binop that binds at least as tightly as the current binop,
 // consume it, otherwise we are done.
 if (TokPrec < ExprPrec)
 return LHS;

This code gets the precedence of the current token and checks to see if
if is too low. Because we defined invalid tokens to have a precedence of
-1, this check implicitly knows that the pair-stream ends when the token
stream runs out of binary operators. If this check succeeds, we know
that the token is a binary operator and that it will be included in this
expression:

// Okay, we know this is a binop.
int BinOp = CurTok;
getNextToken(); // eat binop

// Parse the primary expression after the binary operator.
auto RHS = ParsePrimary();
if (!RHS)
 return nullptr;

As such, this code eats (and remembers) the binary operator and then
parses the primary expression that follows. This builds up the whole
pair, the first of which is [+, b] for the running example.

Now that we parsed the left-hand side of an expression and one pair of
the RHS sequence, we have to decide which way the expression associates.
In particular, we could have “(a+b) binop unparsed” or “a + (b binop
unparsed)”. To determine this, we look ahead at “binop” to determine its
precedence and compare it to BinOp’s precedence (which is ‘+’ in this
case):

// If BinOp binds less tightly with RHS than the operator after RHS, let
// the pending operator take RHS as its LHS.
int NextPrec = GetTokPrecedence();
if (TokPrec < NextPrec) {

If the precedence of the binop to the right of “RHS” is lower or equal
to the precedence of our current operator, then we know that the
parentheses associate as “(a+b) binop …”. In our example, the current
operator is “+” and the next operator is “+”, we know that they have the
same precedence. In this case we’ll create the AST node for “a+b”, and
then continue parsing:

 ... if body omitted ...
 }

 // Merge LHS/RHS.
 LHS = llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS),
 std::move(RHS));
 } // loop around to the top of the while loop.
}

In our example above, this will turn “a+b+” into “(a+b)” and execute the
next iteration of the loop, with “+” as the current token. The code
above will eat, remember, and parse “(c+d)” as the primary expression,
which makes the current pair equal to [+, (c+d)]. It will then evaluate
the ‘if’ conditional above with “*” as the binop to the right of the
primary. In this case, the precedence of “*” is higher than the
precedence of “+” so the if condition will be entered.

The critical question left here is “how can the if condition parse the
right hand side in full”? In particular, to build the AST correctly for
our example, it needs to get all of “(c+d)*e*f” as the RHS expression
variable. The code to do this is surprisingly simple (code from the
above two blocks duplicated for context):

 // If BinOp binds less tightly with RHS than the operator after RHS, let
 // the pending operator take RHS as its LHS.
 int NextPrec = GetTokPrecedence();
 if (TokPrec < NextPrec) {
 RHS = ParseBinOpRHS(TokPrec+1, std::move(RHS));
 if (!RHS)
 return nullptr;
 }
 // Merge LHS/RHS.
 LHS = llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS),
 std::move(RHS));
 } // loop around to the top of the while loop.
}

At this point, we know that the binary operator to the RHS of our
primary has higher precedence than the binop we are currently parsing.
As such, we know that any sequence of pairs whose operators are all
higher precedence than “+” should be parsed together and returned as
“RHS”. To do this, we recursively invoke the ParseBinOpRHS function
specifying “TokPrec+1” as the minimum precedence required for it to
continue. In our example above, this will cause it to return the AST
node for “(c+d)*e*f” as RHS, which is then set as the RHS of the ‘+’
expression.

Finally, on the next iteration of the while loop, the “+g” piece is
parsed and added to the AST. With this little bit of code (14
non-trivial lines), we correctly handle fully general binary expression
parsing in a very elegant way. This was a whirlwind tour of this code,
and it is somewhat subtle. I recommend running through it with a few
tough examples to see how it works.

This wraps up handling of expressions. At this point, we can point the
parser at an arbitrary token stream and build an expression from it,
stopping at the first token that is not part of the expression. Next up
we need to handle function definitions, etc.

2.6. Parsing the Rest

The next thing missing is handling of function prototypes. In
Kaleidoscope, these are used both for ‘extern’ function declarations as
well as function body definitions. The code to do this is
straight-forward and not very interesting (once you’ve survived
expressions):

/// prototype
/// ::= id '(' id* ')'
static std::unique_ptr<PrototypeAST> ParsePrototype() {
 if (CurTok != tok_identifier)
 return LogErrorP("Expected function name in prototype");

 std::string FnName = IdentifierStr;
 getNextToken();

 if (CurTok != '(')
 return LogErrorP("Expected '(' in prototype");

 // Read the list of argument names.
 std::vector<std::string> ArgNames;
 while (getNextToken() == tok_identifier)
 ArgNames.push_back(IdentifierStr);
 if (CurTok != ')')
 return LogErrorP("Expected ')' in prototype");

 // success.
 getNextToken(); // eat ')'.

 return llvm::make_unique<PrototypeAST>(FnName, std::move(ArgNames));
}

Given this, a function definition is very simple, just a prototype plus
an expression to implement the body:

/// definition ::= 'def' prototype expression
static std::unique_ptr<FunctionAST> ParseDefinition() {
 getNextToken(); // eat def.
 auto Proto = ParsePrototype();
 if (!Proto) return nullptr;

 if (auto E = ParseExpression())
 return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
 return nullptr;
}

In addition, we support ‘extern’ to declare functions like ‘sin’ and
‘cos’ as well as to support forward declaration of user functions. These
‘extern’s are just prototypes with no body:

/// external ::= 'extern' prototype
static std::unique_ptr<PrototypeAST> ParseExtern() {
 getNextToken(); // eat extern.
 return ParsePrototype();
}

Finally, we’ll also let the user type in arbitrary top-level expressions
and evaluate them on the fly. We will handle this by defining anonymous
nullary (zero argument) functions for them:

/// toplevelexpr ::= expression
static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
 if (auto E = ParseExpression()) {
 // Make an anonymous proto.
 auto Proto = llvm::make_unique<PrototypeAST>("", std::vector<std::string>());
 return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
 }
 return nullptr;
}

Now that we have all the pieces, let’s build a little driver that will
let us actually execute this code we’ve built!

2.7. The Driver

The driver for this simply invokes all of the parsing pieces with a
top-level dispatch loop. There isn’t much interesting here, so I’ll just
include the top-level loop. See below for full code in the
“Top-Level Parsing” section.

/// top ::= definition | external | expression | ';'
static void MainLoop() {
 while (1) {
 fprintf(stderr, "ready> ");
 switch (CurTok) {
 case tok_eof:
 return;
 case ';': // ignore top-level semicolons.
 getNextToken();
 break;
 case tok_def:
 HandleDefinition();
 break;
 case tok_extern:
 HandleExtern();
 break;
 default:
 HandleTopLevelExpression();
 break;
 }
 }
}

The most interesting part of this is that we ignore top-level
semicolons. Why is this, you ask? The basic reason is that if you type
“4 + 5” at the command line, the parser doesn’t know whether that is the
end of what you will type or not. For example, on the next line you
could type “def foo…” in which case 4+5 is the end of a top-level
expression. Alternatively you could type “* 6”, which would continue
the expression. Having top-level semicolons allows you to type “4+5;”,
and the parser will know you are done.

2.8. Conclusions

With just under 400 lines of commented code (240 lines of non-comment,
non-blank code), we fully defined our minimal language, including a
lexer, parser, and AST builder. With this done, the executable will
validate Kaleidoscope code and tell us if it is grammatically invalid.
For example, here is a sample interaction:

$./a.out
ready> def foo(x y) x+foo(y, 4.0);
Parsed a function definition.
ready> def foo(x y) x+y y;
Parsed a function definition.
Parsed a top-level expr
ready> def foo(x y) x+y);
Parsed a function definition.
Error: unknown token when expecting an expression
ready> extern sin(a);
ready> Parsed an extern
ready> ^D
$

There is a lot of room for extension here. You can define new AST nodes,
extend the language in many ways, etc. In the next
installment, we will describe how to generate LLVM
Intermediate Representation (IR) from the AST.

2.9. Full Code Listing

Here is the complete code listing for our running example. Because this
uses the LLVM libraries, we need to link them in. To do this, we use the
llvm-config [http://llvm.org/cmds/llvm-config.html] tool to inform
our makefile/command line about which options to use:

Compile
clang++ -g -O3 toy.cpp `llvm-config --cxxflags`
Run
./a.out

Here is the code:

#include "llvm/ADT/STLExtras.h"
#include <algorithm>
#include <cctype>
#include <cstdio>
#include <cstdlib>
#include <map>
#include <memory>
#include <string>
#include <vector>

//===--===//
// Lexer
//===--===//

// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
// of these for known things.
enum Token {
 tok_eof = -1,

 // commands
 tok_def = -2,
 tok_extern = -3,

 // primary
 tok_identifier = -4,
 tok_number = -5
};

static std::string IdentifierStr; // Filled in if tok_identifier
static double NumVal; // Filled in if tok_number

/// gettok - Return the next token from standard input.
static int gettok() {
 static int LastChar = ' ';

 // Skip any whitespace.
 while (isspace(LastChar))
 LastChar = getchar();

 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
 IdentifierStr = LastChar;
 while (isalnum((LastChar = getchar())))
 IdentifierStr += LastChar;

 if (IdentifierStr == "def")
 return tok_def;
 if (IdentifierStr == "extern")
 return tok_extern;
 return tok_identifier;
 }

 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
 std::string NumStr;
 do {
 NumStr += LastChar;
 LastChar = getchar();
 } while (isdigit(LastChar) || LastChar == '.');

 NumVal = strtod(NumStr.c_str(), nullptr);
 return tok_number;
 }

 if (LastChar == '#') {
 // Comment until end of line.
 do
 LastChar = getchar();
 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');

 if (LastChar != EOF)
 return gettok();
 }

 // Check for end of file. Don't eat the EOF.
 if (LastChar == EOF)
 return tok_eof;

 // Otherwise, just return the character as its ascii value.
 int ThisChar = LastChar;
 LastChar = getchar();
 return ThisChar;
}

//===--===//
// Abstract Syntax Tree (aka Parse Tree)
//===--===//

namespace {

/// ExprAST - Base class for all expression nodes.
class ExprAST {
public:
 virtual ~ExprAST() = default;
};

/// NumberExprAST - Expression class for numeric literals like "1.0".
class NumberExprAST : public ExprAST {
 double Val;

public:
 NumberExprAST(double Val) : Val(Val) {}
};

/// VariableExprAST - Expression class for referencing a variable, like "a".
class VariableExprAST : public ExprAST {
 std::string Name;

public:
 VariableExprAST(const std::string &Name) : Name(Name) {}
};

/// BinaryExprAST - Expression class for a binary operator.
class BinaryExprAST : public ExprAST {
 char Op;
 std::unique_ptr<ExprAST> LHS, RHS;

public:
 BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
 std::unique_ptr<ExprAST> RHS)
 : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
};

/// CallExprAST - Expression class for function calls.
class CallExprAST : public ExprAST {
 std::string Callee;
 std::vector<std::unique_ptr<ExprAST>> Args;

public:
 CallExprAST(const std::string &Callee,
 std::vector<std::unique_ptr<ExprAST>> Args)
 : Callee(Callee), Args(std::move(Args)) {}
};

/// PrototypeAST - This class represents the "prototype" for a function,
/// which captures its name, and its argument names (thus implicitly the number
/// of arguments the function takes).
class PrototypeAST {
 std::string Name;
 std::vector<std::string> Args;

public:
 PrototypeAST(const std::string &Name, std::vector<std::string> Args)
 : Name(Name), Args(std::move(Args)) {}

 const std::string &getName() const { return Name; }
};

/// FunctionAST - This class represents a function definition itself.
class FunctionAST {
 std::unique_ptr<PrototypeAST> Proto;
 std::unique_ptr<ExprAST> Body;

public:
 FunctionAST(std::unique_ptr<PrototypeAST> Proto,
 std::unique_ptr<ExprAST> Body)
 : Proto(std::move(Proto)), Body(std::move(Body)) {}
};

} // end anonymous namespace

//===--===//
// Parser
//===--===//

/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
/// token the parser is looking at. getNextToken reads another token from the
/// lexer and updates CurTok with its results.
static int CurTok;
static int getNextToken() { return CurTok = gettok(); }

/// BinopPrecedence - This holds the precedence for each binary operator that is
/// defined.
static std::map<char, int> BinopPrecedence;

/// GetTokPrecedence - Get the precedence of the pending binary operator token.
static int GetTokPrecedence() {
 if (!isascii(CurTok))
 return -1;

 // Make sure it's a declared binop.
 int TokPrec = BinopPrecedence[CurTok];
 if (TokPrec <= 0)
 return -1;
 return TokPrec;
}

/// LogError* - These are little helper functions for error handling.
std::unique_ptr<ExprAST> LogError(const char *Str) {
 fprintf(stderr, "Error: %s\n", Str);
 return nullptr;
}
std::unique_ptr<PrototypeAST> LogErrorP(const char *Str) {
 LogError(Str);
 return nullptr;
}

static std::unique_ptr<ExprAST> ParseExpression();

/// numberexpr ::= number
static std::unique_ptr<ExprAST> ParseNumberExpr() {
 auto Result = llvm::make_unique<NumberExprAST>(NumVal);
 getNextToken(); // consume the number
 return std::move(Result);
}

/// parenexpr ::= '(' expression ')'
static std::unique_ptr<ExprAST> ParseParenExpr() {
 getNextToken(); // eat (.
 auto V = ParseExpression();
 if (!V)
 return nullptr;

 if (CurTok != ')')
 return LogError("expected ')'");
 getNextToken(); // eat).
 return V;
}

/// identifierexpr
/// ::= identifier
/// ::= identifier '(' expression* ')'
static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
 std::string IdName = IdentifierStr;

 getNextToken(); // eat identifier.

 if (CurTok != '(') // Simple variable ref.
 return llvm::make_unique<VariableExprAST>(IdName);

 // Call.
 getNextToken(); // eat (
 std::vector<std::unique_ptr<ExprAST>> Args;
 if (CurTok != ')') {
 while (true) {
 if (auto Arg = ParseExpression())
 Args.push_back(std::move(Arg));
 else
 return nullptr;

 if (CurTok == ')')
 break;

 if (CurTok != ',')
 return LogError("Expected ')' or ',' in argument list");
 getNextToken();
 }
 }

 // Eat the ')'.
 getNextToken();

 return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
}

/// primary
/// ::= identifierexpr
/// ::= numberexpr
/// ::= parenexpr
static std::unique_ptr<ExprAST> ParsePrimary() {
 switch (CurTok) {
 default:
 return LogError("unknown token when expecting an expression");
 case tok_identifier:
 return ParseIdentifierExpr();
 case tok_number:
 return ParseNumberExpr();
 case '(':
 return ParseParenExpr();
 }
}

/// binoprhs
/// ::= ('+' primary)*
static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
 std::unique_ptr<ExprAST> LHS) {
 // If this is a binop, find its precedence.
 while (true) {
 int TokPrec = GetTokPrecedence();

 // If this is a binop that binds at least as tightly as the current binop,
 // consume it, otherwise we are done.
 if (TokPrec < ExprPrec)
 return LHS;

 // Okay, we know this is a binop.
 int BinOp = CurTok;
 getNextToken(); // eat binop

 // Parse the primary expression after the binary operator.
 auto RHS = ParsePrimary();
 if (!RHS)
 return nullptr;

 // If BinOp binds less tightly with RHS than the operator after RHS, let
 // the pending operator take RHS as its LHS.
 int NextPrec = GetTokPrecedence();
 if (TokPrec < NextPrec) {
 RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
 if (!RHS)
 return nullptr;
 }

 // Merge LHS/RHS.
 LHS = llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS),
 std::move(RHS));
 }
}

/// expression
/// ::= primary binoprhs
///
static std::unique_ptr<ExprAST> ParseExpression() {
 auto LHS = ParsePrimary();
 if (!LHS)
 return nullptr;

 return ParseBinOpRHS(0, std::move(LHS));
}

/// prototype
/// ::= id '(' id* ')'
static std::unique_ptr<PrototypeAST> ParsePrototype() {
 if (CurTok != tok_identifier)
 return LogErrorP("Expected function name in prototype");

 std::string FnName = IdentifierStr;
 getNextToken();

 if (CurTok != '(')
 return LogErrorP("Expected '(' in prototype");

 std::vector<std::string> ArgNames;
 while (getNextToken() == tok_identifier)
 ArgNames.push_back(IdentifierStr);
 if (CurTok != ')')
 return LogErrorP("Expected ')' in prototype");

 // success.
 getNextToken(); // eat ')'.

 return llvm::make_unique<PrototypeAST>(FnName, std::move(ArgNames));
}

/// definition ::= 'def' prototype expression
static std::unique_ptr<FunctionAST> ParseDefinition() {
 getNextToken(); // eat def.
 auto Proto = ParsePrototype();
 if (!Proto)
 return nullptr;

 if (auto E = ParseExpression())
 return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
 return nullptr;
}

/// toplevelexpr ::= expression
static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
 if (auto E = ParseExpression()) {
 // Make an anonymous proto.
 auto Proto = llvm::make_unique<PrototypeAST>("__anon_expr",
 std::vector<std::string>());
 return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
 }
 return nullptr;
}

/// external ::= 'extern' prototype
static std::unique_ptr<PrototypeAST> ParseExtern() {
 getNextToken(); // eat extern.
 return ParsePrototype();
}

//===--===//
// Top-Level parsing
//===--===//

static void HandleDefinition() {
 if (ParseDefinition()) {
 fprintf(stderr, "Parsed a function definition.\n");
 } else {
 // Skip token for error recovery.
 getNextToken();
 }
}

static void HandleExtern() {
 if (ParseExtern()) {
 fprintf(stderr, "Parsed an extern\n");
 } else {
 // Skip token for error recovery.
 getNextToken();
 }
}

static void HandleTopLevelExpression() {
 // Evaluate a top-level expression into an anonymous function.
 if (ParseTopLevelExpr()) {
 fprintf(stderr, "Parsed a top-level expr\n");
 } else {
 // Skip token for error recovery.
 getNextToken();
 }
}

/// top ::= definition | external | expression | ';'
static void MainLoop() {
 while (true) {
 fprintf(stderr, "ready> ");
 switch (CurTok) {
 case tok_eof:
 return;
 case ';': // ignore top-level semicolons.
 getNextToken();
 break;
 case tok_def:
 HandleDefinition();
 break;
 case tok_extern:
 HandleExtern();
 break;
 default:
 HandleTopLevelExpression();
 break;
 }
 }
}

//===--===//
// Main driver code.
//===--===//

int main() {
 // Install standard binary operators.
 // 1 is lowest precedence.
 BinopPrecedence['<'] = 10;
 BinopPrecedence['+'] = 20;
 BinopPrecedence['-'] = 20;
 BinopPrecedence['*'] = 40; // highest.

 // Prime the first token.
 fprintf(stderr, "ready> ");
 getNextToken();

 // Run the main "interpreter loop" now.
 MainLoop();

 return 0;
}

Next: Implementing Code Generation to LLVM IR

3. Kaleidoscope: Code generation to LLVM IR

	Chapter 3 Introduction

	Code Generation Setup

	Expression Code Generation

	Function Code Generation

	Driver Changes and Closing Thoughts

	Full Code Listing

3.1. Chapter 3 Introduction

Welcome to Chapter 3 of the “Implementing a language with
LLVM” tutorial. This chapter shows you how to transform
the Abstract Syntax Tree, built in Chapter 2, into
LLVM IR. This will teach you a little bit about how LLVM does things, as
well as demonstrate how easy it is to use. It’s much more work to build
a lexer and parser than it is to generate LLVM IR code. :)

Please note: the code in this chapter and later require LLVM 3.7 or
later. LLVM 3.6 and before will not work with it. Also note that you
need to use a version of this tutorial that matches your LLVM release:
If you are using an official LLVM release, use the version of the
documentation included with your release or on the llvm.org releases
page [http://llvm.org/releases/].

3.2. Code Generation Setup

In order to generate LLVM IR, we want some simple setup to get started.
First we define virtual code generation (codegen) methods in each AST
class:

/// ExprAST - Base class for all expression nodes.
class ExprAST {
public:
 virtual ~ExprAST() {}
 virtual Value *codegen() = 0;
};

/// NumberExprAST - Expression class for numeric literals like "1.0".
class NumberExprAST : public ExprAST {
 double Val;

public:
 NumberExprAST(double Val) : Val(Val) {}
 virtual Value *codegen();
};
...

The codegen() method says to emit IR for that AST node along with all
the things it depends on, and they all return an LLVM Value object.
“Value” is the class used to represent a “Static Single Assignment
(SSA) [http://en.wikipedia.org/wiki/Static_single_assignment_form]
register” or “SSA value” in LLVM. The most distinct aspect of SSA values
is that their value is computed as the related instruction executes, and
it does not get a new value until (and if) the instruction re-executes.
In other words, there is no way to “change” an SSA value. For more
information, please read up on Static Single
Assignment [http://en.wikipedia.org/wiki/Static_single_assignment_form]
- the concepts are really quite natural once you grok them.

Note that instead of adding virtual methods to the ExprAST class
hierarchy, it could also make sense to use a visitor
pattern [http://en.wikipedia.org/wiki/Visitor_pattern] or some other
way to model this. Again, this tutorial won’t dwell on good software
engineering practices: for our purposes, adding a virtual method is
simplest.

The second thing we want is an “LogError” method like we used for the
parser, which will be used to report errors found during code generation
(for example, use of an undeclared parameter):

static LLVMContext TheContext;
static IRBuilder<> Builder(TheContext);
static std::unique_ptr<Module> TheModule;
static std::map<std::string, Value *> NamedValues;

Value *LogErrorV(const char *Str) {
 LogError(Str);
 return nullptr;
}

The static variables will be used during code generation. TheContext
is an opaque object that owns a lot of core LLVM data structures, such as
the type and constant value tables. We don’t need to understand it in
detail, we just need a single instance to pass into APIs that require it.

The Builder object is a helper object that makes it easy to generate
LLVM instructions. Instances of the
IRBuilder [http://llvm.org/doxygen/IRBuilder_8h-source.html]
class template keep track of the current place to insert instructions
and has methods to create new instructions.

TheModule is an LLVM construct that contains functions and global
variables. In many ways, it is the top-level structure that the LLVM IR
uses to contain code. It will own the memory for all of the IR that we
generate, which is why the codegen() method returns a raw Value*,
rather than a unique_ptr<Value>.

The NamedValues map keeps track of which values are defined in the
current scope and what their LLVM representation is. (In other words, it
is a symbol table for the code). In this form of Kaleidoscope, the only
things that can be referenced are function parameters. As such, function
parameters will be in this map when generating code for their function
body.

With these basics in place, we can start talking about how to generate
code for each expression. Note that this assumes that the Builder
has been set up to generate code into something. For now, we’ll assume
that this has already been done, and we’ll just use it to emit code.

3.3. Expression Code Generation

Generating LLVM code for expression nodes is very straightforward: less
than 45 lines of commented code for all four of our expression nodes.
First we’ll do numeric literals:

Value *NumberExprAST::codegen() {
 return ConstantFP::get(TheContext, APFloat(Val));
}

In the LLVM IR, numeric constants are represented with the
ConstantFP class, which holds the numeric value in an APFloat
internally (APFloat has the capability of holding floating point
constants of Arbitrary Precision). This code basically just creates
and returns a ConstantFP. Note that in the LLVM IR that constants
are all uniqued together and shared. For this reason, the API uses the
“foo::get(…)” idiom instead of “new foo(..)” or “foo::Create(..)”.

Value *VariableExprAST::codegen() {
 // Look this variable up in the function.
 Value *V = NamedValues[Name];
 if (!V)
 LogErrorV("Unknown variable name");
 return V;
}

References to variables are also quite simple using LLVM. In the simple
version of Kaleidoscope, we assume that the variable has already been
emitted somewhere and its value is available. In practice, the only
values that can be in the NamedValues map are function arguments.
This code simply checks to see that the specified name is in the map (if
not, an unknown variable is being referenced) and returns the value for
it. In future chapters, we’ll add support for loop induction
variables in the symbol table, and for local
variables.

Value *BinaryExprAST::codegen() {
 Value *L = LHS->codegen();
 Value *R = RHS->codegen();
 if (!L || !R)
 return nullptr;

 switch (Op) {
 case '+':
 return Builder.CreateFAdd(L, R, "addtmp");
 case '-':
 return Builder.CreateFSub(L, R, "subtmp");
 case '*':
 return Builder.CreateFMul(L, R, "multmp");
 case '<':
 L = Builder.CreateFCmpULT(L, R, "cmptmp");
 // Convert bool 0/1 to double 0.0 or 1.0
 return Builder.CreateUIToFP(L, Type::getDoubleTy(TheContext),
 "booltmp");
 default:
 return LogErrorV("invalid binary operator");
 }
}

Binary operators start to get more interesting. The basic idea here is
that we recursively emit code for the left-hand side of the expression,
then the right-hand side, then we compute the result of the binary
expression. In this code, we do a simple switch on the opcode to create
the right LLVM instruction.

In the example above, the LLVM builder class is starting to show its
value. IRBuilder knows where to insert the newly created instruction,
all you have to do is specify what instruction to create (e.g. with
CreateFAdd), which operands to use (L and R here) and
optionally provide a name for the generated instruction.

One nice thing about LLVM is that the name is just a hint. For instance,
if the code above emits multiple “addtmp” variables, LLVM will
automatically provide each one with an increasing, unique numeric
suffix. Local value names for instructions are purely optional, but it
makes it much easier to read the IR dumps.

LLVM instructions are constrained by strict
rules: for example, the Left and Right operators of an add
instruction must have the same type, and the
result type of the add must match the operand types. Because all values
in Kaleidoscope are doubles, this makes for very simple code for add,
sub and mul.

On the other hand, LLVM specifies that the fcmp
instruction always returns an ‘i1’ value (a
one bit integer). The problem with this is that Kaleidoscope wants the
value to be a 0.0 or 1.0 value. In order to get these semantics, we
combine the fcmp instruction with a uitofp
instruction. This instruction converts its
input integer into a floating point value by treating the input as an
unsigned value. In contrast, if we used the sitofp
instruction, the Kaleidoscope ‘<’ operator
would return 0.0 and -1.0, depending on the input value.

Value *CallExprAST::codegen() {
 // Look up the name in the global module table.
 Function *CalleeF = TheModule->getFunction(Callee);
 if (!CalleeF)
 return LogErrorV("Unknown function referenced");

 // If argument mismatch error.
 if (CalleeF->arg_size() != Args.size())
 return LogErrorV("Incorrect # arguments passed");

 std::vector<Value *> ArgsV;
 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
 ArgsV.push_back(Args[i]->codegen());
 if (!ArgsV.back())
 return nullptr;
 }

 return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
}

Code generation for function calls is quite straightforward with LLVM. The code
above initially does a function name lookup in the LLVM Module’s symbol table.
Recall that the LLVM Module is the container that holds the functions we are
JIT’ing. By giving each function the same name as what the user specifies, we
can use the LLVM symbol table to resolve function names for us.

Once we have the function to call, we recursively codegen each argument
that is to be passed in, and create an LLVM call
instruction. Note that LLVM uses the native C
calling conventions by default, allowing these calls to also call into
standard library functions like “sin” and “cos”, with no additional
effort.

This wraps up our handling of the four basic expressions that we have so
far in Kaleidoscope. Feel free to go in and add some more. For example,
by browsing the LLVM language reference you’ll find
several other interesting instructions that are really easy to plug into
our basic framework.

3.4. Function Code Generation

Code generation for prototypes and functions must handle a number of
details, which make their code less beautiful than expression code
generation, but allows us to illustrate some important points. First,
let’s talk about code generation for prototypes: they are used both for
function bodies and external function declarations. The code starts
with:

Function *PrototypeAST::codegen() {
 // Make the function type: double(double,double) etc.
 std::vector<Type*> Doubles(Args.size(),
 Type::getDoubleTy(TheContext));
 FunctionType *FT =
 FunctionType::get(Type::getDoubleTy(TheContext), Doubles, false);

 Function *F =
 Function::Create(FT, Function::ExternalLinkage, Name, TheModule);

This code packs a lot of power into a few lines. Note first that this
function returns a “Function*” instead of a “Value*”. Because a
“prototype” really talks about the external interface for a function
(not the value computed by an expression), it makes sense for it to
return the LLVM Function it corresponds to when codegen’d.

The call to FunctionType::get creates the FunctionType that
should be used for a given Prototype. Since all function arguments in
Kaleidoscope are of type double, the first line creates a vector of “N”
LLVM double types. It then uses the Functiontype::get method to
create a function type that takes “N” doubles as arguments, returns one
double as a result, and that is not vararg (the false parameter
indicates this). Note that Types in LLVM are uniqued just like Constants
are, so you don’t “new” a type, you “get” it.

The final line above actually creates the IR Function corresponding to
the Prototype. This indicates the type, linkage and name to use, as
well as which module to insert into. “external
linkage” means that the function may be
defined outside the current module and/or that it is callable by
functions outside the module. The Name passed in is the name the user
specified: since “TheModule” is specified, this name is registered
in “TheModule”s symbol table.

// Set names for all arguments.
unsigned Idx = 0;
for (auto &Arg : F->args())
 Arg.setName(Args[Idx++]);

return F;

Finally, we set the name of each of the function’s arguments according to the
names given in the Prototype. This step isn’t strictly necessary, but keeping
the names consistent makes the IR more readable, and allows subsequent code to
refer directly to the arguments for their names, rather than having to look up
them up in the Prototype AST.

At this point we have a function prototype with no body. This is how LLVM IR
represents function declarations. For extern statements in Kaleidoscope, this
is as far as we need to go. For function definitions however, we need to
codegen and attach a function body.

Function *FunctionAST::codegen() {
 // First, check for an existing function from a previous 'extern' declaration.
 Function *TheFunction = TheModule->getFunction(Proto->getName());

 if (!TheFunction)
 TheFunction = Proto->codegen();

 if (!TheFunction)
 return nullptr;

 if (!TheFunction->empty())
 return (Function*)LogErrorV("Function cannot be redefined.");

For function definitions, we start by searching TheModule’s symbol table for an
existing version of this function, in case one has already been created using an
‘extern’ statement. If Module::getFunction returns null then no previous version
exists, so we’ll codegen one from the Prototype. In either case, we want to
assert that the function is empty (i.e. has no body yet) before we start.

// Create a new basic block to start insertion into.
BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction);
Builder.SetInsertPoint(BB);

// Record the function arguments in the NamedValues map.
NamedValues.clear();
for (auto &Arg : TheFunction->args())
 NamedValues[Arg.getName()] = &Arg;

Now we get to the point where the Builder is set up. The first line
creates a new basic block [http://en.wikipedia.org/wiki/Basic_block]
(named “entry”), which is inserted into TheFunction. The second line
then tells the builder that new instructions should be inserted into the
end of the new basic block. Basic blocks in LLVM are an important part
of functions that define the Control Flow
Graph [http://en.wikipedia.org/wiki/Control_flow_graph]. Since we
don’t have any control flow, our functions will only contain one block
at this point. We’ll fix this in Chapter 5 :).

Next we add the function arguments to the NamedValues map (after first clearing
it out) so that they’re accessible to VariableExprAST nodes.

if (Value *RetVal = Body->codegen()) {
 // Finish off the function.
 Builder.CreateRet(RetVal);

 // Validate the generated code, checking for consistency.
 verifyFunction(*TheFunction);

 return TheFunction;
}

Once the insertion point has been set up and the NamedValues map populated,
we call the codegen() method for the root expression of the function. If no
error happens, this emits code to compute the expression into the entry block
and returns the value that was computed. Assuming no error, we then create an
LLVM ret instruction, which completes the function.
Once the function is built, we call verifyFunction, which is
provided by LLVM. This function does a variety of consistency checks on
the generated code, to determine if our compiler is doing everything
right. Using this is important: it can catch a lot of bugs. Once the
function is finished and validated, we return it.

 // Error reading body, remove function.
 TheFunction->eraseFromParent();
 return nullptr;
}

The only piece left here is handling of the error case. For simplicity,
we handle this by merely deleting the function we produced with the
eraseFromParent method. This allows the user to redefine a function
that they incorrectly typed in before: if we didn’t delete it, it would
live in the symbol table, with a body, preventing future redefinition.

This code does have a bug, though: If the FunctionAST::codegen() method
finds an existing IR Function, it does not validate its signature against the
definition’s own prototype. This means that an earlier ‘extern’ declaration will
take precedence over the function definition’s signature, which can cause
codegen to fail, for instance if the function arguments are named differently.
There are a number of ways to fix this bug, see what you can come up with! Here
is a testcase:

extern foo(a); # ok, defines foo.
def foo(b) b; # Error: Unknown variable name. (decl using 'a' takes precedence).

3.5. Driver Changes and Closing Thoughts

For now, code generation to LLVM doesn’t really get us much, except that
we can look at the pretty IR calls. The sample code inserts calls to
codegen into the “HandleDefinition”, “HandleExtern” etc
functions, and then dumps out the LLVM IR. This gives a nice way to look
at the LLVM IR for simple functions. For example:

ready> 4+5;
Read top-level expression:
define double @0() {
entry:
 ret double 9.000000e+00
}

Note how the parser turns the top-level expression into anonymous
functions for us. This will be handy when we add JIT
support in the next chapter. Also note that the
code is very literally transcribed, no optimizations are being performed
except simple constant folding done by IRBuilder. We will add
optimizations explicitly in the next
chapter.

ready> def foo(a b) a*a + 2*a*b + b*b;
Read function definition:
define double @foo(double %a, double %b) {
entry:
 %multmp = fmul double %a, %a
 %multmp1 = fmul double 2.000000e+00, %a
 %multmp2 = fmul double %multmp1, %b
 %addtmp = fadd double %multmp, %multmp2
 %multmp3 = fmul double %b, %b
 %addtmp4 = fadd double %addtmp, %multmp3
 ret double %addtmp4
}

This shows some simple arithmetic. Notice the striking similarity to the
LLVM builder calls that we use to create the instructions.

ready> def bar(a) foo(a, 4.0) + bar(31337);
Read function definition:
define double @bar(double %a) {
entry:
 %calltmp = call double @foo(double %a, double 4.000000e+00)
 %calltmp1 = call double @bar(double 3.133700e+04)
 %addtmp = fadd double %calltmp, %calltmp1
 ret double %addtmp
}

This shows some function calls. Note that this function will take a long
time to execute if you call it. In the future we’ll add conditional
control flow to actually make recursion useful :).

ready> extern cos(x);
Read extern:
declare double @cos(double)

ready> cos(1.234);
Read top-level expression:
define double @1() {
entry:
 %calltmp = call double @cos(double 1.234000e+00)
 ret double %calltmp
}

This shows an extern for the libm “cos” function, and a call to it.

ready> ^D
; ModuleID = 'my cool jit'

define double @0() {
entry:
 %addtmp = fadd double 4.000000e+00, 5.000000e+00
 ret double %addtmp
}

define double @foo(double %a, double %b) {
entry:
 %multmp = fmul double %a, %a
 %multmp1 = fmul double 2.000000e+00, %a
 %multmp2 = fmul double %multmp1, %b
 %addtmp = fadd double %multmp, %multmp2
 %multmp3 = fmul double %b, %b
 %addtmp4 = fadd double %addtmp, %multmp3
 ret double %addtmp4
}

define double @bar(double %a) {
entry:
 %calltmp = call double @foo(double %a, double 4.000000e+00)
 %calltmp1 = call double @bar(double 3.133700e+04)
 %addtmp = fadd double %calltmp, %calltmp1
 ret double %addtmp
}

declare double @cos(double)

define double @1() {
entry:
 %calltmp = call double @cos(double 1.234000e+00)
 ret double %calltmp
}

When you quit the current demo (by sending an EOF via CTRL+D on Linux
or CTRL+Z and ENTER on Windows), it dumps out the IR for the entire
module generated. Here you can see the big picture with all the
functions referencing each other.

This wraps up the third chapter of the Kaleidoscope tutorial. Up next,
we’ll describe how to add JIT codegen and optimizer
support to this so we can actually start running
code!

3.6. Full Code Listing

Here is the complete code listing for our running example, enhanced with
the LLVM code generator. Because this uses the LLVM libraries, we need
to link them in. To do this, we use the
llvm-config [http://llvm.org/cmds/llvm-config.html] tool to inform
our makefile/command line about which options to use:

Compile
clang++ -g -O3 toy.cpp `llvm-config --cxxflags --ldflags --system-libs --libs core` -o toy
Run
./toy

Here is the code:

#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Verifier.h"
#include <algorithm>
#include <cctype>
#include <cstdio>
#include <cstdlib>
#include <map>
#include <memory>
#include <string>
#include <vector>

using namespace llvm;

//===--===//
// Lexer
//===--===//

// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
// of these for known things.
enum Token {
 tok_eof = -1,

 // commands
 tok_def = -2,
 tok_extern = -3,

 // primary
 tok_identifier = -4,
 tok_number = -5
};

static std::string IdentifierStr; // Filled in if tok_identifier
static double NumVal; // Filled in if tok_number

/// gettok - Return the next token from standard input.
static int gettok() {
 static int LastChar = ' ';

 // Skip any whitespace.
 while (isspace(LastChar))
 LastChar = getchar();

 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
 IdentifierStr = LastChar;
 while (isalnum((LastChar = getchar())))
 IdentifierStr += LastChar;

 if (IdentifierStr == "def")
 return tok_def;
 if (IdentifierStr == "extern")
 return tok_extern;
 return tok_identifier;
 }

 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
 std::string NumStr;
 do {
 NumStr += LastChar;
 LastChar = getchar();
 } while (isdigit(LastChar) || LastChar == '.');

 NumVal = strtod(NumStr.c_str(), nullptr);
 return tok_number;
 }

 if (LastChar == '#') {
 // Comment until end of line.
 do
 LastChar = getchar();
 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');

 if (LastChar != EOF)
 return gettok();
 }

 // Check for end of file. Don't eat the EOF.
 if (LastChar == EOF)
 return tok_eof;

 // Otherwise, just return the character as its ascii value.
 int ThisChar = LastChar;
 LastChar = getchar();
 return ThisChar;
}

//===--===//
// Abstract Syntax Tree (aka Parse Tree)
//===--===//

namespace {

/// ExprAST - Base class for all expression nodes.
class ExprAST {
public:
 virtual ~ExprAST() = default;

 virtual Value *codegen() = 0;
};

/// NumberExprAST - Expression class for numeric literals like "1.0".
class NumberExprAST : public ExprAST {
 double Val;

public:
 NumberExprAST(double Val) : Val(Val) {}

 Value *codegen() override;
};

/// VariableExprAST - Expression class for referencing a variable, like "a".
class VariableExprAST : public ExprAST {
 std::string Name;

public:
 VariableExprAST(const std::string &Name) : Name(Name) {}

 Value *codegen() override;
};

/// BinaryExprAST - Expression class for a binary operator.
class BinaryExprAST : public ExprAST {
 char Op;
 std::unique_ptr<ExprAST> LHS, RHS;

public:
 BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
 std::unique_ptr<ExprAST> RHS)
 : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}

 Value *codegen() override;
};

/// CallExprAST - Expression class for function calls.
class CallExprAST : public ExprAST {
 std::string Callee;
 std::vector<std::unique_ptr<ExprAST>> Args;

public:
 CallExprAST(const std::string &Callee,
 std::vector<std::unique_ptr<ExprAST>> Args)
 : Callee(Callee), Args(std::move(Args)) {}

 Value *codegen() override;
};

/// PrototypeAST - This class represents the "prototype" for a function,
/// which captures its name, and its argument names (thus implicitly the number
/// of arguments the function takes).
class PrototypeAST {
 std::string Name;
 std::vector<std::string> Args;

public:
 PrototypeAST(const std::string &Name, std::vector<std::string> Args)
 : Name(Name), Args(std::move(Args)) {}

 Function *codegen();
 const std::string &getName() const { return Name; }
};

/// FunctionAST - This class represents a function definition itself.
class FunctionAST {
 std::unique_ptr<PrototypeAST> Proto;
 std::unique_ptr<ExprAST> Body;

public:
 FunctionAST(std::unique_ptr<PrototypeAST> Proto,
 std::unique_ptr<ExprAST> Body)
 : Proto(std::move(Proto)), Body(std::move(Body)) {}

 Function *codegen();
};

} // end anonymous namespace

//===--===//
// Parser
//===--===//

/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
/// token the parser is looking at. getNextToken reads another token from the
/// lexer and updates CurTok with its results.
static int CurTok;
static int getNextToken() { return CurTok = gettok(); }

/// BinopPrecedence - This holds the precedence for each binary operator that is
/// defined.
static std::map<char, int> BinopPrecedence;

/// GetTokPrecedence - Get the precedence of the pending binary operator token.
static int GetTokPrecedence() {
 if (!isascii(CurTok))
 return -1;

 // Make sure it's a declared binop.
 int TokPrec = BinopPrecedence[CurTok];
 if (TokPrec <= 0)
 return -1;
 return TokPrec;
}

/// LogError* - These are little helper functions for error handling.
std::unique_ptr<ExprAST> LogError(const char *Str) {
 fprintf(stderr, "Error: %s\n", Str);
 return nullptr;
}

std::unique_ptr<PrototypeAST> LogErrorP(const char *Str) {
 LogError(Str);
 return nullptr;
}

static std::unique_ptr<ExprAST> ParseExpression();

/// numberexpr ::= number
static std::unique_ptr<ExprAST> ParseNumberExpr() {
 auto Result = llvm::make_unique<NumberExprAST>(NumVal);
 getNextToken(); // consume the number
 return std::move(Result);
}

/// parenexpr ::= '(' expression ')'
static std::unique_ptr<ExprAST> ParseParenExpr() {
 getNextToken(); // eat (.
 auto V = ParseExpression();
 if (!V)
 return nullptr;

 if (CurTok != ')')
 return LogError("expected ')'");
 getNextToken(); // eat).
 return V;
}

/// identifierexpr
/// ::= identifier
/// ::= identifier '(' expression* ')'
static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
 std::string IdName = IdentifierStr;

 getNextToken(); // eat identifier.

 if (CurTok != '(') // Simple variable ref.
 return llvm::make_unique<VariableExprAST>(IdName);

 // Call.
 getNextToken(); // eat (
 std::vector<std::unique_ptr<ExprAST>> Args;
 if (CurTok != ')') {
 while (true) {
 if (auto Arg = ParseExpression())
 Args.push_back(std::move(Arg));
 else
 return nullptr;

 if (CurTok == ')')
 break;

 if (CurTok != ',')
 return LogError("Expected ')' or ',' in argument list");
 getNextToken();
 }
 }

 // Eat the ')'.
 getNextToken();

 return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
}

/// primary
/// ::= identifierexpr
/// ::= numberexpr
/// ::= parenexpr
static std::unique_ptr<ExprAST> ParsePrimary() {
 switch (CurTok) {
 default:
 return LogError("unknown token when expecting an expression");
 case tok_identifier:
 return ParseIdentifierExpr();
 case tok_number:
 return ParseNumberExpr();
 case '(':
 return ParseParenExpr();
 }
}

/// binoprhs
/// ::= ('+' primary)*
static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
 std::unique_ptr<ExprAST> LHS) {
 // If this is a binop, find its precedence.
 while (true) {
 int TokPrec = GetTokPrecedence();

 // If this is a binop that binds at least as tightly as the current binop,
 // consume it, otherwise we are done.
 if (TokPrec < ExprPrec)
 return LHS;

 // Okay, we know this is a binop.
 int BinOp = CurTok;
 getNextToken(); // eat binop

 // Parse the primary expression after the binary operator.
 auto RHS = ParsePrimary();
 if (!RHS)
 return nullptr;

 // If BinOp binds less tightly with RHS than the operator after RHS, let
 // the pending operator take RHS as its LHS.
 int NextPrec = GetTokPrecedence();
 if (TokPrec < NextPrec) {
 RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
 if (!RHS)
 return nullptr;
 }

 // Merge LHS/RHS.
 LHS =
 llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
 }
}

/// expression
/// ::= primary binoprhs
///
static std::unique_ptr<ExprAST> ParseExpression() {
 auto LHS = ParsePrimary();
 if (!LHS)
 return nullptr;

 return ParseBinOpRHS(0, std::move(LHS));
}

/// prototype
/// ::= id '(' id* ')'
static std::unique_ptr<PrototypeAST> ParsePrototype() {
 if (CurTok != tok_identifier)
 return LogErrorP("Expected function name in prototype");

 std::string FnName = IdentifierStr;
 getNextToken();

 if (CurTok != '(')
 return LogErrorP("Expected '(' in prototype");

 std::vector<std::string> ArgNames;
 while (getNextToken() == tok_identifier)
 ArgNames.push_back(IdentifierStr);
 if (CurTok != ')')
 return LogErrorP("Expected ')' in prototype");

 // success.
 getNextToken(); // eat ')'.

 return llvm::make_unique<PrototypeAST>(FnName, std::move(ArgNames));
}

/// definition ::= 'def' prototype expression
static std::unique_ptr<FunctionAST> ParseDefinition() {
 getNextToken(); // eat def.
 auto Proto = ParsePrototype();
 if (!Proto)
 return nullptr;

 if (auto E = ParseExpression())
 return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
 return nullptr;
}

/// toplevelexpr ::= expression
static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
 if (auto E = ParseExpression()) {
 // Make an anonymous proto.
 auto Proto = llvm::make_unique<PrototypeAST>("__anon_expr",
 std::vector<std::string>());
 return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
 }
 return nullptr;
}

/// external ::= 'extern' prototype
static std::unique_ptr<PrototypeAST> ParseExtern() {
 getNextToken(); // eat extern.
 return ParsePrototype();
}

//===--===//
// Code Generation
//===--===//

static LLVMContext TheContext;
static IRBuilder<> Builder(TheContext);
static std::unique_ptr<Module> TheModule;
static std::map<std::string, Value *> NamedValues;

Value *LogErrorV(const char *Str) {
 LogError(Str);
 return nullptr;
}

Value *NumberExprAST::codegen() {
 return ConstantFP::get(TheContext, APFloat(Val));
}

Value *VariableExprAST::codegen() {
 // Look this variable up in the function.
 Value *V = NamedValues[Name];
 if (!V)
 return LogErrorV("Unknown variable name");
 return V;
}

Value *BinaryExprAST::codegen() {
 Value *L = LHS->codegen();
 Value *R = RHS->codegen();
 if (!L || !R)
 return nullptr;

 switch (Op) {
 case '+':
 return Builder.CreateFAdd(L, R, "addtmp");
 case '-':
 return Builder.CreateFSub(L, R, "subtmp");
 case '*':
 return Builder.CreateFMul(L, R, "multmp");
 case '<':
 L = Builder.CreateFCmpULT(L, R, "cmptmp");
 // Convert bool 0/1 to double 0.0 or 1.0
 return Builder.CreateUIToFP(L, Type::getDoubleTy(TheContext), "booltmp");
 default:
 return LogErrorV("invalid binary operator");
 }
}

Value *CallExprAST::codegen() {
 // Look up the name in the global module table.
 Function *CalleeF = TheModule->getFunction(Callee);
 if (!CalleeF)
 return LogErrorV("Unknown function referenced");

 // If argument mismatch error.
 if (CalleeF->arg_size() != Args.size())
 return LogErrorV("Incorrect # arguments passed");

 std::vector<Value *> ArgsV;
 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
 ArgsV.push_back(Args[i]->codegen());
 if (!ArgsV.back())
 return nullptr;
 }

 return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
}

Function *PrototypeAST::codegen() {
 // Make the function type: double(double,double) etc.
 std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(TheContext));
 FunctionType *FT =
 FunctionType::get(Type::getDoubleTy(TheContext), Doubles, false);

 Function *F =
 Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get());

 // Set names for all arguments.
 unsigned Idx = 0;
 for (auto &Arg : F->args())
 Arg.setName(Args[Idx++]);

 return F;
}

Function *FunctionAST::codegen() {
 // First, check for an existing function from a previous 'extern' declaration.
 Function *TheFunction = TheModule->getFunction(Proto->getName());

 if (!TheFunction)
 TheFunction = Proto->codegen();

 if (!TheFunction)
 return nullptr;

 // Create a new basic block to start insertion into.
 BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction);
 Builder.SetInsertPoint(BB);

 // Record the function arguments in the NamedValues map.
 NamedValues.clear();
 for (auto &Arg : TheFunction->args())
 NamedValues[Arg.getName()] = &Arg;

 if (Value *RetVal = Body->codegen()) {
 // Finish off the function.
 Builder.CreateRet(RetVal);

 // Validate the generated code, checking for consistency.
 verifyFunction(*TheFunction);

 return TheFunction;
 }

 // Error reading body, remove function.
 TheFunction->eraseFromParent();
 return nullptr;
}

//===--===//
// Top-Level parsing and JIT Driver
//===--===//

static void HandleDefinition() {
 if (auto FnAST = ParseDefinition()) {
 if (auto *FnIR = FnAST->codegen()) {
 fprintf(stderr, "Read function definition:");
 FnIR->print(errs());
 fprintf(stderr, "\n");
 }
 } else {
 // Skip token for error recovery.
 getNextToken();
 }
}

static void HandleExtern() {
 if (auto ProtoAST = ParseExtern()) {
 if (auto *FnIR = ProtoAST->codegen()) {
 fprintf(stderr, "Read extern: ");
 FnIR->print(errs());
 fprintf(stderr, "\n");
 }
 } else {
 // Skip token for error recovery.
 getNextToken();
 }
}

static void HandleTopLevelExpression() {
 // Evaluate a top-level expression into an anonymous function.
 if (auto FnAST = ParseTopLevelExpr()) {
 if (auto *FnIR = FnAST->codegen()) {
 fprintf(stderr, "Read top-level expression:");
 FnIR->print(errs());
 fprintf(stderr, "\n");
 }
 } else {
 // Skip token for error recovery.
 getNextToken();
 }
}

/// top ::= definition | external | expression | ';'
static void MainLoop() {
 while (true) {
 fprintf(stderr, "ready> ");
 switch (CurTok) {
 case tok_eof:
 return;
 case ';': // ignore top-level semicolons.
 getNextToken();
 break;
 case tok_def:
 HandleDefinition();
 break;
 case tok_extern:
 HandleExtern();
 break;
 default:
 HandleTopLevelExpression();
 break;
 }
 }
}

//===--===//
// Main driver code.
//===--===//

int main() {
 // Install standard binary operators.
 // 1 is lowest precedence.
 BinopPrecedence['<'] = 10;
 BinopPrecedence['+'] = 20;
 BinopPrecedence['-'] = 20;
 BinopPrecedence['*'] = 40; // highest.

 // Prime the first token.
 fprintf(stderr, "ready> ");
 getNextToken();

 // Make the module, which holds all the code.
 TheModule = llvm::make_unique<Module>("my cool jit", TheContext);

 // Run the main "interpreter loop" now.
 MainLoop();

 // Print out all of the generated code.
 TheModule->print(errs(), nullptr);

 return 0;
}

Next: Adding JIT and Optimizer Support

4. Kaleidoscope: Adding JIT and Optimizer Support

	Chapter 4 Introduction

	Trivial Constant Folding

	LLVM Optimization Passes

	Adding a JIT Compiler

	Full Code Listing

4.1. Chapter 4 Introduction

Welcome to Chapter 4 of the “Implementing a language with
LLVM” tutorial. Chapters 1-3 described the implementation
of a simple language and added support for generating LLVM IR. This
chapter describes two new techniques: adding optimizer support to your
language, and adding JIT compiler support. These additions will
demonstrate how to get nice, efficient code for the Kaleidoscope
language.

4.2. Trivial Constant Folding

Our demonstration for Chapter 3 is elegant and easy to extend.
Unfortunately, it does not produce wonderful code. The IRBuilder,
however, does give us obvious optimizations when compiling simple code:

ready> def test(x) 1+2+x;
Read function definition:
define double @test(double %x) {
entry:
 %addtmp = fadd double 3.000000e+00, %x
 ret double %addtmp
}

This code is not a literal transcription of the AST built by parsing the
input. That would be:

ready> def test(x) 1+2+x;
Read function definition:
define double @test(double %x) {
entry:
 %addtmp = fadd double 2.000000e+00, 1.000000e+00
 %addtmp1 = fadd double %addtmp, %x
 ret double %addtmp1
}

Constant folding, as seen above, in particular, is a very common and
very important optimization: so much so that many language implementors
implement constant folding support in their AST representation.

With LLVM, you don’t need this support in the AST. Since all calls to
build LLVM IR go through the LLVM IR builder, the builder itself checked
to see if there was a constant folding opportunity when you call it. If
so, it just does the constant fold and return the constant instead of
creating an instruction.

Well, that was easy :). In practice, we recommend always using
IRBuilder when generating code like this. It has no “syntactic
overhead” for its use (you don’t have to uglify your compiler with
constant checks everywhere) and it can dramatically reduce the amount of
LLVM IR that is generated in some cases (particular for languages with a
macro preprocessor or that use a lot of constants).

On the other hand, the IRBuilder is limited by the fact that it does
all of its analysis inline with the code as it is built. If you take a
slightly more complex example:

ready> def test(x) (1+2+x)*(x+(1+2));
ready> Read function definition:
define double @test(double %x) {
entry:
 %addtmp = fadd double 3.000000e+00, %x
 %addtmp1 = fadd double %x, 3.000000e+00
 %multmp = fmul double %addtmp, %addtmp1
 ret double %multmp
}

In this case, the LHS and RHS of the multiplication are the same value.
We’d really like to see this generate “tmp = x+3; result = tmp*tmp;”
instead of computing “x+3” twice.

Unfortunately, no amount of local analysis will be able to detect and
correct this. This requires two transformations: reassociation of
expressions (to make the add’s lexically identical) and Common
Subexpression Elimination (CSE) to delete the redundant add instruction.
Fortunately, LLVM provides a broad range of optimizations that you can
use, in the form of “passes”.

4.3. LLVM Optimization Passes

LLVM provides many optimization passes, which do many different sorts of
things and have different tradeoffs. Unlike other systems, LLVM doesn’t
hold to the mistaken notion that one set of optimizations is right for
all languages and for all situations. LLVM allows a compiler implementor
to make complete decisions about what optimizations to use, in which
order, and in what situation.

As a concrete example, LLVM supports both “whole module” passes, which
look across as large of body of code as they can (often a whole file,
but if run at link time, this can be a substantial portion of the whole
program). It also supports and includes “per-function” passes which just
operate on a single function at a time, without looking at other
functions. For more information on passes and how they are run, see the
How to Write a Pass document and the
List of LLVM Passes.

For Kaleidoscope, we are currently generating functions on the fly, one
at a time, as the user types them in. We aren’t shooting for the
ultimate optimization experience in this setting, but we also want to
catch the easy and quick stuff where possible. As such, we will choose
to run a few per-function optimizations as the user types the function
in. If we wanted to make a “static Kaleidoscope compiler”, we would use
exactly the code we have now, except that we would defer running the
optimizer until the entire file has been parsed.

In order to get per-function optimizations going, we need to set up a
FunctionPassManager to hold
and organize the LLVM optimizations that we want to run. Once we have
that, we can add a set of optimizations to run. We’ll need a new
FunctionPassManager for each module that we want to optimize, so we’ll
write a function to create and initialize both the module and pass manager
for us:

void InitializeModuleAndPassManager(void) {
 // Open a new module.
 TheModule = llvm::make_unique<Module>("my cool jit", TheContext);

 // Create a new pass manager attached to it.
 TheFPM = llvm::make_unique<FunctionPassManager>(TheModule.get());

 // Do simple "peephole" optimizations and bit-twiddling optzns.
 TheFPM->add(createInstructionCombiningPass());
 // Reassociate expressions.
 TheFPM->add(createReassociatePass());
 // Eliminate Common SubExpressions.
 TheFPM->add(createGVNPass());
 // Simplify the control flow graph (deleting unreachable blocks, etc).
 TheFPM->add(createCFGSimplificationPass());

 TheFPM->doInitialization();
}

This code initializes the global module TheModule, and the function pass
manager TheFPM, which is attached to TheModule. Once the pass manager is
set up, we use a series of “add” calls to add a bunch of LLVM passes.

In this case, we choose to add four optimization passes.
The passes we choose here are a pretty standard set
of “cleanup” optimizations that are useful for a wide variety of code. I won’t
delve into what they do but, believe me, they are a good starting place :).

Once the PassManager is set up, we need to make use of it. We do this by
running it after our newly created function is constructed (in
FunctionAST::codegen()), but before it is returned to the client:

if (Value *RetVal = Body->codegen()) {
 // Finish off the function.
 Builder.CreateRet(RetVal);

 // Validate the generated code, checking for consistency.
 verifyFunction(*TheFunction);

 // Optimize the function.
 TheFPM->run(*TheFunction);

 return TheFunction;
}

As you can see, this is pretty straightforward. The
FunctionPassManager optimizes and updates the LLVM Function* in
place, improving (hopefully) its body. With this in place, we can try
our test above again:

ready> def test(x) (1+2+x)*(x+(1+2));
ready> Read function definition:
define double @test(double %x) {
entry:
 %addtmp = fadd double %x, 3.000000e+00
 %multmp = fmul double %addtmp, %addtmp
 ret double %multmp
}

As expected, we now get our nicely optimized code, saving a floating
point add instruction from every execution of this function.

LLVM provides a wide variety of optimizations that can be used in
certain circumstances. Some documentation about the various
passes is available, but it isn’t very complete.
Another good source of ideas can come from looking at the passes that
Clang runs to get started. The “opt” tool allows you to
experiment with passes from the command line, so you can see if they do
anything.

Now that we have reasonable code coming out of our front-end, let’s talk
about executing it!

4.4. Adding a JIT Compiler

Code that is available in LLVM IR can have a wide variety of tools
applied to it. For example, you can run optimizations on it (as we did
above), you can dump it out in textual or binary forms, you can compile
the code to an assembly file (.s) for some target, or you can JIT
compile it. The nice thing about the LLVM IR representation is that it
is the “common currency” between many different parts of the compiler.

In this section, we’ll add JIT compiler support to our interpreter. The
basic idea that we want for Kaleidoscope is to have the user enter
function bodies as they do now, but immediately evaluate the top-level
expressions they type in. For example, if they type in “1 + 2;”, we
should evaluate and print out 3. If they define a function, they should
be able to call it from the command line.

In order to do this, we first prepare the environment to create code for
the current native target and declare and initialize the JIT. This is
done by calling some InitializeNativeTarget* functions and
adding a global variable TheJIT, and initializing it in
main:

static std::unique_ptr<KaleidoscopeJIT> TheJIT;
...
int main() {
 InitializeNativeTarget();
 InitializeNativeTargetAsmPrinter();
 InitializeNativeTargetAsmParser();

 // Install standard binary operators.
 // 1 is lowest precedence.
 BinopPrecedence['<'] = 10;
 BinopPrecedence['+'] = 20;
 BinopPrecedence['-'] = 20;
 BinopPrecedence['*'] = 40; // highest.

 // Prime the first token.
 fprintf(stderr, "ready> ");
 getNextToken();

 TheJIT = llvm::make_unique<KaleidoscopeJIT>();

 // Run the main "interpreter loop" now.
 MainLoop();

 return 0;
}

We also need to setup the data layout for the JIT:

void InitializeModuleAndPassManager(void) {
 // Open a new module.
 TheModule = llvm::make_unique<Module>("my cool jit", TheContext);
 TheModule->setDataLayout(TheJIT->getTargetMachine().createDataLayout());

 // Create a new pass manager attached to it.
 TheFPM = llvm::make_unique<FunctionPassManager>(TheModule.get());
 ...

The KaleidoscopeJIT class is a simple JIT built specifically for these
tutorials, available inside the LLVM source code
at llvm-src/examples/Kaleidoscope/include/KaleidoscopeJIT.h.
In later chapters we will look at how it works and extend it with
new features, but for now we will take it as given. Its API is very simple:
addModule adds an LLVM IR module to the JIT, making its functions
available for execution; removeModule removes a module, freeing any
memory associated with the code in that module; and findSymbol allows us
to look up pointers to the compiled code.

We can take this simple API and change our code that parses top-level expressions to
look like this:

static void HandleTopLevelExpression() {
 // Evaluate a top-level expression into an anonymous function.
 if (auto FnAST = ParseTopLevelExpr()) {
 if (FnAST->codegen()) {

 // JIT the module containing the anonymous expression, keeping a handle so
 // we can free it later.
 auto H = TheJIT->addModule(std::move(TheModule));
 InitializeModuleAndPassManager();

 // Search the JIT for the __anon_expr symbol.
 auto ExprSymbol = TheJIT->findSymbol("__anon_expr");
 assert(ExprSymbol && "Function not found");

 // Get the symbol's address and cast it to the right type (takes no
 // arguments, returns a double) so we can call it as a native function.
 double (*FP)() = (double (*)())(intptr_t)ExprSymbol.getAddress();
 fprintf(stderr, "Evaluated to %f\n", FP());

 // Delete the anonymous expression module from the JIT.
 TheJIT->removeModule(H);
 }

If parsing and codegen succeeed, the next step is to add the module containing
the top-level expression to the JIT. We do this by calling addModule, which
triggers code generation for all the functions in the module, and returns a
handle that can be used to remove the module from the JIT later. Once the module
has been added to the JIT it can no longer be modified, so we also open a new
module to hold subsequent code by calling InitializeModuleAndPassManager().

Once we’ve added the module to the JIT we need to get a pointer to the final
generated code. We do this by calling the JIT’s findSymbol method, and passing
the name of the top-level expression function: __anon_expr. Since we just
added this function, we assert that findSymbol returned a result.

Next, we get the in-memory address of the __anon_expr function by calling
getAddress() on the symbol. Recall that we compile top-level expressions
into a self-contained LLVM function that takes no arguments and returns the
computed double. Because the LLVM JIT compiler matches the native platform ABI,
this means that you can just cast the result pointer to a function pointer of
that type and call it directly. This means, there is no difference between JIT
compiled code and native machine code that is statically linked into your
application.

Finally, since we don’t support re-evaluation of top-level expressions, we
remove the module from the JIT when we’re done to free the associated memory.
Recall, however, that the module we created a few lines earlier (via
InitializeModuleAndPassManager) is still open and waiting for new code to be
added.

With just these two changes, let’s see how Kaleidoscope works now!

ready> 4+5;
Read top-level expression:
define double @0() {
entry:
 ret double 9.000000e+00
}

Evaluated to 9.000000

Well this looks like it is basically working. The dump of the function
shows the “no argument function that always returns double” that we
synthesize for each top-level expression that is typed in. This
demonstrates very basic functionality, but can we do more?

ready> def testfunc(x y) x + y*2;
Read function definition:
define double @testfunc(double %x, double %y) {
entry:
 %multmp = fmul double %y, 2.000000e+00
 %addtmp = fadd double %multmp, %x
 ret double %addtmp
}

ready> testfunc(4, 10);
Read top-level expression:
define double @1() {
entry:
 %calltmp = call double @testfunc(double 4.000000e+00, double 1.000000e+01)
 ret double %calltmp
}

Evaluated to 24.000000

ready> testfunc(5, 10);
ready> LLVM ERROR: Program used external function 'testfunc' which could not be resolved!

Function definitions and calls also work, but something went very wrong on that
last line. The call looks valid, so what happened? As you may have guessed from
the API a Module is a unit of allocation for the JIT, and testfunc was part
of the same module that contained anonymous expression. When we removed that
module from the JIT to free the memory for the anonymous expression, we deleted
the definition of testfunc along with it. Then, when we tried to call
testfunc a second time, the JIT could no longer find it.

The easiest way to fix this is to put the anonymous expression in a separate
module from the rest of the function definitions. The JIT will happily resolve
function calls across module boundaries, as long as each of the functions called
has a prototype, and is added to the JIT before it is called. By putting the
anonymous expression in a different module we can delete it without affecting
the rest of the functions.

In fact, we’re going to go a step further and put every function in its own
module. Doing so allows us to exploit a useful property of the KaleidoscopeJIT
that will make our environment more REPL-like: Functions can be added to the
JIT more than once (unlike a module where every function must have a unique
definition). When you look up a symbol in KaleidoscopeJIT it will always return
the most recent definition:

ready> def foo(x) x + 1;
Read function definition:
define double @foo(double %x) {
entry:
 %addtmp = fadd double %x, 1.000000e+00
 ret double %addtmp
}

ready> foo(2);
Evaluated to 3.000000

ready> def foo(x) x + 2;
define double @foo(double %x) {
entry:
 %addtmp = fadd double %x, 2.000000e+00
 ret double %addtmp
}

ready> foo(2);
Evaluated to 4.000000

To allow each function to live in its own module we’ll need a way to
re-generate previous function declarations into each new module we open:

static std::unique_ptr<KaleidoscopeJIT> TheJIT;

...

Function *getFunction(std::string Name) {
 // First, see if the function has already been added to the current module.
 if (auto *F = TheModule->getFunction(Name))
 return F;

 // If not, check whether we can codegen the declaration from some existing
 // prototype.
 auto FI = FunctionProtos.find(Name);
 if (FI != FunctionProtos.end())
 return FI->second->codegen();

 // If no existing prototype exists, return null.
 return nullptr;
}

...

Value *CallExprAST::codegen() {
 // Look up the name in the global module table.
 Function *CalleeF = getFunction(Callee);

...

Function *FunctionAST::codegen() {
 // Transfer ownership of the prototype to the FunctionProtos map, but keep a
 // reference to it for use below.
 auto &P = *Proto;
 FunctionProtos[Proto->getName()] = std::move(Proto);
 Function *TheFunction = getFunction(P.getName());
 if (!TheFunction)
 return nullptr;

To enable this, we’ll start by adding a new global, FunctionProtos, that
holds the most recent prototype for each function. We’ll also add a convenience
method, getFunction(), to replace calls to TheModule->getFunction().
Our convenience method searches TheModule for an existing function
declaration, falling back to generating a new declaration from FunctionProtos if
it doesn’t find one. In CallExprAST::codegen() we just need to replace the
call to TheModule->getFunction(). In FunctionAST::codegen() we need to
update the FunctionProtos map first, then call getFunction(). With this
done, we can always obtain a function declaration in the current module for any
previously declared function.

We also need to update HandleDefinition and HandleExtern:

static void HandleDefinition() {
 if (auto FnAST = ParseDefinition()) {
 if (auto *FnIR = FnAST->codegen()) {
 fprintf(stderr, "Read function definition:");
 FnIR->print(errs());
 fprintf(stderr, "\n");
 TheJIT->addModule(std::move(TheModule));
 InitializeModuleAndPassManager();
 }
 } else {
 // Skip token for error recovery.
 getNextToken();
 }
}

static void HandleExtern() {
 if (auto ProtoAST = ParseExtern()) {
 if (auto *FnIR = ProtoAST->codegen()) {
 fprintf(stderr, "Read extern: ");
 FnIR->print(errs());
 fprintf(stderr, "\n");
 FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST);
 }
 } else {
 // Skip token for error recovery.
 getNextToken();
 }
}

In HandleDefinition, we add two lines to transfer the newly defined function to
the JIT and open a new module. In HandleExtern, we just need to add one line to
add the prototype to FunctionProtos.

With these changes made, let’s try our REPL again (I removed the dump of the
anonymous functions this time, you should get the idea by now :) :

ready> def foo(x) x + 1;
ready> foo(2);
Evaluated to 3.000000

ready> def foo(x) x + 2;
ready> foo(2);
Evaluated to 4.000000

It works!

Even with this simple code, we get some surprisingly powerful capabilities -
check this out:

ready> extern sin(x);
Read extern:
declare double @sin(double)

ready> extern cos(x);
Read extern:
declare double @cos(double)

ready> sin(1.0);
Read top-level expression:
define double @2() {
entry:
 ret double 0x3FEAED548F090CEE
}

Evaluated to 0.841471

ready> def foo(x) sin(x)*sin(x) + cos(x)*cos(x);
Read function definition:
define double @foo(double %x) {
entry:
 %calltmp = call double @sin(double %x)
 %multmp = fmul double %calltmp, %calltmp
 %calltmp2 = call double @cos(double %x)
 %multmp4 = fmul double %calltmp2, %calltmp2
 %addtmp = fadd double %multmp, %multmp4
 ret double %addtmp
}

ready> foo(4.0);
Read top-level expression:
define double @3() {
entry:
 %calltmp = call double @foo(double 4.000000e+00)
 ret double %calltmp
}

Evaluated to 1.000000

Whoa, how does the JIT know about sin and cos? The answer is surprisingly
simple: The KaleidoscopeJIT has a straightforward symbol resolution rule that
it uses to find symbols that aren’t available in any given module: First
it searches all the modules that have already been added to the JIT, from the
most recent to the oldest, to find the newest definition. If no definition is
found inside the JIT, it falls back to calling “dlsym("sin")” on the
Kaleidoscope process itself. Since “sin” is defined within the JIT’s
address space, it simply patches up calls in the module to call the libm
version of sin directly. But in some cases this even goes further:
as sin and cos are names of standard math functions, the constant folder
will directly evaluate the function calls to the correct result when called
with constants like in the “sin(1.0)” above.

In the future we’ll see how tweaking this symbol resolution rule can be used to
enable all sorts of useful features, from security (restricting the set of
symbols available to JIT’d code), to dynamic code generation based on symbol
names, and even lazy compilation.

One immediate benefit of the symbol resolution rule is that we can now extend
the language by writing arbitrary C++ code to implement operations. For example,
if we add:

#ifdef _WIN32
#define DLLEXPORT __declspec(dllexport)
#else
#define DLLEXPORT
#endif

/// putchard - putchar that takes a double and returns 0.
extern "C" DLLEXPORT double putchard(double X) {
 fputc((char)X, stderr);
 return 0;
}

Note, that for Windows we need to actually export the functions because
the dynamic symbol loader will use GetProcAddress to find the symbols.

Now we can produce simple output to the console by using things like:
“extern putchard(x); putchard(120);”, which prints a lowercase ‘x’
on the console (120 is the ASCII code for ‘x’). Similar code could be
used to implement file I/O, console input, and many other capabilities
in Kaleidoscope.

This completes the JIT and optimizer chapter of the Kaleidoscope
tutorial. At this point, we can compile a non-Turing-complete
programming language, optimize and JIT compile it in a user-driven way.
Next up we’ll look into extending the language with control flow
constructs, tackling some interesting LLVM IR issues
along the way.

4.5. Full Code Listing

Here is the complete code listing for our running example, enhanced with
the LLVM JIT and optimizer. To build this example, use:

Compile
clang++ -g toy.cpp `llvm-config --cxxflags --ldflags --system-libs --libs core mcjit native` -O3 -o toy
Run
./toy

If you are compiling this on Linux, make sure to add the “-rdynamic”
option as well. This makes sure that the external functions are resolved
properly at runtime.

Here is the code:

#include "../include/KaleidoscopeJIT.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/InstCombine/InstCombine.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVN.h"
#include <algorithm>
#include <cassert>
#include <cctype>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <map>
#include <memory>
#include <string>
#include <vector>

using namespace llvm;
using namespace llvm::orc;

//===--===//
// Lexer
//===--===//

// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
// of these for known things.
enum Token {
 tok_eof = -1,

 // commands
 tok_def = -2,
 tok_extern = -3,

 // primary
 tok_identifier = -4,
 tok_number = -5
};

static std::string IdentifierStr; // Filled in if tok_identifier
static double NumVal; // Filled in if tok_number

/// gettok - Return the next token from standard input.
static int gettok() {
 static int LastChar = ' ';

 // Skip any whitespace.
 while (isspace(LastChar))
 LastChar = getchar();

 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
 IdentifierStr = LastChar;
 while (isalnum((LastChar = getchar())))
 IdentifierStr += LastChar;

 if (IdentifierStr == "def")
 return tok_def;
 if (IdentifierStr == "extern")
 return tok_extern;
 return tok_identifier;
 }

 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
 std::string NumStr;
 do {
 NumStr += LastChar;
 LastChar = getchar();
 } while (isdigit(LastChar) || LastChar == '.');

 NumVal = strtod(NumStr.c_str(), nullptr);
 return tok_number;
 }

 if (LastChar == '#') {
 // Comment until end of line.
 do
 LastChar = getchar();
 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');

 if (LastChar != EOF)
 return gettok();
 }

 // Check for end of file. Don't eat the EOF.
 if (LastChar == EOF)
 return tok_eof;

 // Otherwise, just return the character as its ascii value.
 int ThisChar = LastChar;
 LastChar = getchar();
 return ThisChar;
}

//===--===//
// Abstract Syntax Tree (aka Parse Tree)
//===--===//

namespace {

/// ExprAST - Base class for all expression nodes.
class ExprAST {
public:
 virtual ~ExprAST() = default;

 virtual Value *codegen() = 0;
};

/// NumberExprAST - Expression class for numeric literals like "1.0".
class NumberExprAST : public ExprAST {
 double Val;

public:
 NumberExprAST(double Val) : Val(Val) {}

 Value *codegen() override;
};

/// VariableExprAST - Expression class for referencing a variable, like "a".
class VariableExprAST : public ExprAST {
 std::string Name;

public:
 VariableExprAST(const std::string &Name) : Name(Name) {}

 Value *codegen() override;
};

/// BinaryExprAST - Expression class for a binary operator.
class BinaryExprAST : public ExprAST {
 char Op;
 std::unique_ptr<ExprAST> LHS, RHS;

public:
 BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
 std::unique_ptr<ExprAST> RHS)
 : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}

 Value *codegen() override;
};

/// CallExprAST - Expression class for function calls.
class CallExprAST : public ExprAST {
 std::string Callee;
 std::vector<std::unique_ptr<ExprAST>> Args;

public:
 CallExprAST(const std::string &Callee,
 std::vector<std::unique_ptr<ExprAST>> Args)
 : Callee(Callee), Args(std::move(Args)) {}

 Value *codegen() override;
};

/// PrototypeAST - This class represents the "prototype" for a function,
/// which captures its name, and its argument names (thus implicitly the number
/// of arguments the function takes).
class PrototypeAST {
 std::string Name;
 std::vector<std::string> Args;

public:
 PrototypeAST(const std::string &Name, std::vector<std::string> Args)
 : Name(Name), Args(std::move(Args)) {}

 Function *codegen();
 const std::string &getName() const { return Name; }
};

/// FunctionAST - This class represents a function definition itself.
class FunctionAST {
 std::unique_ptr<PrototypeAST> Proto;
 std::unique_ptr<ExprAST> Body;

public:
 FunctionAST(std::unique_ptr<PrototypeAST> Proto,
 std::unique_ptr<ExprAST> Body)
 : Proto(std::move(Proto)), Body(std::move(Body)) {}

 Function *codegen();
};

} // end anonymous namespace

//===--===//
// Parser
//===--===//

/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
/// token the parser is looking at. getNextToken reads another token from the
/// lexer and updates CurTok with its results.
static int CurTok;
static int getNextToken() { return CurTok = gettok(); }

/// BinopPrecedence - This holds the precedence for each binary operator that is
/// defined.
static std::map<char, int> BinopPrecedence;

/// GetTokPrecedence - Get the precedence of the pending binary operator token.
static int GetTokPrecedence() {
 if (!isascii(CurTok))
 return -1;

 // Make sure it's a declared binop.
 int TokPrec = BinopPrecedence[CurTok];
 if (TokPrec <= 0)
 return -1;
 return TokPrec;
}

/// LogError* - These are little helper functions for error handling.
std::unique_ptr<ExprAST> LogError(const char *Str) {
 fprintf(stderr, "Error: %s\n", Str);
 return nullptr;
}

std::unique_ptr<PrototypeAST> LogErrorP(const char *Str) {
 LogError(Str);
 return nullptr;
}

static std::unique_ptr<ExprAST> ParseExpression();

/// numberexpr ::= number
static std::unique_ptr<ExprAST> ParseNumberExpr() {
 auto Result = llvm::make_unique<NumberExprAST>(NumVal);
 getNextToken(); // consume the number
 return std::move(Result);
}

/// parenexpr ::= '(' expression ')'
static std::unique_ptr<ExprAST> ParseParenExpr() {
 getNextToken(); // eat (.
 auto V = ParseExpression();
 if (!V)
 return nullptr;

 if (CurTok != ')')
 return LogError("expected ')'");
 getNextToken(); // eat).
 return V;
}

/// identifierexpr
/// ::= identifier
/// ::= identifier '(' expression* ')'
static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
 std::string IdName = IdentifierStr;

 getNextToken(); // eat identifier.

 if (CurTok != '(') // Simple variable ref.
 return llvm::make_unique<VariableExprAST>(IdName);

 // Call.
 getNextToken(); // eat (
 std::vector<std::unique_ptr<ExprAST>> Args;
 if (CurTok != ')') {
 while (true) {
 if (auto Arg = ParseExpression())
 Args.push_back(std::move(Arg));
 else
 return nullptr;

 if (CurTok == ')')
 break;

 if (CurTok != ',')
 return LogError("Expected ')' or ',' in argument list");
 getNextToken();
 }
 }

 // Eat the ')'.
 getNextToken();

 return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
}

/// primary
/// ::= identifierexpr
/// ::= numberexpr
/// ::= parenexpr
static std::unique_ptr<ExprAST> ParsePrimary() {
 switch (CurTok) {
 default:
 return LogError("unknown token when expecting an expression");
 case tok_identifier:
 return ParseIdentifierExpr();
 case tok_number:
 return ParseNumberExpr();
 case '(':
 return ParseParenExpr();
 }
}

/// binoprhs
/// ::= ('+' primary)*
static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
 std::unique_ptr<ExprAST> LHS) {
 // If this is a binop, find its precedence.
 while (true) {
 int TokPrec = GetTokPrecedence();

 // If this is a binop that binds at least as tightly as the current binop,
 // consume it, otherwise we are done.
 if (TokPrec < ExprPrec)
 return LHS;

 // Okay, we know this is a binop.
 int BinOp = CurTok;
 getNextToken(); // eat binop

 // Parse the primary expression after the binary operator.
 auto RHS = ParsePrimary();
 if (!RHS)
 return nullptr;

 // If BinOp binds less tightly with RHS than the operator after RHS, let
 // the pending operator take RHS as its LHS.
 int NextPrec = GetTokPrecedence();
 if (TokPrec < NextPrec) {
 RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
 if (!RHS)
 return nullptr;
 }

 // Merge LHS/RHS.
 LHS =
 llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
 }
}

/// expression
/// ::= primary binoprhs
///
static std::unique_ptr<ExprAST> ParseExpression() {
 auto LHS = ParsePrimary();
 if (!LHS)
 return nullptr;

 return ParseBinOpRHS(0, std::move(LHS));
}

/// prototype
/// ::= id '(' id* ')'
static std::unique_ptr<PrototypeAST> ParsePrototype() {
 if (CurTok != tok_identifier)
 return LogErrorP("Expected function name in prototype");

 std::string FnName = IdentifierStr;
 getNextToken();

 if (CurTok != '(')
 return LogErrorP("Expected '(' in prototype");

 std::vector<std::string> ArgNames;
 while (getNextToken() == tok_identifier)
 ArgNames.push_back(IdentifierStr);
 if (CurTok != ')')
 return LogErrorP("Expected ')' in prototype");

 // success.
 getNextToken(); // eat ')'.

 return llvm::make_unique<PrototypeAST>(FnName, std::move(ArgNames));
}

/// definition ::= 'def' prototype expression
static std::unique_ptr<FunctionAST> ParseDefinition() {
 getNextToken(); // eat def.
 auto Proto = ParsePrototype();
 if (!Proto)
 return nullptr;

 if (auto E = ParseExpression())
 return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
 return nullptr;
}

/// toplevelexpr ::= expression
static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
 if (auto E = ParseExpression()) {
 // Make an anonymous proto.
 auto Proto = llvm::make_unique<PrototypeAST>("__anon_expr",
 std::vector<std::string>());
 return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
 }
 return nullptr;
}

/// external ::= 'extern' prototype
static std::unique_ptr<PrototypeAST> ParseExtern() {
 getNextToken(); // eat extern.
 return ParsePrototype();
}

//===--===//
// Code Generation
//===--===//

static LLVMContext TheContext;
static IRBuilder<> Builder(TheContext);
static std::unique_ptr<Module> TheModule;
static std::map<std::string, Value *> NamedValues;
static std::unique_ptr<legacy::FunctionPassManager> TheFPM;
static std::unique_ptr<KaleidoscopeJIT> TheJIT;
static std::map<std::string, std::unique_ptr<PrototypeAST>> FunctionProtos;

Value *LogErrorV(const char *Str) {
 LogError(Str);
 return nullptr;
}

Function *getFunction(std::string Name) {
 // First, see if the function has already been added to the current module.
 if (auto *F = TheModule->getFunction(Name))
 return F;

 // If not, check whether we can codegen the declaration from some existing
 // prototype.
 auto FI = FunctionProtos.find(Name);
 if (FI != FunctionProtos.end())
 return FI->second->codegen();

 // If no existing prototype exists, return null.
 return nullptr;
}

Value *NumberExprAST::codegen() {
 return ConstantFP::get(TheContext, APFloat(Val));
}

Value *VariableExprAST::codegen() {
 // Look this variable up in the function.
 Value *V = NamedValues[Name];
 if (!V)
 return LogErrorV("Unknown variable name");
 return V;
}

Value *BinaryExprAST::codegen() {
 Value *L = LHS->codegen();
 Value *R = RHS->codegen();
 if (!L || !R)
 return nullptr;

 switch (Op) {
 case '+':
 return Builder.CreateFAdd(L, R, "addtmp");
 case '-':
 return Builder.CreateFSub(L, R, "subtmp");
 case '*':
 return Builder.CreateFMul(L, R, "multmp");
 case '<':
 L = Builder.CreateFCmpULT(L, R, "cmptmp");
 // Convert bool 0/1 to double 0.0 or 1.0
 return Builder.CreateUIToFP(L, Type::getDoubleTy(TheContext), "booltmp");
 default:
 return LogErrorV("invalid binary operator");
 }
}

Value *CallExprAST::codegen() {
 // Look up the name in the global module table.
 Function *CalleeF = getFunction(Callee);
 if (!CalleeF)
 return LogErrorV("Unknown function referenced");

 // If argument mismatch error.
 if (CalleeF->arg_size() != Args.size())
 return LogErrorV("Incorrect # arguments passed");

 std::vector<Value *> ArgsV;
 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
 ArgsV.push_back(Args[i]->codegen());
 if (!ArgsV.back())
 return nullptr;
 }

 return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
}

Function *PrototypeAST::codegen() {
 // Make the function type: double(double,double) etc.
 std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(TheContext));
 FunctionType *FT =
 FunctionType::get(Type::getDoubleTy(TheContext), Doubles, false);

 Function *F =
 Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get());

 // Set names for all arguments.
 unsigned Idx = 0;
 for (auto &Arg : F->args())
 Arg.setName(Args[Idx++]);

 return F;
}

Function *FunctionAST::codegen() {
 // Transfer ownership of the prototype to the FunctionProtos map, but keep a
 // reference to it for use below.
 auto &P = *Proto;
 FunctionProtos[Proto->getName()] = std::move(Proto);
 Function *TheFunction = getFunction(P.getName());
 if (!TheFunction)
 return nullptr;

 // Create a new basic block to start insertion into.
 BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction);
 Builder.SetInsertPoint(BB);

 // Record the function arguments in the NamedValues map.
 NamedValues.clear();
 for (auto &Arg : TheFunction->args())
 NamedValues[Arg.getName()] = &Arg;

 if (Value *RetVal = Body->codegen()) {
 // Finish off the function.
 Builder.CreateRet(RetVal);

 // Validate the generated code, checking for consistency.
 verifyFunction(*TheFunction);

 // Run the optimizer on the function.
 TheFPM->run(*TheFunction);

 return TheFunction;
 }

 // Error reading body, remove function.
 TheFunction->eraseFromParent();
 return nullptr;
}

//===--===//
// Top-Level parsing and JIT Driver
//===--===//

static void InitializeModuleAndPassManager() {
 // Open a new module.
 TheModule = llvm::make_unique<Module>("my cool jit", TheContext);
 TheModule->setDataLayout(TheJIT->getTargetMachine().createDataLayout());

 // Create a new pass manager attached to it.
 TheFPM = llvm::make_unique<legacy::FunctionPassManager>(TheModule.get());

 // Do simple "peephole" optimizations and bit-twiddling optzns.
 TheFPM->add(createInstructionCombiningPass());
 // Reassociate expressions.
 TheFPM->add(createReassociatePass());
 // Eliminate Common SubExpressions.
 TheFPM->add(createGVNPass());
 // Simplify the control flow graph (deleting unreachable blocks, etc).
 TheFPM->add(createCFGSimplificationPass());

 TheFPM->doInitialization();
}

static void HandleDefinition() {
 if (auto FnAST = ParseDefinition()) {
 if (auto *FnIR = FnAST->codegen()) {
 fprintf(stderr, "Read function definition:");
 FnIR->print(errs());
 fprintf(stderr, "\n");
 TheJIT->addModule(std::move(TheModule));
 InitializeModuleAndPassManager();
 }
 } else {
 // Skip token for error recovery.
 getNextToken();
 }
}

static void HandleExtern() {
 if (auto ProtoAST = ParseExtern()) {
 if (auto *FnIR = ProtoAST->codegen()) {
 fprintf(stderr, "Read extern: ");
 FnIR->print(errs());
 fprintf(stderr, "\n");
 FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST);
 }
 } else {
 // Skip token for error recovery.
 getNextToken();
 }
}

static void HandleTopLevelExpression() {
 // Evaluate a top-level expression into an anonymous function.
 if (auto FnAST = ParseTopLevelExpr()) {
 if (FnAST->codegen()) {
 // JIT the module containing the anonymous expression, keeping a handle so
 // we can free it later.
 auto H = TheJIT->addModule(std::move(TheModule));
 InitializeModuleAndPassManager();

 // Search the JIT for the __anon_expr symbol.
 auto ExprSymbol = TheJIT->findSymbol("__anon_expr");
 assert(ExprSymbol && "Function not found");

 // Get the symbol's address and cast it to the right type (takes no
 // arguments, returns a double) so we can call it as a native function.
 double (*FP)() = (double (*)())(intptr_t)cantFail(ExprSymbol.getAddress());
 fprintf(stderr, "Evaluated to %f\n", FP());

 // Delete the anonymous expression module from the JIT.
 TheJIT->removeModule(H);
 }
 } else {
 // Skip token for error recovery.
 getNextToken();
 }
}

/// top ::= definition | external | expression | ';'
static void MainLoop() {
 while (true) {
 fprintf(stderr, "ready> ");
 switch (CurTok) {
 case tok_eof:
 return;
 case ';': // ignore top-level semicolons.
 getNextToken();
 break;
 case tok_def:
 HandleDefinition();
 break;
 case tok_extern:
 HandleExtern();
 break;
 default:
 HandleTopLevelExpression();
 break;
 }
 }
}

//===--===//
// "Library" functions that can be "extern'd" from user code.
//===--===//

#ifdef _WIN32
#define DLLEXPORT __declspec(dllexport)
#else
#define DLLEXPORT
#endif

/// putchard - putchar that takes a double and returns 0.
extern "C" DLLEXPORT double putchard(double X) {
 fputc((char)X, stderr);
 return 0;
}

/// printd - printf that takes a double prints it as "%f\n", returning 0.
extern "C" DLLEXPORT double printd(double X) {
 fprintf(stderr, "%f\n", X);
 return 0;
}

//===--===//
// Main driver code.
//===--===//

int main() {
 InitializeNativeTarget();
 InitializeNativeTargetAsmPrinter();
 InitializeNativeTargetAsmParser();

 // Install standard binary operators.
 // 1 is lowest precedence.
 BinopPrecedence['<'] = 10;
 BinopPrecedence['+'] = 20;
 BinopPrecedence['-'] = 20;
 BinopPrecedence['*'] = 40; // highest.

 // Prime the first token.
 fprintf(stderr, "ready> ");
 getNextToken();

 TheJIT = llvm::make_unique<KaleidoscopeJIT>();

 InitializeModuleAndPassManager();

 // Run the main "interpreter loop" now.
 MainLoop();

 return 0;
}

Next: Extending the language: control flow

5. Kaleidoscope: Extending the Language: Control Flow

	Chapter 5 Introduction

	If/Then/Else

	Lexer Extensions for If/Then/Else

	AST Extensions for If/Then/Else

	Parser Extensions for If/Then/Else

	LLVM IR for If/Then/Else

	Code Generation for If/Then/Else

	‘for’ Loop Expression

	Lexer Extensions for the ‘for’ Loop

	AST Extensions for the ‘for’ Loop

	Parser Extensions for the ‘for’ Loop

	LLVM IR for the ‘for’ Loop

	Code Generation for the ‘for’ Loop

	Full Code Listing

5.1. Chapter 5 Introduction

Welcome to Chapter 5 of the “Implementing a language with
LLVM” tutorial. Parts 1-4 described the implementation of
the simple Kaleidoscope language and included support for generating
LLVM IR, followed by optimizations and a JIT compiler. Unfortunately, as
presented, Kaleidoscope is mostly useless: it has no control flow other
than call and return. This means that you can’t have conditional
branches in the code, significantly limiting its power. In this episode
of “build that compiler”, we’ll extend Kaleidoscope to have an
if/then/else expression plus a simple ‘for’ loop.

5.2. If/Then/Else

Extending Kaleidoscope to support if/then/else is quite straightforward.
It basically requires adding support for this “new” concept to the
lexer, parser, AST, and LLVM code emitter. This example is nice, because
it shows how easy it is to “grow” a language over time, incrementally
extending it as new ideas are discovered.

Before we get going on “how” we add this extension, let’s talk about
“what” we want. The basic idea is that we want to be able to write this
sort of thing:

def fib(x)
 if x < 3 then
 1
 else
 fib(x-1)+fib(x-2);

In Kaleidoscope, every construct is an expression: there are no
statements. As such, the if/then/else expression needs to return a value
like any other. Since we’re using a mostly functional form, we’ll have
it evaluate its conditional, then return the ‘then’ or ‘else’ value
based on how the condition was resolved. This is very similar to the C
“?:” expression.

The semantics of the if/then/else expression is that it evaluates the
condition to a boolean equality value: 0.0 is considered to be false and
everything else is considered to be true. If the condition is true, the
first subexpression is evaluated and returned, if the condition is
false, the second subexpression is evaluated and returned. Since
Kaleidoscope allows side-effects, this behavior is important to nail
down.

Now that we know what we “want”, let’s break this down into its
constituent pieces.

5.2.1. Lexer Extensions for If/Then/Else

The lexer extensions are straightforward. First we add new enum values
for the relevant tokens:

// control
tok_if = -6,
tok_then = -7,
tok_else = -8,

Once we have that, we recognize the new keywords in the lexer. This is
pretty simple stuff:

...
if (IdentifierStr == "def")
 return tok_def;
if (IdentifierStr == "extern")
 return tok_extern;
if (IdentifierStr == "if")
 return tok_if;
if (IdentifierStr == "then")
 return tok_then;
if (IdentifierStr == "else")
 return tok_else;
return tok_identifier;

5.2.2. AST Extensions for If/Then/Else

To represent the new expression we add a new AST node for it:

/// IfExprAST - Expression class for if/then/else.
class IfExprAST : public ExprAST {
 std::unique_ptr<ExprAST> Cond, Then, Else;

public:
 IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
 std::unique_ptr<ExprAST> Else)
 : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}

 Value *codegen() override;
};

The AST node just has pointers to the various subexpressions.

5.2.3. Parser Extensions for If/Then/Else

Now that we have the relevant tokens coming from the lexer and we have
the AST node to build, our parsing logic is relatively straightforward.
First we define a new parsing function:

/// ifexpr ::= 'if' expression 'then' expression 'else' expression
static std::unique_ptr<ExprAST> ParseIfExpr() {
 getNextToken(); // eat the if.

 // condition.
 auto Cond = ParseExpression();
 if (!Cond)
 return nullptr;

 if (CurTok != tok_then)
 return LogError("expected then");
 getNextToken(); // eat the then

 auto Then = ParseExpression();
 if (!Then)
 return nullptr;

 if (CurTok != tok_else)
 return LogError("expected else");

 getNextToken();

 auto Else = ParseExpression();
 if (!Else)
 return nullptr;

 return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
 std::move(Else));
}

Next we hook it up as a primary expression:

static std::unique_ptr<ExprAST> ParsePrimary() {
 switch (CurTok) {
 default:
 return LogError("unknown token when expecting an expression");
 case tok_identifier:
 return ParseIdentifierExpr();
 case tok_number:
 return ParseNumberExpr();
 case '(':
 return ParseParenExpr();
 case tok_if:
 return ParseIfExpr();
 }
}

5.2.4. LLVM IR for If/Then/Else

Now that we have it parsing and building the AST, the final piece is
adding LLVM code generation support. This is the most interesting part
of the if/then/else example, because this is where it starts to
introduce new concepts. All of the code above has been thoroughly
described in previous chapters.

To motivate the code we want to produce, let’s take a look at a simple
example. Consider:

extern foo();
extern bar();
def baz(x) if x then foo() else bar();

If you disable optimizations, the code you’ll (soon) get from
Kaleidoscope looks like this:

declare double @foo()

declare double @bar()

define double @baz(double %x) {
entry:
 %ifcond = fcmp one double %x, 0.000000e+00
 br i1 %ifcond, label %then, label %else

then: ; preds = %entry
 %calltmp = call double @foo()
 br label %ifcont

else: ; preds = %entry
 %calltmp1 = call double @bar()
 br label %ifcont

ifcont: ; preds = %else, %then
 %iftmp = phi double [%calltmp, %then], [%calltmp1, %else]
 ret double %iftmp
}

To visualize the control flow graph, you can use a nifty feature of the
LLVM ‘opt [http://llvm.org/cmds/opt.html]’ tool. If you put this LLVM
IR into “t.ll” and run “llvm-as < t.ll | opt -analyze -view-cfg”, a
window will pop up and you’ll
see this graph:

[image: Example CFG]
Example CFG

Another way to get this is to call “F->viewCFG()” or
“F->viewCFGOnly()” (where F is a “Function*”) either by
inserting actual calls into the code and recompiling or by calling these
in the debugger. LLVM has many nice features for visualizing various
graphs.

Getting back to the generated code, it is fairly simple: the entry block
evaluates the conditional expression (“x” in our case here) and compares
the result to 0.0 with the “fcmp one” instruction (‘one’ is “Ordered
and Not Equal”). Based on the result of this expression, the code jumps
to either the “then” or “else” blocks, which contain the expressions for
the true/false cases.

Once the then/else blocks are finished executing, they both branch back
to the ‘ifcont’ block to execute the code that happens after the
if/then/else. In this case the only thing left to do is to return to the
caller of the function. The question then becomes: how does the code
know which expression to return?

The answer to this question involves an important SSA operation: the
Phi
operation [http://en.wikipedia.org/wiki/Static_single_assignment_form].
If you’re not familiar with SSA, the wikipedia
article [http://en.wikipedia.org/wiki/Static_single_assignment_form]
is a good introduction and there are various other introductions to it
available on your favorite search engine. The short version is that
“execution” of the Phi operation requires “remembering” which block
control came from. The Phi operation takes on the value corresponding to
the input control block. In this case, if control comes in from the
“then” block, it gets the value of “calltmp”. If control comes from the
“else” block, it gets the value of “calltmp1”.

At this point, you are probably starting to think “Oh no! This means my
simple and elegant front-end will have to start generating SSA form in
order to use LLVM!”. Fortunately, this is not the case, and we strongly
advise not implementing an SSA construction algorithm in your
front-end unless there is an amazingly good reason to do so. In
practice, there are two sorts of values that float around in code
written for your average imperative programming language that might need
Phi nodes:

	Code that involves user variables: x = 1; x = x + 1;

	Values that are implicit in the structure of your AST, such as the
Phi node in this case.

In Chapter 7 of this tutorial (“mutable variables”),
we’ll talk about #1 in depth. For now, just believe me that you don’t
need SSA construction to handle this case. For #2, you have the choice
of using the techniques that we will describe for #1, or you can insert
Phi nodes directly, if convenient. In this case, it is really
easy to generate the Phi node, so we choose to do it directly.

Okay, enough of the motivation and overview, let’s generate code!

5.2.5. Code Generation for If/Then/Else

In order to generate code for this, we implement the codegen method
for IfExprAST:

Value *IfExprAST::codegen() {
 Value *CondV = Cond->codegen();
 if (!CondV)
 return nullptr;

 // Convert condition to a bool by comparing non-equal to 0.0.
 CondV = Builder.CreateFCmpONE(
 CondV, ConstantFP::get(TheContext, APFloat(0.0)), "ifcond");

This code is straightforward and similar to what we saw before. We emit
the expression for the condition, then compare that value to zero to get
a truth value as a 1-bit (bool) value.

Function *TheFunction = Builder.GetInsertBlock()->getParent();

// Create blocks for the then and else cases. Insert the 'then' block at the
// end of the function.
BasicBlock *ThenBB =
 BasicBlock::Create(TheContext, "then", TheFunction);
BasicBlock *ElseBB = BasicBlock::Create(TheContext, "else");
BasicBlock *MergeBB = BasicBlock::Create(TheContext, "ifcont");

Builder.CreateCondBr(CondV, ThenBB, ElseBB);

This code creates the basic blocks that are related to the if/then/else
statement, and correspond directly to the blocks in the example above.
The first line gets the current Function object that is being built. It
gets this by asking the builder for the current BasicBlock, and asking
that block for its “parent” (the function it is currently embedded
into).

Once it has that, it creates three blocks. Note that it passes
“TheFunction” into the constructor for the “then” block. This causes the
constructor to automatically insert the new block into the end of the
specified function. The other two blocks are created, but aren’t yet
inserted into the function.

Once the blocks are created, we can emit the conditional branch that
chooses between them. Note that creating new blocks does not implicitly
affect the IRBuilder, so it is still inserting into the block that the
condition went into. Also note that it is creating a branch to the
“then” block and the “else” block, even though the “else” block isn’t
inserted into the function yet. This is all ok: it is the standard way
that LLVM supports forward references.

// Emit then value.
Builder.SetInsertPoint(ThenBB);

Value *ThenV = Then->codegen();
if (!ThenV)
 return nullptr;

Builder.CreateBr(MergeBB);
// Codegen of 'Then' can change the current block, update ThenBB for the PHI.
ThenBB = Builder.GetInsertBlock();

After the conditional branch is inserted, we move the builder to start
inserting into the “then” block. Strictly speaking, this call moves the
insertion point to be at the end of the specified block. However, since
the “then” block is empty, it also starts out by inserting at the
beginning of the block. :)

Once the insertion point is set, we recursively codegen the “then”
expression from the AST. To finish off the “then” block, we create an
unconditional branch to the merge block. One interesting (and very
important) aspect of the LLVM IR is that it requires all basic blocks
to be “terminated” with a control
flow instruction such as return or
branch. This means that all control flow, including fall throughs must
be made explicit in the LLVM IR. If you violate this rule, the verifier
will emit an error.

The final line here is quite subtle, but is very important. The basic
issue is that when we create the Phi node in the merge block, we need to
set up the block/value pairs that indicate how the Phi will work.
Importantly, the Phi node expects to have an entry for each predecessor
of the block in the CFG. Why then, are we getting the current block when
we just set it to ThenBB 5 lines above? The problem is that the “Then”
expression may actually itself change the block that the Builder is
emitting into if, for example, it contains a nested “if/then/else”
expression. Because calling codegen() recursively could arbitrarily change
the notion of the current block, we are required to get an up-to-date
value for code that will set up the Phi node.

// Emit else block.
TheFunction->getBasicBlockList().push_back(ElseBB);
Builder.SetInsertPoint(ElseBB);

Value *ElseV = Else->codegen();
if (!ElseV)
 return nullptr;

Builder.CreateBr(MergeBB);
// codegen of 'Else' can change the current block, update ElseBB for the PHI.
ElseBB = Builder.GetInsertBlock();

Code generation for the ‘else’ block is basically identical to codegen
for the ‘then’ block. The only significant difference is the first line,
which adds the ‘else’ block to the function. Recall previously that the
‘else’ block was created, but not added to the function. Now that the
‘then’ and ‘else’ blocks are emitted, we can finish up with the merge
code:

 // Emit merge block.
 TheFunction->getBasicBlockList().push_back(MergeBB);
 Builder.SetInsertPoint(MergeBB);
 PHINode *PN =
 Builder.CreatePHI(Type::getDoubleTy(TheContext), 2, "iftmp");

 PN->addIncoming(ThenV, ThenBB);
 PN->addIncoming(ElseV, ElseBB);
 return PN;
}

The first two lines here are now familiar: the first adds the “merge”
block to the Function object (it was previously floating, like the else
block above). The second changes the insertion point so that newly
created code will go into the “merge” block. Once that is done, we need
to create the PHI node and set up the block/value pairs for the PHI.

Finally, the CodeGen function returns the phi node as the value computed
by the if/then/else expression. In our example above, this returned
value will feed into the code for the top-level function, which will
create the return instruction.

Overall, we now have the ability to execute conditional code in
Kaleidoscope. With this extension, Kaleidoscope is a fairly complete
language that can calculate a wide variety of numeric functions. Next up
we’ll add another useful expression that is familiar from non-functional
languages…

5.3. ‘for’ Loop Expression

Now that we know how to add basic control flow constructs to the
language, we have the tools to add more powerful things. Let’s add
something more aggressive, a ‘for’ expression:

extern putchard(char);
def printstar(n)
 for i = 1, i < n, 1.0 in
 putchard(42); # ascii 42 = '*'

print 100 '*' characters
printstar(100);

This expression defines a new variable (“i” in this case) which iterates
from a starting value, while the condition (“i < n” in this case) is
true, incrementing by an optional step value (“1.0” in this case). If
the step value is omitted, it defaults to 1.0. While the loop is true,
it executes its body expression. Because we don’t have anything better
to return, we’ll just define the loop as always returning 0.0. In the
future when we have mutable variables, it will get more useful.

As before, let’s talk about the changes that we need to Kaleidoscope to
support this.

5.3.1. Lexer Extensions for the ‘for’ Loop

The lexer extensions are the same sort of thing as for if/then/else:

... in enum Token ...
// control
tok_if = -6, tok_then = -7, tok_else = -8,
tok_for = -9, tok_in = -10

... in gettok ...
if (IdentifierStr == "def")
 return tok_def;
if (IdentifierStr == "extern")
 return tok_extern;
if (IdentifierStr == "if")
 return tok_if;
if (IdentifierStr == "then")
 return tok_then;
if (IdentifierStr == "else")
 return tok_else;
if (IdentifierStr == "for")
 return tok_for;
if (IdentifierStr == "in")
 return tok_in;
return tok_identifier;

5.3.2. AST Extensions for the ‘for’ Loop

The AST node is just as simple. It basically boils down to capturing the
variable name and the constituent expressions in the node.

/// ForExprAST - Expression class for for/in.
class ForExprAST : public ExprAST {
 std::string VarName;
 std::unique_ptr<ExprAST> Start, End, Step, Body;

public:
 ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start,
 std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
 std::unique_ptr<ExprAST> Body)
 : VarName(VarName), Start(std::move(Start)), End(std::move(End)),
 Step(std::move(Step)), Body(std::move(Body)) {}

 Value *codegen() override;
};

5.3.3. Parser Extensions for the ‘for’ Loop

The parser code is also fairly standard. The only interesting thing here
is handling of the optional step value. The parser code handles it by
checking to see if the second comma is present. If not, it sets the step
value to null in the AST node:

/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
static std::unique_ptr<ExprAST> ParseForExpr() {
 getNextToken(); // eat the for.

 if (CurTok != tok_identifier)
 return LogError("expected identifier after for");

 std::string IdName = IdentifierStr;
 getNextToken(); // eat identifier.

 if (CurTok != '=')
 return LogError("expected '=' after for");
 getNextToken(); // eat '='.

 auto Start = ParseExpression();
 if (!Start)
 return nullptr;
 if (CurTok != ',')
 return LogError("expected ',' after for start value");
 getNextToken();

 auto End = ParseExpression();
 if (!End)
 return nullptr;

 // The step value is optional.
 std::unique_ptr<ExprAST> Step;
 if (CurTok == ',') {
 getNextToken();
 Step = ParseExpression();
 if (!Step)
 return nullptr;
 }

 if (CurTok != tok_in)
 return LogError("expected 'in' after for");
 getNextToken(); // eat 'in'.

 auto Body = ParseExpression();
 if (!Body)
 return nullptr;

 return llvm::make_unique<ForExprAST>(IdName, std::move(Start),
 std::move(End), std::move(Step),
 std::move(Body));
}

And again we hook it up as a primary expression:

static std::unique_ptr<ExprAST> ParsePrimary() {
 switch (CurTok) {
 default:
 return LogError("unknown token when expecting an expression");
 case tok_identifier:
 return ParseIdentifierExpr();
 case tok_number:
 return ParseNumberExpr();
 case '(':
 return ParseParenExpr();
 case tok_if:
 return ParseIfExpr();
 case tok_for:
 return ParseForExpr();
 }
}

5.3.4. LLVM IR for the ‘for’ Loop

Now we get to the good part: the LLVM IR we want to generate for this
thing. With the simple example above, we get this LLVM IR (note that
this dump is generated with optimizations disabled for clarity):

declare double @putchard(double)

define double @printstar(double %n) {
entry:
 ; initial value = 1.0 (inlined into phi)
 br label %loop

loop: ; preds = %loop, %entry
 %i = phi double [1.000000e+00, %entry], [%nextvar, %loop]
 ; body
 %calltmp = call double @putchard(double 4.200000e+01)
 ; increment
 %nextvar = fadd double %i, 1.000000e+00

 ; termination test
 %cmptmp = fcmp ult double %i, %n
 %booltmp = uitofp i1 %cmptmp to double
 %loopcond = fcmp one double %booltmp, 0.000000e+00
 br i1 %loopcond, label %loop, label %afterloop

afterloop: ; preds = %loop
 ; loop always returns 0.0
 ret double 0.000000e+00
}

This loop contains all the same constructs we saw before: a phi node,
several expressions, and some basic blocks. Let’s see how this fits
together.

5.3.5. Code Generation for the ‘for’ Loop

The first part of codegen is very simple: we just output the start
expression for the loop value:

Value *ForExprAST::codegen() {
 // Emit the start code first, without 'variable' in scope.
 Value *StartVal = Start->codegen();
 if (!StartVal)
 return nullptr;

With this out of the way, the next step is to set up the LLVM basic
block for the start of the loop body. In the case above, the whole loop
body is one block, but remember that the body code itself could consist
of multiple blocks (e.g. if it contains an if/then/else or a for/in
expression).

// Make the new basic block for the loop header, inserting after current
// block.
Function *TheFunction = Builder.GetInsertBlock()->getParent();
BasicBlock *PreheaderBB = Builder.GetInsertBlock();
BasicBlock *LoopBB =
 BasicBlock::Create(TheContext, "loop", TheFunction);

// Insert an explicit fall through from the current block to the LoopBB.
Builder.CreateBr(LoopBB);

This code is similar to what we saw for if/then/else. Because we will
need it to create the Phi node, we remember the block that falls through
into the loop. Once we have that, we create the actual block that starts
the loop and create an unconditional branch for the fall-through between
the two blocks.

// Start insertion in LoopBB.
Builder.SetInsertPoint(LoopBB);

// Start the PHI node with an entry for Start.
PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(TheContext),
 2, VarName.c_str());
Variable->addIncoming(StartVal, PreheaderBB);

Now that the “preheader” for the loop is set up, we switch to emitting
code for the loop body. To begin with, we move the insertion point and
create the PHI node for the loop induction variable. Since we already
know the incoming value for the starting value, we add it to the Phi
node. Note that the Phi will eventually get a second value for the
backedge, but we can’t set it up yet (because it doesn’t exist!).

// Within the loop, the variable is defined equal to the PHI node. If it
// shadows an existing variable, we have to restore it, so save it now.
Value *OldVal = NamedValues[VarName];
NamedValues[VarName] = Variable;

// Emit the body of the loop. This, like any other expr, can change the
// current BB. Note that we ignore the value computed by the body, but don't
// allow an error.
if (!Body->codegen())
 return nullptr;

Now the code starts to get more interesting. Our ‘for’ loop introduces a
new variable to the symbol table. This means that our symbol table can
now contain either function arguments or loop variables. To handle this,
before we codegen the body of the loop, we add the loop variable as the
current value for its name. Note that it is possible that there is a
variable of the same name in the outer scope. It would be easy to make
this an error (emit an error and return null if there is already an
entry for VarName) but we choose to allow shadowing of variables. In
order to handle this correctly, we remember the Value that we are
potentially shadowing in OldVal (which will be null if there is no
shadowed variable).

Once the loop variable is set into the symbol table, the code
recursively codegen’s the body. This allows the body to use the loop
variable: any references to it will naturally find it in the symbol
table.

// Emit the step value.
Value *StepVal = nullptr;
if (Step) {
 StepVal = Step->codegen();
 if (!StepVal)
 return nullptr;
} else {
 // If not specified, use 1.0.
 StepVal = ConstantFP::get(TheContext, APFloat(1.0));
}

Value *NextVar = Builder.CreateFAdd(Variable, StepVal, "nextvar");

Now that the body is emitted, we compute the next value of the iteration
variable by adding the step value, or 1.0 if it isn’t present.
‘NextVar’ will be the value of the loop variable on the next
iteration of the loop.

// Compute the end condition.
Value *EndCond = End->codegen();
if (!EndCond)
 return nullptr;

// Convert condition to a bool by comparing non-equal to 0.0.
EndCond = Builder.CreateFCmpONE(
 EndCond, ConstantFP::get(TheContext, APFloat(0.0)), "loopcond");

Finally, we evaluate the exit value of the loop, to determine whether
the loop should exit. This mirrors the condition evaluation for the
if/then/else statement.

// Create the "after loop" block and insert it.
BasicBlock *LoopEndBB = Builder.GetInsertBlock();
BasicBlock *AfterBB =
 BasicBlock::Create(TheContext, "afterloop", TheFunction);

// Insert the conditional branch into the end of LoopEndBB.
Builder.CreateCondBr(EndCond, LoopBB, AfterBB);

// Any new code will be inserted in AfterBB.
Builder.SetInsertPoint(AfterBB);

With the code for the body of the loop complete, we just need to finish
up the control flow for it. This code remembers the end block (for the
phi node), then creates the block for the loop exit (“afterloop”). Based
on the value of the exit condition, it creates a conditional branch that
chooses between executing the loop again and exiting the loop. Any
future code is emitted in the “afterloop” block, so it sets the
insertion position to it.

 // Add a new entry to the PHI node for the backedge.
 Variable->addIncoming(NextVar, LoopEndBB);

 // Restore the unshadowed variable.
 if (OldVal)
 NamedValues[VarName] = OldVal;
 else
 NamedValues.erase(VarName);

 // for expr always returns 0.0.
 return Constant::getNullValue(Type::getDoubleTy(TheContext));
}

The final code handles various cleanups: now that we have the “NextVar”
value, we can add the incoming value to the loop PHI node. After that,
we remove the loop variable from the symbol table, so that it isn’t in
scope after the for loop. Finally, code generation of the for loop
always returns 0.0, so that is what we return from
ForExprAST::codegen().

With this, we conclude the “adding control flow to Kaleidoscope” chapter
of the tutorial. In this chapter we added two control flow constructs,
and used them to motivate a couple of aspects of the LLVM IR that are
important for front-end implementors to know. In the next chapter of our
saga, we will get a bit crazier and add user-defined
operators to our poor innocent language.

5.4. Full Code Listing

Here is the complete code listing for our running example, enhanced with
the if/then/else and for expressions. To build this example, use:

Compile
clang++ -g toy.cpp `llvm-config --cxxflags --ldflags --system-libs --libs core mcjit native` -O3 -o toy
Run
./toy

Here is the code:

#include "../include/KaleidoscopeJIT.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/InstCombine/InstCombine.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVN.h"
#include <algorithm>
#include <cassert>
#include <cctype>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <map>
#include <memory>
#include <string>
#include <vector>

using namespace llvm;
using namespace llvm::orc;

//===--===//
// Lexer
//===--===//

// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
// of these for known things.
enum Token {
 tok_eof = -1,

 // commands
 tok_def = -2,
 tok_extern = -3,

 // primary
 tok_identifier = -4,
 tok_number = -5,

 // control
 tok_if = -6,
 tok_then = -7,
 tok_else = -8,
 tok_for = -9,
 tok_in = -10
};

static std::string IdentifierStr; // Filled in if tok_identifier
static double NumVal; // Filled in if tok_number

/// gettok - Return the next token from standard input.
static int gettok() {
 static int LastChar = ' ';

 // Skip any whitespace.
 while (isspace(LastChar))
 LastChar = getchar();

 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
 IdentifierStr = LastChar;
 while (isalnum((LastChar = getchar())))
 IdentifierStr += LastChar;

 if (IdentifierStr == "def")
 return tok_def;
 if (IdentifierStr == "extern")
 return tok_extern;
 if (IdentifierStr == "if")
 return tok_if;
 if (IdentifierStr == "then")
 return tok_then;
 if (IdentifierStr == "else")
 return tok_else;
 if (IdentifierStr == "for")
 return tok_for;
 if (IdentifierStr == "in")
 return tok_in;
 return tok_identifier;
 }

 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
 std::string NumStr;
 do {
 NumStr += LastChar;
 LastChar = getchar();
 } while (isdigit(LastChar) || LastChar == '.');

 NumVal = strtod(NumStr.c_str(), nullptr);
 return tok_number;
 }

 if (LastChar == '#') {
 // Comment until end of line.
 do
 LastChar = getchar();
 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');

 if (LastChar != EOF)
 return gettok();
 }

 // Check for end of file. Don't eat the EOF.
 if (LastChar == EOF)
 return tok_eof;

 // Otherwise, just return the character as its ascii value.
 int ThisChar = LastChar;
 LastChar = getchar();
 return ThisChar;
}

//===--===//
// Abstract Syntax Tree (aka Parse Tree)
//===--===//

namespace {

/// ExprAST - Base class for all expression nodes.
class ExprAST {
public:
 virtual ~ExprAST() = default;

 virtual Value *codegen() = 0;
};

/// NumberExprAST - Expression class for numeric literals like "1.0".
class NumberExprAST : public ExprAST {
 double Val;

public:
 NumberExprAST(double Val) : Val(Val) {}

 Value *codegen() override;
};

/// VariableExprAST - Expression class for referencing a variable, like "a".
class VariableExprAST : public ExprAST {
 std::string Name;

public:
 VariableExprAST(const std::string &Name) : Name(Name) {}

 Value *codegen() override;
};

/// BinaryExprAST - Expression class for a binary operator.
class BinaryExprAST : public ExprAST {
 char Op;
 std::unique_ptr<ExprAST> LHS, RHS;

public:
 BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
 std::unique_ptr<ExprAST> RHS)
 : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}

 Value *codegen() override;
};

/// CallExprAST - Expression class for function calls.
class CallExprAST : public ExprAST {
 std::string Callee;
 std::vector<std::unique_ptr<ExprAST>> Args;

public:
 CallExprAST(const std::string &Callee,
 std::vector<std::unique_ptr<ExprAST>> Args)
 : Callee(Callee), Args(std::move(Args)) {}

 Value *codegen() override;
};

/// IfExprAST - Expression class for if/then/else.
class IfExprAST : public ExprAST {
 std::unique_ptr<ExprAST> Cond, Then, Else;

public:
 IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
 std::unique_ptr<ExprAST> Else)
 : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}

 Value *codegen() override;
};

/// ForExprAST - Expression class for for/in.
class ForExprAST : public ExprAST {
 std::string VarName;
 std::unique_ptr<ExprAST> Start, End, Step, Body;

public:
 ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start,
 std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
 std::unique_ptr<ExprAST> Body)
 : VarName(VarName), Start(std::move(Start)), End(std::move(End)),
 Step(std::move(Step)), Body(std::move(Body)) {}

 Value *codegen() override;
};

/// PrototypeAST - This class represents the "prototype" for a function,
/// which captures its name, and its argument names (thus implicitly the number
/// of arguments the function takes).
class PrototypeAST {
 std::string Name;
 std::vector<std::string> Args;

public:
 PrototypeAST(const std::string &Name, std::vector<std::string> Args)
 : Name(Name), Args(std::move(Args)) {}

 Function *codegen();
 const std::string &getName() const { return Name; }
};

/// FunctionAST - This class represents a function definition itself.
class FunctionAST {
 std::unique_ptr<PrototypeAST> Proto;
 std::unique_ptr<ExprAST> Body;

public:
 FunctionAST(std::unique_ptr<PrototypeAST> Proto,
 std::unique_ptr<ExprAST> Body)
 : Proto(std::move(Proto)), Body(std::move(Body)) {}

 Function *codegen();
};

} // end anonymous namespace

//===--===//
// Parser
//===--===//

/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
/// token the parser is looking at. getNextToken reads another token from the
/// lexer and updates CurTok with its results.
static int CurTok;
static int getNextToken() { return CurTok = gettok(); }

/// BinopPrecedence - This holds the precedence for each binary operator that is
/// defined.
static std::map<char, int> BinopPrecedence;

/// GetTokPrecedence - Get the precedence of the pending binary operator token.
static int GetTokPrecedence() {
 if (!isascii(CurTok))
 return -1;

 // Make sure it's a declared binop.
 int TokPrec = BinopPrecedence[CurTok];
 if (TokPrec <= 0)
 return -1;
 return TokPrec;
}

/// LogError* - These are little helper functions for error handling.
std::unique_ptr<ExprAST> LogError(const char *Str) {
 fprintf(stderr, "Error: %s\n", Str);
 return nullptr;
}

std::unique_ptr<PrototypeAST> LogErrorP(const char *Str) {
 LogError(Str);
 return nullptr;
}

static std::unique_ptr<ExprAST> ParseExpression();

/// numberexpr ::= number
static std::unique_ptr<ExprAST> ParseNumberExpr() {
 auto Result = llvm::make_unique<NumberExprAST>(NumVal);
 getNextToken(); // consume the number
 return std::move(Result);
}

/// parenexpr ::= '(' expression ')'
static std::unique_ptr<ExprAST> ParseParenExpr() {
 getNextToken(); // eat (.
 auto V = ParseExpression();
 if (!V)
 return nullptr;

 if (CurTok != ')')
 return LogError("expected ')'");
 getNextToken(); // eat).
 return V;
}

/// identifierexpr
/// ::= identifier
/// ::= identifier '(' expression* ')'
static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
 std::string IdName = IdentifierStr;

 getNextToken(); // eat identifier.

 if (CurTok != '(') // Simple variable ref.
 return llvm::make_unique<VariableExprAST>(IdName);

 // Call.
 getNextToken(); // eat (
 std::vector<std::unique_ptr<ExprAST>> Args;
 if (CurTok != ')') {
 while (true) {
 if (auto Arg = ParseExpression())
 Args.push_back(std::move(Arg));
 else
 return nullptr;

 if (CurTok == ')')
 break;

 if (CurTok != ',')
 return LogError("Expected ')' or ',' in argument list");
 getNextToken();
 }
 }

 // Eat the ')'.
 getNextToken();

 return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
}

/// ifexpr ::= 'if' expression 'then' expression 'else' expression
static std::unique_ptr<ExprAST> ParseIfExpr() {
 getNextToken(); // eat the if.

 // condition.
 auto Cond = ParseExpression();
 if (!Cond)
 return nullptr;

 if (CurTok != tok_then)
 return LogError("expected then");
 getNextToken(); // eat the then

 auto Then = ParseExpression();
 if (!Then)
 return nullptr;

 if (CurTok != tok_else)
 return LogError("expected else");

 getNextToken();

 auto Else = ParseExpression();
 if (!Else)
 return nullptr;

 return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
 std::move(Else));
}

/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
static std::unique_ptr<ExprAST> ParseForExpr() {
 getNextToken(); // eat the for.

 if (CurTok != tok_identifier)
 return LogError("expected identifier after for");

 std::string IdName = IdentifierStr;
 getNextToken(); // eat identifier.

 if (CurTok != '=')
 return LogError("expected '=' after for");
 getNextToken(); // eat '='.

 auto Start = ParseExpression();
 if (!Start)
 return nullptr;
 if (CurTok != ',')
 return LogError("expected ',' after for start value");
 getNextToken();

 auto End = ParseExpression();
 if (!End)
 return nullptr;

 // The step value is optional.
 std::unique_ptr<ExprAST> Step;
 if (CurTok == ',') {
 getNextToken();
 Step = ParseExpression();
 if (!Step)
 return nullptr;
 }

 if (CurTok != tok_in)
 return LogError("expected 'in' after for");
 getNextToken(); // eat 'in'.

 auto Body = ParseExpression();
 if (!Body)
 return nullptr;

 return llvm::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
 std::move(Step), std::move(Body));
}

/// primary
/// ::= identifierexpr
/// ::= numberexpr
/// ::= parenexpr
/// ::= ifexpr
/// ::= forexpr
static std::unique_ptr<ExprAST> ParsePrimary() {
 switch (CurTok) {
 default:
 return LogError("unknown token when expecting an expression");
 case tok_identifier:
 return ParseIdentifierExpr();
 case tok_number:
 return ParseNumberExpr();
 case '(':
 return ParseParenExpr();
 case tok_if:
 return ParseIfExpr();
 case tok_for:
 return ParseForExpr();
 }
}

/// binoprhs
/// ::= ('+' primary)*
static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
 std::unique_ptr<ExprAST> LHS) {
 // If this is a binop, find its precedence.
 while (true) {
 int TokPrec = GetTokPrecedence();

 // If this is a binop that binds at least as tightly as the current binop,
 // consume it, otherwise we are done.
 if (TokPrec < ExprPrec)
 return LHS;

 // Okay, we know this is a binop.
 int BinOp = CurTok;
 getNextToken(); // eat binop

 // Parse the primary expression after the binary operator.
 auto RHS = ParsePrimary();
 if (!RHS)
 return nullptr;

 // If BinOp binds less tightly with RHS than the operator after RHS, let
 // the pending operator take RHS as its LHS.
 int NextPrec = GetTokPrecedence();
 if (TokPrec < NextPrec) {
 RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
 if (!RHS)
 return nullptr;
 }

 // Merge LHS/RHS.
 LHS =
 llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
 }
}

/// expression
/// ::= primary binoprhs
///
static std::unique_ptr<ExprAST> ParseExpression() {
 auto LHS = ParsePrimary();
 if (!LHS)
 return nullptr;

 return ParseBinOpRHS(0, std::move(LHS));
}

/// prototype
/// ::= id '(' id* ')'
static std::unique_ptr<PrototypeAST> ParsePrototype() {
 if (CurTok != tok_identifier)
 return LogErrorP("Expected function name in prototype");

 std::string FnName = IdentifierStr;
 getNextToken();

 if (CurTok != '(')
 return LogErrorP("Expected '(' in prototype");

 std::vector<std::string> ArgNames;
 while (getNextToken() == tok_identifier)
 ArgNames.push_back(IdentifierStr);
 if (CurTok != ')')
 return LogErrorP("Expected ')' in prototype");

 // success.
 getNextToken(); // eat ')'.

 return llvm::make_unique<PrototypeAST>(FnName, std::move(ArgNames));
}

/// definition ::= 'def' prototype expression
static std::unique_ptr<FunctionAST> ParseDefinition() {
 getNextToken(); // eat def.
 auto Proto = ParsePrototype();
 if (!Proto)
 return nullptr;

 if (auto E = ParseExpression())
 return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
 return nullptr;
}

/// toplevelexpr ::= expression
static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
 if (auto E = ParseExpression()) {
 // Make an anonymous proto.
 auto Proto = llvm::make_unique<PrototypeAST>("__anon_expr",
 std::vector<std::string>());
 return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
 }
 return nullptr;
}

/// external ::= 'extern' prototype
static std::unique_ptr<PrototypeAST> ParseExtern() {
 getNextToken(); // eat extern.
 return ParsePrototype();
}

//===--===//
// Code Generation
//===--===//

static LLVMContext TheContext;
static IRBuilder<> Builder(TheContext);
static std::unique_ptr<Module> TheModule;
static std::map<std::string, Value *> NamedValues;
static std::unique_ptr<legacy::FunctionPassManager> TheFPM;
static std::unique_ptr<KaleidoscopeJIT> TheJIT;
static std::map<std::string, std::unique_ptr<PrototypeAST>> FunctionProtos;

Value *LogErrorV(const char *Str) {
 LogError(Str);
 return nullptr;
}

Function *getFunction(std::string Name) {
 // First, see if the function has already been added to the current module.
 if (auto *F = TheModule->getFunction(Name))
 return F;

 // If not, check whether we can codegen the declaration from some existing
 // prototype.
 auto FI = FunctionProtos.find(Name);
 if (FI != FunctionProtos.end())
 return FI->second->codegen();

 // If no existing prototype exists, return null.
 return nullptr;
}

Value *NumberExprAST::codegen() {
 return ConstantFP::get(TheContext, APFloat(Val));
}

Value *VariableExprAST::codegen() {
 // Look this variable up in the function.
 Value *V = NamedValues[Name];
 if (!V)
 return LogErrorV("Unknown variable name");
 return V;
}

Value *BinaryExprAST::codegen() {
 Value *L = LHS->codegen();
 Value *R = RHS->codegen();
 if (!L || !R)
 return nullptr;

 switch (Op) {
 case '+':
 return Builder.CreateFAdd(L, R, "addtmp");
 case '-':
 return Builder.CreateFSub(L, R, "subtmp");
 case '*':
 return Builder.CreateFMul(L, R, "multmp");
 case '<':
 L = Builder.CreateFCmpULT(L, R, "cmptmp");
 // Convert bool 0/1 to double 0.0 or 1.0
 return Builder.CreateUIToFP(L, Type::getDoubleTy(TheContext), "booltmp");
 default:
 return LogErrorV("invalid binary operator");
 }
}

Value *CallExprAST::codegen() {
 // Look up the name in the global module table.
 Function *CalleeF = getFunction(Callee);
 if (!CalleeF)
 return LogErrorV("Unknown function referenced");

 // If argument mismatch error.
 if (CalleeF->arg_size() != Args.size())
 return LogErrorV("Incorrect # arguments passed");

 std::vector<Value *> ArgsV;
 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
 ArgsV.push_back(Args[i]->codegen());
 if (!ArgsV.back())
 return nullptr;
 }

 return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
}

Value *IfExprAST::codegen() {
 Value *CondV = Cond->codegen();
 if (!CondV)
 return nullptr;

 // Convert condition to a bool by comparing non-equal to 0.0.
 CondV = Builder.CreateFCmpONE(
 CondV, ConstantFP::get(TheContext, APFloat(0.0)), "ifcond");

 Function *TheFunction = Builder.GetInsertBlock()->getParent();

 // Create blocks for the then and else cases. Insert the 'then' block at the
 // end of the function.
 BasicBlock *ThenBB = BasicBlock::Create(TheContext, "then", TheFunction);
 BasicBlock *ElseBB = BasicBlock::Create(TheContext, "else");
 BasicBlock *MergeBB = BasicBlock::Create(TheContext, "ifcont");

 Builder.CreateCondBr(CondV, ThenBB, ElseBB);

 // Emit then value.
 Builder.SetInsertPoint(ThenBB);

 Value *ThenV = Then->codegen();
 if (!ThenV)
 return nullptr;

 Builder.CreateBr(MergeBB);
 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
 ThenBB = Builder.GetInsertBlock();

 // Emit else block.
 TheFunction->getBasicBlockList().push_back(ElseBB);
 Builder.SetInsertPoint(ElseBB);

 Value *ElseV = Else->codegen();
 if (!ElseV)
 return nullptr;

 Builder.CreateBr(MergeBB);
 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
 ElseBB = Builder.GetInsertBlock();

 // Emit merge block.
 TheFunction->getBasicBlockList().push_back(MergeBB);
 Builder.SetInsertPoint(MergeBB);
 PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(TheContext), 2, "iftmp");

 PN->addIncoming(ThenV, ThenBB);
 PN->addIncoming(ElseV, ElseBB);
 return PN;
}

// Output for-loop as:
// ...
// start = startexpr
// goto loop
// loop:
// variable = phi [start, loopheader], [nextvariable, loopend]
// ...
// bodyexpr
// ...
// loopend:
// step = stepexpr
// nextvariable = variable + step
// endcond = endexpr
// br endcond, loop, endloop
// outloop:
Value *ForExprAST::codegen() {
 // Emit the start code first, without 'variable' in scope.
 Value *StartVal = Start->codegen();
 if (!StartVal)
 return nullptr;

 // Make the new basic block for the loop header, inserting after current
 // block.
 Function *TheFunction = Builder.GetInsertBlock()->getParent();
 BasicBlock *PreheaderBB = Builder.GetInsertBlock();
 BasicBlock *LoopBB = BasicBlock::Create(TheContext, "loop", TheFunction);

 // Insert an explicit fall through from the current block to the LoopBB.
 Builder.CreateBr(LoopBB);

 // Start insertion in LoopBB.
 Builder.SetInsertPoint(LoopBB);

 // Start the PHI node with an entry for Start.
 PHINode *Variable =
 Builder.CreatePHI(Type::getDoubleTy(TheContext), 2, VarName);
 Variable->addIncoming(StartVal, PreheaderBB);

 // Within the loop, the variable is defined equal to the PHI node. If it
 // shadows an existing variable, we have to restore it, so save it now.
 Value *OldVal = NamedValues[VarName];
 NamedValues[VarName] = Variable;

 // Emit the body of the loop. This, like any other expr, can change the
 // current BB. Note that we ignore the value computed by the body, but don't
 // allow an error.
 if (!Body->codegen())
 return nullptr;

 // Emit the step value.
 Value *StepVal = nullptr;
 if (Step) {
 StepVal = Step->codegen();
 if (!StepVal)
 return nullptr;
 } else {
 // If not specified, use 1.0.
 StepVal = ConstantFP::get(TheContext, APFloat(1.0));
 }

 Value *NextVar = Builder.CreateFAdd(Variable, StepVal, "nextvar");

 // Compute the end condition.
 Value *EndCond = End->codegen();
 if (!EndCond)
 return nullptr;

 // Convert condition to a bool by comparing non-equal to 0.0.
 EndCond = Builder.CreateFCmpONE(
 EndCond, ConstantFP::get(TheContext, APFloat(0.0)), "loopcond");

 // Create the "after loop" block and insert it.
 BasicBlock *LoopEndBB = Builder.GetInsertBlock();
 BasicBlock *AfterBB =
 BasicBlock::Create(TheContext, "afterloop", TheFunction);

 // Insert the conditional branch into the end of LoopEndBB.
 Builder.CreateCondBr(EndCond, LoopBB, AfterBB);

 // Any new code will be inserted in AfterBB.
 Builder.SetInsertPoint(AfterBB);

 // Add a new entry to the PHI node for the backedge.
 Variable->addIncoming(NextVar, LoopEndBB);

 // Restore the unshadowed variable.
 if (OldVal)
 NamedValues[VarName] = OldVal;
 else
 NamedValues.erase(VarName);

 // for expr always returns 0.0.
 return Constant::getNullValue(Type::getDoubleTy(TheContext));
}

Function *PrototypeAST::codegen() {
 // Make the function type: double(double,double) etc.
 std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(TheContext));
 FunctionType *FT =
 FunctionType::get(Type::getDoubleTy(TheContext), Doubles, false);

 Function *F =
 Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get());

 // Set names for all arguments.
 unsigned Idx = 0;
 for (auto &Arg : F->args())
 Arg.setName(Args[Idx++]);

 return F;
}

Function *FunctionAST::codegen() {
 // Transfer ownership of the prototype to the FunctionProtos map, but keep a
 // reference to it for use below.
 auto &P = *Proto;
 FunctionProtos[Proto->getName()] = std::move(Proto);
 Function *TheFunction = getFunction(P.getName());
 if (!TheFunction)
 return nullptr;

 // Create a new basic block to start insertion into.
 BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction);
 Builder.SetInsertPoint(BB);

 // Record the function arguments in the NamedValues map.
 NamedValues.clear();
 for (auto &Arg : TheFunction->args())
 NamedValues[Arg.getName()] = &Arg;

 if (Value *RetVal = Body->codegen()) {
 // Finish off the function.
 Builder.CreateRet(RetVal);

 // Validate the generated code, checking for consistency.
 verifyFunction(*TheFunction);

 // Run the optimizer on the function.
 TheFPM->run(*TheFunction);

 return TheFunction;
 }

 // Error reading body, remove function.
 TheFunction->eraseFromParent();
 return nullptr;
}

//===--===//
// Top-Level parsing and JIT Driver
//===--===//

static void InitializeModuleAndPassManager() {
 // Open a new module.
 TheModule = llvm::make_unique<Module>("my cool jit", TheContext);
 TheModule->setDataLayout(TheJIT->getTargetMachine().createDataLayout());

 // Create a new pass manager attached to it.
 TheFPM = llvm::make_unique<legacy::FunctionPassManager>(TheModule.get());

 // Do simple "peephole" optimizations and bit-twiddling optzns.
 TheFPM->add(createInstructionCombiningPass());
 // Reassociate expressions.
 TheFPM->add(createReassociatePass());
 // Eliminate Common SubExpressions.
 TheFPM->add(createGVNPass());
 // Simplify the control flow graph (deleting unreachable blocks, etc).
 TheFPM->add(createCFGSimplificationPass());

 TheFPM->doInitialization();
}

static void HandleDefinition() {
 if (auto FnAST = ParseDefinition()) {
 if (auto *FnIR = FnAST->codegen()) {
 fprintf(stderr, "Read function definition:");
 FnIR->print(errs());
 fprintf(stderr, "\n");
 TheJIT->addModule(std::move(TheModule));
 InitializeModuleAndPassManager();
 }
 } else {
 // Skip token for error recovery.
 getNextToken();
 }
}

static void HandleExtern() {
 if (auto ProtoAST = ParseExtern()) {
 if (auto *FnIR = ProtoAST->codegen()) {
 fprintf(stderr, "Read extern: ");
 FnIR->print(errs());
 fprintf(stderr, "\n");
 FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST);
 }
 } else {
 // Skip token for error recovery.
 getNextToken();
 }
}

static void HandleTopLevelExpression() {
 // Evaluate a top-level expression into an anonymous function.
 if (auto FnAST = ParseTopLevelExpr()) {
 if (FnAST->codegen()) {
 // JIT the module containing the anonymous expression, keeping a handle so
 // we can free it later.
 auto H = TheJIT->addModule(std::move(TheModule));
 InitializeModuleAndPassManager();

 // Search the JIT for the __anon_expr symbol.
 auto ExprSymbol = TheJIT->findSymbol("__anon_expr");
 assert(ExprSymbol && "Function not found");

 // Get the symbol's address and cast it to the right type (takes no
 // arguments, returns a double) so we can call it as a native function.
 double (*FP)() = (double (*)())(intptr_t)cantFail(ExprSymbol.getAddress());
 fprintf(stderr, "Evaluated to %f\n", FP());

 // Delete the anonymous expression module from the JIT.
 TheJIT->removeModule(H);
 }
 } else {
 // Skip token for error recovery.
 getNextToken();
 }
}

/// top ::= definition | external | expression | ';'
static void MainLoop() {
 while (true) {
 fprintf(stderr, "ready> ");
 switch (CurTok) {
 case tok_eof:
 return;
 case ';': // ignore top-level semicolons.
 getNextToken();
 break;
 case tok_def:
 HandleDefinition();
 break;
 case tok_extern:
 HandleExtern();
 break;
 default:
 HandleTopLevelExpression();
 break;
 }
 }
}

//===--===//
// "Library" functions that can be "extern'd" from user code.
//===--===//

#ifdef _WIN32
#define DLLEXPORT __declspec(dllexport)
#else
#define DLLEXPORT
#endif

/// putchard - putchar that takes a double and returns 0.
extern "C" DLLEXPORT double putchard(double X) {
 fputc((char)X, stderr);
 return 0;
}

/// printd - printf that takes a double prints it as "%f\n", returning 0.
extern "C" DLLEXPORT double printd(double X) {
 fprintf(stderr, "%f\n", X);
 return 0;
}

//===--===//
// Main driver code.
//===--===//

int main() {
 InitializeNativeTarget();
 InitializeNativeTargetAsmPrinter();
 InitializeNativeTargetAsmParser();

 // Install standard binary operators.
 // 1 is lowest precedence.
 BinopPrecedence['<'] = 10;
 BinopPrecedence['+'] = 20;
 BinopPrecedence['-'] = 20;
 BinopPrecedence['*'] = 40; // highest.

 // Prime the first token.
 fprintf(stderr, "ready> ");
 getNextToken();

 TheJIT = llvm::make_unique<KaleidoscopeJIT>();

 InitializeModuleAndPassManager();

 // Run the main "interpreter loop" now.
 MainLoop();

 return 0;
}

Next: Extending the language: user-defined operators

6. Kaleidoscope: Extending the Language: User-defined Operators

	Chapter 6 Introduction

	User-defined Operators: the Idea

	User-defined Binary Operators

	User-defined Unary Operators

	Kicking the Tires

	Full Code Listing

6.1. Chapter 6 Introduction

Welcome to Chapter 6 of the “Implementing a language with
LLVM” tutorial. At this point in our tutorial, we now
have a fully functional language that is fairly minimal, but also
useful. There is still one big problem with it, however. Our language
doesn’t have many useful operators (like division, logical negation, or
even any comparisons besides less-than).

This chapter of the tutorial takes a wild digression into adding
user-defined operators to the simple and beautiful Kaleidoscope
language. This digression now gives us a simple and ugly language in
some ways, but also a powerful one at the same time. One of the great
things about creating your own language is that you get to decide what
is good or bad. In this tutorial we’ll assume that it is okay to use
this as a way to show some interesting parsing techniques.

At the end of this tutorial, we’ll run through an example Kaleidoscope
application that renders the Mandelbrot set. This gives an
example of what you can build with Kaleidoscope and its feature set.

6.2. User-defined Operators: the Idea

The “operator overloading” that we will add to Kaleidoscope is more
general than in languages like C++. In C++, you are only allowed to
redefine existing operators: you can’t programmatically change the
grammar, introduce new operators, change precedence levels, etc. In this
chapter, we will add this capability to Kaleidoscope, which will let the
user round out the set of operators that are supported.

The point of going into user-defined operators in a tutorial like this
is to show the power and flexibility of using a hand-written parser.
Thus far, the parser we have been implementing uses recursive descent
for most parts of the grammar and operator precedence parsing for the
expressions. See Chapter 2 for details. By
using operator precedence parsing, it is very easy to allow
the programmer to introduce new operators into the grammar: the grammar
is dynamically extensible as the JIT runs.

The two specific features we’ll add are programmable unary operators
(right now, Kaleidoscope has no unary operators at all) as well as
binary operators. An example of this is:

Logical unary not.
def unary!(v)
 if v then
 0
 else
 1;

Define > with the same precedence as <.
def binary> 10 (LHS RHS)
 RHS < LHS;

Binary "logical or", (note that it does not "short circuit")
def binary| 5 (LHS RHS)
 if LHS then
 1
 else if RHS then
 1
 else
 0;

Define = with slightly lower precedence than relationals.
def binary= 9 (LHS RHS)
 !(LHS < RHS | LHS > RHS);

Many languages aspire to being able to implement their standard runtime
library in the language itself. In Kaleidoscope, we can implement
significant parts of the language in the library!

We will break down implementation of these features into two parts:
implementing support for user-defined binary operators and adding unary
operators.

6.3. User-defined Binary Operators

Adding support for user-defined binary operators is pretty simple with
our current framework. We’ll first add support for the unary/binary
keywords:

enum Token {
 ...
 // operators
 tok_binary = -11,
 tok_unary = -12
};
...
static int gettok() {
...
 if (IdentifierStr == "for")
 return tok_for;
 if (IdentifierStr == "in")
 return tok_in;
 if (IdentifierStr == "binary")
 return tok_binary;
 if (IdentifierStr == "unary")
 return tok_unary;
 return tok_identifier;

This just adds lexer support for the unary and binary keywords, like we
did in previous chapters. One nice thing
about our current AST, is that we represent binary operators with full
generalisation by using their ASCII code as the opcode. For our extended
operators, we’ll use this same representation, so we don’t need any new
AST or parser support.

On the other hand, we have to be able to represent the definitions of
these new operators, in the “def binary| 5” part of the function
definition. In our grammar so far, the “name” for the function
definition is parsed as the “prototype” production and into the
PrototypeAST AST node. To represent our new user-defined operators
as prototypes, we have to extend the PrototypeAST AST node like
this:

/// PrototypeAST - This class represents the "prototype" for a function,
/// which captures its argument names as well as if it is an operator.
class PrototypeAST {
 std::string Name;
 std::vector<std::string> Args;
 bool IsOperator;
 unsigned Precedence; // Precedence if a binary op.

public:
 PrototypeAST(const std::string &name, std::vector<std::string> Args,
 bool IsOperator = false, unsigned Prec = 0)
 : Name(name), Args(std::move(Args)), IsOperator(IsOperator),
 Precedence(Prec) {}

 Function *codegen();
 const std::string &getName() const { return Name; }

 bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
 bool isBinaryOp() const { return IsOperator && Args.size() == 2; }

 char getOperatorName() const {
 assert(isUnaryOp() || isBinaryOp());
 return Name[Name.size() - 1];
 }

 unsigned getBinaryPrecedence() const { return Precedence; }
};

Basically, in addition to knowing a name for the prototype, we now keep
track of whether it was an operator, and if it was, what precedence
level the operator is at. The precedence is only used for binary
operators (as you’ll see below, it just doesn’t apply for unary
operators). Now that we have a way to represent the prototype for a
user-defined operator, we need to parse it:

/// prototype
/// ::= id '(' id* ')'
/// ::= binary LETTER number? (id, id)
static std::unique_ptr<PrototypeAST> ParsePrototype() {
 std::string FnName;

 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
 unsigned BinaryPrecedence = 30;

 switch (CurTok) {
 default:
 return LogErrorP("Expected function name in prototype");
 case tok_identifier:
 FnName = IdentifierStr;
 Kind = 0;
 getNextToken();
 break;
 case tok_binary:
 getNextToken();
 if (!isascii(CurTok))
 return LogErrorP("Expected binary operator");
 FnName = "binary";
 FnName += (char)CurTok;
 Kind = 2;
 getNextToken();

 // Read the precedence if present.
 if (CurTok == tok_number) {
 if (NumVal < 1 || NumVal > 100)
 return LogErrorP("Invalid precedence: must be 1..100");
 BinaryPrecedence = (unsigned)NumVal;
 getNextToken();
 }
 break;
 }

 if (CurTok != '(')
 return LogErrorP("Expected '(' in prototype");

 std::vector<std::string> ArgNames;
 while (getNextToken() == tok_identifier)
 ArgNames.push_back(IdentifierStr);
 if (CurTok != ')')
 return LogErrorP("Expected ')' in prototype");

 // success.
 getNextToken(); // eat ')'.

 // Verify right number of names for operator.
 if (Kind && ArgNames.size() != Kind)
 return LogErrorP("Invalid number of operands for operator");

 return llvm::make_unique<PrototypeAST>(FnName, std::move(ArgNames), Kind != 0,
 BinaryPrecedence);
}

This is all fairly straightforward parsing code, and we have already
seen a lot of similar code in the past. One interesting part about the
code above is the couple lines that set up FnName for binary
operators. This builds names like “binary@” for a newly defined “@”
operator. It then takes advantage of the fact that symbol names in the
LLVM symbol table are allowed to have any character in them, including
embedded nul characters.

The next interesting thing to add, is codegen support for these binary
operators. Given our current structure, this is a simple addition of a
default case for our existing binary operator node:

Value *BinaryExprAST::codegen() {
 Value *L = LHS->codegen();
 Value *R = RHS->codegen();
 if (!L || !R)
 return nullptr;

 switch (Op) {
 case '+':
 return Builder.CreateFAdd(L, R, "addtmp");
 case '-':
 return Builder.CreateFSub(L, R, "subtmp");
 case '*':
 return Builder.CreateFMul(L, R, "multmp");
 case '<':
 L = Builder.CreateFCmpULT(L, R, "cmptmp");
 // Convert bool 0/1 to double 0.0 or 1.0
 return Builder.CreateUIToFP(L, Type::getDoubleTy(TheContext),
 "booltmp");
 default:
 break;
 }

 // If it wasn't a builtin binary operator, it must be a user defined one. Emit
 // a call to it.
 Function *F = getFunction(std::string("binary") + Op);
 assert(F && "binary operator not found!");

 Value *Ops[2] = { L, R };
 return Builder.CreateCall(F, Ops, "binop");
}

As you can see above, the new code is actually really simple. It just
does a lookup for the appropriate operator in the symbol table and
generates a function call to it. Since user-defined operators are just
built as normal functions (because the “prototype” boils down to a
function with the right name) everything falls into place.

The final piece of code we are missing, is a bit of top-level magic:

Function *FunctionAST::codegen() {
 // Transfer ownership of the prototype to the FunctionProtos map, but keep a
 // reference to it for use below.
 auto &P = *Proto;
 FunctionProtos[Proto->getName()] = std::move(Proto);
 Function *TheFunction = getFunction(P.getName());
 if (!TheFunction)
 return nullptr;

 // If this is an operator, install it.
 if (P.isBinaryOp())
 BinopPrecedence[P.getOperatorName()] = P.getBinaryPrecedence();

 // Create a new basic block to start insertion into.
 BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction);
 ...

Basically, before codegening a function, if it is a user-defined
operator, we register it in the precedence table. This allows the binary
operator parsing logic we already have in place to handle it. Since we
are working on a fully-general operator precedence parser, this is all
we need to do to “extend the grammar”.

Now we have useful user-defined binary operators. This builds a lot on
the previous framework we built for other operators. Adding unary
operators is a bit more challenging, because we don’t have any framework
for it yet - let’s see what it takes.

6.4. User-defined Unary Operators

Since we don’t currently support unary operators in the Kaleidoscope
language, we’ll need to add everything to support them. Above, we added
simple support for the ‘unary’ keyword to the lexer. In addition to
that, we need an AST node:

/// UnaryExprAST - Expression class for a unary operator.
class UnaryExprAST : public ExprAST {
 char Opcode;
 std::unique_ptr<ExprAST> Operand;

public:
 UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
 : Opcode(Opcode), Operand(std::move(Operand)) {}

 Value *codegen() override;
};

This AST node is very simple and obvious by now. It directly mirrors the
binary operator AST node, except that it only has one child. With this,
we need to add the parsing logic. Parsing a unary operator is pretty
simple: we’ll add a new function to do it:

/// unary
/// ::= primary
/// ::= '!' unary
static std::unique_ptr<ExprAST> ParseUnary() {
 // If the current token is not an operator, it must be a primary expr.
 if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
 return ParsePrimary();

 // If this is a unary operator, read it.
 int Opc = CurTok;
 getNextToken();
 if (auto Operand = ParseUnary())
 return llvm::make_unique<UnaryExprAST>(Opc, std::move(Operand));
 return nullptr;
}

The grammar we add is pretty straightforward here. If we see a unary
operator when parsing a primary operator, we eat the operator as a
prefix and parse the remaining piece as another unary operator. This
allows us to handle multiple unary operators (e.g. “!!x”). Note that
unary operators can’t have ambiguous parses like binary operators can,
so there is no need for precedence information.

The problem with this function, is that we need to call ParseUnary from
somewhere. To do this, we change previous callers of ParsePrimary to
call ParseUnary instead:

/// binoprhs
/// ::= ('+' unary)*
static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
 std::unique_ptr<ExprAST> LHS) {
 ...
 // Parse the unary expression after the binary operator.
 auto RHS = ParseUnary();
 if (!RHS)
 return nullptr;
 ...
}
/// expression
/// ::= unary binoprhs
///
static std::unique_ptr<ExprAST> ParseExpression() {
 auto LHS = ParseUnary();
 if (!LHS)
 return nullptr;

 return ParseBinOpRHS(0, std::move(LHS));
}

With these two simple changes, we are now able to parse unary operators
and build the AST for them. Next up, we need to add parser support for
prototypes, to parse the unary operator prototype. We extend the binary
operator code above with:

/// prototype
/// ::= id '(' id* ')'
/// ::= binary LETTER number? (id, id)
/// ::= unary LETTER (id)
static std::unique_ptr<PrototypeAST> ParsePrototype() {
 std::string FnName;

 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
 unsigned BinaryPrecedence = 30;

 switch (CurTok) {
 default:
 return LogErrorP("Expected function name in prototype");
 case tok_identifier:
 FnName = IdentifierStr;
 Kind = 0;
 getNextToken();
 break;
 case tok_unary:
 getNextToken();
 if (!isascii(CurTok))
 return LogErrorP("Expected unary operator");
 FnName = "unary";
 FnName += (char)CurTok;
 Kind = 1;
 getNextToken();
 break;
 case tok_binary:
 ...

As with binary operators, we name unary operators with a name that
includes the operator character. This assists us at code generation
time. Speaking of, the final piece we need to add is codegen support for
unary operators. It looks like this:

Value *UnaryExprAST::codegen() {
 Value *OperandV = Operand->codegen();
 if (!OperandV)
 return nullptr;

 Function *F = getFunction(std::string("unary") + Opcode);
 if (!F)
 return LogErrorV("Unknown unary operator");

 return Builder.CreateCall(F, OperandV, "unop");
}

This code is similar to, but simpler than, the code for binary
operators. It is simpler primarily because it doesn’t need to handle any
predefined operators.

6.5. Kicking the Tires

It is somewhat hard to believe, but with a few simple extensions we’ve
covered in the last chapters, we have grown a real-ish language. With
this, we can do a lot of interesting things, including I/O, math, and a
bunch of other things. For example, we can now add a nice sequencing
operator (printd is defined to print out the specified value and a
newline):

ready> extern printd(x);
Read extern:
declare double @printd(double)

ready> def binary : 1 (x y) 0; # Low-precedence operator that ignores operands.
...
ready> printd(123) : printd(456) : printd(789);
123.000000
456.000000
789.000000
Evaluated to 0.000000

We can also define a bunch of other “primitive” operations, such as:

Logical unary not.
def unary!(v)
 if v then
 0
 else
 1;

Unary negate.
def unary-(v)
 0-v;

Define > with the same precedence as <.
def binary> 10 (LHS RHS)
 RHS < LHS;

Binary logical or, which does not short circuit.
def binary| 5 (LHS RHS)
 if LHS then
 1
 else if RHS then
 1
 else
 0;

Binary logical and, which does not short circuit.
def binary& 6 (LHS RHS)
 if !LHS then
 0
 else
 !!RHS;

Define = with slightly lower precedence than relationals.
def binary = 9 (LHS RHS)
 !(LHS < RHS | LHS > RHS);

Define ':' for sequencing: as a low-precedence operator that ignores operands
and just returns the RHS.
def binary : 1 (x y) y;

Given the previous if/then/else support, we can also define interesting
functions for I/O. For example, the following prints out a character
whose “density” reflects the value passed in: the lower the value, the
denser the character:

ready> extern putchard(char);
...
ready> def printdensity(d)
 if d > 8 then
 putchard(32) # ' '
 else if d > 4 then
 putchard(46) # '.'
 else if d > 2 then
 putchard(43) # '+'
 else
 putchard(42); # '*'
...
ready> printdensity(1): printdensity(2): printdensity(3):
 printdensity(4): printdensity(5): printdensity(9):
 putchard(10);
**++.
Evaluated to 0.000000

Based on these simple primitive operations, we can start to define more
interesting things. For example, here’s a little function that determines
the number of iterations it takes for a certain function in the complex
plane to diverge:

Determine whether the specific location diverges.
Solve for z = z^2 + c in the complex plane.
def mandelconverger(real imag iters creal cimag)
 if iters > 255 | (real*real + imag*imag > 4) then
 iters
 else
 mandelconverger(real*real - imag*imag + creal,
 2*real*imag + cimag,
 iters+1, creal, cimag);

Return the number of iterations required for the iteration to escape
def mandelconverge(real imag)
 mandelconverger(real, imag, 0, real, imag);

This “z = z2 + c” function is a beautiful little creature that is
the basis for computation of the Mandelbrot
Set [http://en.wikipedia.org/wiki/Mandelbrot_set]. Our
mandelconverge function returns the number of iterations that it
takes for a complex orbit to escape, saturating to 255. This is not a
very useful function by itself, but if you plot its value over a
two-dimensional plane, you can see the Mandelbrot set. Given that we are
limited to using putchard here, our amazing graphical output is limited,
but we can whip together something using the density plotter above:

Compute and plot the mandelbrot set with the specified 2 dimensional range
info.
def mandelhelp(xmin xmax xstep ymin ymax ystep)
 for y = ymin, y < ymax, ystep in (
 (for x = xmin, x < xmax, xstep in
 printdensity(mandelconverge(x,y)))
 : putchard(10)
)

mandel - This is a convenient helper function for plotting the mandelbrot set
from the specified position with the specified Magnification.
def mandel(realstart imagstart realmag imagmag)
 mandelhelp(realstart, realstart+realmag*78, realmag,
 imagstart, imagstart+imagmag*40, imagmag);

Given this, we can try plotting out the mandelbrot set! Lets try it out:

ready> mandel(-2.3, -1.3, 0.05, 0.07);
*******************************+++++++++++*************************************
*************************+++++++++++++++++++++++*******************************
**********************+++++++++++++++++++++++++++++****************************
*******************+++++++++++++++++++++.. ...++++++++*************************
*****************++++++++++++++++++++++.... ...+++++++++***********************
***************+++++++++++++++++++++++..... ...+++++++++*********************
**************+++++++++++++++++++++++.... +++++++++********************
*************++++++++++++++++++++++...... ++++++++*******************
************+++++++++++++++++++++....... +++++++******************
***********+++++++++++++++++++.... +++++++*****************
**********+++++++++++++++++....... .+++++++****************
*********++++++++++++++........... ...+++++++***************
********++++++++++++............ ...++++++++**************
********++++++++++...++++++++**************
*******+++++++++..... .+++++++++*************
*******++++++++...... ..+++++++++*************
*******++++++....... ..+++++++++*************
*******+++++...... ..+++++++++*************
*******....+++++++++*************
*******....+++++++++*************
*******+++++...... ...+++++++++*************
*******++++++....... ..+++++++++*************
*******++++++++...... .+++++++++*************
*******+++++++++..... ..+++++++++*************
********++++++++++...++++++++**************
********++++++++++++............ ...++++++++**************
*********++++++++++++++.......... ...+++++++***************
**********++++++++++++++++........ .+++++++****************
**********++++++++++++++++++++.... +++++++****************
***********++++++++++++++++++++++....... ++++++++*****************
************+++++++++++++++++++++++...... ++++++++******************
**************+++++++++++++++++++++++.... ++++++++********************
***************+++++++++++++++++++++++..... ...+++++++++*********************
*****************++++++++++++++++++++++.... ...++++++++***********************
*******************+++++++++++++++++++++......++++++++*************************
*********************++++++++++++++++++++++.++++++++***************************
*************************+++++++++++++++++++++++*******************************
******************************+++++++++++++************************************

Evaluated to 0.000000
ready> mandel(-2, -1, 0.02, 0.04);
**************************+++
***********************++
*********************+++.
*******************+++...
*****************+++.....
***************++........
**************++...........
************+++..............
***********++........ .
**********++.............
********+++..................
*******+++++++++++++++++++++++++++++++++++++++.......................
******+++++++++++++++++++++++++++++++++++...........................
*****++++++++++++++++++++++++++++++++............................
*****++++++++++++++++++++++++++++...............................
****++++++++++++++++++++++++++......
***++++++++++++++++++++++++.........
***++++++++++++++++++++++............
**+++++++++++++++++++++..............
**+++++++++++++++++++................
*++++++++++++++++++.................
*++++++++++++++++............ ...
*++++++++++++++..............
*+++....++++................
*..........
*
*..........
*+++....++++................
*++++++++++++++..............
*++++++++++++++++............ ...
*++++++++++++++++++.................
**+++++++++++++++++++................
**+++++++++++++++++++++..............
***++++++++++++++++++++++............
***++++++++++++++++++++++++.........
****++++++++++++++++++++++++++......
*****++++++++++++++++++++++++++++...............................
*****++++++++++++++++++++++++++++++++............................
******+++++++++++++++++++++++++++++++++++...........................
*******+++++++++++++++++++++++++++++++++++++++.......................
********+++..................
Evaluated to 0.000000
ready> mandel(-0.9, -1.4, 0.02, 0.03);

**********+++++++++++++++++++++**
*+++++++++++++++++++++++++++++++++++++++***************************************
+++**********************************
++*****************************
++*************************
+++**********************
+++++++++++++++++++++++++++++++++.........++++++++++++++++++*******************
+++++++++++++++++++++++++++++++.... +++++++++++++++++++****************
+++++++++++++++++++++++++++++....... +++++++++++++++++++**************
++++++++++++++++++++++++++++........ ++++++++++++++++++++************
+++++++++++++++++++++++++++......... +++++++++++++++++++++**********
++++++++++++++++++++++++++........... ++++++++++++++++++++++********
++++++++++++++++++++++++............. ++++++++++++++++++++++******
+++++++++++++++++++++++............. +++++++++++++++++++++++****
++++++++++++++++++++++........... ++++++++++++++++++++++***
++++++++++++++++++++........... ++++++++++++++++++++++*
++++++++++++++++++............ ++++++++++++++++++++
++++++++++++++++............... ++++++++++++++++++
++++++++++++++................. ++++++++++++++++
++++++++++++.................. ++++++++++++++
+++++++++.................. +++++++++++++
++++++........ ++++++++++++
++............ ++++++++++
.............. ...++++++++++
.............. +++++++++
.............. ++++++++
............. ++++++++
........... ++++++++
......... +++++++
......... +++++++
......... +++++++
........ ...+++++++
....... ...+++++++
 +++++++
 +++++++
 +++++++
 +++++++
 +++++++
Evaluated to 0.000000
ready> ^D

At this point, you may be starting to realize that Kaleidoscope is a
real and powerful language. It may not be self-similar :), but it can be
used to plot things that are!

With this, we conclude the “adding user-defined operators” chapter of
the tutorial. We have successfully augmented our language, adding the
ability to extend the language in the library, and we have shown how
this can be used to build a simple but interesting end-user application
in Kaleidoscope. At this point, Kaleidoscope can build a variety of
applications that are functional and can call functions with
side-effects, but it can’t actually define and mutate a variable itself.

Strikingly, variable mutation is an important feature of some languages,
and it is not at all obvious how to add support for mutable
variables without having to add an “SSA construction”
phase to your front-end. In the next chapter, we will describe how you
can add variable mutation without building SSA in your front-end.

6.6. Full Code Listing

Here is the complete code listing for our running example, enhanced with
the support for user-defined operators. To build this example, use:

Compile
clang++ -g toy.cpp `llvm-config --cxxflags --ldflags --system-libs --libs core mcjit native` -O3 -o toy
Run
./toy

On some platforms, you will need to specify -rdynamic or
-Wl,–export-dynamic when linking. This ensures that symbols defined in
the main executable are exported to the dynamic linker and so are
available for symbol resolution at run time. This is not needed if you
compile your support code into a shared library, although doing that
will cause problems on Windows.

Here is the code:

#include "../include/KaleidoscopeJIT.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/InstCombine/InstCombine.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVN.h"
#include <algorithm>
#include <cassert>
#include <cctype>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <map>
#include <memory>
#include <string>
#include <vector>

using namespace llvm;
using namespace llvm::orc;

//===--===//
// Lexer
//===--===//

// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
// of these for known things.
enum Token {
 tok_eof = -1,

 // commands
 tok_def = -2,
 tok_extern = -3,

 // primary
 tok_identifier = -4,
 tok_number = -5,

 // control
 tok_if = -6,
 tok_then = -7,
 tok_else = -8,
 tok_for = -9,
 tok_in = -10,

 // operators
 tok_binary = -11,
 tok_unary = -12
};

static std::string IdentifierStr; // Filled in if tok_identifier
static double NumVal; // Filled in if tok_number

/// gettok - Return the next token from standard input.
static int gettok() {
 static int LastChar = ' ';

 // Skip any whitespace.
 while (isspace(LastChar))
 LastChar = getchar();

 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
 IdentifierStr = LastChar;
 while (isalnum((LastChar = getchar())))
 IdentifierStr += LastChar;

 if (IdentifierStr == "def")
 return tok_def;
 if (IdentifierStr == "extern")
 return tok_extern;
 if (IdentifierStr == "if")
 return tok_if;
 if (IdentifierStr == "then")
 return tok_then;
 if (IdentifierStr == "else")
 return tok_else;
 if (IdentifierStr == "for")
 return tok_for;
 if (IdentifierStr == "in")
 return tok_in;
 if (IdentifierStr == "binary")
 return tok_binary;
 if (IdentifierStr == "unary")
 return tok_unary;
 return tok_identifier;
 }

 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
 std::string NumStr;
 do {
 NumStr += LastChar;
 LastChar = getchar();
 } while (isdigit(LastChar) || LastChar == '.');

 NumVal = strtod(NumStr.c_str(), nullptr);
 return tok_number;
 }

 if (LastChar == '#') {
 // Comment until end of line.
 do
 LastChar = getchar();
 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');

 if (LastChar != EOF)
 return gettok();
 }

 // Check for end of file. Don't eat the EOF.
 if (LastChar == EOF)
 return tok_eof;

 // Otherwise, just return the character as its ascii value.
 int ThisChar = LastChar;
 LastChar = getchar();
 return ThisChar;
}

//===--===//
// Abstract Syntax Tree (aka Parse Tree)
//===--===//

namespace {

/// ExprAST - Base class for all expression nodes.
class ExprAST {
public:
 virtual ~ExprAST() = default;

 virtual Value *codegen() = 0;
};

/// NumberExprAST - Expression class for numeric literals like "1.0".
class NumberExprAST : public ExprAST {
 double Val;

public:
 NumberExprAST(double Val) : Val(Val) {}

 Value *codegen() override;
};

/// VariableExprAST - Expression class for referencing a variable, like "a".
class VariableExprAST : public ExprAST {
 std::string Name;

public:
 VariableExprAST(const std::string &Name) : Name(Name) {}

 Value *codegen() override;
};

/// UnaryExprAST - Expression class for a unary operator.
class UnaryExprAST : public ExprAST {
 char Opcode;
 std::unique_ptr<ExprAST> Operand;

public:
 UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
 : Opcode(Opcode), Operand(std::move(Operand)) {}

 Value *codegen() override;
};

/// BinaryExprAST - Expression class for a binary operator.
class BinaryExprAST : public ExprAST {
 char Op;
 std::unique_ptr<ExprAST> LHS, RHS;

public:
 BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
 std::unique_ptr<ExprAST> RHS)
 : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}

 Value *codegen() override;
};

/// CallExprAST - Expression class for function calls.
class CallExprAST : public ExprAST {
 std::string Callee;
 std::vector<std::unique_ptr<ExprAST>> Args;

public:
 CallExprAST(const std::string &Callee,
 std::vector<std::unique_ptr<ExprAST>> Args)
 : Callee(Callee), Args(std::move(Args)) {}

 Value *codegen() override;
};

/// IfExprAST - Expression class for if/then/else.
class IfExprAST : public ExprAST {
 std::unique_ptr<ExprAST> Cond, Then, Else;

public:
 IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
 std::unique_ptr<ExprAST> Else)
 : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}

 Value *codegen() override;
};

/// ForExprAST - Expression class for for/in.
class ForExprAST : public ExprAST {
 std::string VarName;
 std::unique_ptr<ExprAST> Start, End, Step, Body;

public:
 ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start,
 std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
 std::unique_ptr<ExprAST> Body)
 : VarName(VarName), Start(std::move(Start)), End(std::move(End)),
 Step(std::move(Step)), Body(std::move(Body)) {}

 Value *codegen() override;
};

/// PrototypeAST - This class represents the "prototype" for a function,
/// which captures its name, and its argument names (thus implicitly the number
/// of arguments the function takes), as well as if it is an operator.
class PrototypeAST {
 std::string Name;
 std::vector<std::string> Args;
 bool IsOperator;
 unsigned Precedence; // Precedence if a binary op.

public:
 PrototypeAST(const std::string &Name, std::vector<std::string> Args,
 bool IsOperator = false, unsigned Prec = 0)
 : Name(Name), Args(std::move(Args)), IsOperator(IsOperator),
 Precedence(Prec) {}

 Function *codegen();
 const std::string &getName() const { return Name; }

 bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
 bool isBinaryOp() const { return IsOperator && Args.size() == 2; }

 char getOperatorName() const {
 assert(isUnaryOp() || isBinaryOp());
 return Name[Name.size() - 1];
 }

 unsigned getBinaryPrecedence() const { return Precedence; }
};

/// FunctionAST - This class represents a function definition itself.
class FunctionAST {
 std::unique_ptr<PrototypeAST> Proto;
 std::unique_ptr<ExprAST> Body;

public:
 FunctionAST(std::unique_ptr<PrototypeAST> Proto,
 std::unique_ptr<ExprAST> Body)
 : Proto(std::move(Proto)), Body(std::move(Body)) {}

 Function *codegen();
};

} // end anonymous namespace

//===--===//
// Parser
//===--===//

/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
/// token the parser is looking at. getNextToken reads another token from the
/// lexer and updates CurTok with its results.
static int CurTok;
static int getNextToken() { return CurTok = gettok(); }

/// BinopPrecedence - This holds the precedence for each binary operator that is
/// defined.
static std::map<char, int> BinopPrecedence;

/// GetTokPrecedence - Get the precedence of the pending binary operator token.
static int GetTokPrecedence() {
 if (!isascii(CurTok))
 return -1;

 // Make sure it's a declared binop.
 int TokPrec = BinopPrecedence[CurTok];
 if (TokPrec <= 0)
 return -1;
 return TokPrec;
}

/// Error* - These are little helper functions for error handling.
std::unique_ptr<ExprAST> LogError(const char *Str) {
 fprintf(stderr, "Error: %s\n", Str);
 return nullptr;
}

std::unique_ptr<PrototypeAST> LogErrorP(const char *Str) {
 LogError(Str);
 return nullptr;
}

static std::unique_ptr<ExprAST> ParseExpression();

/// numberexpr ::= number
static std::unique_ptr<ExprAST> ParseNumberExpr() {
 auto Result = llvm::make_unique<NumberExprAST>(NumVal);
 getNextToken(); // consume the number
 return std::move(Result);
}

/// parenexpr ::= '(' expression ')'
static std::unique_ptr<ExprAST> ParseParenExpr() {
 getNextToken(); // eat (.
 auto V = ParseExpression();
 if (!V)
 return nullptr;

 if (CurTok != ')')
 return LogError("expected ')'");
 getNextToken(); // eat).
 return V;
}

/// identifierexpr
/// ::= identifier
/// ::= identifier '(' expression* ')'
static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
 std::string IdName = IdentifierStr;

 getNextToken(); // eat identifier.

 if (CurTok != '(') // Simple variable ref.
 return llvm::make_unique<VariableExprAST>(IdName);

 // Call.
 getNextToken(); // eat (
 std::vector<std::unique_ptr<ExprAST>> Args;
 if (CurTok != ')') {
 while (true) {
 if (auto Arg = ParseExpression())
 Args.push_back(std::move(Arg));
 else
 return nullptr;

 if (CurTok == ')')
 break;

 if (CurTok != ',')
 return LogError("Expected ')' or ',' in argument list");
 getNextToken();
 }
 }

 // Eat the ')'.
 getNextToken();

 return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
}

/// ifexpr ::= 'if' expression 'then' expression 'else' expression
static std::unique_ptr<ExprAST> ParseIfExpr() {
 getNextToken(); // eat the if.

 // condition.
 auto Cond = ParseExpression();
 if (!Cond)
 return nullptr;

 if (CurTok != tok_then)
 return LogError("expected then");
 getNextToken(); // eat the then

 auto Then = ParseExpression();
 if (!Then)
 return nullptr;

 if (CurTok != tok_else)
 return LogError("expected else");

 getNextToken();

 auto Else = ParseExpression();
 if (!Else)
 return nullptr;

 return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
 std::move(Else));
}

/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
static std::unique_ptr<ExprAST> ParseForExpr() {
 getNextToken(); // eat the for.

 if (CurTok != tok_identifier)
 return LogError("expected identifier after for");

 std::string IdName = IdentifierStr;
 getNextToken(); // eat identifier.

 if (CurTok != '=')
 return LogError("expected '=' after for");
 getNextToken(); // eat '='.

 auto Start = ParseExpression();
 if (!Start)
 return nullptr;
 if (CurTok != ',')
 return LogError("expected ',' after for start value");
 getNextToken();

 auto End = ParseExpression();
 if (!End)
 return nullptr;

 // The step value is optional.
 std::unique_ptr<ExprAST> Step;
 if (CurTok == ',') {
 getNextToken();
 Step = ParseExpression();
 if (!Step)
 return nullptr;
 }

 if (CurTok != tok_in)
 return LogError("expected 'in' after for");
 getNextToken(); // eat 'in'.

 auto Body = ParseExpression();
 if (!Body)
 return nullptr;

 return llvm::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
 std::move(Step), std::move(Body));
}

/// primary
/// ::= identifierexpr
/// ::= numberexpr
/// ::= parenexpr
/// ::= ifexpr
/// ::= forexpr
static std::unique_ptr<ExprAST> ParsePrimary() {
 switch (CurTok) {
 default:
 return LogError("unknown token when expecting an expression");
 case tok_identifier:
 return ParseIdentifierExpr();
 case tok_number:
 return ParseNumberExpr();
 case '(':
 return ParseParenExpr();
 case tok_if:
 return ParseIfExpr();
 case tok_for:
 return ParseForExpr();
 }
}

/// unary
/// ::= primary
/// ::= '!' unary
static std::unique_ptr<ExprAST> ParseUnary() {
 // If the current token is not an operator, it must be a primary expr.
 if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
 return ParsePrimary();

 // If this is a unary operator, read it.
 int Opc = CurTok;
 getNextToken();
 if (auto Operand = ParseUnary())
 return llvm::make_unique<UnaryExprAST>(Opc, std::move(Operand));
 return nullptr;
}

/// binoprhs
/// ::= ('+' unary)*
static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
 std::unique_ptr<ExprAST> LHS) {
 // If this is a binop, find its precedence.
 while (true) {
 int TokPrec = GetTokPrecedence();

 // If this is a binop that binds at least as tightly as the current binop,
 // consume it, otherwise we are done.
 if (TokPrec < ExprPrec)
 return LHS;

 // Okay, we know this is a binop.
 int BinOp = CurTok;
 getNextToken(); // eat binop

 // Parse the unary expression after the binary operator.
 auto RHS = ParseUnary();
 if (!RHS)
 return nullptr;

 // If BinOp binds less tightly with RHS than the operator after RHS, let
 // the pending operator take RHS as its LHS.
 int NextPrec = GetTokPrecedence();
 if (TokPrec < NextPrec) {
 RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
 if (!RHS)
 return nullptr;
 }

 // Merge LHS/RHS.
 LHS =
 llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
 }
}

/// expression
/// ::= unary binoprhs
///
static std::unique_ptr<ExprAST> ParseExpression() {
 auto LHS = ParseUnary();
 if (!LHS)
 return nullptr;

 return ParseBinOpRHS(0, std::move(LHS));
}

/// prototype
/// ::= id '(' id* ')'
/// ::= binary LETTER number? (id, id)
/// ::= unary LETTER (id)
static std::unique_ptr<PrototypeAST> ParsePrototype() {
 std::string FnName;

 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
 unsigned BinaryPrecedence = 30;

 switch (CurTok) {
 default:
 return LogErrorP("Expected function name in prototype");
 case tok_identifier:
 FnName = IdentifierStr;
 Kind = 0;
 getNextToken();
 break;
 case tok_unary:
 getNextToken();
 if (!isascii(CurTok))
 return LogErrorP("Expected unary operator");
 FnName = "unary";
 FnName += (char)CurTok;
 Kind = 1;
 getNextToken();
 break;
 case tok_binary:
 getNextToken();
 if (!isascii(CurTok))
 return LogErrorP("Expected binary operator");
 FnName = "binary";
 FnName += (char)CurTok;
 Kind = 2;
 getNextToken();

 // Read the precedence if present.
 if (CurTok == tok_number) {
 if (NumVal < 1 || NumVal > 100)
 return LogErrorP("Invalid precedence: must be 1..100");
 BinaryPrecedence = (unsigned)NumVal;
 getNextToken();
 }
 break;
 }

 if (CurTok != '(')
 return LogErrorP("Expected '(' in prototype");

 std::vector<std::string> ArgNames;
 while (getNextToken() == tok_identifier)
 ArgNames.push_back(IdentifierStr);
 if (CurTok != ')')
 return LogErrorP("Expected ')' in prototype");

 // success.
 getNextToken(); // eat ')'.

 // Verify right number of names for operator.
 if (Kind && ArgNames.size() != Kind)
 return LogErrorP("Invalid number of operands for operator");

 return llvm::make_unique<PrototypeAST>(FnName, ArgNames, Kind != 0,
 BinaryPrecedence);
}

/// definition ::= 'def' prototype expression
static std::unique_ptr<FunctionAST> ParseDefinition() {
 getNextToken(); // eat def.
 auto Proto = ParsePrototype();
 if (!Proto)
 return nullptr;

 if (auto E = ParseExpression())
 return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
 return nullptr;
}

/// toplevelexpr ::= expression
static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
 if (auto E = ParseExpression()) {
 // Make an anonymous proto.
 auto Proto = llvm::make_unique<PrototypeAST>("__anon_expr",
 std::vector<std::string>());
 return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
 }
 return nullptr;
}

/// external ::= 'extern' prototype
static std::unique_ptr<PrototypeAST> ParseExtern() {
 getNextToken(); // eat extern.
 return ParsePrototype();
}

//===--===//
// Code Generation
//===--===//

static LLVMContext TheContext;
static IRBuilder<> Builder(TheContext);
static std::unique_ptr<Module> TheModule;
static std::map<std::string, Value *> NamedValues;
static std::unique_ptr<legacy::FunctionPassManager> TheFPM;
static std::unique_ptr<KaleidoscopeJIT> TheJIT;
static std::map<std::string, std::unique_ptr<PrototypeAST>> FunctionProtos;

Value *LogErrorV(const char *Str) {
 LogError(Str);
 return nullptr;
}

Function *getFunction(std::string Name) {
 // First, see if the function has already been added to the current module.
 if (auto *F = TheModule->getFunction(Name))
 return F;

 // If not, check whether we can codegen the declaration from some existing
 // prototype.
 auto FI = FunctionProtos.find(Name);
 if (FI != FunctionProtos.end())
 return FI->second->codegen();

 // If no existing prototype exists, return null.
 return nullptr;
}

Value *NumberExprAST::codegen() {
 return ConstantFP::get(TheContext, APFloat(Val));
}

Value *VariableExprAST::codegen() {
 // Look this variable up in the function.
 Value *V = NamedValues[Name];
 if (!V)
 return LogErrorV("Unknown variable name");
 return V;
}

Value *UnaryExprAST::codegen() {
 Value *OperandV = Operand->codegen();
 if (!OperandV)
 return nullptr;

 Function *F = getFunction(std::string("unary") + Opcode);
 if (!F)
 return LogErrorV("Unknown unary operator");

 return Builder.CreateCall(F, OperandV, "unop");
}

Value *BinaryExprAST::codegen() {
 Value *L = LHS->codegen();
 Value *R = RHS->codegen();
 if (!L || !R)
 return nullptr;

 switch (Op) {
 case '+':
 return Builder.CreateFAdd(L, R, "addtmp");
 case '-':
 return Builder.CreateFSub(L, R, "subtmp");
 case '*':
 return Builder.CreateFMul(L, R, "multmp");
 case '<':
 L = Builder.CreateFCmpULT(L, R, "cmptmp");
 // Convert bool 0/1 to double 0.0 or 1.0
 return Builder.CreateUIToFP(L, Type::getDoubleTy(TheContext), "booltmp");
 default:
 break;
 }

 // If it wasn't a builtin binary operator, it must be a user defined one. Emit
 // a call to it.
 Function *F = getFunction(std::string("binary") + Op);
 assert(F && "binary operator not found!");

 Value *Ops[] = {L, R};
 return Builder.CreateCall(F, Ops, "binop");
}

Value *CallExprAST::codegen() {
 // Look up the name in the global module table.
 Function *CalleeF = getFunction(Callee);
 if (!CalleeF)
 return LogErrorV("Unknown function referenced");

 // If argument mismatch error.
 if (CalleeF->arg_size() != Args.size())
 return LogErrorV("Incorrect # arguments passed");

 std::vector<Value *> ArgsV;
 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
 ArgsV.push_back(Args[i]->codegen());
 if (!ArgsV.back())
 return nullptr;
 }

 return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
}

Value *IfExprAST::codegen() {
 Value *CondV = Cond->codegen();
 if (!CondV)
 return nullptr;

 // Convert condition to a bool by comparing non-equal to 0.0.
 CondV = Builder.CreateFCmpONE(
 CondV, ConstantFP::get(TheContext, APFloat(0.0)), "ifcond");

 Function *TheFunction = Builder.GetInsertBlock()->getParent();

 // Create blocks for the then and else cases. Insert the 'then' block at the
 // end of the function.
 BasicBlock *ThenBB = BasicBlock::Create(TheContext, "then", TheFunction);
 BasicBlock *ElseBB = BasicBlock::Create(TheContext, "else");
 BasicBlock *MergeBB = BasicBlock::Create(TheContext, "ifcont");

 Builder.CreateCondBr(CondV, ThenBB, ElseBB);

 // Emit then value.
 Builder.SetInsertPoint(ThenBB);

 Value *ThenV = Then->codegen();
 if (!ThenV)
 return nullptr;

 Builder.CreateBr(MergeBB);
 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
 ThenBB = Builder.GetInsertBlock();

 // Emit else block.
 TheFunction->getBasicBlockList().push_back(ElseBB);
 Builder.SetInsertPoint(ElseBB);

 Value *ElseV = Else->codegen();
 if (!ElseV)
 return nullptr;

 Builder.CreateBr(MergeBB);
 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
 ElseBB = Builder.GetInsertBlock();

 // Emit merge block.
 TheFunction->getBasicBlockList().push_back(MergeBB);
 Builder.SetInsertPoint(MergeBB);
 PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(TheContext), 2, "iftmp");

 PN->addIncoming(ThenV, ThenBB);
 PN->addIncoming(ElseV, ElseBB);
 return PN;
}

// Output for-loop as:
// ...
// start = startexpr
// goto loop
// loop:
// variable = phi [start, loopheader], [nextvariable, loopend]
// ...
// bodyexpr
// ...
// loopend:
// step = stepexpr
// nextvariable = variable + step
// endcond = endexpr
// br endcond, loop, endloop
// outloop:
Value *ForExprAST::codegen() {
 // Emit the start code first, without 'variable' in scope.
 Value *StartVal = Start->codegen();
 if (!StartVal)
 return nullptr;

 // Make the new basic block for the loop header, inserting after current
 // block.
 Function *TheFunction = Builder.GetInsertBlock()->getParent();
 BasicBlock *PreheaderBB = Builder.GetInsertBlock();
 BasicBlock *LoopBB = BasicBlock::Create(TheContext, "loop", TheFunction);

 // Insert an explicit fall through from the current block to the LoopBB.
 Builder.CreateBr(LoopBB);

 // Start insertion in LoopBB.
 Builder.SetInsertPoint(LoopBB);

 // Start the PHI node with an entry for Start.
 PHINode *Variable =
 Builder.CreatePHI(Type::getDoubleTy(TheContext), 2, VarName);
 Variable->addIncoming(StartVal, PreheaderBB);

 // Within the loop, the variable is defined equal to the PHI node. If it
 // shadows an existing variable, we have to restore it, so save it now.
 Value *OldVal = NamedValues[VarName];
 NamedValues[VarName] = Variable;

 // Emit the body of the loop. This, like any other expr, can change the
 // current BB. Note that we ignore the value computed by the body, but don't
 // allow an error.
 if (!Body->codegen())
 return nullptr;

 // Emit the step value.
 Value *StepVal = nullptr;
 if (Step) {
 StepVal = Step->codegen();
 if (!StepVal)
 return nullptr;
 } else {
 // If not specified, use 1.0.
 StepVal = ConstantFP::get(TheContext, APFloat(1.0));
 }

 Value *NextVar = Builder.CreateFAdd(Variable, StepVal, "nextvar");

 // Compute the end condition.
 Value *EndCond = End->codegen();
 if (!EndCond)
 return nullptr;

 // Convert condition to a bool by comparing non-equal to 0.0.
 EndCond = Builder.CreateFCmpONE(
 EndCond, ConstantFP::get(TheContext, APFloat(0.0)), "loopcond");

 // Create the "after loop" block and insert it.
 BasicBlock *LoopEndBB = Builder.GetInsertBlock();
 BasicBlock *AfterBB =
 BasicBlock::Create(TheContext, "afterloop", TheFunction);

 // Insert the conditional branch into the end of LoopEndBB.
 Builder.CreateCondBr(EndCond, LoopBB, AfterBB);

 // Any new code will be inserted in AfterBB.
 Builder.SetInsertPoint(AfterBB);

 // Add a new entry to the PHI node for the backedge.
 Variable->addIncoming(NextVar, LoopEndBB);

 // Restore the unshadowed variable.
 if (OldVal)
 NamedValues[VarName] = OldVal;
 else
 NamedValues.erase(VarName);

 // for expr always returns 0.0.
 return Constant::getNullValue(Type::getDoubleTy(TheContext));
}

Function *PrototypeAST::codegen() {
 // Make the function type: double(double,double) etc.
 std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(TheContext));
 FunctionType *FT =
 FunctionType::get(Type::getDoubleTy(TheContext), Doubles, false);

 Function *F =
 Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get());

 // Set names for all arguments.
 unsigned Idx = 0;
 for (auto &Arg : F->args())
 Arg.setName(Args[Idx++]);

 return F;
}

Function *FunctionAST::codegen() {
 // Transfer ownership of the prototype to the FunctionProtos map, but keep a
 // reference to it for use below.
 auto &P = *Proto;
 FunctionProtos[Proto->getName()] = std::move(Proto);
 Function *TheFunction = getFunction(P.getName());
 if (!TheFunction)
 return nullptr;

 // If this is an operator, install it.
 if (P.isBinaryOp())
 BinopPrecedence[P.getOperatorName()] = P.getBinaryPrecedence();

 // Create a new basic block to start insertion into.
 BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction);
 Builder.SetInsertPoint(BB);

 // Record the function arguments in the NamedValues map.
 NamedValues.clear();
 for (auto &Arg : TheFunction->args())
 NamedValues[Arg.getName()] = &Arg;

 if (Value *RetVal = Body->codegen()) {
 // Finish off the function.
 Builder.CreateRet(RetVal);

 // Validate the generated code, checking for consistency.
 verifyFunction(*TheFunction);

 // Run the optimizer on the function.
 TheFPM->run(*TheFunction);

 return TheFunction;
 }

 // Error reading body, remove function.
 TheFunction->eraseFromParent();

 if (P.isBinaryOp())
 BinopPrecedence.erase(P.getOperatorName());
 return nullptr;
}

//===--===//
// Top-Level parsing and JIT Driver
//===--===//

static void InitializeModuleAndPassManager() {
 // Open a new module.
 TheModule = llvm::make_unique<Module>("my cool jit", TheContext);
 TheModule->setDataLayout(TheJIT->getTargetMachine().createDataLayout());

 // Create a new pass manager attached to it.
 TheFPM = llvm::make_unique<legacy::FunctionPassManager>(TheModule.get());

 // Do simple "peephole" optimizations and bit-twiddling optzns.
 TheFPM->add(createInstructionCombiningPass());
 // Reassociate expressions.
 TheFPM->add(createReassociatePass());
 // Eliminate Common SubExpressions.
 TheFPM->add(createGVNPass());
 // Simplify the control flow graph (deleting unreachable blocks, etc).
 TheFPM->add(createCFGSimplificationPass());

 TheFPM->doInitialization();
}

static void HandleDefinition() {
 if (auto FnAST = ParseDefinition()) {
 if (auto *FnIR = FnAST->codegen()) {
 fprintf(stderr, "Read function definition:");
 FnIR->print(errs());
 fprintf(stderr, "\n");
 TheJIT->addModule(std::move(TheModule));
 InitializeModuleAndPassManager();
 }
 } else {
 // Skip token for error recovery.
 getNextToken();
 }
}

static void HandleExtern() {
 if (auto ProtoAST = ParseExtern()) {
 if (auto *FnIR = ProtoAST->codegen()) {
 fprintf(stderr, "Read extern: ");
 FnIR->print(errs());
 fprintf(stderr, "\n");
 FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST);
 }
 } else {
 // Skip token for error recovery.
 getNextToken();
 }
}

static void HandleTopLevelExpression() {
 // Evaluate a top-level expression into an anonymous function.
 if (auto FnAST = ParseTopLevelExpr()) {
 if (FnAST->codegen()) {
 // JIT the module containing the anonymous expression, keeping a handle so
 // we can free it later.
 auto H = TheJIT->addModule(std::move(TheModule));
 InitializeModuleAndPassManager();

 // Search the JIT for the __anon_expr symbol.
 auto ExprSymbol = TheJIT->findSymbol("__anon_expr");
 assert(ExprSymbol && "Function not found");

 // Get the symbol's address and cast it to the right type (takes no
 // arguments, returns a double) so we can call it as a native function.
 double (*FP)() = (double (*)())(intptr_t)cantFail(ExprSymbol.getAddress());
 fprintf(stderr, "Evaluated to %f\n", FP());

 // Delete the anonymous expression module from the JIT.
 TheJIT->removeModule(H);
 }
 } else {
 // Skip token for error recovery.
 getNextToken();
 }
}

/// top ::= definition | external | expression | ';'
static void MainLoop() {
 while (true) {
 fprintf(stderr, "ready> ");
 switch (CurTok) {
 case tok_eof:
 return;
 case ';': // ignore top-level semicolons.
 getNextToken();
 break;
 case tok_def:
 HandleDefinition();
 break;
 case tok_extern:
 HandleExtern();
 break;
 default:
 HandleTopLevelExpression();
 break;
 }
 }
}

//===--===//
// "Library" functions that can be "extern'd" from user code.
//===--===//

#ifdef _WIN32
#define DLLEXPORT __declspec(dllexport)
#else
#define DLLEXPORT
#endif

/// putchard - putchar that takes a double and returns 0.
extern "C" DLLEXPORT double putchard(double X) {
 fputc((char)X, stderr);
 return 0;
}

/// printd - printf that takes a double prints it as "%f\n", returning 0.
extern "C" DLLEXPORT double printd(double X) {
 fprintf(stderr, "%f\n", X);
 return 0;
}

//===--===//
// Main driver code.
//===--===//

int main() {
 InitializeNativeTarget();
 InitializeNativeTargetAsmPrinter();
 InitializeNativeTargetAsmParser();

 // Install standard binary operators.
 // 1 is lowest precedence.
 BinopPrecedence['<'] = 10;
 BinopPrecedence['+'] = 20;
 BinopPrecedence['-'] = 20;
 BinopPrecedence['*'] = 40; // highest.

 // Prime the first token.
 fprintf(stderr, "ready> ");
 getNextToken();

 TheJIT = llvm::make_unique<KaleidoscopeJIT>();

 InitializeModuleAndPassManager();

 // Run the main "interpreter loop" now.
 MainLoop();

 return 0;
}

Next: Extending the language: mutable variables / SSA
construction

7. Kaleidoscope: Extending the Language: Mutable Variables

	Chapter 7 Introduction

	Why is this a hard problem?

	Memory in LLVM

	Mutable Variables in Kaleidoscope

	Adjusting Existing Variables for Mutation

	New Assignment Operator

	User-defined Local Variables

	Full Code Listing

7.1. Chapter 7 Introduction

Welcome to Chapter 7 of the “Implementing a language with
LLVM” tutorial. In chapters 1 through 6, we’ve built a
very respectable, albeit simple, functional programming
language [http://en.wikipedia.org/wiki/Functional_programming]. In our
journey, we learned some parsing techniques, how to build and represent
an AST, how to build LLVM IR, and how to optimize the resultant code as
well as JIT compile it.

While Kaleidoscope is interesting as a functional language, the fact
that it is functional makes it “too easy” to generate LLVM IR for it. In
particular, a functional language makes it very easy to build LLVM IR
directly in SSA
form [http://en.wikipedia.org/wiki/Static_single_assignment_form].
Since LLVM requires that the input code be in SSA form, this is a very
nice property and it is often unclear to newcomers how to generate code
for an imperative language with mutable variables.

The short (and happy) summary of this chapter is that there is no need
for your front-end to build SSA form: LLVM provides highly tuned and
well tested support for this, though the way it works is a bit
unexpected for some.

7.2. Why is this a hard problem?

To understand why mutable variables cause complexities in SSA
construction, consider this extremely simple C example:

int G, H;
int test(_Bool Condition) {
 int X;
 if (Condition)
 X = G;
 else
 X = H;
 return X;
}

In this case, we have the variable “X”, whose value depends on the path
executed in the program. Because there are two different possible values
for X before the return instruction, a PHI node is inserted to merge the
two values. The LLVM IR that we want for this example looks like this:

@G = weak global i32 0 ; type of @G is i32*
@H = weak global i32 0 ; type of @H is i32*

define i32 @test(i1 %Condition) {
entry:
 br i1 %Condition, label %cond_true, label %cond_false

cond_true:
 %X.0 = load i32* @G
 br label %cond_next

cond_false:
 %X.1 = load i32* @H
 br label %cond_next

cond_next:
 %X.2 = phi i32 [%X.1, %cond_false], [%X.0, %cond_true]
 ret i32 %X.2
}

In this example, the loads from the G and H global variables are
explicit in the LLVM IR, and they live in the then/else branches of the
if statement (cond_true/cond_false). In order to merge the incoming
values, the X.2 phi node in the cond_next block selects the right value
to use based on where control flow is coming from: if control flow comes
from the cond_false block, X.2 gets the value of X.1. Alternatively, if
control flow comes from cond_true, it gets the value of X.0. The intent
of this chapter is not to explain the details of SSA form. For more
information, see one of the many online
references [http://en.wikipedia.org/wiki/Static_single_assignment_form].

The question for this article is “who places the phi nodes when lowering
assignments to mutable variables?”. The issue here is that LLVM
requires that its IR be in SSA form: there is no “non-ssa” mode for
it. However, SSA construction requires non-trivial algorithms and data
structures, so it is inconvenient and wasteful for every front-end to
have to reproduce this logic.

7.3. Memory in LLVM

The ‘trick’ here is that while LLVM does require all register values to
be in SSA form, it does not require (or permit) memory objects to be in
SSA form. In the example above, note that the loads from G and H are
direct accesses to G and H: they are not renamed or versioned. This
differs from some other compiler systems, which do try to version memory
objects. In LLVM, instead of encoding dataflow analysis of memory into
the LLVM IR, it is handled with Analysis
Passes which are computed on demand.

With this in mind, the high-level idea is that we want to make a stack
variable (which lives in memory, because it is on the stack) for each
mutable object in a function. To take advantage of this trick, we need
to talk about how LLVM represents stack variables.

In LLVM, all memory accesses are explicit with load/store instructions,
and it is carefully designed not to have (or need) an “address-of”
operator. Notice how the type of the @G/@H global variables is actually
“i32*” even though the variable is defined as “i32”. What this means is
that @G defines space for an i32 in the global data area, but its
name actually refers to the address for that space. Stack variables
work the same way, except that instead of being declared with global
variable definitions, they are declared with the LLVM alloca
instruction:

define i32 @example() {
entry:
 %X = alloca i32 ; type of %X is i32*.
 ...
 %tmp = load i32* %X ; load the stack value %X from the stack.
 %tmp2 = add i32 %tmp, 1 ; increment it
 store i32 %tmp2, i32* %X ; store it back
 ...

This code shows an example of how you can declare and manipulate a stack
variable in the LLVM IR. Stack memory allocated with the alloca
instruction is fully general: you can pass the address of the stack slot
to functions, you can store it in other variables, etc. In our example
above, we could rewrite the example to use the alloca technique to avoid
using a PHI node:

@G = weak global i32 0 ; type of @G is i32*
@H = weak global i32 0 ; type of @H is i32*

define i32 @test(i1 %Condition) {
entry:
 %X = alloca i32 ; type of %X is i32*.
 br i1 %Condition, label %cond_true, label %cond_false

cond_true:
 %X.0 = load i32* @G
 store i32 %X.0, i32* %X ; Update X
 br label %cond_next

cond_false:
 %X.1 = load i32* @H
 store i32 %X.1, i32* %X ; Update X
 br label %cond_next

cond_next:
 %X.2 = load i32* %X ; Read X
 ret i32 %X.2
}

With this, we have discovered a way to handle arbitrary mutable
variables without the need to create Phi nodes at all:

	Each mutable variable becomes a stack allocation.

	Each read of the variable becomes a load from the stack.

	Each update of the variable becomes a store to the stack.

	Taking the address of a variable just uses the stack address
directly.

While this solution has solved our immediate problem, it introduced
another one: we have now apparently introduced a lot of stack traffic
for very simple and common operations, a major performance problem.
Fortunately for us, the LLVM optimizer has a highly-tuned optimization
pass named “mem2reg” that handles this case, promoting allocas like this
into SSA registers, inserting Phi nodes as appropriate. If you run this
example through the pass, for example, you’ll get:

$ llvm-as < example.ll | opt -mem2reg | llvm-dis
@G = weak global i32 0
@H = weak global i32 0

define i32 @test(i1 %Condition) {
entry:
 br i1 %Condition, label %cond_true, label %cond_false

cond_true:
 %X.0 = load i32* @G
 br label %cond_next

cond_false:
 %X.1 = load i32* @H
 br label %cond_next

cond_next:
 %X.01 = phi i32 [%X.1, %cond_false], [%X.0, %cond_true]
 ret i32 %X.01
}

The mem2reg pass implements the standard “iterated dominance frontier”
algorithm for constructing SSA form and has a number of optimizations
that speed up (very common) degenerate cases. The mem2reg optimization
pass is the answer to dealing with mutable variables, and we highly
recommend that you depend on it. Note that mem2reg only works on
variables in certain circumstances:

	mem2reg is alloca-driven: it looks for allocas and if it can handle
them, it promotes them. It does not apply to global variables or heap
allocations.

	mem2reg only looks for alloca instructions in the entry block of the
function. Being in the entry block guarantees that the alloca is only
executed once, which makes analysis simpler.

	mem2reg only promotes allocas whose uses are direct loads and stores.
If the address of the stack object is passed to a function, or if any
funny pointer arithmetic is involved, the alloca will not be
promoted.

	mem2reg only works on allocas of first
class values (such as pointers,
scalars and vectors), and only if the array size of the allocation is
1 (or missing in the .ll file). mem2reg is not capable of promoting
structs or arrays to registers. Note that the “sroa” pass is
more powerful and can promote structs, “unions”, and arrays in many
cases.

All of these properties are easy to satisfy for most imperative
languages, and we’ll illustrate it below with Kaleidoscope. The final
question you may be asking is: should I bother with this nonsense for my
front-end? Wouldn’t it be better if I just did SSA construction
directly, avoiding use of the mem2reg optimization pass? In short, we
strongly recommend that you use this technique for building SSA form,
unless there is an extremely good reason not to. Using this technique
is:

	Proven and well tested: clang uses this technique
for local mutable variables. As such, the most common clients of LLVM
are using this to handle a bulk of their variables. You can be sure
that bugs are found fast and fixed early.

	Extremely Fast: mem2reg has a number of special cases that make it
fast in common cases as well as fully general. For example, it has
fast-paths for variables that are only used in a single block,
variables that only have one assignment point, good heuristics to
avoid insertion of unneeded phi nodes, etc.

	Needed for debug info generation: Debug information in
LLVM relies on having the address of
the variable exposed so that debug info can be attached to it. This
technique dovetails very naturally with this style of debug info.

If nothing else, this makes it much easier to get your front-end up and
running, and is very simple to implement. Let’s extend Kaleidoscope with
mutable variables now!

7.4. Mutable Variables in Kaleidoscope

Now that we know the sort of problem we want to tackle, let’s see what
this looks like in the context of our little Kaleidoscope language.
We’re going to add two features:

	The ability to mutate variables with the ‘=’ operator.

	The ability to define new variables.

While the first item is really what this is about, we only have
variables for incoming arguments as well as for induction variables, and
redefining those only goes so far :). Also, the ability to define new
variables is a useful thing regardless of whether you will be mutating
them. Here’s a motivating example that shows how we could use these:

Define ':' for sequencing: as a low-precedence operator that ignores operands
and just returns the RHS.
def binary : 1 (x y) y;

Recursive fib, we could do this before.
def fib(x)
 if (x < 3) then
 1
 else
 fib(x-1)+fib(x-2);

Iterative fib.
def fibi(x)
 var a = 1, b = 1, c in
 (for i = 3, i < x in
 c = a + b :
 a = b :
 b = c) :
 b;

Call it.
fibi(10);

In order to mutate variables, we have to change our existing variables
to use the “alloca trick”. Once we have that, we’ll add our new
operator, then extend Kaleidoscope to support new variable definitions.

7.5. Adjusting Existing Variables for Mutation

The symbol table in Kaleidoscope is managed at code generation time by
the ‘NamedValues’ map. This map currently keeps track of the LLVM
“Value*” that holds the double value for the named variable. In order
to support mutation, we need to change this slightly, so that
NamedValues holds the memory location of the variable in question.
Note that this change is a refactoring: it changes the structure of the
code, but does not (by itself) change the behavior of the compiler. All
of these changes are isolated in the Kaleidoscope code generator.

At this point in Kaleidoscope’s development, it only supports variables
for two things: incoming arguments to functions and the induction
variable of ‘for’ loops. For consistency, we’ll allow mutation of these
variables in addition to other user-defined variables. This means that
these will both need memory locations.

To start our transformation of Kaleidoscope, we’ll change the
NamedValues map so that it maps to AllocaInst* instead of Value*. Once
we do this, the C++ compiler will tell us what parts of the code we need
to update:

static std::map<std::string, AllocaInst*> NamedValues;

Also, since we will need to create these allocas, we’ll use a helper
function that ensures that the allocas are created in the entry block of
the function:

/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
/// the function. This is used for mutable variables etc.
static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
 const std::string &VarName) {
 IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
 TheFunction->getEntryBlock().begin());
 return TmpB.CreateAlloca(Type::getDoubleTy(TheContext), 0,
 VarName.c_str());
}

This funny looking code creates an IRBuilder object that is pointing at
the first instruction (.begin()) of the entry block. It then creates an
alloca with the expected name and returns it. Because all values in
Kaleidoscope are doubles, there is no need to pass in a type to use.

With this in place, the first functionality change we want to make belongs to
variable references. In our new scheme, variables live on the stack, so
code generating a reference to them actually needs to produce a load
from the stack slot:

Value *VariableExprAST::codegen() {
 // Look this variable up in the function.
 Value *V = NamedValues[Name];
 if (!V)
 return LogErrorV("Unknown variable name");

 // Load the value.
 return Builder.CreateLoad(V, Name.c_str());
}

As you can see, this is pretty straightforward. Now we need to update
the things that define the variables to set up the alloca. We’ll start
with ForExprAST::codegen() (see the full code listing for
the unabridged code):

Function *TheFunction = Builder.GetInsertBlock()->getParent();

// Create an alloca for the variable in the entry block.
AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);

// Emit the start code first, without 'variable' in scope.
Value *StartVal = Start->codegen();
if (!StartVal)
 return nullptr;

// Store the value into the alloca.
Builder.CreateStore(StartVal, Alloca);
...

// Compute the end condition.
Value *EndCond = End->codegen();
if (!EndCond)
 return nullptr;

// Reload, increment, and restore the alloca. This handles the case where
// the body of the loop mutates the variable.
Value *CurVar = Builder.CreateLoad(Alloca);
Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
Builder.CreateStore(NextVar, Alloca);
...

This code is virtually identical to the code before we allowed mutable
variables. The big difference is that we
no longer have to construct a PHI node, and we use load/store to access
the variable as needed.

To support mutable argument variables, we need to also make allocas for
them. The code for this is also pretty simple:

Function *FunctionAST::codegen() {
 ...
 Builder.SetInsertPoint(BB);

 // Record the function arguments in the NamedValues map.
 NamedValues.clear();
 for (auto &Arg : TheFunction->args()) {
 // Create an alloca for this variable.
 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, Arg.getName());

 // Store the initial value into the alloca.
 Builder.CreateStore(&Arg, Alloca);

 // Add arguments to variable symbol table.
 NamedValues[Arg.getName()] = Alloca;
 }

 if (Value *RetVal = Body->codegen()) {
 ...

For each argument, we make an alloca, store the input value to the
function into the alloca, and register the alloca as the memory location
for the argument. This method gets invoked by FunctionAST::codegen()
right after it sets up the entry block for the function.

The final missing piece is adding the mem2reg pass, which allows us to
get good codegen once again:

// Promote allocas to registers.
TheFPM->add(createPromoteMemoryToRegisterPass());
// Do simple "peephole" optimizations and bit-twiddling optzns.
TheFPM->add(createInstructionCombiningPass());
// Reassociate expressions.
TheFPM->add(createReassociatePass());
...

It is interesting to see what the code looks like before and after the
mem2reg optimization runs. For example, this is the before/after code
for our recursive fib function. Before the optimization:

define double @fib(double %x) {
entry:
 %x1 = alloca double
 store double %x, double* %x1
 %x2 = load double, double* %x1
 %cmptmp = fcmp ult double %x2, 3.000000e+00
 %booltmp = uitofp i1 %cmptmp to double
 %ifcond = fcmp one double %booltmp, 0.000000e+00
 br i1 %ifcond, label %then, label %else

then: ; preds = %entry
 br label %ifcont

else: ; preds = %entry
 %x3 = load double, double* %x1
 %subtmp = fsub double %x3, 1.000000e+00
 %calltmp = call double @fib(double %subtmp)
 %x4 = load double, double* %x1
 %subtmp5 = fsub double %x4, 2.000000e+00
 %calltmp6 = call double @fib(double %subtmp5)
 %addtmp = fadd double %calltmp, %calltmp6
 br label %ifcont

ifcont: ; preds = %else, %then
 %iftmp = phi double [1.000000e+00, %then], [%addtmp, %else]
 ret double %iftmp
}

Here there is only one variable (x, the input argument) but you can
still see the extremely simple-minded code generation strategy we are
using. In the entry block, an alloca is created, and the initial input
value is stored into it. Each reference to the variable does a reload
from the stack. Also, note that we didn’t modify the if/then/else
expression, so it still inserts a PHI node. While we could make an
alloca for it, it is actually easier to create a PHI node for it, so we
still just make the PHI.

Here is the code after the mem2reg pass runs:

define double @fib(double %x) {
entry:
 %cmptmp = fcmp ult double %x, 3.000000e+00
 %booltmp = uitofp i1 %cmptmp to double
 %ifcond = fcmp one double %booltmp, 0.000000e+00
 br i1 %ifcond, label %then, label %else

then:
 br label %ifcont

else:
 %subtmp = fsub double %x, 1.000000e+00
 %calltmp = call double @fib(double %subtmp)
 %subtmp5 = fsub double %x, 2.000000e+00
 %calltmp6 = call double @fib(double %subtmp5)
 %addtmp = fadd double %calltmp, %calltmp6
 br label %ifcont

ifcont: ; preds = %else, %then
 %iftmp = phi double [1.000000e+00, %then], [%addtmp, %else]
 ret double %iftmp
}

This is a trivial case for mem2reg, since there are no redefinitions of
the variable. The point of showing this is to calm your tension about
inserting such blatent inefficiencies :).

After the rest of the optimizers run, we get:

define double @fib(double %x) {
entry:
 %cmptmp = fcmp ult double %x, 3.000000e+00
 %booltmp = uitofp i1 %cmptmp to double
 %ifcond = fcmp ueq double %booltmp, 0.000000e+00
 br i1 %ifcond, label %else, label %ifcont

else:
 %subtmp = fsub double %x, 1.000000e+00
 %calltmp = call double @fib(double %subtmp)
 %subtmp5 = fsub double %x, 2.000000e+00
 %calltmp6 = call double @fib(double %subtmp5)
 %addtmp = fadd double %calltmp, %calltmp6
 ret double %addtmp

ifcont:
 ret double 1.000000e+00
}

Here we see that the simplifycfg pass decided to clone the return
instruction into the end of the ‘else’ block. This allowed it to
eliminate some branches and the PHI node.

Now that all symbol table references are updated to use stack variables,
we’ll add the assignment operator.

7.6. New Assignment Operator

With our current framework, adding a new assignment operator is really
simple. We will parse it just like any other binary operator, but handle
it internally (instead of allowing the user to define it). The first
step is to set a precedence:

int main() {
 // Install standard binary operators.
 // 1 is lowest precedence.
 BinopPrecedence['='] = 2;
 BinopPrecedence['<'] = 10;
 BinopPrecedence['+'] = 20;
 BinopPrecedence['-'] = 20;

Now that the parser knows the precedence of the binary operator, it
takes care of all the parsing and AST generation. We just need to
implement codegen for the assignment operator. This looks like:

Value *BinaryExprAST::codegen() {
 // Special case '=' because we don't want to emit the LHS as an expression.
 if (Op == '=') {
 // Assignment requires the LHS to be an identifier.
 VariableExprAST *LHSE = dynamic_cast<VariableExprAST*>(LHS.get());
 if (!LHSE)
 return LogErrorV("destination of '=' must be a variable");

Unlike the rest of the binary operators, our assignment operator doesn’t
follow the “emit LHS, emit RHS, do computation” model. As such, it is
handled as a special case before the other binary operators are handled.
The other strange thing is that it requires the LHS to be a variable. It
is invalid to have “(x+1) = expr” - only things like “x = expr” are
allowed.

 // Codegen the RHS.
 Value *Val = RHS->codegen();
 if (!Val)
 return nullptr;

 // Look up the name.
 Value *Variable = NamedValues[LHSE->getName()];
 if (!Variable)
 return LogErrorV("Unknown variable name");

 Builder.CreateStore(Val, Variable);
 return Val;
}
...

Once we have the variable, codegen’ing the assignment is
straightforward: we emit the RHS of the assignment, create a store, and
return the computed value. Returning a value allows for chained
assignments like “X = (Y = Z)”.

Now that we have an assignment operator, we can mutate loop variables
and arguments. For example, we can now run code like this:

Function to print a double.
extern printd(x);

Define ':' for sequencing: as a low-precedence operator that ignores operands
and just returns the RHS.
def binary : 1 (x y) y;

def test(x)
 printd(x) :
 x = 4 :
 printd(x);

test(123);

When run, this example prints “123” and then “4”, showing that we did
actually mutate the value! Okay, we have now officially implemented our
goal: getting this to work requires SSA construction in the general
case. However, to be really useful, we want the ability to define our
own local variables, let’s add this next!

7.7. User-defined Local Variables

Adding var/in is just like any other extension we made to
Kaleidoscope: we extend the lexer, the parser, the AST and the code
generator. The first step for adding our new ‘var/in’ construct is to
extend the lexer. As before, this is pretty trivial, the code looks like
this:

enum Token {
 ...
 // var definition
 tok_var = -13
...
}
...
static int gettok() {
...
 if (IdentifierStr == "in")
 return tok_in;
 if (IdentifierStr == "binary")
 return tok_binary;
 if (IdentifierStr == "unary")
 return tok_unary;
 if (IdentifierStr == "var")
 return tok_var;
 return tok_identifier;
...

The next step is to define the AST node that we will construct. For
var/in, it looks like this:

/// VarExprAST - Expression class for var/in
class VarExprAST : public ExprAST {
 std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
 std::unique_ptr<ExprAST> Body;

public:
 VarExprAST(std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames,
 std::unique_ptr<ExprAST> Body)
 : VarNames(std::move(VarNames)), Body(std::move(Body)) {}

 Value *codegen() override;
};

var/in allows a list of names to be defined all at once, and each name
can optionally have an initializer value. As such, we capture this
information in the VarNames vector. Also, var/in has a body, this body
is allowed to access the variables defined by the var/in.

With this in place, we can define the parser pieces. The first thing we
do is add it as a primary expression:

/// primary
/// ::= identifierexpr
/// ::= numberexpr
/// ::= parenexpr
/// ::= ifexpr
/// ::= forexpr
/// ::= varexpr
static std::unique_ptr<ExprAST> ParsePrimary() {
 switch (CurTok) {
 default:
 return LogError("unknown token when expecting an expression");
 case tok_identifier:
 return ParseIdentifierExpr();
 case tok_number:
 return ParseNumberExpr();
 case '(':
 return ParseParenExpr();
 case tok_if:
 return ParseIfExpr();
 case tok_for:
 return ParseForExpr();
 case tok_var:
 return ParseVarExpr();
 }
}

Next we define ParseVarExpr:

/// varexpr ::= 'var' identifier ('=' expression)?
// (',' identifier ('=' expression)?)* 'in' expression
static std::unique_ptr<ExprAST> ParseVarExpr() {
 getNextToken(); // eat the var.

 std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;

 // At least one variable name is required.
 if (CurTok != tok_identifier)
 return LogError("expected identifier after var");

The first part of this code parses the list of identifier/expr pairs
into the local VarNames vector.

while (1) {
 std::string Name = IdentifierStr;
 getNextToken(); // eat identifier.

 // Read the optional initializer.
 std::unique_ptr<ExprAST> Init;
 if (CurTok == '=') {
 getNextToken(); // eat the '='.

 Init = ParseExpression();
 if (!Init) return nullptr;
 }

 VarNames.push_back(std::make_pair(Name, std::move(Init)));

 // End of var list, exit loop.
 if (CurTok != ',') break;
 getNextToken(); // eat the ','.

 if (CurTok != tok_identifier)
 return LogError("expected identifier list after var");
}

Once all the variables are parsed, we then parse the body and create the
AST node:

 // At this point, we have to have 'in'.
 if (CurTok != tok_in)
 return LogError("expected 'in' keyword after 'var'");
 getNextToken(); // eat 'in'.

 auto Body = ParseExpression();
 if (!Body)
 return nullptr;

 return llvm::make_unique<VarExprAST>(std::move(VarNames),
 std::move(Body));
}

Now that we can parse and represent the code, we need to support
emission of LLVM IR for it. This code starts out with:

Value *VarExprAST::codegen() {
 std::vector<AllocaInst *> OldBindings;

 Function *TheFunction = Builder.GetInsertBlock()->getParent();

 // Register all variables and emit their initializer.
 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
 const std::string &VarName = VarNames[i].first;
 ExprAST *Init = VarNames[i].second.get();

Basically it loops over all the variables, installing them one at a
time. For each variable we put into the symbol table, we remember the
previous value that we replace in OldBindings.

 // Emit the initializer before adding the variable to scope, this prevents
 // the initializer from referencing the variable itself, and permits stuff
 // like this:
 // var a = 1 in
 // var a = a in ... # refers to outer 'a'.
 Value *InitVal;
 if (Init) {
 InitVal = Init->codegen();
 if (!InitVal)
 return nullptr;
 } else { // If not specified, use 0.0.
 InitVal = ConstantFP::get(TheContext, APFloat(0.0));
 }

 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
 Builder.CreateStore(InitVal, Alloca);

 // Remember the old variable binding so that we can restore the binding when
 // we unrecurse.
 OldBindings.push_back(NamedValues[VarName]);

 // Remember this binding.
 NamedValues[VarName] = Alloca;
}

There are more comments here than code. The basic idea is that we emit
the initializer, create the alloca, then update the symbol table to
point to it. Once all the variables are installed in the symbol table,
we evaluate the body of the var/in expression:

// Codegen the body, now that all vars are in scope.
Value *BodyVal = Body->codegen();
if (!BodyVal)
 return nullptr;

Finally, before returning, we restore the previous variable bindings:

 // Pop all our variables from scope.
 for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
 NamedValues[VarNames[i].first] = OldBindings[i];

 // Return the body computation.
 return BodyVal;
}

The end result of all of this is that we get properly scoped variable
definitions, and we even (trivially) allow mutation of them :).

With this, we completed what we set out to do. Our nice iterative fib
example from the intro compiles and runs just fine. The mem2reg pass
optimizes all of our stack variables into SSA registers, inserting PHI
nodes where needed, and our front-end remains simple: no “iterated
dominance frontier” computation anywhere in sight.

7.8. Full Code Listing

Here is the complete code listing for our running example, enhanced with
mutable variables and var/in support. To build this example, use:

Compile
clang++ -g toy.cpp `llvm-config --cxxflags --ldflags --system-libs --libs core mcjit native` -O3 -o toy
Run
./toy

Here is the code:

#include "../include/KaleidoscopeJIT.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/InstCombine/InstCombine.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVN.h"
#include "llvm/Transforms/Utils.h"
#include <algorithm>
#include <cassert>
#include <cctype>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <map>
#include <memory>
#include <string>
#include <utility>
#include <vector>

using namespace llvm;
using namespace llvm::orc;

//===--===//
// Lexer
//===--===//

// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
// of these for known things.
enum Token {
 tok_eof = -1,

 // commands
 tok_def = -2,
 tok_extern = -3,

 // primary
 tok_identifier = -4,
 tok_number = -5,

 // control
 tok_if = -6,
 tok_then = -7,
 tok_else = -8,
 tok_for = -9,
 tok_in = -10,

 // operators
 tok_binary = -11,
 tok_unary = -12,

 // var definition
 tok_var = -13
};

static std::string IdentifierStr; // Filled in if tok_identifier
static double NumVal; // Filled in if tok_number

/// gettok - Return the next token from standard input.
static int gettok() {
 static int LastChar = ' ';

 // Skip any whitespace.
 while (isspace(LastChar))
 LastChar = getchar();

 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
 IdentifierStr = LastChar;
 while (isalnum((LastChar = getchar())))
 IdentifierStr += LastChar;

 if (IdentifierStr == "def")
 return tok_def;
 if (IdentifierStr == "extern")
 return tok_extern;
 if (IdentifierStr == "if")
 return tok_if;
 if (IdentifierStr == "then")
 return tok_then;
 if (IdentifierStr == "else")
 return tok_else;
 if (IdentifierStr == "for")
 return tok_for;
 if (IdentifierStr == "in")
 return tok_in;
 if (IdentifierStr == "binary")
 return tok_binary;
 if (IdentifierStr == "unary")
 return tok_unary;
 if (IdentifierStr == "var")
 return tok_var;
 return tok_identifier;
 }

 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
 std::string NumStr;
 do {
 NumStr += LastChar;
 LastChar = getchar();
 } while (isdigit(LastChar) || LastChar == '.');

 NumVal = strtod(NumStr.c_str(), nullptr);
 return tok_number;
 }

 if (LastChar == '#') {
 // Comment until end of line.
 do
 LastChar = getchar();
 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');

 if (LastChar != EOF)
 return gettok();
 }

 // Check for end of file. Don't eat the EOF.
 if (LastChar == EOF)
 return tok_eof;

 // Otherwise, just return the character as its ascii value.
 int ThisChar = LastChar;
 LastChar = getchar();
 return ThisChar;
}

//===--===//
// Abstract Syntax Tree (aka Parse Tree)
//===--===//

namespace {

/// ExprAST - Base class for all expression nodes.
class ExprAST {
public:
 virtual ~ExprAST() = default;

 virtual Value *codegen() = 0;
};

/// NumberExprAST - Expression class for numeric literals like "1.0".
class NumberExprAST : public ExprAST {
 double Val;

public:
 NumberExprAST(double Val) : Val(Val) {}

 Value *codegen() override;
};

/// VariableExprAST - Expression class for referencing a variable, like "a".
class VariableExprAST : public ExprAST {
 std::string Name;

public:
 VariableExprAST(const std::string &Name) : Name(Name) {}

 Value *codegen() override;
 const std::string &getName() const { return Name; }
};

/// UnaryExprAST - Expression class for a unary operator.
class UnaryExprAST : public ExprAST {
 char Opcode;
 std::unique_ptr<ExprAST> Operand;

public:
 UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
 : Opcode(Opcode), Operand(std::move(Operand)) {}

 Value *codegen() override;
};

/// BinaryExprAST - Expression class for a binary operator.
class BinaryExprAST : public ExprAST {
 char Op;
 std::unique_ptr<ExprAST> LHS, RHS;

public:
 BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
 std::unique_ptr<ExprAST> RHS)
 : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}

 Value *codegen() override;
};

/// CallExprAST - Expression class for function calls.
class CallExprAST : public ExprAST {
 std::string Callee;
 std::vector<std::unique_ptr<ExprAST>> Args;

public:
 CallExprAST(const std::string &Callee,
 std::vector<std::unique_ptr<ExprAST>> Args)
 : Callee(Callee), Args(std::move(Args)) {}

 Value *codegen() override;
};

/// IfExprAST - Expression class for if/then/else.
class IfExprAST : public ExprAST {
 std::unique_ptr<ExprAST> Cond, Then, Else;

public:
 IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
 std::unique_ptr<ExprAST> Else)
 : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}

 Value *codegen() override;
};

/// ForExprAST - Expression class for for/in.
class ForExprAST : public ExprAST {
 std::string VarName;
 std::unique_ptr<ExprAST> Start, End, Step, Body;

public:
 ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start,
 std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
 std::unique_ptr<ExprAST> Body)
 : VarName(VarName), Start(std::move(Start)), End(std::move(End)),
 Step(std::move(Step)), Body(std::move(Body)) {}

 Value *codegen() override;
};

/// VarExprAST - Expression class for var/in
class VarExprAST : public ExprAST {
 std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
 std::unique_ptr<ExprAST> Body;

public:
 VarExprAST(
 std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames,
 std::unique_ptr<ExprAST> Body)
 : VarNames(std::move(VarNames)), Body(std::move(Body)) {}

 Value *codegen() override;
};

/// PrototypeAST - This class represents the "prototype" for a function,
/// which captures its name, and its argument names (thus implicitly the number
/// of arguments the function takes), as well as if it is an operator.
class PrototypeAST {
 std::string Name;
 std::vector<std::string> Args;
 bool IsOperator;
 unsigned Precedence; // Precedence if a binary op.

public:
 PrototypeAST(const std::string &Name, std::vector<std::string> Args,
 bool IsOperator = false, unsigned Prec = 0)
 : Name(Name), Args(std::move(Args)), IsOperator(IsOperator),
 Precedence(Prec) {}

 Function *codegen();
 const std::string &getName() const { return Name; }

 bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
 bool isBinaryOp() const { return IsOperator && Args.size() == 2; }

 char getOperatorName() const {
 assert(isUnaryOp() || isBinaryOp());
 return Name[Name.size() - 1];
 }

 unsigned getBinaryPrecedence() const { return Precedence; }
};

/// FunctionAST - This class represents a function definition itself.
class FunctionAST {
 std::unique_ptr<PrototypeAST> Proto;
 std::unique_ptr<ExprAST> Body;

public:
 FunctionAST(std::unique_ptr<PrototypeAST> Proto,
 std::unique_ptr<ExprAST> Body)
 : Proto(std::move(Proto)), Body(std::move(Body)) {}

 Function *codegen();
};

} // end anonymous namespace

//===--===//
// Parser
//===--===//

/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
/// token the parser is looking at. getNextToken reads another token from the
/// lexer and updates CurTok with its results.
static int CurTok;
static int getNextToken() { return CurTok = gettok(); }

/// BinopPrecedence - This holds the precedence for each binary operator that is
/// defined.
static std::map<char, int> BinopPrecedence;

/// GetTokPrecedence - Get the precedence of the pending binary operator token.
static int GetTokPrecedence() {
 if (!isascii(CurTok))
 return -1;

 // Make sure it's a declared binop.
 int TokPrec = BinopPrecedence[CurTok];
 if (TokPrec <= 0)
 return -1;
 return TokPrec;
}

/// LogError* - These are little helper functions for error handling.
std::unique_ptr<ExprAST> LogError(const char *Str) {
 fprintf(stderr, "Error: %s\n", Str);
 return nullptr;
}

std::unique_ptr<PrototypeAST> LogErrorP(const char *Str) {
 LogError(Str);
 return nullptr;
}

static std::unique_ptr<ExprAST> ParseExpression();

/// numberexpr ::= number
static std::unique_ptr<ExprAST> ParseNumberExpr() {
 auto Result = llvm::make_unique<NumberExprAST>(NumVal);
 getNextToken(); // consume the number
 return std::move(Result);
}

/// parenexpr ::= '(' expression ')'
static std::unique_ptr<ExprAST> ParseParenExpr() {
 getNextToken(); // eat (.
 auto V = ParseExpression();
 if (!V)
 return nullptr;

 if (CurTok != ')')
 return LogError("expected ')'");
 getNextToken(); // eat).
 return V;
}

/// identifierexpr
/// ::= identifier
/// ::= identifier '(' expression* ')'
static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
 std::string IdName = IdentifierStr;

 getNextToken(); // eat identifier.

 if (CurTok != '(') // Simple variable ref.
 return llvm::make_unique<VariableExprAST>(IdName);

 // Call.
 getNextToken(); // eat (
 std::vector<std::unique_ptr<ExprAST>> Args;
 if (CurTok != ')') {
 while (true) {
 if (auto Arg = ParseExpression())
 Args.push_back(std::move(Arg));
 else
 return nullptr;

 if (CurTok == ')')
 break;

 if (CurTok != ',')
 return LogError("Expected ')' or ',' in argument list");
 getNextToken();
 }
 }

 // Eat the ')'.
 getNextToken();

 return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
}

/// ifexpr ::= 'if' expression 'then' expression 'else' expression
static std::unique_ptr<ExprAST> ParseIfExpr() {
 getNextToken(); // eat the if.

 // condition.
 auto Cond = ParseExpression();
 if (!Cond)
 return nullptr;

 if (CurTok != tok_then)
 return LogError("expected then");
 getNextToken(); // eat the then

 auto Then = ParseExpression();
 if (!Then)
 return nullptr;

 if (CurTok != tok_else)
 return LogError("expected else");

 getNextToken();

 auto Else = ParseExpression();
 if (!Else)
 return nullptr;

 return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
 std::move(Else));
}

/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
static std::unique_ptr<ExprAST> ParseForExpr() {
 getNextToken(); // eat the for.

 if (CurTok != tok_identifier)
 return LogError("expected identifier after for");

 std::string IdName = IdentifierStr;
 getNextToken(); // eat identifier.

 if (CurTok != '=')
 return LogError("expected '=' after for");
 getNextToken(); // eat '='.

 auto Start = ParseExpression();
 if (!Start)
 return nullptr;
 if (CurTok != ',')
 return LogError("expected ',' after for start value");
 getNextToken();

 auto End = ParseExpression();
 if (!End)
 return nullptr;

 // The step value is optional.
 std::unique_ptr<ExprAST> Step;
 if (CurTok == ',') {
 getNextToken();
 Step = ParseExpression();
 if (!Step)
 return nullptr;
 }

 if (CurTok != tok_in)
 return LogError("expected 'in' after for");
 getNextToken(); // eat 'in'.

 auto Body = ParseExpression();
 if (!Body)
 return nullptr;

 return llvm::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
 std::move(Step), std::move(Body));
}

/// varexpr ::= 'var' identifier ('=' expression)?
// (',' identifier ('=' expression)?)* 'in' expression
static std::unique_ptr<ExprAST> ParseVarExpr() {
 getNextToken(); // eat the var.

 std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;

 // At least one variable name is required.
 if (CurTok != tok_identifier)
 return LogError("expected identifier after var");

 while (true) {
 std::string Name = IdentifierStr;
 getNextToken(); // eat identifier.

 // Read the optional initializer.
 std::unique_ptr<ExprAST> Init = nullptr;
 if (CurTok == '=') {
 getNextToken(); // eat the '='.

 Init = ParseExpression();
 if (!Init)
 return nullptr;
 }

 VarNames.push_back(std::make_pair(Name, std::move(Init)));

 // End of var list, exit loop.
 if (CurTok != ',')
 break;
 getNextToken(); // eat the ','.

 if (CurTok != tok_identifier)
 return LogError("expected identifier list after var");
 }

 // At this point, we have to have 'in'.
 if (CurTok != tok_in)
 return LogError("expected 'in' keyword after 'var'");
 getNextToken(); // eat 'in'.

 auto Body = ParseExpression();
 if (!Body)
 return nullptr;

 return llvm::make_unique<VarExprAST>(std::move(VarNames), std::move(Body));
}

/// primary
/// ::= identifierexpr
/// ::= numberexpr
/// ::= parenexpr
/// ::= ifexpr
/// ::= forexpr
/// ::= varexpr
static std::unique_ptr<ExprAST> ParsePrimary() {
 switch (CurTok) {
 default:
 return LogError("unknown token when expecting an expression");
 case tok_identifier:
 return ParseIdentifierExpr();
 case tok_number:
 return ParseNumberExpr();
 case '(':
 return ParseParenExpr();
 case tok_if:
 return ParseIfExpr();
 case tok_for:
 return ParseForExpr();
 case tok_var:
 return ParseVarExpr();
 }
}

/// unary
/// ::= primary
/// ::= '!' unary
static std::unique_ptr<ExprAST> ParseUnary() {
 // If the current token is not an operator, it must be a primary expr.
 if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
 return ParsePrimary();

 // If this is a unary operator, read it.
 int Opc = CurTok;
 getNextToken();
 if (auto Operand = ParseUnary())
 return llvm::make_unique<UnaryExprAST>(Opc, std::move(Operand));
 return nullptr;
}

/// binoprhs
/// ::= ('+' unary)*
static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
 std::unique_ptr<ExprAST> LHS) {
 // If this is a binop, find its precedence.
 while (true) {
 int TokPrec = GetTokPrecedence();

 // If this is a binop that binds at least as tightly as the current binop,
 // consume it, otherwise we are done.
 if (TokPrec < ExprPrec)
 return LHS;

 // Okay, we know this is a binop.
 int BinOp = CurTok;
 getNextToken(); // eat binop

 // Parse the unary expression after the binary operator.
 auto RHS = ParseUnary();
 if (!RHS)
 return nullptr;

 // If BinOp binds less tightly with RHS than the operator after RHS, let
 // the pending operator take RHS as its LHS.
 int NextPrec = GetTokPrecedence();
 if (TokPrec < NextPrec) {
 RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
 if (!RHS)
 return nullptr;
 }

 // Merge LHS/RHS.
 LHS =
 llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
 }
}

/// expression
/// ::= unary binoprhs
///
static std::unique_ptr<ExprAST> ParseExpression() {
 auto LHS = ParseUnary();
 if (!LHS)
 return nullptr;

 return ParseBinOpRHS(0, std::move(LHS));
}

/// prototype
/// ::= id '(' id* ')'
/// ::= binary LETTER number? (id, id)
/// ::= unary LETTER (id)
static std::unique_ptr<PrototypeAST> ParsePrototype() {
 std::string FnName;

 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
 unsigned BinaryPrecedence = 30;

 switch (CurTok) {
 default:
 return LogErrorP("Expected function name in prototype");
 case tok_identifier:
 FnName = IdentifierStr;
 Kind = 0;
 getNextToken();
 break;
 case tok_unary:
 getNextToken();
 if (!isascii(CurTok))
 return LogErrorP("Expected unary operator");
 FnName = "unary";
 FnName += (char)CurTok;
 Kind = 1;
 getNextToken();
 break;
 case tok_binary:
 getNextToken();
 if (!isascii(CurTok))
 return LogErrorP("Expected binary operator");
 FnName = "binary";
 FnName += (char)CurTok;
 Kind = 2;
 getNextToken();

 // Read the precedence if present.
 if (CurTok == tok_number) {
 if (NumVal < 1 || NumVal > 100)
 return LogErrorP("Invalid precedence: must be 1..100");
 BinaryPrecedence = (unsigned)NumVal;
 getNextToken();
 }
 break;
 }

 if (CurTok != '(')
 return LogErrorP("Expected '(' in prototype");

 std::vector<std::string> ArgNames;
 while (getNextToken() == tok_identifier)
 ArgNames.push_back(IdentifierStr);
 if (CurTok != ')')
 return LogErrorP("Expected ')' in prototype");

 // success.
 getNextToken(); // eat ')'.

 // Verify right number of names for operator.
 if (Kind && ArgNames.size() != Kind)
 return LogErrorP("Invalid number of operands for operator");

 return llvm::make_unique<PrototypeAST>(FnName, ArgNames, Kind != 0,
 BinaryPrecedence);
}

/// definition ::= 'def' prototype expression
static std::unique_ptr<FunctionAST> ParseDefinition() {
 getNextToken(); // eat def.
 auto Proto = ParsePrototype();
 if (!Proto)
 return nullptr;

 if (auto E = ParseExpression())
 return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
 return nullptr;
}

/// toplevelexpr ::= expression
static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
 if (auto E = ParseExpression()) {
 // Make an anonymous proto.
 auto Proto = llvm::make_unique<PrototypeAST>("__anon_expr",
 std::vector<std::string>());
 return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
 }
 return nullptr;
}

/// external ::= 'extern' prototype
static std::unique_ptr<PrototypeAST> ParseExtern() {
 getNextToken(); // eat extern.
 return ParsePrototype();
}

//===--===//
// Code Generation
//===--===//

static LLVMContext TheContext;
static IRBuilder<> Builder(TheContext);
static std::unique_ptr<Module> TheModule;
static std::map<std::string, AllocaInst *> NamedValues;
static std::unique_ptr<legacy::FunctionPassManager> TheFPM;
static std::unique_ptr<KaleidoscopeJIT> TheJIT;
static std::map<std::string, std::unique_ptr<PrototypeAST>> FunctionProtos;

Value *LogErrorV(const char *Str) {
 LogError(Str);
 return nullptr;
}

Function *getFunction(std::string Name) {
 // First, see if the function has already been added to the current module.
 if (auto *F = TheModule->getFunction(Name))
 return F;

 // If not, check whether we can codegen the declaration from some existing
 // prototype.
 auto FI = FunctionProtos.find(Name);
 if (FI != FunctionProtos.end())
 return FI->second->codegen();

 // If no existing prototype exists, return null.
 return nullptr;
}

/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
/// the function. This is used for mutable variables etc.
static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
 const std::string &VarName) {
 IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
 TheFunction->getEntryBlock().begin());
 return TmpB.CreateAlloca(Type::getDoubleTy(TheContext), nullptr, VarName);
}

Value *NumberExprAST::codegen() {
 return ConstantFP::get(TheContext, APFloat(Val));
}

Value *VariableExprAST::codegen() {
 // Look this variable up in the function.
 Value *V = NamedValues[Name];
 if (!V)
 return LogErrorV("Unknown variable name");

 // Load the value.
 return Builder.CreateLoad(V, Name.c_str());
}

Value *UnaryExprAST::codegen() {
 Value *OperandV = Operand->codegen();
 if (!OperandV)
 return nullptr;

 Function *F = getFunction(std::string("unary") + Opcode);
 if (!F)
 return LogErrorV("Unknown unary operator");

 return Builder.CreateCall(F, OperandV, "unop");
}

Value *BinaryExprAST::codegen() {
 // Special case '=' because we don't want to emit the LHS as an expression.
 if (Op == '=') {
 // Assignment requires the LHS to be an identifier.
 // This assume we're building without RTTI because LLVM builds that way by
 // default. If you build LLVM with RTTI this can be changed to a
 // dynamic_cast for automatic error checking.
 VariableExprAST *LHSE = static_cast<VariableExprAST *>(LHS.get());
 if (!LHSE)
 return LogErrorV("destination of '=' must be a variable");
 // Codegen the RHS.
 Value *Val = RHS->codegen();
 if (!Val)
 return nullptr;

 // Look up the name.
 Value *Variable = NamedValues[LHSE->getName()];
 if (!Variable)
 return LogErrorV("Unknown variable name");

 Builder.CreateStore(Val, Variable);
 return Val;
 }

 Value *L = LHS->codegen();
 Value *R = RHS->codegen();
 if (!L || !R)
 return nullptr;

 switch (Op) {
 case '+':
 return Builder.CreateFAdd(L, R, "addtmp");
 case '-':
 return Builder.CreateFSub(L, R, "subtmp");
 case '*':
 return Builder.CreateFMul(L, R, "multmp");
 case '<':
 L = Builder.CreateFCmpULT(L, R, "cmptmp");
 // Convert bool 0/1 to double 0.0 or 1.0
 return Builder.CreateUIToFP(L, Type::getDoubleTy(TheContext), "booltmp");
 default:
 break;
 }

 // If it wasn't a builtin binary operator, it must be a user defined one. Emit
 // a call to it.
 Function *F = getFunction(std::string("binary") + Op);
 assert(F && "binary operator not found!");

 Value *Ops[] = {L, R};
 return Builder.CreateCall(F, Ops, "binop");
}

Value *CallExprAST::codegen() {
 // Look up the name in the global module table.
 Function *CalleeF = getFunction(Callee);
 if (!CalleeF)
 return LogErrorV("Unknown function referenced");

 // If argument mismatch error.
 if (CalleeF->arg_size() != Args.size())
 return LogErrorV("Incorrect # arguments passed");

 std::vector<Value *> ArgsV;
 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
 ArgsV.push_back(Args[i]->codegen());
 if (!ArgsV.back())
 return nullptr;
 }

 return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
}

Value *IfExprAST::codegen() {
 Value *CondV = Cond->codegen();
 if (!CondV)
 return nullptr;

 // Convert condition to a bool by comparing non-equal to 0.0.
 CondV = Builder.CreateFCmpONE(
 CondV, ConstantFP::get(TheContext, APFloat(0.0)), "ifcond");

 Function *TheFunction = Builder.GetInsertBlock()->getParent();

 // Create blocks for the then and else cases. Insert the 'then' block at the
 // end of the function.
 BasicBlock *ThenBB = BasicBlock::Create(TheContext, "then", TheFunction);
 BasicBlock *ElseBB = BasicBlock::Create(TheContext, "else");
 BasicBlock *MergeBB = BasicBlock::Create(TheContext, "ifcont");

 Builder.CreateCondBr(CondV, ThenBB, ElseBB);

 // Emit then value.
 Builder.SetInsertPoint(ThenBB);

 Value *ThenV = Then->codegen();
 if (!ThenV)
 return nullptr;

 Builder.CreateBr(MergeBB);
 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
 ThenBB = Builder.GetInsertBlock();

 // Emit else block.
 TheFunction->getBasicBlockList().push_back(ElseBB);
 Builder.SetInsertPoint(ElseBB);

 Value *ElseV = Else->codegen();
 if (!ElseV)
 return nullptr;

 Builder.CreateBr(MergeBB);
 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
 ElseBB = Builder.GetInsertBlock();

 // Emit merge block.
 TheFunction->getBasicBlockList().push_back(MergeBB);
 Builder.SetInsertPoint(MergeBB);
 PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(TheContext), 2, "iftmp");

 PN->addIncoming(ThenV, ThenBB);
 PN->addIncoming(ElseV, ElseBB);
 return PN;
}

// Output for-loop as:
// var = alloca double
// ...
// start = startexpr
// store start -> var
// goto loop
// loop:
// ...
// bodyexpr
// ...
// loopend:
// step = stepexpr
// endcond = endexpr
//
// curvar = load var
// nextvar = curvar + step
// store nextvar -> var
// br endcond, loop, endloop
// outloop:
Value *ForExprAST::codegen() {
 Function *TheFunction = Builder.GetInsertBlock()->getParent();

 // Create an alloca for the variable in the entry block.
 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);

 // Emit the start code first, without 'variable' in scope.
 Value *StartVal = Start->codegen();
 if (!StartVal)
 return nullptr;

 // Store the value into the alloca.
 Builder.CreateStore(StartVal, Alloca);

 // Make the new basic block for the loop header, inserting after current
 // block.
 BasicBlock *LoopBB = BasicBlock::Create(TheContext, "loop", TheFunction);

 // Insert an explicit fall through from the current block to the LoopBB.
 Builder.CreateBr(LoopBB);

 // Start insertion in LoopBB.
 Builder.SetInsertPoint(LoopBB);

 // Within the loop, the variable is defined equal to the PHI node. If it
 // shadows an existing variable, we have to restore it, so save it now.
 AllocaInst *OldVal = NamedValues[VarName];
 NamedValues[VarName] = Alloca;

 // Emit the body of the loop. This, like any other expr, can change the
 // current BB. Note that we ignore the value computed by the body, but don't
 // allow an error.
 if (!Body->codegen())
 return nullptr;

 // Emit the step value.
 Value *StepVal = nullptr;
 if (Step) {
 StepVal = Step->codegen();
 if (!StepVal)
 return nullptr;
 } else {
 // If not specified, use 1.0.
 StepVal = ConstantFP::get(TheContext, APFloat(1.0));
 }

 // Compute the end condition.
 Value *EndCond = End->codegen();
 if (!EndCond)
 return nullptr;

 // Reload, increment, and restore the alloca. This handles the case where
 // the body of the loop mutates the variable.
 Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
 Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
 Builder.CreateStore(NextVar, Alloca);

 // Convert condition to a bool by comparing non-equal to 0.0.
 EndCond = Builder.CreateFCmpONE(
 EndCond, ConstantFP::get(TheContext, APFloat(0.0)), "loopcond");

 // Create the "after loop" block and insert it.
 BasicBlock *AfterBB =
 BasicBlock::Create(TheContext, "afterloop", TheFunction);

 // Insert the conditional branch into the end of LoopEndBB.
 Builder.CreateCondBr(EndCond, LoopBB, AfterBB);

 // Any new code will be inserted in AfterBB.
 Builder.SetInsertPoint(AfterBB);

 // Restore the unshadowed variable.
 if (OldVal)
 NamedValues[VarName] = OldVal;
 else
 NamedValues.erase(VarName);

 // for expr always returns 0.0.
 return Constant::getNullValue(Type::getDoubleTy(TheContext));
}

Value *VarExprAST::codegen() {
 std::vector<AllocaInst *> OldBindings;

 Function *TheFunction = Builder.GetInsertBlock()->getParent();

 // Register all variables and emit their initializer.
 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
 const std::string &VarName = VarNames[i].first;
 ExprAST *Init = VarNames[i].second.get();

 // Emit the initializer before adding the variable to scope, this prevents
 // the initializer from referencing the variable itself, and permits stuff
 // like this:
 // var a = 1 in
 // var a = a in ... # refers to outer 'a'.
 Value *InitVal;
 if (Init) {
 InitVal = Init->codegen();
 if (!InitVal)
 return nullptr;
 } else { // If not specified, use 0.0.
 InitVal = ConstantFP::get(TheContext, APFloat(0.0));
 }

 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
 Builder.CreateStore(InitVal, Alloca);

 // Remember the old variable binding so that we can restore the binding when
 // we unrecurse.
 OldBindings.push_back(NamedValues[VarName]);

 // Remember this binding.
 NamedValues[VarName] = Alloca;
 }

 // Codegen the body, now that all vars are in scope.
 Value *BodyVal = Body->codegen();
 if (!BodyVal)
 return nullptr;

 // Pop all our variables from scope.
 for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
 NamedValues[VarNames[i].first] = OldBindings[i];

 // Return the body computation.
 return BodyVal;
}

Function *PrototypeAST::codegen() {
 // Make the function type: double(double,double) etc.
 std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(TheContext));
 FunctionType *FT =
 FunctionType::get(Type::getDoubleTy(TheContext), Doubles, false);

 Function *F =
 Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get());

 // Set names for all arguments.
 unsigned Idx = 0;
 for (auto &Arg : F->args())
 Arg.setName(Args[Idx++]);

 return F;
}

Function *FunctionAST::codegen() {
 // Transfer ownership of the prototype to the FunctionProtos map, but keep a
 // reference to it for use below.
 auto &P = *Proto;
 FunctionProtos[Proto->getName()] = std::move(Proto);
 Function *TheFunction = getFunction(P.getName());
 if (!TheFunction)
 return nullptr;

 // If this is an operator, install it.
 if (P.isBinaryOp())
 BinopPrecedence[P.getOperatorName()] = P.getBinaryPrecedence();

 // Create a new basic block to start insertion into.
 BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction);
 Builder.SetInsertPoint(BB);

 // Record the function arguments in the NamedValues map.
 NamedValues.clear();
 for (auto &Arg : TheFunction->args()) {
 // Create an alloca for this variable.
 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, Arg.getName());

 // Store the initial value into the alloca.
 Builder.CreateStore(&Arg, Alloca);

 // Add arguments to variable symbol table.
 NamedValues[Arg.getName()] = Alloca;
 }

 if (Value *RetVal = Body->codegen()) {
 // Finish off the function.
 Builder.CreateRet(RetVal);

 // Validate the generated code, checking for consistency.
 verifyFunction(*TheFunction);

 // Run the optimizer on the function.
 TheFPM->run(*TheFunction);

 return TheFunction;
 }

 // Error reading body, remove function.
 TheFunction->eraseFromParent();

 if (P.isBinaryOp())
 BinopPrecedence.erase(P.getOperatorName());
 return nullptr;
}

//===--===//
// Top-Level parsing and JIT Driver
//===--===//

static void InitializeModuleAndPassManager() {
 // Open a new module.
 TheModule = llvm::make_unique<Module>("my cool jit", TheContext);
 TheModule->setDataLayout(TheJIT->getTargetMachine().createDataLayout());

 // Create a new pass manager attached to it.
 TheFPM = llvm::make_unique<legacy::FunctionPassManager>(TheModule.get());

 // Promote allocas to registers.
 TheFPM->add(createPromoteMemoryToRegisterPass());
 // Do simple "peephole" optimizations and bit-twiddling optzns.
 TheFPM->add(createInstructionCombiningPass());
 // Reassociate expressions.
 TheFPM->add(createReassociatePass());
 // Eliminate Common SubExpressions.
 TheFPM->add(createGVNPass());
 // Simplify the control flow graph (deleting unreachable blocks, etc).
 TheFPM->add(createCFGSimplificationPass());

 TheFPM->doInitialization();
}

static void HandleDefinition() {
 if (auto FnAST = ParseDefinition()) {
 if (auto *FnIR = FnAST->codegen()) {
 fprintf(stderr, "Read function definition:");
 FnIR->print(errs());
 fprintf(stderr, "\n");
 TheJIT->addModule(std::move(TheModule));
 InitializeModuleAndPassManager();
 }
 } else {
 // Skip token for error recovery.
 getNextToken();
 }
}

static void HandleExtern() {
 if (auto ProtoAST = ParseExtern()) {
 if (auto *FnIR = ProtoAST->codegen()) {
 fprintf(stderr, "Read extern: ");
 FnIR->print(errs());
 fprintf(stderr, "\n");
 FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST);
 }
 } else {
 // Skip token for error recovery.
 getNextToken();
 }
}

static void HandleTopLevelExpression() {
 // Evaluate a top-level expression into an anonymous function.
 if (auto FnAST = ParseTopLevelExpr()) {
 if (FnAST->codegen()) {
 // JIT the module containing the anonymous expression, keeping a handle so
 // we can free it later.
 auto H = TheJIT->addModule(std::move(TheModule));
 InitializeModuleAndPassManager();

 // Search the JIT for the __anon_expr symbol.
 auto ExprSymbol = TheJIT->findSymbol("__anon_expr");
 assert(ExprSymbol && "Function not found");

 // Get the symbol's address and cast it to the right type (takes no
 // arguments, returns a double) so we can call it as a native function.
 double (*FP)() = (double (*)())(intptr_t)cantFail(ExprSymbol.getAddress());
 fprintf(stderr, "Evaluated to %f\n", FP());

 // Delete the anonymous expression module from the JIT.
 TheJIT->removeModule(H);
 }
 } else {
 // Skip token for error recovery.
 getNextToken();
 }
}

/// top ::= definition | external | expression | ';'
static void MainLoop() {
 while (true) {
 fprintf(stderr, "ready> ");
 switch (CurTok) {
 case tok_eof:
 return;
 case ';': // ignore top-level semicolons.
 getNextToken();
 break;
 case tok_def:
 HandleDefinition();
 break;
 case tok_extern:
 HandleExtern();
 break;
 default:
 HandleTopLevelExpression();
 break;
 }
 }
}

//===--===//
// "Library" functions that can be "extern'd" from user code.
//===--===//

#ifdef _WIN32
#define DLLEXPORT __declspec(dllexport)
#else
#define DLLEXPORT
#endif

/// putchard - putchar that takes a double and returns 0.
extern "C" DLLEXPORT double putchard(double X) {
 fputc((char)X, stderr);
 return 0;
}

/// printd - printf that takes a double prints it as "%f\n", returning 0.
extern "C" DLLEXPORT double printd(double X) {
 fprintf(stderr, "%f\n", X);
 return 0;
}

//===--===//
// Main driver code.
//===--===//

int main() {
 InitializeNativeTarget();
 InitializeNativeTargetAsmPrinter();
 InitializeNativeTargetAsmParser();

 // Install standard binary operators.
 // 1 is lowest precedence.
 BinopPrecedence['='] = 2;
 BinopPrecedence['<'] = 10;
 BinopPrecedence['+'] = 20;
 BinopPrecedence['-'] = 20;
 BinopPrecedence['*'] = 40; // highest.

 // Prime the first token.
 fprintf(stderr, "ready> ");
 getNextToken();

 TheJIT = llvm::make_unique<KaleidoscopeJIT>();

 InitializeModuleAndPassManager();

 // Run the main "interpreter loop" now.
 MainLoop();

 return 0;
}

Next: Compiling to Object Code

8. Kaleidoscope: Compiling to Object Code

	Chapter 8 Introduction

	Choosing a target

	Target Machine

	Configuring the Module

	Emit Object Code

	Putting It All Together

	Full Code Listing

8.1. Chapter 8 Introduction

Welcome to Chapter 8 of the “Implementing a language with LLVM” tutorial. This chapter describes how to compile our
language down to object files.

8.2. Choosing a target

LLVM has native support for cross-compilation. You can compile to the
architecture of your current machine, or just as easily compile for
other architectures. In this tutorial, we’ll target the current
machine.

To specify the architecture that you want to target, we use a string
called a “target triple”. This takes the form
<arch><sub>-<vendor>-<sys>-<abi> (see the cross compilation docs [http://clang.llvm.org/docs/CrossCompilation.html#target-triple]).

As an example, we can see what clang thinks is our current target
triple:

$ clang --version | grep Target
Target: x86_64-unknown-linux-gnu

Running this command may show something different on your machine as
you might be using a different architecture or operating system to me.

Fortunately, we don’t need to hard-code a target triple to target the
current machine. LLVM provides sys::getDefaultTargetTriple, which
returns the target triple of the current machine.

auto TargetTriple = sys::getDefaultTargetTriple();

LLVM doesn’t require us to link in all the target
functionality. For example, if we’re just using the JIT, we don’t need
the assembly printers. Similarly, if we’re only targeting certain
architectures, we can only link in the functionality for those
architectures.

For this example, we’ll initialize all the targets for emitting object
code.

InitializeAllTargetInfos();
InitializeAllTargets();
InitializeAllTargetMCs();
InitializeAllAsmParsers();
InitializeAllAsmPrinters();

We can now use our target triple to get a Target:

std::string Error;
auto Target = TargetRegistry::lookupTarget(TargetTriple, Error);

// Print an error and exit if we couldn't find the requested target.
// This generally occurs if we've forgotten to initialise the
// TargetRegistry or we have a bogus target triple.
if (!Target) {
 errs() << Error;
 return 1;
}

8.3. Target Machine

We will also need a TargetMachine. This class provides a complete
machine description of the machine we’re targeting. If we want to
target a specific feature (such as SSE) or a specific CPU (such as
Intel’s Sandylake), we do so now.

To see which features and CPUs that LLVM knows about, we can use
llc. For example, let’s look at x86:

$ llvm-as < /dev/null | llc -march=x86 -mattr=help
Available CPUs for this target:

 amdfam10 - Select the amdfam10 processor.
 athlon - Select the athlon processor.
 athlon-4 - Select the athlon-4 processor.
 ...

Available features for this target:

 16bit-mode - 16-bit mode (i8086).
 32bit-mode - 32-bit mode (80386).
 3dnow - Enable 3DNow! instructions.
 3dnowa - Enable 3DNow! Athlon instructions.
 ...

For our example, we’ll use the generic CPU without any additional
features, options or relocation model.

auto CPU = "generic";
auto Features = "";

TargetOptions opt;
auto RM = Optional<Reloc::Model>();
auto TargetMachine = Target->createTargetMachine(TargetTriple, CPU, Features, opt, RM);

8.4. Configuring the Module

We’re now ready to configure our module, to specify the target and
data layout. This isn’t strictly necessary, but the frontend
performance guide recommends
this. Optimizations benefit from knowing about the target and data
layout.

TheModule->setDataLayout(TargetMachine->createDataLayout());
TheModule->setTargetTriple(TargetTriple);

8.5. Emit Object Code

We’re ready to emit object code! Let’s define where we want to write
our file to:

auto Filename = "output.o";
std::error_code EC;
raw_fd_ostream dest(Filename, EC, sys::fs::F_None);

if (EC) {
 errs() << "Could not open file: " << EC.message();
 return 1;
}

Finally, we define a pass that emits object code, then we run that
pass:

legacy::PassManager pass;
auto FileType = TargetMachine::CGFT_ObjectFile;

if (TargetMachine->addPassesToEmitFile(pass, dest, FileType)) {
 errs() << "TargetMachine can't emit a file of this type";
 return 1;
}

pass.run(*TheModule);
dest.flush();

8.6. Putting It All Together

Does it work? Let’s give it a try. We need to compile our code, but
note that the arguments to llvm-config are different to the previous chapters.

$ clang++ -g -O3 toy.cpp `llvm-config --cxxflags --ldflags --system-libs --libs all` -o toy

Let’s run it, and define a simple average function. Press Ctrl-D
when you’re done.

$./toy
ready> def average(x y) (x + y) * 0.5;
^D
Wrote output.o

We have an object file! To test it, let’s write a simple program and
link it with our output. Here’s the source code:

#include <iostream>

extern "C" {
 double average(double, double);
}

int main() {
 std::cout << "average of 3.0 and 4.0: " << average(3.0, 4.0) << std::endl;
}

We link our program to output.o and check the result is what we
expected:

$ clang++ main.cpp output.o -o main
$./main
average of 3.0 and 4.0: 3.5

8.7. Full Code Listing

#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <algorithm>
#include <cassert>
#include <cctype>
#include <cstdio>
#include <cstdlib>
#include <map>
#include <memory>
#include <string>
#include <system_error>
#include <utility>
#include <vector>

using namespace llvm;
using namespace llvm::sys;

//===--===//
// Lexer
//===--===//

// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
// of these for known things.
enum Token {
 tok_eof = -1,

 // commands
 tok_def = -2,
 tok_extern = -3,

 // primary
 tok_identifier = -4,
 tok_number = -5,

 // control
 tok_if = -6,
 tok_then = -7,
 tok_else = -8,
 tok_for = -9,
 tok_in = -10,

 // operators
 tok_binary = -11,
 tok_unary = -12,

 // var definition
 tok_var = -13
};

static std::string IdentifierStr; // Filled in if tok_identifier
static double NumVal; // Filled in if tok_number

/// gettok - Return the next token from standard input.
static int gettok() {
 static int LastChar = ' ';

 // Skip any whitespace.
 while (isspace(LastChar))
 LastChar = getchar();

 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
 IdentifierStr = LastChar;
 while (isalnum((LastChar = getchar())))
 IdentifierStr += LastChar;

 if (IdentifierStr == "def")
 return tok_def;
 if (IdentifierStr == "extern")
 return tok_extern;
 if (IdentifierStr == "if")
 return tok_if;
 if (IdentifierStr == "then")
 return tok_then;
 if (IdentifierStr == "else")
 return tok_else;
 if (IdentifierStr == "for")
 return tok_for;
 if (IdentifierStr == "in")
 return tok_in;
 if (IdentifierStr == "binary")
 return tok_binary;
 if (IdentifierStr == "unary")
 return tok_unary;
 if (IdentifierStr == "var")
 return tok_var;
 return tok_identifier;
 }

 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
 std::string NumStr;
 do {
 NumStr += LastChar;
 LastChar = getchar();
 } while (isdigit(LastChar) || LastChar == '.');

 NumVal = strtod(NumStr.c_str(), nullptr);
 return tok_number;
 }

 if (LastChar == '#') {
 // Comment until end of line.
 do
 LastChar = getchar();
 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');

 if (LastChar != EOF)
 return gettok();
 }

 // Check for end of file. Don't eat the EOF.
 if (LastChar == EOF)
 return tok_eof;

 // Otherwise, just return the character as its ascii value.
 int ThisChar = LastChar;
 LastChar = getchar();
 return ThisChar;
}

//===--===//
// Abstract Syntax Tree (aka Parse Tree)
//===--===//

namespace {

/// ExprAST - Base class for all expression nodes.
class ExprAST {
public:
 virtual ~ExprAST() = default;

 virtual Value *codegen() = 0;
};

/// NumberExprAST - Expression class for numeric literals like "1.0".
class NumberExprAST : public ExprAST {
 double Val;

public:
 NumberExprAST(double Val) : Val(Val) {}

 Value *codegen() override;
};

/// VariableExprAST - Expression class for referencing a variable, like "a".
class VariableExprAST : public ExprAST {
 std::string Name;

public:
 VariableExprAST(const std::string &Name) : Name(Name) {}

 Value *codegen() override;
 const std::string &getName() const { return Name; }
};

/// UnaryExprAST - Expression class for a unary operator.
class UnaryExprAST : public ExprAST {
 char Opcode;
 std::unique_ptr<ExprAST> Operand;

public:
 UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
 : Opcode(Opcode), Operand(std::move(Operand)) {}

 Value *codegen() override;
};

/// BinaryExprAST - Expression class for a binary operator.
class BinaryExprAST : public ExprAST {
 char Op;
 std::unique_ptr<ExprAST> LHS, RHS;

public:
 BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
 std::unique_ptr<ExprAST> RHS)
 : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}

 Value *codegen() override;
};

/// CallExprAST - Expression class for function calls.
class CallExprAST : public ExprAST {
 std::string Callee;
 std::vector<std::unique_ptr<ExprAST>> Args;

public:
 CallExprAST(const std::string &Callee,
 std::vector<std::unique_ptr<ExprAST>> Args)
 : Callee(Callee), Args(std::move(Args)) {}

 Value *codegen() override;
};

/// IfExprAST - Expression class for if/then/else.
class IfExprAST : public ExprAST {
 std::unique_ptr<ExprAST> Cond, Then, Else;

public:
 IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
 std::unique_ptr<ExprAST> Else)
 : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}

 Value *codegen() override;
};

/// ForExprAST - Expression class for for/in.
class ForExprAST : public ExprAST {
 std::string VarName;
 std::unique_ptr<ExprAST> Start, End, Step, Body;

public:
 ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start,
 std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
 std::unique_ptr<ExprAST> Body)
 : VarName(VarName), Start(std::move(Start)), End(std::move(End)),
 Step(std::move(Step)), Body(std::move(Body)) {}

 Value *codegen() override;
};

/// VarExprAST - Expression class for var/in
class VarExprAST : public ExprAST {
 std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
 std::unique_ptr<ExprAST> Body;

public:
 VarExprAST(
 std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames,
 std::unique_ptr<ExprAST> Body)
 : VarNames(std::move(VarNames)), Body(std::move(Body)) {}

 Value *codegen() override;
};

/// PrototypeAST - This class represents the "prototype" for a function,
/// which captures its name, and its argument names (thus implicitly the number
/// of arguments the function takes), as well as if it is an operator.
class PrototypeAST {
 std::string Name;
 std::vector<std::string> Args;
 bool IsOperator;
 unsigned Precedence; // Precedence if a binary op.

public:
 PrototypeAST(const std::string &Name, std::vector<std::string> Args,
 bool IsOperator = false, unsigned Prec = 0)
 : Name(Name), Args(std::move(Args)), IsOperator(IsOperator),
 Precedence(Prec) {}

 Function *codegen();
 const std::string &getName() const { return Name; }

 bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
 bool isBinaryOp() const { return IsOperator && Args.size() == 2; }

 char getOperatorName() const {
 assert(isUnaryOp() || isBinaryOp());
 return Name[Name.size() - 1];
 }

 unsigned getBinaryPrecedence() const { return Precedence; }
};

/// FunctionAST - This class represents a function definition itself.
class FunctionAST {
 std::unique_ptr<PrototypeAST> Proto;
 std::unique_ptr<ExprAST> Body;

public:
 FunctionAST(std::unique_ptr<PrototypeAST> Proto,
 std::unique_ptr<ExprAST> Body)
 : Proto(std::move(Proto)), Body(std::move(Body)) {}

 Function *codegen();
};

} // end anonymous namespace

//===--===//
// Parser
//===--===//

/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
/// token the parser is looking at. getNextToken reads another token from the
/// lexer and updates CurTok with its results.
static int CurTok;
static int getNextToken() { return CurTok = gettok(); }

/// BinopPrecedence - This holds the precedence for each binary operator that is
/// defined.
static std::map<char, int> BinopPrecedence;

/// GetTokPrecedence - Get the precedence of the pending binary operator token.
static int GetTokPrecedence() {
 if (!isascii(CurTok))
 return -1;

 // Make sure it's a declared binop.
 int TokPrec = BinopPrecedence[CurTok];
 if (TokPrec <= 0)
 return -1;
 return TokPrec;
}

/// LogError* - These are little helper functions for error handling.
std::unique_ptr<ExprAST> LogError(const char *Str) {
 fprintf(stderr, "Error: %s\n", Str);
 return nullptr;
}

std::unique_ptr<PrototypeAST> LogErrorP(const char *Str) {
 LogError(Str);
 return nullptr;
}

static std::unique_ptr<ExprAST> ParseExpression();

/// numberexpr ::= number
static std::unique_ptr<ExprAST> ParseNumberExpr() {
 auto Result = llvm::make_unique<NumberExprAST>(NumVal);
 getNextToken(); // consume the number
 return std::move(Result);
}

/// parenexpr ::= '(' expression ')'
static std::unique_ptr<ExprAST> ParseParenExpr() {
 getNextToken(); // eat (.
 auto V = ParseExpression();
 if (!V)
 return nullptr;

 if (CurTok != ')')
 return LogError("expected ')'");
 getNextToken(); // eat).
 return V;
}

/// identifierexpr
/// ::= identifier
/// ::= identifier '(' expression* ')'
static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
 std::string IdName = IdentifierStr;

 getNextToken(); // eat identifier.

 if (CurTok != '(') // Simple variable ref.
 return llvm::make_unique<VariableExprAST>(IdName);

 // Call.
 getNextToken(); // eat (
 std::vector<std::unique_ptr<ExprAST>> Args;
 if (CurTok != ')') {
 while (true) {
 if (auto Arg = ParseExpression())
 Args.push_back(std::move(Arg));
 else
 return nullptr;

 if (CurTok == ')')
 break;

 if (CurTok != ',')
 return LogError("Expected ')' or ',' in argument list");
 getNextToken();
 }
 }

 // Eat the ')'.
 getNextToken();

 return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
}

/// ifexpr ::= 'if' expression 'then' expression 'else' expression
static std::unique_ptr<ExprAST> ParseIfExpr() {
 getNextToken(); // eat the if.

 // condition.
 auto Cond = ParseExpression();
 if (!Cond)
 return nullptr;

 if (CurTok != tok_then)
 return LogError("expected then");
 getNextToken(); // eat the then

 auto Then = ParseExpression();
 if (!Then)
 return nullptr;

 if (CurTok != tok_else)
 return LogError("expected else");

 getNextToken();

 auto Else = ParseExpression();
 if (!Else)
 return nullptr;

 return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
 std::move(Else));
}

/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
static std::unique_ptr<ExprAST> ParseForExpr() {
 getNextToken(); // eat the for.

 if (CurTok != tok_identifier)
 return LogError("expected identifier after for");

 std::string IdName = IdentifierStr;
 getNextToken(); // eat identifier.

 if (CurTok != '=')
 return LogError("expected '=' after for");
 getNextToken(); // eat '='.

 auto Start = ParseExpression();
 if (!Start)
 return nullptr;
 if (CurTok != ',')
 return LogError("expected ',' after for start value");
 getNextToken();

 auto End = ParseExpression();
 if (!End)
 return nullptr;

 // The step value is optional.
 std::unique_ptr<ExprAST> Step;
 if (CurTok == ',') {
 getNextToken();
 Step = ParseExpression();
 if (!Step)
 return nullptr;
 }

 if (CurTok != tok_in)
 return LogError("expected 'in' after for");
 getNextToken(); // eat 'in'.

 auto Body = ParseExpression();
 if (!Body)
 return nullptr;

 return llvm::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
 std::move(Step), std::move(Body));
}

/// varexpr ::= 'var' identifier ('=' expression)?
// (',' identifier ('=' expression)?)* 'in' expression
static std::unique_ptr<ExprAST> ParseVarExpr() {
 getNextToken(); // eat the var.

 std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;

 // At least one variable name is required.
 if (CurTok != tok_identifier)
 return LogError("expected identifier after var");

 while (true) {
 std::string Name = IdentifierStr;
 getNextToken(); // eat identifier.

 // Read the optional initializer.
 std::unique_ptr<ExprAST> Init = nullptr;
 if (CurTok == '=') {
 getNextToken(); // eat the '='.

 Init = ParseExpression();
 if (!Init)
 return nullptr;
 }

 VarNames.push_back(std::make_pair(Name, std::move(Init)));

 // End of var list, exit loop.
 if (CurTok != ',')
 break;
 getNextToken(); // eat the ','.

 if (CurTok != tok_identifier)
 return LogError("expected identifier list after var");
 }

 // At this point, we have to have 'in'.
 if (CurTok != tok_in)
 return LogError("expected 'in' keyword after 'var'");
 getNextToken(); // eat 'in'.

 auto Body = ParseExpression();
 if (!Body)
 return nullptr;

 return llvm::make_unique<VarExprAST>(std::move(VarNames), std::move(Body));
}

/// primary
/// ::= identifierexpr
/// ::= numberexpr
/// ::= parenexpr
/// ::= ifexpr
/// ::= forexpr
/// ::= varexpr
static std::unique_ptr<ExprAST> ParsePrimary() {
 switch (CurTok) {
 default:
 return LogError("unknown token when expecting an expression");
 case tok_identifier:
 return ParseIdentifierExpr();
 case tok_number:
 return ParseNumberExpr();
 case '(':
 return ParseParenExpr();
 case tok_if:
 return ParseIfExpr();
 case tok_for:
 return ParseForExpr();
 case tok_var:
 return ParseVarExpr();
 }
}

/// unary
/// ::= primary
/// ::= '!' unary
static std::unique_ptr<ExprAST> ParseUnary() {
 // If the current token is not an operator, it must be a primary expr.
 if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
 return ParsePrimary();

 // If this is a unary operator, read it.
 int Opc = CurTok;
 getNextToken();
 if (auto Operand = ParseUnary())
 return llvm::make_unique<UnaryExprAST>(Opc, std::move(Operand));
 return nullptr;
}

/// binoprhs
/// ::= ('+' unary)*
static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
 std::unique_ptr<ExprAST> LHS) {
 // If this is a binop, find its precedence.
 while (true) {
 int TokPrec = GetTokPrecedence();

 // If this is a binop that binds at least as tightly as the current binop,
 // consume it, otherwise we are done.
 if (TokPrec < ExprPrec)
 return LHS;

 // Okay, we know this is a binop.
 int BinOp = CurTok;
 getNextToken(); // eat binop

 // Parse the unary expression after the binary operator.
 auto RHS = ParseUnary();
 if (!RHS)
 return nullptr;

 // If BinOp binds less tightly with RHS than the operator after RHS, let
 // the pending operator take RHS as its LHS.
 int NextPrec = GetTokPrecedence();
 if (TokPrec < NextPrec) {
 RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
 if (!RHS)
 return nullptr;
 }

 // Merge LHS/RHS.
 LHS =
 llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
 }
}

/// expression
/// ::= unary binoprhs
///
static std::unique_ptr<ExprAST> ParseExpression() {
 auto LHS = ParseUnary();
 if (!LHS)
 return nullptr;

 return ParseBinOpRHS(0, std::move(LHS));
}

/// prototype
/// ::= id '(' id* ')'
/// ::= binary LETTER number? (id, id)
/// ::= unary LETTER (id)
static std::unique_ptr<PrototypeAST> ParsePrototype() {
 std::string FnName;

 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
 unsigned BinaryPrecedence = 30;

 switch (CurTok) {
 default:
 return LogErrorP("Expected function name in prototype");
 case tok_identifier:
 FnName = IdentifierStr;
 Kind = 0;
 getNextToken();
 break;
 case tok_unary:
 getNextToken();
 if (!isascii(CurTok))
 return LogErrorP("Expected unary operator");
 FnName = "unary";
 FnName += (char)CurTok;
 Kind = 1;
 getNextToken();
 break;
 case tok_binary:
 getNextToken();
 if (!isascii(CurTok))
 return LogErrorP("Expected binary operator");
 FnName = "binary";
 FnName += (char)CurTok;
 Kind = 2;
 getNextToken();

 // Read the precedence if present.
 if (CurTok == tok_number) {
 if (NumVal < 1 || NumVal > 100)
 return LogErrorP("Invalid precedence: must be 1..100");
 BinaryPrecedence = (unsigned)NumVal;
 getNextToken();
 }
 break;
 }

 if (CurTok != '(')
 return LogErrorP("Expected '(' in prototype");

 std::vector<std::string> ArgNames;
 while (getNextToken() == tok_identifier)
 ArgNames.push_back(IdentifierStr);
 if (CurTok != ')')
 return LogErrorP("Expected ')' in prototype");

 // success.
 getNextToken(); // eat ')'.

 // Verify right number of names for operator.
 if (Kind && ArgNames.size() != Kind)
 return LogErrorP("Invalid number of operands for operator");

 return llvm::make_unique<PrototypeAST>(FnName, ArgNames, Kind != 0,
 BinaryPrecedence);
}

/// definition ::= 'def' prototype expression
static std::unique_ptr<FunctionAST> ParseDefinition() {
 getNextToken(); // eat def.
 auto Proto = ParsePrototype();
 if (!Proto)
 return nullptr;

 if (auto E = ParseExpression())
 return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
 return nullptr;
}

/// toplevelexpr ::= expression
static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
 if (auto E = ParseExpression()) {
 // Make an anonymous proto.
 auto Proto = llvm::make_unique<PrototypeAST>("__anon_expr",
 std::vector<std::string>());
 return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
 }
 return nullptr;
}

/// external ::= 'extern' prototype
static std::unique_ptr<PrototypeAST> ParseExtern() {
 getNextToken(); // eat extern.
 return ParsePrototype();
}

//===--===//
// Code Generation
//===--===//

static LLVMContext TheContext;
static IRBuilder<> Builder(TheContext);
static std::unique_ptr<Module> TheModule;
static std::map<std::string, AllocaInst *> NamedValues;
static std::map<std::string, std::unique_ptr<PrototypeAST>> FunctionProtos;

Value *LogErrorV(const char *Str) {
 LogError(Str);
 return nullptr;
}

Function *getFunction(std::string Name) {
 // First, see if the function has already been added to the current module.
 if (auto *F = TheModule->getFunction(Name))
 return F;

 // If not, check whether we can codegen the declaration from some existing
 // prototype.
 auto FI = FunctionProtos.find(Name);
 if (FI != FunctionProtos.end())
 return FI->second->codegen();

 // If no existing prototype exists, return null.
 return nullptr;
}

/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
/// the function. This is used for mutable variables etc.
static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
 const std::string &VarName) {
 IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
 TheFunction->getEntryBlock().begin());
 return TmpB.CreateAlloca(Type::getDoubleTy(TheContext), nullptr, VarName);
}

Value *NumberExprAST::codegen() {
 return ConstantFP::get(TheContext, APFloat(Val));
}

Value *VariableExprAST::codegen() {
 // Look this variable up in the function.
 Value *V = NamedValues[Name];
 if (!V)
 return LogErrorV("Unknown variable name");

 // Load the value.
 return Builder.CreateLoad(V, Name.c_str());
}

Value *UnaryExprAST::codegen() {
 Value *OperandV = Operand->codegen();
 if (!OperandV)
 return nullptr;

 Function *F = getFunction(std::string("unary") + Opcode);
 if (!F)
 return LogErrorV("Unknown unary operator");

 return Builder.CreateCall(F, OperandV, "unop");
}

Value *BinaryExprAST::codegen() {
 // Special case '=' because we don't want to emit the LHS as an expression.
 if (Op == '=') {
 // Assignment requires the LHS to be an identifier.
 // This assume we're building without RTTI because LLVM builds that way by
 // default. If you build LLVM with RTTI this can be changed to a
 // dynamic_cast for automatic error checking.
 VariableExprAST *LHSE = static_cast<VariableExprAST *>(LHS.get());
 if (!LHSE)
 return LogErrorV("destination of '=' must be a variable");
 // Codegen the RHS.
 Value *Val = RHS->codegen();
 if (!Val)
 return nullptr;

 // Look up the name.
 Value *Variable = NamedValues[LHSE->getName()];
 if (!Variable)
 return LogErrorV("Unknown variable name");

 Builder.CreateStore(Val, Variable);
 return Val;
 }

 Value *L = LHS->codegen();
 Value *R = RHS->codegen();
 if (!L || !R)
 return nullptr;

 switch (Op) {
 case '+':
 return Builder.CreateFAdd(L, R, "addtmp");
 case '-':
 return Builder.CreateFSub(L, R, "subtmp");
 case '*':
 return Builder.CreateFMul(L, R, "multmp");
 case '<':
 L = Builder.CreateFCmpULT(L, R, "cmptmp");
 // Convert bool 0/1 to double 0.0 or 1.0
 return Builder.CreateUIToFP(L, Type::getDoubleTy(TheContext), "booltmp");
 default:
 break;
 }

 // If it wasn't a builtin binary operator, it must be a user defined one. Emit
 // a call to it.
 Function *F = getFunction(std::string("binary") + Op);
 assert(F && "binary operator not found!");

 Value *Ops[] = {L, R};
 return Builder.CreateCall(F, Ops, "binop");
}

Value *CallExprAST::codegen() {
 // Look up the name in the global module table.
 Function *CalleeF = getFunction(Callee);
 if (!CalleeF)
 return LogErrorV("Unknown function referenced");

 // If argument mismatch error.
 if (CalleeF->arg_size() != Args.size())
 return LogErrorV("Incorrect # arguments passed");

 std::vector<Value *> ArgsV;
 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
 ArgsV.push_back(Args[i]->codegen());
 if (!ArgsV.back())
 return nullptr;
 }

 return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
}

Value *IfExprAST::codegen() {
 Value *CondV = Cond->codegen();
 if (!CondV)
 return nullptr;

 // Convert condition to a bool by comparing non-equal to 0.0.
 CondV = Builder.CreateFCmpONE(
 CondV, ConstantFP::get(TheContext, APFloat(0.0)), "ifcond");

 Function *TheFunction = Builder.GetInsertBlock()->getParent();

 // Create blocks for the then and else cases. Insert the 'then' block at the
 // end of the function.
 BasicBlock *ThenBB = BasicBlock::Create(TheContext, "then", TheFunction);
 BasicBlock *ElseBB = BasicBlock::Create(TheContext, "else");
 BasicBlock *MergeBB = BasicBlock::Create(TheContext, "ifcont");

 Builder.CreateCondBr(CondV, ThenBB, ElseBB);

 // Emit then value.
 Builder.SetInsertPoint(ThenBB);

 Value *ThenV = Then->codegen();
 if (!ThenV)
 return nullptr;

 Builder.CreateBr(MergeBB);
 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
 ThenBB = Builder.GetInsertBlock();

 // Emit else block.
 TheFunction->getBasicBlockList().push_back(ElseBB);
 Builder.SetInsertPoint(ElseBB);

 Value *ElseV = Else->codegen();
 if (!ElseV)
 return nullptr;

 Builder.CreateBr(MergeBB);
 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
 ElseBB = Builder.GetInsertBlock();

 // Emit merge block.
 TheFunction->getBasicBlockList().push_back(MergeBB);
 Builder.SetInsertPoint(MergeBB);
 PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(TheContext), 2, "iftmp");

 PN->addIncoming(ThenV, ThenBB);
 PN->addIncoming(ElseV, ElseBB);
 return PN;
}

// Output for-loop as:
// var = alloca double
// ...
// start = startexpr
// store start -> var
// goto loop
// loop:
// ...
// bodyexpr
// ...
// loopend:
// step = stepexpr
// endcond = endexpr
//
// curvar = load var
// nextvar = curvar + step
// store nextvar -> var
// br endcond, loop, endloop
// outloop:
Value *ForExprAST::codegen() {
 Function *TheFunction = Builder.GetInsertBlock()->getParent();

 // Create an alloca for the variable in the entry block.
 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);

 // Emit the start code first, without 'variable' in scope.
 Value *StartVal = Start->codegen();
 if (!StartVal)
 return nullptr;

 // Store the value into the alloca.
 Builder.CreateStore(StartVal, Alloca);

 // Make the new basic block for the loop header, inserting after current
 // block.
 BasicBlock *LoopBB = BasicBlock::Create(TheContext, "loop", TheFunction);

 // Insert an explicit fall through from the current block to the LoopBB.
 Builder.CreateBr(LoopBB);

 // Start insertion in LoopBB.
 Builder.SetInsertPoint(LoopBB);

 // Within the loop, the variable is defined equal to the PHI node. If it
 // shadows an existing variable, we have to restore it, so save it now.
 AllocaInst *OldVal = NamedValues[VarName];
 NamedValues[VarName] = Alloca;

 // Emit the body of the loop. This, like any other expr, can change the
 // current BB. Note that we ignore the value computed by the body, but don't
 // allow an error.
 if (!Body->codegen())
 return nullptr;

 // Emit the step value.
 Value *StepVal = nullptr;
 if (Step) {
 StepVal = Step->codegen();
 if (!StepVal)
 return nullptr;
 } else {
 // If not specified, use 1.0.
 StepVal = ConstantFP::get(TheContext, APFloat(1.0));
 }

 // Compute the end condition.
 Value *EndCond = End->codegen();
 if (!EndCond)
 return nullptr;

 // Reload, increment, and restore the alloca. This handles the case where
 // the body of the loop mutates the variable.
 Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
 Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
 Builder.CreateStore(NextVar, Alloca);

 // Convert condition to a bool by comparing non-equal to 0.0.
 EndCond = Builder.CreateFCmpONE(
 EndCond, ConstantFP::get(TheContext, APFloat(0.0)), "loopcond");

 // Create the "after loop" block and insert it.
 BasicBlock *AfterBB =
 BasicBlock::Create(TheContext, "afterloop", TheFunction);

 // Insert the conditional branch into the end of LoopEndBB.
 Builder.CreateCondBr(EndCond, LoopBB, AfterBB);

 // Any new code will be inserted in AfterBB.
 Builder.SetInsertPoint(AfterBB);

 // Restore the unshadowed variable.
 if (OldVal)
 NamedValues[VarName] = OldVal;
 else
 NamedValues.erase(VarName);

 // for expr always returns 0.0.
 return Constant::getNullValue(Type::getDoubleTy(TheContext));
}

Value *VarExprAST::codegen() {
 std::vector<AllocaInst *> OldBindings;

 Function *TheFunction = Builder.GetInsertBlock()->getParent();

 // Register all variables and emit their initializer.
 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
 const std::string &VarName = VarNames[i].first;
 ExprAST *Init = VarNames[i].second.get();

 // Emit the initializer before adding the variable to scope, this prevents
 // the initializer from referencing the variable itself, and permits stuff
 // like this:
 // var a = 1 in
 // var a = a in ... # refers to outer 'a'.
 Value *InitVal;
 if (Init) {
 InitVal = Init->codegen();
 if (!InitVal)
 return nullptr;
 } else { // If not specified, use 0.0.
 InitVal = ConstantFP::get(TheContext, APFloat(0.0));
 }

 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
 Builder.CreateStore(InitVal, Alloca);

 // Remember the old variable binding so that we can restore the binding when
 // we unrecurse.
 OldBindings.push_back(NamedValues[VarName]);

 // Remember this binding.
 NamedValues[VarName] = Alloca;
 }

 // Codegen the body, now that all vars are in scope.
 Value *BodyVal = Body->codegen();
 if (!BodyVal)
 return nullptr;

 // Pop all our variables from scope.
 for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
 NamedValues[VarNames[i].first] = OldBindings[i];

 // Return the body computation.
 return BodyVal;
}

Function *PrototypeAST::codegen() {
 // Make the function type: double(double,double) etc.
 std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(TheContext));
 FunctionType *FT =
 FunctionType::get(Type::getDoubleTy(TheContext), Doubles, false);

 Function *F =
 Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get());

 // Set names for all arguments.
 unsigned Idx = 0;
 for (auto &Arg : F->args())
 Arg.setName(Args[Idx++]);

 return F;
}

Function *FunctionAST::codegen() {
 // Transfer ownership of the prototype to the FunctionProtos map, but keep a
 // reference to it for use below.
 auto &P = *Proto;
 FunctionProtos[Proto->getName()] = std::move(Proto);
 Function *TheFunction = getFunction(P.getName());
 if (!TheFunction)
 return nullptr;

 // If this is an operator, install it.
 if (P.isBinaryOp())
 BinopPrecedence[P.getOperatorName()] = P.getBinaryPrecedence();

 // Create a new basic block to start insertion into.
 BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction);
 Builder.SetInsertPoint(BB);

 // Record the function arguments in the NamedValues map.
 NamedValues.clear();
 for (auto &Arg : TheFunction->args()) {
 // Create an alloca for this variable.
 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, Arg.getName());

 // Store the initial value into the alloca.
 Builder.CreateStore(&Arg, Alloca);

 // Add arguments to variable symbol table.
 NamedValues[Arg.getName()] = Alloca;
 }

 if (Value *RetVal = Body->codegen()) {
 // Finish off the function.
 Builder.CreateRet(RetVal);

 // Validate the generated code, checking for consistency.
 verifyFunction(*TheFunction);

 return TheFunction;
 }

 // Error reading body, remove function.
 TheFunction->eraseFromParent();

 if (P.isBinaryOp())
 BinopPrecedence.erase(P.getOperatorName());
 return nullptr;
}

//===--===//
// Top-Level parsing and JIT Driver
//===--===//

static void InitializeModuleAndPassManager() {
 // Open a new module.
 TheModule = llvm::make_unique<Module>("my cool jit", TheContext);
}

static void HandleDefinition() {
 if (auto FnAST = ParseDefinition()) {
 if (auto *FnIR = FnAST->codegen()) {
 fprintf(stderr, "Read function definition:");
 FnIR->print(errs());
 fprintf(stderr, "\n");
 }
 } else {
 // Skip token for error recovery.
 getNextToken();
 }
}

static void HandleExtern() {
 if (auto ProtoAST = ParseExtern()) {
 if (auto *FnIR = ProtoAST->codegen()) {
 fprintf(stderr, "Read extern: ");
 FnIR->print(errs());
 fprintf(stderr, "\n");
 FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST);
 }
 } else {
 // Skip token for error recovery.
 getNextToken();
 }
}

static void HandleTopLevelExpression() {
 // Evaluate a top-level expression into an anonymous function.
 if (auto FnAST = ParseTopLevelExpr()) {
 FnAST->codegen();
 } else {
 // Skip token for error recovery.
 getNextToken();
 }
}

/// top ::= definition | external | expression | ';'
static void MainLoop() {
 while (true) {
 switch (CurTok) {
 case tok_eof:
 return;
 case ';': // ignore top-level semicolons.
 getNextToken();
 break;
 case tok_def:
 HandleDefinition();
 break;
 case tok_extern:
 HandleExtern();
 break;
 default:
 HandleTopLevelExpression();
 break;
 }
 }
}

//===--===//
// "Library" functions that can be "extern'd" from user code.
//===--===//

#ifdef _WIN32
#define DLLEXPORT __declspec(dllexport)
#else
#define DLLEXPORT
#endif

/// putchard - putchar that takes a double and returns 0.
extern "C" DLLEXPORT double putchard(double X) {
 fputc((char)X, stderr);
 return 0;
}

/// printd - printf that takes a double prints it as "%f\n", returning 0.
extern "C" DLLEXPORT double printd(double X) {
 fprintf(stderr, "%f\n", X);
 return 0;
}

//===--===//
// Main driver code.
//===--===//

int main() {
 // Install standard binary operators.
 // 1 is lowest precedence.
 BinopPrecedence['<'] = 10;
 BinopPrecedence['+'] = 20;
 BinopPrecedence['-'] = 20;
 BinopPrecedence['*'] = 40; // highest.

 // Prime the first token.
 fprintf(stderr, "ready> ");
 getNextToken();

 InitializeModuleAndPassManager();

 // Run the main "interpreter loop" now.
 MainLoop();

 // Initialize the target registry etc.
 InitializeAllTargetInfos();
 InitializeAllTargets();
 InitializeAllTargetMCs();
 InitializeAllAsmParsers();
 InitializeAllAsmPrinters();

 auto TargetTriple = sys::getDefaultTargetTriple();
 TheModule->setTargetTriple(TargetTriple);

 std::string Error;
 auto Target = TargetRegistry::lookupTarget(TargetTriple, Error);

 // Print an error and exit if we couldn't find the requested target.
 // This generally occurs if we've forgotten to initialise the
 // TargetRegistry or we have a bogus target triple.
 if (!Target) {
 errs() << Error;
 return 1;
 }

 auto CPU = "generic";
 auto Features = "";

 TargetOptions opt;
 auto RM = Optional<Reloc::Model>();
 auto TheTargetMachine =
 Target->createTargetMachine(TargetTriple, CPU, Features, opt, RM);

 TheModule->setDataLayout(TheTargetMachine->createDataLayout());

 auto Filename = "output.o";
 std::error_code EC;
 raw_fd_ostream dest(Filename, EC, sys::fs::F_None);

 if (EC) {
 errs() << "Could not open file: " << EC.message();
 return 1;
 }

 legacy::PassManager pass;
 auto FileType = TargetMachine::CGFT_ObjectFile;

 if (TheTargetMachine->addPassesToEmitFile(pass, dest, nullptr, FileType)) {
 errs() << "TheTargetMachine can't emit a file of this type";
 return 1;
 }

 pass.run(*TheModule);
 dest.flush();

 outs() << "Wrote " << Filename << "\n";

 return 0;
}

Next: Adding Debug Information

9. Kaleidoscope: Adding Debug Information

	Chapter 9 Introduction

	Why is this a hard problem?

	Ahead-of-Time Compilation Mode

	Compile Unit

	DWARF Emission Setup

	Functions

	Source Locations

	Variables

	Full Code Listing

9.1. Chapter 9 Introduction

Welcome to Chapter 9 of the “Implementing a language with
LLVM” tutorial. In chapters 1 through 8, we’ve built a
decent little programming language with functions and variables.
What happens if something goes wrong though, how do you debug your
program?

Source level debugging uses formatted data that helps a debugger
translate from binary and the state of the machine back to the
source that the programmer wrote. In LLVM we generally use a format
called DWARF [http://dwarfstd.org]. DWARF is a compact encoding
that represents types, source locations, and variable locations.

The short summary of this chapter is that we’ll go through the
various things you have to add to a programming language to
support debug info, and how you translate that into DWARF.

Caveat: For now we can’t debug via the JIT, so we’ll need to compile
our program down to something small and standalone. As part of this
we’ll make a few modifications to the running of the language and
how programs are compiled. This means that we’ll have a source file
with a simple program written in Kaleidoscope rather than the
interactive JIT. It does involve a limitation that we can only
have one “top level” command at a time to reduce the number of
changes necessary.

Here’s the sample program we’ll be compiling:

def fib(x)
 if x < 3 then
 1
 else
 fib(x-1)+fib(x-2);

fib(10)

9.2. Why is this a hard problem?

Debug information is a hard problem for a few different reasons - mostly
centered around optimized code. First, optimization makes keeping source
locations more difficult. In LLVM IR we keep the original source location
for each IR level instruction on the instruction. Optimization passes
should keep the source locations for newly created instructions, but merged
instructions only get to keep a single location - this can cause jumping
around when stepping through optimized programs. Secondly, optimization
can move variables in ways that are either optimized out, shared in memory
with other variables, or difficult to track. For the purposes of this
tutorial we’re going to avoid optimization (as you’ll see with one of the
next sets of patches).

9.3. Ahead-of-Time Compilation Mode

To highlight only the aspects of adding debug information to a source
language without needing to worry about the complexities of JIT debugging
we’re going to make a few changes to Kaleidoscope to support compiling
the IR emitted by the front end into a simple standalone program that
you can execute, debug, and see results.

First we make our anonymous function that contains our top level
statement be our “main”:

- auto Proto = llvm::make_unique<PrototypeAST>("", std::vector<std::string>());
+ auto Proto = llvm::make_unique<PrototypeAST>("main", std::vector<std::string>());

just with the simple change of giving it a name.

Then we’re going to remove the command line code wherever it exists:

@@ -1129,7 +1129,6 @@ static void HandleTopLevelExpression() {
 /// top ::= definition | external | expression | ';'
 static void MainLoop() {
 while (1) {
- fprintf(stderr, "ready> ");
 switch (CurTok) {
 case tok_eof:
 return;
@@ -1184,7 +1183,6 @@ int main() {
 BinopPrecedence['*'] = 40; // highest.

 // Prime the first token.
- fprintf(stderr, "ready> ");
 getNextToken();

Lastly we’re going to disable all of the optimization passes and the JIT so
that the only thing that happens after we’re done parsing and generating
code is that the LLVM IR goes to standard error:

@@ -1108,17 +1108,8 @@ static void HandleExtern() {
 static void HandleTopLevelExpression() {
 // Evaluate a top-level expression into an anonymous function.
 if (auto FnAST = ParseTopLevelExpr()) {
- if (auto *FnIR = FnAST->codegen()) {
- // We're just doing this to make sure it executes.
- TheExecutionEngine->finalizeObject();
- // JIT the function, returning a function pointer.
- void *FPtr = TheExecutionEngine->getPointerToFunction(FnIR);
-
- // Cast it to the right type (takes no arguments, returns a double) so we
- // can call it as a native function.
- double (*FP)() = (double (*)())(intptr_t)FPtr;
- // Ignore the return value for this.
- (void)FP;
+ if (!F->codegen()) {
+ fprintf(stderr, "Error generating code for top level expr");
 }
 } else {
 // Skip token for error recovery.
@@ -1439,11 +1459,11 @@ int main() {
 // target lays out data structures.
 TheModule->setDataLayout(TheExecutionEngine->getDataLayout());
 OurFPM.add(new DataLayoutPass());
+#if 0
 OurFPM.add(createBasicAliasAnalysisPass());
 // Promote allocas to registers.
 OurFPM.add(createPromoteMemoryToRegisterPass());
@@ -1218,7 +1210,7 @@ int main() {
 OurFPM.add(createGVNPass());
 // Simplify the control flow graph (deleting unreachable blocks, etc).
 OurFPM.add(createCFGSimplificationPass());
-
+ #endif
 OurFPM.doInitialization();

 // Set the global so the code gen can use this.

This relatively small set of changes get us to the point that we can compile
our piece of Kaleidoscope language down to an executable program via this
command line:

Kaleidoscope-Ch9 < fib.ks | & clang -x ir -

which gives an a.out/a.exe in the current working directory.

9.4. Compile Unit

The top level container for a section of code in DWARF is a compile unit.
This contains the type and function data for an individual translation unit
(read: one file of source code). So the first thing we need to do is
construct one for our fib.ks file.

9.5. DWARF Emission Setup

Similar to the IRBuilder class we have a
DIBuilder [http://llvm.org/doxygen/classllvm_1_1DIBuilder.html] class
that helps in constructing debug metadata for an LLVM IR file. It
corresponds 1:1 similarly to IRBuilder and LLVM IR, but with nicer names.
Using it does require that you be more familiar with DWARF terminology than
you needed to be with IRBuilder and Instruction names, but if you
read through the general documentation on the
Metadata Format [http://llvm.org/docs/SourceLevelDebugging.html] it
should be a little more clear. We’ll be using this class to construct all
of our IR level descriptions. Construction for it takes a module so we
need to construct it shortly after we construct our module. We’ve left it
as a global static variable to make it a bit easier to use.

Next we’re going to create a small container to cache some of our frequent
data. The first will be our compile unit, but we’ll also write a bit of
code for our one type since we won’t have to worry about multiple typed
expressions:

static DIBuilder *DBuilder;

struct DebugInfo {
 DICompileUnit *TheCU;
 DIType *DblTy;

 DIType *getDoubleTy();
} KSDbgInfo;

DIType *DebugInfo::getDoubleTy() {
 if (DblTy)
 return DblTy;

 DblTy = DBuilder->createBasicType("double", 64, dwarf::DW_ATE_float);
 return DblTy;
}

And then later on in main when we’re constructing our module:

DBuilder = new DIBuilder(*TheModule);

KSDbgInfo.TheCU = DBuilder->createCompileUnit(
 dwarf::DW_LANG_C, DBuilder->createFile("fib.ks", "."),
 "Kaleidoscope Compiler", 0, "", 0);

There are a couple of things to note here. First, while we’re producing a
compile unit for a language called Kaleidoscope we used the language
constant for C. This is because a debugger wouldn’t necessarily understand
the calling conventions or default ABI for a language it doesn’t recognize
and we follow the C ABI in our LLVM code generation so it’s the closest
thing to accurate. This ensures we can actually call functions from the
debugger and have them execute. Secondly, you’ll see the “fib.ks” in the
call to createCompileUnit. This is a default hard coded value since
we’re using shell redirection to put our source into the Kaleidoscope
compiler. In a usual front end you’d have an input file name and it would
go there.

One last thing as part of emitting debug information via DIBuilder is that
we need to “finalize” the debug information. The reasons are part of the
underlying API for DIBuilder, but make sure you do this near the end of
main:

DBuilder->finalize();

before you dump out the module.

9.6. Functions

Now that we have our Compile Unit and our source locations, we can add
function definitions to the debug info. So in PrototypeAST::codegen() we
add a few lines of code to describe a context for our subprogram, in this
case the “File”, and the actual definition of the function itself.

So the context:

DIFile *Unit = DBuilder->createFile(KSDbgInfo.TheCU.getFilename(),
 KSDbgInfo.TheCU.getDirectory());

giving us an DIFile and asking the Compile Unit we created above for the
directory and filename where we are currently. Then, for now, we use some
source locations of 0 (since our AST doesn’t currently have source location
information) and construct our function definition:

DIScope *FContext = Unit;
unsigned LineNo = 0;
unsigned ScopeLine = 0;
DISubprogram *SP = DBuilder->createFunction(
 FContext, P.getName(), StringRef(), Unit, LineNo,
 CreateFunctionType(TheFunction->arg_size(), Unit),
 false /* internal linkage */, true /* definition */, ScopeLine,
 DINode::FlagPrototyped, false);
TheFunction->setSubprogram(SP);

and we now have an DISubprogram that contains a reference to all of our
metadata for the function.

9.7. Source Locations

The most important thing for debug information is accurate source location -
this makes it possible to map your source code back. We have a problem though,
Kaleidoscope really doesn’t have any source location information in the lexer
or parser so we’ll need to add it.

struct SourceLocation {
 int Line;
 int Col;
};
static SourceLocation CurLoc;
static SourceLocation LexLoc = {1, 0};

static int advance() {
 int LastChar = getchar();

 if (LastChar == '\n' || LastChar == '\r') {
 LexLoc.Line++;
 LexLoc.Col = 0;
 } else
 LexLoc.Col++;
 return LastChar;
}

In this set of code we’ve added some functionality on how to keep track of the
line and column of the “source file”. As we lex every token we set our current
current “lexical location” to the assorted line and column for the beginning
of the token. We do this by overriding all of the previous calls to
getchar() with our new advance() that keeps track of the information
and then we have added to all of our AST classes a source location:

class ExprAST {
 SourceLocation Loc;

 public:
 ExprAST(SourceLocation Loc = CurLoc) : Loc(Loc) {}
 virtual ~ExprAST() {}
 virtual Value* codegen() = 0;
 int getLine() const { return Loc.Line; }
 int getCol() const { return Loc.Col; }
 virtual raw_ostream &dump(raw_ostream &out, int ind) {
 return out << ':' << getLine() << ':' << getCol() << '\n';
 }

that we pass down through when we create a new expression:

LHS = llvm::make_unique<BinaryExprAST>(BinLoc, BinOp, std::move(LHS),
 std::move(RHS));

giving us locations for each of our expressions and variables.

To make sure that every instruction gets proper source location information,
we have to tell Builder whenever we’re at a new source location.
We use a small helper function for this:

void DebugInfo::emitLocation(ExprAST *AST) {
 DIScope *Scope;
 if (LexicalBlocks.empty())
 Scope = TheCU;
 else
 Scope = LexicalBlocks.back();
 Builder.SetCurrentDebugLocation(
 DebugLoc::get(AST->getLine(), AST->getCol(), Scope));
}

This both tells the main IRBuilder where we are, but also what scope
we’re in. The scope can either be on compile-unit level or be the nearest
enclosing lexical block like the current function.
To represent this we create a stack of scopes:

std::vector<DIScope *> LexicalBlocks;

and push the scope (function) to the top of the stack when we start
generating the code for each function:

KSDbgInfo.LexicalBlocks.push_back(SP);

Also, we may not forget to pop the scope back off of the scope stack at the
end of the code generation for the function:

// Pop off the lexical block for the function since we added it
// unconditionally.
KSDbgInfo.LexicalBlocks.pop_back();

Then we make sure to emit the location every time we start to generate code
for a new AST object:

KSDbgInfo.emitLocation(this);

9.8. Variables

Now that we have functions, we need to be able to print out the variables
we have in scope. Let’s get our function arguments set up so we can get
decent backtraces and see how our functions are being called. It isn’t
a lot of code, and we generally handle it when we’re creating the
argument allocas in FunctionAST::codegen.

// Record the function arguments in the NamedValues map.
NamedValues.clear();
unsigned ArgIdx = 0;
for (auto &Arg : TheFunction->args()) {
 // Create an alloca for this variable.
 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, Arg.getName());

 // Create a debug descriptor for the variable.
 DILocalVariable *D = DBuilder->createParameterVariable(
 SP, Arg.getName(), ++ArgIdx, Unit, LineNo, KSDbgInfo.getDoubleTy(),
 true);

 DBuilder->insertDeclare(Alloca, D, DBuilder->createExpression(),
 DebugLoc::get(LineNo, 0, SP),
 Builder.GetInsertBlock());

 // Store the initial value into the alloca.
 Builder.CreateStore(&Arg, Alloca);

 // Add arguments to variable symbol table.
 NamedValues[Arg.getName()] = Alloca;
}

Here we’re first creating the variable, giving it the scope (SP),
the name, source location, type, and since it’s an argument, the argument
index. Next, we create an lvm.dbg.declare call to indicate at the IR
level that we’ve got a variable in an alloca (and it gives a starting
location for the variable), and setting a source location for the
beginning of the scope on the declare.

One interesting thing to note at this point is that various debuggers have
assumptions based on how code and debug information was generated for them
in the past. In this case we need to do a little bit of a hack to avoid
generating line information for the function prologue so that the debugger
knows to skip over those instructions when setting a breakpoint. So in
FunctionAST::CodeGen we add some more lines:

// Unset the location for the prologue emission (leading instructions with no
// location in a function are considered part of the prologue and the debugger
// will run past them when breaking on a function)
KSDbgInfo.emitLocation(nullptr);

and then emit a new location when we actually start generating code for the
body of the function:

KSDbgInfo.emitLocation(Body.get());

With this we have enough debug information to set breakpoints in functions,
print out argument variables, and call functions. Not too bad for just a
few simple lines of code!

9.9. Full Code Listing

Here is the complete code listing for our running example, enhanced with
debug information. To build this example, use:

Compile
clang++ -g toy.cpp `llvm-config --cxxflags --ldflags --system-libs --libs core mcjit native` -O3 -o toy
Run
./toy

Here is the code:

#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Transforms/Scalar.h"
#include <cctype>
#include <cstdio>
#include <map>
#include <string>
#include <vector>
#include "../include/KaleidoscopeJIT.h"

using namespace llvm;
using namespace llvm::orc;

//===--===//
// Lexer
//===--===//

// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
// of these for known things.
enum Token {
 tok_eof = -1,

 // commands
 tok_def = -2,
 tok_extern = -3,

 // primary
 tok_identifier = -4,
 tok_number = -5,

 // control
 tok_if = -6,
 tok_then = -7,
 tok_else = -8,
 tok_for = -9,
 tok_in = -10,

 // operators
 tok_binary = -11,
 tok_unary = -12,

 // var definition
 tok_var = -13
};

std::string getTokName(int Tok) {
 switch (Tok) {
 case tok_eof:
 return "eof";
 case tok_def:
 return "def";
 case tok_extern:
 return "extern";
 case tok_identifier:
 return "identifier";
 case tok_number:
 return "number";
 case tok_if:
 return "if";
 case tok_then:
 return "then";
 case tok_else:
 return "else";
 case tok_for:
 return "for";
 case tok_in:
 return "in";
 case tok_binary:
 return "binary";
 case tok_unary:
 return "unary";
 case tok_var:
 return "var";
 }
 return std::string(1, (char)Tok);
}

namespace {
class PrototypeAST;
class ExprAST;
}
static LLVMContext TheContext;
static IRBuilder<> Builder(TheContext);
struct DebugInfo {
 DICompileUnit *TheCU;
 DIType *DblTy;
 std::vector<DIScope *> LexicalBlocks;

 void emitLocation(ExprAST *AST);
 DIType *getDoubleTy();
} KSDbgInfo;

struct SourceLocation {
 int Line;
 int Col;
};
static SourceLocation CurLoc;
static SourceLocation LexLoc = {1, 0};

static int advance() {
 int LastChar = getchar();

 if (LastChar == '\n' || LastChar == '\r') {
 LexLoc.Line++;
 LexLoc.Col = 0;
 } else
 LexLoc.Col++;
 return LastChar;
}

static std::string IdentifierStr; // Filled in if tok_identifier
static double NumVal; // Filled in if tok_number

/// gettok - Return the next token from standard input.
static int gettok() {
 static int LastChar = ' ';

 // Skip any whitespace.
 while (isspace(LastChar))
 LastChar = advance();

 CurLoc = LexLoc;

 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
 IdentifierStr = LastChar;
 while (isalnum((LastChar = advance())))
 IdentifierStr += LastChar;

 if (IdentifierStr == "def")
 return tok_def;
 if (IdentifierStr == "extern")
 return tok_extern;
 if (IdentifierStr == "if")
 return tok_if;
 if (IdentifierStr == "then")
 return tok_then;
 if (IdentifierStr == "else")
 return tok_else;
 if (IdentifierStr == "for")
 return tok_for;
 if (IdentifierStr == "in")
 return tok_in;
 if (IdentifierStr == "binary")
 return tok_binary;
 if (IdentifierStr == "unary")
 return tok_unary;
 if (IdentifierStr == "var")
 return tok_var;
 return tok_identifier;
 }

 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
 std::string NumStr;
 do {
 NumStr += LastChar;
 LastChar = advance();
 } while (isdigit(LastChar) || LastChar == '.');

 NumVal = strtod(NumStr.c_str(), nullptr);
 return tok_number;
 }

 if (LastChar == '#') {
 // Comment until end of line.
 do
 LastChar = advance();
 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');

 if (LastChar != EOF)
 return gettok();
 }

 // Check for end of file. Don't eat the EOF.
 if (LastChar == EOF)
 return tok_eof;

 // Otherwise, just return the character as its ascii value.
 int ThisChar = LastChar;
 LastChar = advance();
 return ThisChar;
}

//===--===//
// Abstract Syntax Tree (aka Parse Tree)
//===--===//
namespace {

raw_ostream &indent(raw_ostream &O, int size) {
 return O << std::string(size, ' ');
}

/// ExprAST - Base class for all expression nodes.
class ExprAST {
 SourceLocation Loc;

public:
 ExprAST(SourceLocation Loc = CurLoc) : Loc(Loc) {}
 virtual ~ExprAST() {}
 virtual Value *codegen() = 0;
 int getLine() const { return Loc.Line; }
 int getCol() const { return Loc.Col; }
 virtual raw_ostream &dump(raw_ostream &out, int ind) {
 return out << ':' << getLine() << ':' << getCol() << '\n';
 }
};

/// NumberExprAST - Expression class for numeric literals like "1.0".
class NumberExprAST : public ExprAST {
 double Val;

public:
 NumberExprAST(double Val) : Val(Val) {}
 raw_ostream &dump(raw_ostream &out, int ind) override {
 return ExprAST::dump(out << Val, ind);
 }
 Value *codegen() override;
};

/// VariableExprAST - Expression class for referencing a variable, like "a".
class VariableExprAST : public ExprAST {
 std::string Name;

public:
 VariableExprAST(SourceLocation Loc, const std::string &Name)
 : ExprAST(Loc), Name(Name) {}
 const std::string &getName() const { return Name; }
 Value *codegen() override;
 raw_ostream &dump(raw_ostream &out, int ind) override {
 return ExprAST::dump(out << Name, ind);
 }
};

/// UnaryExprAST - Expression class for a unary operator.
class UnaryExprAST : public ExprAST {
 char Opcode;
 std::unique_ptr<ExprAST> Operand;

public:
 UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
 : Opcode(Opcode), Operand(std::move(Operand)) {}
 Value *codegen() override;
 raw_ostream &dump(raw_ostream &out, int ind) override {
 ExprAST::dump(out << "unary" << Opcode, ind);
 Operand->dump(out, ind + 1);
 return out;
 }
};

/// BinaryExprAST - Expression class for a binary operator.
class BinaryExprAST : public ExprAST {
 char Op;
 std::unique_ptr<ExprAST> LHS, RHS;

public:
 BinaryExprAST(SourceLocation Loc, char Op, std::unique_ptr<ExprAST> LHS,
 std::unique_ptr<ExprAST> RHS)
 : ExprAST(Loc), Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
 Value *codegen() override;
 raw_ostream &dump(raw_ostream &out, int ind) override {
 ExprAST::dump(out << "binary" << Op, ind);
 LHS->dump(indent(out, ind) << "LHS:", ind + 1);
 RHS->dump(indent(out, ind) << "RHS:", ind + 1);
 return out;
 }
};

/// CallExprAST - Expression class for function calls.
class CallExprAST : public ExprAST {
 std::string Callee;
 std::vector<std::unique_ptr<ExprAST>> Args;

public:
 CallExprAST(SourceLocation Loc, const std::string &Callee,
 std::vector<std::unique_ptr<ExprAST>> Args)
 : ExprAST(Loc), Callee(Callee), Args(std::move(Args)) {}
 Value *codegen() override;
 raw_ostream &dump(raw_ostream &out, int ind) override {
 ExprAST::dump(out << "call " << Callee, ind);
 for (const auto &Arg : Args)
 Arg->dump(indent(out, ind + 1), ind + 1);
 return out;
 }
};

/// IfExprAST - Expression class for if/then/else.
class IfExprAST : public ExprAST {
 std::unique_ptr<ExprAST> Cond, Then, Else;

public:
 IfExprAST(SourceLocation Loc, std::unique_ptr<ExprAST> Cond,
 std::unique_ptr<ExprAST> Then, std::unique_ptr<ExprAST> Else)
 : ExprAST(Loc), Cond(std::move(Cond)), Then(std::move(Then)),
 Else(std::move(Else)) {}
 Value *codegen() override;
 raw_ostream &dump(raw_ostream &out, int ind) override {
 ExprAST::dump(out << "if", ind);
 Cond->dump(indent(out, ind) << "Cond:", ind + 1);
 Then->dump(indent(out, ind) << "Then:", ind + 1);
 Else->dump(indent(out, ind) << "Else:", ind + 1);
 return out;
 }
};

/// ForExprAST - Expression class for for/in.
class ForExprAST : public ExprAST {
 std::string VarName;
 std::unique_ptr<ExprAST> Start, End, Step, Body;

public:
 ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start,
 std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
 std::unique_ptr<ExprAST> Body)
 : VarName(VarName), Start(std::move(Start)), End(std::move(End)),
 Step(std::move(Step)), Body(std::move(Body)) {}
 Value *codegen() override;
 raw_ostream &dump(raw_ostream &out, int ind) override {
 ExprAST::dump(out << "for", ind);
 Start->dump(indent(out, ind) << "Cond:", ind + 1);
 End->dump(indent(out, ind) << "End:", ind + 1);
 Step->dump(indent(out, ind) << "Step:", ind + 1);
 Body->dump(indent(out, ind) << "Body:", ind + 1);
 return out;
 }
};

/// VarExprAST - Expression class for var/in
class VarExprAST : public ExprAST {
 std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
 std::unique_ptr<ExprAST> Body;

public:
 VarExprAST(
 std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames,
 std::unique_ptr<ExprAST> Body)
 : VarNames(std::move(VarNames)), Body(std::move(Body)) {}
 Value *codegen() override;
 raw_ostream &dump(raw_ostream &out, int ind) override {
 ExprAST::dump(out << "var", ind);
 for (const auto &NamedVar : VarNames)
 NamedVar.second->dump(indent(out, ind) << NamedVar.first << ':', ind + 1);
 Body->dump(indent(out, ind) << "Body:", ind + 1);
 return out;
 }
};

/// PrototypeAST - This class represents the "prototype" for a function,
/// which captures its name, and its argument names (thus implicitly the number
/// of arguments the function takes), as well as if it is an operator.
class PrototypeAST {
 std::string Name;
 std::vector<std::string> Args;
 bool IsOperator;
 unsigned Precedence; // Precedence if a binary op.
 int Line;

public:
 PrototypeAST(SourceLocation Loc, const std::string &Name,
 std::vector<std::string> Args, bool IsOperator = false,
 unsigned Prec = 0)
 : Name(Name), Args(std::move(Args)), IsOperator(IsOperator),
 Precedence(Prec), Line(Loc.Line) {}
 Function *codegen();
 const std::string &getName() const { return Name; }

 bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
 bool isBinaryOp() const { return IsOperator && Args.size() == 2; }

 char getOperatorName() const {
 assert(isUnaryOp() || isBinaryOp());
 return Name[Name.size() - 1];
 }

 unsigned getBinaryPrecedence() const { return Precedence; }
 int getLine() const { return Line; }
};

/// FunctionAST - This class represents a function definition itself.
class FunctionAST {
 std::unique_ptr<PrototypeAST> Proto;
 std::unique_ptr<ExprAST> Body;

public:
 FunctionAST(std::unique_ptr<PrototypeAST> Proto,
 std::unique_ptr<ExprAST> Body)
 : Proto(std::move(Proto)), Body(std::move(Body)) {}
 Function *codegen();
 raw_ostream &dump(raw_ostream &out, int ind) {
 indent(out, ind) << "FunctionAST\n";
 ++ind;
 indent(out, ind) << "Body:";
 return Body ? Body->dump(out, ind) : out << "null\n";
 }
};
} // end anonymous namespace

//===--===//
// Parser
//===--===//

/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
/// token the parser is looking at. getNextToken reads another token from the
/// lexer and updates CurTok with its results.
static int CurTok;
static int getNextToken() { return CurTok = gettok(); }

/// BinopPrecedence - This holds the precedence for each binary operator that is
/// defined.
static std::map<char, int> BinopPrecedence;

/// GetTokPrecedence - Get the precedence of the pending binary operator token.
static int GetTokPrecedence() {
 if (!isascii(CurTok))
 return -1;

 // Make sure it's a declared binop.
 int TokPrec = BinopPrecedence[CurTok];
 if (TokPrec <= 0)
 return -1;
 return TokPrec;
}

/// LogError* - These are little helper functions for error handling.
std::unique_ptr<ExprAST> LogError(const char *Str) {
 fprintf(stderr, "Error: %s\n", Str);
 return nullptr;
}

std::unique_ptr<PrototypeAST> LogErrorP(const char *Str) {
 LogError(Str);
 return nullptr;
}

static std::unique_ptr<ExprAST> ParseExpression();

/// numberexpr ::= number
static std::unique_ptr<ExprAST> ParseNumberExpr() {
 auto Result = llvm::make_unique<NumberExprAST>(NumVal);
 getNextToken(); // consume the number
 return std::move(Result);
}

/// parenexpr ::= '(' expression ')'
static std::unique_ptr<ExprAST> ParseParenExpr() {
 getNextToken(); // eat (.
 auto V = ParseExpression();
 if (!V)
 return nullptr;

 if (CurTok != ')')
 return LogError("expected ')'");
 getNextToken(); // eat).
 return V;
}

/// identifierexpr
/// ::= identifier
/// ::= identifier '(' expression* ')'
static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
 std::string IdName = IdentifierStr;

 SourceLocation LitLoc = CurLoc;

 getNextToken(); // eat identifier.

 if (CurTok != '(') // Simple variable ref.
 return llvm::make_unique<VariableExprAST>(LitLoc, IdName);

 // Call.
 getNextToken(); // eat (
 std::vector<std::unique_ptr<ExprAST>> Args;
 if (CurTok != ')') {
 while (1) {
 if (auto Arg = ParseExpression())
 Args.push_back(std::move(Arg));
 else
 return nullptr;

 if (CurTok == ')')
 break;

 if (CurTok != ',')
 return LogError("Expected ')' or ',' in argument list");
 getNextToken();
 }
 }

 // Eat the ')'.
 getNextToken();

 return llvm::make_unique<CallExprAST>(LitLoc, IdName, std::move(Args));
}

/// ifexpr ::= 'if' expression 'then' expression 'else' expression
static std::unique_ptr<ExprAST> ParseIfExpr() {
 SourceLocation IfLoc = CurLoc;

 getNextToken(); // eat the if.

 // condition.
 auto Cond = ParseExpression();
 if (!Cond)
 return nullptr;

 if (CurTok != tok_then)
 return LogError("expected then");
 getNextToken(); // eat the then

 auto Then = ParseExpression();
 if (!Then)
 return nullptr;

 if (CurTok != tok_else)
 return LogError("expected else");

 getNextToken();

 auto Else = ParseExpression();
 if (!Else)
 return nullptr;

 return llvm::make_unique<IfExprAST>(IfLoc, std::move(Cond), std::move(Then),
 std::move(Else));
}

/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
static std::unique_ptr<ExprAST> ParseForExpr() {
 getNextToken(); // eat the for.

 if (CurTok != tok_identifier)
 return LogError("expected identifier after for");

 std::string IdName = IdentifierStr;
 getNextToken(); // eat identifier.

 if (CurTok != '=')
 return LogError("expected '=' after for");
 getNextToken(); // eat '='.

 auto Start = ParseExpression();
 if (!Start)
 return nullptr;
 if (CurTok != ',')
 return LogError("expected ',' after for start value");
 getNextToken();

 auto End = ParseExpression();
 if (!End)
 return nullptr;

 // The step value is optional.
 std::unique_ptr<ExprAST> Step;
 if (CurTok == ',') {
 getNextToken();
 Step = ParseExpression();
 if (!Step)
 return nullptr;
 }

 if (CurTok != tok_in)
 return LogError("expected 'in' after for");
 getNextToken(); // eat 'in'.

 auto Body = ParseExpression();
 if (!Body)
 return nullptr;

 return llvm::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
 std::move(Step), std::move(Body));
}

/// varexpr ::= 'var' identifier ('=' expression)?
// (',' identifier ('=' expression)?)* 'in' expression
static std::unique_ptr<ExprAST> ParseVarExpr() {
 getNextToken(); // eat the var.

 std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;

 // At least one variable name is required.
 if (CurTok != tok_identifier)
 return LogError("expected identifier after var");

 while (1) {
 std::string Name = IdentifierStr;
 getNextToken(); // eat identifier.

 // Read the optional initializer.
 std::unique_ptr<ExprAST> Init = nullptr;
 if (CurTok == '=') {
 getNextToken(); // eat the '='.

 Init = ParseExpression();
 if (!Init)
 return nullptr;
 }

 VarNames.push_back(std::make_pair(Name, std::move(Init)));

 // End of var list, exit loop.
 if (CurTok != ',')
 break;
 getNextToken(); // eat the ','.

 if (CurTok != tok_identifier)
 return LogError("expected identifier list after var");
 }

 // At this point, we have to have 'in'.
 if (CurTok != tok_in)
 return LogError("expected 'in' keyword after 'var'");
 getNextToken(); // eat 'in'.

 auto Body = ParseExpression();
 if (!Body)
 return nullptr;

 return llvm::make_unique<VarExprAST>(std::move(VarNames), std::move(Body));
}

/// primary
/// ::= identifierexpr
/// ::= numberexpr
/// ::= parenexpr
/// ::= ifexpr
/// ::= forexpr
/// ::= varexpr
static std::unique_ptr<ExprAST> ParsePrimary() {
 switch (CurTok) {
 default:
 return LogError("unknown token when expecting an expression");
 case tok_identifier:
 return ParseIdentifierExpr();
 case tok_number:
 return ParseNumberExpr();
 case '(':
 return ParseParenExpr();
 case tok_if:
 return ParseIfExpr();
 case tok_for:
 return ParseForExpr();
 case tok_var:
 return ParseVarExpr();
 }
}

/// unary
/// ::= primary
/// ::= '!' unary
static std::unique_ptr<ExprAST> ParseUnary() {
 // If the current token is not an operator, it must be a primary expr.
 if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
 return ParsePrimary();

 // If this is a unary operator, read it.
 int Opc = CurTok;
 getNextToken();
 if (auto Operand = ParseUnary())
 return llvm::make_unique<UnaryExprAST>(Opc, std::move(Operand));
 return nullptr;
}

/// binoprhs
/// ::= ('+' unary)*
static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
 std::unique_ptr<ExprAST> LHS) {
 // If this is a binop, find its precedence.
 while (1) {
 int TokPrec = GetTokPrecedence();

 // If this is a binop that binds at least as tightly as the current binop,
 // consume it, otherwise we are done.
 if (TokPrec < ExprPrec)
 return LHS;

 // Okay, we know this is a binop.
 int BinOp = CurTok;
 SourceLocation BinLoc = CurLoc;
 getNextToken(); // eat binop

 // Parse the unary expression after the binary operator.
 auto RHS = ParseUnary();
 if (!RHS)
 return nullptr;

 // If BinOp binds less tightly with RHS than the operator after RHS, let
 // the pending operator take RHS as its LHS.
 int NextPrec = GetTokPrecedence();
 if (TokPrec < NextPrec) {
 RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
 if (!RHS)
 return nullptr;
 }

 // Merge LHS/RHS.
 LHS = llvm::make_unique<BinaryExprAST>(BinLoc, BinOp, std::move(LHS),
 std::move(RHS));
 }
}

/// expression
/// ::= unary binoprhs
///
static std::unique_ptr<ExprAST> ParseExpression() {
 auto LHS = ParseUnary();
 if (!LHS)
 return nullptr;

 return ParseBinOpRHS(0, std::move(LHS));
}

/// prototype
/// ::= id '(' id* ')'
/// ::= binary LETTER number? (id, id)
/// ::= unary LETTER (id)
static std::unique_ptr<PrototypeAST> ParsePrototype() {
 std::string FnName;

 SourceLocation FnLoc = CurLoc;

 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
 unsigned BinaryPrecedence = 30;

 switch (CurTok) {
 default:
 return LogErrorP("Expected function name in prototype");
 case tok_identifier:
 FnName = IdentifierStr;
 Kind = 0;
 getNextToken();
 break;
 case tok_unary:
 getNextToken();
 if (!isascii(CurTok))
 return LogErrorP("Expected unary operator");
 FnName = "unary";
 FnName += (char)CurTok;
 Kind = 1;
 getNextToken();
 break;
 case tok_binary:
 getNextToken();
 if (!isascii(CurTok))
 return LogErrorP("Expected binary operator");
 FnName = "binary";
 FnName += (char)CurTok;
 Kind = 2;
 getNextToken();

 // Read the precedence if present.
 if (CurTok == tok_number) {
 if (NumVal < 1 || NumVal > 100)
 return LogErrorP("Invalid precedence: must be 1..100");
 BinaryPrecedence = (unsigned)NumVal;
 getNextToken();
 }
 break;
 }

 if (CurTok != '(')
 return LogErrorP("Expected '(' in prototype");

 std::vector<std::string> ArgNames;
 while (getNextToken() == tok_identifier)
 ArgNames.push_back(IdentifierStr);
 if (CurTok != ')')
 return LogErrorP("Expected ')' in prototype");

 // success.
 getNextToken(); // eat ')'.

 // Verify right number of names for operator.
 if (Kind && ArgNames.size() != Kind)
 return LogErrorP("Invalid number of operands for operator");

 return llvm::make_unique<PrototypeAST>(FnLoc, FnName, ArgNames, Kind != 0,
 BinaryPrecedence);
}

/// definition ::= 'def' prototype expression
static std::unique_ptr<FunctionAST> ParseDefinition() {
 getNextToken(); // eat def.
 auto Proto = ParsePrototype();
 if (!Proto)
 return nullptr;

 if (auto E = ParseExpression())
 return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
 return nullptr;
}

/// toplevelexpr ::= expression
static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
 SourceLocation FnLoc = CurLoc;
 if (auto E = ParseExpression()) {
 // Make an anonymous proto.
 auto Proto = llvm::make_unique<PrototypeAST>(FnLoc, "__anon_expr",
 std::vector<std::string>());
 return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
 }
 return nullptr;
}

/// external ::= 'extern' prototype
static std::unique_ptr<PrototypeAST> ParseExtern() {
 getNextToken(); // eat extern.
 return ParsePrototype();
}

//===--===//
// Debug Info Support
//===--===//

static std::unique_ptr<DIBuilder> DBuilder;

DIType *DebugInfo::getDoubleTy() {
 if (DblTy)
 return DblTy;

 DblTy = DBuilder->createBasicType("double", 64, dwarf::DW_ATE_float);
 return DblTy;
}

void DebugInfo::emitLocation(ExprAST *AST) {
 if (!AST)
 return Builder.SetCurrentDebugLocation(DebugLoc());
 DIScope *Scope;
 if (LexicalBlocks.empty())
 Scope = TheCU;
 else
 Scope = LexicalBlocks.back();
 Builder.SetCurrentDebugLocation(
 DebugLoc::get(AST->getLine(), AST->getCol(), Scope));
}

static DISubroutineType *CreateFunctionType(unsigned NumArgs, DIFile *Unit) {
 SmallVector<Metadata *, 8> EltTys;
 DIType *DblTy = KSDbgInfo.getDoubleTy();

 // Add the result type.
 EltTys.push_back(DblTy);

 for (unsigned i = 0, e = NumArgs; i != e; ++i)
 EltTys.push_back(DblTy);

 return DBuilder->createSubroutineType(DBuilder->getOrCreateTypeArray(EltTys));
}

//===--===//
// Code Generation
//===--===//

static std::unique_ptr<Module> TheModule;
static std::map<std::string, AllocaInst *> NamedValues;
static std::unique_ptr<KaleidoscopeJIT> TheJIT;
static std::map<std::string, std::unique_ptr<PrototypeAST>> FunctionProtos;

Value *LogErrorV(const char *Str) {
 LogError(Str);
 return nullptr;
}

Function *getFunction(std::string Name) {
 // First, see if the function has already been added to the current module.
 if (auto *F = TheModule->getFunction(Name))
 return F;

 // If not, check whether we can codegen the declaration from some existing
 // prototype.
 auto FI = FunctionProtos.find(Name);
 if (FI != FunctionProtos.end())
 return FI->second->codegen();

 // If no existing prototype exists, return null.
 return nullptr;
}

/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
/// the function. This is used for mutable variables etc.
static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
 const std::string &VarName) {
 IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
 TheFunction->getEntryBlock().begin());
 return TmpB.CreateAlloca(Type::getDoubleTy(TheContext), nullptr,
 VarName.c_str());
}

Value *NumberExprAST::codegen() {
 KSDbgInfo.emitLocation(this);
 return ConstantFP::get(TheContext, APFloat(Val));
}

Value *VariableExprAST::codegen() {
 // Look this variable up in the function.
 Value *V = NamedValues[Name];
 if (!V)
 return LogErrorV("Unknown variable name");

 KSDbgInfo.emitLocation(this);
 // Load the value.
 return Builder.CreateLoad(V, Name.c_str());
}

Value *UnaryExprAST::codegen() {
 Value *OperandV = Operand->codegen();
 if (!OperandV)
 return nullptr;

 Function *F = getFunction(std::string("unary") + Opcode);
 if (!F)
 return LogErrorV("Unknown unary operator");

 KSDbgInfo.emitLocation(this);
 return Builder.CreateCall(F, OperandV, "unop");
}

Value *BinaryExprAST::codegen() {
 KSDbgInfo.emitLocation(this);

 // Special case '=' because we don't want to emit the LHS as an expression.
 if (Op == '=') {
 // Assignment requires the LHS to be an identifier.
 // This assume we're building without RTTI because LLVM builds that way by
 // default. If you build LLVM with RTTI this can be changed to a
 // dynamic_cast for automatic error checking.
 VariableExprAST *LHSE = static_cast<VariableExprAST *>(LHS.get());
 if (!LHSE)
 return LogErrorV("destination of '=' must be a variable");
 // Codegen the RHS.
 Value *Val = RHS->codegen();
 if (!Val)
 return nullptr;

 // Look up the name.
 Value *Variable = NamedValues[LHSE->getName()];
 if (!Variable)
 return LogErrorV("Unknown variable name");

 Builder.CreateStore(Val, Variable);
 return Val;
 }

 Value *L = LHS->codegen();
 Value *R = RHS->codegen();
 if (!L || !R)
 return nullptr;

 switch (Op) {
 case '+':
 return Builder.CreateFAdd(L, R, "addtmp");
 case '-':
 return Builder.CreateFSub(L, R, "subtmp");
 case '*':
 return Builder.CreateFMul(L, R, "multmp");
 case '<':
 L = Builder.CreateFCmpULT(L, R, "cmptmp");
 // Convert bool 0/1 to double 0.0 or 1.0
 return Builder.CreateUIToFP(L, Type::getDoubleTy(TheContext), "booltmp");
 default:
 break;
 }

 // If it wasn't a builtin binary operator, it must be a user defined one. Emit
 // a call to it.
 Function *F = getFunction(std::string("binary") + Op);
 assert(F && "binary operator not found!");

 Value *Ops[] = {L, R};
 return Builder.CreateCall(F, Ops, "binop");
}

Value *CallExprAST::codegen() {
 KSDbgInfo.emitLocation(this);

 // Look up the name in the global module table.
 Function *CalleeF = getFunction(Callee);
 if (!CalleeF)
 return LogErrorV("Unknown function referenced");

 // If argument mismatch error.
 if (CalleeF->arg_size() != Args.size())
 return LogErrorV("Incorrect # arguments passed");

 std::vector<Value *> ArgsV;
 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
 ArgsV.push_back(Args[i]->codegen());
 if (!ArgsV.back())
 return nullptr;
 }

 return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
}

Value *IfExprAST::codegen() {
 KSDbgInfo.emitLocation(this);

 Value *CondV = Cond->codegen();
 if (!CondV)
 return nullptr;

 // Convert condition to a bool by comparing non-equal to 0.0.
 CondV = Builder.CreateFCmpONE(
 CondV, ConstantFP::get(TheContext, APFloat(0.0)), "ifcond");

 Function *TheFunction = Builder.GetInsertBlock()->getParent();

 // Create blocks for the then and else cases. Insert the 'then' block at the
 // end of the function.
 BasicBlock *ThenBB = BasicBlock::Create(TheContext, "then", TheFunction);
 BasicBlock *ElseBB = BasicBlock::Create(TheContext, "else");
 BasicBlock *MergeBB = BasicBlock::Create(TheContext, "ifcont");

 Builder.CreateCondBr(CondV, ThenBB, ElseBB);

 // Emit then value.
 Builder.SetInsertPoint(ThenBB);

 Value *ThenV = Then->codegen();
 if (!ThenV)
 return nullptr;

 Builder.CreateBr(MergeBB);
 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
 ThenBB = Builder.GetInsertBlock();

 // Emit else block.
 TheFunction->getBasicBlockList().push_back(ElseBB);
 Builder.SetInsertPoint(ElseBB);

 Value *ElseV = Else->codegen();
 if (!ElseV)
 return nullptr;

 Builder.CreateBr(MergeBB);
 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
 ElseBB = Builder.GetInsertBlock();

 // Emit merge block.
 TheFunction->getBasicBlockList().push_back(MergeBB);
 Builder.SetInsertPoint(MergeBB);
 PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(TheContext), 2, "iftmp");

 PN->addIncoming(ThenV, ThenBB);
 PN->addIncoming(ElseV, ElseBB);
 return PN;
}

// Output for-loop as:
// var = alloca double
// ...
// start = startexpr
// store start -> var
// goto loop
// loop:
// ...
// bodyexpr
// ...
// loopend:
// step = stepexpr
// endcond = endexpr
//
// curvar = load var
// nextvar = curvar + step
// store nextvar -> var
// br endcond, loop, endloop
// outloop:
Value *ForExprAST::codegen() {
 Function *TheFunction = Builder.GetInsertBlock()->getParent();

 // Create an alloca for the variable in the entry block.
 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);

 KSDbgInfo.emitLocation(this);

 // Emit the start code first, without 'variable' in scope.
 Value *StartVal = Start->codegen();
 if (!StartVal)
 return nullptr;

 // Store the value into the alloca.
 Builder.CreateStore(StartVal, Alloca);

 // Make the new basic block for the loop header, inserting after current
 // block.
 BasicBlock *LoopBB = BasicBlock::Create(TheContext, "loop", TheFunction);

 // Insert an explicit fall through from the current block to the LoopBB.
 Builder.CreateBr(LoopBB);

 // Start insertion in LoopBB.
 Builder.SetInsertPoint(LoopBB);

 // Within the loop, the variable is defined equal to the PHI node. If it
 // shadows an existing variable, we have to restore it, so save it now.
 AllocaInst *OldVal = NamedValues[VarName];
 NamedValues[VarName] = Alloca;

 // Emit the body of the loop. This, like any other expr, can change the
 // current BB. Note that we ignore the value computed by the body, but don't
 // allow an error.
 if (!Body->codegen())
 return nullptr;

 // Emit the step value.
 Value *StepVal = nullptr;
 if (Step) {
 StepVal = Step->codegen();
 if (!StepVal)
 return nullptr;
 } else {
 // If not specified, use 1.0.
 StepVal = ConstantFP::get(TheContext, APFloat(1.0));
 }

 // Compute the end condition.
 Value *EndCond = End->codegen();
 if (!EndCond)
 return nullptr;

 // Reload, increment, and restore the alloca. This handles the case where
 // the body of the loop mutates the variable.
 Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
 Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
 Builder.CreateStore(NextVar, Alloca);

 // Convert condition to a bool by comparing non-equal to 0.0.
 EndCond = Builder.CreateFCmpONE(
 EndCond, ConstantFP::get(TheContext, APFloat(0.0)), "loopcond");

 // Create the "after loop" block and insert it.
 BasicBlock *AfterBB =
 BasicBlock::Create(TheContext, "afterloop", TheFunction);

 // Insert the conditional branch into the end of LoopEndBB.
 Builder.CreateCondBr(EndCond, LoopBB, AfterBB);

 // Any new code will be inserted in AfterBB.
 Builder.SetInsertPoint(AfterBB);

 // Restore the unshadowed variable.
 if (OldVal)
 NamedValues[VarName] = OldVal;
 else
 NamedValues.erase(VarName);

 // for expr always returns 0.0.
 return Constant::getNullValue(Type::getDoubleTy(TheContext));
}

Value *VarExprAST::codegen() {
 std::vector<AllocaInst *> OldBindings;

 Function *TheFunction = Builder.GetInsertBlock()->getParent();

 // Register all variables and emit their initializer.
 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
 const std::string &VarName = VarNames[i].first;
 ExprAST *Init = VarNames[i].second.get();

 // Emit the initializer before adding the variable to scope, this prevents
 // the initializer from referencing the variable itself, and permits stuff
 // like this:
 // var a = 1 in
 // var a = a in ... # refers to outer 'a'.
 Value *InitVal;
 if (Init) {
 InitVal = Init->codegen();
 if (!InitVal)
 return nullptr;
 } else { // If not specified, use 0.0.
 InitVal = ConstantFP::get(TheContext, APFloat(0.0));
 }

 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
 Builder.CreateStore(InitVal, Alloca);

 // Remember the old variable binding so that we can restore the binding when
 // we unrecurse.
 OldBindings.push_back(NamedValues[VarName]);

 // Remember this binding.
 NamedValues[VarName] = Alloca;
 }

 KSDbgInfo.emitLocation(this);

 // Codegen the body, now that all vars are in scope.
 Value *BodyVal = Body->codegen();
 if (!BodyVal)
 return nullptr;

 // Pop all our variables from scope.
 for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
 NamedValues[VarNames[i].first] = OldBindings[i];

 // Return the body computation.
 return BodyVal;
}

Function *PrototypeAST::codegen() {
 // Make the function type: double(double,double) etc.
 std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(TheContext));
 FunctionType *FT =
 FunctionType::get(Type::getDoubleTy(TheContext), Doubles, false);

 Function *F =
 Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get());

 // Set names for all arguments.
 unsigned Idx = 0;
 for (auto &Arg : F->args())
 Arg.setName(Args[Idx++]);

 return F;
}

Function *FunctionAST::codegen() {
 // Transfer ownership of the prototype to the FunctionProtos map, but keep a
 // reference to it for use below.
 auto &P = *Proto;
 FunctionProtos[Proto->getName()] = std::move(Proto);
 Function *TheFunction = getFunction(P.getName());
 if (!TheFunction)
 return nullptr;

 // If this is an operator, install it.
 if (P.isBinaryOp())
 BinopPrecedence[P.getOperatorName()] = P.getBinaryPrecedence();

 // Create a new basic block to start insertion into.
 BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction);
 Builder.SetInsertPoint(BB);

 // Create a subprogram DIE for this function.
 DIFile *Unit = DBuilder->createFile(KSDbgInfo.TheCU->getFilename(),
 KSDbgInfo.TheCU->getDirectory());
 DIScope *FContext = Unit;
 unsigned LineNo = P.getLine();
 unsigned ScopeLine = LineNo;
 DISubprogram *SP = DBuilder->createFunction(
 FContext, P.getName(), StringRef(), Unit, LineNo,
 CreateFunctionType(TheFunction->arg_size(), Unit),
 false /* internal linkage */, true /* definition */, ScopeLine,
 DINode::FlagPrototyped, false);
 TheFunction->setSubprogram(SP);

 // Push the current scope.
 KSDbgInfo.LexicalBlocks.push_back(SP);

 // Unset the location for the prologue emission (leading instructions with no
 // location in a function are considered part of the prologue and the debugger
 // will run past them when breaking on a function)
 KSDbgInfo.emitLocation(nullptr);

 // Record the function arguments in the NamedValues map.
 NamedValues.clear();
 unsigned ArgIdx = 0;
 for (auto &Arg : TheFunction->args()) {
 // Create an alloca for this variable.
 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, Arg.getName());

 // Create a debug descriptor for the variable.
 DILocalVariable *D = DBuilder->createParameterVariable(
 SP, Arg.getName(), ++ArgIdx, Unit, LineNo, KSDbgInfo.getDoubleTy(),
 true);

 DBuilder->insertDeclare(Alloca, D, DBuilder->createExpression(),
 DebugLoc::get(LineNo, 0, SP),
 Builder.GetInsertBlock());

 // Store the initial value into the alloca.
 Builder.CreateStore(&Arg, Alloca);

 // Add arguments to variable symbol table.
 NamedValues[Arg.getName()] = Alloca;
 }

 KSDbgInfo.emitLocation(Body.get());

 if (Value *RetVal = Body->codegen()) {
 // Finish off the function.
 Builder.CreateRet(RetVal);

 // Pop off the lexical block for the function.
 KSDbgInfo.LexicalBlocks.pop_back();

 // Validate the generated code, checking for consistency.
 verifyFunction(*TheFunction);

 return TheFunction;
 }

 // Error reading body, remove function.
 TheFunction->eraseFromParent();

 if (P.isBinaryOp())
 BinopPrecedence.erase(Proto->getOperatorName());

 // Pop off the lexical block for the function since we added it
 // unconditionally.
 KSDbgInfo.LexicalBlocks.pop_back();

 return nullptr;
}

//===--===//
// Top-Level parsing and JIT Driver
//===--===//

static void InitializeModule() {
 // Open a new module.
 TheModule = llvm::make_unique<Module>("my cool jit", TheContext);
 TheModule->setDataLayout(TheJIT->getTargetMachine().createDataLayout());
}

static void HandleDefinition() {
 if (auto FnAST = ParseDefinition()) {
 if (!FnAST->codegen())
 fprintf(stderr, "Error reading function definition:");
 } else {
 // Skip token for error recovery.
 getNextToken();
 }
}

static void HandleExtern() {
 if (auto ProtoAST = ParseExtern()) {
 if (!ProtoAST->codegen())
 fprintf(stderr, "Error reading extern");
 else
 FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST);
 } else {
 // Skip token for error recovery.
 getNextToken();
 }
}

static void HandleTopLevelExpression() {
 // Evaluate a top-level expression into an anonymous function.
 if (auto FnAST = ParseTopLevelExpr()) {
 if (!FnAST->codegen()) {
 fprintf(stderr, "Error generating code for top level expr");
 }
 } else {
 // Skip token for error recovery.
 getNextToken();
 }
}

/// top ::= definition | external | expression | ';'
static void MainLoop() {
 while (1) {
 switch (CurTok) {
 case tok_eof:
 return;
 case ';': // ignore top-level semicolons.
 getNextToken();
 break;
 case tok_def:
 HandleDefinition();
 break;
 case tok_extern:
 HandleExtern();
 break;
 default:
 HandleTopLevelExpression();
 break;
 }
 }
}

//===--===//
// "Library" functions that can be "extern'd" from user code.
//===--===//

#ifdef _WIN32
#define DLLEXPORT __declspec(dllexport)
#else
#define DLLEXPORT
#endif

/// putchard - putchar that takes a double and returns 0.
extern "C" DLLEXPORT double putchard(double X) {
 fputc((char)X, stderr);
 return 0;
}

/// printd - printf that takes a double prints it as "%f\n", returning 0.
extern "C" DLLEXPORT double printd(double X) {
 fprintf(stderr, "%f\n", X);
 return 0;
}

//===--===//
// Main driver code.
//===--===//

int main() {
 InitializeNativeTarget();
 InitializeNativeTargetAsmPrinter();
 InitializeNativeTargetAsmParser();

 // Install standard binary operators.
 // 1 is lowest precedence.
 BinopPrecedence['='] = 2;
 BinopPrecedence['<'] = 10;
 BinopPrecedence['+'] = 20;
 BinopPrecedence['-'] = 20;
 BinopPrecedence['*'] = 40; // highest.

 // Prime the first token.
 getNextToken();

 TheJIT = llvm::make_unique<KaleidoscopeJIT>();

 InitializeModule();

 // Add the current debug info version into the module.
 TheModule->addModuleFlag(Module::Warning, "Debug Info Version",
 DEBUG_METADATA_VERSION);

 // Darwin only supports dwarf2.
 if (Triple(sys::getProcessTriple()).isOSDarwin())
 TheModule->addModuleFlag(llvm::Module::Warning, "Dwarf Version", 2);

 // Construct the DIBuilder, we do this here because we need the module.
 DBuilder = llvm::make_unique<DIBuilder>(*TheModule);

 // Create the compile unit for the module.
 // Currently down as "fib.ks" as a filename since we're redirecting stdin
 // but we'd like actual source locations.
 KSDbgInfo.TheCU = DBuilder->createCompileUnit(
 dwarf::DW_LANG_C, DBuilder->createFile("fib.ks", "."),
 "Kaleidoscope Compiler", 0, "", 0);

 // Run the main "interpreter loop" now.
 MainLoop();

 // Finalize the debug info.
 DBuilder->finalize();

 // Print out all of the generated code.
 TheModule->print(errs(), nullptr);

 return 0;
}

Next: Conclusion and other useful LLVM tidbits

10. Kaleidoscope: Conclusion and other useful LLVM tidbits

	Tutorial Conclusion

	Properties of the LLVM IR

	Target Independence

	Safety Guarantees

	Language-Specific Optimizations

	Tips and Tricks

	Implementing portable offsetof/sizeof

	Garbage Collected Stack Frames

10.1. Tutorial Conclusion

Welcome to the final chapter of the “Implementing a language with
LLVM” tutorial. In the course of this tutorial, we have
grown our little Kaleidoscope language from being a useless toy, to
being a semi-interesting (but probably still useless) toy. :)

It is interesting to see how far we’ve come, and how little code it has
taken. We built the entire lexer, parser, AST, code generator, an
interactive run-loop (with a JIT!), and emitted debug information in
standalone executables - all in under 1000 lines of (non-comment/non-blank)
code.

Our little language supports a couple of interesting features: it
supports user defined binary and unary operators, it uses JIT
compilation for immediate evaluation, and it supports a few control flow
constructs with SSA construction.

Part of the idea of this tutorial was to show you how easy and fun it
can be to define, build, and play with languages. Building a compiler
need not be a scary or mystical process! Now that you’ve seen some of
the basics, I strongly encourage you to take the code and hack on it.
For example, try adding:

	global variables - While global variables have questional value
in modern software engineering, they are often useful when putting
together quick little hacks like the Kaleidoscope compiler itself.
Fortunately, our current setup makes it very easy to add global
variables: just have value lookup check to see if an unresolved
variable is in the global variable symbol table before rejecting it.
To create a new global variable, make an instance of the LLVM
GlobalVariable class.

	typed variables - Kaleidoscope currently only supports variables
of type double. This gives the language a very nice elegance, because
only supporting one type means that you never have to specify types.
Different languages have different ways of handling this. The easiest
way is to require the user to specify types for every variable
definition, and record the type of the variable in the symbol table
along with its Value*.

	arrays, structs, vectors, etc - Once you add types, you can start
extending the type system in all sorts of interesting ways. Simple
arrays are very easy and are quite useful for many different
applications. Adding them is mostly an exercise in learning how the
LLVM getelementptr instruction
works: it is so nifty/unconventional, it has its own
FAQ!

	standard runtime - Our current language allows the user to access
arbitrary external functions, and we use it for things like “printd”
and “putchard”. As you extend the language to add higher-level
constructs, often these constructs make the most sense if they are
lowered to calls into a language-supplied runtime. For example, if
you add hash tables to the language, it would probably make sense to
add the routines to a runtime, instead of inlining them all the way.

	memory management - Currently we can only access the stack in
Kaleidoscope. It would also be useful to be able to allocate heap
memory, either with calls to the standard libc malloc/free interface
or with a garbage collector. If you would like to use garbage
collection, note that LLVM fully supports Accurate Garbage
Collection including algorithms that
move objects and need to scan/update the stack.

	exception handling support - LLVM supports generation of zero
cost exceptions which interoperate with
code compiled in other languages. You could also generate code by
implicitly making every function return an error value and checking
it. You could also make explicit use of setjmp/longjmp. There are
many different ways to go here.

	object orientation, generics, database access, complex numbers,
geometric programming, … - Really, there is no end of crazy
features that you can add to the language.

	unusual domains - We’ve been talking about applying LLVM to a
domain that many people are interested in: building a compiler for a
specific language. However, there are many other domains that can use
compiler technology that are not typically considered. For example,
LLVM has been used to implement OpenGL graphics acceleration,
translate C++ code to ActionScript, and many other cute and clever
things. Maybe you will be the first to JIT compile a regular
expression interpreter into native code with LLVM?

Have fun - try doing something crazy and unusual. Building a language
like everyone else always has, is much less fun than trying something a
little crazy or off the wall and seeing how it turns out. If you get
stuck or want to talk about it, feel free to email the llvm-dev mailing
list [http://lists.llvm.org/mailman/listinfo/llvm-dev]: it has lots
of people who are interested in languages and are often willing to help
out.

Before we end this tutorial, I want to talk about some “tips and tricks”
for generating LLVM IR. These are some of the more subtle things that
may not be obvious, but are very useful if you want to take advantage of
LLVM’s capabilities.

10.2. Properties of the LLVM IR

We have a couple of common questions about code in the LLVM IR form -
let’s just get these out of the way right now, shall we?

10.2.1. Target Independence

Kaleidoscope is an example of a “portable language”: any program written
in Kaleidoscope will work the same way on any target that it runs on.
Many other languages have this property, e.g. lisp, java, haskell,
javascript, python, etc (note that while these languages are portable,
not all their libraries are).

One nice aspect of LLVM is that it is often capable of preserving target
independence in the IR: you can take the LLVM IR for a
Kaleidoscope-compiled program and run it on any target that LLVM
supports, even emitting C code and compiling that on targets that LLVM
doesn’t support natively. You can trivially tell that the Kaleidoscope
compiler generates target-independent code because it never queries for
any target-specific information when generating code.

The fact that LLVM provides a compact, target-independent,
representation for code gets a lot of people excited. Unfortunately,
these people are usually thinking about C or a language from the C
family when they are asking questions about language portability. I say
“unfortunately”, because there is really no way to make (fully general)
C code portable, other than shipping the source code around (and of
course, C source code is not actually portable in general either - ever
port a really old application from 32- to 64-bits?).

The problem with C (again, in its full generality) is that it is heavily
laden with target specific assumptions. As one simple example, the
preprocessor often destructively removes target-independence from the
code when it processes the input text:

#ifdef __i386__
 int X = 1;
#else
 int X = 42;
#endif

While it is possible to engineer more and more complex solutions to
problems like this, it cannot be solved in full generality in a way that
is better than shipping the actual source code.

That said, there are interesting subsets of C that can be made portable.
If you are willing to fix primitive types to a fixed size (say int =
32-bits, and long = 64-bits), don’t care about ABI compatibility with
existing binaries, and are willing to give up some other minor features,
you can have portable code. This can make sense for specialized domains
such as an in-kernel language.

10.2.2. Safety Guarantees

Many of the languages above are also “safe” languages: it is impossible
for a program written in Java to corrupt its address space and crash the
process (assuming the JVM has no bugs). Safety is an interesting
property that requires a combination of language design, runtime
support, and often operating system support.

It is certainly possible to implement a safe language in LLVM, but LLVM
IR does not itself guarantee safety. The LLVM IR allows unsafe pointer
casts, use after free bugs, buffer over-runs, and a variety of other
problems. Safety needs to be implemented as a layer on top of LLVM and,
conveniently, several groups have investigated this. Ask on the llvm-dev
mailing list [http://lists.llvm.org/mailman/listinfo/llvm-dev] if
you are interested in more details.

10.2.3. Language-Specific Optimizations

One thing about LLVM that turns off many people is that it does not
solve all the world’s problems in one system (sorry ‘world hunger’,
someone else will have to solve you some other day). One specific
complaint is that people perceive LLVM as being incapable of performing
high-level language-specific optimization: LLVM “loses too much
information”.

Unfortunately, this is really not the place to give you a full and
unified version of “Chris Lattner’s theory of compiler design”. Instead,
I’ll make a few observations:

First, you’re right that LLVM does lose information. For example, as of
this writing, there is no way to distinguish in the LLVM IR whether an
SSA-value came from a C “int” or a C “long” on an ILP32 machine (other
than debug info). Both get compiled down to an ‘i32’ value and the
information about what it came from is lost. The more general issue
here, is that the LLVM type system uses “structural equivalence” instead
of “name equivalence”. Another place this surprises people is if you
have two types in a high-level language that have the same structure
(e.g. two different structs that have a single int field): these types
will compile down into a single LLVM type and it will be impossible to
tell what it came from.

Second, while LLVM does lose information, LLVM is not a fixed target: we
continue to enhance and improve it in many different ways. In addition
to adding new features (LLVM did not always support exceptions or debug
info), we also extend the IR to capture important information for
optimization (e.g. whether an argument is sign or zero extended,
information about pointers aliasing, etc). Many of the enhancements are
user-driven: people want LLVM to include some specific feature, so they
go ahead and extend it.

Third, it is possible and easy to add language-specific optimizations,
and you have a number of choices in how to do it. As one trivial
example, it is easy to add language-specific optimization passes that
“know” things about code compiled for a language. In the case of the C
family, there is an optimization pass that “knows” about the standard C
library functions. If you call “exit(0)” in main(), it knows that it is
safe to optimize that into “return 0;” because C specifies what the
‘exit’ function does.

In addition to simple library knowledge, it is possible to embed a
variety of other language-specific information into the LLVM IR. If you
have a specific need and run into a wall, please bring the topic up on
the llvm-dev list. At the very worst, you can always treat LLVM as if it
were a “dumb code generator” and implement the high-level optimizations
you desire in your front-end, on the language-specific AST.

10.3. Tips and Tricks

There is a variety of useful tips and tricks that you come to know after
working on/with LLVM that aren’t obvious at first glance. Instead of
letting everyone rediscover them, this section talks about some of these
issues.

10.3.1. Implementing portable offsetof/sizeof

One interesting thing that comes up, if you are trying to keep the code
generated by your compiler “target independent”, is that you often need
to know the size of some LLVM type or the offset of some field in an
llvm structure. For example, you might need to pass the size of a type
into a function that allocates memory.

Unfortunately, this can vary widely across targets: for example the
width of a pointer is trivially target-specific. However, there is a
clever way to use the getelementptr
instruction [http://nondot.org/sabre/LLVMNotes/SizeOf-OffsetOf-VariableSizedStructs.txt]
that allows you to compute this in a portable way.

10.3.2. Garbage Collected Stack Frames

Some languages want to explicitly manage their stack frames, often so
that they are garbage collected or to allow easy implementation of
closures. There are often better ways to implement these features than
explicit stack frames, but LLVM does support
them, [http://nondot.org/sabre/LLVMNotes/ExplicitlyManagedStackFrames.txt]
if you want. It requires your front-end to convert the code into
Continuation Passing
Style [http://en.wikipedia.org/wiki/Continuation-passing_style] and
the use of tail calls (which LLVM also supports).

1. Kaleidoscope: Tutorial Introduction and the Lexer

	Tutorial Introduction

	The Basic Language

	The Lexer

1.1. Tutorial Introduction

Welcome to the “Implementing a language with LLVM” tutorial. This
tutorial runs through the implementation of a simple language, showing
how fun and easy it can be. This tutorial will get you up and started as
well as help to build a framework you can extend to other languages. The
code in this tutorial can also be used as a playground to hack on other
LLVM specific things.

The goal of this tutorial is to progressively unveil our language,
describing how it is built up over time. This will let us cover a fairly
broad range of language design and LLVM-specific usage issues, showing
and explaining the code for it all along the way, without overwhelming
you with tons of details up front.

It is useful to point out ahead of time that this tutorial is really
about teaching compiler techniques and LLVM specifically, not about
teaching modern and sane software engineering principles. In practice,
this means that we’ll take a number of shortcuts to simplify the
exposition. For example, the code leaks memory, uses global variables
all over the place, doesn’t use nice design patterns like
visitors [http://en.wikipedia.org/wiki/Visitor_pattern], etc… but
it is very simple. If you dig in and use the code as a basis for future
projects, fixing these deficiencies shouldn’t be hard.

I’ve tried to put this tutorial together in a way that makes chapters
easy to skip over if you are already familiar with or are uninterested
in the various pieces. The structure of the tutorial is:

	Chapter #1: Introduction to the Kaleidoscope
language, and the definition of its Lexer - This shows where we are
going and the basic functionality that we want it to do. In order to
make this tutorial maximally understandable and hackable, we choose
to implement everything in Objective Caml instead of using lexer and
parser generators. LLVM obviously works just fine with such tools,
feel free to use one if you prefer.

	Chapter #2: Implementing a Parser and
AST - With the lexer in place, we can talk about parsing techniques
and basic AST construction. This tutorial describes recursive descent
parsing and operator precedence parsing. Nothing in Chapters 1 or 2
is LLVM-specific, the code doesn’t even link in LLVM at this point.
:)

	Chapter #3: Code generation to LLVM IR -
With the AST ready, we can show off how easy generation of LLVM IR
really is.

	Chapter #4: Adding JIT and Optimizer
Support - Because a lot of people are interested in using LLVM as a
JIT, we’ll dive right into it and show you the 3 lines it takes to
add JIT support. LLVM is also useful in many other ways, but this is
one simple and “sexy” way to shows off its power. :)

	Chapter #5: Extending the Language:
Control Flow - With the language up and running, we show how to
extend it with control flow operations (if/then/else and a ‘for’
loop). This gives us a chance to talk about simple SSA construction
and control flow.

	Chapter #6: Extending the Language:
User-defined Operators - This is a silly but fun chapter that talks
about extending the language to let the user program define their own
arbitrary unary and binary operators (with assignable precedence!).
This lets us build a significant piece of the “language” as library
routines.

	Chapter #7: Extending the Language:
Mutable Variables - This chapter talks about adding user-defined
local variables along with an assignment operator. The interesting
part about this is how easy and trivial it is to construct SSA form
in LLVM: no, LLVM does not require your front-end to construct SSA
form!

	Chapter #8: Conclusion and other useful
LLVM tidbits - This chapter wraps up the series by talking about
potential ways to extend the language, but also includes a bunch of
pointers to info about “special topics” like adding garbage
collection support, exceptions, debugging, support for “spaghetti
stacks”, and a bunch of other tips and tricks.

By the end of the tutorial, we’ll have written a bit less than 700 lines
of non-comment, non-blank, lines of code. With this small amount of
code, we’ll have built up a very reasonable compiler for a non-trivial
language including a hand-written lexer, parser, AST, as well as code
generation support with a JIT compiler. While other systems may have
interesting “hello world” tutorials, I think the breadth of this
tutorial is a great testament to the strengths of LLVM and why you
should consider it if you’re interested in language or compiler design.

A note about this tutorial: we expect you to extend the language and
play with it on your own. Take the code and go crazy hacking away at it,
compilers don’t need to be scary creatures - it can be a lot of fun to
play with languages!

1.2. The Basic Language

This tutorial will be illustrated with a toy language that we’ll call
“Kaleidoscope [http://en.wikipedia.org/wiki/Kaleidoscope]” (derived
from “meaning beautiful, form, and view”). Kaleidoscope is a procedural
language that allows you to define functions, use conditionals, math,
etc. Over the course of the tutorial, we’ll extend Kaleidoscope to
support the if/then/else construct, a for loop, user defined operators,
JIT compilation with a simple command line interface, etc.

Because we want to keep things simple, the only datatype in Kaleidoscope
is a 64-bit floating point type (aka ‘float’ in OCaml parlance). As
such, all values are implicitly double precision and the language
doesn’t require type declarations. This gives the language a very nice
and simple syntax. For example, the following simple example computes
Fibonacci numbers: [http://en.wikipedia.org/wiki/Fibonacci_number]

Compute the x'th fibonacci number.
def fib(x)
 if x < 3 then
 1
 else
 fib(x-1)+fib(x-2)

This expression will compute the 40th number.
fib(40)

We also allow Kaleidoscope to call into standard library functions (the
LLVM JIT makes this completely trivial). This means that you can use the
‘extern’ keyword to define a function before you use it (this is also
useful for mutually recursive functions). For example:

extern sin(arg);
extern cos(arg);
extern atan2(arg1 arg2);

atan2(sin(.4), cos(42))

A more interesting example is included in Chapter 6 where we write a
little Kaleidoscope application that displays a Mandelbrot
Set at various levels of magnification.

Lets dive into the implementation of this language!

1.3. The Lexer

When it comes to implementing a language, the first thing needed is the
ability to process a text file and recognize what it says. The
traditional way to do this is to use a
“lexer [http://en.wikipedia.org/wiki/Lexical_analysis]” (aka
‘scanner’) to break the input up into “tokens”. Each token returned by
the lexer includes a token code and potentially some metadata (e.g. the
numeric value of a number). First, we define the possibilities:

(* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
 * these others for known things. *)
type token =
 (* commands *)
 | Def | Extern

 (* primary *)
 | Ident of string | Number of float

 (* unknown *)
 | Kwd of char

Each token returned by our lexer will be one of the token variant
values. An unknown character like ‘+’ will be returned as
Token.Kwd '+'. If the curr token is an identifier, the value will be
Token.Ident s. If the current token is a numeric literal (like 1.0),
the value will be Token.Number 1.0.

The actual implementation of the lexer is a collection of functions
driven by a function named Lexer.lex. The Lexer.lex function is
called to return the next token from standard input. We will use
Camlp4 [http://caml.inria.fr/pub/docs/manual-camlp4/index.html] to
simplify the tokenization of the standard input. Its definition starts
as:

(*===--===
 * Lexer
 ===--===)

let rec lex = parser
 (* Skip any whitespace. *)
 | [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream

Lexer.lex works by recursing over a char Stream.t to read
characters one at a time from the standard input. It eats them as it
recognizes them and stores them in a Token.token variant. The
first thing that it has to do is ignore whitespace between tokens. This
is accomplished with the recursive call above.

The next thing Lexer.lex needs to do is recognize identifiers and
specific keywords like “def”. Kaleidoscope does this with a pattern
match and a helper function.

 (* identifier: [a-zA-Z][a-zA-Z0-9] *)
 | [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] ->
 let buffer = Buffer.create 1 in
 Buffer.add_char buffer c;
 lex_ident buffer stream

...

and lex_ident buffer = parser
 | [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] ->
 Buffer.add_char buffer c;
 lex_ident buffer stream
 | [< stream=lex >] ->
 match Buffer.contents buffer with
 | "def" -> [< 'Token.Def; stream >]
 | "extern" -> [< 'Token.Extern; stream >]
 | id -> [< 'Token.Ident id; stream >]

Numeric values are similar:

 (* number: [0-9.]+ *)
 | [< ' ('0' .. '9' as c); stream >] ->
 let buffer = Buffer.create 1 in
 Buffer.add_char buffer c;
 lex_number buffer stream

...

and lex_number buffer = parser
 | [< ' ('0' .. '9' | '.' as c); stream >] ->
 Buffer.add_char buffer c;
 lex_number buffer stream
 | [< stream=lex >] ->
 [< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >]

This is all pretty straight-forward code for processing input. When
reading a numeric value from input, we use the ocaml float_of_string
function to convert it to a numeric value that we store in
Token.Number. Note that this isn’t doing sufficient error checking:
it will raise Failure if the string “1.23.45.67”. Feel free to
extend it :). Next we handle comments:

 (* Comment until end of line. *)
 | [< ' ('#'); stream >] ->
 lex_comment stream

...

and lex_comment = parser
 | [< ' ('\n'); stream=lex >] -> stream
 | [< 'c; e=lex_comment >] -> e
 | [< >] -> [< >]

We handle comments by skipping to the end of the line and then return
the next token. Finally, if the input doesn’t match one of the above
cases, it is either an operator character like ‘+’ or the end of the
file. These are handled with this code:

(* Otherwise, just return the character as its ascii value. *)
| [< 'c; stream >] ->
 [< 'Token.Kwd c; lex stream >]

(* end of stream. *)
| [< >] -> [< >]

With this, we have the complete lexer for the basic Kaleidoscope
language (the full code listing for the
Lexer is available in the next chapter of the
tutorial). Next we’ll build a simple parser that uses this to build an
Abstract Syntax Tree. When we have that, we’ll
include a driver so that you can use the lexer and parser together.

Next: Implementing a Parser and AST

2. Kaleidoscope: Implementing a Parser and AST

	Chapter 2 Introduction

	The Abstract Syntax Tree (AST)

	Parser Basics

	Basic Expression Parsing

	Binary Expression Parsing

	Parsing the Rest

	The Driver

	Conclusions

	Full Code Listing

2.1. Chapter 2 Introduction

Welcome to Chapter 2 of the “Implementing a language with LLVM in
Objective Caml” tutorial. This chapter shows you how to
use the lexer, built in Chapter 1, to build a
full parser [http://en.wikipedia.org/wiki/Parsing] for our
Kaleidoscope language. Once we have a parser, we’ll define and build an
Abstract Syntax
Tree [http://en.wikipedia.org/wiki/Abstract_syntax_tree] (AST).

The parser we will build uses a combination of Recursive Descent
Parsing [http://en.wikipedia.org/wiki/Recursive_descent_parser] and
Operator-Precedence
Parsing [http://en.wikipedia.org/wiki/Operator-precedence_parser] to
parse the Kaleidoscope language (the latter for binary expressions and
the former for everything else). Before we get to parsing though, lets
talk about the output of the parser: the Abstract Syntax Tree.

2.2. The Abstract Syntax Tree (AST)

The AST for a program captures its behavior in such a way that it is
easy for later stages of the compiler (e.g. code generation) to
interpret. We basically want one object for each construct in the
language, and the AST should closely model the language. In
Kaleidoscope, we have expressions, a prototype, and a function object.
We’ll start with expressions first:

(* expr - Base type for all expression nodes. *)
type expr =
 (* variant for numeric literals like "1.0". *)
 | Number of float

The code above shows the definition of the base ExprAST class and one
subclass which we use for numeric literals. The important thing to note
about this code is that the Number variant captures the numeric value of
the literal as an instance variable. This allows later phases of the
compiler to know what the stored numeric value is.

Right now we only create the AST, so there are no useful functions on
them. It would be very easy to add a function to pretty print the code,
for example. Here are the other expression AST node definitions that
we’ll use in the basic form of the Kaleidoscope language:

(* variant for referencing a variable, like "a". *)
| Variable of string

(* variant for a binary operator. *)
| Binary of char * expr * expr

(* variant for function calls. *)
| Call of string * expr array

This is all (intentionally) rather straight-forward: variables capture
the variable name, binary operators capture their opcode (e.g. ‘+’), and
calls capture a function name as well as a list of any argument
expressions. One thing that is nice about our AST is that it captures
the language features without talking about the syntax of the language.
Note that there is no discussion about precedence of binary operators,
lexical structure, etc.

For our basic language, these are all of the expression nodes we’ll
define. Because it doesn’t have conditional control flow, it isn’t
Turing-complete; we’ll fix that in a later installment. The two things
we need next are a way to talk about the interface to a function, and a
way to talk about functions themselves:

(* proto - This type represents the "prototype" for a function, which captures
 * its name, and its argument names (thus implicitly the number of arguments the
 * function takes). *)
type proto = Prototype of string * string array

(* func - This type represents a function definition itself. *)
type func = Function of proto * expr

In Kaleidoscope, functions are typed with just a count of their
arguments. Since all values are double precision floating point, the
type of each argument doesn’t need to be stored anywhere. In a more
aggressive and realistic language, the “expr” variants would probably
have a type field.

With this scaffolding, we can now talk about parsing expressions and
function bodies in Kaleidoscope.

2.3. Parser Basics

Now that we have an AST to build, we need to define the parser code to
build it. The idea here is that we want to parse something like “x+y”
(which is returned as three tokens by the lexer) into an AST that could
be generated with calls like this:

let x = Variable "x" in
let y = Variable "y" in
let result = Binary ('+', x, y) in
...

The error handling routines make use of the builtin Stream.Failure
and Stream.Error``s. ``Stream.Failure is raised when the parser is
unable to find any matching token in the first position of a pattern.
Stream.Error is raised when the first token matches, but the rest do
not. The error recovery in our parser will not be the best and is not
particular user-friendly, but it will be enough for our tutorial. These
exceptions make it easier to handle errors in routines that have various
return types.

With these basic types and exceptions, we can implement the first piece
of our grammar: numeric literals.

2.4. Basic Expression Parsing

We start with numeric literals, because they are the simplest to
process. For each production in our grammar, we’ll define a function
which parses that production. We call this class of expressions
“primary” expressions, for reasons that will become more clear later in
the tutorial. In order to parse an
arbitrary primary expression, we need to determine what sort of
expression it is. For numeric literals, we have:

(* primary
 * ::= identifier
 * ::= numberexpr
 * ::= parenexpr *)
parse_primary = parser
 (* numberexpr ::= number *)
 | [< 'Token.Number n >] -> Ast.Number n

This routine is very simple: it expects to be called when the current
token is a Token.Number token. It takes the current number value,
creates a Ast.Number node, advances the lexer to the next token, and
finally returns.

There are some interesting aspects to this. The most important one is
that this routine eats all of the tokens that correspond to the
production and returns the lexer buffer with the next token (which is
not part of the grammar production) ready to go. This is a fairly
standard way to go for recursive descent parsers. For a better example,
the parenthesis operator is defined like this:

(* parenexpr ::= '(' expression ')' *)
| [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e

This function illustrates a number of interesting things about the
parser:

1) It shows how we use the Stream.Error exception. When called, this
function expects that the current token is a ‘(‘ token, but after
parsing the subexpression, it is possible that there is no ‘)’ waiting.
For example, if the user types in “(4 x” instead of “(4)”, the parser
should emit an error. Because errors can occur, the parser needs a way
to indicate that they happened. In our parser, we use the camlp4
shortcut syntax token ?? "parse error", where if the token before
the ?? does not match, then Stream.Error "parse error" will be
raised.

2) Another interesting aspect of this function is that it uses recursion
by calling Parser.parse_primary (we will soon see that
Parser.parse_primary can call Parser.parse_primary). This is
powerful because it allows us to handle recursive grammars, and keeps
each production very simple. Note that parentheses do not cause
construction of AST nodes themselves. While we could do it this way, the
most important role of parentheses are to guide the parser and provide
grouping. Once the parser constructs the AST, parentheses are not
needed.

The next simple production is for handling variable references and
function calls:

(* identifierexpr
 * ::= identifier
 * ::= identifier '(' argumentexpr ')' *)
| [< 'Token.Ident id; stream >] ->
 let rec parse_args accumulator = parser
 | [< e=parse_expr; stream >] ->
 begin parser
 | [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e
 | [< >] -> e :: accumulator
 end stream
 | [< >] -> accumulator
 in
 let rec parse_ident id = parser
 (* Call. *)
 | [< 'Token.Kwd '(';
 args=parse_args [];
 'Token.Kwd ')' ?? "expected ')'">] ->
 Ast.Call (id, Array.of_list (List.rev args))

 (* Simple variable ref. *)
 | [< >] -> Ast.Variable id
 in
 parse_ident id stream

This routine follows the same style as the other routines. (It expects
to be called if the current token is a Token.Ident token). It also
has recursion and error handling. One interesting aspect of this is that
it uses look-ahead to determine if the current identifier is a stand
alone variable reference or if it is a function call expression. It
handles this by checking to see if the token after the identifier is a
‘(‘ token, constructing either a Ast.Variable or Ast.Call node
as appropriate.

We finish up by raising an exception if we received a token we didn’t
expect:

| [< >] -> raise (Stream.Error "unknown token when expecting an expression.")

Now that basic expressions are handled, we need to handle binary
expressions. They are a bit more complex.

2.5. Binary Expression Parsing

Binary expressions are significantly harder to parse because they are
often ambiguous. For example, when given the string “x+y*z”, the parser
can choose to parse it as either “(x+y)*z” or “x+(y*z)”. With common
definitions from mathematics, we expect the later parse, because “*”
(multiplication) has higher precedence than “+” (addition).

There are many ways to handle this, but an elegant and efficient way is
to use Operator-Precedence
Parsing [http://en.wikipedia.org/wiki/Operator-precedence_parser].
This parsing technique uses the precedence of binary operators to guide
recursion. To start with, we need a table of precedences:

(* binop_precedence - This holds the precedence for each binary operator that is
 * defined *)
let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10

(* precedence - Get the precedence of the pending binary operator token. *)
let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1

...

let main () =
 (* Install standard binary operators.
 * 1 is the lowest precedence. *)
 Hashtbl.add Parser.binop_precedence '<' 10;
 Hashtbl.add Parser.binop_precedence '+' 20;
 Hashtbl.add Parser.binop_precedence '-' 20;
 Hashtbl.add Parser.binop_precedence '*' 40; (* highest. *)
 ...

For the basic form of Kaleidoscope, we will only support 4 binary
operators (this can obviously be extended by you, our brave and intrepid
reader). The Parser.precedence function returns the precedence for
the current token, or -1 if the token is not a binary operator. Having a
Hashtbl.t makes it easy to add new operators and makes it clear that
the algorithm doesn’t depend on the specific operators involved, but it
would be easy enough to eliminate the Hashtbl.t and do the
comparisons in the Parser.precedence function. (Or just use a
fixed-size array).

With the helper above defined, we can now start parsing binary
expressions. The basic idea of operator precedence parsing is to break
down an expression with potentially ambiguous binary operators into
pieces. Consider, for example, the expression “a+b+(c+d)*e*f+g”.
Operator precedence parsing considers this as a stream of primary
expressions separated by binary operators. As such, it will first parse
the leading primary expression “a”, then it will see the pairs [+, b]
[+, (c+d)] [*, e] [*, f] and [+, g]. Note that because parentheses are
primary expressions, the binary expression parser doesn’t need to worry
about nested subexpressions like (c+d) at all.

To start, an expression is a primary expression potentially followed by
a sequence of [binop,primaryexpr] pairs:

(* expression
 * ::= primary binoprhs *)
and parse_expr = parser
 | [< lhs=parse_primary; stream >] -> parse_bin_rhs 0 lhs stream

Parser.parse_bin_rhs is the function that parses the sequence of
pairs for us. It takes a precedence and a pointer to an expression for
the part that has been parsed so far. Note that “x” is a perfectly valid
expression: As such, “binoprhs” is allowed to be empty, in which case it
returns the expression that is passed into it. In our example above, the
code passes the expression for “a” into Parser.parse_bin_rhs and the
current token is “+”.

The precedence value passed into Parser.parse_bin_rhs indicates the
minimal operator precedence that the function is allowed to eat. For
example, if the current pair stream is [+, x] and
Parser.parse_bin_rhs is passed in a precedence of 40, it will not
consume any tokens (because the precedence of ‘+’ is only 20). With this
in mind, Parser.parse_bin_rhs starts with:

(* binoprhs
 * ::= ('+' primary)* *)
and parse_bin_rhs expr_prec lhs stream =
 match Stream.peek stream with
 (* If this is a binop, find its precedence. *)
 | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c ->
 let token_prec = precedence c in

 (* If this is a binop that binds at least as tightly as the current binop,
 * consume it, otherwise we are done. *)
 if token_prec < expr_prec then lhs else begin

This code gets the precedence of the current token and checks to see if
if is too low. Because we defined invalid tokens to have a precedence of
-1, this check implicitly knows that the pair-stream ends when the token
stream runs out of binary operators. If this check succeeds, we know
that the token is a binary operator and that it will be included in this
expression:

(* Eat the binop. *)
Stream.junk stream;

(* Parse the primary expression after the binary operator *)
let rhs = parse_primary stream in

(* Okay, we know this is a binop. *)
let rhs =
 match Stream.peek stream with
 | Some (Token.Kwd c2) ->

As such, this code eats (and remembers) the binary operator and then
parses the primary expression that follows. This builds up the whole
pair, the first of which is [+, b] for the running example.

Now that we parsed the left-hand side of an expression and one pair of
the RHS sequence, we have to decide which way the expression associates.
In particular, we could have “(a+b) binop unparsed” or “a + (b binop
unparsed)”. To determine this, we look ahead at “binop” to determine its
precedence and compare it to BinOp’s precedence (which is ‘+’ in this
case):

(* If BinOp binds less tightly with rhs than the operator after
 * rhs, let the pending operator take rhs as its lhs. *)
let next_prec = precedence c2 in
if token_prec < next_prec

If the precedence of the binop to the right of “RHS” is lower or equal
to the precedence of our current operator, then we know that the
parentheses associate as “(a+b) binop …”. In our example, the current
operator is “+” and the next operator is “+”, we know that they have the
same precedence. In this case we’ll create the AST node for “a+b”, and
then continue parsing:

 ... if body omitted ...
 in

 (* Merge lhs/rhs. *)
 let lhs = Ast.Binary (c, lhs, rhs) in
 parse_bin_rhs expr_prec lhs stream
end

In our example above, this will turn “a+b+” into “(a+b)” and execute the
next iteration of the loop, with “+” as the current token. The code
above will eat, remember, and parse “(c+d)” as the primary expression,
which makes the current pair equal to [+, (c+d)]. It will then evaluate
the ‘if’ conditional above with “*” as the binop to the right of the
primary. In this case, the precedence of “*” is higher than the
precedence of “+” so the if condition will be entered.

The critical question left here is “how can the if condition parse the
right hand side in full”? In particular, to build the AST correctly for
our example, it needs to get all of “(c+d)*e*f” as the RHS expression
variable. The code to do this is surprisingly simple (code from the
above two blocks duplicated for context):

 match Stream.peek stream with
 | Some (Token.Kwd c2) ->
 (* If BinOp binds less tightly with rhs than the operator after
 * rhs, let the pending operator take rhs as its lhs. *)
 if token_prec < precedence c2
 then parse_bin_rhs (token_prec + 1) rhs stream
 else rhs
 | _ -> rhs
 in

 (* Merge lhs/rhs. *)
 let lhs = Ast.Binary (c, lhs, rhs) in
 parse_bin_rhs expr_prec lhs stream
end

At this point, we know that the binary operator to the RHS of our
primary has higher precedence than the binop we are currently parsing.
As such, we know that any sequence of pairs whose operators are all
higher precedence than “+” should be parsed together and returned as
“RHS”. To do this, we recursively invoke the Parser.parse_bin_rhs
function specifying “token_prec+1” as the minimum precedence required
for it to continue. In our example above, this will cause it to return
the AST node for “(c+d)*e*f” as RHS, which is then set as the RHS of
the ‘+’ expression.

Finally, on the next iteration of the while loop, the “+g” piece is
parsed and added to the AST. With this little bit of code (14
non-trivial lines), we correctly handle fully general binary expression
parsing in a very elegant way. This was a whirlwind tour of this code,
and it is somewhat subtle. I recommend running through it with a few
tough examples to see how it works.

This wraps up handling of expressions. At this point, we can point the
parser at an arbitrary token stream and build an expression from it,
stopping at the first token that is not part of the expression. Next up
we need to handle function definitions, etc.

2.6. Parsing the Rest

The next thing missing is handling of function prototypes. In
Kaleidoscope, these are used both for ‘extern’ function declarations as
well as function body definitions. The code to do this is
straight-forward and not very interesting (once you’ve survived
expressions):

(* prototype
 * ::= id '(' id* ')' *)
let parse_prototype =
 let rec parse_args accumulator = parser
 | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e
 | [< >] -> accumulator
 in

 parser
 | [< 'Token.Ident id;
 'Token.Kwd '(' ?? "expected '(' in prototype";
 args=parse_args [];
 'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
 (* success. *)
 Ast.Prototype (id, Array.of_list (List.rev args))

 | [< >] ->
 raise (Stream.Error "expected function name in prototype")

Given this, a function definition is very simple, just a prototype plus
an expression to implement the body:

(* definition ::= 'def' prototype expression *)
let parse_definition = parser
 | [< 'Token.Def; p=parse_prototype; e=parse_expr >] ->
 Ast.Function (p, e)

In addition, we support ‘extern’ to declare functions like ‘sin’ and
‘cos’ as well as to support forward declaration of user functions. These
‘extern’s are just prototypes with no body:

(* external ::= 'extern' prototype *)
let parse_extern = parser
 | [< 'Token.Extern; e=parse_prototype >] -> e

Finally, we’ll also let the user type in arbitrary top-level expressions
and evaluate them on the fly. We will handle this by defining anonymous
nullary (zero argument) functions for them:

(* toplevelexpr ::= expression *)
let parse_toplevel = parser
 | [< e=parse_expr >] ->
 (* Make an anonymous proto. *)
 Ast.Function (Ast.Prototype ("", [||]), e)

Now that we have all the pieces, let’s build a little driver that will
let us actually execute this code we’ve built!

2.7. The Driver

The driver for this simply invokes all of the parsing pieces with a
top-level dispatch loop. There isn’t much interesting here, so I’ll just
include the top-level loop. See below for full code in the
“Top-Level Parsing” section.

(* top ::= definition | external | expression | ';' *)
let rec main_loop stream =
 match Stream.peek stream with
 | None -> ()

 (* ignore top-level semicolons. *)
 | Some (Token.Kwd ';') ->
 Stream.junk stream;
 main_loop stream

 | Some token ->
 begin
 try match token with
 | Token.Def ->
 ignore(Parser.parse_definition stream);
 print_endline "parsed a function definition.";
 | Token.Extern ->
 ignore(Parser.parse_extern stream);
 print_endline "parsed an extern.";
 | _ ->
 (* Evaluate a top-level expression into an anonymous function. *)
 ignore(Parser.parse_toplevel stream);
 print_endline "parsed a top-level expr";
 with Stream.Error s ->
 (* Skip token for error recovery. *)
 Stream.junk stream;
 print_endline s;
 end;
 print_string "ready> "; flush stdout;
 main_loop stream

The most interesting part of this is that we ignore top-level
semicolons. Why is this, you ask? The basic reason is that if you type
“4 + 5” at the command line, the parser doesn’t know whether that is the
end of what you will type or not. For example, on the next line you
could type “def foo…” in which case 4+5 is the end of a top-level
expression. Alternatively you could type “* 6”, which would continue
the expression. Having top-level semicolons allows you to type “4+5;”,
and the parser will know you are done.

2.8. Conclusions

With just under 300 lines of commented code (240 lines of non-comment,
non-blank code), we fully defined our minimal language, including a
lexer, parser, and AST builder. With this done, the executable will
validate Kaleidoscope code and tell us if it is grammatically invalid.
For example, here is a sample interaction:

$./toy.byte
ready> def foo(x y) x+foo(y, 4.0);
Parsed a function definition.
ready> def foo(x y) x+y y;
Parsed a function definition.
Parsed a top-level expr
ready> def foo(x y) x+y);
Parsed a function definition.
Error: unknown token when expecting an expression
ready> extern sin(a);
ready> Parsed an extern
ready> ^D
$

There is a lot of room for extension here. You can define new AST nodes,
extend the language in many ways, etc. In the next
installment, we will describe how to generate
LLVM Intermediate Representation (IR) from the AST.

2.9. Full Code Listing

Here is the complete code listing for this and the previous chapter.
Note that it is fully self-contained: you don’t need LLVM or any
external libraries at all for this. (Besides the ocaml standard
libraries, of course.) To build this, just compile with:

Compile
ocamlbuild toy.byte
Run
./toy.byte

Here is the code:

	_tags:

	<{lexer,parser}.ml>: use_camlp4, pp(camlp4of)

	token.ml:

	(*===--===
 * Lexer Tokens
 ===--===)

(* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
 * these others for known things. *)
type token =
 (* commands *)
 | Def | Extern

 (* primary *)
 | Ident of string | Number of float

 (* unknown *)
 | Kwd of char

	lexer.ml:

	(*===--===
 * Lexer
 ===--===)

let rec lex = parser
 (* Skip any whitespace. *)
 | [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream

 (* identifier: [a-zA-Z][a-zA-Z0-9] *)
 | [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] ->
 let buffer = Buffer.create 1 in
 Buffer.add_char buffer c;
 lex_ident buffer stream

 (* number: [0-9.]+ *)
 | [< ' ('0' .. '9' as c); stream >] ->
 let buffer = Buffer.create 1 in
 Buffer.add_char buffer c;
 lex_number buffer stream

 (* Comment until end of line. *)
 | [< ' ('#'); stream >] ->
 lex_comment stream

 (* Otherwise, just return the character as its ascii value. *)
 | [< 'c; stream >] ->
 [< 'Token.Kwd c; lex stream >]

 (* end of stream. *)
 | [< >] -> [< >]

and lex_number buffer = parser
 | [< ' ('0' .. '9' | '.' as c); stream >] ->
 Buffer.add_char buffer c;
 lex_number buffer stream
 | [< stream=lex >] ->
 [< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >]

and lex_ident buffer = parser
 | [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] ->
 Buffer.add_char buffer c;
 lex_ident buffer stream
 | [< stream=lex >] ->
 match Buffer.contents buffer with
 | "def" -> [< 'Token.Def; stream >]
 | "extern" -> [< 'Token.Extern; stream >]
 | id -> [< 'Token.Ident id; stream >]

and lex_comment = parser
 | [< ' ('\n'); stream=lex >] -> stream
 | [< 'c; e=lex_comment >] -> e
 | [< >] -> [< >]

	ast.ml:

	(*===--===
 * Abstract Syntax Tree (aka Parse Tree)
 ===--===)

(* expr - Base type for all expression nodes. *)
type expr =
 (* variant for numeric literals like "1.0". *)
 | Number of float

 (* variant for referencing a variable, like "a". *)
 | Variable of string

 (* variant for a binary operator. *)
 | Binary of char * expr * expr

 (* variant for function calls. *)
 | Call of string * expr array

(* proto - This type represents the "prototype" for a function, which captures
 * its name, and its argument names (thus implicitly the number of arguments the
 * function takes). *)
type proto = Prototype of string * string array

(* func - This type represents a function definition itself. *)
type func = Function of proto * expr

	parser.ml:

	(*===---===
 * Parser
 ===---===)

(* binop_precedence - This holds the precedence for each binary operator that is
 * defined *)
let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10

(* precedence - Get the precedence of the pending binary operator token. *)
let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1

(* primary
 * ::= identifier
 * ::= numberexpr
 * ::= parenexpr *)
let rec parse_primary = parser
 (* numberexpr ::= number *)
 | [< 'Token.Number n >] -> Ast.Number n

 (* parenexpr ::= '(' expression ')' *)
 | [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e

 (* identifierexpr
 * ::= identifier
 * ::= identifier '(' argumentexpr ')' *)
 | [< 'Token.Ident id; stream >] ->
 let rec parse_args accumulator = parser
 | [< e=parse_expr; stream >] ->
 begin parser
 | [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e
 | [< >] -> e :: accumulator
 end stream
 | [< >] -> accumulator
 in
 let rec parse_ident id = parser
 (* Call. *)
 | [< 'Token.Kwd '(';
 args=parse_args [];
 'Token.Kwd ')' ?? "expected ')'">] ->
 Ast.Call (id, Array.of_list (List.rev args))

 (* Simple variable ref. *)
 | [< >] -> Ast.Variable id
 in
 parse_ident id stream

 | [< >] -> raise (Stream.Error "unknown token when expecting an expression.")

(* binoprhs
 * ::= ('+' primary)* *)
and parse_bin_rhs expr_prec lhs stream =
 match Stream.peek stream with
 (* If this is a binop, find its precedence. *)
 | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c ->
 let token_prec = precedence c in

 (* If this is a binop that binds at least as tightly as the current binop,
 * consume it, otherwise we are done. *)
 if token_prec < expr_prec then lhs else begin
 (* Eat the binop. *)
 Stream.junk stream;

 (* Parse the primary expression after the binary operator. *)
 let rhs = parse_primary stream in

 (* Okay, we know this is a binop. *)
 let rhs =
 match Stream.peek stream with
 | Some (Token.Kwd c2) ->
 (* If BinOp binds less tightly with rhs than the operator after
 * rhs, let the pending operator take rhs as its lhs. *)
 let next_prec = precedence c2 in
 if token_prec < next_prec
 then parse_bin_rhs (token_prec + 1) rhs stream
 else rhs
 | _ -> rhs
 in

 (* Merge lhs/rhs. *)
 let lhs = Ast.Binary (c, lhs, rhs) in
 parse_bin_rhs expr_prec lhs stream
 end
 | _ -> lhs

(* expression
 * ::= primary binoprhs *)
and parse_expr = parser
 | [< lhs=parse_primary; stream >] -> parse_bin_rhs 0 lhs stream

(* prototype
 * ::= id '(' id* ')' *)
let parse_prototype =
 let rec parse_args accumulator = parser
 | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e
 | [< >] -> accumulator
 in

 parser
 | [< 'Token.Ident id;
 'Token.Kwd '(' ?? "expected '(' in prototype";
 args=parse_args [];
 'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
 (* success. *)
 Ast.Prototype (id, Array.of_list (List.rev args))

 | [< >] ->
 raise (Stream.Error "expected function name in prototype")

(* definition ::= 'def' prototype expression *)
let parse_definition = parser
 | [< 'Token.Def; p=parse_prototype; e=parse_expr >] ->
 Ast.Function (p, e)

(* toplevelexpr ::= expression *)
let parse_toplevel = parser
 | [< e=parse_expr >] ->
 (* Make an anonymous proto. *)
 Ast.Function (Ast.Prototype ("", [||]), e)

(* external ::= 'extern' prototype *)
let parse_extern = parser
 | [< 'Token.Extern; e=parse_prototype >] -> e

	toplevel.ml:

	(*===--===
 * Top-Level parsing and JIT Driver
 ===--===)

(* top ::= definition | external | expression | ';' *)
let rec main_loop stream =
 match Stream.peek stream with
 | None -> ()

 (* ignore top-level semicolons. *)
 | Some (Token.Kwd ';') ->
 Stream.junk stream;
 main_loop stream

 | Some token ->
 begin
 try match token with
 | Token.Def ->
 ignore(Parser.parse_definition stream);
 print_endline "parsed a function definition.";
 | Token.Extern ->
 ignore(Parser.parse_extern stream);
 print_endline "parsed an extern.";
 | _ ->
 (* Evaluate a top-level expression into an anonymous function. *)
 ignore(Parser.parse_toplevel stream);
 print_endline "parsed a top-level expr";
 with Stream.Error s ->
 (* Skip token for error recovery. *)
 Stream.junk stream;
 print_endline s;
 end;
 print_string "ready> "; flush stdout;
 main_loop stream

	toy.ml:

	(*===--===
 * Main driver code.
 ===--===)

let main () =
 (* Install standard binary operators.
 * 1 is the lowest precedence. *)
 Hashtbl.add Parser.binop_precedence '<' 10;
 Hashtbl.add Parser.binop_precedence '+' 20;
 Hashtbl.add Parser.binop_precedence '-' 20;
 Hashtbl.add Parser.binop_precedence '*' 40; (* highest. *)

 (* Prime the first token. *)
 print_string "ready> "; flush stdout;
 let stream = Lexer.lex (Stream.of_channel stdin) in

 (* Run the main "interpreter loop" now. *)
 Toplevel.main_loop stream;
;;

main ()

Next: Implementing Code Generation to LLVM IR

3. Kaleidoscope: Code generation to LLVM IR

	Chapter 3 Introduction

	Code Generation Setup

	Expression Code Generation

	Function Code Generation

	Driver Changes and Closing Thoughts

	Full Code Listing

3.1. Chapter 3 Introduction

Welcome to Chapter 3 of the “Implementing a language with
LLVM” tutorial. This chapter shows you how to transform
the Abstract Syntax Tree, built in Chapter 2,
into LLVM IR. This will teach you a little bit about how LLVM does
things, as well as demonstrate how easy it is to use. It’s much more
work to build a lexer and parser than it is to generate LLVM IR code. :)

Please note: the code in this chapter and later require LLVM 2.3 or
LLVM SVN to work. LLVM 2.2 and before will not work with it.

3.2. Code Generation Setup

In order to generate LLVM IR, we want some simple setup to get started.
First we define virtual code generation (codegen) methods in each AST
class:

let rec codegen_expr = function
 | Ast.Number n -> ...
 | Ast.Variable name -> ...

The Codegen.codegen_expr function says to emit IR for that AST node
along with all the things it depends on, and they all return an LLVM
Value object. “Value” is the class used to represent a “Static Single
Assignment
(SSA) [http://en.wikipedia.org/wiki/Static_single_assignment_form]
register” or “SSA value” in LLVM. The most distinct aspect of SSA values
is that their value is computed as the related instruction executes, and
it does not get a new value until (and if) the instruction re-executes.
In other words, there is no way to “change” an SSA value. For more
information, please read up on Static Single
Assignment [http://en.wikipedia.org/wiki/Static_single_assignment_form]
- the concepts are really quite natural once you grok them.

The second thing we want is an “Error” exception like we used for the
parser, which will be used to report errors found during code generation
(for example, use of an undeclared parameter):

exception Error of string

let context = global_context ()
let the_module = create_module context "my cool jit"
let builder = builder context
let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
let double_type = double_type context

The static variables will be used during code generation.
Codgen.the_module is the LLVM construct that contains all of the
functions and global variables in a chunk of code. In many ways, it is
the top-level structure that the LLVM IR uses to contain code.

The Codegen.builder object is a helper object that makes it easy to
generate LLVM instructions. Instances of the
IRBuilder [http://llvm.org/doxygen/IRBuilder_8h-source.html]
class keep track of the current place to insert instructions and has
methods to create new instructions.

The Codegen.named_values map keeps track of which values are defined
in the current scope and what their LLVM representation is. (In other
words, it is a symbol table for the code). In this form of Kaleidoscope,
the only things that can be referenced are function parameters. As such,
function parameters will be in this map when generating code for their
function body.

With these basics in place, we can start talking about how to generate
code for each expression. Note that this assumes that the
Codgen.builder has been set up to generate code into something.
For now, we’ll assume that this has already been done, and we’ll just
use it to emit code.

3.3. Expression Code Generation

Generating LLVM code for expression nodes is very straightforward: less
than 30 lines of commented code for all four of our expression nodes.
First we’ll do numeric literals:

| Ast.Number n -> const_float double_type n

In the LLVM IR, numeric constants are represented with the
ConstantFP class, which holds the numeric value in an APFloat
internally (APFloat has the capability of holding floating point
constants of Arbitrary Precision). This code basically just creates
and returns a ConstantFP. Note that in the LLVM IR that constants
are all uniqued together and shared. For this reason, the API uses “the
foo::get(..)” idiom instead of “new foo(..)” or “foo::Create(..)”.

| Ast.Variable name ->
 (try Hashtbl.find named_values name with
 | Not_found -> raise (Error "unknown variable name"))

References to variables are also quite simple using LLVM. In the simple
version of Kaleidoscope, we assume that the variable has already been
emitted somewhere and its value is available. In practice, the only
values that can be in the Codegen.named_values map are function
arguments. This code simply checks to see that the specified name is in
the map (if not, an unknown variable is being referenced) and returns
the value for it. In future chapters, we’ll add support for loop
induction variables in the symbol table, and for
local variables.

| Ast.Binary (op, lhs, rhs) ->
 let lhs_val = codegen_expr lhs in
 let rhs_val = codegen_expr rhs in
 begin
 match op with
 | '+' -> build_fadd lhs_val rhs_val "addtmp" builder
 | '-' -> build_fsub lhs_val rhs_val "subtmp" builder
 | '*' -> build_fmul lhs_val rhs_val "multmp" builder
 | '<' ->
 (* Convert bool 0/1 to double 0.0 or 1.0 *)
 let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
 build_uitofp i double_type "booltmp" builder
 | _ -> raise (Error "invalid binary operator")
 end

Binary operators start to get more interesting. The basic idea here is
that we recursively emit code for the left-hand side of the expression,
then the right-hand side, then we compute the result of the binary
expression. In this code, we do a simple switch on the opcode to create
the right LLVM instruction.

In the example above, the LLVM builder class is starting to show its
value. IRBuilder knows where to insert the newly created instruction,
all you have to do is specify what instruction to create (e.g. with
Llvm.create_add), which operands to use (lhs and rhs here)
and optionally provide a name for the generated instruction.

One nice thing about LLVM is that the name is just a hint. For instance,
if the code above emits multiple “addtmp” variables, LLVM will
automatically provide each one with an increasing, unique numeric
suffix. Local value names for instructions are purely optional, but it
makes it much easier to read the IR dumps.

LLVM instructions are constrained by strict
rules: for example, the Left and Right operators of an add
instruction must have the same type, and the
result type of the add must match the operand types. Because all values
in Kaleidoscope are doubles, this makes for very simple code for add,
sub and mul.

On the other hand, LLVM specifies that the fcmp
instruction always returns an ‘i1’ value (a
one bit integer). The problem with this is that Kaleidoscope wants the
value to be a 0.0 or 1.0 value. In order to get these semantics, we
combine the fcmp instruction with a uitofp
instruction. This instruction converts its
input integer into a floating point value by treating the input as an
unsigned value. In contrast, if we used the sitofp
instruction, the Kaleidoscope ‘<’ operator
would return 0.0 and -1.0, depending on the input value.

| Ast.Call (callee, args) ->
 (* Look up the name in the module table. *)
 let callee =
 match lookup_function callee the_module with
 | Some callee -> callee
 | None -> raise (Error "unknown function referenced")
 in
 let params = params callee in

 (* If argument mismatch error. *)
 if Array.length params == Array.length args then () else
 raise (Error "incorrect # arguments passed");
 let args = Array.map codegen_expr args in
 build_call callee args "calltmp" builder

Code generation for function calls is quite straightforward with LLVM.
The code above initially does a function name lookup in the LLVM
Module’s symbol table. Recall that the LLVM Module is the container that
holds all of the functions we are JIT’ing. By giving each function the
same name as what the user specifies, we can use the LLVM symbol table
to resolve function names for us.

Once we have the function to call, we recursively codegen each argument
that is to be passed in, and create an LLVM call
instruction. Note that LLVM uses the native C
calling conventions by default, allowing these calls to also call into
standard library functions like “sin” and “cos”, with no additional
effort.

This wraps up our handling of the four basic expressions that we have so
far in Kaleidoscope. Feel free to go in and add some more. For example,
by browsing the LLVM language reference you’ll find
several other interesting instructions that are really easy to plug into
our basic framework.

3.4. Function Code Generation

Code generation for prototypes and functions must handle a number of
details, which make their code less beautiful than expression code
generation, but allows us to illustrate some important points. First,
lets talk about code generation for prototypes: they are used both for
function bodies and external function declarations. The code starts
with:

let codegen_proto = function
 | Ast.Prototype (name, args) ->
 (* Make the function type: double(double,double) etc. *)
 let doubles = Array.make (Array.length args) double_type in
 let ft = function_type double_type doubles in
 let f =
 match lookup_function name the_module with

This code packs a lot of power into a few lines. Note first that this
function returns a “Function*” instead of a “Value*” (although at the
moment they both are modeled by llvalue in ocaml). Because a
“prototype” really talks about the external interface for a function
(not the value computed by an expression), it makes sense for it to
return the LLVM Function it corresponds to when codegen’d.

The call to Llvm.function_type creates the Llvm.llvalue that
should be used for a given Prototype. Since all function arguments in
Kaleidoscope are of type double, the first line creates a vector of “N”
LLVM double types. It then uses the Llvm.function_type method to
create a function type that takes “N” doubles as arguments, returns one
double as a result, and that is not vararg (that uses the function
Llvm.var_arg_function_type). Note that Types in LLVM are uniqued
just like Constant’s are, so you don’t “new” a type, you “get” it.

The final line above checks if the function has already been defined in
Codegen.the_module. If not, we will create it.

| None -> declare_function name ft the_module

This indicates the type and name to use, as well as which module to
insert into. By default we assume a function has
Llvm.Linkage.ExternalLinkage. “external
linkage” means that the function may be defined
outside the current module and/or that it is callable by functions
outside the module. The “name” passed in is the name the user
specified: this name is registered in “Codegen.the_module”s symbol
table, which is used by the function call code above.

In Kaleidoscope, I choose to allow redefinitions of functions in two
cases: first, we want to allow ‘extern’ing a function more than once, as
long as the prototypes for the externs match (since all arguments have
the same type, we just have to check that the number of arguments
match). Second, we want to allow ‘extern’ing a function and then
defining a body for it. This is useful when defining mutually recursive
functions.

 (* If 'f' conflicted, there was already something named 'name'. If it
 * has a body, don't allow redefinition or reextern. *)
 | Some f ->
 (* If 'f' already has a body, reject this. *)
 if Array.length (basic_blocks f) == 0 then () else
 raise (Error "redefinition of function");

 (* If 'f' took a different number of arguments, reject. *)
 if Array.length (params f) == Array.length args then () else
 raise (Error "redefinition of function with different # args");
 f
in

In order to verify the logic above, we first check to see if the
pre-existing function is “empty”. In this case, empty means that it has
no basic blocks in it, which means it has no body. If it has no body, it
is a forward declaration. Since we don’t allow anything after a full
definition of the function, the code rejects this case. If the previous
reference to a function was an ‘extern’, we simply verify that the
number of arguments for that definition and this one match up. If not,
we emit an error.

(* Set names for all arguments. *)
Array.iteri (fun i a ->
 let n = args.(i) in
 set_value_name n a;
 Hashtbl.add named_values n a;
) (params f);
f

The last bit of code for prototypes loops over all of the arguments in
the function, setting the name of the LLVM Argument objects to match,
and registering the arguments in the Codegen.named_values map for
future use by the Ast.Variable variant. Once this is set up, it
returns the Function object to the caller. Note that we don’t check for
conflicting argument names here (e.g. “extern foo(a b a)”). Doing so
would be very straight-forward with the mechanics we have already used
above.

let codegen_func = function
 | Ast.Function (proto, body) ->
 Hashtbl.clear named_values;
 let the_function = codegen_proto proto in

Code generation for function definitions starts out simply enough: we
just codegen the prototype (Proto) and verify that it is ok. We then
clear out the Codegen.named_values map to make sure that there isn’t
anything in it from the last function we compiled. Code generation of
the prototype ensures that there is an LLVM Function object that is
ready to go for us.

(* Create a new basic block to start insertion into. *)
let bb = append_block context "entry" the_function in
position_at_end bb builder;

try
 let ret_val = codegen_expr body in

Now we get to the point where the Codegen.builder is set up. The
first line creates a new basic
block [http://en.wikipedia.org/wiki/Basic_block] (named “entry”),
which is inserted into the_function. The second line then tells the
builder that new instructions should be inserted into the end of the new
basic block. Basic blocks in LLVM are an important part of functions
that define the Control Flow
Graph [http://en.wikipedia.org/wiki/Control_flow_graph]. Since we
don’t have any control flow, our functions will only contain one block
at this point. We’ll fix this in Chapter 5 :).

let ret_val = codegen_expr body in

(* Finish off the function. *)
let _ = build_ret ret_val builder in

(* Validate the generated code, checking for consistency. *)
Llvm_analysis.assert_valid_function the_function;

the_function

Once the insertion point is set up, we call the Codegen.codegen_func
method for the root expression of the function. If no error happens,
this emits code to compute the expression into the entry block and
returns the value that was computed. Assuming no error, we then create
an LLVM ret instruction, which completes the
function. Once the function is built, we call
Llvm_analysis.assert_valid_function, which is provided by LLVM. This
function does a variety of consistency checks on the generated code, to
determine if our compiler is doing everything right. Using this is
important: it can catch a lot of bugs. Once the function is finished and
validated, we return it.

with e ->
 delete_function the_function;
 raise e

The only piece left here is handling of the error case. For simplicity,
we handle this by merely deleting the function we produced with the
Llvm.delete_function method. This allows the user to redefine a
function that they incorrectly typed in before: if we didn’t delete it,
it would live in the symbol table, with a body, preventing future
redefinition.

This code does have a bug, though. Since the Codegen.codegen_proto
can return a previously defined forward declaration, our code can
actually delete a forward declaration. There are a number of ways to fix
this bug, see what you can come up with! Here is a testcase:

extern foo(a b); # ok, defines foo.
def foo(a b) c; # error, 'c' is invalid.
def bar() foo(1, 2); # error, unknown function "foo"

3.5. Driver Changes and Closing Thoughts

For now, code generation to LLVM doesn’t really get us much, except that
we can look at the pretty IR calls. The sample code inserts calls to
Codegen into the “Toplevel.main_loop”, and then dumps out the LLVM
IR. This gives a nice way to look at the LLVM IR for simple functions.
For example:

ready> 4+5;
Read top-level expression:
define double @""() {
entry:
 %addtmp = fadd double 4.000000e+00, 5.000000e+00
 ret double %addtmp
}

Note how the parser turns the top-level expression into anonymous
functions for us. This will be handy when we add JIT
support in the next chapter. Also note that
the code is very literally transcribed, no optimizations are being
performed. We will add
optimizations explicitly in the
next chapter.

ready> def foo(a b) a*a + 2*a*b + b*b;
Read function definition:
define double @foo(double %a, double %b) {
entry:
 %multmp = fmul double %a, %a
 %multmp1 = fmul double 2.000000e+00, %a
 %multmp2 = fmul double %multmp1, %b
 %addtmp = fadd double %multmp, %multmp2
 %multmp3 = fmul double %b, %b
 %addtmp4 = fadd double %addtmp, %multmp3
 ret double %addtmp4
}

This shows some simple arithmetic. Notice the striking similarity to the
LLVM builder calls that we use to create the instructions.

ready> def bar(a) foo(a, 4.0) + bar(31337);
Read function definition:
define double @bar(double %a) {
entry:
 %calltmp = call double @foo(double %a, double 4.000000e+00)
 %calltmp1 = call double @bar(double 3.133700e+04)
 %addtmp = fadd double %calltmp, %calltmp1
 ret double %addtmp
}

This shows some function calls. Note that this function will take a long
time to execute if you call it. In the future we’ll add conditional
control flow to actually make recursion useful :).

ready> extern cos(x);
Read extern:
declare double @cos(double)

ready> cos(1.234);
Read top-level expression:
define double @""() {
entry:
 %calltmp = call double @cos(double 1.234000e+00)
 ret double %calltmp
}

This shows an extern for the libm “cos” function, and a call to it.

ready> ^D
; ModuleID = 'my cool jit'

define double @""() {
entry:
 %addtmp = fadd double 4.000000e+00, 5.000000e+00
 ret double %addtmp
}

define double @foo(double %a, double %b) {
entry:
 %multmp = fmul double %a, %a
 %multmp1 = fmul double 2.000000e+00, %a
 %multmp2 = fmul double %multmp1, %b
 %addtmp = fadd double %multmp, %multmp2
 %multmp3 = fmul double %b, %b
 %addtmp4 = fadd double %addtmp, %multmp3
 ret double %addtmp4
}

define double @bar(double %a) {
entry:
 %calltmp = call double @foo(double %a, double 4.000000e+00)
 %calltmp1 = call double @bar(double 3.133700e+04)
 %addtmp = fadd double %calltmp, %calltmp1
 ret double %addtmp
}

declare double @cos(double)

define double @""() {
entry:
 %calltmp = call double @cos(double 1.234000e+00)
 ret double %calltmp
}

When you quit the current demo, it dumps out the IR for the entire
module generated. Here you can see the big picture with all the
functions referencing each other.

This wraps up the third chapter of the Kaleidoscope tutorial. Up next,
we’ll describe how to add JIT codegen and optimizer
support to this so we can actually start running
code!

3.6. Full Code Listing

Here is the complete code listing for our running example, enhanced with
the LLVM code generator. Because this uses the LLVM libraries, we need
to link them in. To do this, we use the
llvm-config [http://llvm.org/cmds/llvm-config.html] tool to inform
our makefile/command line about which options to use:

Compile
ocamlbuild toy.byte
Run
./toy.byte

Here is the code:

	_tags:

	<{lexer,parser}.ml>: use_camlp4, pp(camlp4of)
<*.{byte,native}>: g++, use_llvm, use_llvm_analysis

	myocamlbuild.ml:

	open Ocamlbuild_plugin;;

ocaml_lib ~extern:true "llvm";;
ocaml_lib ~extern:true "llvm_analysis";;

flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"]);;

	token.ml:

	(*===--===
 * Lexer Tokens
 ===--===)

(* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
 * these others for known things. *)
type token =
 (* commands *)
 | Def | Extern

 (* primary *)
 | Ident of string | Number of float

 (* unknown *)
 | Kwd of char

	lexer.ml:

	(*===--===
 * Lexer
 ===--===)

let rec lex = parser
 (* Skip any whitespace. *)
 | [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream

 (* identifier: [a-zA-Z][a-zA-Z0-9] *)
 | [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] ->
 let buffer = Buffer.create 1 in
 Buffer.add_char buffer c;
 lex_ident buffer stream

 (* number: [0-9.]+ *)
 | [< ' ('0' .. '9' as c); stream >] ->
 let buffer = Buffer.create 1 in
 Buffer.add_char buffer c;
 lex_number buffer stream

 (* Comment until end of line. *)
 | [< ' ('#'); stream >] ->
 lex_comment stream

 (* Otherwise, just return the character as its ascii value. *)
 | [< 'c; stream >] ->
 [< 'Token.Kwd c; lex stream >]

 (* end of stream. *)
 | [< >] -> [< >]

and lex_number buffer = parser
 | [< ' ('0' .. '9' | '.' as c); stream >] ->
 Buffer.add_char buffer c;
 lex_number buffer stream
 | [< stream=lex >] ->
 [< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >]

and lex_ident buffer = parser
 | [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] ->
 Buffer.add_char buffer c;
 lex_ident buffer stream
 | [< stream=lex >] ->
 match Buffer.contents buffer with
 | "def" -> [< 'Token.Def; stream >]
 | "extern" -> [< 'Token.Extern; stream >]
 | id -> [< 'Token.Ident id; stream >]

and lex_comment = parser
 | [< ' ('\n'); stream=lex >] -> stream
 | [< 'c; e=lex_comment >] -> e
 | [< >] -> [< >]

	ast.ml:

	(*===--===
 * Abstract Syntax Tree (aka Parse Tree)
 ===--===)

(* expr - Base type for all expression nodes. *)
type expr =
 (* variant for numeric literals like "1.0". *)
 | Number of float

 (* variant for referencing a variable, like "a". *)
 | Variable of string

 (* variant for a binary operator. *)
 | Binary of char * expr * expr

 (* variant for function calls. *)
 | Call of string * expr array

(* proto - This type represents the "prototype" for a function, which captures
 * its name, and its argument names (thus implicitly the number of arguments the
 * function takes). *)
type proto = Prototype of string * string array

(* func - This type represents a function definition itself. *)
type func = Function of proto * expr

	parser.ml:

	(*===---===
 * Parser
 ===---===)

(* binop_precedence - This holds the precedence for each binary operator that is
 * defined *)
let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10

(* precedence - Get the precedence of the pending binary operator token. *)
let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1

(* primary
 * ::= identifier
 * ::= numberexpr
 * ::= parenexpr *)
let rec parse_primary = parser
 (* numberexpr ::= number *)
 | [< 'Token.Number n >] -> Ast.Number n

 (* parenexpr ::= '(' expression ')' *)
 | [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e

 (* identifierexpr
 * ::= identifier
 * ::= identifier '(' argumentexpr ')' *)
 | [< 'Token.Ident id; stream >] ->
 let rec parse_args accumulator = parser
 | [< e=parse_expr; stream >] ->
 begin parser
 | [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e
 | [< >] -> e :: accumulator
 end stream
 | [< >] -> accumulator
 in
 let rec parse_ident id = parser
 (* Call. *)
 | [< 'Token.Kwd '(';
 args=parse_args [];
 'Token.Kwd ')' ?? "expected ')'">] ->
 Ast.Call (id, Array.of_list (List.rev args))

 (* Simple variable ref. *)
 | [< >] -> Ast.Variable id
 in
 parse_ident id stream

 | [< >] -> raise (Stream.Error "unknown token when expecting an expression.")

(* binoprhs
 * ::= ('+' primary)* *)
and parse_bin_rhs expr_prec lhs stream =
 match Stream.peek stream with
 (* If this is a binop, find its precedence. *)
 | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c ->
 let token_prec = precedence c in

 (* If this is a binop that binds at least as tightly as the current binop,
 * consume it, otherwise we are done. *)
 if token_prec < expr_prec then lhs else begin
 (* Eat the binop. *)
 Stream.junk stream;

 (* Parse the primary expression after the binary operator. *)
 let rhs = parse_primary stream in

 (* Okay, we know this is a binop. *)
 let rhs =
 match Stream.peek stream with
 | Some (Token.Kwd c2) ->
 (* If BinOp binds less tightly with rhs than the operator after
 * rhs, let the pending operator take rhs as its lhs. *)
 let next_prec = precedence c2 in
 if token_prec < next_prec
 then parse_bin_rhs (token_prec + 1) rhs stream
 else rhs
 | _ -> rhs
 in

 (* Merge lhs/rhs. *)
 let lhs = Ast.Binary (c, lhs, rhs) in
 parse_bin_rhs expr_prec lhs stream
 end
 | _ -> lhs

(* expression
 * ::= primary binoprhs *)
and parse_expr = parser
 | [< lhs=parse_primary; stream >] -> parse_bin_rhs 0 lhs stream

(* prototype
 * ::= id '(' id* ')' *)
let parse_prototype =
 let rec parse_args accumulator = parser
 | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e
 | [< >] -> accumulator
 in

 parser
 | [< 'Token.Ident id;
 'Token.Kwd '(' ?? "expected '(' in prototype";
 args=parse_args [];
 'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
 (* success. *)
 Ast.Prototype (id, Array.of_list (List.rev args))

 | [< >] ->
 raise (Stream.Error "expected function name in prototype")

(* definition ::= 'def' prototype expression *)
let parse_definition = parser
 | [< 'Token.Def; p=parse_prototype; e=parse_expr >] ->
 Ast.Function (p, e)

(* toplevelexpr ::= expression *)
let parse_toplevel = parser
 | [< e=parse_expr >] ->
 (* Make an anonymous proto. *)
 Ast.Function (Ast.Prototype ("", [||]), e)

(* external ::= 'extern' prototype *)
let parse_extern = parser
 | [< 'Token.Extern; e=parse_prototype >] -> e

	codegen.ml:

	(*===--===
 * Code Generation
 ===--===)

open Llvm

exception Error of string

let context = global_context ()
let the_module = create_module context "my cool jit"
let builder = builder context
let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
let double_type = double_type context

let rec codegen_expr = function
 | Ast.Number n -> const_float double_type n
 | Ast.Variable name ->
 (try Hashtbl.find named_values name with
 | Not_found -> raise (Error "unknown variable name"))
 | Ast.Binary (op, lhs, rhs) ->
 let lhs_val = codegen_expr lhs in
 let rhs_val = codegen_expr rhs in
 begin
 match op with
 | '+' -> build_add lhs_val rhs_val "addtmp" builder
 | '-' -> build_sub lhs_val rhs_val "subtmp" builder
 | '*' -> build_mul lhs_val rhs_val "multmp" builder
 | '<' ->
 (* Convert bool 0/1 to double 0.0 or 1.0 *)
 let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
 build_uitofp i double_type "booltmp" builder
 | _ -> raise (Error "invalid binary operator")
 end
 | Ast.Call (callee, args) ->
 (* Look up the name in the module table. *)
 let callee =
 match lookup_function callee the_module with
 | Some callee -> callee
 | None -> raise (Error "unknown function referenced")
 in
 let params = params callee in

 (* If argument mismatch error. *)
 if Array.length params == Array.length args then () else
 raise (Error "incorrect # arguments passed");
 let args = Array.map codegen_expr args in
 build_call callee args "calltmp" builder

let codegen_proto = function
 | Ast.Prototype (name, args) ->
 (* Make the function type: double(double,double) etc. *)
 let doubles = Array.make (Array.length args) double_type in
 let ft = function_type double_type doubles in
 let f =
 match lookup_function name the_module with
 | None -> declare_function name ft the_module

 (* If 'f' conflicted, there was already something named 'name'. If it
 * has a body, don't allow redefinition or reextern. *)
 | Some f ->
 (* If 'f' already has a body, reject this. *)
 if block_begin f <> At_end f then
 raise (Error "redefinition of function");

 (* If 'f' took a different number of arguments, reject. *)
 if element_type (type_of f) <> ft then
 raise (Error "redefinition of function with different # args");
 f
 in

 (* Set names for all arguments. *)
 Array.iteri (fun i a ->
 let n = args.(i) in
 set_value_name n a;
 Hashtbl.add named_values n a;
) (params f);
 f

let codegen_func = function
 | Ast.Function (proto, body) ->
 Hashtbl.clear named_values;
 let the_function = codegen_proto proto in

 (* Create a new basic block to start insertion into. *)
 let bb = append_block context "entry" the_function in
 position_at_end bb builder;

 try
 let ret_val = codegen_expr body in

 (* Finish off the function. *)
 let _ = build_ret ret_val builder in

 (* Validate the generated code, checking for consistency. *)
 Llvm_analysis.assert_valid_function the_function;

 the_function
 with e ->
 delete_function the_function;
 raise e

	toplevel.ml:

	(*===--===
 * Top-Level parsing and JIT Driver
 ===--===)

open Llvm

(* top ::= definition | external | expression | ';' *)
let rec main_loop stream =
 match Stream.peek stream with
 | None -> ()

 (* ignore top-level semicolons. *)
 | Some (Token.Kwd ';') ->
 Stream.junk stream;
 main_loop stream

 | Some token ->
 begin
 try match token with
 | Token.Def ->
 let e = Parser.parse_definition stream in
 print_endline "parsed a function definition.";
 dump_value (Codegen.codegen_func e);
 | Token.Extern ->
 let e = Parser.parse_extern stream in
 print_endline "parsed an extern.";
 dump_value (Codegen.codegen_proto e);
 | _ ->
 (* Evaluate a top-level expression into an anonymous function. *)
 let e = Parser.parse_toplevel stream in
 print_endline "parsed a top-level expr";
 dump_value (Codegen.codegen_func e);
 with Stream.Error s | Codegen.Error s ->
 (* Skip token for error recovery. *)
 Stream.junk stream;
 print_endline s;
 end;
 print_string "ready> "; flush stdout;
 main_loop stream

	toy.ml:

	(*===--===
 * Main driver code.
 ===--===)

open Llvm

let main () =
 (* Install standard binary operators.
 * 1 is the lowest precedence. *)
 Hashtbl.add Parser.binop_precedence '<' 10;
 Hashtbl.add Parser.binop_precedence '+' 20;
 Hashtbl.add Parser.binop_precedence '-' 20;
 Hashtbl.add Parser.binop_precedence '*' 40; (* highest. *)

 (* Prime the first token. *)
 print_string "ready> "; flush stdout;
 let stream = Lexer.lex (Stream.of_channel stdin) in

 (* Run the main "interpreter loop" now. *)
 Toplevel.main_loop stream;

 (* Print out all the generated code. *)
 dump_module Codegen.the_module
;;

main ()

Next: Adding JIT and Optimizer Support

4. Kaleidoscope: Adding JIT and Optimizer Support

	Chapter 4 Introduction

	Trivial Constant Folding

	LLVM Optimization Passes

	Adding a JIT Compiler

	Full Code Listing

4.1. Chapter 4 Introduction

Welcome to Chapter 4 of the “Implementing a language with
LLVM” tutorial. Chapters 1-3 described the implementation
of a simple language and added support for generating LLVM IR. This
chapter describes two new techniques: adding optimizer support to your
language, and adding JIT compiler support. These additions will
demonstrate how to get nice, efficient code for the Kaleidoscope
language.

4.2. Trivial Constant Folding

Note: the default IRBuilder now always includes the constant
folding optimisations below.

Our demonstration for Chapter 3 is elegant and easy to extend.
Unfortunately, it does not produce wonderful code. For example, when
compiling simple code, we don’t get obvious optimizations:

ready> def test(x) 1+2+x;
Read function definition:
define double @test(double %x) {
entry:
 %addtmp = fadd double 1.000000e+00, 2.000000e+00
 %addtmp1 = fadd double %addtmp, %x
 ret double %addtmp1
}

This code is a very, very literal transcription of the AST built by
parsing the input. As such, this transcription lacks optimizations like
constant folding (we’d like to get “add x, 3.0” in the example
above) as well as other more important optimizations. Constant folding,
in particular, is a very common and very important optimization: so much
so that many language implementors implement constant folding support in
their AST representation.

With LLVM, you don’t need this support in the AST. Since all calls to
build LLVM IR go through the LLVM builder, it would be nice if the
builder itself checked to see if there was a constant folding
opportunity when you call it. If so, it could just do the constant fold
and return the constant instead of creating an instruction. This is
exactly what the LLVMFoldingBuilder class does.

All we did was switch from LLVMBuilder to LLVMFoldingBuilder.
Though we change no other code, we now have all of our instructions
implicitly constant folded without us having to do anything about it.
For example, the input above now compiles to:

ready> def test(x) 1+2+x;
Read function definition:
define double @test(double %x) {
entry:
 %addtmp = fadd double 3.000000e+00, %x
 ret double %addtmp
}

Well, that was easy :). In practice, we recommend always using
LLVMFoldingBuilder when generating code like this. It has no
“syntactic overhead” for its use (you don’t have to uglify your compiler
with constant checks everywhere) and it can dramatically reduce the
amount of LLVM IR that is generated in some cases (particular for
languages with a macro preprocessor or that use a lot of constants).

On the other hand, the LLVMFoldingBuilder is limited by the fact
that it does all of its analysis inline with the code as it is built. If
you take a slightly more complex example:

ready> def test(x) (1+2+x)*(x+(1+2));
ready> Read function definition:
define double @test(double %x) {
entry:
 %addtmp = fadd double 3.000000e+00, %x
 %addtmp1 = fadd double %x, 3.000000e+00
 %multmp = fmul double %addtmp, %addtmp1
 ret double %multmp
}

In this case, the LHS and RHS of the multiplication are the same value.
We’d really like to see this generate “tmp = x+3; result = tmp*tmp;”
instead of computing “x*3” twice.

Unfortunately, no amount of local analysis will be able to detect and
correct this. This requires two transformations: reassociation of
expressions (to make the add’s lexically identical) and Common
Subexpression Elimination (CSE) to delete the redundant add instruction.
Fortunately, LLVM provides a broad range of optimizations that you can
use, in the form of “passes”.

4.3. LLVM Optimization Passes

LLVM provides many optimization passes, which do many different sorts of
things and have different tradeoffs. Unlike other systems, LLVM doesn’t
hold to the mistaken notion that one set of optimizations is right for
all languages and for all situations. LLVM allows a compiler implementor
to make complete decisions about what optimizations to use, in which
order, and in what situation.

As a concrete example, LLVM supports both “whole module” passes, which
look across as large of body of code as they can (often a whole file,
but if run at link time, this can be a substantial portion of the whole
program). It also supports and includes “per-function” passes which just
operate on a single function at a time, without looking at other
functions. For more information on passes and how they are run, see the
How to Write a Pass document and the
List of LLVM Passes.

For Kaleidoscope, we are currently generating functions on the fly, one
at a time, as the user types them in. We aren’t shooting for the
ultimate optimization experience in this setting, but we also want to
catch the easy and quick stuff where possible. As such, we will choose
to run a few per-function optimizations as the user types the function
in. If we wanted to make a “static Kaleidoscope compiler”, we would use
exactly the code we have now, except that we would defer running the
optimizer until the entire file has been parsed.

In order to get per-function optimizations going, we need to set up a
Llvm.PassManager to hold and
organize the LLVM optimizations that we want to run. Once we have that,
we can add a set of optimizations to run. The code looks like this:

(* Create the JIT. *)
let the_execution_engine = ExecutionEngine.create Codegen.the_module in
let the_fpm = PassManager.create_function Codegen.the_module in

(* Set up the optimizer pipeline. Start with registering info about how the
 * target lays out data structures. *)
DataLayout.add (ExecutionEngine.target_data the_execution_engine) the_fpm;

(* Do simple "peephole" optimizations and bit-twiddling optzn. *)
add_instruction_combining the_fpm;

(* reassociate expressions. *)
add_reassociation the_fpm;

(* Eliminate Common SubExpressions. *)
add_gvn the_fpm;

(* Simplify the control flow graph (deleting unreachable blocks, etc). *)
add_cfg_simplification the_fpm;

ignore (PassManager.initialize the_fpm);

(* Run the main "interpreter loop" now. *)
Toplevel.main_loop the_fpm the_execution_engine stream;

The meat of the matter here, is the definition of “the_fpm”. It
requires a pointer to the the_module to construct itself. Once it is
set up, we use a series of “add” calls to add a bunch of LLVM passes.
The first pass is basically boilerplate, it adds a pass so that later
optimizations know how the data structures in the program are laid out.
The “the_execution_engine” variable is related to the JIT, which we
will get to in the next section.

In this case, we choose to add 4 optimization passes. The passes we
chose here are a pretty standard set of “cleanup” optimizations that are
useful for a wide variety of code. I won’t delve into what they do but,
believe me, they are a good starting place :).

Once the Llvm.PassManager. is set up, we need to make use of it. We
do this by running it after our newly created function is constructed
(in Codegen.codegen_func), but before it is returned to the client:

let codegen_func the_fpm = function
 ...
 try
 let ret_val = codegen_expr body in

 (* Finish off the function. *)
 let _ = build_ret ret_val builder in

 (* Validate the generated code, checking for consistency. *)
 Llvm_analysis.assert_valid_function the_function;

 (* Optimize the function. *)
 let _ = PassManager.run_function the_function the_fpm in

 the_function

As you can see, this is pretty straightforward. The the_fpm
optimizes and updates the LLVM Function* in place, improving
(hopefully) its body. With this in place, we can try our test above
again:

ready> def test(x) (1+2+x)*(x+(1+2));
ready> Read function definition:
define double @test(double %x) {
entry:
 %addtmp = fadd double %x, 3.000000e+00
 %multmp = fmul double %addtmp, %addtmp
 ret double %multmp
}

As expected, we now get our nicely optimized code, saving a floating
point add instruction from every execution of this function.

LLVM provides a wide variety of optimizations that can be used in
certain circumstances. Some documentation about the various
passes is available, but it isn’t very complete.
Another good source of ideas can come from looking at the passes that
Clang runs to get started. The “opt” tool allows you to
experiment with passes from the command line, so you can see if they do
anything.

Now that we have reasonable code coming out of our front-end, lets talk
about executing it!

4.4. Adding a JIT Compiler

Code that is available in LLVM IR can have a wide variety of tools
applied to it. For example, you can run optimizations on it (as we did
above), you can dump it out in textual or binary forms, you can compile
the code to an assembly file (.s) for some target, or you can JIT
compile it. The nice thing about the LLVM IR representation is that it
is the “common currency” between many different parts of the compiler.

In this section, we’ll add JIT compiler support to our interpreter. The
basic idea that we want for Kaleidoscope is to have the user enter
function bodies as they do now, but immediately evaluate the top-level
expressions they type in. For example, if they type in “1 + 2;”, we
should evaluate and print out 3. If they define a function, they should
be able to call it from the command line.

In order to do this, we first declare and initialize the JIT. This is
done by adding a global variable and a call in main:

...
let main () =
 ...
 (* Create the JIT. *)
 let the_execution_engine = ExecutionEngine.create Codegen.the_module in
 ...

This creates an abstract “Execution Engine” which can be either a JIT
compiler or the LLVM interpreter. LLVM will automatically pick a JIT
compiler for you if one is available for your platform, otherwise it
will fall back to the interpreter.

Once the Llvm_executionengine.ExecutionEngine.t is created, the JIT
is ready to be used. There are a variety of APIs that are useful, but
the simplest one is the
“Llvm_executionengine.ExecutionEngine.run_function” function. This
method JIT compiles the specified LLVM Function and returns a function
pointer to the generated machine code. In our case, this means that we
can change the code that parses a top-level expression to look like
this:

(* Evaluate a top-level expression into an anonymous function. *)
let e = Parser.parse_toplevel stream in
print_endline "parsed a top-level expr";
let the_function = Codegen.codegen_func the_fpm e in
dump_value the_function;

(* JIT the function, returning a function pointer. *)
let result = ExecutionEngine.run_function the_function [||]
 the_execution_engine in

print_string "Evaluated to ";
print_float (GenericValue.as_float Codegen.double_type result);
print_newline ();

Recall that we compile top-level expressions into a self-contained LLVM
function that takes no arguments and returns the computed double.
Because the LLVM JIT compiler matches the native platform ABI, this
means that you can just cast the result pointer to a function pointer of
that type and call it directly. This means, there is no difference
between JIT compiled code and native machine code that is statically
linked into your application.

With just these two changes, lets see how Kaleidoscope works now!

ready> 4+5;
define double @""() {
entry:
 ret double 9.000000e+00
}

Evaluated to 9.000000

Well this looks like it is basically working. The dump of the function
shows the “no argument function that always returns double” that we
synthesize for each top level expression that is typed in. This
demonstrates very basic functionality, but can we do more?

ready> def testfunc(x y) x + y*2;
Read function definition:
define double @testfunc(double %x, double %y) {
entry:
 %multmp = fmul double %y, 2.000000e+00
 %addtmp = fadd double %multmp, %x
 ret double %addtmp
}

ready> testfunc(4, 10);
define double @""() {
entry:
 %calltmp = call double @testfunc(double 4.000000e+00, double 1.000000e+01)
 ret double %calltmp
}

Evaluated to 24.000000

This illustrates that we can now call user code, but there is something
a bit subtle going on here. Note that we only invoke the JIT on the
anonymous functions that call testfunc, but we never invoked it on
testfunc itself. What actually happened here is that the JIT scanned
for all non-JIT’d functions transitively called from the anonymous
function and compiled all of them before returning from
run_function.

The JIT provides a number of other more advanced interfaces for things
like freeing allocated machine code, rejit’ing functions to update them,
etc. However, even with this simple code, we get some surprisingly
powerful capabilities - check this out (I removed the dump of the
anonymous functions, you should get the idea by now :) :

ready> extern sin(x);
Read extern:
declare double @sin(double)

ready> extern cos(x);
Read extern:
declare double @cos(double)

ready> sin(1.0);
Evaluated to 0.841471

ready> def foo(x) sin(x)*sin(x) + cos(x)*cos(x);
Read function definition:
define double @foo(double %x) {
entry:
 %calltmp = call double @sin(double %x)
 %multmp = fmul double %calltmp, %calltmp
 %calltmp2 = call double @cos(double %x)
 %multmp4 = fmul double %calltmp2, %calltmp2
 %addtmp = fadd double %multmp, %multmp4
 ret double %addtmp
}

ready> foo(4.0);
Evaluated to 1.000000

Whoa, how does the JIT know about sin and cos? The answer is
surprisingly simple: in this example, the JIT started execution of a
function and got to a function call. It realized that the function was
not yet JIT compiled and invoked the standard set of routines to resolve
the function. In this case, there is no body defined for the function,
so the JIT ended up calling “dlsym("sin")” on the Kaleidoscope
process itself. Since “sin” is defined within the JIT’s address
space, it simply patches up calls in the module to call the libm version
of sin directly.

The LLVM JIT provides a number of interfaces (look in the
llvm_executionengine.mli file) for controlling how unknown functions
get resolved. It allows you to establish explicit mappings between IR
objects and addresses (useful for LLVM global variables that you want to
map to static tables, for example), allows you to dynamically decide on
the fly based on the function name, and even allows you to have the JIT
compile functions lazily the first time they’re called.

One interesting application of this is that we can now extend the
language by writing arbitrary C code to implement operations. For
example, if we add:

/* putchard - putchar that takes a double and returns 0. */
extern "C"
double putchard(double X) {
 putchar((char)X);
 return 0;
}

Now we can produce simple output to the console by using things like:
“extern putchard(x); putchard(120);”, which prints a lowercase ‘x’
on the console (120 is the ASCII code for ‘x’). Similar code could be
used to implement file I/O, console input, and many other capabilities
in Kaleidoscope.

This completes the JIT and optimizer chapter of the Kaleidoscope
tutorial. At this point, we can compile a non-Turing-complete
programming language, optimize and JIT compile it in a user-driven way.
Next up we’ll look into extending the language with control flow
constructs, tackling some interesting LLVM IR
issues along the way.

4.5. Full Code Listing

Here is the complete code listing for our running example, enhanced with
the LLVM JIT and optimizer. To build this example, use:

Compile
ocamlbuild toy.byte
Run
./toy.byte

Here is the code:

	_tags:

	<{lexer,parser}.ml>: use_camlp4, pp(camlp4of)
<*.{byte,native}>: g++, use_llvm, use_llvm_analysis
<*.{byte,native}>: use_llvm_executionengine, use_llvm_target
<*.{byte,native}>: use_llvm_scalar_opts, use_bindings

	myocamlbuild.ml:

	open Ocamlbuild_plugin;;

ocaml_lib ~extern:true "llvm";;
ocaml_lib ~extern:true "llvm_analysis";;
ocaml_lib ~extern:true "llvm_executionengine";;
ocaml_lib ~extern:true "llvm_target";;
ocaml_lib ~extern:true "llvm_scalar_opts";;

flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"]);;
dep ["link"; "ocaml"; "use_bindings"] ["bindings.o"];;

	token.ml:

	(*===--===
 * Lexer Tokens
 ===--===)

(* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
 * these others for known things. *)
type token =
 (* commands *)
 | Def | Extern

 (* primary *)
 | Ident of string | Number of float

 (* unknown *)
 | Kwd of char

	lexer.ml:

	(*===--===
 * Lexer
 ===--===)

let rec lex = parser
 (* Skip any whitespace. *)
 | [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream

 (* identifier: [a-zA-Z][a-zA-Z0-9] *)
 | [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] ->
 let buffer = Buffer.create 1 in
 Buffer.add_char buffer c;
 lex_ident buffer stream

 (* number: [0-9.]+ *)
 | [< ' ('0' .. '9' as c); stream >] ->
 let buffer = Buffer.create 1 in
 Buffer.add_char buffer c;
 lex_number buffer stream

 (* Comment until end of line. *)
 | [< ' ('#'); stream >] ->
 lex_comment stream

 (* Otherwise, just return the character as its ascii value. *)
 | [< 'c; stream >] ->
 [< 'Token.Kwd c; lex stream >]

 (* end of stream. *)
 | [< >] -> [< >]

and lex_number buffer = parser
 | [< ' ('0' .. '9' | '.' as c); stream >] ->
 Buffer.add_char buffer c;
 lex_number buffer stream
 | [< stream=lex >] ->
 [< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >]

and lex_ident buffer = parser
 | [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] ->
 Buffer.add_char buffer c;
 lex_ident buffer stream
 | [< stream=lex >] ->
 match Buffer.contents buffer with
 | "def" -> [< 'Token.Def; stream >]
 | "extern" -> [< 'Token.Extern; stream >]
 | id -> [< 'Token.Ident id; stream >]

and lex_comment = parser
 | [< ' ('\n'); stream=lex >] -> stream
 | [< 'c; e=lex_comment >] -> e
 | [< >] -> [< >]

	ast.ml:

	(*===--===
 * Abstract Syntax Tree (aka Parse Tree)
 ===--===)

(* expr - Base type for all expression nodes. *)
type expr =
 (* variant for numeric literals like "1.0". *)
 | Number of float

 (* variant for referencing a variable, like "a". *)
 | Variable of string

 (* variant for a binary operator. *)
 | Binary of char * expr * expr

 (* variant for function calls. *)
 | Call of string * expr array

(* proto - This type represents the "prototype" for a function, which captures
 * its name, and its argument names (thus implicitly the number of arguments the
 * function takes). *)
type proto = Prototype of string * string array

(* func - This type represents a function definition itself. *)
type func = Function of proto * expr

	parser.ml:

	(*===---===
 * Parser
 ===---===)

(* binop_precedence - This holds the precedence for each binary operator that is
 * defined *)
let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10

(* precedence - Get the precedence of the pending binary operator token. *)
let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1

(* primary
 * ::= identifier
 * ::= numberexpr
 * ::= parenexpr *)
let rec parse_primary = parser
 (* numberexpr ::= number *)
 | [< 'Token.Number n >] -> Ast.Number n

 (* parenexpr ::= '(' expression ')' *)
 | [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e

 (* identifierexpr
 * ::= identifier
 * ::= identifier '(' argumentexpr ')' *)
 | [< 'Token.Ident id; stream >] ->
 let rec parse_args accumulator = parser
 | [< e=parse_expr; stream >] ->
 begin parser
 | [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e
 | [< >] -> e :: accumulator
 end stream
 | [< >] -> accumulator
 in
 let rec parse_ident id = parser
 (* Call. *)
 | [< 'Token.Kwd '(';
 args=parse_args [];
 'Token.Kwd ')' ?? "expected ')'">] ->
 Ast.Call (id, Array.of_list (List.rev args))

 (* Simple variable ref. *)
 | [< >] -> Ast.Variable id
 in
 parse_ident id stream

 | [< >] -> raise (Stream.Error "unknown token when expecting an expression.")

(* binoprhs
 * ::= ('+' primary)* *)
and parse_bin_rhs expr_prec lhs stream =
 match Stream.peek stream with
 (* If this is a binop, find its precedence. *)
 | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c ->
 let token_prec = precedence c in

 (* If this is a binop that binds at least as tightly as the current binop,
 * consume it, otherwise we are done. *)
 if token_prec < expr_prec then lhs else begin
 (* Eat the binop. *)
 Stream.junk stream;

 (* Parse the primary expression after the binary operator. *)
 let rhs = parse_primary stream in

 (* Okay, we know this is a binop. *)
 let rhs =
 match Stream.peek stream with
 | Some (Token.Kwd c2) ->
 (* If BinOp binds less tightly with rhs than the operator after
 * rhs, let the pending operator take rhs as its lhs. *)
 let next_prec = precedence c2 in
 if token_prec < next_prec
 then parse_bin_rhs (token_prec + 1) rhs stream
 else rhs
 | _ -> rhs
 in

 (* Merge lhs/rhs. *)
 let lhs = Ast.Binary (c, lhs, rhs) in
 parse_bin_rhs expr_prec lhs stream
 end
 | _ -> lhs

(* expression
 * ::= primary binoprhs *)
and parse_expr = parser
 | [< lhs=parse_primary; stream >] -> parse_bin_rhs 0 lhs stream

(* prototype
 * ::= id '(' id* ')' *)
let parse_prototype =
 let rec parse_args accumulator = parser
 | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e
 | [< >] -> accumulator
 in

 parser
 | [< 'Token.Ident id;
 'Token.Kwd '(' ?? "expected '(' in prototype";
 args=parse_args [];
 'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
 (* success. *)
 Ast.Prototype (id, Array.of_list (List.rev args))

 | [< >] ->
 raise (Stream.Error "expected function name in prototype")

(* definition ::= 'def' prototype expression *)
let parse_definition = parser
 | [< 'Token.Def; p=parse_prototype; e=parse_expr >] ->
 Ast.Function (p, e)

(* toplevelexpr ::= expression *)
let parse_toplevel = parser
 | [< e=parse_expr >] ->
 (* Make an anonymous proto. *)
 Ast.Function (Ast.Prototype ("", [||]), e)

(* external ::= 'extern' prototype *)
let parse_extern = parser
 | [< 'Token.Extern; e=parse_prototype >] -> e

	codegen.ml:

	(*===--===
 * Code Generation
 ===--===)

open Llvm

exception Error of string

let context = global_context ()
let the_module = create_module context "my cool jit"
let builder = builder context
let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
let double_type = double_type context

let rec codegen_expr = function
 | Ast.Number n -> const_float double_type n
 | Ast.Variable name ->
 (try Hashtbl.find named_values name with
 | Not_found -> raise (Error "unknown variable name"))
 | Ast.Binary (op, lhs, rhs) ->
 let lhs_val = codegen_expr lhs in
 let rhs_val = codegen_expr rhs in
 begin
 match op with
 | '+' -> build_add lhs_val rhs_val "addtmp" builder
 | '-' -> build_sub lhs_val rhs_val "subtmp" builder
 | '*' -> build_mul lhs_val rhs_val "multmp" builder
 | '<' ->
 (* Convert bool 0/1 to double 0.0 or 1.0 *)
 let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
 build_uitofp i double_type "booltmp" builder
 | _ -> raise (Error "invalid binary operator")
 end
 | Ast.Call (callee, args) ->
 (* Look up the name in the module table. *)
 let callee =
 match lookup_function callee the_module with
 | Some callee -> callee
 | None -> raise (Error "unknown function referenced")
 in
 let params = params callee in

 (* If argument mismatch error. *)
 if Array.length params == Array.length args then () else
 raise (Error "incorrect # arguments passed");
 let args = Array.map codegen_expr args in
 build_call callee args "calltmp" builder

let codegen_proto = function
 | Ast.Prototype (name, args) ->
 (* Make the function type: double(double,double) etc. *)
 let doubles = Array.make (Array.length args) double_type in
 let ft = function_type double_type doubles in
 let f =
 match lookup_function name the_module with
 | None -> declare_function name ft the_module

 (* If 'f' conflicted, there was already something named 'name'. If it
 * has a body, don't allow redefinition or reextern. *)
 | Some f ->
 (* If 'f' already has a body, reject this. *)
 if block_begin f <> At_end f then
 raise (Error "redefinition of function");

 (* If 'f' took a different number of arguments, reject. *)
 if element_type (type_of f) <> ft then
 raise (Error "redefinition of function with different # args");
 f
 in

 (* Set names for all arguments. *)
 Array.iteri (fun i a ->
 let n = args.(i) in
 set_value_name n a;
 Hashtbl.add named_values n a;
) (params f);
 f

let codegen_func the_fpm = function
 | Ast.Function (proto, body) ->
 Hashtbl.clear named_values;
 let the_function = codegen_proto proto in

 (* Create a new basic block to start insertion into. *)
 let bb = append_block context "entry" the_function in
 position_at_end bb builder;

 try
 let ret_val = codegen_expr body in

 (* Finish off the function. *)
 let _ = build_ret ret_val builder in

 (* Validate the generated code, checking for consistency. *)
 Llvm_analysis.assert_valid_function the_function;

 (* Optimize the function. *)
 let _ = PassManager.run_function the_function the_fpm in

 the_function
 with e ->
 delete_function the_function;
 raise e

	toplevel.ml:

	(*===--===
 * Top-Level parsing and JIT Driver
 ===--===)

open Llvm
open Llvm_executionengine

(* top ::= definition | external | expression | ';' *)
let rec main_loop the_fpm the_execution_engine stream =
 match Stream.peek stream with
 | None -> ()

 (* ignore top-level semicolons. *)
 | Some (Token.Kwd ';') ->
 Stream.junk stream;
 main_loop the_fpm the_execution_engine stream

 | Some token ->
 begin
 try match token with
 | Token.Def ->
 let e = Parser.parse_definition stream in
 print_endline "parsed a function definition.";
 dump_value (Codegen.codegen_func the_fpm e);
 | Token.Extern ->
 let e = Parser.parse_extern stream in
 print_endline "parsed an extern.";
 dump_value (Codegen.codegen_proto e);
 | _ ->
 (* Evaluate a top-level expression into an anonymous function. *)
 let e = Parser.parse_toplevel stream in
 print_endline "parsed a top-level expr";
 let the_function = Codegen.codegen_func the_fpm e in
 dump_value the_function;

 (* JIT the function, returning a function pointer. *)
 let result = ExecutionEngine.run_function the_function [||]
 the_execution_engine in

 print_string "Evaluated to ";
 print_float (GenericValue.as_float Codegen.double_type result);
 print_newline ();
 with Stream.Error s | Codegen.Error s ->
 (* Skip token for error recovery. *)
 Stream.junk stream;
 print_endline s;
 end;
 print_string "ready> "; flush stdout;
 main_loop the_fpm the_execution_engine stream

	toy.ml:

	(*===--===
 * Main driver code.
 ===--===)

open Llvm
open Llvm_executionengine
open Llvm_target
open Llvm_scalar_opts

let main () =
 ignore (initialize_native_target ());

 (* Install standard binary operators.
 * 1 is the lowest precedence. *)
 Hashtbl.add Parser.binop_precedence '<' 10;
 Hashtbl.add Parser.binop_precedence '+' 20;
 Hashtbl.add Parser.binop_precedence '-' 20;
 Hashtbl.add Parser.binop_precedence '*' 40; (* highest. *)

 (* Prime the first token. *)
 print_string "ready> "; flush stdout;
 let stream = Lexer.lex (Stream.of_channel stdin) in

 (* Create the JIT. *)
 let the_execution_engine = ExecutionEngine.create Codegen.the_module in
 let the_fpm = PassManager.create_function Codegen.the_module in

 (* Set up the optimizer pipeline. Start with registering info about how the
 * target lays out data structures. *)
 DataLayout.add (ExecutionEngine.target_data the_execution_engine) the_fpm;

 (* Do simple "peephole" optimizations and bit-twiddling optzn. *)
 add_instruction_combination the_fpm;

 (* reassociate expressions. *)
 add_reassociation the_fpm;

 (* Eliminate Common SubExpressions. *)
 add_gvn the_fpm;

 (* Simplify the control flow graph (deleting unreachable blocks, etc). *)
 add_cfg_simplification the_fpm;

 ignore (PassManager.initialize the_fpm);

 (* Run the main "interpreter loop" now. *)
 Toplevel.main_loop the_fpm the_execution_engine stream;

 (* Print out all the generated code. *)
 dump_module Codegen.the_module
;;

main ()

	bindings.c

	#include <stdio.h>

/* putchard - putchar that takes a double and returns 0. */
extern double putchard(double X) {
 putchar((char)X);
 return 0;
}

Next: Extending the language: control flow

5. Kaleidoscope: Extending the Language: Control Flow

	Chapter 5 Introduction

	If/Then/Else

	Lexer Extensions for If/Then/Else

	AST Extensions for If/Then/Else

	Parser Extensions for If/Then/Else

	LLVM IR for If/Then/Else

	Code Generation for If/Then/Else

	‘for’ Loop Expression

	Lexer Extensions for the ‘for’ Loop

	AST Extensions for the ‘for’ Loop

	Parser Extensions for the ‘for’ Loop

	LLVM IR for the ‘for’ Loop

	Code Generation for the ‘for’ Loop

	Full Code Listing

5.1. Chapter 5 Introduction

Welcome to Chapter 5 of the “Implementing a language with
LLVM” tutorial. Parts 1-4 described the implementation of
the simple Kaleidoscope language and included support for generating
LLVM IR, followed by optimizations and a JIT compiler. Unfortunately, as
presented, Kaleidoscope is mostly useless: it has no control flow other
than call and return. This means that you can’t have conditional
branches in the code, significantly limiting its power. In this episode
of “build that compiler”, we’ll extend Kaleidoscope to have an
if/then/else expression plus a simple ‘for’ loop.

5.2. If/Then/Else

Extending Kaleidoscope to support if/then/else is quite straightforward.
It basically requires adding lexer support for this “new” concept to the
lexer, parser, AST, and LLVM code emitter. This example is nice, because
it shows how easy it is to “grow” a language over time, incrementally
extending it as new ideas are discovered.

Before we get going on “how” we add this extension, lets talk about
“what” we want. The basic idea is that we want to be able to write this
sort of thing:

def fib(x)
 if x < 3 then
 1
 else
 fib(x-1)+fib(x-2);

In Kaleidoscope, every construct is an expression: there are no
statements. As such, the if/then/else expression needs to return a value
like any other. Since we’re using a mostly functional form, we’ll have
it evaluate its conditional, then return the ‘then’ or ‘else’ value
based on how the condition was resolved. This is very similar to the C
“?:” expression.

The semantics of the if/then/else expression is that it evaluates the
condition to a boolean equality value: 0.0 is considered to be false and
everything else is considered to be true. If the condition is true, the
first subexpression is evaluated and returned, if the condition is
false, the second subexpression is evaluated and returned. Since
Kaleidoscope allows side-effects, this behavior is important to nail
down.

Now that we know what we “want”, lets break this down into its
constituent pieces.

5.2.1. Lexer Extensions for If/Then/Else

The lexer extensions are straightforward. First we add new variants for
the relevant tokens:

(* control *)
| If | Then | Else | For | In

Once we have that, we recognize the new keywords in the lexer. This is
pretty simple stuff:

...
match Buffer.contents buffer with
| "def" -> [< 'Token.Def; stream >]
| "extern" -> [< 'Token.Extern; stream >]
| "if" -> [< 'Token.If; stream >]
| "then" -> [< 'Token.Then; stream >]
| "else" -> [< 'Token.Else; stream >]
| "for" -> [< 'Token.For; stream >]
| "in" -> [< 'Token.In; stream >]
| id -> [< 'Token.Ident id; stream >]

5.2.2. AST Extensions for If/Then/Else

To represent the new expression we add a new AST variant for it:

type expr =
 ...
 (* variant for if/then/else. *)
 | If of expr * expr * expr

The AST variant just has pointers to the various subexpressions.

5.2.3. Parser Extensions for If/Then/Else

Now that we have the relevant tokens coming from the lexer and we have
the AST node to build, our parsing logic is relatively straightforward.
Next we add a new case for parsing a if-expression as a primary expression:

let rec parse_primary = parser
 ...
 (* ifexpr ::= 'if' expr 'then' expr 'else' expr *)
 | [< 'Token.If; c=parse_expr;
 'Token.Then ?? "expected 'then'"; t=parse_expr;
 'Token.Else ?? "expected 'else'"; e=parse_expr >] ->
 Ast.If (c, t, e)

5.2.4. LLVM IR for If/Then/Else

Now that we have it parsing and building the AST, the final piece is
adding LLVM code generation support. This is the most interesting part
of the if/then/else example, because this is where it starts to
introduce new concepts. All of the code above has been thoroughly
described in previous chapters.

To motivate the code we want to produce, lets take a look at a simple
example. Consider:

extern foo();
extern bar();
def baz(x) if x then foo() else bar();

If you disable optimizations, the code you’ll (soon) get from
Kaleidoscope looks like this:

declare double @foo()

declare double @bar()

define double @baz(double %x) {
entry:
 %ifcond = fcmp one double %x, 0.000000e+00
 br i1 %ifcond, label %then, label %else

then: ; preds = %entry
 %calltmp = call double @foo()
 br label %ifcont

else: ; preds = %entry
 %calltmp1 = call double @bar()
 br label %ifcont

ifcont: ; preds = %else, %then
 %iftmp = phi double [%calltmp, %then], [%calltmp1, %else]
 ret double %iftmp
}

To visualize the control flow graph, you can use a nifty feature of the
LLVM ‘opt [http://llvm.org/cmds/opt.html]’ tool. If you put this LLVM
IR into “t.ll” and run “llvm-as < t.ll | opt -analyze -view-cfg”, a
window will pop up and you’ll
see this graph:

[image: Example CFG]
Example CFG

Another way to get this is to call
“Llvm_analysis.view_function_cfg f” or
“Llvm_analysis.view_function_cfg_only f” (where f is a
“Function”) either by inserting actual calls into the code and
recompiling or by calling these in the debugger. LLVM has many nice
features for visualizing various graphs.

Getting back to the generated code, it is fairly simple: the entry block
evaluates the conditional expression (“x” in our case here) and compares
the result to 0.0 with the “fcmp one” instruction (‘one’ is “Ordered
and Not Equal”). Based on the result of this expression, the code jumps
to either the “then” or “else” blocks, which contain the expressions for
the true/false cases.

Once the then/else blocks are finished executing, they both branch back
to the ‘ifcont’ block to execute the code that happens after the
if/then/else. In this case the only thing left to do is to return to the
caller of the function. The question then becomes: how does the code
know which expression to return?

The answer to this question involves an important SSA operation: the
Phi
operation [http://en.wikipedia.org/wiki/Static_single_assignment_form].
If you’re not familiar with SSA, the wikipedia
article [http://en.wikipedia.org/wiki/Static_single_assignment_form]
is a good introduction and there are various other introductions to it
available on your favorite search engine. The short version is that
“execution” of the Phi operation requires “remembering” which block
control came from. The Phi operation takes on the value corresponding to
the input control block. In this case, if control comes in from the
“then” block, it gets the value of “calltmp”. If control comes from the
“else” block, it gets the value of “calltmp1”.

At this point, you are probably starting to think “Oh no! This means my
simple and elegant front-end will have to start generating SSA form in
order to use LLVM!”. Fortunately, this is not the case, and we strongly
advise not implementing an SSA construction algorithm in your
front-end unless there is an amazingly good reason to do so. In
practice, there are two sorts of values that float around in code
written for your average imperative programming language that might need
Phi nodes:

	Code that involves user variables: x = 1; x = x + 1;

	Values that are implicit in the structure of your AST, such as the
Phi node in this case.

In Chapter 7 of this tutorial (“mutable
variables”), we’ll talk about #1 in depth. For now, just believe me that
you don’t need SSA construction to handle this case. For #2, you have
the choice of using the techniques that we will describe for #1, or you
can insert Phi nodes directly, if convenient. In this case, it is really
really easy to generate the Phi node, so we choose to do it directly.

Okay, enough of the motivation and overview, lets generate code!

5.2.5. Code Generation for If/Then/Else

In order to generate code for this, we implement the Codegen method
for IfExprAST:

let rec codegen_expr = function
 ...
 | Ast.If (cond, then_, else_) ->
 let cond = codegen_expr cond in

 (* Convert condition to a bool by comparing equal to 0.0 *)
 let zero = const_float double_type 0.0 in
 let cond_val = build_fcmp Fcmp.One cond zero "ifcond" builder in

This code is straightforward and similar to what we saw before. We emit
the expression for the condition, then compare that value to zero to get
a truth value as a 1-bit (bool) value.

(* Grab the first block so that we might later add the conditional branch
 * to it at the end of the function. *)
let start_bb = insertion_block builder in
let the_function = block_parent start_bb in

let then_bb = append_block context "then" the_function in
position_at_end then_bb builder;

As opposed to the C++ tutorial, we have to build our
basic blocks bottom up since we can’t have dangling BasicBlocks. We
start off by saving a pointer to the first block (which might not be the
entry block), which we’ll need to build a conditional branch later. We
do this by asking the builder for the current BasicBlock. The fourth
line gets the current Function object that is being built. It gets this
by the start_bb for its “parent” (the function it is currently
embedded into).

Once it has that, it creates one block. It is automatically appended
into the function’s list of blocks.

(* Emit 'then' value. *)
position_at_end then_bb builder;
let then_val = codegen_expr then_ in

(* Codegen of 'then' can change the current block, update then_bb for the
 * phi. We create a new name because one is used for the phi node, and the
 * other is used for the conditional branch. *)
let new_then_bb = insertion_block builder in

We move the builder to start inserting into the “then” block. Strictly
speaking, this call moves the insertion point to be at the end of the
specified block. However, since the “then” block is empty, it also
starts out by inserting at the beginning of the block. :)

Once the insertion point is set, we recursively codegen the “then”
expression from the AST.

The final line here is quite subtle, but is very important. The basic
issue is that when we create the Phi node in the merge block, we need to
set up the block/value pairs that indicate how the Phi will work.
Importantly, the Phi node expects to have an entry for each predecessor
of the block in the CFG. Why then, are we getting the current block when
we just set it to ThenBB 5 lines above? The problem is that the “Then”
expression may actually itself change the block that the Builder is
emitting into if, for example, it contains a nested “if/then/else”
expression. Because calling Codegen recursively could arbitrarily change
the notion of the current block, we are required to get an up-to-date
value for code that will set up the Phi node.

(* Emit 'else' value. *)
let else_bb = append_block context "else" the_function in
position_at_end else_bb builder;
let else_val = codegen_expr else_ in

(* Codegen of 'else' can change the current block, update else_bb for the
 * phi. *)
let new_else_bb = insertion_block builder in

Code generation for the ‘else’ block is basically identical to codegen
for the ‘then’ block.

(* Emit merge block. *)
let merge_bb = append_block context "ifcont" the_function in
position_at_end merge_bb builder;
let incoming = [(then_val, new_then_bb); (else_val, new_else_bb)] in
let phi = build_phi incoming "iftmp" builder in

The first two lines here are now familiar: the first adds the “merge”
block to the Function object. The second changes the insertion
point so that newly created code will go into the “merge” block. Once
that is done, we need to create the PHI node and set up the block/value
pairs for the PHI.

(* Return to the start block to add the conditional branch. *)
position_at_end start_bb builder;
ignore (build_cond_br cond_val then_bb else_bb builder);

Once the blocks are created, we can emit the conditional branch that
chooses between them. Note that creating new blocks does not implicitly
affect the IRBuilder, so it is still inserting into the block that the
condition went into. This is why we needed to save the “start” block.

(* Set a unconditional branch at the end of the 'then' block and the
 * 'else' block to the 'merge' block. *)
position_at_end new_then_bb builder; ignore (build_br merge_bb builder);
position_at_end new_else_bb builder; ignore (build_br merge_bb builder);

(* Finally, set the builder to the end of the merge block. *)
position_at_end merge_bb builder;

phi

To finish off the blocks, we create an unconditional branch to the merge
block. One interesting (and very important) aspect of the LLVM IR is
that it requires all basic blocks to be
“terminated” with a control flow
instruction such as return or branch.
This means that all control flow, including fall throughs must be made
explicit in the LLVM IR. If you violate this rule, the verifier will
emit an error.

Finally, the CodeGen function returns the phi node as the value computed
by the if/then/else expression. In our example above, this returned
value will feed into the code for the top-level function, which will
create the return instruction.

Overall, we now have the ability to execute conditional code in
Kaleidoscope. With this extension, Kaleidoscope is a fairly complete
language that can calculate a wide variety of numeric functions. Next up
we’ll add another useful expression that is familiar from non-functional
languages…

5.3. ‘for’ Loop Expression

Now that we know how to add basic control flow constructs to the
language, we have the tools to add more powerful things. Lets add
something more aggressive, a ‘for’ expression:

extern putchard(char);
def printstar(n)
 for i = 1, i < n, 1.0 in
 putchard(42); # ascii 42 = '*'

print 100 '*' characters
printstar(100);

This expression defines a new variable (“i” in this case) which iterates
from a starting value, while the condition (“i < n” in this case) is
true, incrementing by an optional step value (“1.0” in this case). If
the step value is omitted, it defaults to 1.0. While the loop is true,
it executes its body expression. Because we don’t have anything better
to return, we’ll just define the loop as always returning 0.0. In the
future when we have mutable variables, it will get more useful.

As before, lets talk about the changes that we need to Kaleidoscope to
support this.

5.3.1. Lexer Extensions for the ‘for’ Loop

The lexer extensions are the same sort of thing as for if/then/else:

... in Token.token ...
(* control *)
| If | Then | Else
| For | In

... in Lexer.lex_ident...
 match Buffer.contents buffer with
 | "def" -> [< 'Token.Def; stream >]
 | "extern" -> [< 'Token.Extern; stream >]
 | "if" -> [< 'Token.If; stream >]
 | "then" -> [< 'Token.Then; stream >]
 | "else" -> [< 'Token.Else; stream >]
 | "for" -> [< 'Token.For; stream >]
 | "in" -> [< 'Token.In; stream >]
 | id -> [< 'Token.Ident id; stream >]

5.3.2. AST Extensions for the ‘for’ Loop

The AST variant is just as simple. It basically boils down to capturing
the variable name and the constituent expressions in the node.

type expr =
 ...
 (* variant for for/in. *)
 | For of string * expr * expr * expr option * expr

5.3.3. Parser Extensions for the ‘for’ Loop

The parser code is also fairly standard. The only interesting thing here
is handling of the optional step value. The parser code handles it by
checking to see if the second comma is present. If not, it sets the step
value to null in the AST node:

let rec parse_primary = parser
 ...
 (* forexpr
 ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression *)
 | [< 'Token.For;
 'Token.Ident id ?? "expected identifier after for";
 'Token.Kwd '=' ?? "expected '=' after for";
 stream >] ->
 begin parser
 | [<
 start=parse_expr;
 'Token.Kwd ',' ?? "expected ',' after for";
 end_=parse_expr;
 stream >] ->
 let step =
 begin parser
 | [< 'Token.Kwd ','; step=parse_expr >] -> Some step
 | [< >] -> None
 end stream
 in
 begin parser
 | [< 'Token.In; body=parse_expr >] ->
 Ast.For (id, start, end_, step, body)
 | [< >] ->
 raise (Stream.Error "expected 'in' after for")
 end stream
 | [< >] ->
 raise (Stream.Error "expected '=' after for")
 end stream

5.3.4. LLVM IR for the ‘for’ Loop

Now we get to the good part: the LLVM IR we want to generate for this
thing. With the simple example above, we get this LLVM IR (note that
this dump is generated with optimizations disabled for clarity):

declare double @putchard(double)

define double @printstar(double %n) {
entry:
 ; initial value = 1.0 (inlined into phi)
 br label %loop

loop: ; preds = %loop, %entry
 %i = phi double [1.000000e+00, %entry], [%nextvar, %loop]
 ; body
 %calltmp = call double @putchard(double 4.200000e+01)
 ; increment
 %nextvar = fadd double %i, 1.000000e+00

 ; termination test
 %cmptmp = fcmp ult double %i, %n
 %booltmp = uitofp i1 %cmptmp to double
 %loopcond = fcmp one double %booltmp, 0.000000e+00
 br i1 %loopcond, label %loop, label %afterloop

afterloop: ; preds = %loop
 ; loop always returns 0.0
 ret double 0.000000e+00
}

This loop contains all the same constructs we saw before: a phi node,
several expressions, and some basic blocks. Lets see how this fits
together.

5.3.5. Code Generation for the ‘for’ Loop

The first part of Codegen is very simple: we just output the start
expression for the loop value:

let rec codegen_expr = function
 ...
 | Ast.For (var_name, start, end_, step, body) ->
 (* Emit the start code first, without 'variable' in scope. *)
 let start_val = codegen_expr start in

With this out of the way, the next step is to set up the LLVM basic
block for the start of the loop body. In the case above, the whole loop
body is one block, but remember that the body code itself could consist
of multiple blocks (e.g. if it contains an if/then/else or a for/in
expression).

(* Make the new basic block for the loop header, inserting after current
 * block. *)
let preheader_bb = insertion_block builder in
let the_function = block_parent preheader_bb in
let loop_bb = append_block context "loop" the_function in

(* Insert an explicit fall through from the current block to the
 * loop_bb. *)
ignore (build_br loop_bb builder);

This code is similar to what we saw for if/then/else. Because we will
need it to create the Phi node, we remember the block that falls through
into the loop. Once we have that, we create the actual block that starts
the loop and create an unconditional branch for the fall-through between
the two blocks.

(* Start insertion in loop_bb. *)
position_at_end loop_bb builder;

(* Start the PHI node with an entry for start. *)
let variable = build_phi [(start_val, preheader_bb)] var_name builder in

Now that the “preheader” for the loop is set up, we switch to emitting
code for the loop body. To begin with, we move the insertion point and
create the PHI node for the loop induction variable. Since we already
know the incoming value for the starting value, we add it to the Phi
node. Note that the Phi will eventually get a second value for the
backedge, but we can’t set it up yet (because it doesn’t exist!).

(* Within the loop, the variable is defined equal to the PHI node. If it
 * shadows an existing variable, we have to restore it, so save it
 * now. *)
let old_val =
 try Some (Hashtbl.find named_values var_name) with Not_found -> None
in
Hashtbl.add named_values var_name variable;

(* Emit the body of the loop. This, like any other expr, can change the
 * current BB. Note that we ignore the value computed by the body, but
 * don't allow an error *)
ignore (codegen_expr body);

Now the code starts to get more interesting. Our ‘for’ loop introduces a
new variable to the symbol table. This means that our symbol table can
now contain either function arguments or loop variables. To handle this,
before we codegen the body of the loop, we add the loop variable as the
current value for its name. Note that it is possible that there is a
variable of the same name in the outer scope. It would be easy to make
this an error (emit an error and return null if there is already an
entry for VarName) but we choose to allow shadowing of variables. In
order to handle this correctly, we remember the Value that we are
potentially shadowing in old_val (which will be None if there is no
shadowed variable).

Once the loop variable is set into the symbol table, the code
recursively codegen’s the body. This allows the body to use the loop
variable: any references to it will naturally find it in the symbol
table.

(* Emit the step value. *)
let step_val =
 match step with
 | Some step -> codegen_expr step
 (* If not specified, use 1.0. *)
 | None -> const_float double_type 1.0
in

let next_var = build_add variable step_val "nextvar" builder in

Now that the body is emitted, we compute the next value of the iteration
variable by adding the step value, or 1.0 if it isn’t present.
‘next_var’ will be the value of the loop variable on the next
iteration of the loop.

(* Compute the end condition. *)
let end_cond = codegen_expr end_ in

(* Convert condition to a bool by comparing equal to 0.0. *)
let zero = const_float double_type 0.0 in
let end_cond = build_fcmp Fcmp.One end_cond zero "loopcond" builder in

Finally, we evaluate the exit value of the loop, to determine whether
the loop should exit. This mirrors the condition evaluation for the
if/then/else statement.

(* Create the "after loop" block and insert it. *)
let loop_end_bb = insertion_block builder in
let after_bb = append_block context "afterloop" the_function in

(* Insert the conditional branch into the end of loop_end_bb. *)
ignore (build_cond_br end_cond loop_bb after_bb builder);

(* Any new code will be inserted in after_bb. *)
position_at_end after_bb builder;

With the code for the body of the loop complete, we just need to finish
up the control flow for it. This code remembers the end block (for the
phi node), then creates the block for the loop exit (“afterloop”). Based
on the value of the exit condition, it creates a conditional branch that
chooses between executing the loop again and exiting the loop. Any
future code is emitted in the “afterloop” block, so it sets the
insertion position to it.

(* Add a new entry to the PHI node for the backedge. *)
add_incoming (next_var, loop_end_bb) variable;

(* Restore the unshadowed variable. *)
begin match old_val with
| Some old_val -> Hashtbl.add named_values var_name old_val
| None -> ()
end;

(* for expr always returns 0.0. *)
const_null double_type

The final code handles various cleanups: now that we have the
“next_var” value, we can add the incoming value to the loop PHI
node. After that, we remove the loop variable from the symbol table, so
that it isn’t in scope after the for loop. Finally, code generation of
the for loop always returns 0.0, so that is what we return from
Codegen.codegen_expr.

With this, we conclude the “adding control flow to Kaleidoscope” chapter
of the tutorial. In this chapter we added two control flow constructs,
and used them to motivate a couple of aspects of the LLVM IR that are
important for front-end implementors to know. In the next chapter of our
saga, we will get a bit crazier and add user-defined
operators to our poor innocent language.

5.4. Full Code Listing

Here is the complete code listing for our running example, enhanced with
the if/then/else and for expressions.. To build this example, use:

Compile
ocamlbuild toy.byte
Run
./toy.byte

Here is the code:

	_tags:

	<{lexer,parser}.ml>: use_camlp4, pp(camlp4of)
<*.{byte,native}>: g++, use_llvm, use_llvm_analysis
<*.{byte,native}>: use_llvm_executionengine, use_llvm_target
<*.{byte,native}>: use_llvm_scalar_opts, use_bindings

	myocamlbuild.ml:

	open Ocamlbuild_plugin;;

ocaml_lib ~extern:true "llvm";;
ocaml_lib ~extern:true "llvm_analysis";;
ocaml_lib ~extern:true "llvm_executionengine";;
ocaml_lib ~extern:true "llvm_target";;
ocaml_lib ~extern:true "llvm_scalar_opts";;

flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"]);;
dep ["link"; "ocaml"; "use_bindings"] ["bindings.o"];;

	token.ml:

	(*===--===
 * Lexer Tokens
 ===--===)

(* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
 * these others for known things. *)
type token =
 (* commands *)
 | Def | Extern

 (* primary *)
 | Ident of string | Number of float

 (* unknown *)
 | Kwd of char

 (* control *)
 | If | Then | Else
 | For | In

	lexer.ml:

	(*===--===
 * Lexer
 ===--===)

let rec lex = parser
 (* Skip any whitespace. *)
 | [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream

 (* identifier: [a-zA-Z][a-zA-Z0-9] *)
 | [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] ->
 let buffer = Buffer.create 1 in
 Buffer.add_char buffer c;
 lex_ident buffer stream

 (* number: [0-9.]+ *)
 | [< ' ('0' .. '9' as c); stream >] ->
 let buffer = Buffer.create 1 in
 Buffer.add_char buffer c;
 lex_number buffer stream

 (* Comment until end of line. *)
 | [< ' ('#'); stream >] ->
 lex_comment stream

 (* Otherwise, just return the character as its ascii value. *)
 | [< 'c; stream >] ->
 [< 'Token.Kwd c; lex stream >]

 (* end of stream. *)
 | [< >] -> [< >]

and lex_number buffer = parser
 | [< ' ('0' .. '9' | '.' as c); stream >] ->
 Buffer.add_char buffer c;
 lex_number buffer stream
 | [< stream=lex >] ->
 [< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >]

and lex_ident buffer = parser
 | [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] ->
 Buffer.add_char buffer c;
 lex_ident buffer stream
 | [< stream=lex >] ->
 match Buffer.contents buffer with
 | "def" -> [< 'Token.Def; stream >]
 | "extern" -> [< 'Token.Extern; stream >]
 | "if" -> [< 'Token.If; stream >]
 | "then" -> [< 'Token.Then; stream >]
 | "else" -> [< 'Token.Else; stream >]
 | "for" -> [< 'Token.For; stream >]
 | "in" -> [< 'Token.In; stream >]
 | id -> [< 'Token.Ident id; stream >]

and lex_comment = parser
 | [< ' ('\n'); stream=lex >] -> stream
 | [< 'c; e=lex_comment >] -> e
 | [< >] -> [< >]

	ast.ml:

	(*===--===
 * Abstract Syntax Tree (aka Parse Tree)
 ===--===)

(* expr - Base type for all expression nodes. *)
type expr =
 (* variant for numeric literals like "1.0". *)
 | Number of float

 (* variant for referencing a variable, like "a". *)
 | Variable of string

 (* variant for a binary operator. *)
 | Binary of char * expr * expr

 (* variant for function calls. *)
 | Call of string * expr array

 (* variant for if/then/else. *)
 | If of expr * expr * expr

 (* variant for for/in. *)
 | For of string * expr * expr * expr option * expr

(* proto - This type represents the "prototype" for a function, which captures
 * its name, and its argument names (thus implicitly the number of arguments the
 * function takes). *)
type proto = Prototype of string * string array

(* func - This type represents a function definition itself. *)
type func = Function of proto * expr

	parser.ml:

	(*===---===
 * Parser
 ===---===)

(* binop_precedence - This holds the precedence for each binary operator that is
 * defined *)
let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10

(* precedence - Get the precedence of the pending binary operator token. *)
let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1

(* primary
 * ::= identifier
 * ::= numberexpr
 * ::= parenexpr
 * ::= ifexpr
 * ::= forexpr *)
let rec parse_primary = parser
 (* numberexpr ::= number *)
 | [< 'Token.Number n >] -> Ast.Number n

 (* parenexpr ::= '(' expression ')' *)
 | [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e

 (* identifierexpr
 * ::= identifier
 * ::= identifier '(' argumentexpr ')' *)
 | [< 'Token.Ident id; stream >] ->
 let rec parse_args accumulator = parser
 | [< e=parse_expr; stream >] ->
 begin parser
 | [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e
 | [< >] -> e :: accumulator
 end stream
 | [< >] -> accumulator
 in
 let rec parse_ident id = parser
 (* Call. *)
 | [< 'Token.Kwd '(';
 args=parse_args [];
 'Token.Kwd ')' ?? "expected ')'">] ->
 Ast.Call (id, Array.of_list (List.rev args))

 (* Simple variable ref. *)
 | [< >] -> Ast.Variable id
 in
 parse_ident id stream

 (* ifexpr ::= 'if' expr 'then' expr 'else' expr *)
 | [< 'Token.If; c=parse_expr;
 'Token.Then ?? "expected 'then'"; t=parse_expr;
 'Token.Else ?? "expected 'else'"; e=parse_expr >] ->
 Ast.If (c, t, e)

 (* forexpr
 ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression *)
 | [< 'Token.For;
 'Token.Ident id ?? "expected identifier after for";
 'Token.Kwd '=' ?? "expected '=' after for";
 stream >] ->
 begin parser
 | [<
 start=parse_expr;
 'Token.Kwd ',' ?? "expected ',' after for";
 end_=parse_expr;
 stream >] ->
 let step =
 begin parser
 | [< 'Token.Kwd ','; step=parse_expr >] -> Some step
 | [< >] -> None
 end stream
 in
 begin parser
 | [< 'Token.In; body=parse_expr >] ->
 Ast.For (id, start, end_, step, body)
 | [< >] ->
 raise (Stream.Error "expected 'in' after for")
 end stream
 | [< >] ->
 raise (Stream.Error "expected '=' after for")
 end stream

 | [< >] -> raise (Stream.Error "unknown token when expecting an expression.")

(* binoprhs
 * ::= ('+' primary)* *)
and parse_bin_rhs expr_prec lhs stream =
 match Stream.peek stream with
 (* If this is a binop, find its precedence. *)
 | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c ->
 let token_prec = precedence c in

 (* If this is a binop that binds at least as tightly as the current binop,
 * consume it, otherwise we are done. *)
 if token_prec < expr_prec then lhs else begin
 (* Eat the binop. *)
 Stream.junk stream;

 (* Parse the primary expression after the binary operator. *)
 let rhs = parse_primary stream in

 (* Okay, we know this is a binop. *)
 let rhs =
 match Stream.peek stream with
 | Some (Token.Kwd c2) ->
 (* If BinOp binds less tightly with rhs than the operator after
 * rhs, let the pending operator take rhs as its lhs. *)
 let next_prec = precedence c2 in
 if token_prec < next_prec
 then parse_bin_rhs (token_prec + 1) rhs stream
 else rhs
 | _ -> rhs
 in

 (* Merge lhs/rhs. *)
 let lhs = Ast.Binary (c, lhs, rhs) in
 parse_bin_rhs expr_prec lhs stream
 end
 | _ -> lhs

(* expression
 * ::= primary binoprhs *)
and parse_expr = parser
 | [< lhs=parse_primary; stream >] -> parse_bin_rhs 0 lhs stream

(* prototype
 * ::= id '(' id* ')' *)
let parse_prototype =
 let rec parse_args accumulator = parser
 | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e
 | [< >] -> accumulator
 in

 parser
 | [< 'Token.Ident id;
 'Token.Kwd '(' ?? "expected '(' in prototype";
 args=parse_args [];
 'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
 (* success. *)
 Ast.Prototype (id, Array.of_list (List.rev args))

 | [< >] ->
 raise (Stream.Error "expected function name in prototype")

(* definition ::= 'def' prototype expression *)
let parse_definition = parser
 | [< 'Token.Def; p=parse_prototype; e=parse_expr >] ->
 Ast.Function (p, e)

(* toplevelexpr ::= expression *)
let parse_toplevel = parser
 | [< e=parse_expr >] ->
 (* Make an anonymous proto. *)
 Ast.Function (Ast.Prototype ("", [||]), e)

(* external ::= 'extern' prototype *)
let parse_extern = parser
 | [< 'Token.Extern; e=parse_prototype >] -> e

	codegen.ml:

	(*===--===
 * Code Generation
 ===--===)

open Llvm

exception Error of string

let context = global_context ()
let the_module = create_module context "my cool jit"
let builder = builder context
let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
let double_type = double_type context

let rec codegen_expr = function
 | Ast.Number n -> const_float double_type n
 | Ast.Variable name ->
 (try Hashtbl.find named_values name with
 | Not_found -> raise (Error "unknown variable name"))
 | Ast.Binary (op, lhs, rhs) ->
 let lhs_val = codegen_expr lhs in
 let rhs_val = codegen_expr rhs in
 begin
 match op with
 | '+' -> build_add lhs_val rhs_val "addtmp" builder
 | '-' -> build_sub lhs_val rhs_val "subtmp" builder
 | '*' -> build_mul lhs_val rhs_val "multmp" builder
 | '<' ->
 (* Convert bool 0/1 to double 0.0 or 1.0 *)
 let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
 build_uitofp i double_type "booltmp" builder
 | _ -> raise (Error "invalid binary operator")
 end
 | Ast.Call (callee, args) ->
 (* Look up the name in the module table. *)
 let callee =
 match lookup_function callee the_module with
 | Some callee -> callee
 | None -> raise (Error "unknown function referenced")
 in
 let params = params callee in

 (* If argument mismatch error. *)
 if Array.length params == Array.length args then () else
 raise (Error "incorrect # arguments passed");
 let args = Array.map codegen_expr args in
 build_call callee args "calltmp" builder
 | Ast.If (cond, then_, else_) ->
 let cond = codegen_expr cond in

 (* Convert condition to a bool by comparing equal to 0.0 *)
 let zero = const_float double_type 0.0 in
 let cond_val = build_fcmp Fcmp.One cond zero "ifcond" builder in

 (* Grab the first block so that we might later add the conditional branch
 * to it at the end of the function. *)
 let start_bb = insertion_block builder in
 let the_function = block_parent start_bb in

 let then_bb = append_block context "then" the_function in

 (* Emit 'then' value. *)
 position_at_end then_bb builder;
 let then_val = codegen_expr then_ in

 (* Codegen of 'then' can change the current block, update then_bb for the
 * phi. We create a new name because one is used for the phi node, and the
 * other is used for the conditional branch. *)
 let new_then_bb = insertion_block builder in

 (* Emit 'else' value. *)
 let else_bb = append_block context "else" the_function in
 position_at_end else_bb builder;
 let else_val = codegen_expr else_ in

 (* Codegen of 'else' can change the current block, update else_bb for the
 * phi. *)
 let new_else_bb = insertion_block builder in

 (* Emit merge block. *)
 let merge_bb = append_block context "ifcont" the_function in
 position_at_end merge_bb builder;
 let incoming = [(then_val, new_then_bb); (else_val, new_else_bb)] in
 let phi = build_phi incoming "iftmp" builder in

 (* Return to the start block to add the conditional branch. *)
 position_at_end start_bb builder;
 ignore (build_cond_br cond_val then_bb else_bb builder);

 (* Set a unconditional branch at the end of the 'then' block and the
 * 'else' block to the 'merge' block. *)
 position_at_end new_then_bb builder; ignore (build_br merge_bb builder);
 position_at_end new_else_bb builder; ignore (build_br merge_bb builder);

 (* Finally, set the builder to the end of the merge block. *)
 position_at_end merge_bb builder;

 phi
 | Ast.For (var_name, start, end_, step, body) ->
 (* Emit the start code first, without 'variable' in scope. *)
 let start_val = codegen_expr start in

 (* Make the new basic block for the loop header, inserting after current
 * block. *)
 let preheader_bb = insertion_block builder in
 let the_function = block_parent preheader_bb in
 let loop_bb = append_block context "loop" the_function in

 (* Insert an explicit fall through from the current block to the
 * loop_bb. *)
 ignore (build_br loop_bb builder);

 (* Start insertion in loop_bb. *)
 position_at_end loop_bb builder;

 (* Start the PHI node with an entry for start. *)
 let variable = build_phi [(start_val, preheader_bb)] var_name builder in

 (* Within the loop, the variable is defined equal to the PHI node. If it
 * shadows an existing variable, we have to restore it, so save it
 * now. *)
 let old_val =
 try Some (Hashtbl.find named_values var_name) with Not_found -> None
 in
 Hashtbl.add named_values var_name variable;

 (* Emit the body of the loop. This, like any other expr, can change the
 * current BB. Note that we ignore the value computed by the body, but
 * don't allow an error *)
 ignore (codegen_expr body);

 (* Emit the step value. *)
 let step_val =
 match step with
 | Some step -> codegen_expr step
 (* If not specified, use 1.0. *)
 | None -> const_float double_type 1.0
 in

 let next_var = build_add variable step_val "nextvar" builder in

 (* Compute the end condition. *)
 let end_cond = codegen_expr end_ in

 (* Convert condition to a bool by comparing equal to 0.0. *)
 let zero = const_float double_type 0.0 in
 let end_cond = build_fcmp Fcmp.One end_cond zero "loopcond" builder in

 (* Create the "after loop" block and insert it. *)
 let loop_end_bb = insertion_block builder in
 let after_bb = append_block context "afterloop" the_function in

 (* Insert the conditional branch into the end of loop_end_bb. *)
 ignore (build_cond_br end_cond loop_bb after_bb builder);

 (* Any new code will be inserted in after_bb. *)
 position_at_end after_bb builder;

 (* Add a new entry to the PHI node for the backedge. *)
 add_incoming (next_var, loop_end_bb) variable;

 (* Restore the unshadowed variable. *)
 begin match old_val with
 | Some old_val -> Hashtbl.add named_values var_name old_val
 | None -> ()
 end;

 (* for expr always returns 0.0. *)
 const_null double_type

let codegen_proto = function
 | Ast.Prototype (name, args) ->
 (* Make the function type: double(double,double) etc. *)
 let doubles = Array.make (Array.length args) double_type in
 let ft = function_type double_type doubles in
 let f =
 match lookup_function name the_module with
 | None -> declare_function name ft the_module

 (* If 'f' conflicted, there was already something named 'name'. If it
 * has a body, don't allow redefinition or reextern. *)
 | Some f ->
 (* If 'f' already has a body, reject this. *)
 if block_begin f <> At_end f then
 raise (Error "redefinition of function");

 (* If 'f' took a different number of arguments, reject. *)
 if element_type (type_of f) <> ft then
 raise (Error "redefinition of function with different # args");
 f
 in

 (* Set names for all arguments. *)
 Array.iteri (fun i a ->
 let n = args.(i) in
 set_value_name n a;
 Hashtbl.add named_values n a;
) (params f);
 f

let codegen_func the_fpm = function
 | Ast.Function (proto, body) ->
 Hashtbl.clear named_values;
 let the_function = codegen_proto proto in

 (* Create a new basic block to start insertion into. *)
 let bb = append_block context "entry" the_function in
 position_at_end bb builder;

 try
 let ret_val = codegen_expr body in

 (* Finish off the function. *)
 let _ = build_ret ret_val builder in

 (* Validate the generated code, checking for consistency. *)
 Llvm_analysis.assert_valid_function the_function;

 (* Optimize the function. *)
 let _ = PassManager.run_function the_function the_fpm in

 the_function
 with e ->
 delete_function the_function;
 raise e

	toplevel.ml:

	(*===--===
 * Top-Level parsing and JIT Driver
 ===--===)

open Llvm
open Llvm_executionengine

(* top ::= definition | external | expression | ';' *)
let rec main_loop the_fpm the_execution_engine stream =
 match Stream.peek stream with
 | None -> ()

 (* ignore top-level semicolons. *)
 | Some (Token.Kwd ';') ->
 Stream.junk stream;
 main_loop the_fpm the_execution_engine stream

 | Some token ->
 begin
 try match token with
 | Token.Def ->
 let e = Parser.parse_definition stream in
 print_endline "parsed a function definition.";
 dump_value (Codegen.codegen_func the_fpm e);
 | Token.Extern ->
 let e = Parser.parse_extern stream in
 print_endline "parsed an extern.";
 dump_value (Codegen.codegen_proto e);
 | _ ->
 (* Evaluate a top-level expression into an anonymous function. *)
 let e = Parser.parse_toplevel stream in
 print_endline "parsed a top-level expr";
 let the_function = Codegen.codegen_func the_fpm e in
 dump_value the_function;

 (* JIT the function, returning a function pointer. *)
 let result = ExecutionEngine.run_function the_function [||]
 the_execution_engine in

 print_string "Evaluated to ";
 print_float (GenericValue.as_float Codegen.double_type result);
 print_newline ();
 with Stream.Error s | Codegen.Error s ->
 (* Skip token for error recovery. *)
 Stream.junk stream;
 print_endline s;
 end;
 print_string "ready> "; flush stdout;
 main_loop the_fpm the_execution_engine stream

	toy.ml:

	(*===--===
 * Main driver code.
 ===--===)

open Llvm
open Llvm_executionengine
open Llvm_target
open Llvm_scalar_opts

let main () =
 ignore (initialize_native_target ());

 (* Install standard binary operators.
 * 1 is the lowest precedence. *)
 Hashtbl.add Parser.binop_precedence '<' 10;
 Hashtbl.add Parser.binop_precedence '+' 20;
 Hashtbl.add Parser.binop_precedence '-' 20;
 Hashtbl.add Parser.binop_precedence '*' 40; (* highest. *)

 (* Prime the first token. *)
 print_string "ready> "; flush stdout;
 let stream = Lexer.lex (Stream.of_channel stdin) in

 (* Create the JIT. *)
 let the_execution_engine = ExecutionEngine.create Codegen.the_module in
 let the_fpm = PassManager.create_function Codegen.the_module in

 (* Set up the optimizer pipeline. Start with registering info about how the
 * target lays out data structures. *)
 DataLayout.add (ExecutionEngine.target_data the_execution_engine) the_fpm;

 (* Do simple "peephole" optimizations and bit-twiddling optzn. *)
 add_instruction_combination the_fpm;

 (* reassociate expressions. *)
 add_reassociation the_fpm;

 (* Eliminate Common SubExpressions. *)
 add_gvn the_fpm;

 (* Simplify the control flow graph (deleting unreachable blocks, etc). *)
 add_cfg_simplification the_fpm;

 ignore (PassManager.initialize the_fpm);

 (* Run the main "interpreter loop" now. *)
 Toplevel.main_loop the_fpm the_execution_engine stream;

 (* Print out all the generated code. *)
 dump_module Codegen.the_module
;;

main ()

	bindings.c

	#include <stdio.h>

/* putchard - putchar that takes a double and returns 0. */
extern double putchard(double X) {
 putchar((char)X);
 return 0;
}

Next: Extending the language: user-defined
operators

6. Kaleidoscope: Extending the Language: User-defined Operators

	Chapter 6 Introduction

	User-defined Operators: the Idea

	User-defined Binary Operators

	User-defined Unary Operators

	Kicking the Tires

	Full Code Listing

6.1. Chapter 6 Introduction

Welcome to Chapter 6 of the “Implementing a language with
LLVM” tutorial. At this point in our tutorial, we now
have a fully functional language that is fairly minimal, but also
useful. There is still one big problem with it, however. Our language
doesn’t have many useful operators (like division, logical negation, or
even any comparisons besides less-than).

This chapter of the tutorial takes a wild digression into adding
user-defined operators to the simple and beautiful Kaleidoscope
language. This digression now gives us a simple and ugly language in
some ways, but also a powerful one at the same time. One of the great
things about creating your own language is that you get to decide what
is good or bad. In this tutorial we’ll assume that it is okay to use
this as a way to show some interesting parsing techniques.

At the end of this tutorial, we’ll run through an example Kaleidoscope
application that renders the Mandelbrot set. This gives an
example of what you can build with Kaleidoscope and its feature set.

6.2. User-defined Operators: the Idea

The “operator overloading” that we will add to Kaleidoscope is more
general than languages like C++. In C++, you are only allowed to
redefine existing operators: you can’t programmatically change the
grammar, introduce new operators, change precedence levels, etc. In this
chapter, we will add this capability to Kaleidoscope, which will let the
user round out the set of operators that are supported.

The point of going into user-defined operators in a tutorial like this
is to show the power and flexibility of using a hand-written parser.
Thus far, the parser we have been implementing uses recursive descent
for most parts of the grammar and operator precedence parsing for the
expressions. See Chapter 2 for details. Without
using operator precedence parsing, it would be very difficult to allow
the programmer to introduce new operators into the grammar: the grammar
is dynamically extensible as the JIT runs.

The two specific features we’ll add are programmable unary operators
(right now, Kaleidoscope has no unary operators at all) as well as
binary operators. An example of this is:

Logical unary not.
def unary!(v)
 if v then
 0
 else
 1;

Define > with the same precedence as <.
def binary> 10 (LHS RHS)
 RHS < LHS;

Binary "logical or", (note that it does not "short circuit")
def binary| 5 (LHS RHS)
 if LHS then
 1
 else if RHS then
 1
 else
 0;

Define = with slightly lower precedence than relationals.
def binary= 9 (LHS RHS)
 !(LHS < RHS | LHS > RHS);

Many languages aspire to being able to implement their standard runtime
library in the language itself. In Kaleidoscope, we can implement
significant parts of the language in the library!

We will break down implementation of these features into two parts:
implementing support for user-defined binary operators and adding unary
operators.

6.3. User-defined Binary Operators

Adding support for user-defined binary operators is pretty simple with
our current framework. We’ll first add support for the unary/binary
keywords:

type token =
 ...
 (* operators *)
 | Binary | Unary

...

and lex_ident buffer = parser
 ...
 | "for" -> [< 'Token.For; stream >]
 | "in" -> [< 'Token.In; stream >]
 | "binary" -> [< 'Token.Binary; stream >]
 | "unary" -> [< 'Token.Unary; stream >]

This just adds lexer support for the unary and binary keywords, like we
did in previous chapters. One nice
thing about our current AST, is that we represent binary operators with
full generalisation by using their ASCII code as the opcode. For our
extended operators, we’ll use this same representation, so we don’t need
any new AST or parser support.

On the other hand, we have to be able to represent the definitions of
these new operators, in the “def binary| 5” part of the function
definition. In our grammar so far, the “name” for the function
definition is parsed as the “prototype” production and into the
Ast.Prototype AST node. To represent our new user-defined operators
as prototypes, we have to extend the Ast.Prototype AST node like
this:

(* proto - This type represents the "prototype" for a function, which captures
 * its name, and its argument names (thus implicitly the number of arguments the
 * function takes). *)
type proto =
 | Prototype of string * string array
 | BinOpPrototype of string * string array * int

Basically, in addition to knowing a name for the prototype, we now keep
track of whether it was an operator, and if it was, what precedence
level the operator is at. The precedence is only used for binary
operators (as you’ll see below, it just doesn’t apply for unary
operators). Now that we have a way to represent the prototype for a
user-defined operator, we need to parse it:

(* prototype
 * ::= id '(' id* ')'
 * ::= binary LETTER number? (id, id)
 * ::= unary LETTER number? (id) *)
let parse_prototype =
 let rec parse_args accumulator = parser
 | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e
 | [< >] -> accumulator
 in
 let parse_operator = parser
 | [< 'Token.Unary >] -> "unary", 1
 | [< 'Token.Binary >] -> "binary", 2
 in
 let parse_binary_precedence = parser
 | [< 'Token.Number n >] -> int_of_float n
 | [< >] -> 30
 in
 parser
 | [< 'Token.Ident id;
 'Token.Kwd '(' ?? "expected '(' in prototype";
 args=parse_args [];
 'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
 (* success. *)
 Ast.Prototype (id, Array.of_list (List.rev args))
 | [< (prefix, kind)=parse_operator;
 'Token.Kwd op ?? "expected an operator";
 (* Read the precedence if present. *)
 binary_precedence=parse_binary_precedence;
 'Token.Kwd '(' ?? "expected '(' in prototype";
 args=parse_args [];
 'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
 let name = prefix ^ (String.make 1 op) in
 let args = Array.of_list (List.rev args) in

 (* Verify right number of arguments for operator. *)
 if Array.length args != kind
 then raise (Stream.Error "invalid number of operands for operator")
 else
 if kind == 1 then
 Ast.Prototype (name, args)
 else
 Ast.BinOpPrototype (name, args, binary_precedence)
 | [< >] ->
 raise (Stream.Error "expected function name in prototype")

This is all fairly straightforward parsing code, and we have already
seen a lot of similar code in the past. One interesting part about the
code above is the couple lines that set up name for binary
operators. This builds names like “binary@” for a newly defined “@”
operator. This then takes advantage of the fact that symbol names in the
LLVM symbol table are allowed to have any character in them, including
embedded nul characters.

The next interesting thing to add, is codegen support for these binary
operators. Given our current structure, this is a simple addition of a
default case for our existing binary operator node:

let codegen_expr = function
 ...
 | Ast.Binary (op, lhs, rhs) ->
 let lhs_val = codegen_expr lhs in
 let rhs_val = codegen_expr rhs in
 begin
 match op with
 | '+' -> build_add lhs_val rhs_val "addtmp" builder
 | '-' -> build_sub lhs_val rhs_val "subtmp" builder
 | '*' -> build_mul lhs_val rhs_val "multmp" builder
 | '<' ->
 (* Convert bool 0/1 to double 0.0 or 1.0 *)
 let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
 build_uitofp i double_type "booltmp" builder
 | _ ->
 (* If it wasn't a builtin binary operator, it must be a user defined
 * one. Emit a call to it. *)
 let callee = "binary" ^ (String.make 1 op) in
 let callee =
 match lookup_function callee the_module with
 | Some callee -> callee
 | None -> raise (Error "binary operator not found!")
 in
 build_call callee [|lhs_val; rhs_val|] "binop" builder
 end

As you can see above, the new code is actually really simple. It just
does a lookup for the appropriate operator in the symbol table and
generates a function call to it. Since user-defined operators are just
built as normal functions (because the “prototype” boils down to a
function with the right name) everything falls into place.

The final piece of code we are missing, is a bit of top level magic:

let codegen_func the_fpm = function
 | Ast.Function (proto, body) ->
 Hashtbl.clear named_values;
 let the_function = codegen_proto proto in

 (* If this is an operator, install it. *)
 begin match proto with
 | Ast.BinOpPrototype (name, args, prec) ->
 let op = name.[String.length name - 1] in
 Hashtbl.add Parser.binop_precedence op prec;
 | _ -> ()
 end;

 (* Create a new basic block to start insertion into. *)
 let bb = append_block context "entry" the_function in
 position_at_end bb builder;
 ...

Basically, before codegening a function, if it is a user-defined
operator, we register it in the precedence table. This allows the binary
operator parsing logic we already have in place to handle it. Since we
are working on a fully-general operator precedence parser, this is all
we need to do to “extend the grammar”.

Now we have useful user-defined binary operators. This builds a lot on
the previous framework we built for other operators. Adding unary
operators is a bit more challenging, because we don’t have any framework
for it yet - lets see what it takes.

6.4. User-defined Unary Operators

Since we don’t currently support unary operators in the Kaleidoscope
language, we’ll need to add everything to support them. Above, we added
simple support for the ‘unary’ keyword to the lexer. In addition to
that, we need an AST node:

type expr =
 ...
 (* variant for a unary operator. *)
 | Unary of char * expr
 ...

This AST node is very simple and obvious by now. It directly mirrors the
binary operator AST node, except that it only has one child. With this,
we need to add the parsing logic. Parsing a unary operator is pretty
simple: we’ll add a new function to do it:

(* unary
 * ::= primary
 * ::= '!' unary *)
and parse_unary = parser
 (* If this is a unary operator, read it. *)
 | [< 'Token.Kwd op when op != '(' && op != ')'; operand=parse_expr >] ->
 Ast.Unary (op, operand)

 (* If the current token is not an operator, it must be a primary expr. *)
 | [< stream >] -> parse_primary stream

The grammar we add is pretty straightforward here. If we see a unary
operator when parsing a primary operator, we eat the operator as a
prefix and parse the remaining piece as another unary operator. This
allows us to handle multiple unary operators (e.g. “!!x”). Note that
unary operators can’t have ambiguous parses like binary operators can,
so there is no need for precedence information.

The problem with this function, is that we need to call ParseUnary from
somewhere. To do this, we change previous callers of ParsePrimary to
call parse_unary instead:

(* binoprhs
 * ::= ('+' primary)* *)
and parse_bin_rhs expr_prec lhs stream =
 ...
 (* Parse the unary expression after the binary operator. *)
 let rhs = parse_unary stream in
 ...

...

(* expression
 * ::= primary binoprhs *)
and parse_expr = parser
 | [< lhs=parse_unary; stream >] -> parse_bin_rhs 0 lhs stream

With these two simple changes, we are now able to parse unary operators
and build the AST for them. Next up, we need to add parser support for
prototypes, to parse the unary operator prototype. We extend the binary
operator code above with:

(* prototype
 * ::= id '(' id* ')'
 * ::= binary LETTER number? (id, id)
 * ::= unary LETTER number? (id) *)
let parse_prototype =
 let rec parse_args accumulator = parser
 | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e
 | [< >] -> accumulator
 in
 let parse_operator = parser
 | [< 'Token.Unary >] -> "unary", 1
 | [< 'Token.Binary >] -> "binary", 2
 in
 let parse_binary_precedence = parser
 | [< 'Token.Number n >] -> int_of_float n
 | [< >] -> 30
 in
 parser
 | [< 'Token.Ident id;
 'Token.Kwd '(' ?? "expected '(' in prototype";
 args=parse_args [];
 'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
 (* success. *)
 Ast.Prototype (id, Array.of_list (List.rev args))
 | [< (prefix, kind)=parse_operator;
 'Token.Kwd op ?? "expected an operator";
 (* Read the precedence if present. *)
 binary_precedence=parse_binary_precedence;
 'Token.Kwd '(' ?? "expected '(' in prototype";
 args=parse_args [];
 'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
 let name = prefix ^ (String.make 1 op) in
 let args = Array.of_list (List.rev args) in

 (* Verify right number of arguments for operator. *)
 if Array.length args != kind
 then raise (Stream.Error "invalid number of operands for operator")
 else
 if kind == 1 then
 Ast.Prototype (name, args)
 else
 Ast.BinOpPrototype (name, args, binary_precedence)
 | [< >] ->
 raise (Stream.Error "expected function name in prototype")

As with binary operators, we name unary operators with a name that
includes the operator character. This assists us at code generation
time. Speaking of, the final piece we need to add is codegen support for
unary operators. It looks like this:

let rec codegen_expr = function
 ...
 | Ast.Unary (op, operand) ->
 let operand = codegen_expr operand in
 let callee = "unary" ^ (String.make 1 op) in
 let callee =
 match lookup_function callee the_module with
 | Some callee -> callee
 | None -> raise (Error "unknown unary operator")
 in
 build_call callee [|operand|] "unop" builder

This code is similar to, but simpler than, the code for binary
operators. It is simpler primarily because it doesn’t need to handle any
predefined operators.

6.5. Kicking the Tires

It is somewhat hard to believe, but with a few simple extensions we’ve
covered in the last chapters, we have grown a real-ish language. With
this, we can do a lot of interesting things, including I/O, math, and a
bunch of other things. For example, we can now add a nice sequencing
operator (printd is defined to print out the specified value and a
newline):

ready> extern printd(x);
Read extern: declare double @printd(double)
ready> def binary : 1 (x y) 0; # Low-precedence operator that ignores operands.
..
ready> printd(123) : printd(456) : printd(789);
123.000000
456.000000
789.000000
Evaluated to 0.000000

We can also define a bunch of other “primitive” operations, such as:

Logical unary not.
def unary!(v)
 if v then
 0
 else
 1;

Unary negate.
def unary-(v)
 0-v;

Define > with the same precedence as <.
def binary> 10 (LHS RHS)
 RHS < LHS;

Binary logical or, which does not short circuit.
def binary| 5 (LHS RHS)
 if LHS then
 1
 else if RHS then
 1
 else
 0;

Binary logical and, which does not short circuit.
def binary& 6 (LHS RHS)
 if !LHS then
 0
 else
 !!RHS;

Define = with slightly lower precedence than relationals.
def binary = 9 (LHS RHS)
 !(LHS < RHS | LHS > RHS);

Given the previous if/then/else support, we can also define interesting
functions for I/O. For example, the following prints out a character
whose “density” reflects the value passed in: the lower the value, the
denser the character:

ready>

extern putchard(char)
def printdensity(d)
 if d > 8 then
 putchard(32) # ' '
 else if d > 4 then
 putchard(46) # '.'
 else if d > 2 then
 putchard(43) # '+'
 else
 putchard(42); # '*'
...
ready> printdensity(1): printdensity(2): printdensity(3) :
 printdensity(4): printdensity(5): printdensity(9): putchard(10);
*++..
Evaluated to 0.000000

Based on these simple primitive operations, we can start to define more
interesting things. For example, here’s a little function that solves
for the number of iterations it takes a function in the complex plane to
converge:

determine whether the specific location diverges.
Solve for z = z^2 + c in the complex plane.
def mandelconverger(real imag iters creal cimag)
 if iters > 255 | (real*real + imag*imag > 4) then
 iters
 else
 mandelconverger(real*real - imag*imag + creal,
 2*real*imag + cimag,
 iters+1, creal, cimag);

return the number of iterations required for the iteration to escape
def mandelconverge(real imag)
 mandelconverger(real, imag, 0, real, imag);

This “z = z2 + c” function is a beautiful little creature
that is the basis for computation of the Mandelbrot
Set [http://en.wikipedia.org/wiki/Mandelbrot_set]. Our
mandelconverge function returns the number of iterations that it
takes for a complex orbit to escape, saturating to 255. This is not a
very useful function by itself, but if you plot its value over a
two-dimensional plane, you can see the Mandelbrot set. Given that we are
limited to using putchard here, our amazing graphical output is limited,
but we can whip together something using the density plotter above:

compute and plot the mandelbrot set with the specified 2 dimensional range
info.
def mandelhelp(xmin xmax xstep ymin ymax ystep)
 for y = ymin, y < ymax, ystep in (
 (for x = xmin, x < xmax, xstep in
 printdensity(mandelconverge(x,y)))
 : putchard(10)
)

mandel - This is a convenient helper function for plotting the mandelbrot set
from the specified position with the specified Magnification.
def mandel(realstart imagstart realmag imagmag)
 mandelhelp(realstart, realstart+realmag*78, realmag,
 imagstart, imagstart+imagmag*40, imagmag);

Given this, we can try plotting out the mandelbrot set! Lets try it out:

ready> mandel(-2.3, -1.3, 0.05, 0.07);
*******************************+++++++++++*************************************
*************************+++++++++++++++++++++++*******************************
**********************+++++++++++++++++++++++++++++****************************
*******************+++++++++++++++++++++.. ...++++++++*************************
*****************++++++++++++++++++++++.... ...+++++++++***********************
***************+++++++++++++++++++++++..... ...+++++++++*********************
**************+++++++++++++++++++++++.... +++++++++********************
*************++++++++++++++++++++++...... ++++++++*******************
************+++++++++++++++++++++....... +++++++******************
***********+++++++++++++++++++.... +++++++*****************
**********+++++++++++++++++....... .+++++++****************
*********++++++++++++++........... ...+++++++***************
********++++++++++++............ ...++++++++**************
********++++++++++...++++++++**************
*******+++++++++..... .+++++++++*************
*******++++++++...... ..+++++++++*************
*******++++++....... ..+++++++++*************
*******+++++...... ..+++++++++*************
*******....+++++++++*************
*******....+++++++++*************
*******+++++...... ...+++++++++*************
*******++++++....... ..+++++++++*************
*******++++++++...... .+++++++++*************
*******+++++++++..... ..+++++++++*************
********++++++++++...++++++++**************
********++++++++++++............ ...++++++++**************
*********++++++++++++++.......... ...+++++++***************
**********++++++++++++++++........ .+++++++****************
**********++++++++++++++++++++.... +++++++****************
***********++++++++++++++++++++++....... ++++++++*****************
************+++++++++++++++++++++++...... ++++++++******************
**************+++++++++++++++++++++++.... ++++++++********************
***************+++++++++++++++++++++++..... ...+++++++++*********************
*****************++++++++++++++++++++++.... ...++++++++***********************
*******************+++++++++++++++++++++......++++++++*************************
*********************++++++++++++++++++++++.++++++++***************************
*************************+++++++++++++++++++++++*******************************
******************************+++++++++++++************************************

Evaluated to 0.000000
ready> mandel(-2, -1, 0.02, 0.04);
**************************+++
***********************++
*********************+++.
*******************+++...
*****************+++.....
***************++........
**************++...........
************+++..............
***********++........ .
**********++.............
********+++..................
*******+++++++++++++++++++++++++++++++++++++++.......................
******+++++++++++++++++++++++++++++++++++...........................
*****++++++++++++++++++++++++++++++++............................
*****++++++++++++++++++++++++++++...............................
****++++++++++++++++++++++++++......
***++++++++++++++++++++++++.........
***++++++++++++++++++++++............
**+++++++++++++++++++++..............
**+++++++++++++++++++................
*++++++++++++++++++.................
*++++++++++++++++............ ...
*++++++++++++++..............
*+++....++++................
*..........
*
*..........
*+++....++++................
*++++++++++++++..............
*++++++++++++++++............ ...
*++++++++++++++++++.................
**+++++++++++++++++++................
**+++++++++++++++++++++..............
***++++++++++++++++++++++............
***++++++++++++++++++++++++.........
****++++++++++++++++++++++++++......
*****++++++++++++++++++++++++++++...............................
*****++++++++++++++++++++++++++++++++............................
******+++++++++++++++++++++++++++++++++++...........................
*******+++++++++++++++++++++++++++++++++++++++.......................
********+++..................
Evaluated to 0.000000
ready> mandel(-0.9, -1.4, 0.02, 0.03);

**********+++++++++++++++++++++**
*+++++++++++++++++++++++++++++++++++++++***************************************
+++**********************************
++*****************************
++*************************
+++**********************
+++++++++++++++++++++++++++++++++.........++++++++++++++++++*******************
+++++++++++++++++++++++++++++++.... +++++++++++++++++++****************
+++++++++++++++++++++++++++++....... +++++++++++++++++++**************
++++++++++++++++++++++++++++........ ++++++++++++++++++++************
+++++++++++++++++++++++++++......... +++++++++++++++++++++**********
++++++++++++++++++++++++++........... ++++++++++++++++++++++********
++++++++++++++++++++++++............. ++++++++++++++++++++++******
+++++++++++++++++++++++............. +++++++++++++++++++++++****
++++++++++++++++++++++........... ++++++++++++++++++++++***
++++++++++++++++++++........... ++++++++++++++++++++++*
++++++++++++++++++............ ++++++++++++++++++++
++++++++++++++++............... ++++++++++++++++++
++++++++++++++................. ++++++++++++++++
++++++++++++.................. ++++++++++++++
+++++++++.................. +++++++++++++
++++++........ ++++++++++++
++............ ++++++++++
.............. ...++++++++++
.............. +++++++++
.............. ++++++++
............. ++++++++
........... ++++++++
......... +++++++
......... +++++++
......... +++++++
........ ...+++++++
....... ...+++++++
 +++++++
 +++++++
 +++++++
 +++++++
 +++++++
Evaluated to 0.000000
ready> ^D

At this point, you may be starting to realize that Kaleidoscope is a
real and powerful language. It may not be self-similar :), but it can be
used to plot things that are!

With this, we conclude the “adding user-defined operators” chapter of
the tutorial. We have successfully augmented our language, adding the
ability to extend the language in the library, and we have shown how
this can be used to build a simple but interesting end-user application
in Kaleidoscope. At this point, Kaleidoscope can build a variety of
applications that are functional and can call functions with
side-effects, but it can’t actually define and mutate a variable itself.

Strikingly, variable mutation is an important feature of some languages,
and it is not at all obvious how to add support for mutable
variables without having to add an “SSA
construction” phase to your front-end. In the next chapter, we will
describe how you can add variable mutation without building SSA in your
front-end.

6.6. Full Code Listing

Here is the complete code listing for our running example, enhanced with
the if/then/else and for expressions.. To build this example, use:

Compile
ocamlbuild toy.byte
Run
./toy.byte

Here is the code:

	_tags:

	<{lexer,parser}.ml>: use_camlp4, pp(camlp4of)
<*.{byte,native}>: g++, use_llvm, use_llvm_analysis
<*.{byte,native}>: use_llvm_executionengine, use_llvm_target
<*.{byte,native}>: use_llvm_scalar_opts, use_bindings

	myocamlbuild.ml:

	open Ocamlbuild_plugin;;

ocaml_lib ~extern:true "llvm";;
ocaml_lib ~extern:true "llvm_analysis";;
ocaml_lib ~extern:true "llvm_executionengine";;
ocaml_lib ~extern:true "llvm_target";;
ocaml_lib ~extern:true "llvm_scalar_opts";;

flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"; A"-cclib"; A"-rdynamic"]);;
dep ["link"; "ocaml"; "use_bindings"] ["bindings.o"];;

	token.ml:

	(*===--===
 * Lexer Tokens
 ===--===)

(* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
 * these others for known things. *)
type token =
 (* commands *)
 | Def | Extern

 (* primary *)
 | Ident of string | Number of float

 (* unknown *)
 | Kwd of char

 (* control *)
 | If | Then | Else
 | For | In

 (* operators *)
 | Binary | Unary

	lexer.ml:

	(*===--===
 * Lexer
 ===--===)

let rec lex = parser
 (* Skip any whitespace. *)
 | [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream

 (* identifier: [a-zA-Z][a-zA-Z0-9] *)
 | [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] ->
 let buffer = Buffer.create 1 in
 Buffer.add_char buffer c;
 lex_ident buffer stream

 (* number: [0-9.]+ *)
 | [< ' ('0' .. '9' as c); stream >] ->
 let buffer = Buffer.create 1 in
 Buffer.add_char buffer c;
 lex_number buffer stream

 (* Comment until end of line. *)
 | [< ' ('#'); stream >] ->
 lex_comment stream

 (* Otherwise, just return the character as its ascii value. *)
 | [< 'c; stream >] ->
 [< 'Token.Kwd c; lex stream >]

 (* end of stream. *)
 | [< >] -> [< >]

and lex_number buffer = parser
 | [< ' ('0' .. '9' | '.' as c); stream >] ->
 Buffer.add_char buffer c;
 lex_number buffer stream
 | [< stream=lex >] ->
 [< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >]

and lex_ident buffer = parser
 | [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] ->
 Buffer.add_char buffer c;
 lex_ident buffer stream
 | [< stream=lex >] ->
 match Buffer.contents buffer with
 | "def" -> [< 'Token.Def; stream >]
 | "extern" -> [< 'Token.Extern; stream >]
 | "if" -> [< 'Token.If; stream >]
 | "then" -> [< 'Token.Then; stream >]
 | "else" -> [< 'Token.Else; stream >]
 | "for" -> [< 'Token.For; stream >]
 | "in" -> [< 'Token.In; stream >]
 | "binary" -> [< 'Token.Binary; stream >]
 | "unary" -> [< 'Token.Unary; stream >]
 | id -> [< 'Token.Ident id; stream >]

and lex_comment = parser
 | [< ' ('\n'); stream=lex >] -> stream
 | [< 'c; e=lex_comment >] -> e
 | [< >] -> [< >]

	ast.ml:

	(*===--===
 * Abstract Syntax Tree (aka Parse Tree)
 ===--===)

(* expr - Base type for all expression nodes. *)
type expr =
 (* variant for numeric literals like "1.0". *)
 | Number of float

 (* variant for referencing a variable, like "a". *)
 | Variable of string

 (* variant for a unary operator. *)
 | Unary of char * expr

 (* variant for a binary operator. *)
 | Binary of char * expr * expr

 (* variant for function calls. *)
 | Call of string * expr array

 (* variant for if/then/else. *)
 | If of expr * expr * expr

 (* variant for for/in. *)
 | For of string * expr * expr * expr option * expr

(* proto - This type represents the "prototype" for a function, which captures
 * its name, and its argument names (thus implicitly the number of arguments the
 * function takes). *)
type proto =
 | Prototype of string * string array
 | BinOpPrototype of string * string array * int

(* func - This type represents a function definition itself. *)
type func = Function of proto * expr

	parser.ml:

	(*===---===
 * Parser
 ===---===)

(* binop_precedence - This holds the precedence for each binary operator that is
 * defined *)
let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10

(* precedence - Get the precedence of the pending binary operator token. *)
let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1

(* primary
 * ::= identifier
 * ::= numberexpr
 * ::= parenexpr
 * ::= ifexpr
 * ::= forexpr *)
let rec parse_primary = parser
 (* numberexpr ::= number *)
 | [< 'Token.Number n >] -> Ast.Number n

 (* parenexpr ::= '(' expression ')' *)
 | [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e

 (* identifierexpr
 * ::= identifier
 * ::= identifier '(' argumentexpr ')' *)
 | [< 'Token.Ident id; stream >] ->
 let rec parse_args accumulator = parser
 | [< e=parse_expr; stream >] ->
 begin parser
 | [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e
 | [< >] -> e :: accumulator
 end stream
 | [< >] -> accumulator
 in
 let rec parse_ident id = parser
 (* Call. *)
 | [< 'Token.Kwd '(';
 args=parse_args [];
 'Token.Kwd ')' ?? "expected ')'">] ->
 Ast.Call (id, Array.of_list (List.rev args))

 (* Simple variable ref. *)
 | [< >] -> Ast.Variable id
 in
 parse_ident id stream

 (* ifexpr ::= 'if' expr 'then' expr 'else' expr *)
 | [< 'Token.If; c=parse_expr;
 'Token.Then ?? "expected 'then'"; t=parse_expr;
 'Token.Else ?? "expected 'else'"; e=parse_expr >] ->
 Ast.If (c, t, e)

 (* forexpr
 ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression *)
 | [< 'Token.For;
 'Token.Ident id ?? "expected identifier after for";
 'Token.Kwd '=' ?? "expected '=' after for";
 stream >] ->
 begin parser
 | [<
 start=parse_expr;
 'Token.Kwd ',' ?? "expected ',' after for";
 end_=parse_expr;
 stream >] ->
 let step =
 begin parser
 | [< 'Token.Kwd ','; step=parse_expr >] -> Some step
 | [< >] -> None
 end stream
 in
 begin parser
 | [< 'Token.In; body=parse_expr >] ->
 Ast.For (id, start, end_, step, body)
 | [< >] ->
 raise (Stream.Error "expected 'in' after for")
 end stream
 | [< >] ->
 raise (Stream.Error "expected '=' after for")
 end stream

 | [< >] -> raise (Stream.Error "unknown token when expecting an expression.")

(* unary
 * ::= primary
 * ::= '!' unary *)
and parse_unary = parser
 (* If this is a unary operator, read it. *)
 | [< 'Token.Kwd op when op != '(' && op != ')'; operand=parse_expr >] ->
 Ast.Unary (op, operand)

 (* If the current token is not an operator, it must be a primary expr. *)
 | [< stream >] -> parse_primary stream

(* binoprhs
 * ::= ('+' primary)* *)
and parse_bin_rhs expr_prec lhs stream =
 match Stream.peek stream with
 (* If this is a binop, find its precedence. *)
 | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c ->
 let token_prec = precedence c in

 (* If this is a binop that binds at least as tightly as the current binop,
 * consume it, otherwise we are done. *)
 if token_prec < expr_prec then lhs else begin
 (* Eat the binop. *)
 Stream.junk stream;

 (* Parse the unary expression after the binary operator. *)
 let rhs = parse_unary stream in

 (* Okay, we know this is a binop. *)
 let rhs =
 match Stream.peek stream with
 | Some (Token.Kwd c2) ->
 (* If BinOp binds less tightly with rhs than the operator after
 * rhs, let the pending operator take rhs as its lhs. *)
 let next_prec = precedence c2 in
 if token_prec < next_prec
 then parse_bin_rhs (token_prec + 1) rhs stream
 else rhs
 | _ -> rhs
 in

 (* Merge lhs/rhs. *)
 let lhs = Ast.Binary (c, lhs, rhs) in
 parse_bin_rhs expr_prec lhs stream
 end
 | _ -> lhs

(* expression
 * ::= primary binoprhs *)
and parse_expr = parser
 | [< lhs=parse_unary; stream >] -> parse_bin_rhs 0 lhs stream

(* prototype
 * ::= id '(' id* ')'
 * ::= binary LETTER number? (id, id)
 * ::= unary LETTER number? (id) *)
let parse_prototype =
 let rec parse_args accumulator = parser
 | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e
 | [< >] -> accumulator
 in
 let parse_operator = parser
 | [< 'Token.Unary >] -> "unary", 1
 | [< 'Token.Binary >] -> "binary", 2
 in
 let parse_binary_precedence = parser
 | [< 'Token.Number n >] -> int_of_float n
 | [< >] -> 30
 in
 parser
 | [< 'Token.Ident id;
 'Token.Kwd '(' ?? "expected '(' in prototype";
 args=parse_args [];
 'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
 (* success. *)
 Ast.Prototype (id, Array.of_list (List.rev args))
 | [< (prefix, kind)=parse_operator;
 'Token.Kwd op ?? "expected an operator";
 (* Read the precedence if present. *)
 binary_precedence=parse_binary_precedence;
 'Token.Kwd '(' ?? "expected '(' in prototype";
 args=parse_args [];
 'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
 let name = prefix ^ (String.make 1 op) in
 let args = Array.of_list (List.rev args) in

 (* Verify right number of arguments for operator. *)
 if Array.length args != kind
 then raise (Stream.Error "invalid number of operands for operator")
 else
 if kind == 1 then
 Ast.Prototype (name, args)
 else
 Ast.BinOpPrototype (name, args, binary_precedence)
 | [< >] ->
 raise (Stream.Error "expected function name in prototype")

(* definition ::= 'def' prototype expression *)
let parse_definition = parser
 | [< 'Token.Def; p=parse_prototype; e=parse_expr >] ->
 Ast.Function (p, e)

(* toplevelexpr ::= expression *)
let parse_toplevel = parser
 | [< e=parse_expr >] ->
 (* Make an anonymous proto. *)
 Ast.Function (Ast.Prototype ("", [||]), e)

(* external ::= 'extern' prototype *)
let parse_extern = parser
 | [< 'Token.Extern; e=parse_prototype >] -> e

	codegen.ml:

	(*===--===
 * Code Generation
 ===--===)

open Llvm

exception Error of string

let context = global_context ()
let the_module = create_module context "my cool jit"
let builder = builder context
let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
let double_type = double_type context

let rec codegen_expr = function
 | Ast.Number n -> const_float double_type n
 | Ast.Variable name ->
 (try Hashtbl.find named_values name with
 | Not_found -> raise (Error "unknown variable name"))
 | Ast.Unary (op, operand) ->
 let operand = codegen_expr operand in
 let callee = "unary" ^ (String.make 1 op) in
 let callee =
 match lookup_function callee the_module with
 | Some callee -> callee
 | None -> raise (Error "unknown unary operator")
 in
 build_call callee [|operand|] "unop" builder
 | Ast.Binary (op, lhs, rhs) ->
 let lhs_val = codegen_expr lhs in
 let rhs_val = codegen_expr rhs in
 begin
 match op with
 | '+' -> build_add lhs_val rhs_val "addtmp" builder
 | '-' -> build_sub lhs_val rhs_val "subtmp" builder
 | '*' -> build_mul lhs_val rhs_val "multmp" builder
 | '<' ->
 (* Convert bool 0/1 to double 0.0 or 1.0 *)
 let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
 build_uitofp i double_type "booltmp" builder
 | _ ->
 (* If it wasn't a builtin binary operator, it must be a user defined
 * one. Emit a call to it. *)
 let callee = "binary" ^ (String.make 1 op) in
 let callee =
 match lookup_function callee the_module with
 | Some callee -> callee
 | None -> raise (Error "binary operator not found!")
 in
 build_call callee [|lhs_val; rhs_val|] "binop" builder
 end
 | Ast.Call (callee, args) ->
 (* Look up the name in the module table. *)
 let callee =
 match lookup_function callee the_module with
 | Some callee -> callee
 | None -> raise (Error "unknown function referenced")
 in
 let params = params callee in

 (* If argument mismatch error. *)
 if Array.length params == Array.length args then () else
 raise (Error "incorrect # arguments passed");
 let args = Array.map codegen_expr args in
 build_call callee args "calltmp" builder
 | Ast.If (cond, then_, else_) ->
 let cond = codegen_expr cond in

 (* Convert condition to a bool by comparing equal to 0.0 *)
 let zero = const_float double_type 0.0 in
 let cond_val = build_fcmp Fcmp.One cond zero "ifcond" builder in

 (* Grab the first block so that we might later add the conditional branch
 * to it at the end of the function. *)
 let start_bb = insertion_block builder in
 let the_function = block_parent start_bb in

 let then_bb = append_block context "then" the_function in

 (* Emit 'then' value. *)
 position_at_end then_bb builder;
 let then_val = codegen_expr then_ in

 (* Codegen of 'then' can change the current block, update then_bb for the
 * phi. We create a new name because one is used for the phi node, and the
 * other is used for the conditional branch. *)
 let new_then_bb = insertion_block builder in

 (* Emit 'else' value. *)
 let else_bb = append_block context "else" the_function in
 position_at_end else_bb builder;
 let else_val = codegen_expr else_ in

 (* Codegen of 'else' can change the current block, update else_bb for the
 * phi. *)
 let new_else_bb = insertion_block builder in

 (* Emit merge block. *)
 let merge_bb = append_block context "ifcont" the_function in
 position_at_end merge_bb builder;
 let incoming = [(then_val, new_then_bb); (else_val, new_else_bb)] in
 let phi = build_phi incoming "iftmp" builder in

 (* Return to the start block to add the conditional branch. *)
 position_at_end start_bb builder;
 ignore (build_cond_br cond_val then_bb else_bb builder);

 (* Set a unconditional branch at the end of the 'then' block and the
 * 'else' block to the 'merge' block. *)
 position_at_end new_then_bb builder; ignore (build_br merge_bb builder);
 position_at_end new_else_bb builder; ignore (build_br merge_bb builder);

 (* Finally, set the builder to the end of the merge block. *)
 position_at_end merge_bb builder;

 phi
 | Ast.For (var_name, start, end_, step, body) ->
 (* Emit the start code first, without 'variable' in scope. *)
 let start_val = codegen_expr start in

 (* Make the new basic block for the loop header, inserting after current
 * block. *)
 let preheader_bb = insertion_block builder in
 let the_function = block_parent preheader_bb in
 let loop_bb = append_block context "loop" the_function in

 (* Insert an explicit fall through from the current block to the
 * loop_bb. *)
 ignore (build_br loop_bb builder);

 (* Start insertion in loop_bb. *)
 position_at_end loop_bb builder;

 (* Start the PHI node with an entry for start. *)
 let variable = build_phi [(start_val, preheader_bb)] var_name builder in

 (* Within the loop, the variable is defined equal to the PHI node. If it
 * shadows an existing variable, we have to restore it, so save it
 * now. *)
 let old_val =
 try Some (Hashtbl.find named_values var_name) with Not_found -> None
 in
 Hashtbl.add named_values var_name variable;

 (* Emit the body of the loop. This, like any other expr, can change the
 * current BB. Note that we ignore the value computed by the body, but
 * don't allow an error *)
 ignore (codegen_expr body);

 (* Emit the step value. *)
 let step_val =
 match step with
 | Some step -> codegen_expr step
 (* If not specified, use 1.0. *)
 | None -> const_float double_type 1.0
 in

 let next_var = build_add variable step_val "nextvar" builder in

 (* Compute the end condition. *)
 let end_cond = codegen_expr end_ in

 (* Convert condition to a bool by comparing equal to 0.0. *)
 let zero = const_float double_type 0.0 in
 let end_cond = build_fcmp Fcmp.One end_cond zero "loopcond" builder in

 (* Create the "after loop" block and insert it. *)
 let loop_end_bb = insertion_block builder in
 let after_bb = append_block context "afterloop" the_function in

 (* Insert the conditional branch into the end of loop_end_bb. *)
 ignore (build_cond_br end_cond loop_bb after_bb builder);

 (* Any new code will be inserted in after_bb. *)
 position_at_end after_bb builder;

 (* Add a new entry to the PHI node for the backedge. *)
 add_incoming (next_var, loop_end_bb) variable;

 (* Restore the unshadowed variable. *)
 begin match old_val with
 | Some old_val -> Hashtbl.add named_values var_name old_val
 | None -> ()
 end;

 (* for expr always returns 0.0. *)
 const_null double_type

let codegen_proto = function
 | Ast.Prototype (name, args) | Ast.BinOpPrototype (name, args, _) ->
 (* Make the function type: double(double,double) etc. *)
 let doubles = Array.make (Array.length args) double_type in
 let ft = function_type double_type doubles in
 let f =
 match lookup_function name the_module with
 | None -> declare_function name ft the_module

 (* If 'f' conflicted, there was already something named 'name'. If it
 * has a body, don't allow redefinition or reextern. *)
 | Some f ->
 (* If 'f' already has a body, reject this. *)
 if block_begin f <> At_end f then
 raise (Error "redefinition of function");

 (* If 'f' took a different number of arguments, reject. *)
 if element_type (type_of f) <> ft then
 raise (Error "redefinition of function with different # args");
 f
 in

 (* Set names for all arguments. *)
 Array.iteri (fun i a ->
 let n = args.(i) in
 set_value_name n a;
 Hashtbl.add named_values n a;
) (params f);
 f

let codegen_func the_fpm = function
 | Ast.Function (proto, body) ->
 Hashtbl.clear named_values;
 let the_function = codegen_proto proto in

 (* If this is an operator, install it. *)
 begin match proto with
 | Ast.BinOpPrototype (name, args, prec) ->
 let op = name.[String.length name - 1] in
 Hashtbl.add Parser.binop_precedence op prec;
 | _ -> ()
 end;

 (* Create a new basic block to start insertion into. *)
 let bb = append_block context "entry" the_function in
 position_at_end bb builder;

 try
 let ret_val = codegen_expr body in

 (* Finish off the function. *)
 let _ = build_ret ret_val builder in

 (* Validate the generated code, checking for consistency. *)
 Llvm_analysis.assert_valid_function the_function;

 (* Optimize the function. *)
 let _ = PassManager.run_function the_function the_fpm in

 the_function
 with e ->
 delete_function the_function;
 raise e

	toplevel.ml:

	(*===--===
 * Top-Level parsing and JIT Driver
 ===--===)

open Llvm
open Llvm_executionengine

(* top ::= definition | external | expression | ';' *)
let rec main_loop the_fpm the_execution_engine stream =
 match Stream.peek stream with
 | None -> ()

 (* ignore top-level semicolons. *)
 | Some (Token.Kwd ';') ->
 Stream.junk stream;
 main_loop the_fpm the_execution_engine stream

 | Some token ->
 begin
 try match token with
 | Token.Def ->
 let e = Parser.parse_definition stream in
 print_endline "parsed a function definition.";
 dump_value (Codegen.codegen_func the_fpm e);
 | Token.Extern ->
 let e = Parser.parse_extern stream in
 print_endline "parsed an extern.";
 dump_value (Codegen.codegen_proto e);
 | _ ->
 (* Evaluate a top-level expression into an anonymous function. *)
 let e = Parser.parse_toplevel stream in
 print_endline "parsed a top-level expr";
 let the_function = Codegen.codegen_func the_fpm e in
 dump_value the_function;

 (* JIT the function, returning a function pointer. *)
 let result = ExecutionEngine.run_function the_function [||]
 the_execution_engine in

 print_string "Evaluated to ";
 print_float (GenericValue.as_float Codegen.double_type result);
 print_newline ();
 with Stream.Error s | Codegen.Error s ->
 (* Skip token for error recovery. *)
 Stream.junk stream;
 print_endline s;
 end;
 print_string "ready> "; flush stdout;
 main_loop the_fpm the_execution_engine stream

	toy.ml:

	(*===--===
 * Main driver code.
 ===--===)

open Llvm
open Llvm_executionengine
open Llvm_target
open Llvm_scalar_opts

let main () =
 ignore (initialize_native_target ());

 (* Install standard binary operators.
 * 1 is the lowest precedence. *)
 Hashtbl.add Parser.binop_precedence '<' 10;
 Hashtbl.add Parser.binop_precedence '+' 20;
 Hashtbl.add Parser.binop_precedence '-' 20;
 Hashtbl.add Parser.binop_precedence '*' 40; (* highest. *)

 (* Prime the first token. *)
 print_string "ready> "; flush stdout;
 let stream = Lexer.lex (Stream.of_channel stdin) in

 (* Create the JIT. *)
 let the_execution_engine = ExecutionEngine.create Codegen.the_module in
 let the_fpm = PassManager.create_function Codegen.the_module in

 (* Set up the optimizer pipeline. Start with registering info about how the
 * target lays out data structures. *)
 DataLayout.add (ExecutionEngine.target_data the_execution_engine) the_fpm;

 (* Do simple "peephole" optimizations and bit-twiddling optzn. *)
 add_instruction_combination the_fpm;

 (* reassociate expressions. *)
 add_reassociation the_fpm;

 (* Eliminate Common SubExpressions. *)
 add_gvn the_fpm;

 (* Simplify the control flow graph (deleting unreachable blocks, etc). *)
 add_cfg_simplification the_fpm;

 ignore (PassManager.initialize the_fpm);

 (* Run the main "interpreter loop" now. *)
 Toplevel.main_loop the_fpm the_execution_engine stream;

 (* Print out all the generated code. *)
 dump_module Codegen.the_module
;;

main ()

	bindings.c

	#include <stdio.h>

/* putchard - putchar that takes a double and returns 0. */
extern double putchard(double X) {
 putchar((char)X);
 return 0;
}

/* printd - printf that takes a double prints it as "%f\n", returning 0. */
extern double printd(double X) {
 printf("%f\n", X);
 return 0;
}

Next: Extending the language: mutable variables / SSA
construction

7. Kaleidoscope: Extending the Language: Mutable Variables

	Chapter 7 Introduction

	Why is this a hard problem?

	Memory in LLVM

	Mutable Variables in Kaleidoscope

	Adjusting Existing Variables for Mutation

	New Assignment Operator

	User-defined Local Variables

	Full Code Listing

7.1. Chapter 7 Introduction

Welcome to Chapter 7 of the “Implementing a language with
LLVM” tutorial. In chapters 1 through 6, we’ve built a
very respectable, albeit simple, functional programming
language [http://en.wikipedia.org/wiki/Functional_programming]. In our
journey, we learned some parsing techniques, how to build and represent
an AST, how to build LLVM IR, and how to optimize the resultant code as
well as JIT compile it.

While Kaleidoscope is interesting as a functional language, the fact
that it is functional makes it “too easy” to generate LLVM IR for it. In
particular, a functional language makes it very easy to build LLVM IR
directly in SSA
form [http://en.wikipedia.org/wiki/Static_single_assignment_form].
Since LLVM requires that the input code be in SSA form, this is a very
nice property and it is often unclear to newcomers how to generate code
for an imperative language with mutable variables.

The short (and happy) summary of this chapter is that there is no need
for your front-end to build SSA form: LLVM provides highly tuned and
well tested support for this, though the way it works is a bit
unexpected for some.

7.2. Why is this a hard problem?

To understand why mutable variables cause complexities in SSA
construction, consider this extremely simple C example:

int G, H;
int test(_Bool Condition) {
 int X;
 if (Condition)
 X = G;
 else
 X = H;
 return X;
}

In this case, we have the variable “X”, whose value depends on the path
executed in the program. Because there are two different possible values
for X before the return instruction, a PHI node is inserted to merge the
two values. The LLVM IR that we want for this example looks like this:

@G = weak global i32 0 ; type of @G is i32*
@H = weak global i32 0 ; type of @H is i32*

define i32 @test(i1 %Condition) {
entry:
 br i1 %Condition, label %cond_true, label %cond_false

cond_true:
 %X.0 = load i32* @G
 br label %cond_next

cond_false:
 %X.1 = load i32* @H
 br label %cond_next

cond_next:
 %X.2 = phi i32 [%X.1, %cond_false], [%X.0, %cond_true]
 ret i32 %X.2
}

In this example, the loads from the G and H global variables are
explicit in the LLVM IR, and they live in the then/else branches of the
if statement (cond_true/cond_false). In order to merge the incoming
values, the X.2 phi node in the cond_next block selects the right value
to use based on where control flow is coming from: if control flow comes
from the cond_false block, X.2 gets the value of X.1. Alternatively, if
control flow comes from cond_true, it gets the value of X.0. The intent
of this chapter is not to explain the details of SSA form. For more
information, see one of the many online
references [http://en.wikipedia.org/wiki/Static_single_assignment_form].

The question for this article is “who places the phi nodes when lowering
assignments to mutable variables?”. The issue here is that LLVM
requires that its IR be in SSA form: there is no “non-ssa” mode for
it. However, SSA construction requires non-trivial algorithms and data
structures, so it is inconvenient and wasteful for every front-end to
have to reproduce this logic.

7.3. Memory in LLVM

The ‘trick’ here is that while LLVM does require all register values to
be in SSA form, it does not require (or permit) memory objects to be in
SSA form. In the example above, note that the loads from G and H are
direct accesses to G and H: they are not renamed or versioned. This
differs from some other compiler systems, which do try to version memory
objects. In LLVM, instead of encoding dataflow analysis of memory into
the LLVM IR, it is handled with Analysis
Passes which are computed on demand.

With this in mind, the high-level idea is that we want to make a stack
variable (which lives in memory, because it is on the stack) for each
mutable object in a function. To take advantage of this trick, we need
to talk about how LLVM represents stack variables.

In LLVM, all memory accesses are explicit with load/store instructions,
and it is carefully designed not to have (or need) an “address-of”
operator. Notice how the type of the @G/@H global variables is actually
“i32*” even though the variable is defined as “i32”. What this means is
that @G defines space for an i32 in the global data area, but its
name actually refers to the address for that space. Stack variables
work the same way, except that instead of being declared with global
variable definitions, they are declared with the LLVM alloca
instruction:

define i32 @example() {
entry:
 %X = alloca i32 ; type of %X is i32*.
 ...
 %tmp = load i32* %X ; load the stack value %X from the stack.
 %tmp2 = add i32 %tmp, 1 ; increment it
 store i32 %tmp2, i32* %X ; store it back
 ...

This code shows an example of how you can declare and manipulate a stack
variable in the LLVM IR. Stack memory allocated with the alloca
instruction is fully general: you can pass the address of the stack slot
to functions, you can store it in other variables, etc. In our example
above, we could rewrite the example to use the alloca technique to avoid
using a PHI node:

@G = weak global i32 0 ; type of @G is i32*
@H = weak global i32 0 ; type of @H is i32*

define i32 @test(i1 %Condition) {
entry:
 %X = alloca i32 ; type of %X is i32*.
 br i1 %Condition, label %cond_true, label %cond_false

cond_true:
 %X.0 = load i32* @G
 store i32 %X.0, i32* %X ; Update X
 br label %cond_next

cond_false:
 %X.1 = load i32* @H
 store i32 %X.1, i32* %X ; Update X
 br label %cond_next

cond_next:
 %X.2 = load i32* %X ; Read X
 ret i32 %X.2
}

With this, we have discovered a way to handle arbitrary mutable
variables without the need to create Phi nodes at all:

	Each mutable variable becomes a stack allocation.

	Each read of the variable becomes a load from the stack.

	Each update of the variable becomes a store to the stack.

	Taking the address of a variable just uses the stack address
directly.

While this solution has solved our immediate problem, it introduced
another one: we have now apparently introduced a lot of stack traffic
for very simple and common operations, a major performance problem.
Fortunately for us, the LLVM optimizer has a highly-tuned optimization
pass named “mem2reg” that handles this case, promoting allocas like this
into SSA registers, inserting Phi nodes as appropriate. If you run this
example through the pass, for example, you’ll get:

$ llvm-as < example.ll | opt -mem2reg | llvm-dis
@G = weak global i32 0
@H = weak global i32 0

define i32 @test(i1 %Condition) {
entry:
 br i1 %Condition, label %cond_true, label %cond_false

cond_true:
 %X.0 = load i32* @G
 br label %cond_next

cond_false:
 %X.1 = load i32* @H
 br label %cond_next

cond_next:
 %X.01 = phi i32 [%X.1, %cond_false], [%X.0, %cond_true]
 ret i32 %X.01
}

The mem2reg pass implements the standard “iterated dominance frontier”
algorithm for constructing SSA form and has a number of optimizations
that speed up (very common) degenerate cases. The mem2reg optimization
pass is the answer to dealing with mutable variables, and we highly
recommend that you depend on it. Note that mem2reg only works on
variables in certain circumstances:

	mem2reg is alloca-driven: it looks for allocas and if it can handle
them, it promotes them. It does not apply to global variables or heap
allocations.

	mem2reg only looks for alloca instructions in the entry block of the
function. Being in the entry block guarantees that the alloca is only
executed once, which makes analysis simpler.

	mem2reg only promotes allocas whose uses are direct loads and stores.
If the address of the stack object is passed to a function, or if any
funny pointer arithmetic is involved, the alloca will not be
promoted.

	mem2reg only works on allocas of first
class values (such as pointers,
scalars and vectors), and only if the array size of the allocation is
1 (or missing in the .ll file). mem2reg is not capable of promoting
structs or arrays to registers. Note that the “sroa” pass is
more powerful and can promote structs, “unions”, and arrays in many
cases.

All of these properties are easy to satisfy for most imperative
languages, and we’ll illustrate it below with Kaleidoscope. The final
question you may be asking is: should I bother with this nonsense for my
front-end? Wouldn’t it be better if I just did SSA construction
directly, avoiding use of the mem2reg optimization pass? In short, we
strongly recommend that you use this technique for building SSA form,
unless there is an extremely good reason not to. Using this technique
is:

	Proven and well tested: clang uses this technique
for local mutable variables. As such, the most common clients of LLVM
are using this to handle a bulk of their variables. You can be sure
that bugs are found fast and fixed early.

	Extremely Fast: mem2reg has a number of special cases that make it
fast in common cases as well as fully general. For example, it has
fast-paths for variables that are only used in a single block,
variables that only have one assignment point, good heuristics to
avoid insertion of unneeded phi nodes, etc.

	Needed for debug info generation: Debug information in
LLVM relies on having the address of
the variable exposed so that debug info can be attached to it. This
technique dovetails very naturally with this style of debug info.

If nothing else, this makes it much easier to get your front-end up and
running, and is very simple to implement. Lets extend Kaleidoscope with
mutable variables now!

7.4. Mutable Variables in Kaleidoscope

Now that we know the sort of problem we want to tackle, lets see what
this looks like in the context of our little Kaleidoscope language.
We’re going to add two features:

	The ability to mutate variables with the ‘=’ operator.

	The ability to define new variables.

While the first item is really what this is about, we only have
variables for incoming arguments as well as for induction variables, and
redefining those only goes so far :). Also, the ability to define new
variables is a useful thing regardless of whether you will be mutating
them. Here’s a motivating example that shows how we could use these:

Define ':' for sequencing: as a low-precedence operator that ignores operands
and just returns the RHS.
def binary : 1 (x y) y;

Recursive fib, we could do this before.
def fib(x)
 if (x < 3) then
 1
 else
 fib(x-1)+fib(x-2);

Iterative fib.
def fibi(x)
 var a = 1, b = 1, c in
 (for i = 3, i < x in
 c = a + b :
 a = b :
 b = c) :
 b;

Call it.
fibi(10);

In order to mutate variables, we have to change our existing variables
to use the “alloca trick”. Once we have that, we’ll add our new
operator, then extend Kaleidoscope to support new variable definitions.

7.5. Adjusting Existing Variables for Mutation

The symbol table in Kaleidoscope is managed at code generation time by
the ‘named_values’ map. This map currently keeps track of the LLVM
“Value*” that holds the double value for the named variable. In order
to support mutation, we need to change this slightly, so that it
named_values holds the memory location of the variable in
question. Note that this change is a refactoring: it changes the
structure of the code, but does not (by itself) change the behavior of
the compiler. All of these changes are isolated in the Kaleidoscope code
generator.

At this point in Kaleidoscope’s development, it only supports variables
for two things: incoming arguments to functions and the induction
variable of ‘for’ loops. For consistency, we’ll allow mutation of these
variables in addition to other user-defined variables. This means that
these will both need memory locations.

To start our transformation of Kaleidoscope, we’ll change the
named_values map so that it maps to AllocaInst* instead of Value*.
Once we do this, the C++ compiler will tell us what parts of the code we
need to update:

Note: the ocaml bindings currently model both Value*’s and
AllocInst*’s as Llvm.llvalue’s, but this may change in the future
to be more type safe.

let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10

Also, since we will need to create these alloca’s, we’ll use a helper
function that ensures that the allocas are created in the entry block of
the function:

(* Create an alloca instruction in the entry block of the function. This
 * is used for mutable variables etc. *)
let create_entry_block_alloca the_function var_name =
 let builder = builder_at (instr_begin (entry_block the_function)) in
 build_alloca double_type var_name builder

This funny looking code creates an Llvm.llbuilder object that is
pointing at the first instruction of the entry block. It then creates an
alloca with the expected name and returns it. Because all values in
Kaleidoscope are doubles, there is no need to pass in a type to use.

With this in place, the first functionality change we want to make is to
variable references. In our new scheme, variables live on the stack, so
code generating a reference to them actually needs to produce a load
from the stack slot:

let rec codegen_expr = function
 ...
 | Ast.Variable name ->
 let v = try Hashtbl.find named_values name with
 | Not_found -> raise (Error "unknown variable name")
 in
 (* Load the value. *)
 build_load v name builder

As you can see, this is pretty straightforward. Now we need to update
the things that define the variables to set up the alloca. We’ll start
with codegen_expr Ast.For ... (see the full code listing
for the unabridged code):

| Ast.For (var_name, start, end_, step, body) ->
 let the_function = block_parent (insertion_block builder) in

 (* Create an alloca for the variable in the entry block. *)
 let alloca = create_entry_block_alloca the_function var_name in

 (* Emit the start code first, without 'variable' in scope. *)
 let start_val = codegen_expr start in

 (* Store the value into the alloca. *)
 ignore(build_store start_val alloca builder);

 ...

 (* Within the loop, the variable is defined equal to the PHI node. If it
 * shadows an existing variable, we have to restore it, so save it
 * now. *)
 let old_val =
 try Some (Hashtbl.find named_values var_name) with Not_found -> None
 in
 Hashtbl.add named_values var_name alloca;

 ...

 (* Compute the end condition. *)
 let end_cond = codegen_expr end_ in

 (* Reload, increment, and restore the alloca. This handles the case where
 * the body of the loop mutates the variable. *)
 let cur_var = build_load alloca var_name builder in
 let next_var = build_add cur_var step_val "nextvar" builder in
 ignore(build_store next_var alloca builder);
 ...

This code is virtually identical to the code before we allowed mutable
variables. The big difference is that
we no longer have to construct a PHI node, and we use load/store to
access the variable as needed.

To support mutable argument variables, we need to also make allocas for
them. The code for this is also pretty simple:

(* Create an alloca for each argument and register the argument in the symbol
 * table so that references to it will succeed. *)
let create_argument_allocas the_function proto =
 let args = match proto with
 | Ast.Prototype (_, args) | Ast.BinOpPrototype (_, args, _) -> args
 in
 Array.iteri (fun i ai ->
 let var_name = args.(i) in
 (* Create an alloca for this variable. *)
 let alloca = create_entry_block_alloca the_function var_name in

 (* Store the initial value into the alloca. *)
 ignore(build_store ai alloca builder);

 (* Add arguments to variable symbol table. *)
 Hashtbl.add named_values var_name alloca;
) (params the_function)

For each argument, we make an alloca, store the input value to the
function into the alloca, and register the alloca as the memory location
for the argument. This method gets invoked by Codegen.codegen_func
right after it sets up the entry block for the function.

The final missing piece is adding the mem2reg pass, which allows us to
get good codegen once again:

let main () =
 ...
 let the_fpm = PassManager.create_function Codegen.the_module in

 (* Set up the optimizer pipeline. Start with registering info about how the
 * target lays out data structures. *)
 DataLayout.add (ExecutionEngine.target_data the_execution_engine) the_fpm;

 (* Promote allocas to registers. *)
 add_memory_to_register_promotion the_fpm;

 (* Do simple "peephole" optimizations and bit-twiddling optzn. *)
 add_instruction_combining the_fpm;

 (* reassociate expressions. *)
 add_reassociation the_fpm;

It is interesting to see what the code looks like before and after the
mem2reg optimization runs. For example, this is the before/after code
for our recursive fib function. Before the optimization:

define double @fib(double %x) {
entry:
 %x1 = alloca double
 store double %x, double* %x1
 %x2 = load double* %x1
 %cmptmp = fcmp ult double %x2, 3.000000e+00
 %booltmp = uitofp i1 %cmptmp to double
 %ifcond = fcmp one double %booltmp, 0.000000e+00
 br i1 %ifcond, label %then, label %else

then: ; preds = %entry
 br label %ifcont

else: ; preds = %entry
 %x3 = load double* %x1
 %subtmp = fsub double %x3, 1.000000e+00
 %calltmp = call double @fib(double %subtmp)
 %x4 = load double* %x1
 %subtmp5 = fsub double %x4, 2.000000e+00
 %calltmp6 = call double @fib(double %subtmp5)
 %addtmp = fadd double %calltmp, %calltmp6
 br label %ifcont

ifcont: ; preds = %else, %then
 %iftmp = phi double [1.000000e+00, %then], [%addtmp, %else]
 ret double %iftmp
}

Here there is only one variable (x, the input argument) but you can
still see the extremely simple-minded code generation strategy we are
using. In the entry block, an alloca is created, and the initial input
value is stored into it. Each reference to the variable does a reload
from the stack. Also, note that we didn’t modify the if/then/else
expression, so it still inserts a PHI node. While we could make an
alloca for it, it is actually easier to create a PHI node for it, so we
still just make the PHI.

Here is the code after the mem2reg pass runs:

define double @fib(double %x) {
entry:
 %cmptmp = fcmp ult double %x, 3.000000e+00
 %booltmp = uitofp i1 %cmptmp to double
 %ifcond = fcmp one double %booltmp, 0.000000e+00
 br i1 %ifcond, label %then, label %else

then:
 br label %ifcont

else:
 %subtmp = fsub double %x, 1.000000e+00
 %calltmp = call double @fib(double %subtmp)
 %subtmp5 = fsub double %x, 2.000000e+00
 %calltmp6 = call double @fib(double %subtmp5)
 %addtmp = fadd double %calltmp, %calltmp6
 br label %ifcont

ifcont: ; preds = %else, %then
 %iftmp = phi double [1.000000e+00, %then], [%addtmp, %else]
 ret double %iftmp
}

This is a trivial case for mem2reg, since there are no redefinitions of
the variable. The point of showing this is to calm your tension about
inserting such blatent inefficiencies :).

After the rest of the optimizers run, we get:

define double @fib(double %x) {
entry:
 %cmptmp = fcmp ult double %x, 3.000000e+00
 %booltmp = uitofp i1 %cmptmp to double
 %ifcond = fcmp ueq double %booltmp, 0.000000e+00
 br i1 %ifcond, label %else, label %ifcont

else:
 %subtmp = fsub double %x, 1.000000e+00
 %calltmp = call double @fib(double %subtmp)
 %subtmp5 = fsub double %x, 2.000000e+00
 %calltmp6 = call double @fib(double %subtmp5)
 %addtmp = fadd double %calltmp, %calltmp6
 ret double %addtmp

ifcont:
 ret double 1.000000e+00
}

Here we see that the simplifycfg pass decided to clone the return
instruction into the end of the ‘else’ block. This allowed it to
eliminate some branches and the PHI node.

Now that all symbol table references are updated to use stack variables,
we’ll add the assignment operator.

7.6. New Assignment Operator

With our current framework, adding a new assignment operator is really
simple. We will parse it just like any other binary operator, but handle
it internally (instead of allowing the user to define it). The first
step is to set a precedence:

let main () =
 (* Install standard binary operators.
 * 1 is the lowest precedence. *)
 Hashtbl.add Parser.binop_precedence '=' 2;
 Hashtbl.add Parser.binop_precedence '<' 10;
 Hashtbl.add Parser.binop_precedence '+' 20;
 Hashtbl.add Parser.binop_precedence '-' 20;
 ...

Now that the parser knows the precedence of the binary operator, it
takes care of all the parsing and AST generation. We just need to
implement codegen for the assignment operator. This looks like:

let rec codegen_expr = function
 begin match op with
 | '=' ->
 (* Special case '=' because we don't want to emit the LHS as an
 * expression. *)
 let name =
 match lhs with
 | Ast.Variable name -> name
 | _ -> raise (Error "destination of '=' must be a variable")
 in

Unlike the rest of the binary operators, our assignment operator doesn’t
follow the “emit LHS, emit RHS, do computation” model. As such, it is
handled as a special case before the other binary operators are handled.
The other strange thing is that it requires the LHS to be a variable. It
is invalid to have “(x+1) = expr” - only things like “x = expr” are
allowed.

 (* Codegen the rhs. *)
 let val_ = codegen_expr rhs in

 (* Lookup the name. *)
 let variable = try Hashtbl.find named_values name with
 | Not_found -> raise (Error "unknown variable name")
 in
 ignore(build_store val_ variable builder);
 val_
| _ ->
 ...

Once we have the variable, codegen’ing the assignment is
straightforward: we emit the RHS of the assignment, create a store, and
return the computed value. Returning a value allows for chained
assignments like “X = (Y = Z)”.

Now that we have an assignment operator, we can mutate loop variables
and arguments. For example, we can now run code like this:

Function to print a double.
extern printd(x);

Define ':' for sequencing: as a low-precedence operator that ignores operands
and just returns the RHS.
def binary : 1 (x y) y;

def test(x)
 printd(x) :
 x = 4 :
 printd(x);

test(123);

When run, this example prints “123” and then “4”, showing that we did
actually mutate the value! Okay, we have now officially implemented our
goal: getting this to work requires SSA construction in the general
case. However, to be really useful, we want the ability to define our
own local variables, lets add this next!

7.7. User-defined Local Variables

Adding var/in is just like any other other extensions we made to
Kaleidoscope: we extend the lexer, the parser, the AST and the code
generator. The first step for adding our new ‘var/in’ construct is to
extend the lexer. As before, this is pretty trivial, the code looks like
this:

type token =
 ...
 (* var definition *)
 | Var

...

and lex_ident buffer = parser
 ...
 | "in" -> [< 'Token.In; stream >]
 | "binary" -> [< 'Token.Binary; stream >]
 | "unary" -> [< 'Token.Unary; stream >]
 | "var" -> [< 'Token.Var; stream >]
 ...

The next step is to define the AST node that we will construct. For
var/in, it looks like this:

type expr =
 ...
 (* variant for var/in. *)
 | Var of (string * expr option) array * expr
 ...

var/in allows a list of names to be defined all at once, and each name
can optionally have an initializer value. As such, we capture this
information in the VarNames vector. Also, var/in has a body, this body
is allowed to access the variables defined by the var/in.

With this in place, we can define the parser pieces. The first thing we
do is add it as a primary expression:

(* primary
 * ::= identifier
 * ::= numberexpr
 * ::= parenexpr
 * ::= ifexpr
 * ::= forexpr
 * ::= varexpr *)
let rec parse_primary = parser
 ...
 (* varexpr
 * ::= 'var' identifier ('=' expression?
 * (',' identifier ('=' expression)?)* 'in' expression *)
 | [< 'Token.Var;
 (* At least one variable name is required. *)
 'Token.Ident id ?? "expected identifier after var";
 init=parse_var_init;
 var_names=parse_var_names [(id, init)];
 (* At this point, we have to have 'in'. *)
 'Token.In ?? "expected 'in' keyword after 'var'";
 body=parse_expr >] ->
 Ast.Var (Array.of_list (List.rev var_names), body)

...

and parse_var_init = parser
 (* read in the optional initializer. *)
 | [< 'Token.Kwd '='; e=parse_expr >] -> Some e
 | [< >] -> None

and parse_var_names accumulator = parser
 | [< 'Token.Kwd ',';
 'Token.Ident id ?? "expected identifier list after var";
 init=parse_var_init;
 e=parse_var_names ((id, init) :: accumulator) >] -> e
 | [< >] -> accumulator

Now that we can parse and represent the code, we need to support
emission of LLVM IR for it. This code starts out with:

let rec codegen_expr = function
 ...
 | Ast.Var (var_names, body)
 let old_bindings = ref [] in

 let the_function = block_parent (insertion_block builder) in

 (* Register all variables and emit their initializer. *)
 Array.iter (fun (var_name, init) ->

Basically it loops over all the variables, installing them one at a
time. For each variable we put into the symbol table, we remember the
previous value that we replace in OldBindings.

 (* Emit the initializer before adding the variable to scope, this
 * prevents the initializer from referencing the variable itself, and
 * permits stuff like this:
 * var a = 1 in
 * var a = a in ... # refers to outer 'a'. *)
 let init_val =
 match init with
 | Some init -> codegen_expr init
 (* If not specified, use 0.0. *)
 | None -> const_float double_type 0.0
 in

 let alloca = create_entry_block_alloca the_function var_name in
 ignore(build_store init_val alloca builder);

 (* Remember the old variable binding so that we can restore the binding
 * when we unrecurse. *)

 begin
 try
 let old_value = Hashtbl.find named_values var_name in
 old_bindings := (var_name, old_value) :: !old_bindings;
 with Not_found > ()
 end;

 (* Remember this binding. *)
 Hashtbl.add named_values var_name alloca;
) var_names;

There are more comments here than code. The basic idea is that we emit
the initializer, create the alloca, then update the symbol table to
point to it. Once all the variables are installed in the symbol table,
we evaluate the body of the var/in expression:

(* Codegen the body, now that all vars are in scope. *)
let body_val = codegen_expr body in

Finally, before returning, we restore the previous variable bindings:

(* Pop all our variables from scope. *)
List.iter (fun (var_name, old_value) ->
 Hashtbl.add named_values var_name old_value
) !old_bindings;

(* Return the body computation. *)
body_val

The end result of all of this is that we get properly scoped variable
definitions, and we even (trivially) allow mutation of them :).

With this, we completed what we set out to do. Our nice iterative fib
example from the intro compiles and runs just fine. The mem2reg pass
optimizes all of our stack variables into SSA registers, inserting PHI
nodes where needed, and our front-end remains simple: no “iterated
dominance frontier” computation anywhere in sight.

7.8. Full Code Listing

Here is the complete code listing for our running example, enhanced with
mutable variables and var/in support. To build this example, use:

Compile
ocamlbuild toy.byte
Run
./toy.byte

Here is the code:

	_tags:

	<{lexer,parser}.ml>: use_camlp4, pp(camlp4of)
<*.{byte,native}>: g++, use_llvm, use_llvm_analysis
<*.{byte,native}>: use_llvm_executionengine, use_llvm_target
<*.{byte,native}>: use_llvm_scalar_opts, use_bindings

	myocamlbuild.ml:

	open Ocamlbuild_plugin;;

ocaml_lib ~extern:true "llvm";;
ocaml_lib ~extern:true "llvm_analysis";;
ocaml_lib ~extern:true "llvm_executionengine";;
ocaml_lib ~extern:true "llvm_target";;
ocaml_lib ~extern:true "llvm_scalar_opts";;

flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"; A"-cclib"; A"-rdynamic"]);;
dep ["link"; "ocaml"; "use_bindings"] ["bindings.o"];;

	token.ml:

	(*===--===
 * Lexer Tokens
 ===--===)

(* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
 * these others for known things. *)
type token =
 (* commands *)
 | Def | Extern

 (* primary *)
 | Ident of string | Number of float

 (* unknown *)
 | Kwd of char

 (* control *)
 | If | Then | Else
 | For | In

 (* operators *)
 | Binary | Unary

 (* var definition *)
 | Var

	lexer.ml:

	(*===--===
 * Lexer
 ===--===)

let rec lex = parser
 (* Skip any whitespace. *)
 | [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream

 (* identifier: [a-zA-Z][a-zA-Z0-9] *)
 | [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] ->
 let buffer = Buffer.create 1 in
 Buffer.add_char buffer c;
 lex_ident buffer stream

 (* number: [0-9.]+ *)
 | [< ' ('0' .. '9' as c); stream >] ->
 let buffer = Buffer.create 1 in
 Buffer.add_char buffer c;
 lex_number buffer stream

 (* Comment until end of line. *)
 | [< ' ('#'); stream >] ->
 lex_comment stream

 (* Otherwise, just return the character as its ascii value. *)
 | [< 'c; stream >] ->
 [< 'Token.Kwd c; lex stream >]

 (* end of stream. *)
 | [< >] -> [< >]

and lex_number buffer = parser
 | [< ' ('0' .. '9' | '.' as c); stream >] ->
 Buffer.add_char buffer c;
 lex_number buffer stream
 | [< stream=lex >] ->
 [< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >]

and lex_ident buffer = parser
 | [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] ->
 Buffer.add_char buffer c;
 lex_ident buffer stream
 | [< stream=lex >] ->
 match Buffer.contents buffer with
 | "def" -> [< 'Token.Def; stream >]
 | "extern" -> [< 'Token.Extern; stream >]
 | "if" -> [< 'Token.If; stream >]
 | "then" -> [< 'Token.Then; stream >]
 | "else" -> [< 'Token.Else; stream >]
 | "for" -> [< 'Token.For; stream >]
 | "in" -> [< 'Token.In; stream >]
 | "binary" -> [< 'Token.Binary; stream >]
 | "unary" -> [< 'Token.Unary; stream >]
 | "var" -> [< 'Token.Var; stream >]
 | id -> [< 'Token.Ident id; stream >]

and lex_comment = parser
 | [< ' ('\n'); stream=lex >] -> stream
 | [< 'c; e=lex_comment >] -> e
 | [< >] -> [< >]

	ast.ml:

	(*===--===
 * Abstract Syntax Tree (aka Parse Tree)
 ===--===)

(* expr - Base type for all expression nodes. *)
type expr =
 (* variant for numeric literals like "1.0". *)
 | Number of float

 (* variant for referencing a variable, like "a". *)
 | Variable of string

 (* variant for a unary operator. *)
 | Unary of char * expr

 (* variant for a binary operator. *)
 | Binary of char * expr * expr

 (* variant for function calls. *)
 | Call of string * expr array

 (* variant for if/then/else. *)
 | If of expr * expr * expr

 (* variant for for/in. *)
 | For of string * expr * expr * expr option * expr

 (* variant for var/in. *)
 | Var of (string * expr option) array * expr

(* proto - This type represents the "prototype" for a function, which captures
 * its name, and its argument names (thus implicitly the number of arguments the
 * function takes). *)
type proto =
 | Prototype of string * string array
 | BinOpPrototype of string * string array * int

(* func - This type represents a function definition itself. *)
type func = Function of proto * expr

	parser.ml:

	(*===---===
 * Parser
 ===---===)

(* binop_precedence - This holds the precedence for each binary operator that is
 * defined *)
let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10

(* precedence - Get the precedence of the pending binary operator token. *)
let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1

(* primary
 * ::= identifier
 * ::= numberexpr
 * ::= parenexpr
 * ::= ifexpr
 * ::= forexpr
 * ::= varexpr *)
let rec parse_primary = parser
 (* numberexpr ::= number *)
 | [< 'Token.Number n >] -> Ast.Number n

 (* parenexpr ::= '(' expression ')' *)
 | [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e

 (* identifierexpr
 * ::= identifier
 * ::= identifier '(' argumentexpr ')' *)
 | [< 'Token.Ident id; stream >] ->
 let rec parse_args accumulator = parser
 | [< e=parse_expr; stream >] ->
 begin parser
 | [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e
 | [< >] -> e :: accumulator
 end stream
 | [< >] -> accumulator
 in
 let rec parse_ident id = parser
 (* Call. *)
 | [< 'Token.Kwd '(';
 args=parse_args [];
 'Token.Kwd ')' ?? "expected ')'">] ->
 Ast.Call (id, Array.of_list (List.rev args))

 (* Simple variable ref. *)
 | [< >] -> Ast.Variable id
 in
 parse_ident id stream

 (* ifexpr ::= 'if' expr 'then' expr 'else' expr *)
 | [< 'Token.If; c=parse_expr;
 'Token.Then ?? "expected 'then'"; t=parse_expr;
 'Token.Else ?? "expected 'else'"; e=parse_expr >] ->
 Ast.If (c, t, e)

 (* forexpr
 ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression *)
 | [< 'Token.For;
 'Token.Ident id ?? "expected identifier after for";
 'Token.Kwd '=' ?? "expected '=' after for";
 stream >] ->
 begin parser
 | [<
 start=parse_expr;
 'Token.Kwd ',' ?? "expected ',' after for";
 end_=parse_expr;
 stream >] ->
 let step =
 begin parser
 | [< 'Token.Kwd ','; step=parse_expr >] -> Some step
 | [< >] -> None
 end stream
 in
 begin parser
 | [< 'Token.In; body=parse_expr >] ->
 Ast.For (id, start, end_, step, body)
 | [< >] ->
 raise (Stream.Error "expected 'in' after for")
 end stream
 | [< >] ->
 raise (Stream.Error "expected '=' after for")
 end stream

 (* varexpr
 * ::= 'var' identifier ('=' expression?
 * (',' identifier ('=' expression)?)* 'in' expression *)
 | [< 'Token.Var;
 (* At least one variable name is required. *)
 'Token.Ident id ?? "expected identifier after var";
 init=parse_var_init;
 var_names=parse_var_names [(id, init)];
 (* At this point, we have to have 'in'. *)
 'Token.In ?? "expected 'in' keyword after 'var'";
 body=parse_expr >] ->
 Ast.Var (Array.of_list (List.rev var_names), body)

 | [< >] -> raise (Stream.Error "unknown token when expecting an expression.")

(* unary
 * ::= primary
 * ::= '!' unary *)
and parse_unary = parser
 (* If this is a unary operator, read it. *)
 | [< 'Token.Kwd op when op != '(' && op != ')'; operand=parse_expr >] ->
 Ast.Unary (op, operand)

 (* If the current token is not an operator, it must be a primary expr. *)
 | [< stream >] -> parse_primary stream

(* binoprhs
 * ::= ('+' primary)* *)
and parse_bin_rhs expr_prec lhs stream =
 match Stream.peek stream with
 (* If this is a binop, find its precedence. *)
 | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c ->
 let token_prec = precedence c in

 (* If this is a binop that binds at least as tightly as the current binop,
 * consume it, otherwise we are done. *)
 if token_prec < expr_prec then lhs else begin
 (* Eat the binop. *)
 Stream.junk stream;

 (* Parse the primary expression after the binary operator. *)
 let rhs = parse_unary stream in

 (* Okay, we know this is a binop. *)
 let rhs =
 match Stream.peek stream with
 | Some (Token.Kwd c2) ->
 (* If BinOp binds less tightly with rhs than the operator after
 * rhs, let the pending operator take rhs as its lhs. *)
 let next_prec = precedence c2 in
 if token_prec < next_prec
 then parse_bin_rhs (token_prec + 1) rhs stream
 else rhs
 | _ -> rhs
 in

 (* Merge lhs/rhs. *)
 let lhs = Ast.Binary (c, lhs, rhs) in
 parse_bin_rhs expr_prec lhs stream
 end
 | _ -> lhs

and parse_var_init = parser
 (* read in the optional initializer. *)
 | [< 'Token.Kwd '='; e=parse_expr >] -> Some e
 | [< >] -> None

and parse_var_names accumulator = parser
 | [< 'Token.Kwd ',';
 'Token.Ident id ?? "expected identifier list after var";
 init=parse_var_init;
 e=parse_var_names ((id, init) :: accumulator) >] -> e
 | [< >] -> accumulator

(* expression
 * ::= primary binoprhs *)
and parse_expr = parser
 | [< lhs=parse_unary; stream >] -> parse_bin_rhs 0 lhs stream

(* prototype
 * ::= id '(' id* ')'
 * ::= binary LETTER number? (id, id)
 * ::= unary LETTER number? (id) *)
let parse_prototype =
 let rec parse_args accumulator = parser
 | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e
 | [< >] -> accumulator
 in
 let parse_operator = parser
 | [< 'Token.Unary >] -> "unary", 1
 | [< 'Token.Binary >] -> "binary", 2
 in
 let parse_binary_precedence = parser
 | [< 'Token.Number n >] -> int_of_float n
 | [< >] -> 30
 in
 parser
 | [< 'Token.Ident id;
 'Token.Kwd '(' ?? "expected '(' in prototype";
 args=parse_args [];
 'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
 (* success. *)
 Ast.Prototype (id, Array.of_list (List.rev args))
 | [< (prefix, kind)=parse_operator;
 'Token.Kwd op ?? "expected an operator";
 (* Read the precedence if present. *)
 binary_precedence=parse_binary_precedence;
 'Token.Kwd '(' ?? "expected '(' in prototype";
 args=parse_args [];
 'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
 let name = prefix ^ (String.make 1 op) in
 let args = Array.of_list (List.rev args) in

 (* Verify right number of arguments for operator. *)
 if Array.length args != kind
 then raise (Stream.Error "invalid number of operands for operator")
 else
 if kind == 1 then
 Ast.Prototype (name, args)
 else
 Ast.BinOpPrototype (name, args, binary_precedence)
 | [< >] ->
 raise (Stream.Error "expected function name in prototype")

(* definition ::= 'def' prototype expression *)
let parse_definition = parser
 | [< 'Token.Def; p=parse_prototype; e=parse_expr >] ->
 Ast.Function (p, e)

(* toplevelexpr ::= expression *)
let parse_toplevel = parser
 | [< e=parse_expr >] ->
 (* Make an anonymous proto. *)
 Ast.Function (Ast.Prototype ("", [||]), e)

(* external ::= 'extern' prototype *)
let parse_extern = parser
 | [< 'Token.Extern; e=parse_prototype >] -> e

	codegen.ml:

	(*===--===
 * Code Generation
 ===--===)

open Llvm

exception Error of string

let context = global_context ()
let the_module = create_module context "my cool jit"
let builder = builder context
let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
let double_type = double_type context

(* Create an alloca instruction in the entry block of the function. This
 * is used for mutable variables etc. *)
let create_entry_block_alloca the_function var_name =
 let builder = builder_at context (instr_begin (entry_block the_function)) in
 build_alloca double_type var_name builder

let rec codegen_expr = function
 | Ast.Number n -> const_float double_type n
 | Ast.Variable name ->
 let v = try Hashtbl.find named_values name with
 | Not_found -> raise (Error "unknown variable name")
 in
 (* Load the value. *)
 build_load v name builder
 | Ast.Unary (op, operand) ->
 let operand = codegen_expr operand in
 let callee = "unary" ^ (String.make 1 op) in
 let callee =
 match lookup_function callee the_module with
 | Some callee -> callee
 | None -> raise (Error "unknown unary operator")
 in
 build_call callee [|operand|] "unop" builder
 | Ast.Binary (op, lhs, rhs) ->
 begin match op with
 | '=' ->
 (* Special case '=' because we don't want to emit the LHS as an
 * expression. *)
 let name =
 match lhs with
 | Ast.Variable name -> name
 | _ -> raise (Error "destination of '=' must be a variable")
 in

 (* Codegen the rhs. *)
 let val_ = codegen_expr rhs in

 (* Lookup the name. *)
 let variable = try Hashtbl.find named_values name with
 | Not_found -> raise (Error "unknown variable name")
 in
 ignore(build_store val_ variable builder);
 val_
 | _ ->
 let lhs_val = codegen_expr lhs in
 let rhs_val = codegen_expr rhs in
 begin
 match op with
 | '+' -> build_add lhs_val rhs_val "addtmp" builder
 | '-' -> build_sub lhs_val rhs_val "subtmp" builder
 | '*' -> build_mul lhs_val rhs_val "multmp" builder
 | '<' ->
 (* Convert bool 0/1 to double 0.0 or 1.0 *)
 let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
 build_uitofp i double_type "booltmp" builder
 | _ ->
 (* If it wasn't a builtin binary operator, it must be a user defined
 * one. Emit a call to it. *)
 let callee = "binary" ^ (String.make 1 op) in
 let callee =
 match lookup_function callee the_module with
 | Some callee -> callee
 | None -> raise (Error "binary operator not found!")
 in
 build_call callee [|lhs_val; rhs_val|] "binop" builder
 end
 end
 | Ast.Call (callee, args) ->
 (* Look up the name in the module table. *)
 let callee =
 match lookup_function callee the_module with
 | Some callee -> callee
 | None -> raise (Error "unknown function referenced")
 in
 let params = params callee in

 (* If argument mismatch error. *)
 if Array.length params == Array.length args then () else
 raise (Error "incorrect # arguments passed");
 let args = Array.map codegen_expr args in
 build_call callee args "calltmp" builder
 | Ast.If (cond, then_, else_) ->
 let cond = codegen_expr cond in

 (* Convert condition to a bool by comparing equal to 0.0 *)
 let zero = const_float double_type 0.0 in
 let cond_val = build_fcmp Fcmp.One cond zero "ifcond" builder in

 (* Grab the first block so that we might later add the conditional branch
 * to it at the end of the function. *)
 let start_bb = insertion_block builder in
 let the_function = block_parent start_bb in

 let then_bb = append_block context "then" the_function in

 (* Emit 'then' value. *)
 position_at_end then_bb builder;
 let then_val = codegen_expr then_ in

 (* Codegen of 'then' can change the current block, update then_bb for the
 * phi. We create a new name because one is used for the phi node, and the
 * other is used for the conditional branch. *)
 let new_then_bb = insertion_block builder in

 (* Emit 'else' value. *)
 let else_bb = append_block context "else" the_function in
 position_at_end else_bb builder;
 let else_val = codegen_expr else_ in

 (* Codegen of 'else' can change the current block, update else_bb for the
 * phi. *)
 let new_else_bb = insertion_block builder in

 (* Emit merge block. *)
 let merge_bb = append_block context "ifcont" the_function in
 position_at_end merge_bb builder;
 let incoming = [(then_val, new_then_bb); (else_val, new_else_bb)] in
 let phi = build_phi incoming "iftmp" builder in

 (* Return to the start block to add the conditional branch. *)
 position_at_end start_bb builder;
 ignore (build_cond_br cond_val then_bb else_bb builder);

 (* Set a unconditional branch at the end of the 'then' block and the
 * 'else' block to the 'merge' block. *)
 position_at_end new_then_bb builder; ignore (build_br merge_bb builder);
 position_at_end new_else_bb builder; ignore (build_br merge_bb builder);

 (* Finally, set the builder to the end of the merge block. *)
 position_at_end merge_bb builder;

 phi
 | Ast.For (var_name, start, end_, step, body) ->
 (* Output this as:
 * var = alloca double
 * ...
 * start = startexpr
 * store start -> var
 * goto loop
 * loop:
 * ...
 * bodyexpr
 * ...
 * loopend:
 * step = stepexpr
 * endcond = endexpr
 *
 * curvar = load var
 * nextvar = curvar + step
 * store nextvar -> var
 * br endcond, loop, endloop
 * outloop: *)

 let the_function = block_parent (insertion_block builder) in

 (* Create an alloca for the variable in the entry block. *)
 let alloca = create_entry_block_alloca the_function var_name in

 (* Emit the start code first, without 'variable' in scope. *)
 let start_val = codegen_expr start in

 (* Store the value into the alloca. *)
 ignore(build_store start_val alloca builder);

 (* Make the new basic block for the loop header, inserting after current
 * block. *)
 let loop_bb = append_block context "loop" the_function in

 (* Insert an explicit fall through from the current block to the
 * loop_bb. *)
 ignore (build_br loop_bb builder);

 (* Start insertion in loop_bb. *)
 position_at_end loop_bb builder;

 (* Within the loop, the variable is defined equal to the PHI node. If it
 * shadows an existing variable, we have to restore it, so save it
 * now. *)
 let old_val =
 try Some (Hashtbl.find named_values var_name) with Not_found -> None
 in
 Hashtbl.add named_values var_name alloca;

 (* Emit the body of the loop. This, like any other expr, can change the
 * current BB. Note that we ignore the value computed by the body, but
 * don't allow an error *)
 ignore (codegen_expr body);

 (* Emit the step value. *)
 let step_val =
 match step with
 | Some step -> codegen_expr step
 (* If not specified, use 1.0. *)
 | None -> const_float double_type 1.0
 in

 (* Compute the end condition. *)
 let end_cond = codegen_expr end_ in

 (* Reload, increment, and restore the alloca. This handles the case where
 * the body of the loop mutates the variable. *)
 let cur_var = build_load alloca var_name builder in
 let next_var = build_add cur_var step_val "nextvar" builder in
 ignore(build_store next_var alloca builder);

 (* Convert condition to a bool by comparing equal to 0.0. *)
 let zero = const_float double_type 0.0 in
 let end_cond = build_fcmp Fcmp.One end_cond zero "loopcond" builder in

 (* Create the "after loop" block and insert it. *)
 let after_bb = append_block context "afterloop" the_function in

 (* Insert the conditional branch into the end of loop_end_bb. *)
 ignore (build_cond_br end_cond loop_bb after_bb builder);

 (* Any new code will be inserted in after_bb. *)
 position_at_end after_bb builder;

 (* Restore the unshadowed variable. *)
 begin match old_val with
 | Some old_val -> Hashtbl.add named_values var_name old_val
 | None -> ()
 end;

 (* for expr always returns 0.0. *)
 const_null double_type
 | Ast.Var (var_names, body) ->
 let old_bindings = ref [] in

 let the_function = block_parent (insertion_block builder) in

 (* Register all variables and emit their initializer. *)
 Array.iter (fun (var_name, init) ->
 (* Emit the initializer before adding the variable to scope, this
 * prevents the initializer from referencing the variable itself, and
 * permits stuff like this:
 * var a = 1 in
 * var a = a in ... # refers to outer 'a'. *)
 let init_val =
 match init with
 | Some init -> codegen_expr init
 (* If not specified, use 0.0. *)
 | None -> const_float double_type 0.0
 in

 let alloca = create_entry_block_alloca the_function var_name in
 ignore(build_store init_val alloca builder);

 (* Remember the old variable binding so that we can restore the binding
 * when we unrecurse. *)
 begin
 try
 let old_value = Hashtbl.find named_values var_name in
 old_bindings := (var_name, old_value) :: !old_bindings;
 with Not_found -> ()
 end;

 (* Remember this binding. *)
 Hashtbl.add named_values var_name alloca;
) var_names;

 (* Codegen the body, now that all vars are in scope. *)
 let body_val = codegen_expr body in

 (* Pop all our variables from scope. *)
 List.iter (fun (var_name, old_value) ->
 Hashtbl.add named_values var_name old_value
) !old_bindings;

 (* Return the body computation. *)
 body_val

let codegen_proto = function
 | Ast.Prototype (name, args) | Ast.BinOpPrototype (name, args, _) ->
 (* Make the function type: double(double,double) etc. *)
 let doubles = Array.make (Array.length args) double_type in
 let ft = function_type double_type doubles in
 let f =
 match lookup_function name the_module with
 | None -> declare_function name ft the_module

 (* If 'f' conflicted, there was already something named 'name'. If it
 * has a body, don't allow redefinition or reextern. *)
 | Some f ->
 (* If 'f' already has a body, reject this. *)
 if block_begin f <> At_end f then
 raise (Error "redefinition of function");

 (* If 'f' took a different number of arguments, reject. *)
 if element_type (type_of f) <> ft then
 raise (Error "redefinition of function with different # args");
 f
 in

 (* Set names for all arguments. *)
 Array.iteri (fun i a ->
 let n = args.(i) in
 set_value_name n a;
 Hashtbl.add named_values n a;
) (params f);
 f

(* Create an alloca for each argument and register the argument in the symbol
 * table so that references to it will succeed. *)
let create_argument_allocas the_function proto =
 let args = match proto with
 | Ast.Prototype (_, args) | Ast.BinOpPrototype (_, args, _) -> args
 in
 Array.iteri (fun i ai ->
 let var_name = args.(i) in
 (* Create an alloca for this variable. *)
 let alloca = create_entry_block_alloca the_function var_name in

 (* Store the initial value into the alloca. *)
 ignore(build_store ai alloca builder);

 (* Add arguments to variable symbol table. *)
 Hashtbl.add named_values var_name alloca;
) (params the_function)

let codegen_func the_fpm = function
 | Ast.Function (proto, body) ->
 Hashtbl.clear named_values;
 let the_function = codegen_proto proto in

 (* If this is an operator, install it. *)
 begin match proto with
 | Ast.BinOpPrototype (name, args, prec) ->
 let op = name.[String.length name - 1] in
 Hashtbl.add Parser.binop_precedence op prec;
 | _ -> ()
 end;

 (* Create a new basic block to start insertion into. *)
 let bb = append_block context "entry" the_function in
 position_at_end bb builder;

 try
 (* Add all arguments to the symbol table and create their allocas. *)
 create_argument_allocas the_function proto;

 let ret_val = codegen_expr body in

 (* Finish off the function. *)
 let _ = build_ret ret_val builder in

 (* Validate the generated code, checking for consistency. *)
 Llvm_analysis.assert_valid_function the_function;

 (* Optimize the function. *)
 let _ = PassManager.run_function the_function the_fpm in

 the_function
 with e ->
 delete_function the_function;
 raise e

	toplevel.ml:

	(*===--===
 * Top-Level parsing and JIT Driver
 ===--===)

open Llvm
open Llvm_executionengine

(* top ::= definition | external | expression | ';' *)
let rec main_loop the_fpm the_execution_engine stream =
 match Stream.peek stream with
 | None -> ()

 (* ignore top-level semicolons. *)
 | Some (Token.Kwd ';') ->
 Stream.junk stream;
 main_loop the_fpm the_execution_engine stream

 | Some token ->
 begin
 try match token with
 | Token.Def ->
 let e = Parser.parse_definition stream in
 print_endline "parsed a function definition.";
 dump_value (Codegen.codegen_func the_fpm e);
 | Token.Extern ->
 let e = Parser.parse_extern stream in
 print_endline "parsed an extern.";
 dump_value (Codegen.codegen_proto e);
 | _ ->
 (* Evaluate a top-level expression into an anonymous function. *)
 let e = Parser.parse_toplevel stream in
 print_endline "parsed a top-level expr";
 let the_function = Codegen.codegen_func the_fpm e in
 dump_value the_function;

 (* JIT the function, returning a function pointer. *)
 let result = ExecutionEngine.run_function the_function [||]
 the_execution_engine in

 print_string "Evaluated to ";
 print_float (GenericValue.as_float Codegen.double_type result);
 print_newline ();
 with Stream.Error s | Codegen.Error s ->
 (* Skip token for error recovery. *)
 Stream.junk stream;
 print_endline s;
 end;
 print_string "ready> "; flush stdout;
 main_loop the_fpm the_execution_engine stream

	toy.ml:

	(*===--===
 * Main driver code.
 ===--===)

open Llvm
open Llvm_executionengine
open Llvm_target
open Llvm_scalar_opts

let main () =
 ignore (initialize_native_target ());

 (* Install standard binary operators.
 * 1 is the lowest precedence. *)
 Hashtbl.add Parser.binop_precedence '=' 2;
 Hashtbl.add Parser.binop_precedence '<' 10;
 Hashtbl.add Parser.binop_precedence '+' 20;
 Hashtbl.add Parser.binop_precedence '-' 20;
 Hashtbl.add Parser.binop_precedence '*' 40; (* highest. *)

 (* Prime the first token. *)
 print_string "ready> "; flush stdout;
 let stream = Lexer.lex (Stream.of_channel stdin) in

 (* Create the JIT. *)
 let the_execution_engine = ExecutionEngine.create Codegen.the_module in
 let the_fpm = PassManager.create_function Codegen.the_module in

 (* Set up the optimizer pipeline. Start with registering info about how the
 * target lays out data structures. *)
 DataLayout.add (ExecutionEngine.target_data the_execution_engine) the_fpm;

 (* Promote allocas to registers. *)
 add_memory_to_register_promotion the_fpm;

 (* Do simple "peephole" optimizations and bit-twiddling optzn. *)
 add_instruction_combination the_fpm;

 (* reassociate expressions. *)
 add_reassociation the_fpm;

 (* Eliminate Common SubExpressions. *)
 add_gvn the_fpm;

 (* Simplify the control flow graph (deleting unreachable blocks, etc). *)
 add_cfg_simplification the_fpm;

 ignore (PassManager.initialize the_fpm);

 (* Run the main "interpreter loop" now. *)
 Toplevel.main_loop the_fpm the_execution_engine stream;

 (* Print out all the generated code. *)
 dump_module Codegen.the_module
;;

main ()

	bindings.c

	#include <stdio.h>

/* putchard - putchar that takes a double and returns 0. */
extern double putchard(double X) {
 putchar((char)X);
 return 0;
}

/* printd - printf that takes a double prints it as "%f\n", returning 0. */
extern double printd(double X) {
 printf("%f\n", X);
 return 0;
}

Next: Conclusion and other useful LLVM tidbits

8. Kaleidoscope: Conclusion and other useful LLVM tidbits

	Tutorial Conclusion

	Properties of the LLVM IR

	Target Independence

	Safety Guarantees

	Language-Specific Optimizations

	Tips and Tricks

	Implementing portable offsetof/sizeof

	Garbage Collected Stack Frames

8.1. Tutorial Conclusion

Welcome to the final chapter of the “Implementing a language with
LLVM” tutorial. In the course of this tutorial, we have
grown our little Kaleidoscope language from being a useless toy, to
being a semi-interesting (but probably still useless) toy. :)

It is interesting to see how far we’ve come, and how little code it has
taken. We built the entire lexer, parser, AST, code generator, and an
interactive run-loop (with a JIT!) by-hand in under 700 lines of
(non-comment/non-blank) code.

Our little language supports a couple of interesting features: it
supports user defined binary and unary operators, it uses JIT
compilation for immediate evaluation, and it supports a few control flow
constructs with SSA construction.

Part of the idea of this tutorial was to show you how easy and fun it
can be to define, build, and play with languages. Building a compiler
need not be a scary or mystical process! Now that you’ve seen some of
the basics, I strongly encourage you to take the code and hack on it.
For example, try adding:

	global variables - While global variables have questional value
in modern software engineering, they are often useful when putting
together quick little hacks like the Kaleidoscope compiler itself.
Fortunately, our current setup makes it very easy to add global
variables: just have value lookup check to see if an unresolved
variable is in the global variable symbol table before rejecting it.
To create a new global variable, make an instance of the LLVM
GlobalVariable class.

	typed variables - Kaleidoscope currently only supports variables
of type double. This gives the language a very nice elegance, because
only supporting one type means that you never have to specify types.
Different languages have different ways of handling this. The easiest
way is to require the user to specify types for every variable
definition, and record the type of the variable in the symbol table
along with its Value*.

	arrays, structs, vectors, etc - Once you add types, you can start
extending the type system in all sorts of interesting ways. Simple
arrays are very easy and are quite useful for many different
applications. Adding them is mostly an exercise in learning how the
LLVM getelementptr instruction
works: it is so nifty/unconventional, it has its own
FAQ! If you add support for recursive types
(e.g. linked lists), make sure to read the section in the LLVM
Programmer’s Manual that
describes how to construct them.

	standard runtime - Our current language allows the user to access
arbitrary external functions, and we use it for things like “printd”
and “putchard”. As you extend the language to add higher-level
constructs, often these constructs make the most sense if they are
lowered to calls into a language-supplied runtime. For example, if
you add hash tables to the language, it would probably make sense to
add the routines to a runtime, instead of inlining them all the way.

	memory management - Currently we can only access the stack in
Kaleidoscope. It would also be useful to be able to allocate heap
memory, either with calls to the standard libc malloc/free interface
or with a garbage collector. If you would like to use garbage
collection, note that LLVM fully supports Accurate Garbage
Collection including algorithms that
move objects and need to scan/update the stack.

	debugger support - LLVM supports generation of DWARF Debug
info which is understood by common
debuggers like GDB. Adding support for debug info is fairly
straightforward. The best way to understand it is to compile some
C/C++ code with “clang -g -O0” and taking a look at what it
produces.

	exception handling support - LLVM supports generation of zero
cost exceptions which interoperate with
code compiled in other languages. You could also generate code by
implicitly making every function return an error value and checking
it. You could also make explicit use of setjmp/longjmp. There are
many different ways to go here.

	object orientation, generics, database access, complex numbers,
geometric programming, … - Really, there is no end of crazy
features that you can add to the language.

	unusual domains - We’ve been talking about applying LLVM to a
domain that many people are interested in: building a compiler for a
specific language. However, there are many other domains that can use
compiler technology that are not typically considered. For example,
LLVM has been used to implement OpenGL graphics acceleration,
translate C++ code to ActionScript, and many other cute and clever
things. Maybe you will be the first to JIT compile a regular
expression interpreter into native code with LLVM?

Have fun - try doing something crazy and unusual. Building a language
like everyone else always has, is much less fun than trying something a
little crazy or off the wall and seeing how it turns out. If you get
stuck or want to talk about it, feel free to email the llvm-dev mailing
list [http://lists.llvm.org/mailman/listinfo/llvm-dev]: it has lots
of people who are interested in languages and are often willing to help
out.

Before we end this tutorial, I want to talk about some “tips and tricks”
for generating LLVM IR. These are some of the more subtle things that
may not be obvious, but are very useful if you want to take advantage of
LLVM’s capabilities.

8.2. Properties of the LLVM IR

We have a couple common questions about code in the LLVM IR form - lets
just get these out of the way right now, shall we?

8.2.1. Target Independence

Kaleidoscope is an example of a “portable language”: any program written
in Kaleidoscope will work the same way on any target that it runs on.
Many other languages have this property, e.g. lisp, java, haskell,
javascript, python, etc (note that while these languages are portable,
not all their libraries are).

One nice aspect of LLVM is that it is often capable of preserving target
independence in the IR: you can take the LLVM IR for a
Kaleidoscope-compiled program and run it on any target that LLVM
supports, even emitting C code and compiling that on targets that LLVM
doesn’t support natively. You can trivially tell that the Kaleidoscope
compiler generates target-independent code because it never queries for
any target-specific information when generating code.

The fact that LLVM provides a compact, target-independent,
representation for code gets a lot of people excited. Unfortunately,
these people are usually thinking about C or a language from the C
family when they are asking questions about language portability. I say
“unfortunately”, because there is really no way to make (fully general)
C code portable, other than shipping the source code around (and of
course, C source code is not actually portable in general either - ever
port a really old application from 32- to 64-bits?).

The problem with C (again, in its full generality) is that it is heavily
laden with target specific assumptions. As one simple example, the
preprocessor often destructively removes target-independence from the
code when it processes the input text:

#ifdef __i386__
 int X = 1;
#else
 int X = 42;
#endif

While it is possible to engineer more and more complex solutions to
problems like this, it cannot be solved in full generality in a way that
is better than shipping the actual source code.

That said, there are interesting subsets of C that can be made portable.
If you are willing to fix primitive types to a fixed size (say int =
32-bits, and long = 64-bits), don’t care about ABI compatibility with
existing binaries, and are willing to give up some other minor features,
you can have portable code. This can make sense for specialized domains
such as an in-kernel language.

8.2.2. Safety Guarantees

Many of the languages above are also “safe” languages: it is impossible
for a program written in Java to corrupt its address space and crash the
process (assuming the JVM has no bugs). Safety is an interesting
property that requires a combination of language design, runtime
support, and often operating system support.

It is certainly possible to implement a safe language in LLVM, but LLVM
IR does not itself guarantee safety. The LLVM IR allows unsafe pointer
casts, use after free bugs, buffer over-runs, and a variety of other
problems. Safety needs to be implemented as a layer on top of LLVM and,
conveniently, several groups have investigated this. Ask on the llvm-dev
mailing list [http://lists.llvm.org/mailman/listinfo/llvm-dev] if
you are interested in more details.

8.2.3. Language-Specific Optimizations

One thing about LLVM that turns off many people is that it does not
solve all the world’s problems in one system (sorry ‘world hunger’,
someone else will have to solve you some other day). One specific
complaint is that people perceive LLVM as being incapable of performing
high-level language-specific optimization: LLVM “loses too much
information”.

Unfortunately, this is really not the place to give you a full and
unified version of “Chris Lattner’s theory of compiler design”. Instead,
I’ll make a few observations:

First, you’re right that LLVM does lose information. For example, as of
this writing, there is no way to distinguish in the LLVM IR whether an
SSA-value came from a C “int” or a C “long” on an ILP32 machine (other
than debug info). Both get compiled down to an ‘i32’ value and the
information about what it came from is lost. The more general issue
here, is that the LLVM type system uses “structural equivalence” instead
of “name equivalence”. Another place this surprises people is if you
have two types in a high-level language that have the same structure
(e.g. two different structs that have a single int field): these types
will compile down into a single LLVM type and it will be impossible to
tell what it came from.

Second, while LLVM does lose information, LLVM is not a fixed target: we
continue to enhance and improve it in many different ways. In addition
to adding new features (LLVM did not always support exceptions or debug
info), we also extend the IR to capture important information for
optimization (e.g. whether an argument is sign or zero extended,
information about pointers aliasing, etc). Many of the enhancements are
user-driven: people want LLVM to include some specific feature, so they
go ahead and extend it.

Third, it is possible and easy to add language-specific optimizations,
and you have a number of choices in how to do it. As one trivial
example, it is easy to add language-specific optimization passes that
“know” things about code compiled for a language. In the case of the C
family, there is an optimization pass that “knows” about the standard C
library functions. If you call “exit(0)” in main(), it knows that it is
safe to optimize that into “return 0;” because C specifies what the
‘exit’ function does.

In addition to simple library knowledge, it is possible to embed a
variety of other language-specific information into the LLVM IR. If you
have a specific need and run into a wall, please bring the topic up on
the llvm-dev list. At the very worst, you can always treat LLVM as if it
were a “dumb code generator” and implement the high-level optimizations
you desire in your front-end, on the language-specific AST.

8.3. Tips and Tricks

There is a variety of useful tips and tricks that you come to know after
working on/with LLVM that aren’t obvious at first glance. Instead of
letting everyone rediscover them, this section talks about some of these
issues.

8.3.1. Implementing portable offsetof/sizeof

One interesting thing that comes up, if you are trying to keep the code
generated by your compiler “target independent”, is that you often need
to know the size of some LLVM type or the offset of some field in an
llvm structure. For example, you might need to pass the size of a type
into a function that allocates memory.

Unfortunately, this can vary widely across targets: for example the
width of a pointer is trivially target-specific. However, there is a
clever way to use the getelementptr
instruction [http://nondot.org/sabre/LLVMNotes/SizeOf-OffsetOf-VariableSizedStructs.txt]
that allows you to compute this in a portable way.

8.3.2. Garbage Collected Stack Frames

Some languages want to explicitly manage their stack frames, often so
that they are garbage collected or to allow easy implementation of
closures. There are often better ways to implement these features than
explicit stack frames, but LLVM does support
them, [http://nondot.org/sabre/LLVMNotes/ExplicitlyManagedStackFrames.txt]
if you want. It requires your front-end to convert the code into
Continuation Passing
Style [http://en.wikipedia.org/wiki/Continuation-passing_style] and
the use of tail calls (which LLVM also supports).

1. Building a JIT: Starting out with KaleidoscopeJIT

	Chapter 1 Introduction

	JIT API Basics

	KaleidoscopeJIT

	Full Code Listing

1.1. Chapter 1 Introduction

Warning: This text is currently out of date due to ORC API updates.

The example code has been updated and can be used. The text will be updated
once the API churn dies down.

Welcome to Chapter 1 of the “Building an ORC-based JIT in LLVM” tutorial. This
tutorial runs through the implementation of a JIT compiler using LLVM’s
On-Request-Compilation (ORC) APIs. It begins with a simplified version of the
KaleidoscopeJIT class used in the
Implementing a language with LLVM tutorials and then
introduces new features like optimization, lazy compilation and remote
execution.

The goal of this tutorial is to introduce you to LLVM’s ORC JIT APIs, show how
these APIs interact with other parts of LLVM, and to teach you how to recombine
them to build a custom JIT that is suited to your use-case.

The structure of the tutorial is:

	Chapter #1: Investigate the simple KaleidoscopeJIT class. This will
introduce some of the basic concepts of the ORC JIT APIs, including the
idea of an ORC Layer.

	Chapter #2: Extend the basic KaleidoscopeJIT by adding
a new layer that will optimize IR and generated code.

	Chapter #3: Further extend the JIT by adding a
Compile-On-Demand layer to lazily compile IR.

	Chapter #4: Improve the laziness of our JIT by
replacing the Compile-On-Demand layer with a custom layer that uses the ORC
Compile Callbacks API directly to defer IR-generation until functions are
called.

	Chapter #5: Add process isolation by JITing code into
a remote process with reduced privileges using the JIT Remote APIs.

To provide input for our JIT we will use the Kaleidoscope REPL from
Chapter 7 of the “Implementing a language in LLVM tutorial”,
with one minor modification: We will remove the FunctionPassManager from the
code for that chapter and replace it with optimization support in our JIT class
in Chapter #2.

Finally, a word on API generations: ORC is the 3rd generation of LLVM JIT API.
It was preceded by MCJIT, and before that by the (now deleted) legacy JIT.
These tutorials don’t assume any experience with these earlier APIs, but
readers acquainted with them will see many familiar elements. Where appropriate
we will make this connection with the earlier APIs explicit to help people who
are transitioning from them to ORC.

1.2. JIT API Basics

The purpose of a JIT compiler is to compile code “on-the-fly” as it is needed,
rather than compiling whole programs to disk ahead of time as a traditional
compiler does. To support that aim our initial, bare-bones JIT API will be:

	Handle addModule(Module &M) – Make the given IR module available for
execution.

	JITSymbol findSymbol(const std::string &Name) – Search for pointers to
symbols (functions or variables) that have been added to the JIT.

	void removeModule(Handle H) – Remove a module from the JIT, releasing any
memory that had been used for the compiled code.

A basic use-case for this API, executing the ‘main’ function from a module,
will look like:

std::unique_ptr<Module> M = buildModule();
JIT J;
Handle H = J.addModule(*M);
int (*Main)(int, char*[]) = (int(*)(int, char*[]))J.getSymbolAddress("main");
int Result = Main();
J.removeModule(H);

The APIs that we build in these tutorials will all be variations on this simple
theme. Behind the API we will refine the implementation of the JIT to add
support for optimization and lazy compilation. Eventually we will extend the
API itself to allow higher-level program representations (e.g. ASTs) to be
added to the JIT.

1.3. KaleidoscopeJIT

In the previous section we described our API, now we examine a simple
implementation of it: The KaleidoscopeJIT class 1 that was used in the
Implementing a language with LLVM tutorials. We will use
the REPL code from Chapter 7 of that tutorial to supply the
input for our JIT: Each time the user enters an expression the REPL will add a
new IR module containing the code for that expression to the JIT. If the
expression is a top-level expression like ‘1+1’ or ‘sin(x)’, the REPL will also
use the findSymbol method of our JIT class find and execute the code for the
expression, and then use the removeModule method to remove the code again
(since there’s no way to re-invoke an anonymous expression). In later chapters
of this tutorial we’ll modify the REPL to enable new interactions with our JIT
class, but for now we will take this setup for granted and focus our attention on
the implementation of our JIT itself.

Our KaleidoscopeJIT class is defined in the KaleidoscopeJIT.h header. After the
usual include guards and #includes 2, we get to the definition of our class:

#ifndef LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H
#define LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H

#include "llvm/ADT/STLExtras.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/JITSymbol.h"
#include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include "llvm/ExecutionEngine/Orc/CompileUtils.h"
#include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
#include "llvm/ExecutionEngine/Orc/LambdaResolver.h"
#include "llvm/ExecutionEngine/Orc/RTDyldObjectLinkingLayer.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Mangler.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <memory>
#include <string>
#include <vector>

namespace llvm {
namespace orc {

class KaleidoscopeJIT {
private:
 std::unique_ptr<TargetMachine> TM;
 const DataLayout DL;
 RTDyldObjectLinkingLayer ObjectLayer;
 IRCompileLayer<decltype(ObjectLayer), SimpleCompiler> CompileLayer;

public:
 using ModuleHandle = decltype(CompileLayer)::ModuleHandleT;

Our class begins with four members: A TargetMachine, TM, which will be used to
build our LLVM compiler instance; A DataLayout, DL, which will be used for
symbol mangling (more on that later), and two ORC layers: an
RTDyldObjectLinkingLayer and a CompileLayer. We’ll be talking more about layers
in the next chapter, but for now you can think of them as analogous to LLVM
Passes: they wrap up useful JIT utilities behind an easy to compose interface.
The first layer, ObjectLayer, is the foundation of our JIT: it takes in-memory
object files produced by a compiler and links them on the fly to make them
executable. This JIT-on-top-of-a-linker design was introduced in MCJIT, however
the linker was hidden inside the MCJIT class. In ORC we expose the linker so
that clients can access and configure it directly if they need to. In this
tutorial our ObjectLayer will just be used to support the next layer in our
stack: the CompileLayer, which will be responsible for taking LLVM IR, compiling
it, and passing the resulting in-memory object files down to the object linking
layer below.

That’s it for member variables, after that we have a single typedef:
ModuleHandle. This is the handle type that will be returned from our JIT’s
addModule method, and can be passed to the removeModule method to remove a
module. The IRCompileLayer class already provides a convenient handle type
(IRCompileLayer::ModuleHandleT), so we just alias our ModuleHandle to this.

KaleidoscopeJIT()
 : TM(EngineBuilder().selectTarget()), DL(TM->createDataLayout()),
 ObjectLayer([]() { return std::make_shared<SectionMemoryManager>(); }),
 CompileLayer(ObjectLayer, SimpleCompiler(*TM)) {
 llvm::sys::DynamicLibrary::LoadLibraryPermanently(nullptr);
}

TargetMachine &getTargetMachine() { return *TM; }

Next up we have our class constructor. We begin by initializing TM using the
EngineBuilder::selectTarget helper method which constructs a TargetMachine for
the current process. Then we use our newly created TargetMachine to initialize
DL, our DataLayout. After that we need to initialize our ObjectLayer. The
ObjectLayer requires a function object that will build a JIT memory manager for
each module that is added (a JIT memory manager manages memory allocations,
memory permissions, and registration of exception handlers for JIT’d code). For
this we use a lambda that returns a SectionMemoryManager, an off-the-shelf
utility that provides all the basic memory management functionality required for
this chapter. Next we initialize our CompileLayer. The CompileLayer needs two
things: (1) A reference to our object layer, and (2) a compiler instance to use
to perform the actual compilation from IR to object files. We use the
off-the-shelf SimpleCompiler instance for now. Finally, in the body of the
constructor, we call the DynamicLibrary::LoadLibraryPermanently method with a
nullptr argument. Normally the LoadLibraryPermanently method is called with the
path of a dynamic library to load, but when passed a null pointer it will ‘load’
the host process itself, making its exported symbols available for execution.

ModuleHandle addModule(std::unique_ptr<Module> M) {
 // Build our symbol resolver:
 // Lambda 1: Look back into the JIT itself to find symbols that are part of
 // the same "logical dylib".
 // Lambda 2: Search for external symbols in the host process.
 auto Resolver = createLambdaResolver(
 [&](const std::string &Name) {
 if (auto Sym = CompileLayer.findSymbol(Name, false))
 return Sym;
 return JITSymbol(nullptr);
 },
 [](const std::string &Name) {
 if (auto SymAddr =
 RTDyldMemoryManager::getSymbolAddressInProcess(Name))
 return JITSymbol(SymAddr, JITSymbolFlags::Exported);
 return JITSymbol(nullptr);
 });

 // Add the set to the JIT with the resolver we created above and a newly
 // created SectionMemoryManager.
 return cantFail(CompileLayer.addModule(std::move(M),
 std::move(Resolver)));
}

Now we come to the first of our JIT API methods: addModule. This method is
responsible for adding IR to the JIT and making it available for execution. In
this initial implementation of our JIT we will make our modules “available for
execution” by adding them straight to the CompileLayer, which will immediately
compile them. In later chapters we will teach our JIT to defer compilation
of individual functions until they’re actually called.

To add our module to the CompileLayer we need to supply both the module and a
symbol resolver. The symbol resolver is responsible for supplying the JIT with
an address for each external symbol in the module we are adding. External
symbols are any symbol not defined within the module itself, including calls to
functions outside the JIT and calls to functions defined in other modules that
have already been added to the JIT. (It may seem as though modules added to the
JIT should know about one another by default, but since we would still have to
supply a symbol resolver for references to code outside the JIT it turns out to
be easier to re-use this one mechanism for all symbol resolution.) This has the
added benefit that the user has full control over the symbol resolution
process. Should we search for definitions within the JIT first, then fall back
on external definitions? Or should we prefer external definitions where
available and only JIT code if we don’t already have an available
implementation? By using a single symbol resolution scheme we are free to choose
whatever makes the most sense for any given use case.

Building a symbol resolver is made especially easy by the createLambdaResolver
function. This function takes two lambdas 3 and returns a JITSymbolResolver
instance. The first lambda is used as the implementation of the resolver’s
findSymbolInLogicalDylib method, which searches for symbol definitions that
should be thought of as being part of the same “logical” dynamic library as this
Module. If you are familiar with static linking: this means that
findSymbolInLogicalDylib should expose symbols with common linkage and hidden
visibility. If all this sounds foreign you can ignore the details and just
remember that this is the first method that the linker will use to try to find a
symbol definition. If the findSymbolInLogicalDylib method returns a null result
then the linker will call the second symbol resolver method, called findSymbol,
which searches for symbols that should be thought of as external to (but
visibile from) the module and its logical dylib. In this tutorial we will adopt
the following simple scheme: All modules added to the JIT will behave as if they
were linked into a single, ever-growing logical dylib. To implement this our
first lambda (the one defining findSymbolInLogicalDylib) will just search for
JIT’d code by calling the CompileLayer’s findSymbol method. If we don’t find a
symbol in the JIT itself we’ll fall back to our second lambda, which implements
findSymbol. This will use the RTDyldMemoryManager::getSymbolAddressInProcess
method to search for the symbol within the program itself. If we can’t find a
symbol definition via either of these paths, the JIT will refuse to accept our
module, returning a “symbol not found” error.

Now that we’ve built our symbol resolver, we’re ready to add our module to the
JIT. We do this by calling the CompileLayer’s addModule method. The addModule
method returns an Expected<CompileLayer::ModuleHandle>, since in more
advanced JIT configurations it could fail. In our basic configuration we know
that it will always succeed so we use the cantFail utility to assert that no
error occurred, and extract the handle value. Since we have already typedef’d
our ModuleHandle type to be the same as the CompileLayer’s handle type, we can
return the unwrapped handle directly.

JITSymbol findSymbol(const std::string Name) {
 std::string MangledName;
 raw_string_ostream MangledNameStream(MangledName);
 Mangler::getNameWithPrefix(MangledNameStream, Name, DL);
 return CompileLayer.findSymbol(MangledNameStream.str(), true);
}

JITTargetAddress getSymbolAddress(const std::string Name) {
 return cantFail(findSymbol(Name).getAddress());
}

void removeModule(ModuleHandle H) {
 cantFail(CompileLayer.removeModule(H));
}

Now that we can add code to our JIT, we need a way to find the symbols we’ve
added to it. To do that we call the findSymbol method on our CompileLayer, but
with a twist: We have to mangle the name of the symbol we’re searching for
first. The ORC JIT components use mangled symbols internally the same way a
static compiler and linker would, rather than using plain IR symbol names. This
allows JIT’d code to interoperate easily with precompiled code in the
application or shared libraries. The kind of mangling will depend on the
DataLayout, which in turn depends on the target platform. To allow us to remain
portable and search based on the un-mangled name, we just re-produce this
mangling ourselves.

Next we have a convenience function, getSymbolAddress, which returns the address
of a given symbol. Like CompileLayer’s addModule function, JITSymbol’s getAddress
function is allowed to fail 4, however we know that it will not in our simple
example, so we wrap it in a call to cantFail.

We now come to the last method in our JIT API: removeModule. This method is
responsible for destructing the MemoryManager and SymbolResolver that were
added with a given module, freeing any resources they were using in the
process. In our Kaleidoscope demo we rely on this method to remove the module
representing the most recent top-level expression, preventing it from being
treated as a duplicate definition when the next top-level expression is
entered. It is generally good to free any module that you know you won’t need
to call further, just to free up the resources dedicated to it. However, you
don’t strictly need to do this: All resources will be cleaned up when your
JIT class is destructed, if they haven’t been freed before then. Like
CompileLayer::addModule and JITSymbol::getAddress, removeModule may
fail in general but will never fail in our example, so we wrap it in a call to
cantFail.

This brings us to the end of Chapter 1 of Building a JIT. You now have a basic
but fully functioning JIT stack that you can use to take LLVM IR and make it
executable within the context of your JIT process. In the next chapter we’ll
look at how to extend this JIT to produce better quality code, and in the
process take a deeper look at the ORC layer concept.

Next: Extending the KaleidoscopeJIT

1.4. Full Code Listing

Here is the complete code listing for our running example. To build this
example, use:

Compile
clang++ -g toy.cpp `llvm-config --cxxflags --ldflags --system-libs --libs core orcjit native` -O3 -o toy
Run
./toy

Here is the code:

//===- KaleidoscopeJIT.h - A simple JIT for Kaleidoscope --------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===--===//
//
// Contains a simple JIT definition for use in the kaleidoscope tutorials.
//
//===--===//

#ifndef LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H
#define LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H

#include "llvm/ADT/STLExtras.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/JITSymbol.h"
#include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include "llvm/ExecutionEngine/Orc/CompileUtils.h"
#include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
#include "llvm/ExecutionEngine/Orc/LambdaResolver.h"
#include "llvm/ExecutionEngine/Orc/RTDyldObjectLinkingLayer.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Mangler.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <memory>
#include <string>
#include <vector>

namespace llvm {
namespace orc {

class KaleidoscopeJIT {
private:
 ExecutionSession ES;
 std::shared_ptr<SymbolResolver> Resolver;
 std::unique_ptr<TargetMachine> TM;
 const DataLayout DL;
 RTDyldObjectLinkingLayer ObjectLayer;
 IRCompileLayer<decltype(ObjectLayer), SimpleCompiler> CompileLayer;

public:
 KaleidoscopeJIT()
 : Resolver(createLegacyLookupResolver(
 ES,
 [this](const std::string &Name) -> JITSymbol {
 if (auto Sym = CompileLayer.findSymbol(Name, false))
 return Sym;
 else if (auto Err = Sym.takeError())
 return std::move(Err);
 if (auto SymAddr =
 RTDyldMemoryManager::getSymbolAddressInProcess(Name))
 return JITSymbol(SymAddr, JITSymbolFlags::Exported);
 return nullptr;
 },
 [](Error Err) { cantFail(std::move(Err), "lookupFlags failed"); })),
 TM(EngineBuilder().selectTarget()), DL(TM->createDataLayout()),
 ObjectLayer(ES,
 [this](VModuleKey) {
 return RTDyldObjectLinkingLayer::Resources{
 std::make_shared<SectionMemoryManager>(), Resolver};
 }),
 CompileLayer(ObjectLayer, SimpleCompiler(*TM)) {
 llvm::sys::DynamicLibrary::LoadLibraryPermanently(nullptr);
 }

 TargetMachine &getTargetMachine() { return *TM; }

 VModuleKey addModule(std::unique_ptr<Module> M) {
 // Add the module to the JIT with a new VModuleKey.
 auto K = ES.allocateVModule();
 cantFail(CompileLayer.addModule(K, std::move(M)));
 return K;
 }

 JITSymbol findSymbol(const std::string Name) {
 std::string MangledName;
 raw_string_ostream MangledNameStream(MangledName);
 Mangler::getNameWithPrefix(MangledNameStream, Name, DL);
 return CompileLayer.findSymbol(MangledNameStream.str(), true);
 }

 JITTargetAddress getSymbolAddress(const std::string Name) {
 return cantFail(findSymbol(Name).getAddress());
 }

 void removeModule(VModuleKey K) {
 cantFail(CompileLayer.removeModule(K));
 }
};

} // end namespace orc
} // end namespace llvm

#endif // LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H

	1

	Actually we use a cut-down version of KaleidoscopeJIT that makes a
simplifying assumption: symbols cannot be re-defined. This will make it
impossible to re-define symbols in the REPL, but will make our symbol
lookup logic simpler. Re-introducing support for symbol redefinition is
left as an exercise for the reader. (The KaleidoscopeJIT.h used in the
original tutorials will be a helpful reference).

	2

	

	File

	Reason for inclusion

	STLExtras.h

	LLVM utilities that are useful when working
with the STL.

	ExecutionEngine.h

	Access to the EngineBuilder::selectTarget
method.

	RTDyldMemoryManager.h

	Access to the
RTDyldMemoryManager::getSymbolAddressInProcess
method.

	CompileUtils.h

	Provides the SimpleCompiler class.

	IRCompileLayer.h

	Provides the IRCompileLayer class.

	LambdaResolver.h

	Access the createLambdaResolver function,
which provides easy construction of symbol
resolvers.

	RTDyldObjectLinkingLayer.h

	Provides the RTDyldObjectLinkingLayer class.

	Mangler.h

	Provides the Mangler class for platform
specific name-mangling.

	DynamicLibrary.h

	Provides the DynamicLibrary class, which
makes symbols in the host process searchable.

	raw_ostream.h

	A fast output stream class. We use the
raw_string_ostream subclass for symbol
mangling

	TargetMachine.h

	LLVM target machine description class.

	3

	Actually they don’t have to be lambdas, any object with a call operator
will do, including plain old functions or std::functions.

	4

	JITSymbol::getAddress will force the JIT to compile the definition of
the symbol if it hasn’t already been compiled, and since the compilation
process could fail getAddress must be able to return this failure.

2. Building a JIT: Adding Optimizations – An introduction to ORC Layers

	Chapter 2 Introduction

	Optimizing Modules using the IRTransformLayer

	Full Code Listing

This tutorial is under active development. It is incomplete and details may
change frequently. Nonetheless we invite you to try it out as it stands, and
we welcome any feedback.

2.1. Chapter 2 Introduction

Warning: This text is currently out of date due to ORC API updates.

The example code has been updated and can be used. The text will be updated
once the API churn dies down.

Welcome to Chapter 2 of the “Building an ORC-based JIT in LLVM” tutorial. In
Chapter 1 of this series we examined a basic JIT
class, KaleidoscopeJIT, that could take LLVM IR modules as input and produce
executable code in memory. KaleidoscopeJIT was able to do this with relatively
little code by composing two off-the-shelf ORC layers: IRCompileLayer and
ObjectLinkingLayer, to do much of the heavy lifting.

In this layer we’ll learn more about the ORC layer concept by using a new layer,
IRTransformLayer, to add IR optimization support to KaleidoscopeJIT.

2.2. Optimizing Modules using the IRTransformLayer

In Chapter 4 of the “Implementing a language with LLVM”
tutorial series the llvm FunctionPassManager is introduced as a means for
optimizing LLVM IR. Interested readers may read that chapter for details, but
in short: to optimize a Module we create an llvm::FunctionPassManager
instance, configure it with a set of optimizations, then run the PassManager on
a Module to mutate it into a (hopefully) more optimized but semantically
equivalent form. In the original tutorial series the FunctionPassManager was
created outside the KaleidoscopeJIT and modules were optimized before being
added to it. In this Chapter we will make optimization a phase of our JIT
instead. For now this will provide us a motivation to learn more about ORC
layers, but in the long term making optimization part of our JIT will yield an
important benefit: When we begin lazily compiling code (i.e. deferring
compilation of each function until the first time it’s run), having
optimization managed by our JIT will allow us to optimize lazily too, rather
than having to do all our optimization up-front.

To add optimization support to our JIT we will take the KaleidoscopeJIT from
Chapter 1 and compose an ORC IRTransformLayer on top. We will look at how the
IRTransformLayer works in more detail below, but the interface is simple: the
constructor for this layer takes a reference to the layer below (as all layers
do) plus an IR optimization function that it will apply to each Module that
is added via addModule:

class KaleidoscopeJIT {
private:
 std::unique_ptr<TargetMachine> TM;
 const DataLayout DL;
 RTDyldObjectLinkingLayer<> ObjectLayer;
 IRCompileLayer<decltype(ObjectLayer)> CompileLayer;

 using OptimizeFunction =
 std::function<std::shared_ptr<Module>(std::shared_ptr<Module>)>;

 IRTransformLayer<decltype(CompileLayer), OptimizeFunction> OptimizeLayer;

public:
 using ModuleHandle = decltype(OptimizeLayer)::ModuleHandleT;

 KaleidoscopeJIT()
 : TM(EngineBuilder().selectTarget()), DL(TM->createDataLayout()),
 ObjectLayer([]() { return std::make_shared<SectionMemoryManager>(); }),
 CompileLayer(ObjectLayer, SimpleCompiler(*TM)),
 OptimizeLayer(CompileLayer,
 [this](std::unique_ptr<Module> M) {
 return optimizeModule(std::move(M));
 }) {
 llvm::sys::DynamicLibrary::LoadLibraryPermanently(nullptr);
 }

Our extended KaleidoscopeJIT class starts out the same as it did in Chapter 1,
but after the CompileLayer we introduce a typedef for our optimization function.
In this case we use a std::function (a handy wrapper for “function-like” things)
from a single unique_ptr<Module> input to a std::unique_ptr<Module> output. With
our optimization function typedef in place we can declare our OptimizeLayer,
which sits on top of our CompileLayer.

To initialize our OptimizeLayer we pass it a reference to the CompileLayer
below (standard practice for layers), and we initialize the OptimizeFunction
using a lambda that calls out to an “optimizeModule” function that we will
define below.

// ...
auto Resolver = createLambdaResolver(
 [&](const std::string &Name) {
 if (auto Sym = OptimizeLayer.findSymbol(Name, false))
 return Sym;
 return JITSymbol(nullptr);
 },
// ...

// ...
return cantFail(OptimizeLayer.addModule(std::move(M),
 std::move(Resolver)));
// ...

// ...
return OptimizeLayer.findSymbol(MangledNameStream.str(), true);
// ...

// ...
cantFail(OptimizeLayer.removeModule(H));
// ...

Next we need to replace references to ‘CompileLayer’ with references to
OptimizeLayer in our key methods: addModule, findSymbol, and removeModule. In
addModule we need to be careful to replace both references: the findSymbol call
inside our resolver, and the call through to addModule.

std::shared_ptr<Module> optimizeModule(std::shared_ptr<Module> M) {
 // Create a function pass manager.
 auto FPM = llvm::make_unique<legacy::FunctionPassManager>(M.get());

 // Add some optimizations.
 FPM->add(createInstructionCombiningPass());
 FPM->add(createReassociatePass());
 FPM->add(createGVNPass());
 FPM->add(createCFGSimplificationPass());
 FPM->doInitialization();

 // Run the optimizations over all functions in the module being added to
 // the JIT.
 for (auto &F : *M)
 FPM->run(F);

 return M;
}

At the bottom of our JIT we add a private method to do the actual optimization:
optimizeModule. This function sets up a FunctionPassManager, adds some passes
to it, runs it over every function in the module, and then returns the mutated
module. The specific optimizations are the same ones used in
Chapter 4 of the “Implementing a language with LLVM”
tutorial series. Readers may visit that chapter for a more in-depth
discussion of these, and of IR optimization in general.

And that’s it in terms of changes to KaleidoscopeJIT: When a module is added via
addModule the OptimizeLayer will call our optimizeModule function before passing
the transformed module on to the CompileLayer below. Of course, we could have
called optimizeModule directly in our addModule function and not gone to the
bother of using the IRTransformLayer, but doing so gives us another opportunity
to see how layers compose. It also provides a neat entry point to the layer
concept itself, because IRTransformLayer turns out to be one of the simplest
implementations of the layer concept that can be devised:

template <typename BaseLayerT, typename TransformFtor>
class IRTransformLayer {
public:
 using ModuleHandleT = typename BaseLayerT::ModuleHandleT;

 IRTransformLayer(BaseLayerT &BaseLayer,
 TransformFtor Transform = TransformFtor())
 : BaseLayer(BaseLayer), Transform(std::move(Transform)) {}

 Expected<ModuleHandleT>
 addModule(std::shared_ptr<Module> M,
 std::shared_ptr<JITSymbolResolver> Resolver) {
 return BaseLayer.addModule(Transform(std::move(M)), std::move(Resolver));
 }

 void removeModule(ModuleHandleT H) { BaseLayer.removeModule(H); }

 JITSymbol findSymbol(const std::string &Name, bool ExportedSymbolsOnly) {
 return BaseLayer.findSymbol(Name, ExportedSymbolsOnly);
 }

 JITSymbol findSymbolIn(ModuleHandleT H, const std::string &Name,
 bool ExportedSymbolsOnly) {
 return BaseLayer.findSymbolIn(H, Name, ExportedSymbolsOnly);
 }

 void emitAndFinalize(ModuleHandleT H) {
 BaseLayer.emitAndFinalize(H);
 }

 TransformFtor& getTransform() { return Transform; }

 const TransformFtor& getTransform() const { return Transform; }

private:
 BaseLayerT &BaseLayer;
 TransformFtor Transform;
};

This is the whole definition of IRTransformLayer, from
llvm/include/llvm/ExecutionEngine/Orc/IRTransformLayer.h, stripped of its
comments. It is a template class with two template arguments: BaesLayerT and
TransformFtor that provide the type of the base layer and the type of the
“transform functor” (in our case a std::function) respectively. This class is
concerned with two very simple jobs: (1) Running every IR Module that is added
with addModule through the transform functor, and (2) conforming to the ORC
layer interface. The interface consists of one typedef and five methods:

	Interface

	Description

	ModuleHandleT

	Provides a handle that can be used to identify a module
set when calling findSymbolIn, removeModule, or
emitAndFinalize.

	addModule

	Takes a given set of Modules and makes them “available
for execution”. This means that symbols in those modules
should be searchable via findSymbol and findSymbolIn, and
the address of the symbols should be read/writable (for
data symbols), or executable (for function symbols) after
JITSymbol::getAddress() is called. Note: This means that
addModule doesn’t have to compile (or do any other
work) up-front. It can, like IRCompileLayer, act
eagerly, but it can also simply record the module and
take no further action until somebody calls
JITSymbol::getAddress(). In IRTransformLayer’s case
addModule eagerly applies the transform functor to
each module in the set, then passes the resulting set
of mutated modules down to the layer below.

	removeModule

	Removes a set of modules from the JIT. Code or data
defined in these modules will no longer be available, and
the memory holding the JIT’d definitions will be freed.

	findSymbol

	Searches for the named symbol in all modules that have
previously been added via addModule (and not yet
removed by a call to removeModule). In
IRTransformLayer we just pass the query on to the layer
below. In our REPL this is our default way to search for
function definitions.

	findSymbolIn

	Searches for the named symbol in the module set indicated
by the given ModuleHandleT. This is just an optimized
search, better for lookup-speed when you know exactly
a symbol definition should be found. In IRTransformLayer
we just pass this query on to the layer below. In our
REPL we use this method to search for functions
representing top-level expressions, since we know exactly
where we’ll find them: in the top-level expression module
we just added.

	emitAndFinalize

	Forces all of the actions required to make the code and
data in a module set (represented by a ModuleHandleT)
accessible. Behaves as if some symbol in the set had been
searched for and JITSymbol::getSymbolAddress called. This
is rarely needed, but can be useful when dealing with
layers that usually behave lazily if the user wants to
trigger early compilation (for example, to use idle CPU
time to eagerly compile code in the background).

This interface attempts to capture the natural operations of a JIT (with some
wrinkles like emitAndFinalize for performance), similar to the basic JIT API
operations we identified in Chapter 1. Conforming to the layer concept allows
classes to compose neatly by implementing their behaviors in terms of the these
same operations, carried out on the layer below. For example, an eager layer
(like IRTransformLayer) can implement addModule by running each module in the
set through its transform up-front and immediately passing the result to the
layer below. A lazy layer, by contrast, could implement addModule by
squirreling away the modules doing no other up-front work, but applying the
transform (and calling addModule on the layer below) when the client calls
findSymbol instead. The JIT’d program behavior will be the same either way, but
these choices will have different performance characteristics: Doing work
eagerly means the JIT takes longer up-front, but proceeds smoothly once this is
done. Deferring work allows the JIT to get up-and-running quickly, but will
force the JIT to pause and wait whenever some code or data is needed that hasn’t
already been processed.

Our current REPL is eager: Each function definition is optimized and compiled as
soon as it’s typed in. If we were to make the transform layer lazy (but not
change things otherwise) we could defer optimization until the first time we
reference a function in a top-level expression (see if you can figure out why,
then check out the answer below 1). In the next chapter, however we’ll
introduce fully lazy compilation, in which function’s aren’t compiled until
they’re first called at run-time. At this point the trade-offs get much more
interesting: the lazier we are, the quicker we can start executing the first
function, but the more often we’ll have to pause to compile newly encountered
functions. If we only code-gen lazily, but optimize eagerly, we’ll have a slow
startup (which everything is optimized) but relatively short pauses as each
function just passes through code-gen. If we both optimize and code-gen lazily
we can start executing the first function more quickly, but we’ll have longer
pauses as each function has to be both optimized and code-gen’d when it’s first
executed. Things become even more interesting if we consider interproceedural
optimizations like inlining, which must be performed eagerly. These are
complex trade-offs, and there is no one-size-fits all solution to them, but by
providing composable layers we leave the decisions to the person implementing
the JIT, and make it easy for them to experiment with different configurations.

Next: Adding Per-function Lazy Compilation

2.3. Full Code Listing

Here is the complete code listing for our running example with an
IRTransformLayer added to enable optimization. To build this example, use:

Compile
clang++ -g toy.cpp `llvm-config --cxxflags --ldflags --system-libs --libs core orcjit native` -O3 -o toy
Run
./toy

Here is the code:

//===- KaleidoscopeJIT.h - A simple JIT for Kaleidoscope --------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===--===//
//
// Contains a simple JIT definition for use in the kaleidoscope tutorials.
//
//===--===//

#ifndef LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H
#define LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H

#include "llvm/ADT/STLExtras.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/JITSymbol.h"
#include "llvm/ExecutionEngine/Orc/CompileUtils.h"
#include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
#include "llvm/ExecutionEngine/Orc/IRTransformLayer.h"
#include "llvm/ExecutionEngine/Orc/LambdaResolver.h"
#include "llvm/ExecutionEngine/Orc/RTDyldObjectLinkingLayer.h"
#include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Mangler.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/InstCombine/InstCombine.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVN.h"
#include <algorithm>
#include <memory>
#include <string>
#include <vector>

namespace llvm {
namespace orc {

class KaleidoscopeJIT {
private:
 ExecutionSession ES;
 std::shared_ptr<SymbolResolver> Resolver;
 std::unique_ptr<TargetMachine> TM;
 const DataLayout DL;
 RTDyldObjectLinkingLayer ObjectLayer;
 IRCompileLayer<decltype(ObjectLayer), SimpleCompiler> CompileLayer;

 using OptimizeFunction =
 std::function<std::unique_ptr<Module>(std::unique_ptr<Module>)>;

 IRTransformLayer<decltype(CompileLayer), OptimizeFunction> OptimizeLayer;

public:
 KaleidoscopeJIT()
 : Resolver(createLegacyLookupResolver(
 ES,
 [this](const std::string &Name) -> JITSymbol {
 if (auto Sym = OptimizeLayer.findSymbol(Name, false))
 return Sym;
 else if (auto Err = Sym.takeError())
 return std::move(Err);
 if (auto SymAddr =
 RTDyldMemoryManager::getSymbolAddressInProcess(Name))
 return JITSymbol(SymAddr, JITSymbolFlags::Exported);
 return nullptr;
 },
 [](Error Err) { cantFail(std::move(Err), "lookupFlags failed"); })),
 TM(EngineBuilder().selectTarget()), DL(TM->createDataLayout()),
 ObjectLayer(ES,
 [this](VModuleKey) {
 return RTDyldObjectLinkingLayer::Resources{
 std::make_shared<SectionMemoryManager>(), Resolver};
 }),
 CompileLayer(ObjectLayer, SimpleCompiler(*TM)),
 OptimizeLayer(CompileLayer, [this](std::unique_ptr<Module> M) {
 return optimizeModule(std::move(M));
 }) {
 llvm::sys::DynamicLibrary::LoadLibraryPermanently(nullptr);
 }

 TargetMachine &getTargetMachine() { return *TM; }

 VModuleKey addModule(std::unique_ptr<Module> M) {
 // Add the module to the JIT with a new VModuleKey.
 auto K = ES.allocateVModule();
 cantFail(OptimizeLayer.addModule(K, std::move(M)));
 return K;
 }

 JITSymbol findSymbol(const std::string Name) {
 std::string MangledName;
 raw_string_ostream MangledNameStream(MangledName);
 Mangler::getNameWithPrefix(MangledNameStream, Name, DL);
 return OptimizeLayer.findSymbol(MangledNameStream.str(), true);
 }

 void removeModule(VModuleKey K) {
 cantFail(OptimizeLayer.removeModule(K));
 }

private:
 std::unique_ptr<Module> optimizeModule(std::unique_ptr<Module> M) {
 // Create a function pass manager.
 auto FPM = llvm::make_unique<legacy::FunctionPassManager>(M.get());

 // Add some optimizations.
 FPM->add(createInstructionCombiningPass());
 FPM->add(createReassociatePass());
 FPM->add(createGVNPass());
 FPM->add(createCFGSimplificationPass());
 FPM->doInitialization();

 // Run the optimizations over all functions in the module being added to
 // the JIT.
 for (auto &F : *M)
 FPM->run(F);

 return M;
 }
};

} // end namespace orc
} // end namespace llvm

#endif // LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H

	1

	When we add our top-level expression to the JIT, any calls to functions
that we defined earlier will appear to the RTDyldObjectLinkingLayer as
external symbols. The RTDyldObjectLinkingLayer will call the SymbolResolver
that we defined in addModule, which in turn calls findSymbol on the
OptimizeLayer, at which point even a lazy transform layer will have to
do its work.

3. Building a JIT: Per-function Lazy Compilation

	Chapter 3 Introduction

	Lazy Compilation

	Full Code Listing

This tutorial is under active development. It is incomplete and details may
change frequently. Nonetheless we invite you to try it out as it stands, and
we welcome any feedback.

3.1. Chapter 3 Introduction

Warning: This text is currently out of date due to ORC API updates.

The example code has been updated and can be used. The text will be updated
once the API churn dies down.

Welcome to Chapter 3 of the “Building an ORC-based JIT in LLVM” tutorial. This
chapter discusses lazy JITing and shows you how to enable it by adding an ORC
CompileOnDemand layer the JIT from Chapter 2.

3.2. Lazy Compilation

When we add a module to the KaleidoscopeJIT class from Chapter 2 it is
immediately optimized, compiled and linked for us by the IRTransformLayer,
IRCompileLayer and RTDyldObjectLinkingLayer respectively. This scheme, where all the
work to make a Module executable is done up front, is simple to understand and
its performance characteristics are easy to reason about. However, it will lead
to very high startup times if the amount of code to be compiled is large, and
may also do a lot of unnecessary compilation if only a few compiled functions
are ever called at runtime. A truly “just-in-time” compiler should allow us to
defer the compilation of any given function until the moment that function is
first called, improving launch times and eliminating redundant work. In fact,
the ORC APIs provide us with a layer to lazily compile LLVM IR:
CompileOnDemandLayer.

The CompileOnDemandLayer class conforms to the layer interface described in
Chapter 2, but its addModule method behaves quite differently from the layers
we have seen so far: rather than doing any work up front, it just scans the
Modules being added and arranges for each function in them to be compiled the
first time it is called. To do this, the CompileOnDemandLayer creates two small
utilities for each function that it scans: a stub and a compile
callback. The stub is a pair of a function pointer (which will be pointed at
the function’s implementation once the function has been compiled) and an
indirect jump through the pointer. By fixing the address of the indirect jump
for the lifetime of the program we can give the function a permanent “effective
address”, one that can be safely used for indirection and function pointer
comparison even if the function’s implementation is never compiled, or if it is
compiled more than once (due to, for example, recompiling the function at a
higher optimization level) and changes address. The second utility, the compile
callback, represents a re-entry point from the program into the compiler that
will trigger compilation and then execution of a function. By initializing the
function’s stub to point at the function’s compile callback, we enable lazy
compilation: The first attempted call to the function will follow the function
pointer and trigger the compile callback instead. The compile callback will
compile the function, update the function pointer for the stub, then execute
the function. On all subsequent calls to the function, the function pointer
will point at the already-compiled function, so there is no further overhead
from the compiler. We will look at this process in more detail in the next
chapter of this tutorial, but for now we’ll trust the CompileOnDemandLayer to
set all the stubs and callbacks up for us. All we need to do is to add the
CompileOnDemandLayer to the top of our stack and we’ll get the benefits of
lazy compilation. We just need a few changes to the source:

...
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include "llvm/ExecutionEngine/Orc/CompileOnDemandLayer.h"
#include "llvm/ExecutionEngine/Orc/CompileUtils.h"
...

...
class KaleidoscopeJIT {
private:
 std::unique_ptr<TargetMachine> TM;
 const DataLayout DL;
 RTDyldObjectLinkingLayer ObjectLayer;
 IRCompileLayer<decltype(ObjectLayer), SimpleCompiler> CompileLayer;

 using OptimizeFunction =
 std::function<std::shared_ptr<Module>(std::shared_ptr<Module>)>;

 IRTransformLayer<decltype(CompileLayer), OptimizeFunction> OptimizeLayer;

 std::unique_ptr<JITCompileCallbackManager> CompileCallbackManager;
 CompileOnDemandLayer<decltype(OptimizeLayer)> CODLayer;

public:
 using ModuleHandle = decltype(CODLayer)::ModuleHandleT;

First we need to include the CompileOnDemandLayer.h header, then add two new
members: a std::unique_ptr<JITCompileCallbackManager> and a CompileOnDemandLayer,
to our class. The CompileCallbackManager member is used by the CompileOnDemandLayer
to create the compile callback needed for each function.

KaleidoscopeJIT()
 : TM(EngineBuilder().selectTarget()), DL(TM->createDataLayout()),
 ObjectLayer([]() { return std::make_shared<SectionMemoryManager>(); }),
 CompileLayer(ObjectLayer, SimpleCompiler(*TM)),
 OptimizeLayer(CompileLayer,
 [this](std::shared_ptr<Module> M) {
 return optimizeModule(std::move(M));
 }),
 CompileCallbackManager(
 orc::createLocalCompileCallbackManager(TM->getTargetTriple(), 0)),
 CODLayer(OptimizeLayer,
 [this](Function &F) { return std::set<Function*>({&F}); },
 *CompileCallbackManager,
 orc::createLocalIndirectStubsManagerBuilder(
 TM->getTargetTriple())) {
 llvm::sys::DynamicLibrary::LoadLibraryPermanently(nullptr);
}

Next we have to update our constructor to initialize the new members. To create
an appropriate compile callback manager we use the
createLocalCompileCallbackManager function, which takes a TargetMachine and a
JITTargetAddress to call if it receives a request to compile an unknown
function. In our simple JIT this situation is unlikely to come up, so we’ll
cheat and just pass ‘0’ here. In a production quality JIT you could give the
address of a function that throws an exception in order to unwind the JIT’d
code’s stack.

Now we can construct our CompileOnDemandLayer. Following the pattern from
previous layers we start by passing a reference to the next layer down in our
stack – the OptimizeLayer. Next we need to supply a ‘partitioning function’:
when a not-yet-compiled function is called, the CompileOnDemandLayer will call
this function to ask us what we would like to compile. At a minimum we need to
compile the function being called (given by the argument to the partitioning
function), but we could also request that the CompileOnDemandLayer compile other
functions that are unconditionally called (or highly likely to be called) from
the function being called. For KaleidoscopeJIT we’ll keep it simple and just
request compilation of the function that was called. Next we pass a reference to
our CompileCallbackManager. Finally, we need to supply an “indirect stubs
manager builder”: a utility function that constructs IndirectStubManagers, which
are in turn used to build the stubs for the functions in each module. The
CompileOnDemandLayer will call the indirect stub manager builder once for each
call to addModule, and use the resulting indirect stubs manager to create
stubs for all functions in all modules in the set. If/when the module set is
removed from the JIT the indirect stubs manager will be deleted, freeing any
memory allocated to the stubs. We supply this function by using the
createLocalIndirectStubsManagerBuilder utility.

// ...
 if (auto Sym = CODLayer.findSymbol(Name, false))
// ...
return cantFail(CODLayer.addModule(std::move(Ms),
 std::move(Resolver)));
// ...

// ...
return CODLayer.findSymbol(MangledNameStream.str(), true);
// ...

// ...
CODLayer.removeModule(H);
// ...

Finally, we need to replace the references to OptimizeLayer in our addModule,
findSymbol, and removeModule methods. With that, we’re up and running.

To be done:

** Chapter conclusion.**

3.3. Full Code Listing

Here is the complete code listing for our running example with a CompileOnDemand
layer added to enable lazy function-at-a-time compilation. To build this example, use:

Compile
clang++ -g toy.cpp `llvm-config --cxxflags --ldflags --system-libs --libs core orcjit native` -O3 -o toy
Run
./toy

Here is the code:

//===- KaleidoscopeJIT.h - A simple JIT for Kaleidoscope --------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===--===//
//
// Contains a simple JIT definition for use in the kaleidoscope tutorials.
//
//===--===//

#ifndef LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H
#define LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H

#include "llvm/ADT/STLExtras.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/JITSymbol.h"
#include "llvm/ExecutionEngine/Orc/CompileOnDemandLayer.h"
#include "llvm/ExecutionEngine/Orc/CompileUtils.h"
#include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
#include "llvm/ExecutionEngine/Orc/IRTransformLayer.h"
#include "llvm/ExecutionEngine/Orc/LambdaResolver.h"
#include "llvm/ExecutionEngine/Orc/RTDyldObjectLinkingLayer.h"
#include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
#include "llvm/ExecutionEngine/RuntimeDyld.h"
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Mangler.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/InstCombine/InstCombine.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVN.h"
#include <algorithm>
#include <map>
#include <memory>
#include <set>
#include <string>
#include <vector>

namespace llvm {
namespace orc {

class KaleidoscopeJIT {
private:
 ExecutionSession ES;
 std::map<VModuleKey, std::shared_ptr<SymbolResolver>> Resolvers;
 std::unique_ptr<TargetMachine> TM;
 const DataLayout DL;
 RTDyldObjectLinkingLayer ObjectLayer;
 IRCompileLayer<decltype(ObjectLayer), SimpleCompiler> CompileLayer;

 using OptimizeFunction =
 std::function<std::unique_ptr<Module>(std::unique_ptr<Module>)>;

 IRTransformLayer<decltype(CompileLayer), OptimizeFunction> OptimizeLayer;

 std::unique_ptr<JITCompileCallbackManager> CompileCallbackManager;
 CompileOnDemandLayer<decltype(OptimizeLayer)> CODLayer;

public:
 KaleidoscopeJIT()
 : TM(EngineBuilder().selectTarget()), DL(TM->createDataLayout()),
 ObjectLayer(ES,
 [this](VModuleKey K) {
 return RTDyldObjectLinkingLayer::Resources{
 std::make_shared<SectionMemoryManager>(),
 Resolvers[K]};
 }),
 CompileLayer(ObjectLayer, SimpleCompiler(*TM)),
 OptimizeLayer(CompileLayer,
 [this](std::unique_ptr<Module> M) {
 return optimizeModule(std::move(M));
 }),
 CompileCallbackManager(orc::createLocalCompileCallbackManager(
 TM->getTargetTriple(), ES, 0)),
 CODLayer(ES, OptimizeLayer,
 [&](orc::VModuleKey K) { return Resolvers[K]; },
 [&](orc::VModuleKey K, std::shared_ptr<SymbolResolver> R) {
 Resolvers[K] = std::move(R);
 },
 [](Function &F) { return std::set<Function *>({&F}); },
 *CompileCallbackManager,
 orc::createLocalIndirectStubsManagerBuilder(
 TM->getTargetTriple())) {
 llvm::sys::DynamicLibrary::LoadLibraryPermanently(nullptr);
 }

 TargetMachine &getTargetMachine() { return *TM; }

 VModuleKey addModule(std::unique_ptr<Module> M) {
 // Create a new VModuleKey.
 VModuleKey K = ES.allocateVModule();

 // Build a resolver and associate it with the new key.
 Resolvers[K] = createLegacyLookupResolver(
 ES,
 [this](const std::string &Name) -> JITSymbol {
 if (auto Sym = CompileLayer.findSymbol(Name, false))
 return Sym;
 else if (auto Err = Sym.takeError())
 return std::move(Err);
 if (auto SymAddr =
 RTDyldMemoryManager::getSymbolAddressInProcess(Name))
 return JITSymbol(SymAddr, JITSymbolFlags::Exported);
 return nullptr;
 },
 [](Error Err) { cantFail(std::move(Err), "lookupFlags failed"); });

 // Add the module to the JIT with the new key.
 cantFail(CODLayer.addModule(K, std::move(M)));
 return K;
 }

 JITSymbol findSymbol(const std::string Name) {
 std::string MangledName;
 raw_string_ostream MangledNameStream(MangledName);
 Mangler::getNameWithPrefix(MangledNameStream, Name, DL);
 return CODLayer.findSymbol(MangledNameStream.str(), true);
 }

 void removeModule(VModuleKey K) {
 cantFail(CODLayer.removeModule(K));
 }

private:
 std::unique_ptr<Module> optimizeModule(std::unique_ptr<Module> M) {
 // Create a function pass manager.
 auto FPM = llvm::make_unique<legacy::FunctionPassManager>(M.get());

 // Add some optimizations.
 FPM->add(createInstructionCombiningPass());
 FPM->add(createReassociatePass());
 FPM->add(createGVNPass());
 FPM->add(createCFGSimplificationPass());
 FPM->doInitialization();

 // Run the optimizations over all functions in the module being added to
 // the JIT.
 for (auto &F : *M)
 FPM->run(F);

 return M;
 }
};

} // end namespace orc
} // end namespace llvm

#endif // LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H

Next: Extreme Laziness – Using Compile Callbacks to JIT directly from ASTs

4. Building a JIT: Extreme Laziness - Using Compile Callbacks to JIT from ASTs

	Chapter 4 Introduction

	Full Code Listing

This tutorial is under active development. It is incomplete and details may
change frequently. Nonetheless we invite you to try it out as it stands, and
we welcome any feedback.

4.1. Chapter 4 Introduction

Welcome to Chapter 4 of the “Building an ORC-based JIT in LLVM” tutorial. This
chapter introduces the Compile Callbacks and Indirect Stubs APIs and shows how
they can be used to replace the CompileOnDemand layer from
Chapter 3 with a custom lazy-JITing scheme that JITs
directly from Kaleidoscope ASTs.

To be done:

(1) Describe the drawbacks of JITing from IR (have to compile to IR first,
which reduces the benefits of laziness).

(2) Describe CompileCallbackManagers and IndirectStubManagers in detail.

(3) Run through the implementation of addFunctionAST.

4.2. Full Code Listing

Here is the complete code listing for our running example that JITs lazily from
Kaleidoscope ASTS. To build this example, use:

Compile
clang++ -g toy.cpp `llvm-config --cxxflags --ldflags --system-libs --libs core orcjit native` -O3 -o toy
Run
./toy

Here is the code:

//===- KaleidoscopeJIT.h - A simple JIT for Kaleidoscope --------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===--===//
//
// Contains a simple JIT definition for use in the kaleidoscope tutorials.
//
//===--===//

#ifndef LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H
#define LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H

#include "llvm/ADT/STLExtras.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/JITSymbol.h"
#include "llvm/ExecutionEngine/Orc/CompileUtils.h"
#include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
#include "llvm/ExecutionEngine/Orc/IRTransformLayer.h"
#include "llvm/ExecutionEngine/Orc/IndirectionUtils.h"
#include "llvm/ExecutionEngine/Orc/LambdaResolver.h"
#include "llvm/ExecutionEngine/Orc/RTDyldObjectLinkingLayer.h"
#include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Mangler.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/InstCombine/InstCombine.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVN.h"
#include <algorithm>
#include <cassert>
#include <cstdlib>
#include <map>
#include <memory>
#include <string>
#include <vector>

class PrototypeAST;
class ExprAST;

/// FunctionAST - This class represents a function definition itself.
class FunctionAST {
 std::unique_ptr<PrototypeAST> Proto;
 std::unique_ptr<ExprAST> Body;

public:
 FunctionAST(std::unique_ptr<PrototypeAST> Proto,
 std::unique_ptr<ExprAST> Body)
 : Proto(std::move(Proto)), Body(std::move(Body)) {}

 const PrototypeAST& getProto() const;
 const std::string& getName() const;
 llvm::Function *codegen();
};

/// This will compile FnAST to IR, rename the function to add the given
/// suffix (needed to prevent a name-clash with the function's stub),
/// and then take ownership of the module that the function was compiled
/// into.
std::unique_ptr<llvm::Module>
irgenAndTakeOwnership(FunctionAST &FnAST, const std::string &Suffix);

namespace llvm {
namespace orc {

class KaleidoscopeJIT {
private:
 ExecutionSession ES;
 std::shared_ptr<SymbolResolver> Resolver;
 std::unique_ptr<TargetMachine> TM;
 const DataLayout DL;
 RTDyldObjectLinkingLayer ObjectLayer;
 IRCompileLayer<decltype(ObjectLayer), SimpleCompiler> CompileLayer;

 using OptimizeFunction =
 std::function<std::unique_ptr<Module>(std::unique_ptr<Module>)>;

 IRTransformLayer<decltype(CompileLayer), OptimizeFunction> OptimizeLayer;

 std::unique_ptr<JITCompileCallbackManager> CompileCallbackMgr;
 std::unique_ptr<IndirectStubsManager> IndirectStubsMgr;

public:
 KaleidoscopeJIT()
 : Resolver(createLegacyLookupResolver(
 ES,
 [this](const std::string &Name) -> JITSymbol {
 if (auto Sym = IndirectStubsMgr->findStub(Name, false))
 return Sym;
 if (auto Sym = OptimizeLayer.findSymbol(Name, false))
 return Sym;
 else if (auto Err = Sym.takeError())
 return std::move(Err);
 if (auto SymAddr =
 RTDyldMemoryManager::getSymbolAddressInProcess(Name))
 return JITSymbol(SymAddr, JITSymbolFlags::Exported);
 return nullptr;
 },
 [](Error Err) { cantFail(std::move(Err), "lookupFlags failed"); })),
 TM(EngineBuilder().selectTarget()), DL(TM->createDataLayout()),
 ObjectLayer(ES,
 [this](VModuleKey K) {
 return RTDyldObjectLinkingLayer::Resources{
 std::make_shared<SectionMemoryManager>(), Resolver};
 }),
 CompileLayer(ObjectLayer, SimpleCompiler(*TM)),
 OptimizeLayer(CompileLayer,
 [this](std::unique_ptr<Module> M) {
 return optimizeModule(std::move(M));
 }),
 CompileCallbackMgr(orc::createLocalCompileCallbackManager(
 TM->getTargetTriple(), ES, 0)) {
 auto IndirectStubsMgrBuilder =
 orc::createLocalIndirectStubsManagerBuilder(TM->getTargetTriple());
 IndirectStubsMgr = IndirectStubsMgrBuilder();
 llvm::sys::DynamicLibrary::LoadLibraryPermanently(nullptr);
 }

 TargetMachine &getTargetMachine() { return *TM; }

 VModuleKey addModule(std::unique_ptr<Module> M) {
 // Add the module to the JIT with a new VModuleKey.
 auto K = ES.allocateVModule();
 cantFail(OptimizeLayer.addModule(K, std::move(M)));
 return K;
 }

 Error addFunctionAST(std::unique_ptr<FunctionAST> FnAST) {
 // Move ownership of FnAST to a shared pointer - C++11 lambdas don't support
 // capture-by-move, which is be required for unique_ptr.
 auto SharedFnAST = std::shared_ptr<FunctionAST>(std::move(FnAST));

 // Set the action to compile our AST. This lambda will be run if/when
 // execution hits the compile callback (via the stub).
 //
 // The steps to compile are:
 // (1) IRGen the function.
 // (2) Add the IR module to the JIT to make it executable like any other
 // module.
 // (3) Use findSymbol to get the address of the compiled function.
 // (4) Update the stub pointer to point at the implementation so that
 /// subsequent calls go directly to it and bypass the compiler.
 // (5) Return the address of the implementation: this lambda will actually
 // be run inside an attempted call to the function, and we need to
 // continue on to the implementation to complete the attempted call.
 // The JIT runtime (the resolver block) will use the return address of
 // this function as the address to continue at once it has reset the
 // CPU state to what it was immediately before the call.
 auto CompileAction = [this, SharedFnAST]() {
 auto M = irgenAndTakeOwnership(*SharedFnAST, "$impl");
 addModule(std::move(M));
 auto Sym = findSymbol(SharedFnAST->getName() + "$impl");
 assert(Sym && "Couldn't find compiled function?");
 JITTargetAddress SymAddr = cantFail(Sym.getAddress());
 if (auto Err = IndirectStubsMgr->updatePointer(
 mangle(SharedFnAST->getName()), SymAddr)) {
 logAllUnhandledErrors(std::move(Err), errs(),
 "Error updating function pointer: ");
 exit(1);
 }

 return SymAddr;
 };

 // Create a CompileCallback using the CompileAction - this is the re-entry
 // point into the compiler for functions that haven't been compiled yet.
 auto CCAddr = cantFail(
 CompileCallbackMgr->getCompileCallback(std::move(CompileAction)));

 // Create an indirect stub. This serves as the functions "canonical
 // definition" - an unchanging (constant address) entry point to the
 // function implementation.
 // Initially we point the stub's function-pointer at the compile callback
 // that we just created. When the compile action for the callback is run we
 // will update the stub's function pointer to point at the function
 // implementation that we just implemented.
 if (auto Err = IndirectStubsMgr->createStub(
 mangle(SharedFnAST->getName()), CCAddr, JITSymbolFlags::Exported))
 return Err;

 return Error::success();
 }

 JITSymbol findSymbol(const std::string Name) {
 return OptimizeLayer.findSymbol(mangle(Name), true);
 }

 void removeModule(VModuleKey K) {
 cantFail(OptimizeLayer.removeModule(K));
 }

private:
 std::string mangle(const std::string &Name) {
 std::string MangledName;
 raw_string_ostream MangledNameStream(MangledName);
 Mangler::getNameWithPrefix(MangledNameStream, Name, DL);
 return MangledNameStream.str();
 }

 std::unique_ptr<Module> optimizeModule(std::unique_ptr<Module> M) {
 // Create a function pass manager.
 auto FPM = llvm::make_unique<legacy::FunctionPassManager>(M.get());

 // Add some optimizations.
 FPM->add(createInstructionCombiningPass());
 FPM->add(createReassociatePass());
 FPM->add(createGVNPass());
 FPM->add(createCFGSimplificationPass());
 FPM->doInitialization();

 // Run the optimizations over all functions in the module being added to
 // the JIT.
 for (auto &F : *M)
 FPM->run(F);

 return M;
 }
};

} // end namespace orc
} // end namespace llvm

#endif // LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H

Next: Remote-JITing – Process-isolation and laziness-at-a-distance

5. Building a JIT: Remote-JITing – Process Isolation and Laziness at a Distance

	Chapter 5 Introduction

	Full Code Listing

This tutorial is under active development. It is incomplete and details may
change frequently. Nonetheless we invite you to try it out as it stands, and
we welcome any feedback.

5.1. Chapter 5 Introduction

Welcome to Chapter 5 of the “Building an ORC-based JIT in LLVM” tutorial. This
chapter introduces the ORC RemoteJIT Client/Server APIs and shows how to use
them to build a JIT stack that will execute its code via a communications
channel with a different process. This can be a separate process on the same
machine, a process on a different machine, or even a process on a different
platform/architecture. The code builds on top of the lazy-AST-compiling JIT
stack from Chapter 4.

To be done – this is going to be a long one:

(1) Introduce channels, RPC, RemoteJIT Client and Server APIs

(2) Describe the client code in greater detail. Discuss modifications of the
KaleidoscopeJIT class, and the REPL itself.

(3) Describe the server code.

(4) Describe how to run the demo.

5.2. Full Code Listing

Here is the complete code listing for our running example that JITs lazily from
Kaleidoscope ASTS. To build this example, use:

Compile
clang++ -g toy.cpp `llvm-config --cxxflags --ldflags --system-libs --libs core orcjit native` -O3 -o toy
clang++ -g Server/server.cpp `llvm-config --cxxflags --ldflags --system-libs --libs core orcjit native` -O3 -o toy-server
Run
./toy-server &
./toy

Here is the code for the modified KaleidoscopeJIT:

//===- KaleidoscopeJIT.h - A simple JIT for Kaleidoscope --------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===--===//
//
// Contains a simple JIT definition for use in the kaleidoscope tutorials.
//
//===--===//

#ifndef LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H
#define LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H

#include "RemoteJITUtils.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/JITSymbol.h"
#include "llvm/ExecutionEngine/Orc/CompileUtils.h"
#include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
#include "llvm/ExecutionEngine/Orc/IRTransformLayer.h"
#include "llvm/ExecutionEngine/Orc/IndirectionUtils.h"
#include "llvm/ExecutionEngine/Orc/LambdaResolver.h"
#include "llvm/ExecutionEngine/Orc/OrcRemoteTargetClient.h"
#include "llvm/ExecutionEngine/Orc/RTDyldObjectLinkingLayer.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Mangler.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/InstCombine/InstCombine.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVN.h"
#include <algorithm>
#include <cassert>
#include <cstdlib>
#include <map>
#include <memory>
#include <string>
#include <vector>

class PrototypeAST;
class ExprAST;

/// FunctionAST - This class represents a function definition itself.
class FunctionAST {
 std::unique_ptr<PrototypeAST> Proto;
 std::unique_ptr<ExprAST> Body;

public:
 FunctionAST(std::unique_ptr<PrototypeAST> Proto,
 std::unique_ptr<ExprAST> Body)
 : Proto(std::move(Proto)), Body(std::move(Body)) {}

 const PrototypeAST& getProto() const;
 const std::string& getName() const;
 llvm::Function *codegen();
};

/// This will compile FnAST to IR, rename the function to add the given
/// suffix (needed to prevent a name-clash with the function's stub),
/// and then take ownership of the module that the function was compiled
/// into.
std::unique_ptr<llvm::Module>
irgenAndTakeOwnership(FunctionAST &FnAST, const std::string &Suffix);

namespace llvm {
namespace orc {

// Typedef the remote-client API.
using MyRemote = remote::OrcRemoteTargetClient;

class KaleidoscopeJIT {
private:
 ExecutionSession &ES;
 std::shared_ptr<SymbolResolver> Resolver;
 std::unique_ptr<TargetMachine> TM;
 const DataLayout DL;
 RTDyldObjectLinkingLayer ObjectLayer;
 IRCompileLayer<decltype(ObjectLayer), SimpleCompiler> CompileLayer;

 using OptimizeFunction =
 std::function<std::unique_ptr<Module>(std::unique_ptr<Module>)>;

 IRTransformLayer<decltype(CompileLayer), OptimizeFunction> OptimizeLayer;

 JITCompileCallbackManager *CompileCallbackMgr;
 std::unique_ptr<IndirectStubsManager> IndirectStubsMgr;
 MyRemote &Remote;

public:
 KaleidoscopeJIT(ExecutionSession &ES, MyRemote &Remote)
 : ES(ES),
 Resolver(createLegacyLookupResolver(
 ES,
 [this](const std::string &Name) -> JITSymbol {
 if (auto Sym = IndirectStubsMgr->findStub(Name, false))
 return Sym;
 if (auto Sym = OptimizeLayer.findSymbol(Name, false))
 return Sym;
 else if (auto Err = Sym.takeError())
 return std::move(Err);
 if (auto Addr = cantFail(this->Remote.getSymbolAddress(Name)))
 return JITSymbol(Addr, JITSymbolFlags::Exported);
 return nullptr;
 },
 [](Error Err) { cantFail(std::move(Err), "lookupFlags failed"); })),
 TM(EngineBuilder().selectTarget(Triple(Remote.getTargetTriple()), "",
 "", SmallVector<std::string, 0>())),
 DL(TM->createDataLayout()),
 ObjectLayer(ES,
 [this](VModuleKey K) {
 return RTDyldObjectLinkingLayer::Resources{
 cantFail(this->Remote.createRemoteMemoryManager()),
 Resolver};
 }),
 CompileLayer(ObjectLayer, SimpleCompiler(*TM)),
 OptimizeLayer(CompileLayer,
 [this](std::unique_ptr<Module> M) {
 return optimizeModule(std::move(M));
 }),
 Remote(Remote) {
 auto CCMgrOrErr = Remote.enableCompileCallbacks(0);
 if (!CCMgrOrErr) {
 logAllUnhandledErrors(CCMgrOrErr.takeError(), errs(),
 "Error enabling remote compile callbacks:");
 exit(1);
 }
 CompileCallbackMgr = &*CCMgrOrErr;
 IndirectStubsMgr = cantFail(Remote.createIndirectStubsManager());
 llvm::sys::DynamicLibrary::LoadLibraryPermanently(nullptr);
 }

 TargetMachine &getTargetMachine() { return *TM; }

 VModuleKey addModule(std::unique_ptr<Module> M) {
 // Add the module with a new VModuleKey.
 auto K = ES.allocateVModule();
 cantFail(OptimizeLayer.addModule(K, std::move(M)));
 return K;
 }

 Error addFunctionAST(std::unique_ptr<FunctionAST> FnAST) {
 // Move ownership of FnAST to a shared pointer - C++11 lambdas don't support
 // capture-by-move, which is be required for unique_ptr.
 auto SharedFnAST = std::shared_ptr<FunctionAST>(std::move(FnAST));

 // Set the action to compile our AST. This lambda will be run if/when
 // execution hits the compile callback (via the stub).
 //
 // The steps to compile are:
 // (1) IRGen the function.
 // (2) Add the IR module to the JIT to make it executable like any other
 // module.
 // (3) Use findSymbol to get the address of the compiled function.
 // (4) Update the stub pointer to point at the implementation so that
 /// subsequent calls go directly to it and bypass the compiler.
 // (5) Return the address of the implementation: this lambda will actually
 // be run inside an attempted call to the function, and we need to
 // continue on to the implementation to complete the attempted call.
 // The JIT runtime (the resolver block) will use the return address of
 // this function as the address to continue at once it has reset the
 // CPU state to what it was immediately before the call.
 auto CompileAction = [this, SharedFnAST]() {
 auto M = irgenAndTakeOwnership(*SharedFnAST, "$impl");
 addModule(std::move(M));
 auto Sym = findSymbol(SharedFnAST->getName() + "$impl");
 assert(Sym && "Couldn't find compiled function?");
 JITTargetAddress SymAddr = cantFail(Sym.getAddress());
 if (auto Err = IndirectStubsMgr->updatePointer(
 mangle(SharedFnAST->getName()), SymAddr)) {
 logAllUnhandledErrors(std::move(Err), errs(),
 "Error updating function pointer: ");
 exit(1);
 }

 return SymAddr;
 };

 // Create a CompileCallback suing the CompileAction - this is the re-entry
 // point into the compiler for functions that haven't been compiled yet.
 auto CCAddr = cantFail(
 CompileCallbackMgr->getCompileCallback(std::move(CompileAction)));

 // Create an indirect stub. This serves as the functions "canonical
 // definition" - an unchanging (constant address) entry point to the
 // function implementation.
 // Initially we point the stub's function-pointer at the compile callback
 // that we just created. In the compile action for the callback we will
 // update the stub's function pointer to point at the function
 // implementation that we just implemented.
 if (auto Err = IndirectStubsMgr->createStub(
 mangle(SharedFnAST->getName()), CCAddr, JITSymbolFlags::Exported))
 return Err;

 return Error::success();
 }

 Error executeRemoteExpr(JITTargetAddress ExprAddr) {
 return Remote.callVoidVoid(ExprAddr);
 }

 JITSymbol findSymbol(const std::string Name) {
 return OptimizeLayer.findSymbol(mangle(Name), true);
 }

 void removeModule(VModuleKey K) {
 cantFail(OptimizeLayer.removeModule(K));
 }

private:
 std::string mangle(const std::string &Name) {
 std::string MangledName;
 raw_string_ostream MangledNameStream(MangledName);
 Mangler::getNameWithPrefix(MangledNameStream, Name, DL);
 return MangledNameStream.str();
 }

 std::unique_ptr<Module> optimizeModule(std::unique_ptr<Module> M) {
 // Create a function pass manager.
 auto FPM = llvm::make_unique<legacy::FunctionPassManager>(M.get());

 // Add some optimizations.
 FPM->add(createInstructionCombiningPass());
 FPM->add(createReassociatePass());
 FPM->add(createGVNPass());
 FPM->add(createCFGSimplificationPass());
 FPM->doInitialization();

 // Run the optimizations over all functions in the module being added to
 // the JIT.
 for (auto &F : *M)
 FPM->run(F);

 return M;
 }
};

} // end namespace orc
} // end namespace llvm

#endif // LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H

And the code for the JIT server:

#include "../RemoteJITUtils.h"
#include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
#include "llvm/ExecutionEngine/Orc/OrcRemoteTargetServer.h"
#include "llvm/ExecutionEngine/Orc/OrcABISupport.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/TargetSelect.h"
#include <cstdint>
#include <cstdio>
#include <cstring>
#include <string>
#include <netinet/in.h>
#include <sys/socket.h>

using namespace llvm;
using namespace llvm::orc;

// Command line argument for TCP port.
cl::opt<uint32_t> Port("port",
 cl::desc("TCP port to listen on"),
 cl::init(20000));

ExitOnError ExitOnErr;

using MainFun = int (*)(int, const char*[]);

template <typename NativePtrT>
NativePtrT MakeNative(uint64_t P) {
 return reinterpret_cast<NativePtrT>(static_cast<uintptr_t>(P));
}

extern "C"
void printExprResult(double Val) {
 printf("Expression evaluated to: %f\n", Val);
}

// --- LAZY COMPILE TEST ---
int main(int argc, char* argv[]) {
 if (argc == 0)
 ExitOnErr.setBanner("jit_server: ");
 else
 ExitOnErr.setBanner(std::string(argv[0]) + ": ");

 // --- Initialize LLVM ---
 cl::ParseCommandLineOptions(argc, argv, "LLVM lazy JIT example.\n");

 InitializeNativeTarget();
 InitializeNativeTargetAsmPrinter();
 InitializeNativeTargetAsmParser();

 if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr)) {
 errs() << "Error loading program symbols.\n";
 return 1;
 }

 // --- Initialize remote connection ---

 int sockfd = socket(PF_INET, SOCK_STREAM, 0);
 sockaddr_in servAddr, clientAddr;
 socklen_t clientAddrLen = sizeof(clientAddr);
 memset(&servAddr, 0, sizeof(servAddr));
 servAddr.sin_family = PF_INET;
 servAddr.sin_family = INADDR_ANY;
 servAddr.sin_port = htons(Port);

 {
 // avoid "Address already in use" error.
 int yes = 1;
 if (setsockopt(sockfd,SOL_SOCKET,SO_REUSEADDR,&yes,sizeof(int)) == -1) {
 errs() << "Error calling setsockopt.\n";
 return 1;
 }
 }

 if (bind(sockfd, reinterpret_cast<sockaddr*>(&servAddr),
 sizeof(servAddr)) < 0) {
 errs() << "Error on binding.\n";
 return 1;
 }
 listen(sockfd, 1);
 int newsockfd = accept(sockfd, reinterpret_cast<sockaddr*>(&clientAddr),
 &clientAddrLen);

 auto SymbolLookup =
 [](const std::string &Name) {
 return RTDyldMemoryManager::getSymbolAddressInProcess(Name);
 };

 auto RegisterEHFrames =
 [](uint8_t *Addr, uint32_t Size) {
 RTDyldMemoryManager::registerEHFramesInProcess(Addr, Size);
 };

 auto DeregisterEHFrames =
 [](uint8_t *Addr, uint32_t Size) {
 RTDyldMemoryManager::deregisterEHFramesInProcess(Addr, Size);
 };

 FDRPCChannel TCPChannel(newsockfd, newsockfd);

 using MyServerT = remote::OrcRemoteTargetServer<FDRPCChannel, OrcX86_64_SysV>;

 MyServerT Server(TCPChannel, SymbolLookup, RegisterEHFrames, DeregisterEHFrames);

 while (!Server.receivedTerminate())
 ExitOnErr(Server.handleOne());

 return 0;
}

LLVM 8.0.0 Release Notes

	Introduction

	Non-comprehensive list of changes in this release

	Changes to the LLVM IR

	Changes to the ARM Backend

	Changes to the MIPS Target

	Changes to the PowerPC Target

	Changes to the X86 Target

	Changes to the AMDGPU Target

	Changes to the AVR Target

	Changes to the OCaml bindings

	Changes to the C API

	Changes to the DAG infrastructure

	External Open Source Projects Using LLVM 8

	Additional Information

Warning

These are in-progress notes for the upcoming LLVM 8 release.
Release notes for previous releases can be found on
the Download Page [http://releases.llvm.org/download.html].

Introduction

This document contains the release notes for the LLVM Compiler Infrastructure,
release 8.0.0. Here we describe the status of LLVM, including major improvements
from the previous release, improvements in various subprojects of LLVM, and
some of the current users of the code. All LLVM releases may be downloaded
from the LLVM releases web site [http://llvm.org/releases/].

For more information about LLVM, including information about the latest
release, please check out the main LLVM web site [http://llvm.org/]. If you
have questions or comments, the LLVM Developer’s Mailing List [http://lists.llvm.org/mailman/listinfo/llvm-dev] is a good place to send
them.

Note that if you are reading this file from a Subversion checkout or the main
LLVM web page, this document applies to the next release, not the current
one. To see the release notes for a specific release, please see the releases
page [http://llvm.org/releases/].

Non-comprehensive list of changes in this release

	Note..

Changes to the LLVM IR

Changes to the ARM Backend

During this release …

Changes to the MIPS Target

During this release …

Changes to the PowerPC Target

During this release …

Changes to the X86 Target

During this release …

Changes to the AMDGPU Target

During this release …

Changes to the AVR Target

During this release …

Changes to the OCaml bindings

Changes to the C API

Changes to the DAG infrastructure

External Open Source Projects Using LLVM 8

	A project…

Additional Information

A wide variety of additional information is available on the LLVM web page [http://llvm.org/], in particular in the documentation [http://llvm.org/docs/] section. The web page also contains versions of the
API documentation which is up-to-date with the Subversion version of the source
code. You can access versions of these documents specific to this release by
going into the llvm/docs/ directory in the LLVM tree.

If you have any questions or comments about LLVM, please feel free to contact
us via the mailing lists [http://llvm.org/docs/#maillist].

LLVM’s Analysis and Transform Passes

	Introduction

	Analysis Passes

	-aa-eval: Exhaustive Alias Analysis Precision Evaluator

	-basicaa: Basic Alias Analysis (stateless AA impl)

	-basiccg: Basic CallGraph Construction

	-count-aa: Count Alias Analysis Query Responses

	-da: Dependence Analysis

	-debug-aa: AA use debugger

	-domfrontier: Dominance Frontier Construction

	-domtree: Dominator Tree Construction

	-dot-callgraph: Print Call Graph to “dot” file

	-dot-cfg: Print CFG of function to “dot” file

	-dot-cfg-only: Print CFG of function to “dot” file (with no function bodies)

	-dot-dom: Print dominance tree of function to “dot” file

	-dot-dom-only: Print dominance tree of function to “dot” file (with no function bodies)

	-dot-postdom: Print postdominance tree of function to “dot” file

	-dot-postdom-only: Print postdominance tree of function to “dot” file (with no function bodies)

	-globalsmodref-aa: Simple mod/ref analysis for globals

	-instcount: Counts the various types of Instructions

	-intervals: Interval Partition Construction

	-iv-users: Induction Variable Users

	-lazy-value-info: Lazy Value Information Analysis

	-libcall-aa: LibCall Alias Analysis

	-lint: Statically lint-checks LLVM IR

	-loops: Natural Loop Information

	-memdep: Memory Dependence Analysis

	-module-debuginfo: Decodes module-level debug info

	-postdomfrontier: Post-Dominance Frontier Construction

	-postdomtree: Post-Dominator Tree Construction

	-print-alias-sets: Alias Set Printer

	-print-callgraph: Print a call graph

	-print-callgraph-sccs: Print SCCs of the Call Graph

	-print-cfg-sccs: Print SCCs of each function CFG

	-print-dom-info: Dominator Info Printer

	-print-externalfnconstants: Print external fn callsites passed constants

	-print-function: Print function to stderr

	-print-module: Print module to stderr

	-print-used-types: Find Used Types

	-regions: Detect single entry single exit regions

	-scalar-evolution: Scalar Evolution Analysis

	-scev-aa: ScalarEvolution-based Alias Analysis

	-targetdata: Target Data Layout

	Transform Passes

	-adce: Aggressive Dead Code Elimination

	-always-inline: Inliner for always_inline functions

	-argpromotion: Promote ‘by reference’ arguments to scalars

	-bb-vectorize: Basic-Block Vectorization

	-block-placement: Profile Guided Basic Block Placement

	-break-crit-edges: Break critical edges in CFG

	-codegenprepare: Optimize for code generation

	-constmerge: Merge Duplicate Global Constants

	-constprop: Simple constant propagation

	-dce: Dead Code Elimination

	-deadargelim: Dead Argument Elimination

	-deadtypeelim: Dead Type Elimination

	-die: Dead Instruction Elimination

	-dse: Dead Store Elimination

	-functionattrs: Deduce function attributes

	-globaldce: Dead Global Elimination

	-globalopt: Global Variable Optimizer

	-gvn: Global Value Numbering

	-indvars: Canonicalize Induction Variables

	-inline: Function Integration/Inlining

	-instcombine: Combine redundant instructions

	-aggressive-instcombine: Combine expression patterns

	-internalize: Internalize Global Symbols

	-ipconstprop: Interprocedural constant propagation

	-ipsccp: Interprocedural Sparse Conditional Constant Propagation

	-jump-threading: Jump Threading

	-lcssa: Loop-Closed SSA Form Pass

	-licm: Loop Invariant Code Motion

	-loop-deletion: Delete dead loops

	-loop-extract: Extract loops into new functions

	-loop-extract-single: Extract at most one loop into a new function

	-loop-reduce: Loop Strength Reduction

	-loop-rotate: Rotate Loops

	-loop-simplify: Canonicalize natural loops

	-loop-unroll: Unroll loops

	-loop-unroll-and-jam: Unroll and Jam loops

	-loop-unswitch: Unswitch loops

	-loweratomic: Lower atomic intrinsics to non-atomic form

	-lowerinvoke: Lower invokes to calls, for unwindless code generators

	-lowerswitch: Lower SwitchInsts to branches

	-mem2reg: Promote Memory to Register

	-memcpyopt: MemCpy Optimization

	-mergefunc: Merge Functions

	-mergereturn: Unify function exit nodes

	-partial-inliner: Partial Inliner

	-prune-eh: Remove unused exception handling info

	-reassociate: Reassociate expressions

	-reg2mem: Demote all values to stack slots

	-sroa: Scalar Replacement of Aggregates

	-sccp: Sparse Conditional Constant Propagation

	-simplifycfg: Simplify the CFG

	-sink: Code sinking

	-strip: Strip all symbols from a module

	-strip-dead-debug-info: Strip debug info for unused symbols

	-strip-dead-prototypes: Strip Unused Function Prototypes

	-strip-debug-declare: Strip all llvm.dbg.declare intrinsics

	-strip-nondebug: Strip all symbols, except dbg symbols, from a module

	-tailcallelim: Tail Call Elimination

	Utility Passes

	-deadarghaX0r: Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)

	-extract-blocks: Extract Basic Blocks From Module (for bugpoint use)

	-instnamer: Assign names to anonymous instructions

	-verify: Module Verifier

	-view-cfg: View CFG of function

	-view-cfg-only: View CFG of function (with no function bodies)

	-view-dom: View dominance tree of function

	-view-dom-only: View dominance tree of function (with no function bodies)

	-view-postdom: View postdominance tree of function

	-view-postdom-only: View postdominance tree of function (with no function bodies)

Introduction

This document serves as a high level summary of the optimization features that
LLVM provides. Optimizations are implemented as Passes that traverse some
portion of a program to either collect information or transform the program.
The table below divides the passes that LLVM provides into three categories.
Analysis passes compute information that other passes can use or for debugging
or program visualization purposes. Transform passes can use (or invalidate)
the analysis passes. Transform passes all mutate the program in some way.
Utility passes provides some utility but don’t otherwise fit categorization.
For example passes to extract functions to bitcode or write a module to bitcode
are neither analysis nor transform passes. The table of contents above
provides a quick summary of each pass and links to the more complete pass
description later in the document.

Analysis Passes

This section describes the LLVM Analysis Passes.

-aa-eval: Exhaustive Alias Analysis Precision Evaluator

This is a simple N^2 alias analysis accuracy evaluator. Basically, for each
function in the program, it simply queries to see how the alias analysis
implementation answers alias queries between each pair of pointers in the
function.

This is inspired and adapted from code by: Naveen Neelakantam, Francesco
Spadini, and Wojciech Stryjewski.

-basicaa: Basic Alias Analysis (stateless AA impl)

A basic alias analysis pass that implements identities (two different globals
cannot alias, etc), but does no stateful analysis.

-basiccg: Basic CallGraph Construction

Yet to be written.

-count-aa: Count Alias Analysis Query Responses

A pass which can be used to count how many alias queries are being made and how
the alias analysis implementation being used responds.

-da: Dependence Analysis

Dependence analysis framework, which is used to detect dependences in memory
accesses.

-debug-aa: AA use debugger

This simple pass checks alias analysis users to ensure that if they create a
new value, they do not query AA without informing it of the value. It acts as
a shim over any other AA pass you want.

Yes keeping track of every value in the program is expensive, but this is a
debugging pass.

-domfrontier: Dominance Frontier Construction

This pass is a simple dominator construction algorithm for finding forward
dominator frontiers.

-domtree: Dominator Tree Construction

This pass is a simple dominator construction algorithm for finding forward
dominators.

-dot-callgraph: Print Call Graph to “dot” file

This pass, only available in opt, prints the call graph into a .dot
graph. This graph can then be processed with the “dot” tool to convert it to
postscript or some other suitable format.

-dot-cfg: Print CFG of function to “dot” file

This pass, only available in opt, prints the control flow graph into a
.dot graph. This graph can then be processed with the dot tool
to convert it to postscript or some other suitable format.

-dot-cfg-only: Print CFG of function to “dot” file (with no function bodies)

This pass, only available in opt, prints the control flow graph into a
.dot graph, omitting the function bodies. This graph can then be processed
with the dot tool to convert it to postscript or some other suitable
format.

-dot-dom: Print dominance tree of function to “dot” file

This pass, only available in opt, prints the dominator tree into a .dot
graph. This graph can then be processed with the dot tool to
convert it to postscript or some other suitable format.

-dot-dom-only: Print dominance tree of function to “dot” file (with no function bodies)

This pass, only available in opt, prints the dominator tree into a .dot
graph, omitting the function bodies. This graph can then be processed with the
dot tool to convert it to postscript or some other suitable format.

-dot-postdom: Print postdominance tree of function to “dot” file

This pass, only available in opt, prints the post dominator tree into a
.dot graph. This graph can then be processed with the dot tool
to convert it to postscript or some other suitable format.

-dot-postdom-only: Print postdominance tree of function to “dot” file (with no function bodies)

This pass, only available in opt, prints the post dominator tree into a
.dot graph, omitting the function bodies. This graph can then be processed
with the dot tool to convert it to postscript or some other suitable
format.

-globalsmodref-aa: Simple mod/ref analysis for globals

This simple pass provides alias and mod/ref information for global values that
do not have their address taken, and keeps track of whether functions read or
write memory (are “pure”). For this simple (but very common) case, we can
provide pretty accurate and useful information.

-instcount: Counts the various types of Instructions

This pass collects the count of all instructions and reports them.

-intervals: Interval Partition Construction

This analysis calculates and represents the interval partition of a function,
or a preexisting interval partition.

In this way, the interval partition may be used to reduce a flow graph down to
its degenerate single node interval partition (unless it is irreducible).

-iv-users: Induction Variable Users

Bookkeeping for “interesting” users of expressions computed from induction
variables.

-lazy-value-info: Lazy Value Information Analysis

Interface for lazy computation of value constraint information.

-libcall-aa: LibCall Alias Analysis

LibCall Alias Analysis.

-lint: Statically lint-checks LLVM IR

This pass statically checks for common and easily-identified constructs which
produce undefined or likely unintended behavior in LLVM IR.

It is not a guarantee of correctness, in two ways. First, it isn’t
comprehensive. There are checks which could be done statically which are not
yet implemented. Some of these are indicated by TODO comments, but those
aren’t comprehensive either. Second, many conditions cannot be checked
statically. This pass does no dynamic instrumentation, so it can’t check for
all possible problems.

Another limitation is that it assumes all code will be executed. A store
through a null pointer in a basic block which is never reached is harmless, but
this pass will warn about it anyway.

Optimization passes may make conditions that this pass checks for more or less
obvious. If an optimization pass appears to be introducing a warning, it may
be that the optimization pass is merely exposing an existing condition in the
code.

This code may be run before instcombine. In many
cases, instcombine checks for the same kinds of things and turns instructions
with undefined behavior into unreachable (or equivalent). Because of this,
this pass makes some effort to look through bitcasts and so on.

-loops: Natural Loop Information

This analysis is used to identify natural loops and determine the loop depth of
various nodes of the CFG. Note that the loops identified may actually be
several natural loops that share the same header node… not just a single
natural loop.

-memdep: Memory Dependence Analysis

An analysis that determines, for a given memory operation, what preceding
memory operations it depends on. It builds on alias analysis information, and
tries to provide a lazy, caching interface to a common kind of alias
information query.

-module-debuginfo: Decodes module-level debug info

This pass decodes the debug info metadata in a module and prints in a
(sufficiently-prepared-) human-readable form.

For example, run this pass from opt along with the -analyze option, and
it’ll print to standard output.

-postdomfrontier: Post-Dominance Frontier Construction

This pass is a simple post-dominator construction algorithm for finding
post-dominator frontiers.

-postdomtree: Post-Dominator Tree Construction

This pass is a simple post-dominator construction algorithm for finding
post-dominators.

-print-alias-sets: Alias Set Printer

Yet to be written.

-print-callgraph: Print a call graph

This pass, only available in opt, prints the call graph to standard error
in a human-readable form.

-print-callgraph-sccs: Print SCCs of the Call Graph

This pass, only available in opt, prints the SCCs of the call graph to
standard error in a human-readable form.

-print-cfg-sccs: Print SCCs of each function CFG

This pass, only available in opt, printsthe SCCs of each function CFG to
standard error in a human-readable fom.

-print-dom-info: Dominator Info Printer

Dominator Info Printer.

-print-externalfnconstants: Print external fn callsites passed constants

This pass, only available in opt, prints out call sites to external
functions that are called with constant arguments. This can be useful when
looking for standard library functions we should constant fold or handle in
alias analyses.

-print-function: Print function to stderr

The PrintFunctionPass class is designed to be pipelined with other
FunctionPasses, and prints out the functions of the module as they are
processed.

-print-module: Print module to stderr

This pass simply prints out the entire module when it is executed.

-print-used-types: Find Used Types

This pass is used to seek out all of the types in use by the program. Note
that this analysis explicitly does not include types only used by the symbol
table.

-regions: Detect single entry single exit regions

The RegionInfo pass detects single entry single exit regions in a function,
where a region is defined as any subgraph that is connected to the remaining
graph at only two spots. Furthermore, an hierarchical region tree is built.

-scalar-evolution: Scalar Evolution Analysis

The ScalarEvolution analysis can be used to analyze and catagorize scalar
expressions in loops. It specializes in recognizing general induction
variables, representing them with the abstract and opaque SCEV class.
Given this analysis, trip counts of loops and other important properties can be
obtained.

This analysis is primarily useful for induction variable substitution and
strength reduction.

-scev-aa: ScalarEvolution-based Alias Analysis

Simple alias analysis implemented in terms of ScalarEvolution queries.

This differs from traditional loop dependence analysis in that it tests for
dependencies within a single iteration of a loop, rather than dependencies
between different iterations.

ScalarEvolution has a more complete understanding of pointer arithmetic
than BasicAliasAnalysis’ collection of ad-hoc analyses.

-targetdata: Target Data Layout

Provides other passes access to information on how the size and alignment
required by the target ABI for various data types.

Transform Passes

This section describes the LLVM Transform Passes.

-adce: Aggressive Dead Code Elimination

ADCE aggressively tries to eliminate code. This pass is similar to DCE but it assumes that values are dead until proven otherwise. This
is similar to SCCP, except applied to the liveness of
values.

-always-inline: Inliner for always_inline functions

A custom inliner that handles only functions that are marked as “always
inline”.

-argpromotion: Promote ‘by reference’ arguments to scalars

This pass promotes “by reference” arguments to be “by value” arguments. In
practice, this means looking for internal functions that have pointer
arguments. If it can prove, through the use of alias analysis, that an
argument is only loaded, then it can pass the value into the function instead
of the address of the value. This can cause recursive simplification of code
and lead to the elimination of allocas (especially in C++ template code like
the STL).

This pass also handles aggregate arguments that are passed into a function,
scalarizing them if the elements of the aggregate are only loaded. Note that
it refuses to scalarize aggregates which would require passing in more than
three operands to the function, because passing thousands of operands for a
large array or structure is unprofitable!

Note that this transformation could also be done for arguments that are only
stored to (returning the value instead), but does not currently. This case
would be best handled when and if LLVM starts supporting multiple return values
from functions.

-bb-vectorize: Basic-Block Vectorization

This pass combines instructions inside basic blocks to form vector
instructions. It iterates over each basic block, attempting to pair compatible
instructions, repeating this process until no additional pairs are selected for
vectorization. When the outputs of some pair of compatible instructions are
used as inputs by some other pair of compatible instructions, those pairs are
part of a potential vectorization chain. Instruction pairs are only fused into
vector instructions when they are part of a chain longer than some threshold
length. Moreover, the pass attempts to find the best possible chain for each
pair of compatible instructions. These heuristics are intended to prevent
vectorization in cases where it would not yield a performance increase of the
resulting code.

-block-placement: Profile Guided Basic Block Placement

This pass is a very simple profile guided basic block placement algorithm. The
idea is to put frequently executed blocks together at the start of the function
and hopefully increase the number of fall-through conditional branches. If
there is no profile information for a particular function, this pass basically
orders blocks in depth-first order.

-break-crit-edges: Break critical edges in CFG

Break all of the critical edges in the CFG by inserting a dummy basic block.
It may be “required” by passes that cannot deal with critical edges. This
transformation obviously invalidates the CFG, but can update forward dominator
(set, immediate dominators, tree, and frontier) information.

-codegenprepare: Optimize for code generation

This pass munges the code in the input function to better prepare it for
SelectionDAG-based code generation. This works around limitations in its
basic-block-at-a-time approach. It should eventually be removed.

-constmerge: Merge Duplicate Global Constants

Merges duplicate global constants together into a single constant that is
shared. This is useful because some passes (i.e., TraceValues) insert a lot of
string constants into the program, regardless of whether or not an existing
string is available.

-constprop: Simple constant propagation

This pass implements constant propagation and merging. It looks for
instructions involving only constant operands and replaces them with a constant
value instead of an instruction. For example:

add i32 1, 2

becomes

i32 3

NOTE: this pass has a habit of making definitions be dead. It is a good idea
to run a Dead Instruction Elimination pass sometime after
running this pass.

-dce: Dead Code Elimination

Dead code elimination is similar to dead instruction elimination, but it rechecks instructions that were used by removed
instructions to see if they are newly dead.

-deadargelim: Dead Argument Elimination

This pass deletes dead arguments from internal functions. Dead argument
elimination removes arguments which are directly dead, as well as arguments
only passed into function calls as dead arguments of other functions. This
pass also deletes dead arguments in a similar way.

This pass is often useful as a cleanup pass to run after aggressive
interprocedural passes, which add possibly-dead arguments.

-deadtypeelim: Dead Type Elimination

This pass is used to cleanup the output of GCC. It eliminate names for types
that are unused in the entire translation unit, using the find used types pass.

-die: Dead Instruction Elimination

Dead instruction elimination performs a single pass over the function, removing
instructions that are obviously dead.

-dse: Dead Store Elimination

A trivial dead store elimination that only considers basic-block local
redundant stores.

-functionattrs: Deduce function attributes

A simple interprocedural pass which walks the call-graph, looking for functions
which do not access or only read non-local memory, and marking them
readnone/readonly. In addition, it marks function arguments (of
pointer type) “nocapture” if a call to the function does not create any
copies of the pointer value that outlive the call. This more or less means
that the pointer is only dereferenced, and not returned from the function or
stored in a global. This pass is implemented as a bottom-up traversal of the
call-graph.

-globaldce: Dead Global Elimination

This transform is designed to eliminate unreachable internal globals from the
program. It uses an aggressive algorithm, searching out globals that are known
to be alive. After it finds all of the globals which are needed, it deletes
whatever is left over. This allows it to delete recursive chunks of the
program which are unreachable.

-globalopt: Global Variable Optimizer

This pass transforms simple global variables that never have their address
taken. If obviously true, it marks read/write globals as constant, deletes
variables only stored to, etc.

-gvn: Global Value Numbering

This pass performs global value numbering to eliminate fully and partially
redundant instructions. It also performs redundant load elimination.

-indvars: Canonicalize Induction Variables

This transformation analyzes and transforms the induction variables (and
computations derived from them) into simpler forms suitable for subsequent
analysis and transformation.

This transformation makes the following changes to each loop with an
identifiable induction variable:

	All loops are transformed to have a single canonical induction variable
which starts at zero and steps by one.

	The canonical induction variable is guaranteed to be the first PHI node in
the loop header block.

	Any pointer arithmetic recurrences are raised to use array subscripts.

If the trip count of a loop is computable, this pass also makes the following
changes:

	The exit condition for the loop is canonicalized to compare the induction
value against the exit value. This turns loops like:

for (i = 7; i*i < 1000; ++i)

into

for (i = 0; i != 25; ++i)

	Any use outside of the loop of an expression derived from the indvar is
changed to compute the derived value outside of the loop, eliminating the
dependence on the exit value of the induction variable. If the only purpose
of the loop is to compute the exit value of some derived expression, this
transformation will make the loop dead.

This transformation should be followed by strength reduction after all of the
desired loop transformations have been performed. Additionally, on targets
where it is profitable, the loop could be transformed to count down to zero
(the “do loop” optimization).

-inline: Function Integration/Inlining

Bottom-up inlining of functions into callees.

-instcombine: Combine redundant instructions

Combine instructions to form fewer, simple instructions. This pass does not
modify the CFG. This pass is where algebraic simplification happens.

This pass combines things like:

%Y = add i32 %X, 1
%Z = add i32 %Y, 1

into:

%Z = add i32 %X, 2

This is a simple worklist driven algorithm.

This pass guarantees that the following canonicalizations are performed on the
program:

	If a binary operator has a constant operand, it is moved to the right-hand
side.

	Bitwise operators with constant operands are always grouped so that shifts
are performed first, then ors, then ands, then xors.

	Compare instructions are converted from <, >, ≤, or ≥ to
= or ≠ if possible.

	All cmp instructions on boolean values are replaced with logical
operations.

	add X, X is represented as mul X, 2 ⇒ shl X, 1

	Multiplies with a constant power-of-two argument are transformed into
shifts.

	… etc.

This pass can also simplify calls to specific well-known function calls (e.g.
runtime library functions). For example, a call exit(3) that occurs within
the main() function can be transformed into simply return 3. Whether or
not library calls are simplified is controlled by the
-functionattrs pass and LLVM’s knowledge of
library calls on different targets.

-aggressive-instcombine: Combine expression patterns

Combine expression patterns to form expressions with fewer, simple instructions.
This pass does not modify the CFG.

For example, this pass reduce width of expressions post-dominated by TruncInst
into smaller width when applicable.

It differs from instcombine pass in that it contains pattern optimization that
requires higher complexity than the O(1), thus, it should run fewer times than
instcombine pass.

-internalize: Internalize Global Symbols

This pass loops over all of the functions in the input module, looking for a
main function. If a main function is found, all other functions and all global
variables with initializers are marked as internal.

-ipconstprop: Interprocedural constant propagation

This pass implements an extremely simple interprocedural constant propagation
pass. It could certainly be improved in many different ways, like using a
worklist. This pass makes arguments dead, but does not remove them. The
existing dead argument elimination pass should be run after this to clean up
the mess.

-ipsccp: Interprocedural Sparse Conditional Constant Propagation

An interprocedural variant of Sparse Conditional Constant Propagation.

-jump-threading: Jump Threading

Jump threading tries to find distinct threads of control flow running through a
basic block. This pass looks at blocks that have multiple predecessors and
multiple successors. If one or more of the predecessors of the block can be
proven to always cause a jump to one of the successors, we forward the edge
from the predecessor to the successor by duplicating the contents of this
block.

An example of when this can occur is code like this:

if () { ...
 X = 4;
}
if (X < 3) {

In this case, the unconditional branch at the end of the first if can be
revectored to the false side of the second if.

-lcssa: Loop-Closed SSA Form Pass

This pass transforms loops by placing phi nodes at the end of the loops for all
values that are live across the loop boundary. For example, it turns the left
into the right code:

for (...) for (...)
 if (c) if (c)
 X1 = ... X1 = ...
 else else
 X2 = ... X2 = ...
 X3 = phi(X1, X2) X3 = phi(X1, X2)
... = X3 + 4 X4 = phi(X3)
 ... = X4 + 4

This is still valid LLVM; the extra phi nodes are purely redundant, and will be
trivially eliminated by InstCombine. The major benefit of this
transformation is that it makes many other loop optimizations, such as
LoopUnswitching, simpler.

-licm: Loop Invariant Code Motion

This pass performs loop invariant code motion, attempting to remove as much
code from the body of a loop as possible. It does this by either hoisting code
into the preheader block, or by sinking code to the exit blocks if it is safe.
This pass also promotes must-aliased memory locations in the loop to live in
registers, thus hoisting and sinking “invariant” loads and stores.

This pass uses alias analysis for two purposes:

	Moving loop invariant loads and calls out of loops. If we can determine
that a load or call inside of a loop never aliases anything stored to, we
can hoist it or sink it like any other instruction.

	Scalar Promotion of Memory. If there is a store instruction inside of the
loop, we try to move the store to happen AFTER the loop instead of inside of
the loop. This can only happen if a few conditions are true:

	The pointer stored through is loop invariant.

	There are no stores or loads in the loop which may alias the pointer.
There are no calls in the loop which mod/ref the pointer.

If these conditions are true, we can promote the loads and stores in the
loop of the pointer to use a temporary alloca’d variable. We then use the
mem2reg functionality to construct the appropriate
SSA form for the variable.

-loop-deletion: Delete dead loops

This file implements the Dead Loop Deletion Pass. This pass is responsible for
eliminating loops with non-infinite computable trip counts that have no side
effects or volatile instructions, and do not contribute to the computation of
the function’s return value.

-loop-extract: Extract loops into new functions

A pass wrapper around the ExtractLoop() scalar transformation to extract
each top-level loop into its own new function. If the loop is the only loop
in a given function, it is not touched. This is a pass most useful for
debugging via bugpoint.

-loop-extract-single: Extract at most one loop into a new function

Similar to Extract loops into new functions, this
pass extracts one natural loop from the program into a function if it can.
This is used by bugpoint.

-loop-reduce: Loop Strength Reduction

This pass performs a strength reduction on array references inside loops that
have as one or more of their components the loop induction variable. This is
accomplished by creating a new value to hold the initial value of the array
access for the first iteration, and then creating a new GEP instruction in the
loop to increment the value by the appropriate amount.

-loop-rotate: Rotate Loops

A simple loop rotation transformation.

-loop-simplify: Canonicalize natural loops

This pass performs several transformations to transform natural loops into a
simpler form, which makes subsequent analyses and transformations simpler and
more effective.

Loop pre-header insertion guarantees that there is a single, non-critical entry
edge from outside of the loop to the loop header. This simplifies a number of
analyses and transformations, such as LICM.

Loop exit-block insertion guarantees that all exit blocks from the loop (blocks
which are outside of the loop that have predecessors inside of the loop) only
have predecessors from inside of the loop (and are thus dominated by the loop
header). This simplifies transformations such as store-sinking that are built
into LICM.

This pass also guarantees that loops will have exactly one backedge.

Note that the simplifycfg pass will clean up blocks
which are split out but end up being unnecessary, so usage of this pass should
not pessimize generated code.

This pass obviously modifies the CFG, but updates loop information and
dominator information.

-loop-unroll: Unroll loops

This pass implements a simple loop unroller. It works best when loops have
been canonicalized by the indvars pass, allowing it to
determine the trip counts of loops easily.

-loop-unroll-and-jam: Unroll and Jam loops

This pass implements a simple unroll and jam classical loop optimisation pass.
It transforms loop from:

for i.. i+= 1 for i.. i+= 4
 for j.. for j..
 code(i, j) code(i, j)
 code(i+1, j)
 code(i+2, j)
 code(i+3, j)
 remainder loop

Which can be seen as unrolling the outer loop and “jamming” (fusing) the inner
loops into one. When variables or loads can be shared in the new inner loop, this
can lead to significant performance improvements. It uses
Dependence Analysis for proving the transformations are safe.

-loop-unswitch: Unswitch loops

This pass transforms loops that contain branches on loop-invariant conditions
to have multiple loops. For example, it turns the left into the right code:

for (...) if (lic)
 A for (...)
 if (lic) A; B; C
 B else
 C for (...)
 A; C

This can increase the size of the code exponentially (doubling it every time a
loop is unswitched) so we only unswitch if the resultant code will be smaller
than a threshold.

This pass expects LICM to be run before it to hoist
invariant conditions out of the loop, to make the unswitching opportunity
obvious.

-loweratomic: Lower atomic intrinsics to non-atomic form

This pass lowers atomic intrinsics to non-atomic form for use in a known
non-preemptible environment.

The pass does not verify that the environment is non-preemptible (in general
this would require knowledge of the entire call graph of the program including
any libraries which may not be available in bitcode form); it simply lowers
every atomic intrinsic.

-lowerinvoke: Lower invokes to calls, for unwindless code generators

This transformation is designed for use by code generators which do not yet
support stack unwinding. This pass converts invoke instructions to
call instructions, so that any exception-handling landingpad blocks
become dead code (which can be removed by running the -simplifycfg pass
afterwards).

-lowerswitch: Lower SwitchInsts to branches

Rewrites switch instructions with a sequence of branches, which allows targets
to get away with not implementing the switch instruction until it is
convenient.

-mem2reg: Promote Memory to Register

This file promotes memory references to be register references. It promotes
alloca instructions which only have loads and stores as uses. An alloca is
transformed by using dominator frontiers to place phi nodes, then traversing
the function in depth-first order to rewrite loads and stores as appropriate.
This is just the standard SSA construction algorithm to construct “pruned” SSA
form.

-memcpyopt: MemCpy Optimization

This pass performs various transformations related to eliminating memcpy
calls, or transforming sets of stores into memsets.

-mergefunc: Merge Functions

This pass looks for equivalent functions that are mergable and folds them.

Total-ordering is introduced among the functions set: we define comparison
that answers for every two functions which of them is greater. It allows to
arrange functions into the binary tree.

For every new function we check for equivalent in tree.

If equivalent exists we fold such functions. If both functions are overridable,
we move the functionality into a new internal function and leave two
overridable thunks to it.

If there is no equivalent, then we add this function to tree.

Lookup routine has O(log(n)) complexity, while whole merging process has
complexity of O(n*log(n)).

Read
this
article for more details.

-mergereturn: Unify function exit nodes

Ensure that functions have at most one ret instruction in them.
Additionally, it keeps track of which node is the new exit node of the CFG.

-partial-inliner: Partial Inliner

This pass performs partial inlining, typically by inlining an if statement
that surrounds the body of the function.

-prune-eh: Remove unused exception handling info

This file implements a simple interprocedural pass which walks the call-graph,
turning invoke instructions into call instructions if and only if the callee
cannot throw an exception. It implements this as a bottom-up traversal of the
call-graph.

-reassociate: Reassociate expressions

This pass reassociates commutative expressions in an order that is designed to
promote better constant propagation, GCSE, LICM, PRE, etc.

For example: 4 + (x + 5) ⇒ x + (4 + 5)

In the implementation of this algorithm, constants are assigned rank = 0,
function arguments are rank = 1, and other values are assigned ranks
corresponding to the reverse post order traversal of current function (starting
at 2), which effectively gives values in deep loops higher rank than values not
in loops.

-reg2mem: Demote all values to stack slots

This file demotes all registers to memory references. It is intended to be the
inverse of mem2reg. By converting to load
instructions, the only values live across basic blocks are alloca
instructions and load instructions before phi nodes. It is intended
that this should make CFG hacking much easier. To make later hacking easier,
the entry block is split into two, such that all introduced alloca
instructions (and nothing else) are in the entry block.

-sroa: Scalar Replacement of Aggregates

The well-known scalar replacement of aggregates transformation. This transform
breaks up alloca instructions of aggregate type (structure or array) into
individual alloca instructions for each member if possible. Then, if
possible, it transforms the individual alloca instructions into nice clean
scalar SSA form.

-sccp: Sparse Conditional Constant Propagation

Sparse conditional constant propagation and merging, which can be summarized
as:

	Assumes values are constant unless proven otherwise

	Assumes BasicBlocks are dead unless proven otherwise

	Proves values to be constant, and replaces them with constants

	Proves conditional branches to be unconditional

Note that this pass has a habit of making definitions be dead. It is a good
idea to run a DCE pass sometime after running this pass.

-simplifycfg: Simplify the CFG

Performs dead code elimination and basic block merging. Specifically:

	Removes basic blocks with no predecessors.

	Merges a basic block into its predecessor if there is only one and the
predecessor only has one successor.

	Eliminates PHI nodes for basic blocks with a single predecessor.

	Eliminates a basic block that only contains an unconditional branch.

-sink: Code sinking

This pass moves instructions into successor blocks, when possible, so that they
aren’t executed on paths where their results aren’t needed.

-strip: Strip all symbols from a module

Performs code stripping. This transformation can delete:

	names for virtual registers

	symbols for internal globals and functions

	debug information

Note that this transformation makes code much less readable, so it should only
be used in situations where the strip utility would be used, such as reducing
code size or making it harder to reverse engineer code.

-strip-dead-debug-info: Strip debug info for unused symbols

performs code stripping. this transformation can delete:

	names for virtual registers

	symbols for internal globals and functions

	debug information

note that this transformation makes code much less readable, so it should only
be used in situations where the strip utility would be used, such as reducing
code size or making it harder to reverse engineer code.

-strip-dead-prototypes: Strip Unused Function Prototypes

This pass loops over all of the functions in the input module, looking for dead
declarations and removes them. Dead declarations are declarations of functions
for which no implementation is available (i.e., declarations for unused library
functions).

-strip-debug-declare: Strip all llvm.dbg.declare intrinsics

This pass implements code stripping. Specifically, it can delete:

	names for virtual registers

	symbols for internal globals and functions

	debug information

Note that this transformation makes code much less readable, so it should only
be used in situations where the ‘strip’ utility would be used, such as reducing
code size or making it harder to reverse engineer code.

-strip-nondebug: Strip all symbols, except dbg symbols, from a module

This pass implements code stripping. Specifically, it can delete:

	names for virtual registers

	symbols for internal globals and functions

	debug information

Note that this transformation makes code much less readable, so it should only
be used in situations where the ‘strip’ utility would be used, such as reducing
code size or making it harder to reverse engineer code.

-tailcallelim: Tail Call Elimination

This file transforms calls of the current function (self recursion) followed by
a return instruction with a branch to the entry of the function, creating a
loop. This pass also implements the following extensions to the basic
algorithm:

	Trivial instructions between the call and return do not prevent the
transformation from taking place, though currently the analysis cannot
support moving any really useful instructions (only dead ones).

	This pass transforms functions that are prevented from being tail recursive
by an associative expression to use an accumulator variable, thus compiling
the typical naive factorial or fib implementation into efficient code.

	TRE is performed if the function returns void, if the return returns the
result returned by the call, or if the function returns a run-time constant
on all exits from the function. It is possible, though unlikely, that the
return returns something else (like constant 0), and can still be TRE’d. It
can be TRE’d if all other return instructions in the function return the
exact same value.

	If it can prove that callees do not access theier caller stack frame, they
are marked as eligible for tail call elimination (by the code generator).

Utility Passes

This section describes the LLVM Utility Passes.

-deadarghaX0r: Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)

Same as dead argument elimination, but deletes arguments to functions which are
external. This is only for use by bugpoint.

-extract-blocks: Extract Basic Blocks From Module (for bugpoint use)

This pass is used by bugpoint to extract all blocks from the module into their
own functions.

-instnamer: Assign names to anonymous instructions

This is a little utility pass that gives instructions names, this is mostly
useful when diffing the effect of an optimization because deleting an unnamed
instruction can change all other instruction numbering, making the diff very
noisy.

-verify: Module Verifier

Verifies an LLVM IR code. This is useful to run after an optimization which is
undergoing testing. Note that llvm-as verifies its input before emitting
bitcode, and also that malformed bitcode is likely to make LLVM crash. All
language front-ends are therefore encouraged to verify their output before
performing optimizing transformations.

	Both of a binary operator’s parameters are of the same type.

	Verify that the indices of mem access instructions match other operands.

	Verify that arithmetic and other things are only performed on first-class
types. Verify that shifts and logicals only happen on integrals f.e.

	All of the constants in a switch statement are of the correct type.

	The code is in valid SSA form.

	It is illegal to put a label into any other type (like a structure) or to
return one.

	Only phi nodes can be self referential: %x = add i32 %x, %x is
invalid.

	PHI nodes must have an entry for each predecessor, with no extras.

	PHI nodes must be the first thing in a basic block, all grouped together.

	PHI nodes must have at least one entry.

	All basic blocks should only end with terminator insts, not contain them.

	The entry node to a function must not have predecessors.

	All Instructions must be embedded into a basic block.

	Functions cannot take a void-typed parameter.

	Verify that a function’s argument list agrees with its declared type.

	It is illegal to specify a name for a void value.

	It is illegal to have an internal global value with no initializer.

	It is illegal to have a ret instruction that returns a value that does
not agree with the function return value type.

	Function call argument types match the function prototype.

	All other things that are tested by asserts spread about the code.

Note that this does not provide full security verification (like Java), but
instead just tries to ensure that code is well-formed.

-view-cfg: View CFG of function

Displays the control flow graph using the GraphViz tool.

-view-cfg-only: View CFG of function (with no function bodies)

Displays the control flow graph using the GraphViz tool, but omitting function
bodies.

-view-dom: View dominance tree of function

Displays the dominator tree using the GraphViz tool.

-view-dom-only: View dominance tree of function (with no function bodies)

Displays the dominator tree using the GraphViz tool, but omitting function
bodies.

-view-postdom: View postdominance tree of function

Displays the post dominator tree using the GraphViz tool.

-view-postdom-only: View postdominance tree of function (with no function bodies)

Displays the post dominator tree using the GraphViz tool, but omitting function
bodies.

YAML I/O

	Introduction to YAML

	Introduction to YAML I/O

	Error Handling

	Scalars

	Built-in types

	Unique types

	Hex types

	ScalarEnumerationTraits

	BitValue

	Custom Scalar

	Block Scalars

	Mappings

	No Normalization

	Normalization

	Default values

	Order of Keys

	Tags

	Validation

	Flow Mapping

	Sequence

	Flow Sequence

	Utility Macros

	Document List

	User Context Data

	Output

	Input

Introduction to YAML

YAML is a human readable data serialization language. The full YAML language
spec can be read at yaml.org [http://www.yaml.org/spec/1.2/spec.html#Introduction]. The simplest form of
yaml is just “scalars”, “mappings”, and “sequences”. A scalar is any number
or string. The pound/hash symbol (#) begins a comment line. A mapping is
a set of key-value pairs where the key ends with a colon. For example:

a mapping
name: Tom
hat-size: 7

A sequence is a list of items where each item starts with a leading dash (‘-‘).
For example:

a sequence
- x86
- x86_64
- PowerPC

You can combine mappings and sequences by indenting. For example a sequence
of mappings in which one of the mapping values is itself a sequence:

a sequence of mappings with one key's value being a sequence
- name: Tom
 cpus:
 - x86
 - x86_64
- name: Bob
 cpus:
 - x86
- name: Dan
 cpus:
 - PowerPC
 - x86

Sometime sequences are known to be short and the one entry per line is too
verbose, so YAML offers an alternate syntax for sequences called a “Flow
Sequence” in which you put comma separated sequence elements into square
brackets. The above example could then be simplified to :

a sequence of mappings with one key's value being a flow sequence
- name: Tom
 cpus: [x86, x86_64]
- name: Bob
 cpus: [x86]
- name: Dan
 cpus: [PowerPC, x86]

Introduction to YAML I/O

The use of indenting makes the YAML easy for a human to read and understand,
but having a program read and write YAML involves a lot of tedious details.
The YAML I/O library structures and simplifies reading and writing YAML
documents.

YAML I/O assumes you have some “native” data structures which you want to be
able to dump as YAML and recreate from YAML. The first step is to try
writing example YAML for your data structures. You may find after looking at
possible YAML representations that a direct mapping of your data structures
to YAML is not very readable. Often the fields are not in the order that
a human would find readable. Or the same information is replicated in multiple
locations, making it hard for a human to write such YAML correctly.

In relational database theory there is a design step called normalization in
which you reorganize fields and tables. The same considerations need to
go into the design of your YAML encoding. But, you may not want to change
your existing native data structures. Therefore, when writing out YAML
there may be a normalization step, and when reading YAML there would be a
corresponding denormalization step.

YAML I/O uses a non-invasive, traits based design. YAML I/O defines some
abstract base templates. You specialize those templates on your data types.
For instance, if you have an enumerated type FooBar you could specialize
ScalarEnumerationTraits on that type and define the enumeration() method:

using llvm::yaml::ScalarEnumerationTraits;
using llvm::yaml::IO;

template <>
struct ScalarEnumerationTraits<FooBar> {
 static void enumeration(IO &io, FooBar &value) {
 ...
 }
};

As with all YAML I/O template specializations, the ScalarEnumerationTraits is used for
both reading and writing YAML. That is, the mapping between in-memory enum
values and the YAML string representation is only in one place.
This assures that the code for writing and parsing of YAML stays in sync.

To specify a YAML mappings, you define a specialization on
llvm::yaml::MappingTraits.
If your native data structure happens to be a struct that is already normalized,
then the specialization is simple. For example:

using llvm::yaml::MappingTraits;
using llvm::yaml::IO;

template <>
struct MappingTraits<Person> {
 static void mapping(IO &io, Person &info) {
 io.mapRequired("name", info.name);
 io.mapOptional("hat-size", info.hatSize);
 }
};

A YAML sequence is automatically inferred if you data type has begin()/end()
iterators and a push_back() method. Therefore any of the STL containers
(such as std::vector<>) will automatically translate to YAML sequences.

Once you have defined specializations for your data types, you can
programmatically use YAML I/O to write a YAML document:

using llvm::yaml::Output;

Person tom;
tom.name = "Tom";
tom.hatSize = 8;
Person dan;
dan.name = "Dan";
dan.hatSize = 7;
std::vector<Person> persons;
persons.push_back(tom);
persons.push_back(dan);

Output yout(llvm::outs());
yout << persons;

This would write the following:

- name: Tom
 hat-size: 8
- name: Dan
 hat-size: 7

And you can also read such YAML documents with the following code:

using llvm::yaml::Input;

typedef std::vector<Person> PersonList;
std::vector<PersonList> docs;

Input yin(document.getBuffer());
yin >> docs;

if (yin.error())
 return;

// Process read document
for (PersonList &pl : docs) {
 for (Person &person : pl) {
 cout << "name=" << person.name;
 }
}

One other feature of YAML is the ability to define multiple documents in a
single file. That is why reading YAML produces a vector of your document type.

Error Handling

When parsing a YAML document, if the input does not match your schema (as
expressed in your XxxTraits<> specializations). YAML I/O
will print out an error message and your Input object’s error() method will
return true. For instance the following document:

- name: Tom
 shoe-size: 12
- name: Dan
 hat-size: 7

Has a key (shoe-size) that is not defined in the schema. YAML I/O will
automatically generate this error:

YAML:2:2: error: unknown key 'shoe-size'
 shoe-size: 12
 ^~~~~~~~~

Similar errors are produced for other input not conforming to the schema.

Scalars

YAML scalars are just strings (i.e. not a sequence or mapping). The YAML I/O
library provides support for translating between YAML scalars and specific
C++ types.

Built-in types

The following types have built-in support in YAML I/O:

	bool

	float

	double

	StringRef

	std::string

	int64_t

	int32_t

	int16_t

	int8_t

	uint64_t

	uint32_t

	uint16_t

	uint8_t

That is, you can use those types in fields of MappingTraits or as element type
in sequence. When reading, YAML I/O will validate that the string found
is convertible to that type and error out if not.

Unique types

Given that YAML I/O is trait based, the selection of how to convert your data
to YAML is based on the type of your data. But in C++ type matching, typedefs
do not generate unique type names. That means if you have two typedefs of
unsigned int, to YAML I/O both types look exactly like unsigned int. To
facilitate make unique type names, YAML I/O provides a macro which is used
like a typedef on built-in types, but expands to create a class with conversion
operators to and from the base type. For example:

LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyFooFlags)
LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyBarFlags)

This generates two classes MyFooFlags and MyBarFlags which you can use in your
native data structures instead of uint32_t. They are implicitly
converted to and from uint32_t. The point of creating these unique types
is that you can now specify traits on them to get different YAML conversions.

Hex types

An example use of a unique type is that YAML I/O provides fixed sized unsigned
integers that are written with YAML I/O as hexadecimal instead of the decimal
format used by the built-in integer types:

	Hex64

	Hex32

	Hex16

	Hex8

You can use llvm::yaml::Hex32 instead of uint32_t and the only different will
be that when YAML I/O writes out that type it will be formatted in hexadecimal.

ScalarEnumerationTraits

YAML I/O supports translating between in-memory enumerations and a set of string
values in YAML documents. This is done by specializing ScalarEnumerationTraits<>
on your enumeration type and define a enumeration() method.
For instance, suppose you had an enumeration of CPUs and a struct with it as
a field:

enum CPUs {
 cpu_x86_64 = 5,
 cpu_x86 = 7,
 cpu_PowerPC = 8
};

struct Info {
 CPUs cpu;
 uint32_t flags;
};

To support reading and writing of this enumeration, you can define a
ScalarEnumerationTraits specialization on CPUs, which can then be used
as a field type:

using llvm::yaml::ScalarEnumerationTraits;
using llvm::yaml::MappingTraits;
using llvm::yaml::IO;

template <>
struct ScalarEnumerationTraits<CPUs> {
 static void enumeration(IO &io, CPUs &value) {
 io.enumCase(value, "x86_64", cpu_x86_64);
 io.enumCase(value, "x86", cpu_x86);
 io.enumCase(value, "PowerPC", cpu_PowerPC);
 }
};

template <>
struct MappingTraits<Info> {
 static void mapping(IO &io, Info &info) {
 io.mapRequired("cpu", info.cpu);
 io.mapOptional("flags", info.flags, 0);
 }
};

When reading YAML, if the string found does not match any of the strings
specified by enumCase() methods, an error is automatically generated.
When writing YAML, if the value being written does not match any of the values
specified by the enumCase() methods, a runtime assertion is triggered.

BitValue

Another common data structure in C++ is a field where each bit has a unique
meaning. This is often used in a “flags” field. YAML I/O has support for
converting such fields to a flow sequence. For instance suppose you
had the following bit flags defined:

enum {
 flagsPointy = 1
 flagsHollow = 2
 flagsFlat = 4
 flagsRound = 8
};

LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyFlags)

To support reading and writing of MyFlags, you specialize ScalarBitSetTraits<>
on MyFlags and provide the bit values and their names.

using llvm::yaml::ScalarBitSetTraits;
using llvm::yaml::MappingTraits;
using llvm::yaml::IO;

template <>
struct ScalarBitSetTraits<MyFlags> {
 static void bitset(IO &io, MyFlags &value) {
 io.bitSetCase(value, "hollow", flagHollow);
 io.bitSetCase(value, "flat", flagFlat);
 io.bitSetCase(value, "round", flagRound);
 io.bitSetCase(value, "pointy", flagPointy);
 }
};

struct Info {
 StringRef name;
 MyFlags flags;
};

template <>
struct MappingTraits<Info> {
 static void mapping(IO &io, Info& info) {
 io.mapRequired("name", info.name);
 io.mapRequired("flags", info.flags);
 }
};

With the above, YAML I/O (when writing) will test mask each value in the
bitset trait against the flags field, and each that matches will
cause the corresponding string to be added to the flow sequence. The opposite
is done when reading and any unknown string values will result in a error. With
the above schema, a same valid YAML document is:

name: Tom
flags: [pointy, flat]

Sometimes a “flags” field might contains an enumeration part
defined by a bit-mask.

enum {
 flagsFeatureA = 1,
 flagsFeatureB = 2,
 flagsFeatureC = 4,

 flagsCPUMask = 24,

 flagsCPU1 = 8,
 flagsCPU2 = 16
};

To support reading and writing such fields, you need to use the maskedBitSet()
method and provide the bit values, their names and the enumeration mask.

template <>
struct ScalarBitSetTraits<MyFlags> {
 static void bitset(IO &io, MyFlags &value) {
 io.bitSetCase(value, "featureA", flagsFeatureA);
 io.bitSetCase(value, "featureB", flagsFeatureB);
 io.bitSetCase(value, "featureC", flagsFeatureC);
 io.maskedBitSetCase(value, "CPU1", flagsCPU1, flagsCPUMask);
 io.maskedBitSetCase(value, "CPU2", flagsCPU2, flagsCPUMask);
 }
};

YAML I/O (when writing) will apply the enumeration mask to the flags field,
and compare the result and values from the bitset. As in case of a regular
bitset, each that matches will cause the corresponding string to be added
to the flow sequence.

Custom Scalar

Sometimes for readability a scalar needs to be formatted in a custom way. For
instance your internal data structure may use a integer for time (seconds since
some epoch), but in YAML it would be much nicer to express that integer in
some time format (e.g. 4-May-2012 10:30pm). YAML I/O has a way to support
custom formatting and parsing of scalar types by specializing ScalarTraits<> on
your data type. When writing, YAML I/O will provide the native type and
your specialization must create a temporary llvm::StringRef. When reading,
YAML I/O will provide an llvm::StringRef of scalar and your specialization
must convert that to your native data type. An outline of a custom scalar type
looks like:

using llvm::yaml::ScalarTraits;
using llvm::yaml::IO;

template <>
struct ScalarTraits<MyCustomType> {
 static void output(const MyCustomType &value, void*,
 llvm::raw_ostream &out) {
 out << value; // do custom formatting here
 }
 static StringRef input(StringRef scalar, void*, MyCustomType &value) {
 // do custom parsing here. Return the empty string on success,
 // or an error message on failure.
 return StringRef();
 }
 // Determine if this scalar needs quotes.
 static QuotingType mustQuote(StringRef) { return QuotingType::Single; }
};

Block Scalars

YAML block scalars are string literals that are represented in YAML using the
literal block notation, just like the example shown below:

text: |
 First line
 Second line

The YAML I/O library provides support for translating between YAML block scalars
and specific C++ types by allowing you to specialize BlockScalarTraits<> on
your data type. The library doesn’t provide any built-in support for block
scalar I/O for types like std::string and llvm::StringRef as they are already
supported by YAML I/O and use the ordinary scalar notation by default.

BlockScalarTraits specializations are very similar to the
ScalarTraits specialization - YAML I/O will provide the native type and your
specialization must create a temporary llvm::StringRef when writing, and
it will also provide an llvm::StringRef that has the value of that block scalar
and your specialization must convert that to your native data type when reading.
An example of a custom type with an appropriate specialization of
BlockScalarTraits is shown below:

using llvm::yaml::BlockScalarTraits;
using llvm::yaml::IO;

struct MyStringType {
 std::string Str;
};

template <>
struct BlockScalarTraits<MyStringType> {
 static void output(const MyStringType &Value, void *Ctxt,
 llvm::raw_ostream &OS) {
 OS << Value.Str;
 }

 static StringRef input(StringRef Scalar, void *Ctxt,
 MyStringType &Value) {
 Value.Str = Scalar.str();
 return StringRef();
 }
};

Mappings

To be translated to or from a YAML mapping for your type T you must specialize
llvm::yaml::MappingTraits on T and implement the “void mapping(IO &io, T&)”
method. If your native data structures use pointers to a class everywhere,
you can specialize on the class pointer. Examples:

using llvm::yaml::MappingTraits;
using llvm::yaml::IO;

// Example of struct Foo which is used by value
template <>
struct MappingTraits<Foo> {
 static void mapping(IO &io, Foo &foo) {
 io.mapOptional("size", foo.size);
 ...
 }
};

// Example of struct Bar which is natively always a pointer
template <>
struct MappingTraits<Bar*> {
 static void mapping(IO &io, Bar *&bar) {
 io.mapOptional("size", bar->size);
 ...
 }
};

No Normalization

The mapping() method is responsible, if needed, for normalizing and
denormalizing. In a simple case where the native data structure requires no
normalization, the mapping method just uses mapOptional() or mapRequired() to
bind the struct’s fields to YAML key names. For example:

using llvm::yaml::MappingTraits;
using llvm::yaml::IO;

template <>
struct MappingTraits<Person> {
 static void mapping(IO &io, Person &info) {
 io.mapRequired("name", info.name);
 io.mapOptional("hat-size", info.hatSize);
 }
};

Normalization

When [de]normalization is required, the mapping() method needs a way to access
normalized values as fields. To help with this, there is
a template MappingNormalization<> which you can then use to automatically
do the normalization and denormalization. The template is used to create
a local variable in your mapping() method which contains the normalized keys.

Suppose you have native data type
Polar which specifies a position in polar coordinates (distance, angle):

struct Polar {
 float distance;
 float angle;
};

but you’ve decided the normalized YAML for should be in x,y coordinates. That
is, you want the yaml to look like:

x: 10.3
y: -4.7

You can support this by defining a MappingTraits that normalizes the polar
coordinates to x,y coordinates when writing YAML and denormalizes x,y
coordinates into polar when reading YAML.

using llvm::yaml::MappingTraits;
using llvm::yaml::IO;

template <>
struct MappingTraits<Polar> {

 class NormalizedPolar {
 public:
 NormalizedPolar(IO &io)
 : x(0.0), y(0.0) {
 }
 NormalizedPolar(IO &, Polar &polar)
 : x(polar.distance * cos(polar.angle)),
 y(polar.distance * sin(polar.angle)) {
 }
 Polar denormalize(IO &) {
 return Polar(sqrt(x*x+y*y), arctan(x,y));
 }

 float x;
 float y;
 };

 static void mapping(IO &io, Polar &polar) {
 MappingNormalization<NormalizedPolar, Polar> keys(io, polar);

 io.mapRequired("x", keys->x);
 io.mapRequired("y", keys->y);
 }
};

When writing YAML, the local variable “keys” will be a stack allocated
instance of NormalizedPolar, constructed from the supplied polar object which
initializes it x and y fields. The mapRequired() methods then write out the x
and y values as key/value pairs.

When reading YAML, the local variable “keys” will be a stack allocated instance
of NormalizedPolar, constructed by the empty constructor. The mapRequired
methods will find the matching key in the YAML document and fill in the x and y
fields of the NormalizedPolar object keys. At the end of the mapping() method
when the local keys variable goes out of scope, the denormalize() method will
automatically be called to convert the read values back to polar coordinates,
and then assigned back to the second parameter to mapping().

In some cases, the normalized class may be a subclass of the native type and
could be returned by the denormalize() method, except that the temporary
normalized instance is stack allocated. In these cases, the utility template
MappingNormalizationHeap<> can be used instead. It just like
MappingNormalization<> except that it heap allocates the normalized object
when reading YAML. It never destroys the normalized object. The denormalize()
method can this return “this”.

Default values

Within a mapping() method, calls to io.mapRequired() mean that that key is
required to exist when parsing YAML documents, otherwise YAML I/O will issue an
error.

On the other hand, keys registered with io.mapOptional() are allowed to not
exist in the YAML document being read. So what value is put in the field
for those optional keys?
There are two steps to how those optional fields are filled in. First, the
second parameter to the mapping() method is a reference to a native class. That
native class must have a default constructor. Whatever value the default
constructor initially sets for an optional field will be that field’s value.
Second, the mapOptional() method has an optional third parameter. If provided
it is the value that mapOptional() should set that field to if the YAML document
does not have that key.

There is one important difference between those two ways (default constructor
and third parameter to mapOptional). When YAML I/O generates a YAML document,
if the mapOptional() third parameter is used, if the actual value being written
is the same as (using ==) the default value, then that key/value is not written.

Order of Keys

When writing out a YAML document, the keys are written in the order that the
calls to mapRequired()/mapOptional() are made in the mapping() method. This
gives you a chance to write the fields in an order that a human reader of
the YAML document would find natural. This may be different that the order
of the fields in the native class.

When reading in a YAML document, the keys in the document can be in any order,
but they are processed in the order that the calls to mapRequired()/mapOptional()
are made in the mapping() method. That enables some interesting
functionality. For instance, if the first field bound is the cpu and the second
field bound is flags, and the flags are cpu specific, you can programmatically
switch how the flags are converted to and from YAML based on the cpu.
This works for both reading and writing. For example:

using llvm::yaml::MappingTraits;
using llvm::yaml::IO;

struct Info {
 CPUs cpu;
 uint32_t flags;
};

template <>
struct MappingTraits<Info> {
 static void mapping(IO &io, Info &info) {
 io.mapRequired("cpu", info.cpu);
 // flags must come after cpu for this to work when reading yaml
 if (info.cpu == cpu_x86_64)
 io.mapRequired("flags", *(My86_64Flags*)info.flags);
 else
 io.mapRequired("flags", *(My86Flags*)info.flags);
 }
};

Tags

The YAML syntax supports tags as a way to specify the type of a node before
it is parsed. This allows dynamic types of nodes. But the YAML I/O model uses
static typing, so there are limits to how you can use tags with the YAML I/O
model. Recently, we added support to YAML I/O for checking/setting the optional
tag on a map. Using this functionality it is even possbile to support different
mappings, as long as they are convertible.

To check a tag, inside your mapping() method you can use io.mapTag() to specify
what the tag should be. This will also add that tag when writing yaml.

Validation

Sometimes in a yaml map, each key/value pair is valid, but the combination is
not. This is similar to something having no syntax errors, but still having
semantic errors. To support semantic level checking, YAML I/O allows
an optional validate() method in a MappingTraits template specialization.

When parsing yaml, the validate() method is call after all key/values in
the map have been processed. Any error message returned by the validate()
method during input will be printed just a like a syntax error would be printed.
When writing yaml, the validate() method is called before the yaml
key/values are written. Any error during output will trigger an assert()
because it is a programming error to have invalid struct values.

using llvm::yaml::MappingTraits;
using llvm::yaml::IO;

struct Stuff {
 ...
};

template <>
struct MappingTraits<Stuff> {
 static void mapping(IO &io, Stuff &stuff) {
 ...
 }
 static StringRef validate(IO &io, Stuff &stuff) {
 // Look at all fields in 'stuff' and if there
 // are any bad values return a string describing
 // the error. Otherwise return an empty string.
 return StringRef();
 }
};

Flow Mapping

A YAML “flow mapping” is a mapping that uses the inline notation
(e.g { x: 1, y: 0 }) when written to YAML. To specify that a type should be
written in YAML using flow mapping, your MappingTraits specialization should
add “static const bool flow = true;”. For instance:

using llvm::yaml::MappingTraits;
using llvm::yaml::IO;

struct Stuff {
 ...
};

template <>
struct MappingTraits<Stuff> {
 static void mapping(IO &io, Stuff &stuff) {
 ...
 }

 static const bool flow = true;
}

Flow mappings are subject to line wrapping according to the Output object
configuration.

Sequence

To be translated to or from a YAML sequence for your type T you must specialize
llvm::yaml::SequenceTraits on T and implement two methods:
size_t size(IO &io, T&) and
T::value_type& element(IO &io, T&, size_t indx). For example:

template <>
struct SequenceTraits<MySeq> {
 static size_t size(IO &io, MySeq &list) { ... }
 static MySeqEl &element(IO &io, MySeq &list, size_t index) { ... }
};

The size() method returns how many elements are currently in your sequence.
The element() method returns a reference to the i’th element in the sequence.
When parsing YAML, the element() method may be called with an index one bigger
than the current size. Your element() method should allocate space for one
more element (using default constructor if element is a C++ object) and returns
a reference to that new allocated space.

Flow Sequence

A YAML “flow sequence” is a sequence that when written to YAML it uses the
inline notation (e.g [foo, bar]). To specify that a sequence type should
be written in YAML as a flow sequence, your SequenceTraits specialization should
add “static const bool flow = true;”. For instance:

template <>
struct SequenceTraits<MyList> {
 static size_t size(IO &io, MyList &list) { ... }
 static MyListEl &element(IO &io, MyList &list, size_t index) { ... }

 // The existence of this member causes YAML I/O to use a flow sequence
 static const bool flow = true;
};

With the above, if you used MyList as the data type in your native data
structures, then when converted to YAML, a flow sequence of integers
will be used (e.g. [10, -3, 4]).

Flow sequences are subject to line wrapping according to the Output object
configuration.

Utility Macros

Since a common source of sequences is std::vector<>, YAML I/O provides macros:
LLVM_YAML_IS_SEQUENCE_VECTOR() and LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR() which
can be used to easily specify SequenceTraits<> on a std::vector type. YAML
I/O does not partial specialize SequenceTraits on std::vector<> because that
would force all vectors to be sequences. An example use of the macros:

std::vector<MyType1>;
std::vector<MyType2>;
LLVM_YAML_IS_SEQUENCE_VECTOR(MyType1)
LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(MyType2)

Document List

YAML allows you to define multiple “documents” in a single YAML file. Each
new document starts with a left aligned “—” token. The end of all documents
is denoted with a left aligned “…” token. Many users of YAML will never
have need for multiple documents. The top level node in their YAML schema
will be a mapping or sequence. For those cases, the following is not needed.
But for cases where you do want multiple documents, you can specify a
trait for you document list type. The trait has the same methods as
SequenceTraits but is named DocumentListTraits. For example:

template <>
struct DocumentListTraits<MyDocList> {
 static size_t size(IO &io, MyDocList &list) { ... }
 static MyDocType element(IO &io, MyDocList &list, size_t index) { ... }
};

User Context Data

When an llvm::yaml::Input or llvm::yaml::Output object is created their
constructors take an optional “context” parameter. This is a pointer to
whatever state information you might need.

For instance, in a previous example we showed how the conversion type for a
flags field could be determined at runtime based on the value of another field
in the mapping. But what if an inner mapping needs to know some field value
of an outer mapping? That is where the “context” parameter comes in. You
can set values in the context in the outer map’s mapping() method and
retrieve those values in the inner map’s mapping() method.

The context value is just a void*. All your traits which use the context
and operate on your native data types, need to agree what the context value
actually is. It could be a pointer to an object or struct which your various
traits use to shared context sensitive information.

Output

The llvm::yaml::Output class is used to generate a YAML document from your
in-memory data structures, using traits defined on your data types.
To instantiate an Output object you need an llvm::raw_ostream, an optional
context pointer and an optional wrapping column:

class Output : public IO {
public:
 Output(llvm::raw_ostream &, void *context = NULL, int WrapColumn = 70);

Once you have an Output object, you can use the C++ stream operator on it
to write your native data as YAML. One thing to recall is that a YAML file
can contain multiple “documents”. If the top level data structure you are
streaming as YAML is a mapping, scalar, or sequence, then Output assumes you
are generating one document and wraps the mapping output
with “---” and trailing “...”.

The WrapColumn parameter will cause the flow mappings and sequences to
line-wrap when they go over the supplied column. Pass 0 to completely
suppress the wrapping.

using llvm::yaml::Output;

void dumpMyMapDoc(const MyMapType &info) {
 Output yout(llvm::outs());
 yout << info;
}

The above could produce output like:

name: Tom
hat-size: 7
...

On the other hand, if the top level data structure you are streaming as YAML
has a DocumentListTraits specialization, then Output walks through each element
of your DocumentList and generates a “—” before the start of each element
and ends with a “…”.

using llvm::yaml::Output;

void dumpMyMapDoc(const MyDocListType &docList) {
 Output yout(llvm::outs());
 yout << docList;
}

The above could produce output like:

name: Tom
hat-size: 7

name: Tom
shoe-size: 11
...

Input

The llvm::yaml::Input class is used to parse YAML document(s) into your native
data structures. To instantiate an Input
object you need a StringRef to the entire YAML file, and optionally a context
pointer:

class Input : public IO {
public:
 Input(StringRef inputContent, void *context=NULL);

Once you have an Input object, you can use the C++ stream operator to read
the document(s). If you expect there might be multiple YAML documents in
one file, you’ll need to specialize DocumentListTraits on a list of your
document type and stream in that document list type. Otherwise you can
just stream in the document type. Also, you can check if there was
any syntax errors in the YAML be calling the error() method on the Input
object. For example:

// Reading a single document
using llvm::yaml::Input;

Input yin(mb.getBuffer());

// Parse the YAML file
MyDocType theDoc;
yin >> theDoc;

// Check for error
if (yin.error())
 return;

// Reading multiple documents in one file
using llvm::yaml::Input;

LLVM_YAML_IS_DOCUMENT_LIST_VECTOR(MyDocType)

Input yin(mb.getBuffer());

// Parse the YAML file
std::vector<MyDocType> theDocList;
yin >> theDocList;

// Check for error
if (yin.error())
 return;

The Often Misunderstood GEP Instruction

	Introduction

	Address Computation

	What is the first index of the GEP instruction?

	Why is the extra 0 index required?

	What is dereferenced by GEP?

	Why don’t GEP x,0,0,1 and GEP x,1 alias?

	Why do GEP x,1,0,0 and GEP x,1 alias?

	Can GEP index into vector elements?

	What effect do address spaces have on GEPs?

	How is GEP different from ptrtoint, arithmetic, and inttoptr?

	I’m writing a backend for a target which needs custom lowering for GEP. How do I do this?

	How does VLA addressing work with GEPs?

	Rules

	What happens if an array index is out of bounds?

	Can array indices be negative?

	Can I compare two values computed with GEPs?

	Can I do GEP with a different pointer type than the type of the underlying object?

	Can I cast an object’s address to integer and add it to null?

	Can I compute the distance between two objects, and add that value to one address to compute the other address?

	Can I do type-based alias analysis on LLVM IR?

	What happens if a GEP computation overflows?

	How can I tell if my front-end is following the rules?

	Rationale

	Why is GEP designed this way?

	Why do struct member indices always use i32?

	What’s an uglygep?

	Summary

Introduction

This document seeks to dispel the mystery and confusion surrounding LLVM’s
GetElementPtr (GEP) instruction.
Questions about the wily GEP instruction are probably the most frequently
occurring questions once a developer gets down to coding with LLVM. Here we lay
out the sources of confusion and show that the GEP instruction is really quite
simple.

Address Computation

When people are first confronted with the GEP instruction, they tend to relate
it to known concepts from other programming paradigms, most notably C array
indexing and field selection. GEP closely resembles C array indexing and field
selection, however it is a little different and this leads to the following
questions.

What is the first index of the GEP instruction?

Quick answer: The index stepping through the second operand.

The confusion with the first index usually arises from thinking about the
GetElementPtr instruction as if it was a C index operator. They aren’t the
same. For example, when we write, in “C”:

AType *Foo;
...
X = &Foo->F;

it is natural to think that there is only one index, the selection of the field
F. However, in this example, Foo is a pointer. That pointer
must be indexed explicitly in LLVM. C, on the other hand, indices through it
transparently. To arrive at the same address location as the C code, you would
provide the GEP instruction with two index operands. The first operand indexes
through the pointer; the second operand indexes the field F of the
structure, just as if you wrote:

X = &Foo[0].F;

Sometimes this question gets rephrased as:

Why is it okay to index through the first pointer, but subsequent pointers
won’t be dereferenced?

The answer is simply because memory does not have to be accessed to perform the
computation. The second operand to the GEP instruction must be a value of a
pointer type. The value of the pointer is provided directly to the GEP
instruction as an operand without any need for accessing memory. It must,
therefore be indexed and requires an index operand. Consider this example:

struct munger_struct {
 int f1;
 int f2;
};
void munge(struct munger_struct *P) {
 P[0].f1 = P[1].f1 + P[2].f2;
}
...
munger_struct Array[3];
...
munge(Array);

In this “C” example, the front end compiler (Clang) will generate three GEP
instructions for the three indices through “P” in the assignment statement. The
function argument P will be the second operand of each of these GEP
instructions. The third operand indexes through that pointer. The fourth
operand will be the field offset into the struct munger_struct type, for
either the f1 or f2 field. So, in LLVM assembly the munge function
looks like:

void %munge(%struct.munger_struct* %P) {
entry:
 %tmp = getelementptr %struct.munger_struct, %struct.munger_struct* %P, i32 1, i32 0
 %tmp = load i32* %tmp
 %tmp6 = getelementptr %struct.munger_struct, %struct.munger_struct* %P, i32 2, i32 1
 %tmp7 = load i32* %tmp6
 %tmp8 = add i32 %tmp7, %tmp
 %tmp9 = getelementptr %struct.munger_struct, %struct.munger_struct* %P, i32 0, i32 0
 store i32 %tmp8, i32* %tmp9
 ret void
}

In each case the second operand is the pointer through which the GEP instruction
starts. The same is true whether the second operand is an argument, allocated
memory, or a global variable.

To make this clear, let’s consider a more obtuse example:

%MyVar = uninitialized global i32
...
%idx1 = getelementptr i32, i32* %MyVar, i64 0
%idx2 = getelementptr i32, i32* %MyVar, i64 1
%idx3 = getelementptr i32, i32* %MyVar, i64 2

These GEP instructions are simply making address computations from the base
address of MyVar. They compute, as follows (using C syntax):

idx1 = (char*) &MyVar + 0
idx2 = (char*) &MyVar + 4
idx3 = (char*) &MyVar + 8

Since the type i32 is known to be four bytes long, the indices 0, 1 and 2
translate into memory offsets of 0, 4, and 8, respectively. No memory is
accessed to make these computations because the address of %MyVar is passed
directly to the GEP instructions.

The obtuse part of this example is in the cases of %idx2 and %idx3. They
result in the computation of addresses that point to memory past the end of the
%MyVar global, which is only one i32 long, not three i32s long.
While this is legal in LLVM, it is inadvisable because any load or store with
the pointer that results from these GEP instructions would produce undefined
results.

Why is the extra 0 index required?

Quick answer: there are no superfluous indices.

This question arises most often when the GEP instruction is applied to a global
variable which is always a pointer type. For example, consider this:

%MyStruct = uninitialized global { float*, i32 }
...
%idx = getelementptr { float*, i32 }, { float*, i32 }* %MyStruct, i64 0, i32 1

The GEP above yields an i32* by indexing the i32 typed field of the
structure %MyStruct. When people first look at it, they wonder why the i64
0 index is needed. However, a closer inspection of how globals and GEPs work
reveals the need. Becoming aware of the following facts will dispel the
confusion:

	The type of %MyStruct is not { float*, i32 } but rather { float*,
i32 }*. That is, %MyStruct is a pointer to a structure containing a
pointer to a float and an i32.

	Point #1 is evidenced by noticing the type of the second operand of the GEP
instruction (%MyStruct) which is { float*, i32 }*.

	The first index, i64 0 is required to step over the global variable
%MyStruct. Since the second argument to the GEP instruction must always
be a value of pointer type, the first index steps through that pointer. A
value of 0 means 0 elements offset from that pointer.

	The second index, i32 1 selects the second field of the structure (the
i32).

What is dereferenced by GEP?

Quick answer: nothing.

The GetElementPtr instruction dereferences nothing. That is, it doesn’t access
memory in any way. That’s what the Load and Store instructions are for. GEP is
only involved in the computation of addresses. For example, consider this:

%MyVar = uninitialized global { [40 x i32]* }
...
%idx = getelementptr { [40 x i32]* }, { [40 x i32]* }* %MyVar, i64 0, i32 0, i64 0, i64 17

In this example, we have a global variable, %MyVar that is a pointer to a
structure containing a pointer to an array of 40 ints. The GEP instruction seems
to be accessing the 18th integer of the structure’s array of ints. However, this
is actually an illegal GEP instruction. It won’t compile. The reason is that the
pointer in the structure must be dereferenced in order to index into the
array of 40 ints. Since the GEP instruction never accesses memory, it is
illegal.

In order to access the 18th integer in the array, you would need to do the
following:

%idx = getelementptr { [40 x i32]* }, { [40 x i32]* }* %, i64 0, i32 0
%arr = load [40 x i32]** %idx
%idx = getelementptr [40 x i32], [40 x i32]* %arr, i64 0, i64 17

In this case, we have to load the pointer in the structure with a load
instruction before we can index into the array. If the example was changed to:

%MyVar = uninitialized global { [40 x i32] }
...
%idx = getelementptr { [40 x i32] }, { [40 x i32] }*, i64 0, i32 0, i64 17

then everything works fine. In this case, the structure does not contain a
pointer and the GEP instruction can index through the global variable, into the
first field of the structure and access the 18th i32 in the array there.

Why don’t GEP x,0,0,1 and GEP x,1 alias?

Quick Answer: They compute different address locations.

If you look at the first indices in these GEP instructions you find that they
are different (0 and 1), therefore the address computation diverges with that
index. Consider this example:

%MyVar = global { [10 x i32] }
%idx1 = getelementptr { [10 x i32] }, { [10 x i32] }* %MyVar, i64 0, i32 0, i64 1
%idx2 = getelementptr { [10 x i32] }, { [10 x i32] }* %MyVar, i64 1

In this example, idx1 computes the address of the second integer in the
array that is in the structure in %MyVar, that is MyVar+4. The type of
idx1 is i32*. However, idx2 computes the address of the next
structure after %MyVar. The type of idx2 is { [10 x i32] }* and its
value is equivalent to MyVar + 40 because it indexes past the ten 4-byte
integers in MyVar. Obviously, in such a situation, the pointers don’t
alias.

Why do GEP x,1,0,0 and GEP x,1 alias?

Quick Answer: They compute the same address location.

These two GEP instructions will compute the same address because indexing
through the 0th element does not change the address. However, it does change the
type. Consider this example:

%MyVar = global { [10 x i32] }
%idx1 = getelementptr { [10 x i32] }, { [10 x i32] }* %MyVar, i64 1, i32 0, i64 0
%idx2 = getelementptr { [10 x i32] }, { [10 x i32] }* %MyVar, i64 1

In this example, the value of %idx1 is %MyVar+40 and its type is
i32*. The value of %idx2 is also MyVar+40 but its type is { [10 x
i32] }*.

Can GEP index into vector elements?

This hasn’t always been forcefully disallowed, though it’s not recommended. It
leads to awkward special cases in the optimizers, and fundamental inconsistency
in the IR. In the future, it will probably be outright disallowed.

What effect do address spaces have on GEPs?

None, except that the address space qualifier on the second operand pointer type
always matches the address space qualifier on the result type.

How is GEP different from ptrtoint, arithmetic, and inttoptr?

It’s very similar; there are only subtle differences.

With ptrtoint, you have to pick an integer type. One approach is to pick i64;
this is safe on everything LLVM supports (LLVM internally assumes pointers are
never wider than 64 bits in many places), and the optimizer will actually narrow
the i64 arithmetic down to the actual pointer size on targets which don’t
support 64-bit arithmetic in most cases. However, there are some cases where it
doesn’t do this. With GEP you can avoid this problem.

Also, GEP carries additional pointer aliasing rules. It’s invalid to take a GEP
from one object, address into a different separately allocated object, and
dereference it. IR producers (front-ends) must follow this rule, and consumers
(optimizers, specifically alias analysis) benefit from being able to rely on
it. See the Rules section for more information.

And, GEP is more concise in common cases.

However, for the underlying integer computation implied, there is no
difference.

I’m writing a backend for a target which needs custom lowering for GEP. How do I do this?

You don’t. The integer computation implied by a GEP is target-independent.
Typically what you’ll need to do is make your backend pattern-match expressions
trees involving ADD, MUL, etc., which are what GEP is lowered into. This has the
advantage of letting your code work correctly in more cases.

GEP does use target-dependent parameters for the size and layout of data types,
which targets can customize.

If you require support for addressing units which are not 8 bits, you’ll need to
fix a lot of code in the backend, with GEP lowering being only a small piece of
the overall picture.

How does VLA addressing work with GEPs?

GEPs don’t natively support VLAs. LLVM’s type system is entirely static, and GEP
address computations are guided by an LLVM type.

VLA indices can be implemented as linearized indices. For example, an expression
like X[a][b][c], must be effectively lowered into a form like
X[a*m+b*n+c], so that it appears to the GEP as a single-dimensional array
reference.

This means if you want to write an analysis which understands array indices and
you want to support VLAs, your code will have to be prepared to reverse-engineer
the linearization. One way to solve this problem is to use the ScalarEvolution
library, which always presents VLA and non-VLA indexing in the same manner.

Rules

What happens if an array index is out of bounds?

There are two senses in which an array index can be out of bounds.

First, there’s the array type which comes from the (static) type of the first
operand to the GEP. Indices greater than the number of elements in the
corresponding static array type are valid. There is no problem with out of
bounds indices in this sense. Indexing into an array only depends on the size of
the array element, not the number of elements.

A common example of how this is used is arrays where the size is not known.
It’s common to use array types with zero length to represent these. The fact
that the static type says there are zero elements is irrelevant; it’s perfectly
valid to compute arbitrary element indices, as the computation only depends on
the size of the array element, not the number of elements. Note that zero-sized
arrays are not a special case here.

This sense is unconnected with inbounds keyword. The inbounds keyword is
designed to describe low-level pointer arithmetic overflow conditions, rather
than high-level array indexing rules.

Analysis passes which wish to understand array indexing should not assume that
the static array type bounds are respected.

The second sense of being out of bounds is computing an address that’s beyond
the actual underlying allocated object.

With the inbounds keyword, the result value of the GEP is undefined if the
address is outside the actual underlying allocated object and not the address
one-past-the-end.

Without the inbounds keyword, there are no restrictions on computing
out-of-bounds addresses. Obviously, performing a load or a store requires an
address of allocated and sufficiently aligned memory. But the GEP itself is only
concerned with computing addresses.

Can array indices be negative?

Yes. This is basically a special case of array indices being out of bounds.

Can I compare two values computed with GEPs?

Yes. If both addresses are within the same allocated object, or
one-past-the-end, you’ll get the comparison result you expect. If either is
outside of it, integer arithmetic wrapping may occur, so the comparison may not
be meaningful.

Can I do GEP with a different pointer type than the type of the underlying object?

Yes. There are no restrictions on bitcasting a pointer value to an arbitrary
pointer type. The types in a GEP serve only to define the parameters for the
underlying integer computation. They need not correspond with the actual type of
the underlying object.

Furthermore, loads and stores don’t have to use the same types as the type of
the underlying object. Types in this context serve only to specify memory size
and alignment. Beyond that there are merely a hint to the optimizer indicating
how the value will likely be used.

Can I cast an object’s address to integer and add it to null?

You can compute an address that way, but if you use GEP to do the add, you can’t
use that pointer to actually access the object, unless the object is managed
outside of LLVM.

The underlying integer computation is sufficiently defined; null has a defined
value — zero — and you can add whatever value you want to it.

However, it’s invalid to access (load from or store to) an LLVM-aware object
with such a pointer. This includes GlobalVariables, Allocas, and objects
pointed to by noalias pointers.

If you really need this functionality, you can do the arithmetic with explicit
integer instructions, and use inttoptr to convert the result to an address. Most
of GEP’s special aliasing rules do not apply to pointers computed from ptrtoint,
arithmetic, and inttoptr sequences.

Can I compute the distance between two objects, and add that value to one address to compute the other address?

As with arithmetic on null, you can use GEP to compute an address that way, but
you can’t use that pointer to actually access the object if you do, unless the
object is managed outside of LLVM.

Also as above, ptrtoint and inttoptr provide an alternative way to do this which
do not have this restriction.

Can I do type-based alias analysis on LLVM IR?

You can’t do type-based alias analysis using LLVM’s built-in type system,
because LLVM has no restrictions on mixing types in addressing, loads or stores.

LLVM’s type-based alias analysis pass uses metadata to describe a different type
system (such as the C type system), and performs type-based aliasing on top of
that. Further details are in the
language reference.

What happens if a GEP computation overflows?

If the GEP lacks the inbounds keyword, the value is the result from
evaluating the implied two’s complement integer computation. However, since
there’s no guarantee of where an object will be allocated in the address space,
such values have limited meaning.

If the GEP has the inbounds keyword, the result value is undefined (a “trap
value”) if the GEP overflows (i.e. wraps around the end of the address space).

As such, there are some ramifications of this for inbounds GEPs: scales implied
by array/vector/pointer indices are always known to be “nsw” since they are
signed values that are scaled by the element size. These values are also
allowed to be negative (e.g. “gep i32 *%P, i32 -1”) but the pointer itself
is logically treated as an unsigned value. This means that GEPs have an
asymmetric relation between the pointer base (which is treated as unsigned) and
the offset applied to it (which is treated as signed). The result of the
additions within the offset calculation cannot have signed overflow, but when
applied to the base pointer, there can be signed overflow.

How can I tell if my front-end is following the rules?

There is currently no checker for the getelementptr rules. Currently, the only
way to do this is to manually check each place in your front-end where
GetElementPtr operators are created.

It’s not possible to write a checker which could find all rule violations
statically. It would be possible to write a checker which works by instrumenting
the code with dynamic checks though. Alternatively, it would be possible to
write a static checker which catches a subset of possible problems. However, no
such checker exists today.

Rationale

Why is GEP designed this way?

The design of GEP has the following goals, in rough unofficial order of
priority:

	Support C, C-like languages, and languages which can be conceptually lowered
into C (this covers a lot).

	Support optimizations such as those that are common in C compilers. In
particular, GEP is a cornerstone of LLVM’s pointer aliasing
model.

	Provide a consistent method for computing addresses so that address
computations don’t need to be a part of load and store instructions in the IR.

	Support non-C-like languages, to the extent that it doesn’t interfere with
other goals.

	Minimize target-specific information in the IR.

Why do struct member indices always use i32?

The specific type i32 is probably just a historical artifact, however it’s wide
enough for all practical purposes, so there’s been no need to change it. It
doesn’t necessarily imply i32 address arithmetic; it’s just an identifier which
identifies a field in a struct. Requiring that all struct indices be the same
reduces the range of possibilities for cases where two GEPs are effectively the
same but have distinct operand types.

What’s an uglygep?

Some LLVM optimizers operate on GEPs by internally lowering them into more
primitive integer expressions, which allows them to be combined with other
integer expressions and/or split into multiple separate integer expressions. If
they’ve made non-trivial changes, translating back into LLVM IR can involve
reverse-engineering the structure of the addressing in order to fit it into the
static type of the original first operand. It isn’t always possibly to fully
reconstruct this structure; sometimes the underlying addressing doesn’t
correspond with the static type at all. In such cases the optimizer instead will
emit a GEP with the base pointer casted to a simple address-unit pointer, using
the name “uglygep”. This isn’t pretty, but it’s just as valid, and it’s
sufficient to preserve the pointer aliasing guarantees that GEP provides.

Summary

In summary, here’s some things to always remember about the GetElementPtr
instruction:

	The GEP instruction never accesses memory, it only provides pointer
computations.

	The second operand to the GEP instruction is always a pointer and it must be
indexed.

	There are no superfluous indices for the GEP instruction.

	Trailing zero indices are superfluous for pointer aliasing, but not for the
types of the pointers.

	Leading zero indices are not superfluous for pointer aliasing nor the types
of the pointers.

Performance Tips for Frontend Authors

	Abstract

	IR Best Practices

	The Basics

	Use of allocas

	Avoid loads and stores of large aggregate type

	Prefer zext over sext when legal

	Zext GEP indices to machine register width

	When to specify alignment

	Other Things to Consider

	Describing Language Specific Properties

	Restricted Operation Semantics

	Describing Aliasing Properties

	Modeling Memory Effects

	Pass Ordering

	I Still Can’t Find What I’m Looking For

	Adding to this document

Abstract

The intended audience of this document is developers of language frontends
targeting LLVM IR. This document is home to a collection of tips on how to
generate IR that optimizes well.

IR Best Practices

As with any optimizer, LLVM has its strengths and weaknesses. In some cases,
surprisingly small changes in the source IR can have a large effect on the
generated code.

Beyond the specific items on the list below, it’s worth noting that the most
mature frontend for LLVM is Clang. As a result, the further your IR gets from what Clang might emit, the less likely it is to be effectively optimized. It
can often be useful to write a quick C program with the semantics you’re trying
to model and see what decisions Clang’s IRGen makes about what IR to emit.
Studying Clang’s CodeGen directory can also be a good source of ideas. Note
that Clang and LLVM are explicitly version locked so you’ll need to make sure
you’re using a Clang built from the same svn revision or release as the LLVM
library you’re using. As always, it’s strongly recommended that you track
tip of tree development, particularly during bring up of a new project.

The Basics

	Make sure that your Modules contain both a data layout specification and
target triple. Without these pieces, non of the target specific optimization
will be enabled. This can have a major effect on the generated code quality.

	For each function or global emitted, use the most private linkage type
possible (private, internal or linkonce_odr preferably). Doing so will
make LLVM’s inter-procedural optimizations much more effective.

	Avoid high in-degree basic blocks (e.g. basic blocks with dozens or hundreds
of predecessors). Among other issues, the register allocator is known to
perform badly with confronted with such structures. The only exception to
this guidance is that a unified return block with high in-degree is fine.

Use of allocas

An alloca instruction can be used to represent a function scoped stack slot,
but can also represent dynamic frame expansion. When representing function
scoped variables or locations, placing alloca instructions at the beginning of
the entry block should be preferred. In particular, place them before any
call instructions. Call instructions might get inlined and replaced with
multiple basic blocks. The end result is that a following alloca instruction
would no longer be in the entry basic block afterward.

The SROA (Scalar Replacement Of Aggregates) and Mem2Reg passes only attempt
to eliminate alloca instructions that are in the entry basic block. Given
SSA is the canonical form expected by much of the optimizer; if allocas can
not be eliminated by Mem2Reg or SROA, the optimizer is likely to be less
effective than it could be.

Avoid loads and stores of large aggregate type

LLVM currently does not optimize well loads and stores of large aggregate
types (i.e. structs and arrays). As an alternative, consider
loading individual fields from memory.

Aggregates that are smaller than the largest (performant) load or store
instruction supported by the targeted hardware are well supported. These can
be an effective way to represent collections of small packed fields.

Prefer zext over sext when legal

On some architectures (X86_64 is one), sign extension can involve an extra
instruction whereas zero extension can be folded into a load. LLVM will try to
replace a sext with a zext when it can be proven safe, but if you have
information in your source language about the range of a integer value, it can
be profitable to use a zext rather than a sext.

Alternatively, you can specify the range of the value using metadata and LLVM can do the sext to zext conversion for you.

Zext GEP indices to machine register width

Internally, LLVM often promotes the width of GEP indices to machine register
width. When it does so, it will default to using sign extension (sext)
operations for safety. If your source language provides information about
the range of the index, you may wish to manually extend indices to machine
register width using a zext instruction.

When to specify alignment

LLVM will always generate correct code if you don’t specify alignment, but may
generate inefficient code. For example, if you are targeting MIPS (or older
ARM ISAs) then the hardware does not handle unaligned loads and stores, and
so you will enter a trap-and-emulate path if you do a load or store with
lower-than-natural alignment. To avoid this, LLVM will emit a slower
sequence of loads, shifts and masks (or load-right + load-left on MIPS) for
all cases where the load / store does not have a sufficiently high alignment
in the IR.

The alignment is used to guarantee the alignment on allocas and globals,
though in most cases this is unnecessary (most targets have a sufficiently
high default alignment that they’ll be fine). It is also used to provide a
contract to the back end saying ‘either this load/store has this alignment, or
it is undefined behavior’. This means that the back end is free to emit
instructions that rely on that alignment (and mid-level optimizers are free to
perform transforms that require that alignment). For x86, it doesn’t make
much difference, as almost all instructions are alignment-independent. For
MIPS, it can make a big difference.

Note that if your loads and stores are atomic, the backend will be unable to
lower an under aligned access into a sequence of natively aligned accesses.
As a result, alignment is mandatory for atomic loads and stores.

Other Things to Consider

	Use ptrtoint/inttoptr sparingly (they interfere with pointer aliasing
analysis), prefer GEPs

	Prefer globals over inttoptr of a constant address - this gives you
dereferencability information. In MCJIT, use getSymbolAddress to provide
actual address.

	Be wary of ordered and atomic memory operations. They are hard to optimize
and may not be well optimized by the current optimizer. Depending on your
source language, you may consider using fences instead.

	If calling a function which is known to throw an exception (unwind), use
an invoke with a normal destination which contains an unreachable
instruction. This form conveys to the optimizer that the call returns
abnormally. For an invoke which neither returns normally or requires unwind
code in the current function, you can use a noreturn call instruction if
desired. This is generally not required because the optimizer will convert
an invoke with an unreachable unwind destination to a call instruction.

	Use profile metadata to indicate statically known cold paths, even if
dynamic profiling information is not available. This can make a large
difference in code placement and thus the performance of tight loops.

	When generating code for loops, try to avoid terminating the header block of
the loop earlier than necessary. If the terminator of the loop header
block is a loop exiting conditional branch, the effectiveness of LICM will
be limited for loads not in the header. (This is due to the fact that LLVM
may not know such a load is safe to speculatively execute and thus can’t
lift an otherwise loop invariant load unless it can prove the exiting
condition is not taken.) It can be profitable, in some cases, to emit such
instructions into the header even if they are not used along a rarely
executed path that exits the loop. This guidance specifically does not
apply if the condition which terminates the loop header is itself invariant,
or can be easily discharged by inspecting the loop index variables.

	In hot loops, consider duplicating instructions from small basic blocks
which end in highly predictable terminators into their successor blocks.
If a hot successor block contains instructions which can be vectorized
with the duplicated ones, this can provide a noticeable throughput
improvement. Note that this is not always profitable and does involve a
potentially large increase in code size.

	When checking a value against a constant, emit the check using a consistent
comparison type. The GVN pass will optimize redundant equalities even if
the type of comparison is inverted, but GVN only runs late in the pipeline.
As a result, you may miss the opportunity to run other important
optimizations. Improvements to EarlyCSE to remove this issue are tracked in
Bug 23333.

	Avoid using arithmetic intrinsics unless you are required by your source
language specification to emit a particular code sequence. The optimizer
is quite good at reasoning about general control flow and arithmetic, it is
not anywhere near as strong at reasoning about the various intrinsics. If
profitable for code generation purposes, the optimizer will likely form the
intrinsics itself late in the optimization pipeline. It is very rarely
profitable to emit these directly in the language frontend. This item
explicitly includes the use of the overflow intrinsics.

	Avoid using the assume intrinsic until you’ve
established that a) there’s no other way to express the given fact and b)
that fact is critical for optimization purposes. Assumes are a great
prototyping mechanism, but they can have negative effects on both compile
time and optimization effectiveness. The former is fixable with enough
effort, but the later is fairly fundamental to their designed purpose.

Describing Language Specific Properties

When translating a source language to LLVM, finding ways to express concepts
and guarantees available in your source language which are not natively
provided by LLVM IR will greatly improve LLVM’s ability to optimize your code.
As an example, C/C++’s ability to mark every add as “no signed wrap (nsw)” goes
a long way to assisting the optimizer in reasoning about loop induction
variables and thus generating more optimal code for loops.

The LLVM LangRef includes a number of mechanisms for annotating the IR with
additional semantic information. It is strongly recommended that you become
highly familiar with this document. The list below is intended to highlight a
couple of items of particular interest, but is by no means exhaustive.

Restricted Operation Semantics

	Add nsw/nuw flags as appropriate. Reasoning about overflow is
generally hard for an optimizer so providing these facts from the frontend
can be very impactful.

	Use fast-math flags on floating point operations if legal. If you don’t
need strict IEEE floating point semantics, there are a number of additional
optimizations that can be performed. This can be highly impactful for
floating point intensive computations.

Describing Aliasing Properties

	Add noalias/align/dereferenceable/nonnull to function arguments and return
values as appropriate

	Use pointer aliasing metadata, especially tbaa metadata, to communicate
otherwise-non-deducible pointer aliasing facts

	Use inbounds on geps. This can help to disambiguate some aliasing queries.

Modeling Memory Effects

	Mark functions as readnone/readonly/argmemonly or noreturn/nounwind when
known. The optimizer will try to infer these flags, but may not always be
able to. Manual annotations are particularly important for external
functions that the optimizer can not analyze.

	Use the lifetime.start/lifetime.end and invariant.start/invariant.end
intrinsics where possible. Common profitable uses are for stack like data
structures (thus allowing dead store elimination) and for describing
life times of allocas (thus allowing smaller stack sizes).

	Mark invariant locations using !invariant.load and TBAA’s constant flags

Pass Ordering

One of the most common mistakes made by new language frontend projects is to
use the existing -O2 or -O3 pass pipelines as is. These pass pipelines make a
good starting point for an optimizing compiler for any language, but they have
been carefully tuned for C and C++, not your target language. You will almost
certainly need to use a custom pass order to achieve optimal performance. A
couple specific suggestions:

	For languages with numerous rarely executed guard conditions (e.g. null
checks, type checks, range checks) consider adding an extra execution or
two of LoopUnswith and LICM to your pass order. The standard pass order,
which is tuned for C and C++ applications, may not be sufficient to remove
all dischargeable checks from loops.

	If you language uses range checks, consider using the IRCE pass. It is not
currently part of the standard pass order.

	A useful sanity check to run is to run your optimized IR back through the
-O2 pipeline again. If you see noticeable improvement in the resulting IR,
you likely need to adjust your pass order.

I Still Can’t Find What I’m Looking For

If you didn’t find what you were looking for above, consider proposing an piece
of metadata which provides the optimization hint you need. Such extensions are
relatively common and are generally well received by the community. You will
need to ensure that your proposal is sufficiently general so that it benefits
others if you wish to contribute it upstream.

You should also consider describing the problem you’re facing on llvm-dev [http://lists.llvm.org/mailman/listinfo/llvm-dev] and asking for advice.
It’s entirely possible someone has encountered your problem before and can
give good advice. If there are multiple interested parties, that also
increases the chances that a metadata extension would be well received by the
community as a whole.

Adding to this document

If you run across a case that you feel deserves to be covered here, please send
a patch to llvm-commits [http://lists.llvm.org/mailman/listinfo/llvm-commits] for review.

If you have questions on these items, please direct them to llvm-dev [http://lists.llvm.org/mailman/listinfo/llvm-dev]. The more relevant
context you are able to give to your question, the more likely it is to be
answered.

MCJIT Design and Implementation

Introduction

This document describes the internal workings of the MCJIT execution
engine and the RuntimeDyld component. It is intended as a high level
overview of the implementation, showing the flow and interactions of
objects throughout the code generation and dynamic loading process.

Engine Creation

In most cases, an EngineBuilder object is used to create an instance of
the MCJIT execution engine. The EngineBuilder takes an llvm::Module
object as an argument to its constructor. The client may then set various
options that we control the later be passed along to the MCJIT engine,
including the selection of MCJIT as the engine type to be created.
Of particular interest is the EngineBuilder::setMCJITMemoryManager
function. If the client does not explicitly create a memory manager at
this time, a default memory manager (specifically SectionMemoryManager)
will be created when the MCJIT engine is instantiated.

Once the options have been set, a client calls EngineBuilder::create to
create an instance of the MCJIT engine. If the client does not use the
form of this function that takes a TargetMachine as a parameter, a new
TargetMachine will be created based on the target triple associated with
the Module that was used to create the EngineBuilder.

[image: _images/MCJIT-engine-builder.png]
EngineBuilder::create will call the static MCJIT::createJIT function,
passing in its pointers to the module, memory manager and target machine
objects, all of which will subsequently be owned by the MCJIT object.

The MCJIT class has a member variable, Dyld, which contains an instance of
the RuntimeDyld wrapper class. This member will be used for
communications between MCJIT and the actual RuntimeDyldImpl object that
gets created when an object is loaded.

[image: _images/MCJIT-creation.png]
Upon creation, MCJIT holds a pointer to the Module object that it received
from EngineBuilder but it does not immediately generate code for this
module. Code generation is deferred until either the
MCJIT::finalizeObject method is called explicitly or a function such as
MCJIT::getPointerToFunction is called which requires the code to have been
generated.

Code Generation

When code generation is triggered, as described above, MCJIT will first
attempt to retrieve an object image from its ObjectCache member, if one
has been set. If a cached object image cannot be retrieved, MCJIT will
call its emitObject method. MCJIT::emitObject uses a local PassManager
instance and creates a new ObjectBufferStream instance, both of which it
passes to TargetMachine::addPassesToEmitMC before calling PassManager::run
on the Module with which it was created.

[image: _images/MCJIT-load.png]
The PassManager::run call causes the MC code generation mechanisms to emit
a complete relocatable binary object image (either in either ELF or MachO
format, depending on the target) into the ObjectBufferStream object, which
is flushed to complete the process. If an ObjectCache is being used, the
image will be passed to the ObjectCache here.

At this point, the ObjectBufferStream contains the raw object image.
Before the code can be executed, the code and data sections from this
image must be loaded into suitable memory, relocations must be applied and
memory permission and code cache invalidation (if required) must be completed.

Object Loading

Once an object image has been obtained, either through code generation or
having been retrieved from an ObjectCache, it is passed to RuntimeDyld to
be loaded. The RuntimeDyld wrapper class examines the object to determine
its file format and creates an instance of either RuntimeDyldELF or
RuntimeDyldMachO (both of which derive from the RuntimeDyldImpl base
class) and calls the RuntimeDyldImpl::loadObject method to perform that
actual loading.

[image: _images/MCJIT-dyld-load.png]
RuntimeDyldImpl::loadObject begins by creating an ObjectImage instance
from the ObjectBuffer it received. ObjectImage, which wraps the
ObjectFile class, is a helper class which parses the binary object image
and provides access to the information contained in the format-specific
headers, including section, symbol and relocation information.

RuntimeDyldImpl::loadObject then iterates through the symbols in the
image. Information about common symbols is collected for later use. For
each function or data symbol, the associated section is loaded into memory
and the symbol is stored in a symbol table map data structure. When the
iteration is complete, a section is emitted for the common symbols.

Next, RuntimeDyldImpl::loadObject iterates through the sections in the
object image and for each section iterates through the relocations for
that sections. For each relocation, it calls the format-specific
processRelocationRef method, which will examine the relocation and store
it in one of two data structures, a section-based relocation list map and
an external symbol relocation map.

[image: _images/MCJIT-load-object.png]
When RuntimeDyldImpl::loadObject returns, all of the code and data
sections for the object will have been loaded into memory allocated by the
memory manager and relocation information will have been prepared, but the
relocations have not yet been applied and the generated code is still not
ready to be executed.

[Currently (as of August 2013) the MCJIT engine will immediately apply
relocations when loadObject completes. However, this shouldn’t be
happening. Because the code may have been generated for a remote target,
the client should be given a chance to re-map the section addresses before
relocations are applied. It is possible to apply relocations multiple
times, but in the case where addresses are to be re-mapped, this first
application is wasted effort.]

Address Remapping

At any time after initial code has been generated and before
finalizeObject is called, the client can remap the address of sections in
the object. Typically this is done because the code was generated for an
external process and is being mapped into that process’ address space.
The client remaps the section address by calling MCJIT::mapSectionAddress.
This should happen before the section memory is copied to its new
location.

When MCJIT::mapSectionAddress is called, MCJIT passes the call on to
RuntimeDyldImpl (via its Dyld member). RuntimeDyldImpl stores the new
address in an internal data structure but does not update the code at this
time, since other sections are likely to change.

When the client is finished remapping section addresses, it will call
MCJIT::finalizeObject to complete the remapping process.

Final Preparations

When MCJIT::finalizeObject is called, MCJIT calls
RuntimeDyld::resolveRelocations. This function will attempt to locate any
external symbols and then apply all relocations for the object.

External symbols are resolved by calling the memory manager’s
getPointerToNamedFunction method. The memory manager will return the
address of the requested symbol in the target address space. (Note, this
may not be a valid pointer in the host process.) RuntimeDyld will then
iterate through the list of relocations it has stored which are associated
with this symbol and invoke the resolveRelocation method which, through an
format-specific implementation, will apply the relocation to the loaded
section memory.

Next, RuntimeDyld::resolveRelocations iterates through the list of
sections and for each section iterates through a list of relocations that
have been saved which reference that symbol and call resolveRelocation for
each entry in this list. The relocation list here is a list of
relocations for which the symbol associated with the relocation is located
in the section associated with the list. Each of these locations will
have a target location at which the relocation will be applied that is
likely located in a different section.

[image: _images/MCJIT-resolve-relocations.png]
Once relocations have been applied as described above, MCJIT calls
RuntimeDyld::getEHFrameSection, and if a non-zero result is returned
passes the section data to the memory manager’s registerEHFrames method.
This allows the memory manager to call any desired target-specific
functions, such as registering the EH frame information with a debugger.

Finally, MCJIT calls the memory manager’s finalizeMemory method. In this
method, the memory manager will invalidate the target code cache, if
necessary, and apply final permissions to the memory pages it has
allocated for code and data memory.

LLVM Community Code of Conduct

Note

This document is currently a DRAFT document while it is being discussed
by the community.

The LLVM community has always worked to be a welcoming and respectful
community, and we want to ensure that doesn’t change as we grow and evolve. To
that end, we have a few ground rules that we ask people to adhere to:

	be friendly and patient,

	be welcoming,

	be considerate,

	be respectful,

	be careful in the words that you choose and be kind to others, and

	when we disagree, try to understand why.

This isn’t an exhaustive list of things that you can’t do. Rather, take it in
the spirit in which it’s intended - a guide to make it easier to communicate
and participate in the community.

This code of conduct applies to all spaces managed by the LLVM project or The
LLVM Foundation. This includes IRC channels, mailing lists, bug trackers, LLVM
events such as the developer meetings and socials, and any other forums created
by the project that the community uses for communication. It applies to all of
your communication and conduct in these spaces, including emails, chats, things
you say, slides, videos, posters, signs, or even t-shirts you display in these
spaces. In addition, violations of this code outside these spaces may, in rare
cases, affect a person’s ability to participate within them, when the conduct
amounts to an egregious violation of this code.

If you believe someone is violating the code of conduct, we ask that you report
it by emailing conduct@llvm.org. For more details please see our
Reporting Guide.

	Be friendly and patient.

	Be welcoming. We strive to be a community that welcomes and supports
people of all backgrounds and identities. This includes, but is not limited
to members of any race, ethnicity, culture, national origin, colour,
immigration status, social and economic class, educational level, sex, sexual
orientation, gender identity and expression, age, size, family status,
political belief, religion or lack thereof, and mental and physical ability.

	Be considerate. Your work will be used by other people, and you in turn
will depend on the work of others. Any decision you take will affect users
and colleagues, and you should take those consequences into account. Remember
that we’re a world-wide community, so you might not be communicating in
someone else’s primary language.

	Be respectful. Not all of us will agree all the time, but disagreement is
no excuse for poor behavior and poor manners. We might all experience some
frustration now and then, but we cannot allow that frustration to turn into
a personal attack. It’s important to remember that a community where people
feel uncomfortable or threatened is not a productive one. Members of the LLVM
community should be respectful when dealing with other members as well as
with people outside the LLVM community.

	Be careful in the words that you choose and be kind to others. Do not
insult or put down other participants. Harassment and other exclusionary
behavior aren’t acceptable. This includes, but is not limited to:

	Violent threats or language directed against another person.

	Discriminatory jokes and language.

	Posting sexually explicit or violent material.

	Posting (or threatening to post) other people’s personally identifying
information (“doxing”).

	Personal insults, especially those using racist or sexist terms.

	Unwelcome sexual attention.

	Advocating for, or encouraging, any of the above behavior.

In general, if someone asks you to stop, then stop. Persisting in such
behavior after being asked to stop is considered harassment.

	When we disagree, try to understand why. Disagreements, both social and
technical, happen all the time and LLVM is no exception. It is important that
we resolve disagreements and differing views constructively. Remember that
we’re different. The strength of LLVM comes from its varied community, people
from a wide range of backgrounds. Different people have different
perspectives on issues. Being unable to understand why someone holds
a viewpoint doesn’t mean that they’re wrong. Don’t forget that it is human to
err and blaming each other doesn’t get us anywhere. Instead, focus on helping
to resolve issues and learning from mistakes.

Questions?

If you have questions, please feel free to contact the LLVM Foundation Code of
Conduct Advisory Committee by emailing conduct@llvm.org.

(This text is based on the Django Project [https://www.djangoproject.com/conduct/] Code of Conduct, which is in turn
based on wording from the Speak Up! project [http://speakup.io/coc.html].)

Compiling CUDA with clang

	Introduction

	Compiling CUDA Code

	Prerequisites

	Invoking clang

	Flags that control numerical code

	Standard library support

	<math.h> and <cmath>

	<std::complex>

	<algorithm>

	Detecting clang vs NVCC from code

	Dialect Differences Between clang and nvcc

	Compilation Models

	Overloading Based on __host__ and __device__ Attributes

	Using a Different Class on Host/Device

	Optimizations

	Publication

	Obtaining Help

Introduction

This document describes how to compile CUDA code with clang, and gives some
details about LLVM and clang’s CUDA implementations.

This document assumes a basic familiarity with CUDA. Information about CUDA
programming can be found in the
CUDA programming guide [http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html].

Compiling CUDA Code

Prerequisites

CUDA is supported in llvm 3.9, but it’s still in active development, so we
recommend you compile clang/LLVM from HEAD [http://llvm.org/docs/GettingStarted.html].

Before you build CUDA code, you’ll need to have installed the appropriate
driver for your nvidia GPU and the CUDA SDK. See NVIDIA’s CUDA installation
guide [https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html]
for details. Note that clang does not support [https://llvm.org/bugs/show_bug.cgi?id=26966] the CUDA toolkit as installed
by many Linux package managers; you probably need to install nvidia’s package.

You will need CUDA 7.0, 7.5, or 8.0 to compile with clang.

CUDA compilation is supported on Linux, on MacOS as of 2016-11-18, and on
Windows as of 2017-01-05.

Invoking clang

Invoking clang for CUDA compilation works similarly to compiling regular C++.
You just need to be aware of a few additional flags.

You can use this [https://gist.github.com/855e277884eb6b388cd2f00d956c2fd4]
program as a toy example. Save it as axpy.cu. (Clang detects that you’re
compiling CUDA code by noticing that your filename ends with .cu.
Alternatively, you can pass -x cuda.)

To build and run, run the following commands, filling in the parts in angle
brackets as described below:

$ clang++ axpy.cu -o axpy --cuda-gpu-arch=<GPU arch> \
 -L<CUDA install path>/<lib64 or lib> \
 -lcudart_static -ldl -lrt -pthread
$./axpy
y[0] = 2
y[1] = 4
y[2] = 6
y[3] = 8

On MacOS, replace -lcudart_static with -lcudart; otherwise, you may get
“CUDA driver version is insufficient for CUDA runtime version” errors when you
run your program.

	<CUDA install path> – the directory where you installed CUDA SDK.
Typically, /usr/local/cuda.

Pass e.g. -L/usr/local/cuda/lib64 if compiling in 64-bit mode; otherwise,
pass e.g. -L/usr/local/cuda/lib. (In CUDA, the device code and host code
always have the same pointer widths, so if you’re compiling 64-bit code for
the host, you’re also compiling 64-bit code for the device.)

	<GPU arch> – the compute capability [https://developer.nvidia.com/cuda-gpus] of your GPU. For example, if you
want to run your program on a GPU with compute capability of 3.5, specify
--cuda-gpu-arch=sm_35.

Note: You cannot pass compute_XX as an argument to --cuda-gpu-arch;
only sm_XX is currently supported. However, clang always includes PTX in
its binaries, so e.g. a binary compiled with --cuda-gpu-arch=sm_30 would be
forwards-compatible with e.g. sm_35 GPUs.

You can pass --cuda-gpu-arch multiple times to compile for multiple archs.

The -L and -l flags only need to be passed when linking. When compiling,
you may also need to pass --cuda-path=/path/to/cuda if you didn’t install
the CUDA SDK into /usr/local/cuda, /usr/local/cuda-7.0, or
/usr/local/cuda-7.5.

Flags that control numerical code

If you’re using GPUs, you probably care about making numerical code run fast.
GPU hardware allows for more control over numerical operations than most CPUs,
but this results in more compiler options for you to juggle.

Flags you may wish to tweak include:

	-ffp-contract={on,off,fast} (defaults to fast on host and device when
compiling CUDA) Controls whether the compiler emits fused multiply-add
operations.

	off: never emit fma operations, and prevent ptxas from fusing multiply
and add instructions.

	on: fuse multiplies and adds within a single statement, but never
across statements (C11 semantics). Prevent ptxas from fusing other
multiplies and adds.

	fast: fuse multiplies and adds wherever profitable, even across
statements. Doesn’t prevent ptxas from fusing additional multiplies and
adds.

Fused multiply-add instructions can be much faster than the unfused
equivalents, but because the intermediate result in an fma is not rounded,
this flag can affect numerical code.

	-fcuda-flush-denormals-to-zero (default: off) When this is enabled,
floating point operations may flush denormal [https://en.wikipedia.org/wiki/Denormal_number] inputs and/or outputs to 0.
Operations on denormal numbers are often much slower than the same operations
on normal numbers.

	-fcuda-approx-transcendentals (default: off) When this is enabled, the
compiler may emit calls to faster, approximate versions of transcendental
functions, instead of using the slower, fully IEEE-compliant versions. For
example, this flag allows clang to emit the ptx sin.approx.f32
instruction.

This is implied by -ffast-math.

Standard library support

In clang and nvcc, most of the C++ standard library is not supported on the
device side.

<math.h> and <cmath>

In clang, math.h and cmath are available and pass [https://github.com/llvm-mirror/test-suite/blob/master/External/CUDA/math_h.cu]
tests [https://github.com/llvm-mirror/test-suite/blob/master/External/CUDA/cmath.cu]
adapted from libc++’s test suite.

In nvcc math.h and cmath are mostly available. Versions of ::foof
in namespace std (e.g. std::sinf) are not available, and where the standard
calls for overloads that take integral arguments, these are usually not
available.

#include <math.h>
#include <cmath.h>

// clang is OK with everything in this function.
__device__ void test() {
 std::sin(0.); // nvcc - ok
 std::sin(0); // nvcc - error, because no std::sin(int) override is available.
 sin(0); // nvcc - same as above.

 sinf(0.); // nvcc - ok
 std::sinf(0.); // nvcc - no such function
}

<std::complex>

nvcc does not officially support std::complex. It’s an error to use
std::complex in __device__ code, but it often works in __host__
__device__ code due to nvcc’s interpretation of the “wrong-side rule” (see
below). However, we have heard from implementers that it’s possible to get
into situations where nvcc will omit a call to an std::complex function,
especially when compiling without optimizations.

As of 2016-11-16, clang supports std::complex without these caveats. It is
tested with libstdc++ 4.8.5 and newer, but is known to work only with libc++
newer than 2016-11-16.

<algorithm>

In C++14, many useful functions from <algorithm> (notably, std::min and
std::max) become constexpr. You can therefore use these in device code,
when compiling with clang.

Detecting clang vs NVCC from code

Although clang’s CUDA implementation is largely compatible with NVCC’s, you may
still want to detect when you’re compiling CUDA code specifically with clang.

This is tricky, because NVCC may invoke clang as part of its own compilation
process! For example, NVCC uses the host compiler’s preprocessor when
compiling for device code, and that host compiler may in fact be clang.

When clang is actually compiling CUDA code – rather than being used as a
subtool of NVCC’s – it defines the __CUDA__ macro. __CUDA_ARCH__ is
defined only in device mode (but will be defined if NVCC is using clang as a
preprocessor). So you can use the following incantations to detect clang CUDA
compilation, in host and device modes:

#if defined(__clang__) && defined(__CUDA__) && !defined(__CUDA_ARCH__)
// clang compiling CUDA code, host mode.
#endif

#if defined(__clang__) && defined(__CUDA__) && defined(__CUDA_ARCH__)
// clang compiling CUDA code, device mode.
#endif

Both clang and nvcc define __CUDACC__ during CUDA compilation. You can
detect NVCC specifically by looking for __NVCC__.

Dialect Differences Between clang and nvcc

There is no formal CUDA spec, and clang and nvcc speak slightly different
dialects of the language. Below, we describe some of the differences.

This section is painful; hopefully you can skip this section and live your life
blissfully unaware.

Compilation Models

Most of the differences between clang and nvcc stem from the different
compilation models used by clang and nvcc. nvcc uses split compilation,
which works roughly as follows:

	Run a preprocessor over the input .cu file to split it into two source
files: H, containing source code for the host, and D, containing
source code for the device.

	For each GPU architecture arch that we’re compiling for, do:

	Compile D using nvcc proper. The result of this is a ptx file for
P_arch.

	Optionally, invoke ptxas, the PTX assembler, to generate a file,
S_arch, containing GPU machine code (SASS) for arch.

	Invoke fatbin to combine all P_arch and S_arch files into a
single “fat binary” file, F.

	Compile H using an external host compiler (gcc, clang, or whatever you
like). F is packaged up into a header file which is force-included into
H; nvcc generates code that calls into this header to e.g. launch
kernels.

clang uses merged parsing. This is similar to split compilation, except all
of the host and device code is present and must be semantically-correct in both
compilation steps.

	For each GPU architecture arch that we’re compiling for, do:

	Compile the input .cu file for device, using clang. __host__ code
is parsed and must be semantically correct, even though we’re not
generating code for the host at this time.

The output of this step is a ptx file P_arch.

	Invoke ptxas to generate a SASS file, S_arch. Note that, unlike
nvcc, clang always generates SASS code.

	Invoke fatbin to combine all P_arch and S_arch files into a
single fat binary file, F.

	Compile H using clang. __device__ code is parsed and must be
semantically correct, even though we’re not generating code for the device
at this time.

F is passed to this compilation, and clang includes it in a special ELF
section, where it can be found by tools like cuobjdump.

(You may ask at this point, why does clang need to parse the input file
multiple times? Why not parse it just once, and then use the AST to generate
code for the host and each device architecture?

Unfortunately this can’t work because we have to define different macros during
host compilation and during device compilation for each GPU architecture.)

clang’s approach allows it to be highly robust to C++ edge cases, as it doesn’t
need to decide at an early stage which declarations to keep and which to throw
away. But it has some consequences you should be aware of.

Overloading Based on __host__ and __device__ Attributes

Let “H”, “D”, and “HD” stand for “__host__ functions”, “__device__
functions”, and “__host__ __device__ functions”, respectively. Functions
with no attributes behave the same as H.

nvcc does not allow you to create H and D functions with the same signature:

// nvcc: error - function "foo" has already been defined
__host__ void foo() {}
__device__ void foo() {}

However, nvcc allows you to “overload” H and D functions with different
signatures:

// nvcc: no error
__host__ void foo(int) {}
__device__ void foo() {}

In clang, the __host__ and __device__ attributes are part of a
function’s signature, and so it’s legal to have H and D functions with
(otherwise) the same signature:

// clang: no error
__host__ void foo() {}
__device__ void foo() {}

HD functions cannot be overloaded by H or D functions with the same signature:

// nvcc: error - function "foo" has already been defined
// clang: error - redefinition of 'foo'
__host__ __device__ void foo() {}
__device__ void foo() {}

// nvcc: no error
// clang: no error
__host__ __device__ void bar(int) {}
__device__ void bar() {}

When resolving an overloaded function, clang considers the host/device
attributes of the caller and callee. These are used as a tiebreaker during
overload resolution. See IdentifyCUDAPreference [http://clang.llvm.org/doxygen/SemaCUDA_8cpp.html] for the full set of rules,
but at a high level they are:

	D functions prefer to call other Ds. HDs are given lower priority.

	Similarly, H functions prefer to call other Hs, or __global__ functions
(with equal priority). HDs are given lower priority.

	HD functions prefer to call other HDs.

When compiling for device, HDs will call Ds with lower priority than HD, and
will call Hs with still lower priority. If it’s forced to call an H, the
program is malformed if we emit code for this HD function. We call this the
“wrong-side rule”, see example below.

The rules are symmetrical when compiling for host.

Some examples:

__host__ void foo();
__device__ void foo();

__host__ void bar();
__host__ __device__ void bar();

__host__ void test_host() {
 foo(); // calls H overload
 bar(); // calls H overload
}

__device__ void test_device() {
 foo(); // calls D overload
 bar(); // calls HD overload
}

__host__ __device__ void test_hd() {
 foo(); // calls H overload when compiling for host, otherwise D overload
 bar(); // always calls HD overload
}

Wrong-side rule example:

__host__ void host_only();

// We don't codegen inline functions unless they're referenced by a
// non-inline function. inline_hd1() is called only from the host side, so
// does not generate an error. inline_hd2() is called from the device side,
// so it generates an error.
inline __host__ __device__ void inline_hd1() { host_only(); } // no error
inline __host__ __device__ void inline_hd2() { host_only(); } // error

__host__ void host_fn() { inline_hd1(); }
__device__ void device_fn() { inline_hd2(); }

// This function is not inline, so it's always codegen'ed on both the host
// and the device. Therefore, it generates an error.
__host__ __device__ void not_inline_hd() { host_only(); }

For the purposes of the wrong-side rule, templated functions also behave like
inline functions: They aren’t codegen’ed unless they’re instantiated
(usually as part of the process of invoking them).

clang’s behavior with respect to the wrong-side rule matches nvcc’s, except
nvcc only emits a warning for not_inline_hd; device code is allowed to call
not_inline_hd. In its generated code, nvcc may omit not_inline_hd’s
call to host_only entirely, or it may try to generate code for
host_only on the device. What you get seems to depend on whether or not
the compiler chooses to inline host_only.

Member functions, including constructors, may be overloaded using H and D
attributes. However, destructors cannot be overloaded.

Using a Different Class on Host/Device

Occasionally you may want to have a class with different host/device versions.

If all of the class’s members are the same on the host and device, you can just
provide overloads for the class’s member functions.

However, if you want your class to have different members on host/device, you
won’t be able to provide working H and D overloads in both classes. In this
case, clang is likely to be unhappy with you.

#ifdef __CUDA_ARCH__
struct S {
 __device__ void foo() { /* use device_only */ }
 int device_only;
};
#else
struct S {
 __host__ void foo() { /* use host_only */ }
 double host_only;
};

__device__ void test() {
 S s;
 // clang generates an error here, because during host compilation, we
 // have ifdef'ed away the __device__ overload of S::foo(). The __device__
 // overload must be present *even during host compilation*.
 S.foo();
}
#endif

We posit that you don’t really want to have classes with different members on H
and D. For example, if you were to pass one of these as a parameter to a
kernel, it would have a different layout on H and D, so would not work
properly.

To make code like this compatible with clang, we recommend you separate it out
into two classes. If you need to write code that works on both host and
device, consider writing an overloaded wrapper function that returns different
types on host and device.

struct HostS { ... };
struct DeviceS { ... };

__host__ HostS MakeStruct() { return HostS(); }
__device__ DeviceS MakeStruct() { return DeviceS(); }

// Now host and device code can call MakeStruct().

Unfortunately, this idiom isn’t compatible with nvcc, because it doesn’t allow
you to overload based on the H/D attributes. Here’s an idiom that works with
both clang and nvcc:

struct HostS { ... };
struct DeviceS { ... };

#ifdef __NVCC__
 #ifndef __CUDA_ARCH__
 __host__ HostS MakeStruct() { return HostS(); }
 #else
 __device__ DeviceS MakeStruct() { return DeviceS(); }
 #endif
#else
 __host__ HostS MakeStruct() { return HostS(); }
 __device__ DeviceS MakeStruct() { return DeviceS(); }
#endif

// Now host and device code can call MakeStruct().

Hopefully you don’t have to do this sort of thing often.

Optimizations

Modern CPUs and GPUs are architecturally quite different, so code that’s fast
on a CPU isn’t necessarily fast on a GPU. We’ve made a number of changes to
LLVM to make it generate good GPU code. Among these changes are:

	Straight-line scalar optimizations [https://goo.gl/4Rb9As] – These
reduce redundancy within straight-line code.

	Aggressive speculative execution [http://llvm.org/docs/doxygen/html/SpeculativeExecution_8cpp_source.html]
– This is mainly for promoting straight-line scalar optimizations, which are
most effective on code along dominator paths.

	Memory space inference [http://llvm.org/doxygen/NVPTXInferAddressSpaces_8cpp_source.html] –
In PTX, we can operate on pointers that are in a paricular “address space”
(global, shared, constant, or local), or we can operate on pointers in the
“generic” address space, which can point to anything. Operations in a
non-generic address space are faster, but pointers in CUDA are not explicitly
annotated with their address space, so it’s up to LLVM to infer it where
possible.

	Bypassing 64-bit divides [http://llvm.org/docs/doxygen/html/BypassSlowDivision_8cpp_source.html] –
This was an existing optimization that we enabled for the PTX backend.

64-bit integer divides are much slower than 32-bit ones on NVIDIA GPUs.
Many of the 64-bit divides in our benchmarks have a divisor and dividend
which fit in 32-bits at runtime. This optimization provides a fast path for
this common case.

	Aggressive loop unrooling and function inlining – Loop unrolling and
function inlining need to be more aggressive for GPUs than for CPUs because
control flow transfer in GPU is more expensive. More aggressive unrolling and
inlining also promote other optimizations, such as constant propagation and
SROA, which sometimes speed up code by over 10x.

(Programmers can force unrolling and inline using clang’s loop unrolling pragmas [http://clang.llvm.org/docs/AttributeReference.html#pragma-unroll-pragma-nounroll]
and __attribute__((always_inline)).)

Publication

The team at Google published a paper in CGO 2016 detailing the optimizations
they’d made to clang/LLVM. Note that “gpucc” is no longer a meaningful name:
The relevant tools are now just vanilla clang/LLVM.

gpucc: An Open-Source GPGPU Compiler [http://dl.acm.org/citation.cfm?id=2854041]

Jingyue Wu, Artem Belevich, Eli Bendersky, Mark Heffernan, Chris Leary, Jacques Pienaar, Bjarke Roune, Rob Springer, Xuetian Weng, Robert Hundt

Proceedings of the 2016 International Symposium on Code Generation and Optimization (CGO 2016)

Slides from the CGO talk [http://wujingyue.com/docs/gpucc-talk.pdf]

Tutorial given at CGO [http://wujingyue.com/docs/gpucc-tutorial.pdf]

Obtaining Help

To obtain help on LLVM in general and its CUDA support, see the LLVM
community [http://llvm.org/docs/#mailing-lists].

Reporting Guide

Note

This document is currently a DRAFT document while it is being discussed
by the community.

If you believe someone is violating the code of conduct
you can always report it to the LLVM Foundation Code of Conduct Advisory
Committee by emailing conduct@llvm.org. All reports will be kept
confidential. This isn’t a public list and only members of the advisory
committee will receive the report.

If you believe anyone is in physical danger, please notify appropriate law
enforcement first. If you are unsure what law enforcement agency is
appropriate, please include this in your report and we will attempt to notify
them.

If the violation occurs at an event such as a Developer Meeting and requires
immediate attention, you can also reach out to any of the event organizers or
staff. Event organizers and staff will be prepared to handle the incident and
able to help. If you cannot find one of the organizers, the venue staff can
locate one for you. We will also post detailed contact information for specific
events as part of each events’ information. In person reports will still be
kept confidential exactly as above, but also feel free to (anonymously if
needed) email conduct@llvm.org.

Note

The LLVM community has long handled inappropriate behavior on its own, using
both private communication and public responses. Nothing in this document is
intended to discourage this self enforcement of community norms. Instead,
the mechanisms described here are intended to supplement any self
enforcement within the community. They provide avenues for handling severe
cases or cases where the reporting party does not wish to respond directly
for any reason.

Filing a report

Reports can be as formal or informal as needed for the situation at hand. If
possible, please include as much information as you can. If you feel
comfortable, please consider including:

	Your contact info (so we can get in touch with you if we need to follow up).

	Names (real, nicknames, or pseudonyms) of any individuals involved. If there
were other witnesses besides you, please try to include them as well.

	When and where the incident occurred. Please be as specific as possible.

	Your account of what occurred. If there is a publicly available record (e.g.
a mailing list archive or a public IRC logger) please include a link.

	Any extra context you believe existed for the incident.

	If you believe this incident is ongoing.

	Any other information you believe we should have.

What happens after you file a report?

You will receive an email from the advisory committee acknowledging receipt
within 24 hours (and we will aim to respond much quicker than that).

The advisory committee will immediately meet to review the incident and try to
determine:

	What happened and who was involved.

	Whether this event constitutes a code of conduct violation.

	Whether this is an ongoing situation, or if there is a threat to anyone’s
physical safety.

If this is determined to be an ongoing incident or a threat to physical safety,
the working groups’ immediate priority will be to protect everyone involved.
This means we may delay an “official” response until we believe that the
situation has ended and that everyone is physically safe.

The working group will try to contact other parties involved or witnessing the
event to gain clarity on what happened and understand any different
perspectives.

Once the advisory committee has a complete account of the events they will make
a decision as to how to respond. Responses may include:

	Nothing, if we determine no violation occurred or it has already been
appropriately resolved.

	Providing either moderation or mediation to ongoing interactions (where
appropriate, safe, and desired by both parties).

	A private reprimand from the working group to the individuals involved.

	An imposed vacation (i.e. asking someone to “take a week off” from a mailing
list or IRC).

	A public reprimand.

	A permanent or temporary ban from some or all LLVM spaces (mailing lists,
IRC, etc.)

	Involvement of relevant law enforcement if appropriate.

If the situation is not resolved within one week, we’ll respond within one week
to the original reporter with an update and explanation.

Once we’ve determined our response, we will separately contact the original
reporter and other individuals to let them know what actions (if any) we’ll be
taking. We will take into account feedback from the individuals involved on the
appropriateness of our response, but we don’t guarantee we’ll act on it.

After any incident, the advisory committee will make a report on the situation
to the LLVM Foundation board. The board may choose to make a public statement
about the incident. If that’s the case, the identities of anyone involved will
remain confidential unless instructed by those inviduals otherwise.

Appealing

Only permanent resolutions (such as bans) or requests for public actions may be
appealed. To appeal a decision of the working group, contact the LLVM
Foundation board at board@llvm.org with your appeal and the board will review
the case.

In general, it is not appropriate to appeal a particular decision on
a public mailing list. Doing so would involve disclosure of information which
whould be confidential. Disclosing this kind of information publicly may be
considered a separate and (potentially) more serious violation of the Code of
Conduct. This is not meant to limit discussion of the Code of Conduct, the
advisory board itself, or the appropriateness of responses in general, but
please refrain from mentioning specific facts about cases without the
explicit permission of all parties involved.

Members of the Code of Conduct Advisory Committee

The members serving on the advisory committee are listed here with contact
information in case you are more comfortable talking directly to a specific
member of the committee.

Note

FIXME: When we form the initial advisory committee, the members names and private contact info need to be added here.

(This text is based on the Django Project [https://www.djangoproject.com/conduct/] Code of Conduct, which is in turn
based on wording from the Speak Up! project [http://speakup.io/coc.html].)

Benchmarking tips

Introduction

For benchmarking a patch we want to reduce all possible sources of
noise as much as possible. How to do that is very OS dependent.

Note that low noise is required, but not sufficient. It does not
exclude measurement bias. See
https://www.cis.upenn.edu/~cis501/papers/producing-wrong-data.pdf for
example.

General

	Use a high resolution timer, e.g. perf under linux.

	Run the benchmark multiple times to be able to recognize noise.

	Disable as many processes or services as possible on the target system.

	Disable frequency scaling, turbo boost and address space
randomization (see OS specific section).

	Static link if the OS supports it. That avoids any variation that
might be introduced by loading dynamic libraries. This can be done
by passing -DLLVM_BUILD_STATIC=ON to cmake.

	Try to avoid storage. On some systems you can use tmpfs. Putting the
program, inputs and outputs on tmpfs avoids touching a real storage
system, which can have a pretty big variability.

To mount it (on linux and freebsd at least):

mount -t tmpfs -o size=<XX>g none dir_to_mount

Linux

	Disable address space randomization:

echo 0 > /proc/sys/kernel/randomize_va_space

	Set scaling_governor to performance:

for i in /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
do
 echo performance > /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
done

	Use https://github.com/lpechacek/cpuset to reserve cpus for just the
program you are benchmarking. If using perf, leave at least 2 cores
so that perf runs in one and your program in another:

cset shield -c N1,N2 -k on

This will move all threads out of N1 and N2. The -k on means
that even kernel threads are moved out.

	Disable the SMT pair of the cpus you will use for the benchmark. The
pair of cpu N can be found in
/sys/devices/system/cpu/cpuN/topology/thread_siblings_list and
disabled with:

echo 0 > /sys/devices/system/cpu/cpuX/online

	Run the program with:

cset shield --exec -- perf stat -r 10 <cmd>

This will run the command after -- in the isolated cpus. The
particular perf command runs the <cmd> 10 times and reports
statistics.

With these in place you can expect perf variations of less than 0.1%.

Linux Intel

	Disable turbo mode:

echo 1 > /sys/devices/system/cpu/intel_pstate/no_turbo

A guide to Dockerfiles for building LLVM

Introduction

You can find a number of sources to build docker images with LLVM components in
llvm/utils/docker. They can be used by anyone who wants to build the docker
images for their own use, or as a starting point for someone who wants to write
their own Dockerfiles.

We currently provide Dockerfiles with debian8 and nvidia-cuda base images.
We also provide an example image, which contains placeholders that one would need
to fill out in order to produce Dockerfiles for a new docker image.

Why?

Docker images provide a way to produce binary distributions of
software inside a controlled environment. Having Dockerfiles to builds docker images
inside LLVM repo makes them much more discoverable than putting them into any other
place.

Docker basics

If you’ve never heard about Docker before, you might find this section helpful
to get a very basic explanation of it.
Docker [https://www.docker.com/] is a popular solution for running programs in
an isolated and reproducible environment, especially to maintain releases for
software deployed to large distributed fleets.
It uses linux kernel namespaces and cgroups to provide a lightweight isolation
inside currently running linux kernel.
A single active instance of dockerized environment is called a docker
container.
A snapshot of a docker container filesystem is called a docker image.
One can start a container from a prebuilt docker image.

Docker images are built from a so-called Dockerfile, a source file written in
a specialized language that defines instructions to be used when build
the docker image (see official
documentation [https://docs.docker.com/engine/reference/builder/] for more
details). A minimal Dockerfile typically contains a base image and a number
of RUN commands that have to be executed to build the image. When building a new
image, docker will first download your base image, mount its filesystem as
read-only and then add a writable overlay on top of it to keep track of all
filesystem modifications, performed while building your image. When the build
process is finished, a diff between your image’s final filesystem state and the
base image’s filesystem is stored in the resulting image.

Overview

The llvm/utils/docker folder contains Dockerfiles and simple bash scripts to
serve as a basis for anyone who wants to create their own Docker image with
LLVM components, compiled from sources. The sources are checked out from the
upstream svn repository when building the image.

The resulting image contains only the requested LLVM components and a few extra
packages to make the image minimally useful for C++ development, e.g. libstdc++
and binutils.

The interface to run the build is build_docker_image.sh script. It accepts a
list of LLVM repositories to checkout and arguments for CMake invocation.

If you want to write your own docker image, start with an example/ subfolder.
It provides an incomplete Dockerfile with (very few) FIXMEs explaining the steps
you need to take in order to make your Dockerfiles functional.

Usage

The llvm/utils/build_docker_image.sh script provides a rather high degree of
control on how to run the build. It allows you to specify the projects to
checkout from svn and provide a list of CMake arguments to use during when
building LLVM inside docker container.

Here’s a very simple example of getting a docker image with clang binary,
compiled by the system compiler in the debian8 image:

./llvm/utils/docker/build_docker_image.sh \
 --source debian8 \
 --docker-repository clang-debian8 --docker-tag "staging" \
 -p clang -i install-clang -i install-clang-headers \
 -- \
 -DCMAKE_BUILD_TYPE=Release

Note that a build like that doesn’t use a 2-stage build process that
you probably want for clang. Running a 2-stage build is a little more intricate,
this command will do that:

Run a 2-stage build.
LLVM_TARGETS_TO_BUILD=Native is to reduce stage1 compile time.
Options, starting with BOOTSTRAP_* are passed to stage2 cmake invocation.
./build_docker_image.sh \
 --source debian8 \
 --docker-repository clang-debian8 --docker-tag "staging" \
 -p clang -i stage2-install-clang -i stage2-install-clang-headers \
 -- \
 -DLLVM_TARGETS_TO_BUILD=Native -DCMAKE_BUILD_TYPE=Release \
 -DBOOTSTRAP_CMAKE_BUILD_TYPE=Release \
 -DCLANG_ENABLE_BOOTSTRAP=ON -DCLANG_BOOTSTRAP_TARGETS="install-clang;install-clang-headers"

This will produce a new image clang-debian8:staging from the latest
upstream revision.
After the image is built you can run bash inside a container based on your image
like this:

docker run -ti clang-debian8:staging bash

Now you can run bash commands as you normally would:

root@80f351b51825:/# clang -v
clang version 5.0.0 (trunk 305064)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /bin
Found candidate GCC installation: /usr/lib/gcc/x86_64-linux-gnu/4.8
Found candidate GCC installation: /usr/lib/gcc/x86_64-linux-gnu/4.8.4
Found candidate GCC installation: /usr/lib/gcc/x86_64-linux-gnu/4.9
Found candidate GCC installation: /usr/lib/gcc/x86_64-linux-gnu/4.9.2
Selected GCC installation: /usr/lib/gcc/x86_64-linux-gnu/4.9
Candidate multilib: .;@m64
Selected multilib: .;@m64

Which image should I choose?

We currently provide two images: debian8-based and nvidia-cuda-based. They
differ in the base image that they use, i.e. they have a different set of
preinstalled binaries. Debian8 is very minimal, nvidia-cuda is larger, but has
preinstalled CUDA libraries and allows to access a GPU, installed on your
machine.

If you need a minimal linux distribution with only clang and libstdc++ included,
you should try debian8-based image.

If you want to use CUDA libraries and have access to a GPU on your machine,
you should choose nvidia-cuda-based image and use nvidia-docker [https://github.com/NVIDIA/nvidia-docker] to run your docker containers. Note
that you don’t need nvidia-docker to build the images, but you need it in order
to have an access to GPU from a docker container that is running the built
image.

If you have a different use-case, you could create your own image based on
example/ folder.

Any docker image can be built and run using only the docker binary, i.e. you can
run debian8 build on Fedora or any other Linux distribution. You don’t need to
install CMake, compilers or any other clang dependencies. It is all handled
during the build process inside Docker’s isolated environment.

Stable build

If you want a somewhat recent and somewhat stable build, use the
branches/google/stable branch, i.e. the following command will produce a
debian8-based image using the latest google/stable sources for you:

./llvm/utils/docker/build_docker_image.sh \
 -s debian8 --d clang-debian8 -t "staging" \
 --branch branches/google/stable \
 -p clang -i install-clang -i install-clang-headers \
 -- \
 -DCMAKE_BUILD_TYPE=Release

Minimizing docker image size

Due to how Docker’s filesystem works, all intermediate writes are persisted in
the resulting image, even if they are removed in the following commands.
To minimize the resulting image size we use multi-stage Docker builds [https://docs.docker.com/develop/develop-images/multistage-build/].
Internally Docker builds two images. The first image does all the work: installs
build dependencies, checks out LLVM source code, compiles LLVM, etc.
The first image is only used during build and does not have a descriptive name,
i.e. it is only accessible via the hash value after the build is finished.
The second image is our resulting image. It contains only the built binaries
and not any build dependencies. It is also accessible via a descriptive name
(specified by -d and -t flags).

LLVM Atomic Instructions and Concurrency Guide

	Introduction

	Optimization outside atomic

	Atomic instructions

	Atomic orderings

	NotAtomic

	Unordered

	Monotonic

	Acquire

	Release

	AcquireRelease

	SequentiallyConsistent

	Atomics and IR optimization

	Atomics and Codegen

	Libcalls: __atomic_*

	Libcalls: __sync_*

Introduction

LLVM supports instructions which are well-defined in the presence of threads and
asynchronous signals.

The atomic instructions are designed specifically to provide readable IR and
optimized code generation for the following:

	The C++11 <atomic> header. (C++11 draft available here [http://www.open-std.org/jtc1/sc22/wg21/].) (C11 draft available here [http://www.open-std.org/jtc1/sc22/wg14/].)

	Proper semantics for Java-style memory, for both volatile and regular
shared variables. (Java Specification [http://docs.oracle.com/javase/specs/jls/se8/html/jls-17.html])

	gcc-compatible __sync_* builtins. (Description [https://gcc.gnu.org/onlinedocs/gcc/_005f_005fsync-Builtins.html])

	Other scenarios with atomic semantics, including static variables with
non-trivial constructors in C++.

Atomic and volatile in the IR are orthogonal; “volatile” is the C/C++ volatile,
which ensures that every volatile load and store happens and is performed in the
stated order. A couple examples: if a SequentiallyConsistent store is
immediately followed by another SequentiallyConsistent store to the same
address, the first store can be erased. This transformation is not allowed for a
pair of volatile stores. On the other hand, a non-volatile non-atomic load can
be moved across a volatile load freely, but not an Acquire load.

This document is intended to provide a guide to anyone either writing a frontend
for LLVM or working on optimization passes for LLVM with a guide for how to deal
with instructions with special semantics in the presence of concurrency. This
is not intended to be a precise guide to the semantics; the details can get
extremely complicated and unreadable, and are not usually necessary.

Optimization outside atomic

The basic 'load' and 'store' allow a variety of optimizations, but can
lead to undefined results in a concurrent environment; see NotAtomic. This
section specifically goes into the one optimizer restriction which applies in
concurrent environments, which gets a bit more of an extended description
because any optimization dealing with stores needs to be aware of it.

From the optimizer’s point of view, the rule is that if there are not any
instructions with atomic ordering involved, concurrency does not matter, with
one exception: if a variable might be visible to another thread or signal
handler, a store cannot be inserted along a path where it might not execute
otherwise. Take the following example:

/* C code, for readability; run through clang -O2 -S -emit-llvm to get
 equivalent IR */
 int x;
 void f(int* a) {
 for (int i = 0; i < 100; i++) {
 if (a[i])
 x += 1;
 }
 }

The following is equivalent in non-concurrent situations:

int x;
void f(int* a) {
 int xtemp = x;
 for (int i = 0; i < 100; i++) {
 if (a[i])
 xtemp += 1;
 }
 x = xtemp;
}

However, LLVM is not allowed to transform the former to the latter: it could
indirectly introduce undefined behavior if another thread can access x at
the same time. (This example is particularly of interest because before the
concurrency model was implemented, LLVM would perform this transformation.)

Note that speculative loads are allowed; a load which is part of a race returns
undef, but does not have undefined behavior.

Atomic instructions

For cases where simple loads and stores are not sufficient, LLVM provides
various atomic instructions. The exact guarantees provided depend on the
ordering; see Atomic orderings.

load atomic and store atomic provide the same basic functionality as
non-atomic loads and stores, but provide additional guarantees in situations
where threads and signals are involved.

cmpxchg and atomicrmw are essentially like an atomic load followed by an
atomic store (where the store is conditional for cmpxchg), but no other
memory operation can happen on any thread between the load and store.

A fence provides Acquire and/or Release ordering which is not part of
another operation; it is normally used along with Monotonic memory operations.
A Monotonic load followed by an Acquire fence is roughly equivalent to an
Acquire load, and a Monotonic store following a Release fence is roughly
equivalent to a Release store. SequentiallyConsistent fences behave as both
an Acquire and a Release fence, and offer some additional complicated
guarantees, see the C++11 standard for details.

Frontends generating atomic instructions generally need to be aware of the
target to some degree; atomic instructions are guaranteed to be lock-free, and
therefore an instruction which is wider than the target natively supports can be
impossible to generate.

Atomic orderings

In order to achieve a balance between performance and necessary guarantees,
there are six levels of atomicity. They are listed in order of strength; each
level includes all the guarantees of the previous level except for
Acquire/Release. (See also LangRef Ordering.)

NotAtomic

NotAtomic is the obvious, a load or store which is not atomic. (This isn’t
really a level of atomicity, but is listed here for comparison.) This is
essentially a regular load or store. If there is a race on a given memory
location, loads from that location return undef.

	Relevant standard

	This is intended to match shared variables in C/C++, and to be used in any
other context where memory access is necessary, and a race is impossible. (The
precise definition is in LangRef Memory Model.)

	Notes for frontends

	The rule is essentially that all memory accessed with basic loads and stores
by multiple threads should be protected by a lock or other synchronization;
otherwise, you are likely to run into undefined behavior. If your frontend is
for a “safe” language like Java, use Unordered to load and store any shared
variable. Note that NotAtomic volatile loads and stores are not properly
atomic; do not try to use them as a substitute. (Per the C/C++ standards,
volatile does provide some limited guarantees around asynchronous signals, but
atomics are generally a better solution.)

	Notes for optimizers

	Introducing loads to shared variables along a codepath where they would not
otherwise exist is allowed; introducing stores to shared variables is not. See
Optimization outside atomic.

	Notes for code generation

	The one interesting restriction here is that it is not allowed to write to
bytes outside of the bytes relevant to a store. This is mostly relevant to
unaligned stores: it is not allowed in general to convert an unaligned store
into two aligned stores of the same width as the unaligned store. Backends are
also expected to generate an i8 store as an i8 store, and not an instruction
which writes to surrounding bytes. (If you are writing a backend for an
architecture which cannot satisfy these restrictions and cares about
concurrency, please send an email to llvm-dev.)

Unordered

Unordered is the lowest level of atomicity. It essentially guarantees that races
produce somewhat sane results instead of having undefined behavior. It also
guarantees the operation to be lock-free, so it does not depend on the data
being part of a special atomic structure or depend on a separate per-process
global lock. Note that code generation will fail for unsupported atomic
operations; if you need such an operation, use explicit locking.

	Relevant standard

	This is intended to match the Java memory model for shared variables.

	Notes for frontends

	This cannot be used for synchronization, but is useful for Java and other
“safe” languages which need to guarantee that the generated code never
exhibits undefined behavior. Note that this guarantee is cheap on common
platforms for loads of a native width, but can be expensive or unavailable for
wider loads, like a 64-bit store on ARM. (A frontend for Java or other “safe”
languages would normally split a 64-bit store on ARM into two 32-bit unordered
stores.)

	Notes for optimizers

	In terms of the optimizer, this prohibits any transformation that transforms a
single load into multiple loads, transforms a store into multiple stores,
narrows a store, or stores a value which would not be stored otherwise. Some
examples of unsafe optimizations are narrowing an assignment into a bitfield,
rematerializing a load, and turning loads and stores into a memcpy
call. Reordering unordered operations is safe, though, and optimizers should
take advantage of that because unordered operations are common in languages
that need them.

	Notes for code generation

	These operations are required to be atomic in the sense that if you use
unordered loads and unordered stores, a load cannot see a value which was
never stored. A normal load or store instruction is usually sufficient, but
note that an unordered load or store cannot be split into multiple
instructions (or an instruction which does multiple memory operations, like
LDRD on ARM without LPAE, or not naturally-aligned LDRD on LPAE ARM).

Monotonic

Monotonic is the weakest level of atomicity that can be used in synchronization
primitives, although it does not provide any general synchronization. It
essentially guarantees that if you take all the operations affecting a specific
address, a consistent ordering exists.

	Relevant standard

	This corresponds to the C++11/C11 memory_order_relaxed; see those
standards for the exact definition.

	Notes for frontends

	If you are writing a frontend which uses this directly, use with caution. The
guarantees in terms of synchronization are very weak, so make sure these are
only used in a pattern which you know is correct. Generally, these would
either be used for atomic operations which do not protect other memory (like
an atomic counter), or along with a fence.

	Notes for optimizers

	In terms of the optimizer, this can be treated as a read+write on the relevant
memory location (and alias analysis will take advantage of that). In addition,
it is legal to reorder non-atomic and Unordered loads around Monotonic
loads. CSE/DSE and a few other optimizations are allowed, but Monotonic
operations are unlikely to be used in ways which would make those
optimizations useful.

	Notes for code generation

	Code generation is essentially the same as that for unordered for loads and
stores. No fences are required. cmpxchg and atomicrmw are required
to appear as a single operation.

Acquire

Acquire provides a barrier of the sort necessary to acquire a lock to access
other memory with normal loads and stores.

	Relevant standard

	This corresponds to the C++11/C11 memory_order_acquire. It should also be
used for C++11/C11 memory_order_consume.

	Notes for frontends

	If you are writing a frontend which uses this directly, use with caution.
Acquire only provides a semantic guarantee when paired with a Release
operation.

	Notes for optimizers

	Optimizers not aware of atomics can treat this like a nothrow call. It is
also possible to move stores from before an Acquire load or read-modify-write
operation to after it, and move non-Acquire loads from before an Acquire
operation to after it.

	Notes for code generation

	Architectures with weak memory ordering (essentially everything relevant today
except x86 and SPARC) require some sort of fence to maintain the Acquire
semantics. The precise fences required varies widely by architecture, but for
a simple implementation, most architectures provide a barrier which is strong
enough for everything (dmb on ARM, sync on PowerPC, etc.). Putting
such a fence after the equivalent Monotonic operation is sufficient to
maintain Acquire semantics for a memory operation.

Release

Release is similar to Acquire, but with a barrier of the sort necessary to
release a lock.

	Relevant standard

	This corresponds to the C++11/C11 memory_order_release.

	Notes for frontends

	If you are writing a frontend which uses this directly, use with caution.
Release only provides a semantic guarantee when paired with a Acquire
operation.

	Notes for optimizers

	Optimizers not aware of atomics can treat this like a nothrow call. It is
also possible to move loads from after a Release store or read-modify-write
operation to before it, and move non-Release stores from after an Release
operation to before it.

	Notes for code generation

	See the section on Acquire; a fence before the relevant operation is usually
sufficient for Release. Note that a store-store fence is not sufficient to
implement Release semantics; store-store fences are generally not exposed to
IR because they are extremely difficult to use correctly.

AcquireRelease

AcquireRelease (acq_rel in IR) provides both an Acquire and a Release
barrier (for fences and operations which both read and write memory).

	Relevant standard

	This corresponds to the C++11/C11 memory_order_acq_rel.

	Notes for frontends

	If you are writing a frontend which uses this directly, use with caution.
Acquire only provides a semantic guarantee when paired with a Release
operation, and vice versa.

	Notes for optimizers

	In general, optimizers should treat this like a nothrow call; the possible
optimizations are usually not interesting.

	Notes for code generation

	This operation has Acquire and Release semantics; see the sections on Acquire
and Release.

SequentiallyConsistent

SequentiallyConsistent (seq_cst in IR) provides Acquire semantics for loads
and Release semantics for stores. Additionally, it guarantees that a total
ordering exists between all SequentiallyConsistent operations.

	Relevant standard

	This corresponds to the C++11/C11 memory_order_seq_cst, Java volatile, and
the gcc-compatible __sync_* builtins which do not specify otherwise.

	Notes for frontends

	If a frontend is exposing atomic operations, these are much easier to reason
about for the programmer than other kinds of operations, and using them is
generally a practical performance tradeoff.

	Notes for optimizers

	Optimizers not aware of atomics can treat this like a nothrow call. For
SequentiallyConsistent loads and stores, the same reorderings are allowed as
for Acquire loads and Release stores, except that SequentiallyConsistent
operations may not be reordered.

	Notes for code generation

	SequentiallyConsistent loads minimally require the same barriers as Acquire
operations and SequentiallyConsistent stores require Release
barriers. Additionally, the code generator must enforce ordering between
SequentiallyConsistent stores followed by SequentiallyConsistent loads. This
is usually done by emitting either a full fence before the loads or a full
fence after the stores; which is preferred varies by architecture.

Atomics and IR optimization

Predicates for optimizer writers to query:

	isSimple(): A load or store which is not volatile or atomic. This is
what, for example, memcpyopt would check for operations it might transform.

	isUnordered(): A load or store which is not volatile and at most
Unordered. This would be checked, for example, by LICM before hoisting an
operation.

	mayReadFromMemory()/mayWriteToMemory(): Existing predicate, but note
that they return true for any operation which is volatile or at least
Monotonic.

	isStrongerThan / isAtLeastOrStrongerThan: These are predicates on
orderings. They can be useful for passes that are aware of atomics, for
example to do DSE across a single atomic access, but not across a
release-acquire pair (see MemoryDependencyAnalysis for an example of this)

	Alias analysis: Note that AA will return ModRef for anything Acquire or
Release, and for the address accessed by any Monotonic operation.

To support optimizing around atomic operations, make sure you are using the
right predicates; everything should work if that is done. If your pass should
optimize some atomic operations (Unordered operations in particular), make sure
it doesn’t replace an atomic load or store with a non-atomic operation.

Some examples of how optimizations interact with various kinds of atomic
operations:

	memcpyopt: An atomic operation cannot be optimized into part of a
memcpy/memset, including unordered loads/stores. It can pull operations
across some atomic operations.

	LICM: Unordered loads/stores can be moved out of a loop. It just treats
monotonic operations like a read+write to a memory location, and anything
stricter than that like a nothrow call.

	DSE: Unordered stores can be DSE’ed like normal stores. Monotonic stores can
be DSE’ed in some cases, but it’s tricky to reason about, and not especially
important. It is possible in some case for DSE to operate across a stronger
atomic operation, but it is fairly tricky. DSE delegates this reasoning to
MemoryDependencyAnalysis (which is also used by other passes like GVN).

	Folding a load: Any atomic load from a constant global can be constant-folded,
because it cannot be observed. Similar reasoning allows sroa with
atomic loads and stores.

Atomics and Codegen

Atomic operations are represented in the SelectionDAG with ATOMIC_* opcodes.
On architectures which use barrier instructions for all atomic ordering (like
ARM), appropriate fences can be emitted by the AtomicExpand Codegen pass if
setInsertFencesForAtomic() was used.

The MachineMemOperand for all atomic operations is currently marked as volatile;
this is not correct in the IR sense of volatile, but CodeGen handles anything
marked volatile very conservatively. This should get fixed at some point.

One very important property of the atomic operations is that if your backend
supports any inline lock-free atomic operations of a given size, you should
support ALL operations of that size in a lock-free manner.

When the target implements atomic cmpxchg or LL/SC instructions (as most do)
this is trivial: all the other operations can be implemented on top of those
primitives. However, on many older CPUs (e.g. ARMv5, SparcV8, Intel 80386) there
are atomic load and store instructions, but no cmpxchg or LL/SC. As it is
invalid to implement atomic load using the native instruction, but
cmpxchg using a library call to a function that uses a mutex, atomic
load must also expand to a library call on such architectures, so that it
can remain atomic with regards to a simultaneous cmpxchg, by using the same
mutex.

AtomicExpandPass can help with that: it will expand all atomic operations to the
proper __atomic_* libcalls for any size above the maximum set by
setMaxAtomicSizeInBitsSupported (which defaults to 0).

On x86, all atomic loads generate a MOV. SequentiallyConsistent stores
generate an XCHG, other stores generate a MOV. SequentiallyConsistent
fences generate an MFENCE, other fences do not cause any code to be
generated. cmpxchg uses the LOCK CMPXCHG instruction. atomicrmw xchg
uses XCHG, atomicrmw add and atomicrmw sub use XADD, and all
other atomicrmw operations generate a loop with LOCK CMPXCHG. Depending
on the users of the result, some atomicrmw operations can be translated into
operations like LOCK AND, but that does not work in general.

On ARM (before v8), MIPS, and many other RISC architectures, Acquire, Release,
and SequentiallyConsistent semantics require barrier instructions for every such
operation. Loads and stores generate normal instructions. cmpxchg and
atomicrmw can be represented using a loop with LL/SC-style instructions
which take some sort of exclusive lock on a cache line (LDREX and STREX
on ARM, etc.).

It is often easiest for backends to use AtomicExpandPass to lower some of the
atomic constructs. Here are some lowerings it can do:

	cmpxchg -> loop with load-linked/store-conditional
by overriding shouldExpandAtomicCmpXchgInIR(), emitLoadLinked(),
emitStoreConditional()

	large loads/stores -> ll-sc/cmpxchg
by overriding shouldExpandAtomicStoreInIR()/shouldExpandAtomicLoadInIR()

	strong atomic accesses -> monotonic accesses + fences by overriding
shouldInsertFencesForAtomic(), emitLeadingFence(), and
emitTrailingFence()

	atomic rmw -> loop with cmpxchg or load-linked/store-conditional
by overriding expandAtomicRMWInIR()

	expansion to __atomic_* libcalls for unsupported sizes.

For an example of all of these, look at the ARM backend.

Libcalls: __atomic_*

There are two kinds of atomic library calls that are generated by LLVM. Please
note that both sets of library functions somewhat confusingly share the names of
builtin functions defined by clang. Despite this, the library functions are
not directly related to the builtins: it is not the case that __atomic_*
builtins lower to __atomic_* library calls and __sync_* builtins lower
to __sync_* library calls.

The first set of library functions are named __atomic_*. This set has been
“standardized” by GCC, and is described below. (See also GCC’s documentation [https://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary])

LLVM’s AtomicExpandPass will translate atomic operations on data sizes above
MaxAtomicSizeInBitsSupported into calls to these functions.

There are four generic functions, which can be called with data of any size or
alignment:

void __atomic_load(size_t size, void *ptr, void *ret, int ordering)
void __atomic_store(size_t size, void *ptr, void *val, int ordering)
void __atomic_exchange(size_t size, void *ptr, void *val, void *ret, int ordering)
bool __atomic_compare_exchange(size_t size, void *ptr, void *expected, void *desired, int success_order, int failure_order)

There are also size-specialized versions of the above functions, which can only
be used with naturally-aligned pointers of the appropriate size. In the
signatures below, “N” is one of 1, 2, 4, 8, and 16, and “iN” is the appropriate
integer type of that size; if no such integer type exists, the specialization
cannot be used:

iN __atomic_load_N(iN *ptr, iN val, int ordering)
void __atomic_store_N(iN *ptr, iN val, int ordering)
iN __atomic_exchange_N(iN *ptr, iN val, int ordering)
bool __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired, int success_order, int failure_order)

Finally there are some read-modify-write functions, which are only available in
the size-specific variants (any other sizes use a __atomic_compare_exchange
loop):

iN __atomic_fetch_add_N(iN *ptr, iN val, int ordering)
iN __atomic_fetch_sub_N(iN *ptr, iN val, int ordering)
iN __atomic_fetch_and_N(iN *ptr, iN val, int ordering)
iN __atomic_fetch_or_N(iN *ptr, iN val, int ordering)
iN __atomic_fetch_xor_N(iN *ptr, iN val, int ordering)
iN __atomic_fetch_nand_N(iN *ptr, iN val, int ordering)

This set of library functions have some interesting implementation requirements
to take note of:

	They support all sizes and alignments – including those which cannot be
implemented natively on any existing hardware. Therefore, they will certainly
use mutexes in for some sizes/alignments.

	As a consequence, they cannot be shipped in a statically linked
compiler-support library, as they have state which must be shared amongst all
DSOs loaded in the program. They must be provided in a shared library used by
all objects.

	The set of atomic sizes supported lock-free must be a superset of the sizes
any compiler can emit. That is: if a new compiler introduces support for
inline-lock-free atomics of size N, the __atomic_* functions must also have a
lock-free implementation for size N. This is a requirement so that code
produced by an old compiler (which will have called the __atomic_* function)
interoperates with code produced by the new compiler (which will use native
the atomic instruction).

Note that it’s possible to write an entirely target-independent implementation
of these library functions by using the compiler atomic builtins themselves to
implement the operations on naturally-aligned pointers of supported sizes, and a
generic mutex implementation otherwise.

Libcalls: __sync_*

Some targets or OS/target combinations can support lock-free atomics, but for
various reasons, it is not practical to emit the instructions inline.

There’s two typical examples of this.

Some CPUs support multiple instruction sets which can be swiched back and forth
on function-call boundaries. For example, MIPS supports the MIPS16 ISA, which
has a smaller instruction encoding than the usual MIPS32 ISA. ARM, similarly,
has the Thumb ISA. In MIPS16 and earlier versions of Thumb, the atomic
instructions are not encodable. However, those instructions are available via a
function call to a function with the longer encoding.

Additionally, a few OS/target pairs provide kernel-supported lock-free
atomics. ARM/Linux is an example of this: the kernel provides [https://www.kernel.org/doc/Documentation/arm/kernel_user_helpers.txt] a
function which on older CPUs contains a “magically-restartable” atomic sequence
(which looks atomic so long as there’s only one CPU), and contains actual atomic
instructions on newer multicore models. This sort of functionality can typically
be provided on any architecture, if all CPUs which are missing atomic
compare-and-swap support are uniprocessor (no SMP). This is almost always the
case. The only common architecture without that property is SPARC – SPARCV8 SMP
systems were common, yet it doesn’t support any sort of compare-and-swap
operation.

In either of these cases, the Target in LLVM can claim support for atomics of an
appropriate size, and then implement some subset of the operations via libcalls
to a __sync_* function. Such functions must not use locks in their
implementation, because unlike the __atomic_* routines used by
AtomicExpandPass, these may be mixed-and-matched with native instructions by the
target lowering.

Further, these routines do not need to be shared, as they are stateless. So,
there is no issue with having multiple copies included in one binary. Thus,
typically these routines are implemented by the statically-linked compiler
runtime support library.

LLVM will emit a call to an appropriate __sync_* routine if the target
ISelLowering code has set the corresponding ATOMIC_CMPXCHG, ATOMIC_SWAP,
or ATOMIC_LOAD_* operation to “Expand”, and if it has opted-into the
availability of those library functions via a call to initSyncLibcalls().

The full set of functions that may be called by LLVM is (for N being 1, 2,
4, 8, or 16):

iN __sync_val_compare_and_swap_N(iN *ptr, iN expected, iN desired)
iN __sync_lock_test_and_set_N(iN *ptr, iN val)
iN __sync_fetch_and_add_N(iN *ptr, iN val)
iN __sync_fetch_and_sub_N(iN *ptr, iN val)
iN __sync_fetch_and_and_N(iN *ptr, iN val)
iN __sync_fetch_and_or_N(iN *ptr, iN val)
iN __sync_fetch_and_xor_N(iN *ptr, iN val)
iN __sync_fetch_and_nand_N(iN *ptr, iN val)
iN __sync_fetch_and_max_N(iN *ptr, iN val)
iN __sync_fetch_and_umax_N(iN *ptr, iN val)
iN __sync_fetch_and_min_N(iN *ptr, iN val)
iN __sync_fetch_and_umin_N(iN *ptr, iN val)

This list doesn’t include any function for atomic load or store; all known
architectures support atomic loads and stores directly (possibly by emitting a
fence on either side of a normal load or store.)

There’s also, somewhat separately, the possibility to lower ATOMIC_FENCE to
__sync_synchronize(). This may happen or not happen independent of all the
above, controlled purely by setOperationAction(ISD::ATOMIC_FENCE, ...).

LLVM Coding Standards

	Introduction

	Languages, Libraries, and Standards

	C++ Standard Versions

	C++ Standard Library

	Supported C++11 Language and Library Features

	Other Languages

	Mechanical Source Issues

	Source Code Formatting

	Commenting

	File Headers

	Class overviews

	Method information

	Comment Formatting

	Doxygen Use in Documentation Comments

	#include Style

	Source Code Width

	Use Spaces Instead of Tabs

	Indent Code Consistently

	Format Lambdas Like Blocks Of Code

	Braced Initializer Lists

	Language and Compiler Issues

	Treat Compiler Warnings Like Errors

	Write Portable Code

	Do not use RTTI or Exceptions

	Do not use Static Constructors

	Use of class and struct Keywords

	Do not use Braced Initializer Lists to Call a Constructor

	Use auto Type Deduction to Make Code More Readable

	Beware unnecessary copies with auto

	Beware of non-determinism due to ordering of pointers

	Beware of non-deterministic sorting order of equal elements

	Style Issues

	The High-Level Issues

	Self-contained Headers

	Library Layering

	#include as Little as Possible

	Keep “Internal” Headers Private

	Use Early Exits and continue to Simplify Code

	Don’t use else after a return

	Turn Predicate Loops into Predicate Functions

	The Low-Level Issues

	Name Types, Functions, Variables, and Enumerators Properly

	Assert Liberally

	Do Not Use using namespace std

	Provide a Virtual Method Anchor for Classes in Headers

	Don’t use default labels in fully covered switches over enumerations

	Use range-based for loops wherever possible

	Don’t evaluate end() every time through a loop

	#include <iostream> is Forbidden

	Use raw_ostream

	Avoid std::endl

	Don’t use inline when defining a function in a class definition

	Microscopic Details

	Spaces Before Parentheses

	Prefer Preincrement

	Namespace Indentation

	Anonymous Namespaces

	See Also

Introduction

This document attempts to describe a few coding standards that are being used in
the LLVM source tree. Although no coding standards should be regarded as
absolute requirements to be followed in all instances, coding standards are
particularly important for large-scale code bases that follow a library-based
design (like LLVM).

While this document may provide guidance for some mechanical formatting issues,
whitespace, or other “microscopic details”, these are not fixed standards.
Always follow the golden rule:

If you are extending, enhancing, or bug fixing already implemented code,
use the style that is already being used so that the source is uniform and
easy to follow.

Note that some code bases (e.g. libc++) have really good reasons to deviate
from the coding standards. In the case of libc++, this is because the
naming and other conventions are dictated by the C++ standard. If you think
there is a specific good reason to deviate from the standards here, please bring
it up on the LLVM-dev mailing list.

There are some conventions that are not uniformly followed in the code base
(e.g. the naming convention). This is because they are relatively new, and a
lot of code was written before they were put in place. Our long term goal is
for the entire codebase to follow the convention, but we explicitly do not
want patches that do large-scale reformatting of existing code. On the other
hand, it is reasonable to rename the methods of a class if you’re about to
change it in some other way. Just do the reformatting as a separate commit
from the functionality change.

The ultimate goal of these guidelines is to increase the readability and
maintainability of our common source base. If you have suggestions for topics to
be included, please mail them to Chris.

Languages, Libraries, and Standards

Most source code in LLVM and other LLVM projects using these coding standards
is C++ code. There are some places where C code is used either due to
environment restrictions, historical restrictions, or due to third-party source
code imported into the tree. Generally, our preference is for standards
conforming, modern, and portable C++ code as the implementation language of
choice.

C++ Standard Versions

LLVM, Clang, and LLD are currently written using C++11 conforming code,
although we restrict ourselves to features which are available in the major
toolchains supported as host compilers. The LLDB project is even more
aggressive in the set of host compilers supported and thus uses still more
features. Regardless of the supported features, code is expected to (when
reasonable) be standard, portable, and modern C++11 code. We avoid unnecessary
vendor-specific extensions, etc.

C++ Standard Library

Use the C++ standard library facilities whenever they are available for
a particular task. LLVM and related projects emphasize and rely on the standard
library facilities for as much as possible. Common support libraries providing
functionality missing from the standard library for which there are standard
interfaces or active work on adding standard interfaces will often be
implemented in the LLVM namespace following the expected standard interface.

There are some exceptions such as the standard I/O streams library which are
avoided. Also, there is much more detailed information on these subjects in the
LLVM Programmer’s Manual.

Supported C++11 Language and Library Features

While LLVM, Clang, and LLD use C++11, not all features are available in all of
the toolchains which we support. The set of features supported for use in LLVM
is the intersection of those supported in the minimum requirements described
in the Getting Started with the LLVM System page, section Software.
The ultimate definition of this set is what build bots with those respective
toolchains accept. Don’t argue with the build bots. However, we have some
guidance below to help you know what to expect.

Each toolchain provides a good reference for what it accepts:

	Clang: https://clang.llvm.org/cxx_status.html

	GCC: https://gcc.gnu.org/projects/cxx-status.html#cxx11

	MSVC: https://msdn.microsoft.com/en-us/library/hh567368.aspx

In most cases, the MSVC list will be the dominating factor. Here is a summary
of the features that are expected to work. Features not on this list are
unlikely to be supported by our host compilers.

	Rvalue references: N2118 [http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2118.html]

	But not Rvalue references for *this or member qualifiers (N2439 [http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2439.htm])

	Static assert: N1720 [http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1720.html]

	auto type deduction: N1984 [http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1984.pdf], N1737 [http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1737.pdf]

	Trailing return types: N2541 [http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2541.htm]

	Lambdas: N2927 [http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2927.pdf]

	But not lambdas with default arguments.

	decltype: N2343 [http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2343.pdf]

	Nested closing right angle brackets: N1757 [http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1757.html]

	Extern templates: N1987 [http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1987.htm]

	nullptr: N2431 [http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2431.pdf]

	Strongly-typed and forward declarable enums: N2347 [http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2347.pdf], N2764 [http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2764.pdf]

	Local and unnamed types as template arguments: N2657 [http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm]

	Range-based for-loop: N2930 [http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2930.html]

	But {} are required around inner do {} while() loops. As a result,
{} are required around function-like macros inside range-based for
loops.

	override and final: N2928 [http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2928.htm], N3206 [http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3206.htm], N3272 [http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3272.htm]

	Atomic operations and the C++11 memory model: N2429 [http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2429.htm]

	Variadic templates: N2242 [http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2242.pdf]

	Explicit conversion operators: N2437 [http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2437.pdf]

	Defaulted and deleted functions: N2346 [http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2346.htm]

	Initializer lists: N2627 [http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2672.htm]

	Delegating constructors: N1986 [http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1986.pdf]

	Default member initializers (non-static data member initializers): N2756 [http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2756.htm]

	Feel free to use these wherever they make sense and where the =
syntax is allowed. Don’t use braced initialization syntax.

The supported features in the C++11 standard libraries are less well tracked,
but also much greater. Most of the standard libraries implement most of C++11’s
library. The most likely lowest common denominator is Linux support. For
libc++, the support is just poorly tested and undocumented but expected to be
largely complete. YMMV. For libstdc++, the support is documented in detail in
the libstdc++ manual [https://gcc.gnu.org/onlinedocs/gcc-4.8.0/libstdc++/manual/manual/status.html#status.iso.2011]. There are some very minor missing facilities that are
unlikely to be common problems, and there are a few larger gaps that are worth
being aware of:

	Not all of the type traits are implemented

	No regular expression library.

	While most of the atomics library is well implemented, the fences are
missing. Fortunately, they are rarely needed.

	The locale support is incomplete.

Other than these areas you should assume the standard library is available and
working as expected until some build bot tells you otherwise. If you’re in an
uncertain area of one of the above points, but you cannot test on a Linux
system, your best approach is to minimize your use of these features, and watch
the Linux build bots to find out if your usage triggered a bug. For example, if
you hit a type trait which doesn’t work we can then add support to LLVM’s
traits header to emulate it.

Other Languages

Any code written in the Go programming language is not subject to the
formatting rules below. Instead, we adopt the formatting rules enforced by
the gofmt [https://golang.org/cmd/gofmt/] tool.

Go code should strive to be idiomatic. Two good sets of guidelines for what
this means are Effective Go [https://golang.org/doc/effective_go.html] and Go Code Review Comments [https://github.com/golang/go/wiki/CodeReviewComments].

Mechanical Source Issues

Source Code Formatting

Commenting

Comments are one critical part of readability and maintainability. Everyone
knows they should comment their code, and so should you. When writing comments,
write them as English prose, which means they should use proper capitalization,
punctuation, etc. Aim to describe what the code is trying to do and why, not
how it does it at a micro level. Here are a few critical things to document:

File Headers

Every source file should have a header on it that describes the basic purpose of
the file. If a file does not have a header, it should not be checked into the
tree. The standard header looks like this:

//===-- llvm/Instruction.h - Instruction class definition -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===--===//
///
/// \file
/// This file contains the declaration of the Instruction class, which is the
/// base class for all of the VM instructions.
///
//===--===//

A few things to note about this particular format: The “-*- C++ -*-” string
on the first line is there to tell Emacs that the source file is a C++ file, not
a C file (Emacs assumes .h files are C files by default).

Note

This tag is not necessary in .cpp files. The name of the file is also
on the first line, along with a very short description of the purpose of the
file. This is important when printing out code and flipping though lots of
pages.

The next section in the file is a concise note that defines the license that the
file is released under. This makes it perfectly clear what terms the source
code can be distributed under and should not be modified in any way.

The main body is a doxygen comment (identified by the /// comment
marker instead of the usual //) describing the purpose of the file. The
first sentence (or a passage beginning with \brief) is used as an abstract.
Any additional information should be separated by a blank line. If an
algorithm is being implemented or something tricky is going on, a reference
to the paper where it is published should be included, as well as any notes or
gotchas in the code to watch out for.

Class overviews

Classes are one fundamental part of a good object oriented design. As such, a
class definition should have a comment block that explains what the class is
used for and how it works. Every non-trivial class is expected to have a
doxygen comment block.

Method information

Methods defined in a class (as well as any global functions) should also be
documented properly. A quick note about what it does and a description of the
borderline behaviour is all that is necessary here (unless something
particularly tricky or insidious is going on). The hope is that people can
figure out how to use your interfaces without reading the code itself.

Good things to talk about here are what happens when something unexpected
happens: does the method return null? Abort? Format your hard disk?

Comment Formatting

In general, prefer C++ style comments (// for normal comments, /// for
doxygen documentation comments). They take less space, require
less typing, don’t have nesting problems, etc. There are a few cases when it is
useful to use C style (/* */) comments however:

	When writing C code: Obviously if you are writing C code, use C style
comments.

	When writing a header file that may be #included by a C source file.

	When writing a source file that is used by a tool that only accepts C style
comments.

Commenting out large blocks of code is discouraged, but if you really have to do
this (for documentation purposes or as a suggestion for debug printing), use
#if 0 and #endif. These nest properly and are better behaved in general
than C style comments.

Doxygen Use in Documentation Comments

Use the \file command to turn the standard file header into a file-level
comment.

Include descriptive paragraphs for all public interfaces (public classes,
member and non-member functions). Don’t just restate the information that can
be inferred from the API name. The first sentence (or a paragraph beginning
with \brief) is used as an abstract. Try to use a single sentence as the
\brief adds visual clutter. Put detailed discussion into separate
paragraphs.

To refer to parameter names inside a paragraph, use the \p name command.
Don’t use the \arg name command since it starts a new paragraph that
contains documentation for the parameter.

Wrap non-inline code examples in \code ... \endcode.

To document a function parameter, start a new paragraph with the
\param name command. If the parameter is used as an out or an in/out
parameter, use the \param [out] name or \param [in,out] name command,
respectively.

To describe function return value, start a new paragraph with the \returns
command.

A minimal documentation comment:

/// Sets the xyzzy property to \p Baz.
void setXyzzy(bool Baz);

A documentation comment that uses all Doxygen features in a preferred way:

/// Does foo and bar.
///
/// Does not do foo the usual way if \p Baz is true.
///
/// Typical usage:
/// \code
/// fooBar(false, "quux", Res);
/// \endcode
///
/// \param Quux kind of foo to do.
/// \param [out] Result filled with bar sequence on foo success.
///
/// \returns true on success.
bool fooBar(bool Baz, StringRef Quux, std::vector<int> &Result);

Don’t duplicate the documentation comment in the header file and in the
implementation file. Put the documentation comments for public APIs into the
header file. Documentation comments for private APIs can go to the
implementation file. In any case, implementation files can include additional
comments (not necessarily in Doxygen markup) to explain implementation details
as needed.

Don’t duplicate function or class name at the beginning of the comment.
For humans it is obvious which function or class is being documented;
automatic documentation processing tools are smart enough to bind the comment
to the correct declaration.

Wrong:

// In Something.h:

/// Something - An abstraction for some complicated thing.
class Something {
public:
 /// fooBar - Does foo and bar.
 void fooBar();
};

// In Something.cpp:

/// fooBar - Does foo and bar.
void Something::fooBar() { ... }

Correct:

// In Something.h:

/// An abstraction for some complicated thing.
class Something {
public:
 /// Does foo and bar.
 void fooBar();
};

// In Something.cpp:

// Builds a B-tree in order to do foo. See paper by...
void Something::fooBar() { ... }

It is not required to use additional Doxygen features, but sometimes it might
be a good idea to do so.

Consider:

	adding comments to any narrow namespace containing a collection of
related functions or types;

	using top-level groups to organize a collection of related functions at
namespace scope where the grouping is smaller than the namespace;

	using member groups and additional comments attached to member
groups to organize within a class.

For example:

class Something {
 /// \name Functions that do Foo.
 /// @{
 void fooBar();
 void fooBaz();
 /// @}
 ...
};

#include Style

Immediately after the header file comment (and include guards if working on a
header file), the minimal list of #includes required by the file should be
listed. We prefer these #includes to be listed in this order:

	Main Module Header

	Local/Private Headers

	LLVM project/subproject headers (clang/..., lldb/..., llvm/..., etc)

	System #includes

and each category should be sorted lexicographically by the full path.

The Main Module Header file applies to .cpp files which implement an
interface defined by a .h file. This #include should always be included
first regardless of where it lives on the file system. By including a
header file first in the .cpp files that implement the interfaces, we ensure
that the header does not have any hidden dependencies which are not explicitly
#included in the header, but should be. It is also a form of documentation
in the .cpp file to indicate where the interfaces it implements are defined.

LLVM project and subproject headers should be grouped from most specific to least
specific, for the same reasons described above. For example, LLDB depends on
both clang and LLVM, and clang depends on LLVM. So an LLDB source file should
include lldb headers first, followed by clang headers, followed by
llvm headers, to reduce the possibility (for example) of an LLDB header
accidentally picking up a missing include due to the previous inclusion of that
header in the main source file or some earlier header file. clang should
similarly include its own headers before including llvm headers. This rule
applies to all LLVM subprojects.

Source Code Width

Write your code to fit within 80 columns of text. This helps those of us who
like to print out code and look at your code in an xterm without resizing
it.

The longer answer is that there must be some limit to the width of the code in
order to reasonably allow developers to have multiple files side-by-side in
windows on a modest display. If you are going to pick a width limit, it is
somewhat arbitrary but you might as well pick something standard. Going with 90
columns (for example) instead of 80 columns wouldn’t add any significant value
and would be detrimental to printing out code. Also many other projects have
standardized on 80 columns, so some people have already configured their editors
for it (vs something else, like 90 columns).

This is one of many contentious issues in coding standards, but it is not up for
debate.

Use Spaces Instead of Tabs

In all cases, prefer spaces to tabs in source files. People have different
preferred indentation levels, and different styles of indentation that they
like; this is fine. What isn’t fine is that different editors/viewers expand
tabs out to different tab stops. This can cause your code to look completely
unreadable, and it is not worth dealing with.

As always, follow the Golden Rule above: follow the style of
existing code if you are modifying and extending it. If you like four spaces of
indentation, DO NOT do that in the middle of a chunk of code with two spaces
of indentation. Also, do not reindent a whole source file: it makes for
incredible diffs that are absolutely worthless.

Indent Code Consistently

Okay, in your first year of programming you were told that indentation is
important. If you didn’t believe and internalize this then, now is the time.
Just do it. With the introduction of C++11, there are some new formatting
challenges that merit some suggestions to help have consistent, maintainable,
and tool-friendly formatting and indentation.

Format Lambdas Like Blocks Of Code

When formatting a multi-line lambda, format it like a block of code, that’s
what it is. If there is only one multi-line lambda in a statement, and there
are no expressions lexically after it in the statement, drop the indent to the
standard two space indent for a block of code, as if it were an if-block opened
by the preceding part of the statement:

std::sort(foo.begin(), foo.end(), [&](Foo a, Foo b) -> bool {
 if (a.blah < b.blah)
 return true;
 if (a.baz < b.baz)
 return true;
 return a.bam < b.bam;
});

To take best advantage of this formatting, if you are designing an API which
accepts a continuation or single callable argument (be it a functor, or
a std::function), it should be the last argument if at all possible.

If there are multiple multi-line lambdas in a statement, or there is anything
interesting after the lambda in the statement, indent the block two spaces from
the indent of the []:

dyn_switch(V->stripPointerCasts(),
 [] (PHINode *PN) {
 // process phis...
 },
 [] (SelectInst *SI) {
 // process selects...
 },
 [] (LoadInst *LI) {
 // process loads...
 },
 [] (AllocaInst *AI) {
 // process allocas...
 });

Braced Initializer Lists

With C++11, there are significantly more uses of braced lists to perform
initialization. These allow you to easily construct aggregate temporaries in
expressions among other niceness. They now have a natural way of ending up
nested within each other and within function calls in order to build up
aggregates (such as option structs) from local variables. To make matters
worse, we also have many more uses of braces in an expression context that are
not performing initialization.

The historically common formatting of braced initialization of aggregate
variables does not mix cleanly with deep nesting, general expression contexts,
function arguments, and lambdas. We suggest new code use a simple rule for
formatting braced initialization lists: act as-if the braces were parentheses
in a function call. The formatting rules exactly match those already well
understood for formatting nested function calls. Examples:

foo({a, b, c}, {1, 2, 3});

llvm::Constant *Mask[] = {
 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0),
 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1),
 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2)};

This formatting scheme also makes it particularly easy to get predictable,
consistent, and automatic formatting with tools like Clang Format [https://clang.llvm.org/docs/ClangFormat.html].

Language and Compiler Issues

Treat Compiler Warnings Like Errors

If your code has compiler warnings in it, something is wrong — you aren’t
casting values correctly, you have “questionable” constructs in your code, or
you are doing something legitimately wrong. Compiler warnings can cover up
legitimate errors in output and make dealing with a translation unit difficult.

It is not possible to prevent all warnings from all compilers, nor is it
desirable. Instead, pick a standard compiler (like gcc) that provides a
good thorough set of warnings, and stick to it. At least in the case of
gcc, it is possible to work around any spurious errors by changing the
syntax of the code slightly. For example, a warning that annoys me occurs when
I write code like this:

if (V = getValue()) {
 ...
}

gcc will warn me that I probably want to use the == operator, and that I
probably mistyped it. In most cases, I haven’t, and I really don’t want the
spurious errors. To fix this particular problem, I rewrite the code like
this:

if ((V = getValue())) {
 ...
}

which shuts gcc up. Any gcc warning that annoys you can be fixed by
massaging the code appropriately.

Write Portable Code

In almost all cases, it is possible and within reason to write completely
portable code. If there are cases where it isn’t possible to write portable
code, isolate it behind a well defined (and well documented) interface.

In practice, this means that you shouldn’t assume much about the host compiler
(and Visual Studio tends to be the lowest common denominator). If advanced
features are used, they should only be an implementation detail of a library
which has a simple exposed API, and preferably be buried in libSystem.

Do not use RTTI or Exceptions

In an effort to reduce code and executable size, LLVM does not use RTTI
(e.g. dynamic_cast<>;) or exceptions. These two language features violate
the general C++ principle of “you only pay for what you use”, causing
executable bloat even if exceptions are never used in the code base, or if RTTI
is never used for a class. Because of this, we turn them off globally in the
code.

That said, LLVM does make extensive use of a hand-rolled form of RTTI that use
templates like isa<>, cast<>, and dyn_cast<>.
This form of RTTI is opt-in and can be
added to any class. It is also
substantially more efficient than dynamic_cast<>.

Do not use Static Constructors

Static constructors and destructors (e.g. global variables whose types have a
constructor or destructor) should not be added to the code base, and should be
removed wherever possible. Besides well known problems [https://yosefk.com/c++fqa/ctors.html#fqa-10.12] where the order of
initialization is undefined between globals in different source files, the
entire concept of static constructors is at odds with the common use case of
LLVM as a library linked into a larger application.

Consider the use of LLVM as a JIT linked into another application (perhaps for
OpenGL, custom languages [https://llvm.org/Users.html], shaders in movies [https://llvm.org/devmtg/2010-11/Gritz-OpenShadingLang.pdf], etc). Due to the
design of static constructors, they must be executed at startup time of the
entire application, regardless of whether or how LLVM is used in that larger
application. There are two problems with this:

	The time to run the static constructors impacts startup time of applications
— a critical time for GUI apps, among others.

	The static constructors cause the app to pull many extra pages of memory off
the disk: both the code for the constructor in each .o file and the small
amount of data that gets touched. In addition, touched/dirty pages put more
pressure on the VM system on low-memory machines.

We would really like for there to be zero cost for linking in an additional LLVM
target or other library into an application, but static constructors violate
this goal.

That said, LLVM unfortunately does contain static constructors. It would be a
great project [https://llvm.org/PR11944] for someone to purge all static
constructors from LLVM, and then enable the -Wglobal-constructors warning
flag (when building with Clang) to ensure we do not regress in the future.

Use of class and struct Keywords

In C++, the class and struct keywords can be used almost
interchangeably. The only difference is when they are used to declare a class:
class makes all members private by default while struct makes all
members public by default.

Unfortunately, not all compilers follow the rules and some will generate
different symbols based on whether class or struct was used to declare
the symbol (e.g., MSVC). This can lead to problems at link time.

	All declarations and definitions of a given class or struct must use
the same keyword. For example:

class Foo;

// Breaks mangling in MSVC.
struct Foo { int Data; };

	As a rule of thumb, struct should be kept to structures where all
members are declared public.

// Foo feels like a class... this is strange.
struct Foo {
private:
 int Data;
public:
 Foo() : Data(0) { }
 int getData() const { return Data; }
 void setData(int D) { Data = D; }
};

// Bar isn't POD, but it does look like a struct.
struct Bar {
 int Data;
 Bar() : Data(0) { }
};

Do not use Braced Initializer Lists to Call a Constructor

In C++11 there is a “generalized initialization syntax” which allows calling
constructors using braced initializer lists. Do not use these to call
constructors with any interesting logic or if you care that you’re calling some
particular constructor. Those should look like function calls using
parentheses rather than like aggregate initialization. Similarly, if you need
to explicitly name the type and call its constructor to create a temporary,
don’t use a braced initializer list. Instead, use a braced initializer list
(without any type for temporaries) when doing aggregate initialization or
something notionally equivalent. Examples:

class Foo {
public:
 // Construct a Foo by reading data from the disk in the whizbang format, ...
 Foo(std::string filename);

 // Construct a Foo by looking up the Nth element of some global data ...
 Foo(int N);

 // ...
};

// The Foo constructor call is very deliberate, no braces.
std::fill(foo.begin(), foo.end(), Foo("name"));

// The pair is just being constructed like an aggregate, use braces.
bar_map.insert({my_key, my_value});

If you use a braced initializer list when initializing a variable, use an equals before the open curly brace:

int data[] = {0, 1, 2, 3};

Use auto Type Deduction to Make Code More Readable

Some are advocating a policy of “almost always auto” in C++11, however LLVM
uses a more moderate stance. Use auto if and only if it makes the code more
readable or easier to maintain. Don’t “almost always” use auto, but do use
auto with initializers like cast<Foo>(...) or other places where the
type is already obvious from the context. Another time when auto works well
for these purposes is when the type would have been abstracted away anyways,
often behind a container’s typedef such as std::vector<T>::iterator.

Beware unnecessary copies with auto

The convenience of auto makes it easy to forget that its default behavior
is a copy. Particularly in range-based for loops, careless copies are
expensive.

As a rule of thumb, use auto & unless you need to copy the result, and use
auto * when copying pointers.

// Typically there's no reason to copy.
for (const auto &Val : Container) { observe(Val); }
for (auto &Val : Container) { Val.change(); }

// Remove the reference if you really want a new copy.
for (auto Val : Container) { Val.change(); saveSomewhere(Val); }

// Copy pointers, but make it clear that they're pointers.
for (const auto *Ptr : Container) { observe(*Ptr); }
for (auto *Ptr : Container) { Ptr->change(); }

Beware of non-determinism due to ordering of pointers

In general, there is no relative ordering among pointers. As a result,
when unordered containers like sets and maps are used with pointer keys
the iteration order is undefined. Hence, iterating such containers may
result in non-deterministic code generation. While the generated code
might not necessarily be “wrong code”, this non-determinism might result
in unexpected runtime crashes or simply hard to reproduce bugs on the
customer side making it harder to debug and fix.

As a rule of thumb, in case an ordered result is expected, remember to
sort an unordered container before iteration. Or use ordered containers
like vector/MapVector/SetVector if you want to iterate pointer keys.

Beware of non-deterministic sorting order of equal elements

std::sort uses a non-stable sorting algorithm in which the order of equal
elements is not guaranteed to be preserved. Thus using std::sort for a
container having equal elements may result in non-determinstic behavior.
To uncover such instances of non-determinism, LLVM has introduced a new
llvm::sort wrapper function. For an EXPENSIVE_CHECKS build this will randomly
shuffle the container before sorting. As a rule of thumb, always make sure to
use llvm::sort instead of std::sort.

Style Issues

The High-Level Issues

Self-contained Headers

Header files should be self-contained (compile on their own) and end in .h.
Non-header files that are meant for inclusion should end in .inc and be used
sparingly.

All header files should be self-contained. Users and refactoring tools should
not have to adhere to special conditions to include the header. Specifically, a
header should have header guards and include all other headers it needs.

There are rare cases where a file designed to be included is not
self-contained. These are typically intended to be included at unusual
locations, such as the middle of another file. They might not use header
guards, and might not include their prerequisites. Name such files with the
.inc extension. Use sparingly, and prefer self-contained headers when possible.

In general, a header should be implemented by one or more .cpp files. Each
of these .cpp files should include the header that defines their interface
first. This ensures that all of the dependences of the header have been
properly added to the header itself, and are not implicit. System headers
should be included after user headers for a translation unit.

Library Layering

A directory of header files (for example include/llvm/Foo) defines a
library (Foo). Dependencies between libraries are defined by the
LLVMBuild.txt file in their implementation (lib/Foo). One library (both
its headers and implementation) should only use things from the libraries
listed in its dependencies.

Some of this constraint can be enforced by classic Unix linkers (Mac & Windows
linkers, as well as lld, do not enforce this constraint). A Unix linker
searches left to right through the libraries specified on its command line and
never revisits a library. In this way, no circular dependencies between
libraries can exist.

This doesn’t fully enforce all inter-library dependencies, and importantly
doesn’t enforce header file circular dependencies created by inline functions.
A good way to answer the “is this layered correctly” would be to consider
whether a Unix linker would succeed at linking the program if all inline
functions were defined out-of-line. (& for all valid orderings of dependencies
- since linking resolution is linear, it’s possible that some implicit
dependencies can sneak through: A depends on B and C, so valid orderings are
“C B A” or “B C A”, in both cases the explicit dependencies come before their
use. But in the first case, B could still link successfully if it implicitly
depended on C, or the opposite in the second case)

#include as Little as Possible

#include hurts compile time performance. Don’t do it unless you have to,
especially in header files.

But wait! Sometimes you need to have the definition of a class to use it, or to
inherit from it. In these cases go ahead and #include that header file. Be
aware however that there are many cases where you don’t need to have the full
definition of a class. If you are using a pointer or reference to a class, you
don’t need the header file. If you are simply returning a class instance from a
prototyped function or method, you don’t need it. In fact, for most cases, you
simply don’t need the definition of a class. And not #includeing speeds up
compilation.

It is easy to try to go too overboard on this recommendation, however. You
must include all of the header files that you are using — you can include
them either directly or indirectly through another header file. To make sure
that you don’t accidentally forget to include a header file in your module
header, make sure to include your module header first in the implementation
file (as mentioned above). This way there won’t be any hidden dependencies that
you’ll find out about later.

Keep “Internal” Headers Private

Many modules have a complex implementation that causes them to use more than one
implementation (.cpp) file. It is often tempting to put the internal
communication interface (helper classes, extra functions, etc) in the public
module header file. Don’t do this!

If you really need to do something like this, put a private header file in the
same directory as the source files, and include it locally. This ensures that
your private interface remains private and undisturbed by outsiders.

Note

It’s okay to put extra implementation methods in a public class itself. Just
make them private (or protected) and all is well.

Use Early Exits and continue to Simplify Code

When reading code, keep in mind how much state and how many previous decisions
have to be remembered by the reader to understand a block of code. Aim to
reduce indentation where possible when it doesn’t make it more difficult to
understand the code. One great way to do this is by making use of early exits
and the continue keyword in long loops. As an example of using an early
exit from a function, consider this “bad” code:

Value *doSomething(Instruction *I) {
 if (!isa<TerminatorInst>(I) &&
 I->hasOneUse() && doOtherThing(I)) {
 ... some long code
 }

 return 0;
}

This code has several problems if the body of the 'if' is large. When
you’re looking at the top of the function, it isn’t immediately clear that this
only does interesting things with non-terminator instructions, and only
applies to things with the other predicates. Second, it is relatively difficult
to describe (in comments) why these predicates are important because the if
statement makes it difficult to lay out the comments. Third, when you’re deep
within the body of the code, it is indented an extra level. Finally, when
reading the top of the function, it isn’t clear what the result is if the
predicate isn’t true; you have to read to the end of the function to know that
it returns null.

It is much preferred to format the code like this:

Value *doSomething(Instruction *I) {
 // Terminators never need 'something' done to them because ...
 if (isa<TerminatorInst>(I))
 return 0;

 // We conservatively avoid transforming instructions with multiple uses
 // because goats like cheese.
 if (!I->hasOneUse())
 return 0;

 // This is really just here for example.
 if (!doOtherThing(I))
 return 0;

 ... some long code
}

This fixes these problems. A similar problem frequently happens in for
loops. A silly example is something like this:

for (Instruction &I : BB) {
 if (auto *BO = dyn_cast<BinaryOperator>(&I)) {
 Value *LHS = BO->getOperand(0);
 Value *RHS = BO->getOperand(1);
 if (LHS != RHS) {
 ...
 }
 }
}

When you have very, very small loops, this sort of structure is fine. But if it
exceeds more than 10-15 lines, it becomes difficult for people to read and
understand at a glance. The problem with this sort of code is that it gets very
nested very quickly. Meaning that the reader of the code has to keep a lot of
context in their brain to remember what is going immediately on in the loop,
because they don’t know if/when the if conditions will have elses etc.
It is strongly preferred to structure the loop like this:

for (Instruction &I : BB) {
 auto *BO = dyn_cast<BinaryOperator>(&I);
 if (!BO) continue;

 Value *LHS = BO->getOperand(0);
 Value *RHS = BO->getOperand(1);
 if (LHS == RHS) continue;

 ...
}

This has all the benefits of using early exits for functions: it reduces nesting
of the loop, it makes it easier to describe why the conditions are true, and it
makes it obvious to the reader that there is no else coming up that they
have to push context into their brain for. If a loop is large, this can be a
big understandability win.

Don’t use else after a return

For similar reasons above (reduction of indentation and easier reading), please
do not use 'else' or 'else if' after something that interrupts control
flow — like return, break, continue, goto, etc. For
example, this is bad:

case 'J': {
 if (Signed) {
 Type = Context.getsigjmp_bufType();
 if (Type.isNull()) {
 Error = ASTContext::GE_Missing_sigjmp_buf;
 return QualType();
 } else {
 break;
 }
 } else {
 Type = Context.getjmp_bufType();
 if (Type.isNull()) {
 Error = ASTContext::GE_Missing_jmp_buf;
 return QualType();
 } else {
 break;
 }
 }
}

It is better to write it like this:

case 'J':
 if (Signed) {
 Type = Context.getsigjmp_bufType();
 if (Type.isNull()) {
 Error = ASTContext::GE_Missing_sigjmp_buf;
 return QualType();
 }
 } else {
 Type = Context.getjmp_bufType();
 if (Type.isNull()) {
 Error = ASTContext::GE_Missing_jmp_buf;
 return QualType();
 }
 }
 break;

Or better yet (in this case) as:

case 'J':
 if (Signed)
 Type = Context.getsigjmp_bufType();
 else
 Type = Context.getjmp_bufType();

 if (Type.isNull()) {
 Error = Signed ? ASTContext::GE_Missing_sigjmp_buf :
 ASTContext::GE_Missing_jmp_buf;
 return QualType();
 }
 break;

The idea is to reduce indentation and the amount of code you have to keep track
of when reading the code.

Turn Predicate Loops into Predicate Functions

It is very common to write small loops that just compute a boolean value. There
are a number of ways that people commonly write these, but an example of this
sort of thing is:

bool FoundFoo = false;
for (unsigned I = 0, E = BarList.size(); I != E; ++I)
 if (BarList[I]->isFoo()) {
 FoundFoo = true;
 break;
 }

if (FoundFoo) {
 ...
}

This sort of code is awkward to write, and is almost always a bad sign. Instead
of this sort of loop, we strongly prefer to use a predicate function (which may
be static) that uses early exits to compute the predicate. We prefer the
code to be structured like this:

/// \returns true if the specified list has an element that is a foo.
static bool containsFoo(const std::vector<Bar*> &List) {
 for (unsigned I = 0, E = List.size(); I != E; ++I)
 if (List[I]->isFoo())
 return true;
 return false;
}
...

if (containsFoo(BarList)) {
 ...
}

There are many reasons for doing this: it reduces indentation and factors out
code which can often be shared by other code that checks for the same predicate.
More importantly, it forces you to pick a name for the function, and forces
you to write a comment for it. In this silly example, this doesn’t add much
value. However, if the condition is complex, this can make it a lot easier for
the reader to understand the code that queries for this predicate. Instead of
being faced with the in-line details of how we check to see if the BarList
contains a foo, we can trust the function name and continue reading with better
locality.

The Low-Level Issues

Name Types, Functions, Variables, and Enumerators Properly

Poorly-chosen names can mislead the reader and cause bugs. We cannot stress
enough how important it is to use descriptive names. Pick names that match
the semantics and role of the underlying entities, within reason. Avoid
abbreviations unless they are well known. After picking a good name, make sure
to use consistent capitalization for the name, as inconsistency requires clients
to either memorize the APIs or to look it up to find the exact spelling.

In general, names should be in camel case (e.g. TextFileReader and
isLValue()). Different kinds of declarations have different rules:

	Type names (including classes, structs, enums, typedefs, etc) should be
nouns and start with an upper-case letter (e.g. TextFileReader).

	Variable names should be nouns (as they represent state). The name should
be camel case, and start with an upper case letter (e.g. Leader or
Boats).

	Function names should be verb phrases (as they represent actions), and
command-like function should be imperative. The name should be camel case,
and start with a lower case letter (e.g. openFile() or isFoo()).

	Enum declarations (e.g. enum Foo {...}) are types, so they should
follow the naming conventions for types. A common use for enums is as a
discriminator for a union, or an indicator of a subclass. When an enum is
used for something like this, it should have a Kind suffix
(e.g. ValueKind).

	Enumerators (e.g. enum { Foo, Bar }) and public member variables
should start with an upper-case letter, just like types. Unless the
enumerators are defined in their own small namespace or inside a class,
enumerators should have a prefix corresponding to the enum declaration name.
For example, enum ValueKind { ... }; may contain enumerators like
VK_Argument, VK_BasicBlock, etc. Enumerators that are just
convenience constants are exempt from the requirement for a prefix. For
instance:

enum {
 MaxSize = 42,
 Density = 12
};

As an exception, classes that mimic STL classes can have member names in STL’s
style of lower-case words separated by underscores (e.g. begin(),
push_back(), and empty()). Classes that provide multiple
iterators should add a singular prefix to begin() and end()
(e.g. global_begin() and use_begin()).

Here are some examples of good and bad names:

class VehicleMaker {
 ...
 Factory<Tire> F; // Bad -- abbreviation and non-descriptive.
 Factory<Tire> Factory; // Better.
 Factory<Tire> TireFactory; // Even better -- if VehicleMaker has more than one
 // kind of factories.
};

Vehicle makeVehicle(VehicleType Type) {
 VehicleMaker M; // Might be OK if having a short life-span.
 Tire Tmp1 = M.makeTire(); // Bad -- 'Tmp1' provides no information.
 Light Headlight = M.makeLight("head"); // Good -- descriptive.
 ...
}

Assert Liberally

Use the “assert” macro to its fullest. Check all of your preconditions and
assumptions, you never know when a bug (not necessarily even yours) might be
caught early by an assertion, which reduces debugging time dramatically. The
“<cassert>” header file is probably already included by the header files you
are using, so it doesn’t cost anything to use it.

To further assist with debugging, make sure to put some kind of error message in
the assertion statement, which is printed if the assertion is tripped. This
helps the poor debugger make sense of why an assertion is being made and
enforced, and hopefully what to do about it. Here is one complete example:

inline Value *getOperand(unsigned I) {
 assert(I < Operands.size() && "getOperand() out of range!");
 return Operands[I];
}

Here are more examples:

assert(Ty->isPointerType() && "Can't allocate a non-pointer type!");

assert((Opcode == Shl || Opcode == Shr) && "ShiftInst Opcode invalid!");

assert(idx < getNumSuccessors() && "Successor # out of range!");

assert(V1.getType() == V2.getType() && "Constant types must be identical!");

assert(isa<PHINode>(Succ->front()) && "Only works on PHId BBs!");

You get the idea.

In the past, asserts were used to indicate a piece of code that should not be
reached. These were typically of the form:

assert(0 && "Invalid radix for integer literal");

This has a few issues, the main one being that some compilers might not
understand the assertion, or warn about a missing return in builds where
assertions are compiled out.

Today, we have something much better: llvm_unreachable:

llvm_unreachable("Invalid radix for integer literal");

When assertions are enabled, this will print the message if it’s ever reached
and then exit the program. When assertions are disabled (i.e. in release
builds), llvm_unreachable becomes a hint to compilers to skip generating
code for this branch. If the compiler does not support this, it will fall back
to the “abort” implementation.

Neither assertions or llvm_unreachable will abort the program on a release
build. If the error condition can be triggered by user input then the
recoverable error mechanism described in LLVM Programmer’s Manual should be
used instead. In cases where this is not practical, report_fatal_error may
be used.

Another issue is that values used only by assertions will produce an “unused
value” warning when assertions are disabled. For example, this code will warn:

unsigned Size = V.size();
assert(Size > 42 && "Vector smaller than it should be");

bool NewToSet = Myset.insert(Value);
assert(NewToSet && "The value shouldn't be in the set yet");

These are two interesting different cases. In the first case, the call to
V.size() is only useful for the assert, and we don’t want it executed when
assertions are disabled. Code like this should move the call into the assert
itself. In the second case, the side effects of the call must happen whether
the assert is enabled or not. In this case, the value should be cast to void to
disable the warning. To be specific, it is preferred to write the code like
this:

assert(V.size() > 42 && "Vector smaller than it should be");

bool NewToSet = Myset.insert(Value); (void)NewToSet;
assert(NewToSet && "The value shouldn't be in the set yet");

Do Not Use using namespace std

In LLVM, we prefer to explicitly prefix all identifiers from the standard
namespace with an “std::” prefix, rather than rely on “using namespace
std;”.

In header files, adding a 'using namespace XXX' directive pollutes the
namespace of any source file that #includes the header. This is clearly a
bad thing.

In implementation files (e.g. .cpp files), the rule is more of a stylistic
rule, but is still important. Basically, using explicit namespace prefixes
makes the code clearer, because it is immediately obvious what facilities
are being used and where they are coming from. And more portable, because
namespace clashes cannot occur between LLVM code and other namespaces. The
portability rule is important because different standard library implementations
expose different symbols (potentially ones they shouldn’t), and future revisions
to the C++ standard will add more symbols to the std namespace. As such, we
never use 'using namespace std;' in LLVM.

The exception to the general rule (i.e. it’s not an exception for the std
namespace) is for implementation files. For example, all of the code in the
LLVM project implements code that lives in the ‘llvm’ namespace. As such, it is
ok, and actually clearer, for the .cpp files to have a 'using namespace
llvm;' directive at the top, after the #includes. This reduces
indentation in the body of the file for source editors that indent based on
braces, and keeps the conceptual context cleaner. The general form of this rule
is that any .cpp file that implements code in any namespace may use that
namespace (and its parents’), but should not use any others.

Provide a Virtual Method Anchor for Classes in Headers

If a class is defined in a header file and has a vtable (either it has virtual
methods or it derives from classes with virtual methods), it must always have at
least one out-of-line virtual method in the class. Without this, the compiler
will copy the vtable and RTTI into every .o file that #includes the
header, bloating .o file sizes and increasing link times.

Don’t use default labels in fully covered switches over enumerations

-Wswitch warns if a switch, without a default label, over an enumeration
does not cover every enumeration value. If you write a default label on a fully
covered switch over an enumeration then the -Wswitch warning won’t fire
when new elements are added to that enumeration. To help avoid adding these
kinds of defaults, Clang has the warning -Wcovered-switch-default which is
off by default but turned on when building LLVM with a version of Clang that
supports the warning.

A knock-on effect of this stylistic requirement is that when building LLVM with
GCC you may get warnings related to “control may reach end of non-void function”
if you return from each case of a covered switch-over-enum because GCC assumes
that the enum expression may take any representable value, not just those of
individual enumerators. To suppress this warning, use llvm_unreachable after
the switch.

Use range-based for loops wherever possible

The introduction of range-based for loops in C++11 means that explicit
manipulation of iterators is rarely necessary. We use range-based for
loops wherever possible for all newly added code. For example:

BasicBlock *BB = ...
for (Instruction &I : *BB)
 ... use I ...

Don’t evaluate end() every time through a loop

In cases where range-based for loops can’t be used and it is necessary
to write an explicit iterator-based loop, pay close attention to whether
end() is re-evaluted on each loop iteration. One common mistake is to
write a loop in this style:

BasicBlock *BB = ...
for (auto I = BB->begin(); I != BB->end(); ++I)
 ... use I ...

The problem with this construct is that it evaluates “BB->end()” every time
through the loop. Instead of writing the loop like this, we strongly prefer
loops to be written so that they evaluate it once before the loop starts. A
convenient way to do this is like so:

BasicBlock *BB = ...
for (auto I = BB->begin(), E = BB->end(); I != E; ++I)
 ... use I ...

The observant may quickly point out that these two loops may have different
semantics: if the container (a basic block in this case) is being mutated, then
“BB->end()” may change its value every time through the loop and the second
loop may not in fact be correct. If you actually do depend on this behavior,
please write the loop in the first form and add a comment indicating that you
did it intentionally.

Why do we prefer the second form (when correct)? Writing the loop in the first
form has two problems. First it may be less efficient than evaluating it at the
start of the loop. In this case, the cost is probably minor — a few extra
loads every time through the loop. However, if the base expression is more
complex, then the cost can rise quickly. I’ve seen loops where the end
expression was actually something like: “SomeMap[X]->end()” and map lookups
really aren’t cheap. By writing it in the second form consistently, you
eliminate the issue entirely and don’t even have to think about it.

The second (even bigger) issue is that writing the loop in the first form hints
to the reader that the loop is mutating the container (a fact that a comment
would handily confirm!). If you write the loop in the second form, it is
immediately obvious without even looking at the body of the loop that the
container isn’t being modified, which makes it easier to read the code and
understand what it does.

While the second form of the loop is a few extra keystrokes, we do strongly
prefer it.

#include <iostream> is Forbidden

The use of #include <iostream> in library files is hereby forbidden,
because many common implementations transparently inject a static constructor
into every translation unit that includes it.

Note that using the other stream headers (<sstream> for example) is not
problematic in this regard — just <iostream>. However, raw_ostream
provides various APIs that are better performing for almost every use than
std::ostream style APIs.

Note

New code should always use raw_ostream for writing, or the
llvm::MemoryBuffer API for reading files.

Use raw_ostream

LLVM includes a lightweight, simple, and efficient stream implementation in
llvm/Support/raw_ostream.h, which provides all of the common features of
std::ostream. All new code should use raw_ostream instead of
ostream.

Unlike std::ostream, raw_ostream is not a template and can be forward
declared as class raw_ostream. Public headers should generally not include
the raw_ostream header, but use forward declarations and constant references
to raw_ostream instances.

Avoid std::endl

The std::endl modifier, when used with iostreams outputs a newline to
the output stream specified. In addition to doing this, however, it also
flushes the output stream. In other words, these are equivalent:

std::cout << std::endl;
std::cout << '\n' << std::flush;

Most of the time, you probably have no reason to flush the output stream, so
it’s better to use a literal '\n'.

Don’t use inline when defining a function in a class definition

A member function defined in a class definition is implicitly inline, so don’t
put the inline keyword in this case.

Don’t:

class Foo {
public:
 inline void bar() {
 // ...
 }
};

Do:

class Foo {
public:
 void bar() {
 // ...
 }
};

Microscopic Details

This section describes preferred low-level formatting guidelines along with
reasoning on why we prefer them.

Spaces Before Parentheses

We prefer to put a space before an open parenthesis only in control flow
statements, but not in normal function call expressions and function-like
macros. For example, this is good:

if (X) ...
for (I = 0; I != 100; ++I) ...
while (LLVMRocks) ...

somefunc(42);
assert(3 != 4 && "laws of math are failing me");

A = foo(42, 92) + bar(X);

and this is bad:

if(X) ...
for(I = 0; I != 100; ++I) ...
while(LLVMRocks) ...

somefunc (42);
assert (3 != 4 && "laws of math are failing me");

A = foo (42, 92) + bar (X);

The reason for doing this is not completely arbitrary. This style makes control
flow operators stand out more, and makes expressions flow better. The function
call operator binds very tightly as a postfix operator. Putting a space after a
function name (as in the last example) makes it appear that the code might bind
the arguments of the left-hand-side of a binary operator with the argument list
of a function and the name of the right side. More specifically, it is easy to
misread the “A” example as:

A = foo ((42, 92) + bar) (X);

when skimming through the code. By avoiding a space in a function, we avoid
this misinterpretation.

Prefer Preincrement

Hard fast rule: Preincrement (++X) may be no slower than postincrement
(X++) and could very well be a lot faster than it. Use preincrementation
whenever possible.

The semantics of postincrement include making a copy of the value being
incremented, returning it, and then preincrementing the “work value”. For
primitive types, this isn’t a big deal. But for iterators, it can be a huge
issue (for example, some iterators contains stack and set objects in them…
copying an iterator could invoke the copy ctor’s of these as well). In general,
get in the habit of always using preincrement, and you won’t have a problem.

Namespace Indentation

In general, we strive to reduce indentation wherever possible. This is useful
because we want code to fit into 80 columns without wrapping horribly, but
also because it makes it easier to understand the code. To facilitate this and
avoid some insanely deep nesting on occasion, don’t indent namespaces. If it
helps readability, feel free to add a comment indicating what namespace is
being closed by a }. For example:

namespace llvm {
namespace knowledge {

/// This class represents things that Smith can have an intimate
/// understanding of and contains the data associated with it.
class Grokable {
...
public:
 explicit Grokable() { ... }
 virtual ~Grokable() = 0;

 ...

};

} // end namespace knowledge
} // end namespace llvm

Feel free to skip the closing comment when the namespace being closed is
obvious for any reason. For example, the outer-most namespace in a header file
is rarely a source of confusion. But namespaces both anonymous and named in
source files that are being closed half way through the file probably could use
clarification.

Anonymous Namespaces

After talking about namespaces in general, you may be wondering about anonymous
namespaces in particular. Anonymous namespaces are a great language feature
that tells the C++ compiler that the contents of the namespace are only visible
within the current translation unit, allowing more aggressive optimization and
eliminating the possibility of symbol name collisions. Anonymous namespaces are
to C++ as “static” is to C functions and global variables. While “static”
is available in C++, anonymous namespaces are more general: they can make entire
classes private to a file.

The problem with anonymous namespaces is that they naturally want to encourage
indentation of their body, and they reduce locality of reference: if you see a
random function definition in a C++ file, it is easy to see if it is marked
static, but seeing if it is in an anonymous namespace requires scanning a big
chunk of the file.

Because of this, we have a simple guideline: make anonymous namespaces as small
as possible, and only use them for class declarations. For example, this is
good:

namespace {
class StringSort {
...
public:
 StringSort(...)
 bool operator<(const char *RHS) const;
};
} // end anonymous namespace

static void runHelper() {
 ...
}

bool StringSort::operator<(const char *RHS) const {
 ...
}

This is bad:

namespace {

class StringSort {
...
public:
 StringSort(...)
 bool operator<(const char *RHS) const;
};

void runHelper() {
 ...
}

bool StringSort::operator<(const char *RHS) const {
 ...
}

} // end anonymous namespace

This is bad specifically because if you’re looking at “runHelper” in the middle
of a large C++ file, that you have no immediate way to tell if it is local to
the file. When it is marked static explicitly, this is immediately obvious.
Also, there is no reason to enclose the definition of “operator<” in the
namespace just because it was declared there.

See Also

A lot of these comments and recommendations have been culled from other sources.
Two particularly important books for our work are:

	Effective C++ [https://www.amazon.com/Effective-Specific-Addison-Wesley-Professional-Computing/dp/0321334876]
by Scott Meyers. Also interesting and useful are “More Effective C++” and
“Effective STL” by the same author.

	Large-Scale C++ Software Design [https://www.amazon.com/Large-Scale-Software-Design-John-Lakos/dp/0201633620]
by John Lakos

If you get some free time, and you haven’t read them: do so, you might learn
something.

CommandLine 2.0 Library Manual

	Introduction

	Quick Start Guide

	Boolean Arguments

	Argument Aliases

	Selecting an alternative from a set of possibilities

	Named Alternatives

	Parsing a list of options

	Collecting options as a set of flags

	Adding freeform text to help output

	Grouping options into categories

	Reference Guide

	Positional Arguments

	Specifying positional options with hyphens

	Determining absolute position with getPosition()

	The cl::ConsumeAfter modifier

	Internal vs External Storage

	Option Attributes

	Option Modifiers

	Hiding an option from -help output

	Controlling the number of occurrences required and allowed

	Controlling whether or not a value must be specified

	Controlling other formatting options

	Miscellaneous option modifiers

	Response files

	Top-Level Classes and Functions

	The cl::getRegisteredOptions function

	The cl::ParseCommandLineOptions function

	The cl::ParseEnvironmentOptions function

	The cl::SetVersionPrinter function

	The cl::opt class

	The cl::list class

	The cl::bits class

	The cl::alias class

	The cl::extrahelp class

	The cl::OptionCategory class

	Builtin parsers

	Extension Guide

	Writing a custom parser

	Exploiting external storage

	Dynamically adding command line options

Introduction

This document describes the CommandLine argument processing library. It will
show you how to use it, and what it can do. The CommandLine library uses a
declarative approach to specifying the command line options that your program
takes. By default, these options declarations implicitly hold the value parsed
for the option declared (of course this can be changed).

Although there are a lot of command line argument parsing libraries out
there in many different languages, none of them fit well with what I needed. By
looking at the features and problems of other libraries, I designed the
CommandLine library to have the following features:

	Speed: The CommandLine library is very quick and uses little resources. The
parsing time of the library is directly proportional to the number of
arguments parsed, not the number of options recognized. Additionally,
command line argument values are captured transparently into user defined
global variables, which can be accessed like any other variable (and with the
same performance).

	Type Safe: As a user of CommandLine, you don’t have to worry about
remembering the type of arguments that you want (is it an int? a string? a
bool? an enum?) and keep casting it around. Not only does this help prevent
error prone constructs, it also leads to dramatically cleaner source code.

	No subclasses required: To use CommandLine, you instantiate variables that
correspond to the arguments that you would like to capture, you don’t
subclass a parser. This means that you don’t have to write any
boilerplate code.

	Globally accessible: Libraries can specify command line arguments that are
automatically enabled in any tool that links to the library. This is
possible because the application doesn’t have to keep a list of arguments to
pass to the parser. This also makes supporting dynamically loaded options
trivial.

	Cleaner: CommandLine supports enum and other types directly, meaning that
there is less error and more security built into the library. You don’t have
to worry about whether your integral command line argument accidentally got
assigned a value that is not valid for your enum type.

	Powerful: The CommandLine library supports many different types of arguments,
from simple boolean flags to scalars arguments (strings,
integers, enums, doubles), to lists of arguments. This is
possible because CommandLine is…

	Extensible: It is very simple to add a new argument type to CommandLine.
Simply specify the parser that you want to use with the command line option
when you declare it. Custom parsers are no problem.

	Labor Saving: The CommandLine library cuts down on the amount of grunt work
that you, the user, have to do. For example, it automatically provides a
-help option that shows the available command line options for your tool.
Additionally, it does most of the basic correctness checking for you.

	Capable: The CommandLine library can handle lots of different forms of
options often found in real programs. For example, positional arguments,
ls style grouping options (to allow processing ‘ls -lad’
naturally), ld style prefix options (to parse ‘-lmalloc
-L/usr/lib’), and interpreter style options.

This document will hopefully let you jump in and start using CommandLine in your
utility quickly and painlessly. Additionally it should be a simple reference
manual to figure out how stuff works.

Quick Start Guide

This section of the manual runs through a simple CommandLine’ification of a
basic compiler tool. This is intended to show you how to jump into using the
CommandLine library in your own program, and show you some of the cool things it
can do.

To start out, you need to include the CommandLine header file into your program:

#include "llvm/Support/CommandLine.h"

Additionally, you need to add this as the first line of your main program:

int main(int argc, char **argv) {
 cl::ParseCommandLineOptions(argc, argv);
 ...
}

… which actually parses the arguments and fills in the variable declarations.

Now that you are ready to support command line arguments, we need to tell the
system which ones we want, and what type of arguments they are. The CommandLine
library uses a declarative syntax to model command line arguments with the
global variable declarations that capture the parsed values. This means that
for every command line option that you would like to support, there should be a
global variable declaration to capture the result. For example, in a compiler,
we would like to support the Unix-standard ‘-o <filename>’ option to specify
where to put the output. With the CommandLine library, this is represented like
this:

cl::opt<string> OutputFilename("o", cl::desc("Specify output filename"), cl::value_desc("filename"));

This declares a global variable “OutputFilename” that is used to capture the
result of the “o” argument (first parameter). We specify that this is a
simple scalar option by using the “cl::opt” template (as opposed to the
“cl::list” template), and tell the CommandLine library that the data
type that we are parsing is a string.

The second and third parameters (which are optional) are used to specify what to
output for the “-help” option. In this case, we get a line that looks like
this:

USAGE: compiler [options]

OPTIONS:
 -help - display available options (-help-hidden for more)
 -o <filename> - Specify output filename

Because we specified that the command line option should parse using the
string data type, the variable declared is automatically usable as a real
string in all contexts that a normal C++ string object may be used. For
example:

...
std::ofstream Output(OutputFilename.c_str());
if (Output.good()) ...
...

There are many different options that you can use to customize the command line
option handling library, but the above example shows the general interface to
these options. The options can be specified in any order, and are specified
with helper functions like cl::desc(…), so there are no positional
dependencies to remember. The available options are discussed in detail in the
Reference Guide.

Continuing the example, we would like to have our compiler take an input
filename as well as an output filename, but we do not want the input filename to
be specified with a hyphen (ie, not -filename.c). To support this style of
argument, the CommandLine library allows for positional arguments to be
specified for the program. These positional arguments are filled with command
line parameters that are not in option form. We use this feature like this:

cl::opt<string> InputFilename(cl::Positional, cl::desc("<input file>"), cl::init("-"));

This declaration indicates that the first positional argument should be treated
as the input filename. Here we use the cl::init option to specify an initial
value for the command line option, which is used if the option is not specified
(if you do not specify a cl::init modifier for an option, then the default
constructor for the data type is used to initialize the value). Command line
options default to being optional, so if we would like to require that the user
always specify an input filename, we would add the cl::Required flag, and we
could eliminate the cl::init modifier, like this:

cl::opt<string> InputFilename(cl::Positional, cl::desc("<input file>"), cl::Required);

Again, the CommandLine library does not require the options to be specified in
any particular order, so the above declaration is equivalent to:

cl::opt<string> InputFilename(cl::Positional, cl::Required, cl::desc("<input file>"));

By simply adding the cl::Required flag, the CommandLine library will
automatically issue an error if the argument is not specified, which shifts all
of the command line option verification code out of your application into the
library. This is just one example of how using flags can alter the default
behaviour of the library, on a per-option basis. By adding one of the
declarations above, the -help option synopsis is now extended to:

USAGE: compiler [options] <input file>

OPTIONS:
 -help - display available options (-help-hidden for more)
 -o <filename> - Specify output filename

… indicating that an input filename is expected.

Boolean Arguments

In addition to input and output filenames, we would like the compiler example to
support three boolean flags: “-f” to force writing binary output to a
terminal, “--quiet” to enable quiet mode, and “-q” for backwards
compatibility with some of our users. We can support these by declaring options
of boolean type like this:

cl::opt<bool> Force ("f", cl::desc("Enable binary output on terminals"));
cl::opt<bool> Quiet ("quiet", cl::desc("Don't print informational messages"));
cl::opt<bool> Quiet2("q", cl::desc("Don't print informational messages"), cl::Hidden);

This does what you would expect: it declares three boolean variables
(“Force”, “Quiet”, and “Quiet2”) to recognize these options. Note
that the “-q” option is specified with the “cl::Hidden” flag. This
modifier prevents it from being shown by the standard “-help” output (note
that it is still shown in the “-help-hidden” output).

The CommandLine library uses a different parser for different data types.
For example, in the string case, the argument passed to the option is copied
literally into the content of the string variable… we obviously cannot do that
in the boolean case, however, so we must use a smarter parser. In the case of
the boolean parser, it allows no options (in which case it assigns the value of
true to the variable), or it allows the values “true” or “false” to be
specified, allowing any of the following inputs:

compiler -f # No value, 'Force' == true
compiler -f=true # Value specified, 'Force' == true
compiler -f=TRUE # Value specified, 'Force' == true
compiler -f=FALSE # Value specified, 'Force' == false

… you get the idea. The bool parser just turns the string values into
boolean values, and rejects things like ‘compiler -f=foo’. Similarly, the
float, double, and int parsers work like you would expect, using the
‘strtol’ and ‘strtod’ C library calls to parse the string value into the
specified data type.

With the declarations above, “compiler -help” emits this:

USAGE: compiler [options] <input file>

OPTIONS:
 -f - Enable binary output on terminals
 -o - Override output filename
 -quiet - Don't print informational messages
 -help - display available options (-help-hidden for more)

and “compiler -help-hidden” prints this:

USAGE: compiler [options] <input file>

OPTIONS:
 -f - Enable binary output on terminals
 -o - Override output filename
 -q - Don't print informational messages
 -quiet - Don't print informational messages
 -help - display available options (-help-hidden for more)

This brief example has shown you how to use the ‘cl::opt’ class to parse
simple scalar command line arguments. In addition to simple scalar arguments,
the CommandLine library also provides primitives to support CommandLine option
aliases, and lists of options.

Argument Aliases

So far, the example works well, except for the fact that we need to check the
quiet condition like this now:

...
 if (!Quiet && !Quiet2) printInformationalMessage(...);
...

… which is a real pain! Instead of defining two values for the same
condition, we can use the “cl::alias” class to make the “-q” option an
alias for the “-quiet” option, instead of providing a value itself:

cl::opt<bool> Force ("f", cl::desc("Overwrite output files"));
cl::opt<bool> Quiet ("quiet", cl::desc("Don't print informational messages"));
cl::alias QuietA("q", cl::desc("Alias for -quiet"), cl::aliasopt(Quiet));

The third line (which is the only one we modified from above) defines a “-q”
alias that updates the “Quiet” variable (as specified by the cl::aliasopt
modifier) whenever it is specified. Because aliases do not hold state, the only
thing the program has to query is the Quiet variable now. Another nice
feature of aliases is that they automatically hide themselves from the -help
output (although, again, they are still visible in the -help-hidden output).

Now the application code can simply use:

...
 if (!Quiet) printInformationalMessage(...);
...

… which is much nicer! The “cl::alias” can be used to specify an
alternative name for any variable type, and has many uses.

Selecting an alternative from a set of possibilities

So far we have seen how the CommandLine library handles builtin types like
std::string, bool and int, but how does it handle things it doesn’t
know about, like enums or ‘int*’s?

The answer is that it uses a table-driven generic parser (unless you specify
your own parser, as described in the Extension Guide). This parser maps
literal strings to whatever type is required, and requires you to tell it what
this mapping should be.

Let’s say that we would like to add four optimization levels to our optimizer,
using the standard flags “-g”, “-O0”, “-O1”, and “-O2”. We
could easily implement this with boolean options like above, but there are
several problems with this strategy:

	A user could specify more than one of the options at a time, for example,
“compiler -O3 -O2”. The CommandLine library would not be able to catch
this erroneous input for us.

	We would have to test 4 different variables to see which ones are set.

	This doesn’t map to the numeric levels that we want… so we cannot easily
see if some level >= “-O1” is enabled.

To cope with these problems, we can use an enum value, and have the CommandLine
library fill it in with the appropriate level directly, which is used like this:

enum OptLevel {
 g, O1, O2, O3
};

cl::opt<OptLevel> OptimizationLevel(cl::desc("Choose optimization level:"),
 cl::values(
 clEnumVal(g , "No optimizations, enable debugging"),
 clEnumVal(O1, "Enable trivial optimizations"),
 clEnumVal(O2, "Enable default optimizations"),
 clEnumVal(O3, "Enable expensive optimizations")));

...
 if (OptimizationLevel >= O2) doPartialRedundancyElimination(...);
...

This declaration defines a variable “OptimizationLevel” of the
“OptLevel” enum type. This variable can be assigned any of the values that
are listed in the declaration. The CommandLine library enforces that
the user can only specify one of the options, and it ensure that only valid enum
values can be specified. The “clEnumVal” macros ensure that the command
line arguments matched the enum values. With this option added, our help output
now is:

USAGE: compiler [options] <input file>

OPTIONS:
 Choose optimization level:
 -g - No optimizations, enable debugging
 -O1 - Enable trivial optimizations
 -O2 - Enable default optimizations
 -O3 - Enable expensive optimizations
 -f - Enable binary output on terminals
 -help - display available options (-help-hidden for more)
 -o <filename> - Specify output filename
 -quiet - Don't print informational messages

In this case, it is sort of awkward that flag names correspond directly to enum
names, because we probably don’t want a enum definition named “g” in our
program. Because of this, we can alternatively write this example like this:

enum OptLevel {
 Debug, O1, O2, O3
};

cl::opt<OptLevel> OptimizationLevel(cl::desc("Choose optimization level:"),
 cl::values(
 clEnumValN(Debug, "g", "No optimizations, enable debugging"),
 clEnumVal(O1 , "Enable trivial optimizations"),
 clEnumVal(O2 , "Enable default optimizations"),
 clEnumVal(O3 , "Enable expensive optimizations")));

...
 if (OptimizationLevel == Debug) outputDebugInfo(...);
...

By using the “clEnumValN” macro instead of “clEnumVal”, we can directly
specify the name that the flag should get. In general a direct mapping is nice,
but sometimes you can’t or don’t want to preserve the mapping, which is when you
would use it.

Named Alternatives

Another useful argument form is a named alternative style. We shall use this
style in our compiler to specify different debug levels that can be used.
Instead of each debug level being its own switch, we want to support the
following options, of which only one can be specified at a time:
“--debug-level=none”, “--debug-level=quick”,
“--debug-level=detailed”. To do this, we use the exact same format as our
optimization level flags, but we also specify an option name. For this case,
the code looks like this:

enum DebugLev {
 nodebuginfo, quick, detailed
};

// Enable Debug Options to be specified on the command line
cl::opt<DebugLev> DebugLevel("debug_level", cl::desc("Set the debugging level:"),
 cl::values(
 clEnumValN(nodebuginfo, "none", "disable debug information"),
 clEnumVal(quick, "enable quick debug information"),
 clEnumVal(detailed, "enable detailed debug information")));

This definition defines an enumerated command line variable of type “enum
DebugLev”, which works exactly the same way as before. The difference here is
just the interface exposed to the user of your program and the help output by
the “-help” option:

USAGE: compiler [options] <input file>

OPTIONS:
 Choose optimization level:
 -g - No optimizations, enable debugging
 -O1 - Enable trivial optimizations
 -O2 - Enable default optimizations
 -O3 - Enable expensive optimizations
 -debug_level - Set the debugging level:
 =none - disable debug information
 =quick - enable quick debug information
 =detailed - enable detailed debug information
 -f - Enable binary output on terminals
 -help - display available options (-help-hidden for more)
 -o <filename> - Specify output filename
 -quiet - Don't print informational messages

Again, the only structural difference between the debug level declaration and
the optimization level declaration is that the debug level declaration includes
an option name ("debug_level"), which automatically changes how the library
processes the argument. The CommandLine library supports both forms so that you
can choose the form most appropriate for your application.

Parsing a list of options

Now that we have the standard run-of-the-mill argument types out of the way,
lets get a little wild and crazy. Lets say that we want our optimizer to accept
a list of optimizations to perform, allowing duplicates. For example, we
might want to run: “compiler -dce -constprop -inline -dce -strip”. In this
case, the order of the arguments and the number of appearances is very
important. This is what the “cl::list” template is for. First, start by
defining an enum of the optimizations that you would like to perform:

enum Opts {
 // 'inline' is a C++ keyword, so name it 'inlining'
 dce, constprop, inlining, strip
};

Then define your “cl::list” variable:

cl::list<Opts> OptimizationList(cl::desc("Available Optimizations:"),
 cl::values(
 clEnumVal(dce , "Dead Code Elimination"),
 clEnumVal(constprop , "Constant Propagation"),
 clEnumValN(inlining, "inline", "Procedure Integration"),
 clEnumVal(strip , "Strip Symbols")));

This defines a variable that is conceptually of the type
“std::vector<enum Opts>”. Thus, you can access it with standard vector
methods:

for (unsigned i = 0; i != OptimizationList.size(); ++i)
 switch (OptimizationList[i])
 ...

… to iterate through the list of options specified.

Note that the “cl::list” template is completely general and may be used with
any data types or other arguments that you can use with the “cl::opt”
template. One especially useful way to use a list is to capture all of the
positional arguments together if there may be more than one specified. In the
case of a linker, for example, the linker takes several ‘.o’ files, and
needs to capture them into a list. This is naturally specified as:

...
cl::list<std::string> InputFilenames(cl::Positional, cl::desc("<Input files>"), cl::OneOrMore);
...

This variable works just like a “vector<string>” object. As such, accessing
the list is simple, just like above. In this example, we used the
cl::OneOrMore modifier to inform the CommandLine library that it is an error
if the user does not specify any .o files on our command line. Again, this
just reduces the amount of checking we have to do.

Collecting options as a set of flags

Instead of collecting sets of options in a list, it is also possible to gather
information for enum values in a bit vector. The representation used by the
cl::bits class is an unsigned integer. An enum value is represented by a
0/1 in the enum’s ordinal value bit position. 1 indicating that the enum was
specified, 0 otherwise. As each specified value is parsed, the resulting enum’s
bit is set in the option’s bit vector:

bits |= 1 << (unsigned)enum;

Options that are specified multiple times are redundant. Any instances after
the first are discarded.

Reworking the above list example, we could replace cl::list with cl::bits:

cl::bits<Opts> OptimizationBits(cl::desc("Available Optimizations:"),
 cl::values(
 clEnumVal(dce , "Dead Code Elimination"),
 clEnumVal(constprop , "Constant Propagation"),
 clEnumValN(inlining, "inline", "Procedure Integration"),
 clEnumVal(strip , "Strip Symbols")));

To test to see if constprop was specified, we can use the cl:bits::isSet
function:

if (OptimizationBits.isSet(constprop)) {
 ...
}

It’s also possible to get the raw bit vector using the cl::bits::getBits
function:

unsigned bits = OptimizationBits.getBits();

Finally, if external storage is used, then the location specified must be of
type unsigned. In all other ways a cl::bits option is equivalent to a
cl::list option.

Adding freeform text to help output

As our program grows and becomes more mature, we may decide to put summary
information about what it does into the help output. The help output is styled
to look similar to a Unix man page, providing concise information about a
program. Unix man pages, however often have a description about what the
program does. To add this to your CommandLine program, simply pass a third
argument to the cl::ParseCommandLineOptions call in main. This additional
argument is then printed as the overview information for your program, allowing
you to include any additional information that you want. For example:

int main(int argc, char **argv) {
 cl::ParseCommandLineOptions(argc, argv, " CommandLine compiler example\n\n"
 " This program blah blah blah...\n");
 ...
}

would yield the help output:

**OVERVIEW: CommandLine compiler example

 This program blah blah blah...**

USAGE: compiler [options] <input file>

OPTIONS:
 ...
 -help - display available options (-help-hidden for more)
 -o <filename> - Specify output filename

Grouping options into categories

If our program has a large number of options it may become difficult for users
of our tool to navigate the output of -help. To alleviate this problem we
can put our options into categories. This can be done by declaring option
categories (cl::OptionCategory objects) and then placing our options into
these categories using the cl::cat option attribute. For example:

cl::OptionCategory StageSelectionCat("Stage Selection Options",
 "These control which stages are run.");

cl::opt<bool> Preprocessor("E",cl::desc("Run preprocessor stage."),
 cl::cat(StageSelectionCat));

cl::opt<bool> NoLink("c",cl::desc("Run all stages except linking."),
 cl::cat(StageSelectionCat));

The output of -help will become categorized if an option category is
declared. The output looks something like

OVERVIEW: This is a small program to demo the LLVM CommandLine API
USAGE: Sample [options]

OPTIONS:

 General options:

 -help - Display available options (-help-hidden for more)
 -help-list - Display list of available options (-help-list-hidden for more)

 Stage Selection Options:
 These control which stages are run.

 -E - Run preprocessor stage.
 -c - Run all stages except linking.

In addition to the behaviour of -help changing when an option category is
declared, the command line option -help-list becomes visible which will
print the command line options as uncategorized list.

Note that Options that are not explicitly categorized will be placed in the
cl::GeneralCategory category.

Reference Guide

Now that you know the basics of how to use the CommandLine library, this section
will give you the detailed information you need to tune how command line options
work, as well as information on more “advanced” command line option processing
capabilities.

Positional Arguments

Positional arguments are those arguments that are not named, and are not
specified with a hyphen. Positional arguments should be used when an option is
specified by its position alone. For example, the standard Unix grep tool
takes a regular expression argument, and an optional filename to search through
(which defaults to standard input if a filename is not specified). Using the
CommandLine library, this would be specified as:

cl::opt<string> Regex (cl::Positional, cl::desc("<regular expression>"), cl::Required);
cl::opt<string> Filename(cl::Positional, cl::desc("<input file>"), cl::init("-"));

Given these two option declarations, the -help output for our grep
replacement would look like this:

USAGE: spiffygrep [options] <regular expression> <input file>

OPTIONS:
 -help - display available options (-help-hidden for more)

… and the resultant program could be used just like the standard grep
tool.

Positional arguments are sorted by their order of construction. This means that
command line options will be ordered according to how they are listed in a .cpp
file, but will not have an ordering defined if the positional arguments are
defined in multiple .cpp files. The fix for this problem is simply to define
all of your positional arguments in one .cpp file.

Specifying positional options with hyphens

Sometimes you may want to specify a value to your positional argument that
starts with a hyphen (for example, searching for ‘-foo’ in a file). At
first, you will have trouble doing this, because it will try to find an argument
named ‘-foo’, and will fail (and single quotes will not save you). Note
that the system grep has the same problem:

$ spiffygrep '-foo' test.txt
Unknown command line argument '-foo'. Try: spiffygrep -help'

$ grep '-foo' test.txt
grep: illegal option -- f
grep: illegal option -- o
grep: illegal option -- o
Usage: grep -hblcnsviw pattern file . . .

The solution for this problem is the same for both your tool and the system
version: use the ‘--‘ marker. When the user specifies ‘--‘ on the
command line, it is telling the program that all options after the ‘--‘
should be treated as positional arguments, not options. Thus, we can use it
like this:

$ spiffygrep -- -foo test.txt
 ...output...

Determining absolute position with getPosition()

Sometimes an option can affect or modify the meaning of another option. For
example, consider gcc’s -x LANG option. This tells gcc to ignore the
suffix of subsequent positional arguments and force the file to be interpreted
as if it contained source code in language LANG. In order to handle this
properly, you need to know the absolute position of each argument, especially
those in lists, so their interaction(s) can be applied correctly. This is also
useful for options like -llibname which is actually a positional argument
that starts with a dash.

So, generally, the problem is that you have two cl::list variables that
interact in some way. To ensure the correct interaction, you can use the
cl::list::getPosition(optnum) method. This method returns the absolute
position (as found on the command line) of the optnum item in the
cl::list.

The idiom for usage is like this:

static cl::list<std::string> Files(cl::Positional, cl::OneOrMore);
static cl::list<std::string> Libraries("l", cl::ZeroOrMore);

int main(int argc, char**argv) {
 // ...
 std::vector<std::string>::iterator fileIt = Files.begin();
 std::vector<std::string>::iterator libIt = Libraries.begin();
 unsigned libPos = 0, filePos = 0;
 while (1) {
 if (libIt != Libraries.end())
 libPos = Libraries.getPosition(libIt - Libraries.begin());
 else
 libPos = 0;
 if (fileIt != Files.end())
 filePos = Files.getPosition(fileIt - Files.begin());
 else
 filePos = 0;

 if (filePos != 0 && (libPos == 0 || filePos < libPos)) {
 // Source File Is next
 ++fileIt;
 }
 else if (libPos != 0 && (filePos == 0 || libPos < filePos)) {
 // Library is next
 ++libIt;
 }
 else
 break; // we're done with the list
 }
}

Note that, for compatibility reasons, the cl::opt also supports an
unsigned getPosition() option that will provide the absolute position of
that option. You can apply the same approach as above with a cl::opt and a
cl::list option as you can with two lists.

The cl::ConsumeAfter modifier

The cl::ConsumeAfter formatting option is used to construct programs that
use “interpreter style” option processing. With this style of option
processing, all arguments specified after the last positional argument are
treated as special interpreter arguments that are not interpreted by the command
line argument.

As a concrete example, lets say we are developing a replacement for the standard
Unix Bourne shell (/bin/sh). To run /bin/sh, first you specify options
to the shell itself (like -x which turns on trace output), then you specify
the name of the script to run, then you specify arguments to the script. These
arguments to the script are parsed by the Bourne shell command line option
processor, but are not interpreted as options to the shell itself. Using the
CommandLine library, we would specify this as:

cl::opt<string> Script(cl::Positional, cl::desc("<input script>"), cl::init("-"));
cl::list<string> Argv(cl::ConsumeAfter, cl::desc("<program arguments>..."));
cl::opt<bool> Trace("x", cl::desc("Enable trace output"));

which automatically provides the help output:

USAGE: spiffysh [options] <input script> <program arguments>...

OPTIONS:
 -help - display available options (-help-hidden for more)
 -x - Enable trace output

At runtime, if we run our new shell replacement as `spiffysh -x test.sh -a -x
-y bar’, the Trace variable will be set to true, the Script variable
will be set to “test.sh”, and the Argv list will contain ["-a", "-x",
"-y", "bar"], because they were specified after the last positional argument
(which is the script name).

There are several limitations to when cl::ConsumeAfter options can be
specified. For example, only one cl::ConsumeAfter can be specified per
program, there must be at least one positional argument specified, there must
not be any cl::list positional arguments, and the cl::ConsumeAfter option
should be a cl::list option.

Internal vs External Storage

By default, all command line options automatically hold the value that they
parse from the command line. This is very convenient in the common case,
especially when combined with the ability to define command line options in the
files that use them. This is called the internal storage model.

Sometimes, however, it is nice to separate the command line option processing
code from the storage of the value parsed. For example, lets say that we have a
‘-debug’ option that we would like to use to enable debug information across
the entire body of our program. In this case, the boolean value controlling the
debug code should be globally accessible (in a header file, for example) yet the
command line option processing code should not be exposed to all of these
clients (requiring lots of .cpp files to #include CommandLine.h).

To do this, set up your .h file with your option, like this for example:

// DebugFlag.h - Get access to the '-debug' command line option
//

// DebugFlag - This boolean is set to true if the '-debug' command line option
// is specified. This should probably not be referenced directly, instead, use
// the DEBUG macro below.
//
extern bool DebugFlag;

// DEBUG macro - This macro should be used by code to emit debug information.
// In the '-debug' option is specified on the command line, and if this is a
// debug build, then the code specified as the option to the macro will be
// executed. Otherwise it will not be.
#ifdef NDEBUG
#define LLVM_DEBUG(X)
#else
#define LLVM_DEBUG(X) do { if (DebugFlag) { X; } } while (0)
#endif

This allows clients to blissfully use the LLVM_DEBUG() macro, or the
DebugFlag explicitly if they want to. Now we just need to be able to set
the DebugFlag boolean when the option is set. To do this, we pass an
additional argument to our command line argument processor, and we specify where
to fill in with the cl::location attribute:

bool DebugFlag; // the actual value
static cl::opt<bool, true> // The parser
Debug("debug", cl::desc("Enable debug output"), cl::Hidden, cl::location(DebugFlag));

In the above example, we specify “true” as the second argument to the
cl::opt template, indicating that the template should not maintain a copy of
the value itself. In addition to this, we specify the cl::location
attribute, so that DebugFlag is automatically set.

Option Attributes

This section describes the basic attributes that you can specify on options.

	The option name attribute (which is required for all options, except
positional options) specifies what the option name is. This option is
specified in simple double quotes:

cl::opt<bool> Quiet("quiet");

	The cl::desc attribute specifies a description for the option to be
shown in the -help output for the program. This attribute supports
multi-line descriptions with lines separated by ‘n’.

	The cl::value_desc attribute specifies a string that can be used to
fine tune the -help output for a command line option. Look here for an
example.

	The cl::init attribute specifies an initial value for a scalar
option. If this attribute is not specified then the command line option value
defaults to the value created by the default constructor for the
type.

Warning

If you specify both cl::init and cl::location for an option, you
must specify cl::location first, so that when the command-line parser
sees cl::init, it knows where to put the initial value. (You will get an
error at runtime if you don’t put them in the right order.)

	The cl::location attribute where to store the value for a parsed command
line option if using external storage. See the section on Internal vs
External Storage for more information.

	The cl::aliasopt attribute specifies which option a cl::alias option is
an alias for.

	The cl::values attribute specifies the string-to-value mapping to be used
by the generic parser. It takes a list of (option, value, description)
triplets that specify the option name, the value mapped to, and the
description shown in the -help for the tool. Because the generic parser
is used most frequently with enum values, two macros are often useful:

	The clEnumVal macro is used as a nice simple way to specify a triplet
for an enum. This macro automatically makes the option name be the same as
the enum name. The first option to the macro is the enum, the second is
the description for the command line option.

	The clEnumValN macro is used to specify macro options where the option
name doesn’t equal the enum name. For this macro, the first argument is
the enum value, the second is the flag name, and the second is the
description.

You will get a compile time error if you try to use cl::values with a parser
that does not support it.

	The cl::multi_val attribute specifies that this option takes has multiple
values (example: -sectalign segname sectname sectvalue). This attribute
takes one unsigned argument - the number of values for the option. This
attribute is valid only on cl::list options (and will fail with compile
error if you try to use it with other option types). It is allowed to use all
of the usual modifiers on multi-valued options (besides
cl::ValueDisallowed, obviously).

	The cl::cat attribute specifies the option category that the option
belongs to. The category should be a cl::OptionCategory object.

Option Modifiers

Option modifiers are the flags and expressions that you pass into the
constructors for cl::opt and cl::list. These modifiers give you the
ability to tweak how options are parsed and how -help output is generated to
fit your application well.

These options fall into five main categories:

	Hiding an option from -help output

	Controlling the number of occurrences required and allowed

	Controlling whether or not a value must be specified

	Controlling other formatting options

	Miscellaneous option modifiers

It is not possible to specify two options from the same category (you’ll get a
runtime error) to a single option, except for options in the miscellaneous
category. The CommandLine library specifies defaults for all of these settings
that are the most useful in practice and the most common, which mean that you
usually shouldn’t have to worry about these.

Hiding an option from -help output

The cl::NotHidden, cl::Hidden, and cl::ReallyHidden modifiers are
used to control whether or not an option appears in the -help and
-help-hidden output for the compiled program:

	The cl::NotHidden modifier (which is the default for cl::opt and
cl::list options) indicates the option is to appear in both help
listings.

	The cl::Hidden modifier (which is the default for cl::alias options)
indicates that the option should not appear in the -help output, but
should appear in the -help-hidden output.

	The cl::ReallyHidden modifier indicates that the option should not appear
in any help output.

Controlling the number of occurrences required and allowed

This group of options is used to control how many time an option is allowed (or
required) to be specified on the command line of your program. Specifying a
value for this setting allows the CommandLine library to do error checking for
you.

The allowed values for this option group are:

	The cl::Optional modifier (which is the default for the cl::opt and
cl::alias classes) indicates that your program will allow either zero or
one occurrence of the option to be specified.

	The cl::ZeroOrMore modifier (which is the default for the cl::list
class) indicates that your program will allow the option to be specified zero
or more times.

	The cl::Required modifier indicates that the specified option must be
specified exactly one time.

	The cl::OneOrMore modifier indicates that the option must be specified at
least one time.

	The cl::ConsumeAfter modifier is described in the Positional arguments
section.

If an option is not specified, then the value of the option is equal to the
value specified by the cl::init attribute. If the cl::init attribute is
not specified, the option value is initialized with the default constructor for
the data type.

If an option is specified multiple times for an option of the cl::opt class,
only the last value will be retained.

Controlling whether or not a value must be specified

This group of options is used to control whether or not the option allows a
value to be present. In the case of the CommandLine library, a value is either
specified with an equal sign (e.g. ‘-index-depth=17’) or as a trailing
string (e.g. ‘-o a.out’).

The allowed values for this option group are:

	The cl::ValueOptional modifier (which is the default for bool typed
options) specifies that it is acceptable to have a value, or not. A boolean
argument can be enabled just by appearing on the command line, or it can have
an explicit ‘-foo=true’. If an option is specified with this mode, it is
illegal for the value to be provided without the equal sign. Therefore
‘-foo true’ is illegal. To get this behavior, you must use
the cl::ValueRequired modifier.

	The cl::ValueRequired modifier (which is the default for all other types
except for unnamed alternatives using the generic parser) specifies that a
value must be provided. This mode informs the command line library that if an
option is not provides with an equal sign, that the next argument provided
must be the value. This allows things like ‘-o a.out’ to work.

	The cl::ValueDisallowed modifier (which is the default for unnamed
alternatives using the generic parser) indicates that it is a runtime error
for the user to specify a value. This can be provided to disallow users from
providing options to boolean options (like ‘-foo=true’).

In general, the default values for this option group work just like you would
want them to. As mentioned above, you can specify the cl::ValueDisallowed
modifier to a boolean argument to restrict your command line parser. These
options are mostly useful when extending the library.

Controlling other formatting options

The formatting option group is used to specify that the command line option has
special abilities and is otherwise different from other command line arguments.
As usual, you can only specify one of these arguments at most.

	The cl::NormalFormatting modifier (which is the default all options)
specifies that this option is “normal”.

	The cl::Positional modifier specifies that this is a positional argument
that does not have a command line option associated with it. See the
Positional Arguments section for more information.

	The cl::ConsumeAfter modifier specifies that this option is used to
capture “interpreter style” arguments. See this section for more
information.

	The cl::Prefix modifier specifies that this option prefixes its value.
With ‘Prefix’ options, the equal sign does not separate the value from the
option name specified. Instead, the value is everything after the prefix,
including any equal sign if present. This is useful for processing odd
arguments like -lmalloc and -L/usr/lib in a linker tool or
-DNAME=value in a compiler tool. Here, the ‘l’, ‘D’ and ‘L’
options are normal string (or list) options, that have the cl::Prefix
modifier added to allow the CommandLine library to recognize them. Note that
cl::Prefix options must not have the cl::ValueDisallowed modifier
specified.

	The cl::Grouping modifier is used to implement Unix-style tools (like
ls) that have lots of single letter arguments, but only require a single
dash. For example, the ‘ls -labF’ command actually enables four different
options, all of which are single letters. Note that cl::Grouping options
cannot have values.

The CommandLine library does not restrict how you use the cl::Prefix or
cl::Grouping modifiers, but it is possible to specify ambiguous argument
settings. Thus, it is possible to have multiple letter options that are prefix
or grouping options, and they will still work as designed.

To do this, the CommandLine library uses a greedy algorithm to parse the input
option into (potentially multiple) prefix and grouping options. The strategy
basically looks like this:

parse(string OrigInput) {

1. string input = OrigInput;
2. if (isOption(input)) return getOption(input).parse(); // Normal option
3. while (!isOption(input) && !input.empty()) input.pop_back(); // Remove the last letter
4. if (input.empty()) return error(); // No matching option
5. if (getOption(input).isPrefix())
 return getOption(input).parse(input);
6. while (!input.empty()) { // Must be grouping options
 getOption(input).parse();
 OrigInput.erase(OrigInput.begin(), OrigInput.begin()+input.length());
 input = OrigInput;
 while (!isOption(input) && !input.empty()) input.pop_back();
 }
7. if (!OrigInput.empty()) error();

}

Miscellaneous option modifiers

The miscellaneous option modifiers are the only flags where you can specify more
than one flag from the set: they are not mutually exclusive. These flags
specify boolean properties that modify the option.

	The cl::CommaSeparated modifier indicates that any commas specified for an
option’s value should be used to split the value up into multiple values for
the option. For example, these two options are equivalent when
cl::CommaSeparated is specified: “-foo=a -foo=b -foo=c” and
“-foo=a,b,c”. This option only makes sense to be used in a case where the
option is allowed to accept one or more values (i.e. it is a cl::list
option).

	The cl::PositionalEatsArgs modifier (which only applies to positional
arguments, and only makes sense for lists) indicates that positional argument
should consume any strings after it (including strings that start with a “-“)
up until another recognized positional argument. For example, if you have two
“eating” positional arguments, “pos1” and “pos2”, the string “-pos1
-foo -bar baz -pos2 -bork” would cause the “-foo -bar -baz” strings to
be applied to the “-pos1” option and the “-bork” string to be applied
to the “-pos2” option.

	The cl::Sink modifier is used to handle unknown options. If there is at
least one option with cl::Sink modifier specified, the parser passes
unrecognized option strings to it as values instead of signaling an error. As
with cl::CommaSeparated, this modifier only makes sense with a cl::list
option.

So far, these are the only three miscellaneous option modifiers.

Response files

Some systems, such as certain variants of Microsoft Windows and some older
Unices have a relatively low limit on command-line length. It is therefore
customary to use the so-called ‘response files’ to circumvent this
restriction. These files are mentioned on the command-line (using the “@file”)
syntax. The program reads these files and inserts the contents into argv,
thereby working around the command-line length limits.

Top-Level Classes and Functions

Despite all of the built-in flexibility, the CommandLine option library really
only consists of one function cl::ParseCommandLineOptions) and three main
classes: cl::opt, cl::list, and cl::alias. This section describes
these three classes in detail.

The cl::getRegisteredOptions function

The cl::getRegisteredOptions function is designed to give a programmer
access to declared non-positional command line options so that how they appear
in -help can be modified prior to calling cl::ParseCommandLineOptions.
Note this method should not be called during any static initialisation because
it cannot be guaranteed that all options will have been initialised. Hence it
should be called from main.

This function can be used to gain access to options declared in libraries that
the tool writter may not have direct access to.

The function retrieves a StringMap that maps the option
string (e.g. -help) to an Option*.

Here is an example of how the function could be used:

using namespace llvm;
int main(int argc, char **argv) {
 cl::OptionCategory AnotherCategory("Some options");

 StringMap<cl::Option*> &Map = cl::getRegisteredOptions();

 //Unhide useful option and put it in a different category
 assert(Map.count("print-all-options") > 0);
 Map["print-all-options"]->setHiddenFlag(cl::NotHidden);
 Map["print-all-options"]->setCategory(AnotherCategory);

 //Hide an option we don't want to see
 assert(Map.count("enable-no-infs-fp-math") > 0);
 Map["enable-no-infs-fp-math"]->setHiddenFlag(cl::Hidden);

 //Change --version to --show-version
 assert(Map.count("version") > 0);
 Map["version"]->setArgStr("show-version");

 //Change --help description
 assert(Map.count("help") > 0);
 Map["help"]->setDescription("Shows help");

 cl::ParseCommandLineOptions(argc, argv, "This is a small program to demo the LLVM CommandLine API");
 ...
}

The cl::ParseCommandLineOptions function

The cl::ParseCommandLineOptions function is designed to be called directly
from main, and is used to fill in the values of all of the command line
option variables once argc and argv are available.

The cl::ParseCommandLineOptions function requires two parameters (argc
and argv), but may also take an optional third parameter which holds
additional extra text to emit when the -help option is invoked.

The cl::ParseEnvironmentOptions function

The cl::ParseEnvironmentOptions function has mostly the same effects as
cl::ParseCommandLineOptions, except that it is designed to take values for
options from an environment variable, for those cases in which reading the
command line is not convenient or desired. It fills in the values of all the
command line option variables just like cl::ParseCommandLineOptions does.

It takes four parameters: the name of the program (since argv may not be
available, it can’t just look in argv[0]), the name of the environment
variable to examine, and the optional additional extra text to emit when the
-help option is invoked.

cl::ParseEnvironmentOptions will break the environment variable’s value up
into words and then process them using cl::ParseCommandLineOptions.
Note: Currently cl::ParseEnvironmentOptions does not support quoting, so
an environment variable containing -option "foo bar" will be parsed as three
words, -option, "foo, and bar", which is different from what you
would get from the shell with the same input.

The cl::SetVersionPrinter function

The cl::SetVersionPrinter function is designed to be called directly from
main and before cl::ParseCommandLineOptions. Its use is optional. It
simply arranges for a function to be called in response to the --version
option instead of having the CommandLine library print out the usual version
string for LLVM. This is useful for programs that are not part of LLVM but wish
to use the CommandLine facilities. Such programs should just define a small
function that takes no arguments and returns void and that prints out
whatever version information is appropriate for the program. Pass the address of
that function to cl::SetVersionPrinter to arrange for it to be called when
the --version option is given by the user.

The cl::opt class

The cl::opt class is the class used to represent scalar command line
options, and is the one used most of the time. It is a templated class which
can take up to three arguments (all except for the first have default values
though):

namespace cl {
 template <class DataType, bool ExternalStorage = false,
 class ParserClass = parser<DataType> >
 class opt;
}

The first template argument specifies what underlying data type the command line
argument is, and is used to select a default parser implementation. The second
template argument is used to specify whether the option should contain the
storage for the option (the default) or whether external storage should be used
to contain the value parsed for the option (see Internal vs External Storage
for more information).

The third template argument specifies which parser to use. The default value
selects an instantiation of the parser class based on the underlying data
type of the option. In general, this default works well for most applications,
so this option is only used when using a custom parser.

The cl::list class

The cl::list class is the class used to represent a list of command line
options. It too is a templated class which can take up to three arguments:

namespace cl {
 template <class DataType, class Storage = bool,
 class ParserClass = parser<DataType> >
 class list;
}

This class works the exact same as the cl::opt class, except that the second
argument is the type of the external storage, not a boolean value. For this
class, the marker type ‘bool’ is used to indicate that internal storage
should be used.

The cl::bits class

The cl::bits class is the class used to represent a list of command line
options in the form of a bit vector. It is also a templated class which can
take up to three arguments:

namespace cl {
 template <class DataType, class Storage = bool,
 class ParserClass = parser<DataType> >
 class bits;
}

This class works the exact same as the cl::list class, except that the second
argument must be of type unsigned if external storage is used.

The cl::alias class

The cl::alias class is a nontemplated class that is used to form aliases for
other arguments.

namespace cl {
 class alias;
}

The cl::aliasopt attribute should be used to specify which option this is an
alias for. Alias arguments default to being cl::Hidden, and use the aliased
options parser to do the conversion from string to data.

The cl::extrahelp class

The cl::extrahelp class is a nontemplated class that allows extra help text
to be printed out for the -help option.

namespace cl {
 struct extrahelp;
}

To use the extrahelp, simply construct one with a const char* parameter to
the constructor. The text passed to the constructor will be printed at the
bottom of the help message, verbatim. Note that multiple cl::extrahelp
can be used, but this practice is discouraged. If your tool needs to print
additional help information, put all that help into a single cl::extrahelp
instance.

For example:

cl::extrahelp("\nADDITIONAL HELP:\n\n This is the extra help\n");

The cl::OptionCategory class

The cl::OptionCategory class is a simple class for declaring
option categories.

namespace cl {
 class OptionCategory;
}

An option category must have a name and optionally a description which are
passed to the constructor as const char*.

Note that declaring an option category and associating it with an option before
parsing options (e.g. statically) will change the output of -help from
uncategorized to categorized. If an option category is declared but not
associated with an option then it will be hidden from the output of -help
but will be shown in the output of -help-hidden.

Builtin parsers

Parsers control how the string value taken from the command line is translated
into a typed value, suitable for use in a C++ program. By default, the
CommandLine library uses an instance of parser<type> if the command line
option specifies that it uses values of type ‘type’. Because of this,
custom option processing is specified with specializations of the ‘parser’
class.

The CommandLine library provides the following builtin parser specializations,
which are sufficient for most applications. It can, however, also be extended to
work with new data types and new ways of interpreting the same data. See the
Writing a Custom Parser for more details on this type of library extension.

	The generic parser<t> parser can be used to map strings values to any data
type, through the use of the cl::values property, which specifies the
mapping information. The most common use of this parser is for parsing enum
values, which allows you to use the CommandLine library for all of the error
checking to make sure that only valid enum values are specified (as opposed to
accepting arbitrary strings). Despite this, however, the generic parser class
can be used for any data type.

	The parser<bool> specialization is used to convert boolean strings to a
boolean value. Currently accepted strings are “true”, “TRUE”,
“True”, “1”, “false”, “FALSE”, “False”, and “0”.

	The parser<boolOrDefault> specialization is used for cases where the value
is boolean, but we also need to know whether the option was specified at all.
boolOrDefault is an enum with 3 values, BOU_UNSET, BOU_TRUE and BOU_FALSE.
This parser accepts the same strings as ``parser<bool>``.

	The parser<string> specialization simply stores the parsed string into the
string value specified. No conversion or modification of the data is
performed.

	The parser<int> specialization uses the C strtol function to parse the
string input. As such, it will accept a decimal number (with an optional ‘+’
or ‘-‘ prefix) which must start with a non-zero digit. It accepts octal
numbers, which are identified with a ‘0’ prefix digit, and hexadecimal
numbers with a prefix of ‘0x’ or ‘0X’.

	The parser<double> and parser<float> specializations use the standard
C strtod function to convert floating point strings into floating point
values. As such, a broad range of string formats is supported, including
exponential notation (ex: 1.7e15) and properly supports locales.

Extension Guide

Although the CommandLine library has a lot of functionality built into it
already (as discussed previously), one of its true strengths lie in its
extensibility. This section discusses how the CommandLine library works under
the covers and illustrates how to do some simple, common, extensions.

Writing a custom parser

One of the simplest and most common extensions is the use of a custom parser.
As discussed previously, parsers are the portion of the CommandLine library
that turns string input from the user into a particular parsed data type,
validating the input in the process.

There are two ways to use a new parser:

	Specialize the cl::parser template for your custom data type.

This approach has the advantage that users of your custom data type will
automatically use your custom parser whenever they define an option with a
value type of your data type. The disadvantage of this approach is that it
doesn’t work if your fundamental data type is something that is already
supported.

	Write an independent class, using it explicitly from options that need it.

This approach works well in situations where you would line to parse an
option using special syntax for a not-very-special data-type. The drawback
of this approach is that users of your parser have to be aware that they are
using your parser instead of the builtin ones.

To guide the discussion, we will discuss a custom parser that accepts file
sizes, specified with an optional unit after the numeric size. For example, we
would like to parse “102kb”, “41M”, “1G” into the appropriate integer value. In
this case, the underlying data type we want to parse into is ‘unsigned’. We
choose approach #2 above because we don’t want to make this the default for all
unsigned options.

To start out, we declare our new FileSizeParser class:

struct FileSizeParser : public cl::parser<unsigned> {
 // parse - Return true on error.
 bool parse(cl::Option &O, StringRef ArgName, const std::string &ArgValue,
 unsigned &Val);
};

Our new class inherits from the cl::parser template class to fill in
the default, boiler plate code for us. We give it the data type that we parse
into, the last argument to the parse method, so that clients of our custom
parser know what object type to pass in to the parse method. (Here we declare
that we parse into ‘unsigned’ variables.)

For most purposes, the only method that must be implemented in a custom parser
is the parse method. The parse method is called whenever the option is
invoked, passing in the option itself, the option name, the string to parse, and
a reference to a return value. If the string to parse is not well-formed, the
parser should output an error message and return true. Otherwise it should
return false and set ‘Val’ to the parsed value. In our example, we
implement parse as:

bool FileSizeParser::parse(cl::Option &O, StringRef ArgName,
 const std::string &Arg, unsigned &Val) {
 const char *ArgStart = Arg.c_str();
 char *End;

 // Parse integer part, leaving 'End' pointing to the first non-integer char
 Val = (unsigned)strtol(ArgStart, &End, 0);

 while (1) {
 switch (*End++) {
 case 0: return false; // No error
 case 'i': // Ignore the 'i' in KiB if people use that
 case 'b': case 'B': // Ignore B suffix
 break;

 case 'g': case 'G': Val *= 1024*1024*1024; break;
 case 'm': case 'M': Val *= 1024*1024; break;
 case 'k': case 'K': Val *= 1024; break;

 default:
 // Print an error message if unrecognized character!
 return O.error("'" + Arg + "' value invalid for file size argument!");
 }
 }
}

This function implements a very simple parser for the kinds of strings we are
interested in. Although it has some holes (it allows “123KKK” for example),
it is good enough for this example. Note that we use the option itself to print
out the error message (the error method always returns true) in order to get
a nice error message (shown below). Now that we have our parser class, we can
use it like this:

static cl::opt<unsigned, false, FileSizeParser>
MFS("max-file-size", cl::desc("Maximum file size to accept"),
 cl::value_desc("size"));

Which adds this to the output of our program:

OPTIONS:
 -help - display available options (-help-hidden for more)
 ...
 -max-file-size=<size> - Maximum file size to accept

And we can test that our parse works correctly now (the test program just prints
out the max-file-size argument value):

$./test
MFS: 0
$./test -max-file-size=123MB
MFS: 128974848
$./test -max-file-size=3G
MFS: 3221225472
$./test -max-file-size=dog
-max-file-size option: 'dog' value invalid for file size argument!

It looks like it works. The error message that we get is nice and helpful, and
we seem to accept reasonable file sizes. This wraps up the “custom parser”
tutorial.

Exploiting external storage

Several of the LLVM libraries define static cl::opt instances that will
automatically be included in any program that links with that library. This is
a feature. However, sometimes it is necessary to know the value of the command
line option outside of the library. In these cases the library does or should
provide an external storage location that is accessible to users of the
library. Examples of this include the llvm::DebugFlag exported by the
lib/Support/Debug.cpp file and the llvm::TimePassesIsEnabled flag
exported by the lib/IR/PassManager.cpp file.

Dynamically adding command line options

Architecture & Platform Information for Compiler Writers

	Hardware

	AArch64 & ARM

	Itanium (ia64)

	Lanai

	MIPS

	PowerPC

	IBM - Official manuals and docs

	Other documents, collections, notes

	AMDGPU

	RISC-V

	SPARC

	SystemZ

	X86

	XCore

	Hexagon

	Other relevant lists

	ABI

	Linux

	OS X

	Windows

	NVPTX

	Miscellaneous Resources

Note

This document is a work-in-progress. Additions and clarifications are
welcome.

Hardware

AArch64 & ARM

	ARMv8-A Architecture Reference Manual [http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0487a.h/index.html] (authentication required, free sign-up). This document covers both AArch64 and ARM instructions

	ARMv7-M Architecture Reference Manual [http://infocenter.arm.com/help/topic/com.arm.doc.ddi0403e.b/index.html] (authentication required, free sign-up). This covers the Thumb2-only microcontrollers

	ARMv6-M Architecture Reference Manual [http://infocenter.arm.com/help/topic/com.arm.doc.ddi0419c/index.html] (authentication required, free sign-up). This covers the Thumb1-only microcontrollers

	ARM C Language Extensions [http://infocenter.arm.com/help/topic/com.arm.doc.ihi0053c/IHI0053C_acle_2_0.pdf]

	AArch32 ABI Addenda and Errata [http://infocenter.arm.com/help/topic/com.arm.doc.ihi0045d/IHI0045D_ABI_addenda.pdf]

Itanium (ia64)

	Itanium documentation [http://developer.intel.com/design/itanium2/documentation.htm]

Lanai

	Lanai Instruction Set Architecture [http://g.co/lanai/isa]

MIPS

	MIPS Processor Architecture [https://www.mips.com/products/]

	MIPS 64-bit ELF Object File Specification [http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf]

PowerPC

IBM - Official manuals and docs

	Power Instruction Set Architecture, Versions 2.03 through 2.06 (authentication required, free sign-up) [https://www.power.org/technology-introduction/standards-specifications]

	PowerPC Compiler Writer’s Guide [http://www.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF7785256996007558C6]

	Intro to PowerPC Architecture [http://www.ibm.com/developerworks/linux/library/l-powarch/]

	PowerPC Processor Manuals (embedded) [http://www.ibm.com/chips/techlib/techlib.nsf/products/PowerPC]

	Various IBM specifications and white papers [https://www.power.org/documentation/?document_company=105&document_category=all&publish_year=all&grid_order=DESC&grid_sort=title]

	IBM AIX/5L for POWER Assembly Reference [http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/aixassem/alangref/alangreftfrm.htm]

Other documents, collections, notes

	PowerPC ABI documents [http://penguinppc.org/dev/#library]

	PowerPC64 alignment of long doubles (from GCC) [http://gcc.gnu.org/ml/gcc-patches/2003-09/msg00997.html]

	Long branch stubs for powerpc64-linux (from binutils) [http://sources.redhat.com/ml/binutils/2002-04/msg00573.html]

AMDGPU

Refer to User Guide for AMDGPU Backend for additional documentation.

RISC-V

	RISC-V User-Level ISA Specification [https://riscv.org/specifications/]

SPARC

	SPARC standards [http://sparc.org/standards]

	SPARC V9 ABI [http://sparc.org/standards/64.psabi.1.35.ps.Z]

	SPARC V8 ABI [http://sparc.org/standards/psABI3rd.pdf]

SystemZ

	z/Architecture Principles of Operation (registration required, free sign-up) [http://www-01.ibm.com/support/docview.wss?uid=isg2b9de5f05a9d57819852571c500428f9a]

X86

	AMD processor manuals [http://developer.amd.com/resources/developer-guides-manuals/]

	Intel 64 and IA-32 manuals [http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html]

	Intel Itanium documentation [http://www.intel.com/design/itanium/documentation.htm?iid=ipp_srvr_proc_itanium2+techdocs]

	X86 and X86-64 SysV psABI [https://github.com/hjl-tools/x86-psABI/wiki/X86-psABI]

	Calling conventions for different C++ compilers and operating systems [http://www.agner.org/optimize/calling_conventions.pdf]

XCore

	The XMOS XS1 Architecture (ISA) [https://www.xmos.com/en/download/public/The-XMOS-XS1-Architecture%28X7879A%29.pdf]

	Tools Development Guide (includes ABI) [https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf]

Hexagon

	Hexagon Programmer’s Reference Manuals and Hexagon ABI Specification (registration required, free sign-up) [https://developer.qualcomm.com/software/hexagon-dsp-sdk/tools]

Other relevant lists

	GCC reading list [http://gcc.gnu.org/readings.html]

ABI

	System V Application Binary Interface [http://www.sco.com/developers/gabi/latest/contents.html]

	Itanium C++ ABI [http://itanium-cxx-abi.github.io/cxx-abi/]

Linux

	Linux extensions to gabi [https://github.com/hjl-tools/linux-abi/wiki/Linux-Extensions-to-gABI]

	PowerPC 64-bit ELF ABI Supplement [http://www.linuxbase.org/spec/ELF/ppc64/]

	Procedure Call Standard for the AArch64 Architecture [http://infocenter.arm.com/help/topic/com.arm.doc.ihi0055a/IHI0055A_aapcs64.pdf]

	ELF for the ARM Architecture [http://infocenter.arm.com/help/topic/com.arm.doc.ihi0044e/IHI0044E_aaelf.pdf]

	ELF for the ARM 64-bit Architecture (AArch64) [http://infocenter.arm.com/help/topic/com.arm.doc.ihi0056a/IHI0056A_aaelf64.pdf]

	System z ELF ABI Supplement [http://legacy.redhat.com/pub/redhat/linux/7.1/es/os/s390x/doc/lzsabi0.pdf]

OS X

	Mach-O Runtime Architecture [http://developer.apple.com/documentation/Darwin/RuntimeArchitecture-date.html]

	Notes on Mach-O ABI [http://www.unsanity.org/archives/000044.php]

Windows

	Microsoft PE/COFF Specification [http://www.microsoft.com/whdc/system/platform/firmware/pecoff.mspx]

NVPTX

	CUDA Documentation [http://docs.nvidia.com/cuda/index.html] includes the PTX
ISA and Driver API documentation

Miscellaneous Resources

	Executable File Format library [http://www.nondot.org/sabre/os/articles/ExecutableFileFormats/]

	GCC prefetch project [http://gcc.gnu.org/projects/prefetch.html] page has a
good survey of the prefetching capabilities of a variety of modern
processors.

Extending LLVM: Adding instructions, intrinsics, types, etc.

Introduction and Warning

During the course of using LLVM, you may wish to customize it for your research
project or for experimentation. At this point, you may realize that you need to
add something to LLVM, whether it be a new fundamental type, a new intrinsic
function, or a whole new instruction.

When you come to this realization, stop and think. Do you really need to extend
LLVM? Is it a new fundamental capability that LLVM does not support at its
current incarnation or can it be synthesized from already pre-existing LLVM
elements? If you are not sure, ask on the LLVM-dev [http://lists.llvm.org/mailman/listinfo/llvm-dev] list. The reason is that
extending LLVM will get involved as you need to update all the different passes
that you intend to use with your extension, and there are many LLVM analyses
and transformations, so it may be quite a bit of work.

Adding an intrinsic function is far easier than adding an
instruction, and is transparent to optimization passes. If your added
functionality can be expressed as a function call, an intrinsic function is the
method of choice for LLVM extension.

Before you invest a significant amount of effort into a non-trivial extension,
ask on the list if what you are looking to do can be done with
already-existing infrastructure, or if maybe someone else is already working on
it. You will save yourself a lot of time and effort by doing so.

Adding a new intrinsic function

Adding a new intrinsic function to LLVM is much easier than adding a new
instruction. Almost all extensions to LLVM should start as an intrinsic
function and then be turned into an instruction if warranted.

	llvm/docs/LangRef.html:

Document the intrinsic. Decide whether it is code generator specific and
what the restrictions are. Talk to other people about it so that you are
sure it’s a good idea.

	llvm/include/llvm/IR/Intrinsics*.td:

Add an entry for your intrinsic. Describe its memory access characteristics
for optimization (this controls whether it will be DCE’d, CSE’d, etc). Note
that any intrinsic using one of the llvm_any*_ty types for an argument or
return type will be deemed by tblgen as overloaded and the corresponding
suffix will be required on the intrinsic’s name.

	llvm/lib/Analysis/ConstantFolding.cpp:

If it is possible to constant fold your intrinsic, add support to it in the
canConstantFoldCallTo and ConstantFoldCall functions.

	llvm/test/*:

Add test cases for your test cases to the test suite

Once the intrinsic has been added to the system, you must add code generator
support for it. Generally you must do the following steps:

Add support to the .td file for the target(s) of your choice in
lib/Target/*/*.td.

This is usually a matter of adding a pattern to the .td file that matches the
intrinsic, though it may obviously require adding the instructions you want to
generate as well. There are lots of examples in the PowerPC and X86 backend
to follow.

Adding a new SelectionDAG node

As with intrinsics, adding a new SelectionDAG node to LLVM is much easier than
adding a new instruction. New nodes are often added to help represent
instructions common to many targets. These nodes often map to an LLVM
instruction (add, sub) or intrinsic (byteswap, population count). In other
cases, new nodes have been added to allow many targets to perform a common task
(converting between floating point and integer representation) or capture more
complicated behavior in a single node (rotate).

	include/llvm/CodeGen/ISDOpcodes.h:

Add an enum value for the new SelectionDAG node.

	lib/CodeGen/SelectionDAG/SelectionDAG.cpp:

	Add code to print the node to getOperationName. If your new node can be

	evaluated at compile time when given constant arguments (such as an add of a
constant with another constant), find the getNode method that takes the
appropriate number of arguments, and add a case for your node to the switch
statement that performs constant folding for nodes that take the same number
of arguments as your new node.

	lib/CodeGen/SelectionDAG/LegalizeDAG.cpp:

Add code to legalize, promote, and expand the node as necessary. At a
minimum, you will need to add a case statement for your node in
LegalizeOp which calls LegalizeOp on the node’s operands, and returns a
new node if any of the operands changed as a result of being legalized. It
is likely that not all targets supported by the SelectionDAG framework will
natively support the new node. In this case, you must also add code in your
node’s case statement in LegalizeOp to Expand your node into simpler,
legal operations. The case for ISD::UREM for expanding a remainder into
a divide, multiply, and a subtract is a good example.

	lib/CodeGen/SelectionDAG/LegalizeDAG.cpp:

	If targets may support the new node being added only at certain sizes, you

	will also need to add code to your node’s case statement in LegalizeOp
to Promote your node’s operands to a larger size, and perform the correct
operation. You will also need to add code to PromoteOp to do this as
well. For a good example, see ISD::BSWAP, which promotes its operand to
a wider size, performs the byteswap, and then shifts the correct bytes right
to emulate the narrower byteswap in the wider type.

	lib/CodeGen/SelectionDAG/LegalizeDAG.cpp:

Add a case for your node in ExpandOp to teach the legalizer how to
perform the action represented by the new node on a value that has been split
into high and low halves. This case will be used to support your node with a
64 bit operand on a 32 bit target.

	lib/CodeGen/SelectionDAG/DAGCombiner.cpp:

If your node can be combined with itself, or other existing nodes in a
peephole-like fashion, add a visit function for it, and call that function
from. There are several good examples for simple combines you can do;
visitFABS and visitSRL are good starting places.

	lib/Target/PowerPC/PPCISelLowering.cpp:

Each target has an implementation of the TargetLowering class, usually in
its own file (although some targets include it in the same file as the
DAGToDAGISel). The default behavior for a target is to assume that your new
node is legal for all types that are legal for that target. If this target
does not natively support your node, then tell the target to either Promote
it (if it is supported at a larger type) or Expand it. This will cause the
code you wrote in LegalizeOp above to decompose your new node into other
legal nodes for this target.

	lib/Target/TargetSelectionDAG.td:

Most current targets supported by LLVM generate code using the DAGToDAG
method, where SelectionDAG nodes are pattern matched to target-specific
nodes, which represent individual instructions. In order for the targets to
match an instruction to your new node, you must add a def for that node to
the list in this file, with the appropriate type constraints. Look at
add, bswap, and fadd for examples.

	lib/Target/PowerPC/PPCInstrInfo.td:

Each target has a tablegen file that describes the target’s instruction set.
For targets that use the DAGToDAG instruction selection framework, add a
pattern for your new node that uses one or more target nodes. Documentation
for this is a bit sparse right now, but there are several decent examples.
See the patterns for rotl in PPCInstrInfo.td.

	TODO: document complex patterns.

	llvm/test/CodeGen/*:

Add test cases for your new node to the test suite.
llvm/test/CodeGen/X86/bswap.ll is a good example.

Adding a new instruction

Warning

Adding instructions changes the bitcode format, and it will take some effort
to maintain compatibility with the previous version. Only add an instruction
if it is absolutely necessary.

	llvm/include/llvm/IR/Instruction.def:

add a number for your instruction and an enum name

	llvm/include/llvm/IR/Instructions.h:

add a definition for the class that will represent your instruction

	llvm/include/llvm/IR/InstVisitor.h:

add a prototype for a visitor to your new instruction type

	llvm/lib/AsmParser/LLLexer.cpp:

add a new token to parse your instruction from assembly text file

	llvm/lib/AsmParser/LLParser.cpp:

add the grammar on how your instruction can be read and what it will
construct as a result

	llvm/lib/Bitcode/Reader/BitcodeReader.cpp:

add a case for your instruction and how it will be parsed from bitcode

	llvm/lib/Bitcode/Writer/BitcodeWriter.cpp:

add a case for your instruction and how it will be parsed from bitcode

	llvm/lib/IR/Instruction.cpp:

add a case for how your instruction will be printed out to assembly

	llvm/lib/IR/Instructions.cpp:

implement the class you defined in llvm/include/llvm/Instructions.h

	Test your instruction

	llvm/lib/Target/*:

add support for your instruction to code generators, or add a lowering pass.

	llvm/test/*:

add your test cases to the test suite.

Also, you need to implement (or modify) any analyses or passes that you want to
understand this new instruction.

Adding a new type

Warning

Adding new types changes the bitcode format, and will break compatibility with
currently-existing LLVM installations. Only add new types if it is absolutely
necessary.

Adding a fundamental type

	llvm/include/llvm/IR/Type.h:

add enum for the new type; add static Type* for this type

	llvm/lib/IR/Type.cpp and llvm/lib/IR/ValueTypes.cpp:

add mapping from TypeID => Type*; initialize the static Type*

	llvm/llvm/llvm-c/Core.cpp:

add enum LLVMTypeKind and modify
LLVMTypeKind LLVMGetTypeKind(LLVMTypeRef Ty) for the new type

	llvm/include/llvm/IR/TypeBuilder.h:

add new class to represent new type in the hierarchy

	llvm/lib/AsmParser/LLLexer.cpp:

add ability to parse in the type from text assembly

	llvm/lib/AsmParser/LLParser.cpp:

add a token for that type

	llvm/lib/Bitcode/Writer/BitcodeWriter.cpp:

modify static void WriteTypeTable(const ValueEnumerator &VE,
BitstreamWriter &Stream) to serialize your type

	llvm/lib/Bitcode/Reader/BitcodeReader.cpp:

modify bool BitcodeReader::ParseTypeType() to read your data type

	include/llvm/Bitcode/LLVMBitCodes.h:

add enum TypeCodes for the new type

Adding a derived type

	llvm/include/llvm/IR/Type.h:

add enum for the new type; add a forward declaration of the type also

	llvm/include/llvm/IR/DerivedTypes.h:

add new class to represent new class in the hierarchy; add forward
declaration to the TypeMap value type

	llvm/lib/IR/Type.cpp and llvm/lib/IR/ValueTypes.cpp:

add support for derived type, notably enum TypeID and is, get methods.

	llvm/llvm/llvm-c/Core.cpp:

add enum LLVMTypeKind and modify
LLVMTypeKind LLVMGetTypeKind(LLVMTypeRef Ty) for the new type

	llvm/include/llvm/IR/TypeBuilder.h:

add new class to represent new class in the hierarchy

	llvm/lib/AsmParser/LLLexer.cpp:

modify lltok::Kind LLLexer::LexIdentifier() to add ability to
parse in the type from text assembly

	llvm/lib/Bitcode/Writer/BitcodeWriter.cpp:

modify static void WriteTypeTable(const ValueEnumerator &VE,
BitstreamWriter &Stream) to serialize your type

	llvm/lib/Bitcode/Reader/BitcodeReader.cpp:

modify bool BitcodeReader::ParseTypeType() to read your data type

	include/llvm/Bitcode/LLVMBitCodes.h:

add enum TypeCodes for the new type

	llvm/lib/IR/AsmWriter.cpp:

modify void TypePrinting::print(Type *Ty, raw_ostream &OS)
to output the new derived type

How to set up LLVM-style RTTI for your class hierarchy

Contents

	How to set up LLVM-style RTTI for your class hierarchy

	Background

	Basic Setup

	Concrete Bases and Deeper Hierarchies

	A Bug to be Aware Of

	The Contract of classof

	Rules of Thumb

Background

LLVM avoids using C++’s built in RTTI. Instead, it pervasively uses its
own hand-rolled form of RTTI which is much more efficient and flexible,
although it requires a bit more work from you as a class author.

A description of how to use LLVM-style RTTI from a client’s perspective is
given in the Programmer’s Manual. This
document, in contrast, discusses the steps you need to take as a class
hierarchy author to make LLVM-style RTTI available to your clients.

Before diving in, make sure that you are familiar with the Object Oriented
Programming concept of “is-a [http://en.wikipedia.org/wiki/Is-a]”.

Basic Setup

This section describes how to set up the most basic form of LLVM-style RTTI
(which is sufficient for 99.9% of the cases). We will set up LLVM-style
RTTI for this class hierarchy:

class Shape {
public:
 Shape() {}
 virtual double computeArea() = 0;
};

class Square : public Shape {
 double SideLength;
public:
 Square(double S) : SideLength(S) {}
 double computeArea() override;
};

class Circle : public Shape {
 double Radius;
public:
 Circle(double R) : Radius(R) {}
 double computeArea() override;
};

The most basic working setup for LLVM-style RTTI requires the following
steps:

	In the header where you declare Shape, you will want to #include
"llvm/Support/Casting.h", which declares LLVM’s RTTI templates. That
way your clients don’t even have to think about it.

#include "llvm/Support/Casting.h"

	In the base class, introduce an enum which discriminates all of the
different concrete classes in the hierarchy, and stash the enum value
somewhere in the base class.

Here is the code after introducing this change:

 class Shape {
 public:
+ /// Discriminator for LLVM-style RTTI (dyn_cast<> et al.)
+ enum ShapeKind {
+ SK_Square,
+ SK_Circle
+ };
+private:
+ const ShapeKind Kind;
+public:
+ ShapeKind getKind() const { return Kind; }
+
 Shape() {}
 virtual double computeArea() = 0;
 };

You will usually want to keep the Kind member encapsulated and
private, but let the enum ShapeKind be public along with providing a
getKind() method. This is convenient for clients so that they can do
a switch over the enum.

A common naming convention is that these enums are “kind”s, to avoid
ambiguity with the words “type” or “class” which have overloaded meanings
in many contexts within LLVM. Sometimes there will be a natural name for
it, like “opcode”. Don’t bikeshed over this; when in doubt use Kind.

You might wonder why the Kind enum doesn’t have an entry for
Shape. The reason for this is that since Shape is abstract
(computeArea() = 0;), you will never actually have non-derived
instances of exactly that class (only subclasses). See Concrete Bases
and Deeper Hierarchies for information on how to deal with
non-abstract bases. It’s worth mentioning here that unlike
dynamic_cast<>, LLVM-style RTTI can be used (and is often used) for
classes that don’t have v-tables.

	Next, you need to make sure that the Kind gets initialized to the
value corresponding to the dynamic type of the class. Typically, you will
want to have it be an argument to the constructor of the base class, and
then pass in the respective XXXKind from subclass constructors.

Here is the code after that change:

 class Shape {
 public:
 /// Discriminator for LLVM-style RTTI (dyn_cast<> et al.)
 enum ShapeKind {
 SK_Square,
 SK_Circle
 };
 private:
 const ShapeKind Kind;
 public:
 ShapeKind getKind() const { return Kind; }

- Shape() {}
+ Shape(ShapeKind K) : Kind(K) {}
 virtual double computeArea() = 0;
 };

 class Square : public Shape {
 double SideLength;
 public:
- Square(double S) : SideLength(S) {}
+ Square(double S) : Shape(SK_Square), SideLength(S) {}
 double computeArea() override;
 };

 class Circle : public Shape {
 double Radius;
 public:
- Circle(double R) : Radius(R) {}
+ Circle(double R) : Shape(SK_Circle), Radius(R) {}
 double computeArea() override;
 };

	Finally, you need to inform LLVM’s RTTI templates how to dynamically
determine the type of a class (i.e. whether the isa<>/dyn_cast<>
should succeed). The default “99.9% of use cases” way to accomplish this
is through a small static member function classof. In order to have
proper context for an explanation, we will display this code first, and
then below describe each part:

 class Shape {
 public:
 /// Discriminator for LLVM-style RTTI (dyn_cast<> et al.)
 enum ShapeKind {
 SK_Square,
 SK_Circle
 };
 private:
 const ShapeKind Kind;
 public:
 ShapeKind getKind() const { return Kind; }

 Shape(ShapeKind K) : Kind(K) {}
 virtual double computeArea() = 0;
 };

 class Square : public Shape {
 double SideLength;
 public:
 Square(double S) : Shape(SK_Square), SideLength(S) {}
 double computeArea() override;
+
+ static bool classof(const Shape *S) {
+ return S->getKind() == SK_Square;
+ }
 };

 class Circle : public Shape {
 double Radius;
 public:
 Circle(double R) : Shape(SK_Circle), Radius(R) {}
 double computeArea() override;
+
+ static bool classof(const Shape *S) {
+ return S->getKind() == SK_Circle;
+ }
 };

The job of classof is to dynamically determine whether an object of
a base class is in fact of a particular derived class. In order to
downcast a type Base to a type Derived, there needs to be a
classof in Derived which will accept an object of type Base.

To be concrete, consider the following code:

Shape *S = ...;
if (isa<Circle>(S)) {
 /* do something ... */
}

The code of the isa<> test in this code will eventually boil
down—after template instantiation and some other machinery—to a
check roughly like Circle::classof(S). For more information, see
The Contract of classof.

The argument to classof should always be an ancestor class because
the implementation has logic to allow and optimize away
upcasts/up-isa<>’s automatically. It is as though every class
Foo automatically has a classof like:

class Foo {
 [...]
 template <class T>
 static bool classof(const T *,
 ::std::enable_if<
 ::std::is_base_of<Foo, T>::value
 >::type* = 0) { return true; }
 [...]
};

Note that this is the reason that we did not need to introduce a
classof into Shape: all relevant classes derive from Shape,
and Shape itself is abstract (has no entry in the Kind enum),
so this notional inferred classof is all we need. See Concrete
Bases and Deeper Hierarchies for more information about how to extend
this example to more general hierarchies.

Although for this small example setting up LLVM-style RTTI seems like a lot
of “boilerplate”, if your classes are doing anything interesting then this
will end up being a tiny fraction of the code.

Concrete Bases and Deeper Hierarchies

For concrete bases (i.e. non-abstract interior nodes of the inheritance
tree), the Kind check inside classof needs to be a bit more
complicated. The situation differs from the example above in that

	Since the class is concrete, it must itself have an entry in the Kind
enum because it is possible to have objects with this class as a dynamic
type.

	Since the class has children, the check inside classof must take them
into account.

Say that SpecialSquare and OtherSpecialSquare derive
from Square, and so ShapeKind becomes:

 enum ShapeKind {
 SK_Square,
+ SK_SpecialSquare,
+ SK_OtherSpecialSquare,
 SK_Circle
 }

Then in Square, we would need to modify the classof like so:

- static bool classof(const Shape *S) {
- return S->getKind() == SK_Square;
- }
+ static bool classof(const Shape *S) {
+ return S->getKind() >= SK_Square &&
+ S->getKind() <= SK_OtherSpecialSquare;
+ }

The reason that we need to test a range like this instead of just equality
is that both SpecialSquare and OtherSpecialSquare “is-a”
Square, and so classof needs to return true for them.

This approach can be made to scale to arbitrarily deep hierarchies. The
trick is that you arrange the enum values so that they correspond to a
preorder traversal of the class hierarchy tree. With that arrangement, all
subclass tests can be done with two comparisons as shown above. If you just
list the class hierarchy like a list of bullet points, you’ll get the
ordering right:

| Shape
 | Square
 | SpecialSquare
 | OtherSpecialSquare
 | Circle

A Bug to be Aware Of

The example just given opens the door to bugs where the classofs are
not updated to match the Kind enum when adding (or removing) classes to
(from) the hierarchy.

Continuing the example above, suppose we add a SomewhatSpecialSquare as
a subclass of Square, and update the ShapeKind enum like so:

 enum ShapeKind {
 SK_Square,
 SK_SpecialSquare,
 SK_OtherSpecialSquare,
+ SK_SomewhatSpecialSquare,
 SK_Circle
 }

Now, suppose that we forget to update Square::classof(), so it still
looks like:

static bool classof(const Shape *S) {
 // BUG: Returns false when S->getKind() == SK_SomewhatSpecialSquare,
 // even though SomewhatSpecialSquare "is a" Square.
 return S->getKind() >= SK_Square &&
 S->getKind() <= SK_OtherSpecialSquare;
}

As the comment indicates, this code contains a bug. A straightforward and
non-clever way to avoid this is to introduce an explicit SK_LastSquare
entry in the enum when adding the first subclass(es). For example, we could
rewrite the example at the beginning of Concrete Bases and Deeper
Hierarchies as:

 enum ShapeKind {
 SK_Square,
+ SK_SpecialSquare,
+ SK_OtherSpecialSquare,
+ SK_LastSquare,
 SK_Circle
 }
...
// Square::classof()
- static bool classof(const Shape *S) {
- return S->getKind() == SK_Square;
- }
+ static bool classof(const Shape *S) {
+ return S->getKind() >= SK_Square &&
+ S->getKind() <= SK_LastSquare;
+ }

Then, adding new subclasses is easy:

 enum ShapeKind {
 SK_Square,
 SK_SpecialSquare,
 SK_OtherSpecialSquare,
+ SK_SomewhatSpecialSquare,
 SK_LastSquare,
 SK_Circle
 }

Notice that Square::classof does not need to be changed.

The Contract of classof

To be more precise, let classof be inside a class C. Then the
contract for classof is “return true if the dynamic type of the
argument is-a C”. As long as your implementation fulfills this
contract, you can tweak and optimize it as much as you want.

For example, LLVM-style RTTI can work fine in the presence of
multiple-inheritance by defining an appropriate classof.
An example of this in practice is
Decl [http://clang.llvm.org/doxygen/classclang_1_1Decl.html] vs.
DeclContext [http://clang.llvm.org/doxygen/classclang_1_1DeclContext.html]
inside Clang.
The Decl hierarchy is done very similarly to the example setup
demonstrated in this tutorial.
The key part is how to then incorporate DeclContext: all that is needed
is in bool DeclContext::classof(const Decl *), which asks the question
“Given a Decl, how can I determine if it is-a DeclContext?”.
It answers this with a simple switch over the set of Decl “kinds”, and
returning true for ones that are known to be DeclContext’s.

Rules of Thumb

	The Kind enum should have one entry per concrete class, ordered
according to a preorder traversal of the inheritance tree.

	The argument to classof should be a const Base *, where Base
is some ancestor in the inheritance hierarchy. The argument should
never be a derived class or the class itself: the template machinery
for isa<> already handles this case and optimizes it.

	For each class in the hierarchy that has no children, implement a
classof that checks only against its Kind.

	For each class in the hierarchy that has children, implement a
classof that checks a range of the first child’s Kind and the
last child’s Kind.

LLVM Programmer’s Manual

	Introduction

	General Information

	The C++ Standard Template Library

	Other useful references

	Important and useful LLVM APIs

	The isa<>, cast<> and dyn_cast<> templates

	Passing strings (the StringRef and Twine classes)

	The StringRef class

	The Twine class

	Formatting strings (the formatv function)

	Simple formatting

	Custom formatting

	formatv Examples

	Error handling

	Programmatic Errors

	Recoverable Errors

	StringError

	Interoperability with std::error_code and ErrorOr

	Returning Errors from error handlers

	Using ExitOnError to simplify tool code

	Using cantFail to simplify safe callsites

	Fallible constructors

	Propagating and consuming errors based on types

	Concatenating Errors with joinErrors

	Building fallible iterators and iterator ranges

	Passing functions and other callable objects

	Function template

	The function_ref class template

	The LLVM_DEBUG() macro and -debug option

	Fine grained debug info with DEBUG_TYPE and the -debug-only option

	The Statistic class & -stats option

	Adding debug counters to aid in debugging your code

	Viewing graphs while debugging code

	Picking the Right Data Structure for a Task

	Sequential Containers (std::vector, std::list, etc)

	llvm/ADT/ArrayRef.h

	Fixed Size Arrays

	Heap Allocated Arrays

	llvm/ADT/TinyPtrVector.h

	llvm/ADT/SmallVector.h

	<vector>

	<deque>

	<list>

	llvm/ADT/ilist.h

	llvm/ADT/PackedVector.h

	ilist_traits

	iplist

	llvm/ADT/ilist_node.h

	Sentinels

	Other Sequential Container options

	String-like containers

	llvm/ADT/StringRef.h

	llvm/ADT/Twine.h

	llvm/ADT/SmallString.h

	std::string

	Set-Like Containers (std::set, SmallSet, SetVector, etc)

	A sorted ‘vector’

	llvm/ADT/SmallSet.h

	llvm/ADT/SmallPtrSet.h

	llvm/ADT/StringSet.h

	llvm/ADT/DenseSet.h

	llvm/ADT/SparseSet.h

	llvm/ADT/SparseMultiSet.h

	llvm/ADT/FoldingSet.h

	<set>

	llvm/ADT/SetVector.h

	llvm/ADT/UniqueVector.h

	llvm/ADT/ImmutableSet.h

	Other Set-Like Container Options

	Map-Like Containers (std::map, DenseMap, etc)

	A sorted ‘vector’

	llvm/ADT/StringMap.h

	llvm/ADT/IndexedMap.h

	llvm/ADT/DenseMap.h

	llvm/IR/ValueMap.h

	llvm/ADT/IntervalMap.h

	<map>

	llvm/ADT/MapVector.h

	llvm/ADT/IntEqClasses.h

	llvm/ADT/ImmutableMap.h

	Other Map-Like Container Options

	Bit storage containers (BitVector, SparseBitVector)

	BitVector

	SmallBitVector

	SparseBitVector

	Debugging

	Helpful Hints for Common Operations

	Basic Inspection and Traversal Routines

	Iterating over the BasicBlock in a Function

	Iterating over the Instruction in a BasicBlock

	Iterating over the Instruction in a Function

	Turning an iterator into a class pointer (and vice-versa)

	Finding call sites: a slightly more complex example

	Treating calls and invokes the same way

	Iterating over def-use & use-def chains

	Iterating over predecessors & successors of blocks

	Making simple changes

	Creating and inserting new Instructions

	Deleting Instructions

	Replacing an Instruction with another Value

	Replacing individual instructions

	Deleting Instructions

	Replacing multiple uses of Users and Values

	Deleting GlobalVariables

	How to Create Types

	Threads and LLVM

	Ending Execution with llvm_shutdown()

	Lazy Initialization with ManagedStatic

	Achieving Isolation with LLVMContext

	Threads and the JIT

	Advanced Topics

	The ValueSymbolTable class

	The User and owned Use classes’ memory layout

	Interaction and relationship between User and Use objects

	The waymarking algorithm

	Reference implementation

	Tagging considerations

	Designing Type Hiercharies and Polymorphic Interfaces

	ABI Breaking Checks

	The Core LLVM Class Hierarchy Reference

	The Type class and Derived Types

	Important Public Methods

	Important Derived Types

	The Module class

	Important Public Members of the Module class

	The Value class

	Important Public Members of the Value class

	The User class

	Important Public Members of the User class

	The Instruction class

	Important Subclasses of the Instruction class

	Important Public Members of the Instruction class

	The Constant class and subclasses

	Important Subclasses of Constant

	The GlobalValue class

	Important Public Members of the GlobalValue class

	The Function class

	Important Public Members of the Function

	The GlobalVariable class

	Important Public Members of the GlobalVariable class

	The BasicBlock class

	Important Public Members of the BasicBlock class

	The Argument class

Warning

This is always a work in progress.

Introduction

This document is meant to highlight some of the important classes and interfaces
available in the LLVM source-base. This manual is not intended to explain what
LLVM is, how it works, and what LLVM code looks like. It assumes that you know
the basics of LLVM and are interested in writing transformations or otherwise
analyzing or manipulating the code.

This document should get you oriented so that you can find your way in the
continuously growing source code that makes up the LLVM infrastructure. Note
that this manual is not intended to serve as a replacement for reading the
source code, so if you think there should be a method in one of these classes to
do something, but it’s not listed, check the source. Links to the doxygen [http://llvm.org/doxygen/] sources are provided to make this as easy as
possible.

The first section of this document describes general information that is useful
to know when working in the LLVM infrastructure, and the second describes the
Core LLVM classes. In the future this manual will be extended with information
describing how to use extension libraries, such as dominator information, CFG
traversal routines, and useful utilities like the InstVisitor (doxygen [http://llvm.org/doxygen/InstVisitor_8h_source.html]) template.

General Information

This section contains general information that is useful if you are working in
the LLVM source-base, but that isn’t specific to any particular API.

The C++ Standard Template Library

LLVM makes heavy use of the C++ Standard Template Library (STL), perhaps much
more than you are used to, or have seen before. Because of this, you might want
to do a little background reading in the techniques used and capabilities of the
library. There are many good pages that discuss the STL, and several books on
the subject that you can get, so it will not be discussed in this document.

Here are some useful links:

	cppreference.com [http://en.cppreference.com/w/] - an excellent
reference for the STL and other parts of the standard C++ library.

	C++ In a Nutshell [http://www.tempest-sw.com/cpp/] - This is an O’Reilly
book in the making. It has a decent Standard Library Reference that rivals
Dinkumware’s, and is unfortunately no longer free since the book has been
published.

	C++ Frequently Asked Questions [http://www.parashift.com/c++-faq-lite/].

	SGI’s STL Programmer’s Guide [http://www.sgi.com/tech/stl/] - Contains a
useful Introduction to the STL [http://www.sgi.com/tech/stl/stl_introduction.html].

	Bjarne Stroustrup’s C++ Page [http://www.research.att.com/%7Ebs/C++.html].

	Bruce Eckel’s Thinking in C++, 2nd ed. Volume 2 Revision 4.0
(even better, get the book) [http://www.mindview.net/Books/TICPP/ThinkingInCPP2e.html].

You are also encouraged to take a look at the LLVM Coding Standards guide which focuses on how to write maintainable code more
than where to put your curly braces.

Other useful references

	Using static and shared libraries across platforms [http://www.fortran-2000.com/ArnaudRecipes/sharedlib.html]

Important and useful LLVM APIs

Here we highlight some LLVM APIs that are generally useful and good to know
about when writing transformations.

The isa<>, cast<> and dyn_cast<> templates

The LLVM source-base makes extensive use of a custom form of RTTI. These
templates have many similarities to the C++ dynamic_cast<> operator, but
they don’t have some drawbacks (primarily stemming from the fact that
dynamic_cast<> only works on classes that have a v-table). Because they are
used so often, you must know what they do and how they work. All of these
templates are defined in the llvm/Support/Casting.h (doxygen [http://llvm.org/doxygen/Casting_8h_source.html]) file (note that you very
rarely have to include this file directly).

	isa<>:

	The isa<> operator works exactly like the Java “instanceof” operator.
It returns true or false depending on whether a reference or pointer points to
an instance of the specified class. This can be very useful for constraint
checking of various sorts (example below).

	cast<>:

	The cast<> operator is a “checked cast” operation. It converts a pointer
or reference from a base class to a derived class, causing an assertion
failure if it is not really an instance of the right type. This should be
used in cases where you have some information that makes you believe that
something is of the right type. An example of the isa<> and cast<>
template is:

static bool isLoopInvariant(const Value *V, const Loop *L) {
 if (isa<Constant>(V) || isa<Argument>(V) || isa<GlobalValue>(V))
 return true;

 // Otherwise, it must be an instruction...
 return !L->contains(cast<Instruction>(V)->getParent());
}

Note that you should not use an isa<> test followed by a cast<>,
for that use the dyn_cast<> operator.

	dyn_cast<>:

	The dyn_cast<> operator is a “checking cast” operation. It checks to see
if the operand is of the specified type, and if so, returns a pointer to it
(this operator does not work with references). If the operand is not of the
correct type, a null pointer is returned. Thus, this works very much like
the dynamic_cast<> operator in C++, and should be used in the same
circumstances. Typically, the dyn_cast<> operator is used in an if
statement or some other flow control statement like this:

if (auto *AI = dyn_cast<AllocationInst>(Val)) {
 // ...
}

This form of the if statement effectively combines together a call to
isa<> and a call to cast<> into one statement, which is very
convenient.

Note that the dyn_cast<> operator, like C++’s dynamic_cast<> or Java’s
instanceof operator, can be abused. In particular, you should not use big
chained if/then/else blocks to check for lots of different variants of
classes. If you find yourself wanting to do this, it is much cleaner and more
efficient to use the InstVisitor class to dispatch over the instruction
type directly.

	cast_or_null<>:

	The cast_or_null<> operator works just like the cast<> operator,
except that it allows for a null pointer as an argument (which it then
propagates). This can sometimes be useful, allowing you to combine several
null checks into one.

	dyn_cast_or_null<>:

	The dyn_cast_or_null<> operator works just like the dyn_cast<>
operator, except that it allows for a null pointer as an argument (which it
then propagates). This can sometimes be useful, allowing you to combine
several null checks into one.

These five templates can be used with any classes, whether they have a v-table
or not. If you want to add support for these templates, see the document
How to set up LLVM-style RTTI for your class hierarchy

Passing strings (the StringRef and Twine classes)

Although LLVM generally does not do much string manipulation, we do have several
important APIs which take strings. Two important examples are the Value class
– which has names for instructions, functions, etc. – and the StringMap
class which is used extensively in LLVM and Clang.

These are generic classes, and they need to be able to accept strings which may
have embedded null characters. Therefore, they cannot simply take a const
char *, and taking a const std::string& requires clients to perform a heap
allocation which is usually unnecessary. Instead, many LLVM APIs use a
StringRef or a const Twine& for passing strings efficiently.

The StringRef class

The StringRef data type represents a reference to a constant string (a
character array and a length) and supports the common operations available on
std::string, but does not require heap allocation.

It can be implicitly constructed using a C style null-terminated string, an
std::string, or explicitly with a character pointer and length. For
example, the StringRef find function is declared as:

iterator find(StringRef Key);

and clients can call it using any one of:

Map.find("foo"); // Lookup "foo"
Map.find(std::string("bar")); // Lookup "bar"
Map.find(StringRef("\0baz", 4)); // Lookup "\0baz"

Similarly, APIs which need to return a string may return a StringRef
instance, which can be used directly or converted to an std::string using
the str member function. See llvm/ADT/StringRef.h (doxygen [http://llvm.org/doxygen/StringRef_8h_source.html]) for more
information.

You should rarely use the StringRef class directly, because it contains
pointers to external memory it is not generally safe to store an instance of the
class (unless you know that the external storage will not be freed).
StringRef is small and pervasive enough in LLVM that it should always be
passed by value.

The Twine class

The Twine (doxygen [http://llvm.org/doxygen/classllvm_1_1Twine.html])
class is an efficient way for APIs to accept concatenated strings. For example,
a common LLVM paradigm is to name one instruction based on the name of another
instruction with a suffix, for example:

New = CmpInst::Create(..., SO->getName() + ".cmp");

The Twine class is effectively a lightweight rope [http://en.wikipedia.org/wiki/Rope_(computer_science)] which points to
temporary (stack allocated) objects. Twines can be implicitly constructed as
the result of the plus operator applied to strings (i.e., a C strings, an
std::string, or a StringRef). The twine delays the actual concatenation
of strings until it is actually required, at which point it can be efficiently
rendered directly into a character array. This avoids unnecessary heap
allocation involved in constructing the temporary results of string
concatenation. See llvm/ADT/Twine.h (doxygen [http://llvm.org/doxygen/Twine_8h_source.html]) and here
for more information.

As with a StringRef, Twine objects point to external memory and should
almost never be stored or mentioned directly. They are intended solely for use
when defining a function which should be able to efficiently accept concatenated
strings.

Formatting strings (the formatv function)

While LLVM doesn’t necessarily do a lot of string manipulation and parsing, it
does do a lot of string formatting. From diagnostic messages, to llvm tool
outputs such as llvm-readobj to printing verbose disassembly listings and
LLDB runtime logging, the need for string formatting is pervasive.

The formatv is similar in spirit to printf, but uses a different syntax
which borrows heavily from Python and C#. Unlike printf it deduces the type
to be formatted at compile time, so it does not need a format specifier such as
%d. This reduces the mental overhead of trying to construct portable format
strings, especially for platform-specific types like size_t or pointer types.
Unlike both printf and Python, it additionally fails to compile if LLVM does
not know how to format the type. These two properties ensure that the function
is both safer and simpler to use than traditional formatting methods such as
the printf family of functions.

Simple formatting

A call to formatv involves a single format string consisting of 0 or more
replacement sequences, followed by a variable length list of replacement values.
A replacement sequence is a string of the form {N[[,align]:style]}.

N refers to the 0-based index of the argument from the list of replacement
values. Note that this means it is possible to reference the same parameter
multiple times, possibly with different style and/or alignment options, in any order.

align is an optional string specifying the width of the field to format
the value into, and the alignment of the value within the field. It is specified as
an optional alignment style followed by a positive integral field width. The
alignment style can be one of the characters - (left align), = (center align),
or + (right align). The default is right aligned.

style is an optional string consisting of a type specific that controls the
formatting of the value. For example, to format a floating point value as a percentage,
you can use the style option P.

Custom formatting

There are two ways to customize the formatting behavior for a type.

	Provide a template specialization of llvm::format_provider<T> for your
type T with the appropriate static format method.

namespace llvm {
 template<>
 struct format_provider<MyFooBar> {
 static void format(const MyFooBar &V, raw_ostream &Stream, StringRef Style) {
 // Do whatever is necessary to format `V` into `Stream`
 }
 };
 void foo() {
 MyFooBar X;
 std::string S = formatv("{0}", X);
 }
}

This is a useful extensibility mechanism for adding support for formatting your own
custom types with your own custom Style options. But it does not help when you want
to extend the mechanism for formatting a type that the library already knows how to
format. For that, we need something else.

	Provide a format adapter inheriting from llvm::FormatAdapter<T>.

namespace anything {
 struct format_int_custom : public llvm::FormatAdapter<int> {
 explicit format_int_custom(int N) : llvm::FormatAdapter<int>(N) {}
 void format(llvm::raw_ostream &Stream, StringRef Style) override {
 // Do whatever is necessary to format ``this->Item`` into ``Stream``
 }
 };
}
namespace llvm {
 void foo() {
 std::string S = formatv("{0}", anything::format_int_custom(42));
 }
}

If the type is detected to be derived from FormatAdapter<T>, formatv
will call the
format method on the argument passing in the specified style. This allows
one to provide custom formatting of any type, including one which already has
a builtin format provider.

formatv Examples

Below is intended to provide an incomplete set of examples demonstrating
the usage of formatv. More information can be found by reading the
doxygen documentation or by looking at the unit test suite.

std::string S;
// Simple formatting of basic types and implicit string conversion.
S = formatv("{0} ({1:P})", 7, 0.35); // S == "7 (35.00%)"

// Out-of-order referencing and multi-referencing
outs() << formatv("{0} {2} {1} {0}", 1, "test", 3); // prints "1 3 test 1"

// Left, right, and center alignment
S = formatv("{0,7}", 'a'); // S == " a";
S = formatv("{0,-7}", 'a'); // S == "a ";
S = formatv("{0,=7}", 'a'); // S == " a ";
S = formatv("{0,+7}", 'a'); // S == " a";

// Custom styles
S = formatv("{0:N} - {0:x} - {1:E}", 12345, 123908342); // S == "12,345 - 0x3039 - 1.24E8"

// Adapters
S = formatv("{0}", fmt_align(42, AlignStyle::Center, 7)); // S == " 42 "
S = formatv("{0}", fmt_repeat("hi", 3)); // S == "hihihi"
S = formatv("{0}", fmt_pad("hi", 2, 6)); // S == " hi "

// Ranges
std::vector<int> V = {8, 9, 10};
S = formatv("{0}", make_range(V.begin(), V.end())); // S == "8, 9, 10"
S = formatv("{0:$[+]}", make_range(V.begin(), V.end())); // S == "8+9+10"
S = formatv("{0:$[+]@[x]}", make_range(V.begin(), V.end())); // S == "0x8 + 0x9 + 0xA"

Error handling

Proper error handling helps us identify bugs in our code, and helps end-users
understand errors in their tool usage. Errors fall into two broad categories:
programmatic and recoverable, with different strategies for handling and
reporting.

Programmatic Errors

Programmatic errors are violations of program invariants or API contracts, and
represent bugs within the program itself. Our aim is to document invariants, and
to abort quickly at the point of failure (providing some basic diagnostic) when
invariants are broken at runtime.

The fundamental tools for handling programmatic errors are assertions and the
llvm_unreachable function. Assertions are used to express invariant conditions,
and should include a message describing the invariant:

assert(isPhysReg(R) && "All virt regs should have been allocated already.");

The llvm_unreachable function can be used to document areas of control flow
that should never be entered if the program invariants hold:

enum { Foo, Bar, Baz } X = foo();

switch (X) {
 case Foo: /* Handle Foo */; break;
 case Bar: /* Handle Bar */; break;
 default:
 llvm_unreachable("X should be Foo or Bar here");
}

Recoverable Errors

Recoverable errors represent an error in the program’s environment, for example
a resource failure (a missing file, a dropped network connection, etc.), or
malformed input. These errors should be detected and communicated to a level of
the program where they can be handled appropriately. Handling the error may be
as simple as reporting the issue to the user, or it may involve attempts at
recovery.

Note

While it would be ideal to use this error handling scheme throughout
LLVM, there are places where this hasn’t been practical to apply. In
situations where you absolutely must emit a non-programmatic error and
the Error model isn’t workable you can call report_fatal_error,
which will call installed error handlers, print a message, and exit the
program.

Recoverable errors are modeled using LLVM’s Error scheme. This scheme
represents errors using function return values, similar to classic C integer
error codes, or C++’s std::error_code. However, the Error class is
actually a lightweight wrapper for user-defined error types, allowing arbitrary
information to be attached to describe the error. This is similar to the way C++
exceptions allow throwing of user-defined types.

Success values are created by calling Error::success(), E.g.:

Error foo() {
 // Do something.
 // Return success.
 return Error::success();
}

Success values are very cheap to construct and return - they have minimal
impact on program performance.

Failure values are constructed using make_error<T>, where T is any class
that inherits from the ErrorInfo utility, E.g.:

class BadFileFormat : public ErrorInfo<BadFileFormat> {
public:
 static char ID;
 std::string Path;

 BadFileFormat(StringRef Path) : Path(Path.str()) {}

 void log(raw_ostream &OS) const override {
 OS << Path << " is malformed";
 }

 std::error_code convertToErrorCode() const override {
 return make_error_code(object_error::parse_failed);
 }
};

char BadFileFormat::ID; // This should be declared in the C++ file.

Error printFormattedFile(StringRef Path) {
 if (<check for valid format>)
 return make_error<BadFileFormat>(Path);
 // print file contents.
 return Error::success();
}

Error values can be implicitly converted to bool: true for error, false for
success, enabling the following idiom:

Error mayFail();

Error foo() {
 if (auto Err = mayFail())
 return Err;
 // Success! We can proceed.
 ...

For functions that can fail but need to return a value the Expected<T>
utility can be used. Values of this type can be constructed with either a
T, or an Error. Expected<T> values are also implicitly convertible to
boolean, but with the opposite convention to Error: true for success, false
for error. If success, the T value can be accessed via the dereference
operator. If failure, the Error value can be extracted using the
takeError() method. Idiomatic usage looks like:

Expected<FormattedFile> openFormattedFile(StringRef Path) {
 // If badly formatted, return an error.
 if (auto Err = checkFormat(Path))
 return std::move(Err);
 // Otherwise return a FormattedFile instance.
 return FormattedFile(Path);
}

Error processFormattedFile(StringRef Path) {
 // Try to open a formatted file
 if (auto FileOrErr = openFormattedFile(Path)) {
 // On success, grab a reference to the file and continue.
 auto &File = *FileOrErr;
 ...
 } else
 // On error, extract the Error value and return it.
 return FileOrErr.takeError();
}

If an Expected<T> value is in success mode then the takeError() method
will return a success value. Using this fact, the above function can be
rewritten as:

Error processFormattedFile(StringRef Path) {
 // Try to open a formatted file
 auto FileOrErr = openFormattedFile(Path);
 if (auto Err = FileOrErr.takeError())
 // On error, extract the Error value and return it.
 return Err;
 // On success, grab a reference to the file and continue.
 auto &File = *FileOrErr;
 ...
}

This second form is often more readable for functions that involve multiple
Expected<T> values as it limits the indentation required.

All Error instances, whether success or failure, must be either checked or
moved from (via std::move or a return) before they are destructed.
Accidentally discarding an unchecked error will cause a program abort at the
point where the unchecked value’s destructor is run, making it easy to identify
and fix violations of this rule.

Success values are considered checked once they have been tested (by invoking
the boolean conversion operator):

if (auto Err = mayFail(...))
 return Err; // Failure value - move error to caller.

// Safe to continue: Err was checked.

In contrast, the following code will always cause an abort, even if mayFail
returns a success value:

mayFail();
// Program will always abort here, even if mayFail() returns Success, since
// the value is not checked.

Failure values are considered checked once a handler for the error type has
been activated:

handleErrors(
 processFormattedFile(...),
 [](const BadFileFormat &BFF) {
 report("Unable to process " + BFF.Path + ": bad format");
 },
 [](const FileNotFound &FNF) {
 report("File not found " + FNF.Path);
 });

The handleErrors function takes an error as its first argument, followed by
a variadic list of “handlers”, each of which must be a callable type (a
function, lambda, or class with a call operator) with one argument. The
handleErrors function will visit each handler in the sequence and check its
argument type against the dynamic type of the error, running the first handler
that matches. This is the same decision process that is used decide which catch
clause to run for a C++ exception.

Since the list of handlers passed to handleErrors may not cover every error
type that can occur, the handleErrors function also returns an Error value
that must be checked or propagated. If the error value that is passed to
handleErrors does not match any of the handlers it will be returned from
handleErrors. Idiomatic use of handleErrors thus looks like:

if (auto Err =
 handleErrors(
 processFormattedFile(...),
 [](const BadFileFormat &BFF) {
 report("Unable to process " + BFF.Path + ": bad format");
 },
 [](const FileNotFound &FNF) {
 report("File not found " + FNF.Path);
 }))
 return Err;

In cases where you truly know that the handler list is exhaustive the
handleAllErrors function can be used instead. This is identical to
handleErrors except that it will terminate the program if an unhandled
error is passed in, and can therefore return void. The handleAllErrors
function should generally be avoided: the introduction of a new error type
elsewhere in the program can easily turn a formerly exhaustive list of errors
into a non-exhaustive list, risking unexpected program termination. Where
possible, use handleErrors and propagate unknown errors up the stack instead.

For tool code, where errors can be handled by printing an error message then
exiting with an error code, the ExitOnError utility
may be a better choice than handleErrors, as it simplifies control flow when
calling fallible functions.

In situations where it is known that a particular call to a fallible function
will always succeed (for example, a call to a function that can only fail on a
subset of inputs with an input that is known to be safe) the
cantFail functions can be used to remove the error type,
simplifying control flow.

StringError

Many kinds of errors have no recovery strategy, the only action that can be
taken is to report them to the user so that the user can attempt to fix the
environment. In this case representing the error as a string makes perfect
sense. LLVM provides the StringError class for this purpose. It takes two
arguments: A string error message, and an equivalent std::error_code for
interoperability:

make_error<StringError>("Bad executable",
 make_error_code(errc::executable_format_error"));

If you’re certain that the error you’re building will never need to be converted
to a std::error_code you can use the inconvertibleErrorCode() function:

make_error<StringError>("Bad executable", inconvertibleErrorCode());

This should be done only after careful consideration. If any attempt is made to
convert this error to a std::error_code it will trigger immediate program
termination. Unless you are certain that your errors will not need
interoperability you should look for an existing std::error_code that you
can convert to, and even (as painful as it is) consider introducing a new one as
a stopgap measure.

Interoperability with std::error_code and ErrorOr

Many existing LLVM APIs use std::error_code and its partner ErrorOr<T>
(which plays the same role as Expected<T>, but wraps a std::error_code
rather than an Error). The infectious nature of error types means that an
attempt to change one of these functions to return Error or Expected<T>
instead often results in an avalanche of changes to callers, callers of callers,
and so on. (The first such attempt, returning an Error from
MachOObjectFile’s constructor, was abandoned after the diff reached 3000 lines,
impacted half a dozen libraries, and was still growing).

To solve this problem, the Error/std::error_code interoperability requirement was
introduced. Two pairs of functions allow any Error value to be converted to a
std::error_code, any Expected<T> to be converted to an ErrorOr<T>, and vice
versa:

std::error_code errorToErrorCode(Error Err);
Error errorCodeToError(std::error_code EC);

template <typename T> ErrorOr<T> expectedToErrorOr(Expected<T> TOrErr);
template <typename T> Expected<T> errorOrToExpected(ErrorOr<T> TOrEC);

Using these APIs it is easy to make surgical patches that update individual
functions from std::error_code to Error, and from ErrorOr<T> to
Expected<T>.

Returning Errors from error handlers

Error recovery attempts may themselves fail. For that reason, handleErrors
actually recognises three different forms of handler signature:

// Error must be handled, no new errors produced:
void(UserDefinedError &E);

// Error must be handled, new errors can be produced:
Error(UserDefinedError &E);

// Original error can be inspected, then re-wrapped and returned (or a new
// error can be produced):
Error(std::unique_ptr<UserDefinedError> E);

Any error returned from a handler will be returned from the handleErrors
function so that it can be handled itself, or propagated up the stack.

Using ExitOnError to simplify tool code

Library code should never call exit for a recoverable error, however in tool
code (especially command line tools) this can be a reasonable approach. Calling
exit upon encountering an error dramatically simplifies control flow as the
error no longer needs to be propagated up the stack. This allows code to be
written in straight-line style, as long as each fallible call is wrapped in a
check and call to exit. The ExitOnError class supports this pattern by
providing call operators that inspect Error values, stripping the error away
in the success case and logging to stderr then exiting in the failure case.

To use this class, declare a global ExitOnError variable in your program:

ExitOnError ExitOnErr;

Calls to fallible functions can then be wrapped with a call to ExitOnErr,
turning them into non-failing calls:

Error mayFail();
Expected<int> mayFail2();

void foo() {
 ExitOnErr(mayFail());
 int X = ExitOnErr(mayFail2());
}

On failure, the error’s log message will be written to stderr, optionally
preceded by a string “banner” that can be set by calling the setBanner method. A
mapping can also be supplied from Error values to exit codes using the
setExitCodeMapper method:

int main(int argc, char *argv[]) {
 ExitOnErr.setBanner(std::string(argv[0]) + " error:");
 ExitOnErr.setExitCodeMapper(
 [](const Error &Err) {
 if (Err.isA<BadFileFormat>())
 return 2;
 return 1;
 });

Use ExitOnError in your tool code where possible as it can greatly improve
readability.

Using cantFail to simplify safe callsites

Some functions may only fail for a subset of their inputs, so calls using known
safe inputs can be assumed to succeed.

The cantFail functions encapsulate this by wrapping an assertion that their
argument is a success value and, in the case of Expected<T>, unwrapping the
T value:

Error onlyFailsForSomeXValues(int X);
Expected<int> onlyFailsForSomeXValues2(int X);

void foo() {
 cantFail(onlyFailsForSomeXValues(KnownSafeValue));
 int Y = cantFail(onlyFailsForSomeXValues2(KnownSafeValue));
 ...
}

Like the ExitOnError utility, cantFail simplifies control flow. Their treatment
of error cases is very different however: Where ExitOnError is guaranteed to
terminate the program on an error input, cantFile simply asserts that the result
is success. In debug builds this will result in an assertion failure if an error
is encountered. In release builds the behavior of cantFail for failure values is
undefined. As such, care must be taken in the use of cantFail: clients must be
certain that a cantFail wrapped call really can not fail with the given
arguments.

Use of the cantFail functions should be rare in library code, but they are
likely to be of more use in tool and unit-test code where inputs and/or
mocked-up classes or functions may be known to be safe.

Fallible constructors

Some classes require resource acquisition or other complex initialization that
can fail during construction. Unfortunately constructors can’t return errors,
and having clients test objects after they’re constructed to ensure that they’re
valid is error prone as it’s all too easy to forget the test. To work around
this, use the named constructor idiom and return an Expected<T>:

class Foo {
public:

 static Expected<Foo> Create(Resource R1, Resource R2) {
 Error Err;
 Foo F(R1, R2, Err);
 if (Err)
 return std::move(Err);
 return std::move(F);
 }

private:

 Foo(Resource R1, Resource R2, Error &Err) {
 ErrorAsOutParameter EAO(&Err);
 if (auto Err2 = R1.acquire()) {
 Err = std::move(Err2);
 return;
 }
 Err = R2.acquire();
 }
};

Here, the named constructor passes an Error by reference into the actual
constructor, which the constructor can then use to return errors. The
ErrorAsOutParameter utility sets the Error value’s checked flag on entry
to the constructor so that the error can be assigned to, then resets it on exit
to force the client (the named constructor) to check the error.

By using this idiom, clients attempting to construct a Foo receive either a
well-formed Foo or an Error, never an object in an invalid state.

Propagating and consuming errors based on types

In some contexts, certain types of error are known to be benign. For example,
when walking an archive, some clients may be happy to skip over badly formatted
object files rather than terminating the walk immediately. Skipping badly
formatted objects could be achieved using an elaborate handler method, but the
Error.h header provides two utilities that make this idiom much cleaner: the
type inspection method, isA, and the consumeError function:

Error walkArchive(Archive A) {
 for (unsigned I = 0; I != A.numMembers(); ++I) {
 auto ChildOrErr = A.getMember(I);
 if (auto Err = ChildOrErr.takeError()) {
 if (Err.isA<BadFileFormat>())
 consumeError(std::move(Err))
 else
 return Err;
 }
 auto &Child = *ChildOrErr;
 // Use Child
 ...
 }
 return Error::success();
}

Concatenating Errors with joinErrors

In the archive walking example above BadFileFormat errors are simply
consumed and ignored. If the client had wanted report these errors after
completing the walk over the archive they could use the joinErrors utility:

Error walkArchive(Archive A) {
 Error DeferredErrs = Error::success();
 for (unsigned I = 0; I != A.numMembers(); ++I) {
 auto ChildOrErr = A.getMember(I);
 if (auto Err = ChildOrErr.takeError())
 if (Err.isA<BadFileFormat>())
 DeferredErrs = joinErrors(std::move(DeferredErrs), std::move(Err));
 else
 return Err;
 auto &Child = *ChildOrErr;
 // Use Child
 ...
 }
 return DeferredErrs;
}

The joinErrors routine builds a special error type called ErrorList,
which holds a list of user defined errors. The handleErrors routine
recognizes this type and will attempt to handle each of the contained errors in
order. If all contained errors can be handled, handleErrors will return
Error::success(), otherwise handleErrors will concatenate the remaining
errors and return the resulting ErrorList.

Building fallible iterators and iterator ranges

The archive walking examples above retrieve archive members by index, however
this requires considerable boiler-plate for iteration and error checking. We can
clean this up by using Error with the “fallible iterator” pattern. The usual
C++ iterator patterns do not allow for failure on increment, but we can
incorporate support for it by having iterators hold an Error reference through
which they can report failure. In this pattern, if an increment operation fails
the failure is recorded via the Error reference and the iterator value is set to
the end of the range in order to terminate the loop. This ensures that the
dereference operation is safe anywhere that an ordinary iterator dereference
would be safe (i.e. when the iterator is not equal to end). Where this pattern
is followed (as in the llvm::object::Archive class) the result is much
cleaner iteration idiom:

Error Err;
for (auto &Child : Ar->children(Err)) {
 // Use Child - we only enter the loop when it's valid
 ...
}
// Check Err after the loop to ensure it didn't break due to an error.
if (Err)
 return Err;

More information on Error and its related utilities can be found in the
Error.h header file.

Passing functions and other callable objects

Sometimes you may want a function to be passed a callback object. In order to
support lambda expressions and other function objects, you should not use the
traditional C approach of taking a function pointer and an opaque cookie:

void takeCallback(bool (*Callback)(Function *, void *), void *Cookie);

Instead, use one of the following approaches:

Function template

If you don’t mind putting the definition of your function into a header file,
make it a function template that is templated on the callable type.

template<typename Callable>
void takeCallback(Callable Callback) {
 Callback(1, 2, 3);
}

The function_ref class template

The function_ref
(doxygen [http://llvm.org/doxygen/classllvm_1_1function__ref_3_01Ret_07Params_8_8_8_08_4.html]) class
template represents a reference to a callable object, templated over the type
of the callable. This is a good choice for passing a callback to a function,
if you don’t need to hold onto the callback after the function returns. In this
way, function_ref is to std::function as StringRef is to
std::string.

function_ref<Ret(Param1, Param2, ...)> can be implicitly constructed from
any callable object that can be called with arguments of type Param1,
Param2, …, and returns a value that can be converted to type Ret.
For example:

void visitBasicBlocks(Function *F, function_ref<bool (BasicBlock*)> Callback) {
 for (BasicBlock &BB : *F)
 if (Callback(&BB))
 return;
}

can be called using:

visitBasicBlocks(F, [&](BasicBlock *BB) {
 if (process(BB))
 return isEmpty(BB);
 return false;
});

Note that a function_ref object contains pointers to external memory, so it
is not generally safe to store an instance of the class (unless you know that
the external storage will not be freed). If you need this ability, consider
using std::function. function_ref is small enough that it should always
be passed by value.

The LLVM_DEBUG() macro and -debug option

Often when working on your pass you will put a bunch of debugging printouts and
other code into your pass. After you get it working, you want to remove it, but
you may need it again in the future (to work out new bugs that you run across).

Naturally, because of this, you don’t want to delete the debug printouts, but
you don’t want them to always be noisy. A standard compromise is to comment
them out, allowing you to enable them if you need them in the future.

The llvm/Support/Debug.h (doxygen [http://llvm.org/doxygen/Debug_8h_source.html]) file provides a macro named
LLVM_DEBUG() that is a much nicer solution to this problem. Basically, you can
put arbitrary code into the argument of the LLVM_DEBUG macro, and it is only
executed if ‘opt’ (or any other tool) is run with the ‘-debug’ command
line argument:

LLVM_DEBUG(dbgs() << "I am here!\n");

Then you can run your pass like this:

$ opt < a.bc > /dev/null -mypass
<no output>
$ opt < a.bc > /dev/null -mypass -debug
I am here!

Using the LLVM_DEBUG() macro instead of a home-brewed solution allows you to not
have to create “yet another” command line option for the debug output for your
pass. Note that LLVM_DEBUG() macros are disabled for non-asserts builds, so they
do not cause a performance impact at all (for the same reason, they should also
not contain side-effects!).

One additional nice thing about the LLVM_DEBUG() macro is that you can enable or
disable it directly in gdb. Just use “set DebugFlag=0” or “set
DebugFlag=1” from the gdb if the program is running. If the program hasn’t
been started yet, you can always just run it with -debug.

Fine grained debug info with DEBUG_TYPE and the -debug-only option

Sometimes you may find yourself in a situation where enabling -debug just
turns on too much information (such as when working on the code generator).
If you want to enable debug information with more fine-grained control, you
should define the DEBUG_TYPE macro and use the -debug-only option as
follows:

#define DEBUG_TYPE "foo"
LLVM_DEBUG(dbgs() << "'foo' debug type\n");
#undef DEBUG_TYPE
#define DEBUG_TYPE "bar"
LLVM_DEBUG(dbgs() << "'bar' debug type\n");
#undef DEBUG_TYPE

Then you can run your pass like this:

$ opt < a.bc > /dev/null -mypass
<no output>
$ opt < a.bc > /dev/null -mypass -debug
'foo' debug type
'bar' debug type
$ opt < a.bc > /dev/null -mypass -debug-only=foo
'foo' debug type
$ opt < a.bc > /dev/null -mypass -debug-only=bar
'bar' debug type
$ opt < a.bc > /dev/null -mypass -debug-only=foo,bar
'foo' debug type
'bar' debug type

Of course, in practice, you should only set DEBUG_TYPE at the top of a file,
to specify the debug type for the entire module. Be careful that you only do
this after including Debug.h and not around any #include of headers. Also, you
should use names more meaningful than “foo” and “bar”, because there is no
system in place to ensure that names do not conflict. If two different modules
use the same string, they will all be turned on when the name is specified.
This allows, for example, all debug information for instruction scheduling to be
enabled with -debug-only=InstrSched, even if the source lives in multiple
files. The name must not include a comma (,) as that is used to separate the
arguments of the -debug-only option.

For performance reasons, -debug-only is not available in optimized build
(--enable-optimized) of LLVM.

The DEBUG_WITH_TYPE macro is also available for situations where you would
like to set DEBUG_TYPE, but only for one specific DEBUG statement. It
takes an additional first parameter, which is the type to use. For example, the
preceding example could be written as:

DEBUG_WITH_TYPE("foo", dbgs() << "'foo' debug type\n");
DEBUG_WITH_TYPE("bar", dbgs() << "'bar' debug type\n");

The Statistic class & -stats option

The llvm/ADT/Statistic.h (doxygen [http://llvm.org/doxygen/Statistic_8h_source.html]) file provides a class
named Statistic that is used as a unified way to keep track of what the LLVM
compiler is doing and how effective various optimizations are. It is useful to
see what optimizations are contributing to making a particular program run
faster.

Often you may run your pass on some big program, and you’re interested to see
how many times it makes a certain transformation. Although you can do this with
hand inspection, or some ad-hoc method, this is a real pain and not very useful
for big programs. Using the Statistic class makes it very easy to keep
track of this information, and the calculated information is presented in a
uniform manner with the rest of the passes being executed.

There are many examples of Statistic uses, but the basics of using it are as
follows:

Define your statistic like this:

#define DEBUG_TYPE "mypassname" // This goes before any #includes.
STATISTIC(NumXForms, "The # of times I did stuff");

The STATISTIC macro defines a static variable, whose name is specified by
the first argument. The pass name is taken from the DEBUG_TYPE macro, and
the description is taken from the second argument. The variable defined
(“NumXForms” in this case) acts like an unsigned integer.

Whenever you make a transformation, bump the counter:

++NumXForms; // I did stuff!

That’s all you have to do. To get ‘opt’ to print out the statistics
gathered, use the ‘-stats’ option:

$ opt -stats -mypassname < program.bc > /dev/null
... statistics output ...

Note that in order to use the ‘-stats’ option, LLVM must be
compiled with assertions enabled.

When running opt on a C file from the SPEC benchmark suite, it gives a
report that looks like this:

 7646 bitcodewriter - Number of normal instructions
 725 bitcodewriter - Number of oversized instructions
129996 bitcodewriter - Number of bitcode bytes written
 2817 raise - Number of insts DCEd or constprop'd
 3213 raise - Number of cast-of-self removed
 5046 raise - Number of expression trees converted
 75 raise - Number of other getelementptr's formed
 138 raise - Number of load/store peepholes
 42 deadtypeelim - Number of unused typenames removed from symtab
 392 funcresolve - Number of varargs functions resolved
 27 globaldce - Number of global variables removed
 2 adce - Number of basic blocks removed
 134 cee - Number of branches revectored
 49 cee - Number of setcc instruction eliminated
 532 gcse - Number of loads removed
 2919 gcse - Number of instructions removed
 86 indvars - Number of canonical indvars added
 87 indvars - Number of aux indvars removed
 25 instcombine - Number of dead inst eliminate
 434 instcombine - Number of insts combined
 248 licm - Number of load insts hoisted
 1298 licm - Number of insts hoisted to a loop pre-header
 3 licm - Number of insts hoisted to multiple loop preds (bad, no loop pre-header)
 75 mem2reg - Number of alloca's promoted
 1444 cfgsimplify - Number of blocks simplified

Obviously, with so many optimizations, having a unified framework for this stuff
is very nice. Making your pass fit well into the framework makes it more
maintainable and useful.

Adding debug counters to aid in debugging your code

Sometimes, when writing new passes, or trying to track down bugs, it
is useful to be able to control whether certain things in your pass
happen or not. For example, there are times the minimization tooling
can only easily give you large testcases. You would like to narrow
your bug down to a specific transformation happening or not happening,
automatically, using bisection. This is where debug counters help.
They provide a framework for making parts of your code only execute a
certain number of times.

The llvm/Support/DebugCounter.h (doxygen [http://llvm.org/doxygen/DebugCounter_8h_source.html]) file
provides a class named DebugCounter that can be used to create
command line counter options that control execution of parts of your code.

Define your DebugCounter like this:

DEBUG_COUNTER(DeleteAnInstruction, "passname-delete-instruction",
 "Controls which instructions get delete");

The DEBUG_COUNTER macro defines a static variable, whose name
is specified by the first argument. The name of the counter
(which is used on the command line) is specified by the second
argument, and the description used in the help is specified by the
third argument.

Whatever code you want that control, use DebugCounter::shouldExecute to control it.

if (DebugCounter::shouldExecute(DeleteAnInstruction))
 I->eraseFromParent();

That’s all you have to do. Now, using opt, you can control when this code triggers using
the ‘--debug-counter’ option. There are two counters provided, skip and count.
skip is the number of times to skip execution of the codepath. count is the number
of times, once we are done skipping, to execute the codepath.

$ opt --debug-counter=passname-delete-instruction-skip=1,passname-delete-instruction-count=2 -passname

This will skip the above code the first time we hit it, then execute it twice, then skip the rest of the executions.

So if executed on the following code:

%1 = add i32 %a, %b
%2 = add i32 %a, %b
%3 = add i32 %a, %b
%4 = add i32 %a, %b

It would delete number %2 and %3.

A utility is provided in utils/bisect-skip-count to binary search
skip and count arguments. It can be used to automatically minimize the
skip and count for a debug-counter variable.

Viewing graphs while debugging code

Several of the important data structures in LLVM are graphs: for example CFGs
made out of LLVM BasicBlocks, CFGs made out of LLVM
MachineBasicBlocks, and Instruction Selection
DAGs. In many cases, while debugging various parts of the
compiler, it is nice to instantly visualize these graphs.

LLVM provides several callbacks that are available in a debug build to do
exactly that. If you call the Function::viewCFG() method, for example, the
current LLVM tool will pop up a window containing the CFG for the function where
each basic block is a node in the graph, and each node contains the instructions
in the block. Similarly, there also exists Function::viewCFGOnly() (does
not include the instructions), the MachineFunction::viewCFG() and
MachineFunction::viewCFGOnly(), and the SelectionDAG::viewGraph()
methods. Within GDB, for example, you can usually use something like call
DAG.viewGraph() to pop up a window. Alternatively, you can sprinkle calls to
these functions in your code in places you want to debug.

Getting this to work requires a small amount of setup. On Unix systems
with X11, install the graphviz [http://www.graphviz.org] toolkit, and make
sure ‘dot’ and ‘gv’ are in your path. If you are running on Mac OS X, download
and install the Mac OS X Graphviz program [http://www.pixelglow.com/graphviz/] and add
/Applications/Graphviz.app/Contents/MacOS/ (or wherever you install it) to
your path. The programs need not be present when configuring, building or
running LLVM and can simply be installed when needed during an active debug
session.

SelectionDAG has been extended to make it easier to locate interesting
nodes in large complex graphs. From gdb, if you call DAG.setGraphColor(node,
"color"), then the next call DAG.viewGraph() would highlight the node in
the specified color (choices of colors can be found at colors [http://www.graphviz.org/doc/info/colors.html].) More complex node attributes
can be provided with call DAG.setGraphAttrs(node, "attributes") (choices can
be found at Graph attributes [http://www.graphviz.org/doc/info/attrs.html].)
If you want to restart and clear all the current graph attributes, then you can
call DAG.clearGraphAttrs().

Note that graph visualization features are compiled out of Release builds to
reduce file size. This means that you need a Debug+Asserts or Release+Asserts
build to use these features.

Picking the Right Data Structure for a Task

LLVM has a plethora of data structures in the llvm/ADT/ directory, and we
commonly use STL data structures. This section describes the trade-offs you
should consider when you pick one.

The first step is a choose your own adventure: do you want a sequential
container, a set-like container, or a map-like container? The most important
thing when choosing a container is the algorithmic properties of how you plan to
access the container. Based on that, you should use:

	a map-like container if you need efficient look-up of a
value based on another value. Map-like containers also support efficient
queries for containment (whether a key is in the map). Map-like containers
generally do not support efficient reverse mapping (values to keys). If you
need that, use two maps. Some map-like containers also support efficient
iteration through the keys in sorted order. Map-like containers are the most
expensive sort, only use them if you need one of these capabilities.

	a set-like container if you need to put a bunch of stuff into
a container that automatically eliminates duplicates. Some set-like
containers support efficient iteration through the elements in sorted order.
Set-like containers are more expensive than sequential containers.

	a sequential container provides the most efficient way
to add elements and keeps track of the order they are added to the collection.
They permit duplicates and support efficient iteration, but do not support
efficient look-up based on a key.

	a string container is a specialized sequential container or
reference structure that is used for character or byte arrays.

	a bit container provides an efficient way to store and
perform set operations on sets of numeric id’s, while automatically
eliminating duplicates. Bit containers require a maximum of 1 bit for each
identifier you want to store.

Once the proper category of container is determined, you can fine tune the
memory use, constant factors, and cache behaviors of access by intelligently
picking a member of the category. Note that constant factors and cache behavior
can be a big deal. If you have a vector that usually only contains a few
elements (but could contain many), for example, it’s much better to use
SmallVector than vector. Doing so
avoids (relatively) expensive malloc/free calls, which dwarf the cost of adding
the elements to the container.

Sequential Containers (std::vector, std::list, etc)

There are a variety of sequential containers available for you, based on your
needs. Pick the first in this section that will do what you want.

llvm/ADT/ArrayRef.h

The llvm::ArrayRef class is the preferred class to use in an interface that
accepts a sequential list of elements in memory and just reads from them. By
taking an ArrayRef, the API can be passed a fixed size array, an
std::vector, an llvm::SmallVector and anything else that is contiguous
in memory.

Fixed Size Arrays

Fixed size arrays are very simple and very fast. They are good if you know
exactly how many elements you have, or you have a (low) upper bound on how many
you have.

Heap Allocated Arrays

Heap allocated arrays (new[] + delete[]) are also simple. They are good
if the number of elements is variable, if you know how many elements you will
need before the array is allocated, and if the array is usually large (if not,
consider a SmallVector). The cost of a heap allocated
array is the cost of the new/delete (aka malloc/free). Also note that if you
are allocating an array of a type with a constructor, the constructor and
destructors will be run for every element in the array (re-sizable vectors only
construct those elements actually used).

llvm/ADT/TinyPtrVector.h

TinyPtrVector<Type> is a highly specialized collection class that is
optimized to avoid allocation in the case when a vector has zero or one
elements. It has two major restrictions: 1) it can only hold values of pointer
type, and 2) it cannot hold a null pointer.

Since this container is highly specialized, it is rarely used.

llvm/ADT/SmallVector.h

SmallVector<Type, N> is a simple class that looks and smells just like
vector<Type>: it supports efficient iteration, lays out elements in memory
order (so you can do pointer arithmetic between elements), supports efficient
push_back/pop_back operations, supports efficient random access to its elements,
etc.

The main advantage of SmallVector is that it allocates space for some number of
elements (N) in the object itself. Because of this, if the SmallVector is
dynamically smaller than N, no malloc is performed. This can be a big win in
cases where the malloc/free call is far more expensive than the code that
fiddles around with the elements.

This is good for vectors that are “usually small” (e.g. the number of
predecessors/successors of a block is usually less than 8). On the other hand,
this makes the size of the SmallVector itself large, so you don’t want to
allocate lots of them (doing so will waste a lot of space). As such,
SmallVectors are most useful when on the stack.

SmallVector also provides a nice portable and efficient replacement for
alloca.

SmallVector has grown a few other minor advantages over std::vector, causing
SmallVector<Type, 0> to be preferred over std::vector<Type>.

	std::vector is exception-safe, and some implementations have pessimizations
that copy elements when SmallVector would move them.

	SmallVector understands isPodLike<Type> and uses realloc aggressively.

	Many LLVM APIs take a SmallVectorImpl as an out parameter (see the note
below).

	SmallVector with N equal to 0 is smaller than std::vector on 64-bit
platforms, since it uses unsigned (instead of void*) for its size
and capacity.

Note

Prefer to use SmallVectorImpl<T> as a parameter type.

In APIs that don’t care about the “small size” (most?), prefer to use
the SmallVectorImpl<T> class, which is basically just the “vector
header” (and methods) without the elements allocated after it. Note that
SmallVector<T, N> inherits from SmallVectorImpl<T> so the
conversion is implicit and costs nothing. E.g.

// BAD: Clients cannot pass e.g. SmallVector<Foo, 4>.
hardcodedSmallSize(SmallVector<Foo, 2> &Out);
// GOOD: Clients can pass any SmallVector<Foo, N>.
allowsAnySmallSize(SmallVectorImpl<Foo> &Out);

void someFunc() {
 SmallVector<Foo, 8> Vec;
 hardcodedSmallSize(Vec); // Error.
 allowsAnySmallSize(Vec); // Works.
}

Even though it has “Impl” in the name, this is so widely used that
it really isn’t “private to the implementation” anymore. A name like
SmallVectorHeader would be more appropriate.

<vector>

std::vector<T> is well loved and respected. However, SmallVector<T, 0>
is often a better option due to the advantages listed above. std::vector is
still useful when you need to store more than UINT32_MAX elements or when
interfacing with code that expects vectors :).

One worthwhile note about std::vector: avoid code like this:

for (...) {
 std::vector<foo> V;
 // make use of V.
}

Instead, write this as:

std::vector<foo> V;
for (...) {
 // make use of V.
 V.clear();
}

Doing so will save (at least) one heap allocation and free per iteration of the
loop.

<deque>

std::deque is, in some senses, a generalized version of std::vector.
Like std::vector, it provides constant time random access and other similar
properties, but it also provides efficient access to the front of the list. It
does not guarantee continuity of elements within memory.

In exchange for this extra flexibility, std::deque has significantly higher
constant factor costs than std::vector. If possible, use std::vector or
something cheaper.

<list>

std::list is an extremely inefficient class that is rarely useful. It
performs a heap allocation for every element inserted into it, thus having an
extremely high constant factor, particularly for small data types.
std::list also only supports bidirectional iteration, not random access
iteration.

In exchange for this high cost, std::list supports efficient access to both ends
of the list (like std::deque, but unlike std::vector or
SmallVector). In addition, the iterator invalidation characteristics of
std::list are stronger than that of a vector class: inserting or removing an
element into the list does not invalidate iterator or pointers to other elements
in the list.

llvm/ADT/ilist.h

ilist<T> implements an ‘intrusive’ doubly-linked list. It is intrusive,
because it requires the element to store and provide access to the prev/next
pointers for the list.

ilist has the same drawbacks as std::list, and additionally requires an
ilist_traits implementation for the element type, but it provides some novel
characteristics. In particular, it can efficiently store polymorphic objects,
the traits class is informed when an element is inserted or removed from the
list, and ilists are guaranteed to support a constant-time splice
operation.

These properties are exactly what we want for things like Instructions and
basic blocks, which is why these are implemented with ilists.

Related classes of interest are explained in the following subsections:

	ilist_traits

	iplist

	llvm/ADT/ilist_node.h

	Sentinels

llvm/ADT/PackedVector.h

Useful for storing a vector of values using only a few number of bits for each
value. Apart from the standard operations of a vector-like container, it can
also perform an ‘or’ set operation.

For example:

enum State {
 None = 0x0,
 FirstCondition = 0x1,
 SecondCondition = 0x2,
 Both = 0x3
};

State get() {
 PackedVector<State, 2> Vec1;
 Vec1.push_back(FirstCondition);

 PackedVector<State, 2> Vec2;
 Vec2.push_back(SecondCondition);

 Vec1 |= Vec2;
 return Vec1[0]; // returns 'Both'.
}

ilist_traits

ilist_traits<T> is ilist<T>’s customization mechanism. iplist<T>
(and consequently ilist<T>) publicly derive from this traits class.

iplist

iplist<T> is ilist<T>’s base and as such supports a slightly narrower
interface. Notably, inserters from T& are absent.

ilist_traits<T> is a public base of this class and can be used for a wide
variety of customizations.

llvm/ADT/ilist_node.h

ilist_node<T> implements the forward and backward links that are expected
by the ilist<T> (and analogous containers) in the default manner.

ilist_node<T>s are meant to be embedded in the node type T, usually
T publicly derives from ilist_node<T>.

Sentinels

ilists have another specialty that must be considered. To be a good
citizen in the C++ ecosystem, it needs to support the standard container
operations, such as begin and end iterators, etc. Also, the
operator-- must work correctly on the end iterator in the case of
non-empty ilists.

The only sensible solution to this problem is to allocate a so-called sentinel
along with the intrusive list, which serves as the end iterator, providing
the back-link to the last element. However conforming to the C++ convention it
is illegal to operator++ beyond the sentinel and it also must not be
dereferenced.

These constraints allow for some implementation freedom to the ilist how to
allocate and store the sentinel. The corresponding policy is dictated by
ilist_traits<T>. By default a T gets heap-allocated whenever the need
for a sentinel arises.

While the default policy is sufficient in most cases, it may break down when
T does not provide a default constructor. Also, in the case of many
instances of ilists, the memory overhead of the associated sentinels is
wasted. To alleviate the situation with numerous and voluminous
T-sentinels, sometimes a trick is employed, leading to ghostly sentinels.

Ghostly sentinels are obtained by specially-crafted ilist_traits<T> which
superpose the sentinel with the ilist instance in memory. Pointer
arithmetic is used to obtain the sentinel, which is relative to the ilist’s
this pointer. The ilist is augmented by an extra pointer, which serves
as the back-link of the sentinel. This is the only field in the ghostly
sentinel which can be legally accessed.

Other Sequential Container options

Other STL containers are available, such as std::string.

There are also various STL adapter classes such as std::queue,
std::priority_queue, std::stack, etc. These provide simplified access
to an underlying container but don’t affect the cost of the container itself.

String-like containers

There are a variety of ways to pass around and use strings in C and C++, and
LLVM adds a few new options to choose from. Pick the first option on this list
that will do what you need, they are ordered according to their relative cost.

Note that it is generally preferred to not pass strings around as const
char*’s. These have a number of problems, including the fact that they
cannot represent embedded nul (“0”) characters, and do not have a length
available efficiently. The general replacement for ‘const char*’ is
StringRef.

For more information on choosing string containers for APIs, please see
Passing Strings.

llvm/ADT/StringRef.h

The StringRef class is a simple value class that contains a pointer to a
character and a length, and is quite related to the ArrayRef class (but specialized for arrays of characters). Because
StringRef carries a length with it, it safely handles strings with embedded nul
characters in it, getting the length does not require a strlen call, and it even
has very convenient APIs for slicing and dicing the character range that it
represents.

StringRef is ideal for passing simple strings around that are known to be live,
either because they are C string literals, std::string, a C array, or a
SmallVector. Each of these cases has an efficient implicit conversion to
StringRef, which doesn’t result in a dynamic strlen being executed.

StringRef has a few major limitations which make more powerful string containers
useful:

	You cannot directly convert a StringRef to a ‘const char*’ because there is
no way to add a trailing nul (unlike the .c_str() method on various stronger
classes).

	StringRef doesn’t own or keep alive the underlying string bytes.
As such it can easily lead to dangling pointers, and is not suitable for
embedding in datastructures in most cases (instead, use an std::string or
something like that).

	For the same reason, StringRef cannot be used as the return value of a
method if the method “computes” the result string. Instead, use std::string.

	StringRef’s do not allow you to mutate the pointed-to string bytes and it
doesn’t allow you to insert or remove bytes from the range. For editing
operations like this, it interoperates with the Twine
class.

Because of its strengths and limitations, it is very common for a function to
take a StringRef and for a method on an object to return a StringRef that points
into some string that it owns.

llvm/ADT/Twine.h

The Twine class is used as an intermediary datatype for APIs that want to take a
string that can be constructed inline with a series of concatenations. Twine
works by forming recursive instances of the Twine datatype (a simple value
object) on the stack as temporary objects, linking them together into a tree
which is then linearized when the Twine is consumed. Twine is only safe to use
as the argument to a function, and should always be a const reference, e.g.:

void foo(const Twine &T);
...
StringRef X = ...
unsigned i = ...
foo(X + "." + Twine(i));

This example forms a string like “blarg.42” by concatenating the values
together, and does not form intermediate strings containing “blarg” or “blarg.”.

Because Twine is constructed with temporary objects on the stack, and because
these instances are destroyed at the end of the current statement, it is an
inherently dangerous API. For example, this simple variant contains undefined
behavior and will probably crash:

void foo(const Twine &T);
...
StringRef X = ...
unsigned i = ...
const Twine &Tmp = X + "." + Twine(i);
foo(Tmp);

… because the temporaries are destroyed before the call. That said, Twine’s
are much more efficient than intermediate std::string temporaries, and they work
really well with StringRef. Just be aware of their limitations.

llvm/ADT/SmallString.h

SmallString is a subclass of SmallVector that adds some
convenience APIs like += that takes StringRef’s. SmallString avoids allocating
memory in the case when the preallocated space is enough to hold its data, and
it calls back to general heap allocation when required. Since it owns its data,
it is very safe to use and supports full mutation of the string.

Like SmallVector’s, the big downside to SmallString is their sizeof. While they
are optimized for small strings, they themselves are not particularly small.
This means that they work great for temporary scratch buffers on the stack, but
should not generally be put into the heap: it is very rare to see a SmallString
as the member of a frequently-allocated heap data structure or returned
by-value.

std::string

The standard C++ std::string class is a very general class that (like
SmallString) owns its underlying data. sizeof(std::string) is very reasonable
so it can be embedded into heap data structures and returned by-value. On the
other hand, std::string is highly inefficient for inline editing (e.g.
concatenating a bunch of stuff together) and because it is provided by the
standard library, its performance characteristics depend a lot of the host
standard library (e.g. libc++ and MSVC provide a highly optimized string class,
GCC contains a really slow implementation).

The major disadvantage of std::string is that almost every operation that makes
them larger can allocate memory, which is slow. As such, it is better to use
SmallVector or Twine as a scratch buffer, but then use std::string to persist
the result.

Set-Like Containers (std::set, SmallSet, SetVector, etc)

Set-like containers are useful when you need to canonicalize multiple values
into a single representation. There are several different choices for how to do
this, providing various trade-offs.

A sorted ‘vector’

If you intend to insert a lot of elements, then do a lot of queries, a great
approach is to use an std::vector (or other sequential container) with
std::sort+std::unique to remove duplicates. This approach works really well if
your usage pattern has these two distinct phases (insert then query), and can be
coupled with a good choice of sequential container.

This combination provides the several nice properties: the result data is
contiguous in memory (good for cache locality), has few allocations, is easy to
address (iterators in the final vector are just indices or pointers), and can be
efficiently queried with a standard binary search (e.g.
std::lower_bound; if you want the whole range of elements comparing
equal, use std::equal_range).

llvm/ADT/SmallSet.h

If you have a set-like data structure that is usually small and whose elements
are reasonably small, a SmallSet<Type, N> is a good choice. This set has
space for N elements in place (thus, if the set is dynamically smaller than N,
no malloc traffic is required) and accesses them with a simple linear search.
When the set grows beyond N elements, it allocates a more expensive
representation that guarantees efficient access (for most types, it falls back
to std::set, but for pointers it uses something far better,
SmallPtrSet.

The magic of this class is that it handles small sets extremely efficiently, but
gracefully handles extremely large sets without loss of efficiency. The
drawback is that the interface is quite small: it supports insertion, queries
and erasing, but does not support iteration.

llvm/ADT/SmallPtrSet.h

SmallPtrSet has all the advantages of SmallSet (and a SmallSet of
pointers is transparently implemented with a SmallPtrSet), but also supports
iterators. If more than N insertions are performed, a single quadratically
probed hash table is allocated and grows as needed, providing extremely
efficient access (constant time insertion/deleting/queries with low constant
factors) and is very stingy with malloc traffic.

Note that, unlike std::set, the iterators of SmallPtrSet
are invalidated whenever an insertion occurs. Also, the values visited by the
iterators are not visited in sorted order.

llvm/ADT/StringSet.h

StringSet is a thin wrapper around StringMap<char>,
and it allows efficient storage and retrieval of unique strings.

Functionally analogous to SmallSet<StringRef>, StringSet also supports
iteration. (The iterator dereferences to a StringMapEntry<char>, so you
need to call i->getKey() to access the item of the StringSet.) On the
other hand, StringSet doesn’t support range-insertion and
copy-construction, which SmallSet and SmallPtrSet do support.

llvm/ADT/DenseSet.h

DenseSet is a simple quadratically probed hash table. It excels at supporting
small values: it uses a single allocation to hold all of the pairs that are
currently inserted in the set. DenseSet is a great way to unique small values
that are not simple pointers (use SmallPtrSet for
pointers). Note that DenseSet has the same requirements for the value type that
DenseMap has.

llvm/ADT/SparseSet.h

SparseSet holds a small number of objects identified by unsigned keys of
moderate size. It uses a lot of memory, but provides operations that are almost
as fast as a vector. Typical keys are physical registers, virtual registers, or
numbered basic blocks.

SparseSet is useful for algorithms that need very fast clear/find/insert/erase
and fast iteration over small sets. It is not intended for building composite
data structures.

llvm/ADT/SparseMultiSet.h

SparseMultiSet adds multiset behavior to SparseSet, while retaining SparseSet’s
desirable attributes. Like SparseSet, it typically uses a lot of memory, but
provides operations that are almost as fast as a vector. Typical keys are
physical registers, virtual registers, or numbered basic blocks.

SparseMultiSet is useful for algorithms that need very fast
clear/find/insert/erase of the entire collection, and iteration over sets of
elements sharing a key. It is often a more efficient choice than using composite
data structures (e.g. vector-of-vectors, map-of-vectors). It is not intended for
building composite data structures.

llvm/ADT/FoldingSet.h

FoldingSet is an aggregate class that is really good at uniquing
expensive-to-create or polymorphic objects. It is a combination of a chained
hash table with intrusive links (uniqued objects are required to inherit from
FoldingSetNode) that uses SmallVector as part of its ID
process.

Consider a case where you want to implement a “getOrCreateFoo” method for a
complex object (for example, a node in the code generator). The client has a
description of what it wants to generate (it knows the opcode and all the
operands), but we don’t want to ‘new’ a node, then try inserting it into a set
only to find out it already exists, at which point we would have to delete it
and return the node that already exists.

To support this style of client, FoldingSet perform a query with a
FoldingSetNodeID (which wraps SmallVector) that can be used to describe the
element that we want to query for. The query either returns the element
matching the ID or it returns an opaque ID that indicates where insertion should
take place. Construction of the ID usually does not require heap traffic.

Because FoldingSet uses intrusive links, it can support polymorphic objects in
the set (for example, you can have SDNode instances mixed with LoadSDNodes).
Because the elements are individually allocated, pointers to the elements are
stable: inserting or removing elements does not invalidate any pointers to other
elements.

<set>

std::set is a reasonable all-around set class, which is decent at many
things but great at nothing. std::set allocates memory for each element
inserted (thus it is very malloc intensive) and typically stores three pointers
per element in the set (thus adding a large amount of per-element space
overhead). It offers guaranteed log(n) performance, which is not particularly
fast from a complexity standpoint (particularly if the elements of the set are
expensive to compare, like strings), and has extremely high constant factors for
lookup, insertion and removal.

The advantages of std::set are that its iterators are stable (deleting or
inserting an element from the set does not affect iterators or pointers to other
elements) and that iteration over the set is guaranteed to be in sorted order.
If the elements in the set are large, then the relative overhead of the pointers
and malloc traffic is not a big deal, but if the elements of the set are small,
std::set is almost never a good choice.

llvm/ADT/SetVector.h

LLVM’s SetVector<Type> is an adapter class that combines your choice of a
set-like container along with a Sequential Container The
important property that this provides is efficient insertion with uniquing
(duplicate elements are ignored) with iteration support. It implements this by
inserting elements into both a set-like container and the sequential container,
using the set-like container for uniquing and the sequential container for
iteration.

The difference between SetVector and other sets is that the order of iteration
is guaranteed to match the order of insertion into the SetVector. This property
is really important for things like sets of pointers. Because pointer values
are non-deterministic (e.g. vary across runs of the program on different
machines), iterating over the pointers in the set will not be in a well-defined
order.

The drawback of SetVector is that it requires twice as much space as a normal
set and has the sum of constant factors from the set-like container and the
sequential container that it uses. Use it only if you need to iterate over
the elements in a deterministic order. SetVector is also expensive to delete
elements out of (linear time), unless you use its “pop_back” method, which is
faster.

SetVector is an adapter class that defaults to using std::vector and a
size 16 SmallSet for the underlying containers, so it is quite expensive.
However, "llvm/ADT/SetVector.h" also provides a SmallSetVector class,
which defaults to using a SmallVector and SmallSet of a specified size.
If you use this, and if your sets are dynamically smaller than N, you will
save a lot of heap traffic.

llvm/ADT/UniqueVector.h

UniqueVector is similar to SetVector but it retains a
unique ID for each element inserted into the set. It internally contains a map
and a vector, and it assigns a unique ID for each value inserted into the set.

UniqueVector is very expensive: its cost is the sum of the cost of maintaining
both the map and vector, it has high complexity, high constant factors, and
produces a lot of malloc traffic. It should be avoided.

llvm/ADT/ImmutableSet.h

ImmutableSet is an immutable (functional) set implementation based on an AVL
tree. Adding or removing elements is done through a Factory object and results
in the creation of a new ImmutableSet object. If an ImmutableSet already exists
with the given contents, then the existing one is returned; equality is compared
with a FoldingSetNodeID. The time and space complexity of add or remove
operations is logarithmic in the size of the original set.

There is no method for returning an element of the set, you can only check for
membership.

Other Set-Like Container Options

The STL provides several other options, such as std::multiset and the various
“hash_set” like containers (whether from C++ TR1 or from the SGI library). We
never use hash_set and unordered_set because they are generally very expensive
(each insertion requires a malloc) and very non-portable.

std::multiset is useful if you’re not interested in elimination of duplicates,
but has all the drawbacks of std::set. A sorted vector
(where you don’t delete duplicate entries) or some other approach is almost
always better.

Map-Like Containers (std::map, DenseMap, etc)

Map-like containers are useful when you want to associate data to a key. As
usual, there are a lot of different ways to do this. :)

A sorted ‘vector’

If your usage pattern follows a strict insert-then-query approach, you can
trivially use the same approach as sorted vectors for set-like containers. The only difference is that your query function (which
uses std::lower_bound to get efficient log(n) lookup) should only compare the
key, not both the key and value. This yields the same advantages as sorted
vectors for sets.

llvm/ADT/StringMap.h

Strings are commonly used as keys in maps, and they are difficult to support
efficiently: they are variable length, inefficient to hash and compare when
long, expensive to copy, etc. StringMap is a specialized container designed to
cope with these issues. It supports mapping an arbitrary range of bytes to an
arbitrary other object.

The StringMap implementation uses a quadratically-probed hash table, where the
buckets store a pointer to the heap allocated entries (and some other stuff).
The entries in the map must be heap allocated because the strings are variable
length. The string data (key) and the element object (value) are stored in the
same allocation with the string data immediately after the element object.
This container guarantees the “(char*)(&Value+1)” points to the key string
for a value.

The StringMap is very fast for several reasons: quadratic probing is very cache
efficient for lookups, the hash value of strings in buckets is not recomputed
when looking up an element, StringMap rarely has to touch the memory for
unrelated objects when looking up a value (even when hash collisions happen),
hash table growth does not recompute the hash values for strings already in the
table, and each pair in the map is store in a single allocation (the string data
is stored in the same allocation as the Value of a pair).

StringMap also provides query methods that take byte ranges, so it only ever
copies a string if a value is inserted into the table.

StringMap iteration order, however, is not guaranteed to be deterministic, so
any uses which require that should instead use a std::map.

llvm/ADT/IndexedMap.h

IndexedMap is a specialized container for mapping small dense integers (or
values that can be mapped to small dense integers) to some other type. It is
internally implemented as a vector with a mapping function that maps the keys
to the dense integer range.

This is useful for cases like virtual registers in the LLVM code generator: they
have a dense mapping that is offset by a compile-time constant (the first
virtual register ID).

llvm/ADT/DenseMap.h

DenseMap is a simple quadratically probed hash table. It excels at supporting
small keys and values: it uses a single allocation to hold all of the pairs
that are currently inserted in the map. DenseMap is a great way to map
pointers to pointers, or map other small types to each other.

There are several aspects of DenseMap that you should be aware of, however.
The iterators in a DenseMap are invalidated whenever an insertion occurs,
unlike map. Also, because DenseMap allocates space for a large number of
key/value pairs (it starts with 64 by default), it will waste a lot of space if
your keys or values are large. Finally, you must implement a partial
specialization of DenseMapInfo for the key that you want, if it isn’t already
supported. This is required to tell DenseMap about two special marker values
(which can never be inserted into the map) that it needs internally.

DenseMap’s find_as() method supports lookup operations using an alternate key
type. This is useful in cases where the normal key type is expensive to
construct, but cheap to compare against. The DenseMapInfo is responsible for
defining the appropriate comparison and hashing methods for each alternate key
type used.

llvm/IR/ValueMap.h

ValueMap is a wrapper around a DenseMap mapping
Value*s (or subclasses) to another type. When a Value is deleted or
RAUW’ed, ValueMap will update itself so the new version of the key is mapped to
the same value, just as if the key were a WeakVH. You can configure exactly how
this happens, and what else happens on these two events, by passing a Config
parameter to the ValueMap template.

llvm/ADT/IntervalMap.h

IntervalMap is a compact map for small keys and values. It maps key intervals
instead of single keys, and it will automatically coalesce adjacent intervals.
When the map only contains a few intervals, they are stored in the map object
itself to avoid allocations.

The IntervalMap iterators are quite big, so they should not be passed around as
STL iterators. The heavyweight iterators allow a smaller data structure.

<map>

std::map has similar characteristics to std::set: it uses a
single allocation per pair inserted into the map, it offers log(n) lookup with
an extremely large constant factor, imposes a space penalty of 3 pointers per
pair in the map, etc.

std::map is most useful when your keys or values are very large, if you need to
iterate over the collection in sorted order, or if you need stable iterators
into the map (i.e. they don’t get invalidated if an insertion or deletion of
another element takes place).

llvm/ADT/MapVector.h

MapVector<KeyT,ValueT> provides a subset of the DenseMap interface. The
main difference is that the iteration order is guaranteed to be the insertion
order, making it an easy (but somewhat expensive) solution for non-deterministic
iteration over maps of pointers.

It is implemented by mapping from key to an index in a vector of key,value
pairs. This provides fast lookup and iteration, but has two main drawbacks:
the key is stored twice and removing elements takes linear time. If it is
necessary to remove elements, it’s best to remove them in bulk using
remove_if().

llvm/ADT/IntEqClasses.h

IntEqClasses provides a compact representation of equivalence classes of small
integers. Initially, each integer in the range 0..n-1 has its own equivalence
class. Classes can be joined by passing two class representatives to the
join(a, b) method. Two integers are in the same class when findLeader() returns
the same representative.

Once all equivalence classes are formed, the map can be compressed so each
integer 0..n-1 maps to an equivalence class number in the range 0..m-1, where m
is the total number of equivalence classes. The map must be uncompressed before
it can be edited again.

llvm/ADT/ImmutableMap.h

ImmutableMap is an immutable (functional) map implementation based on an AVL
tree. Adding or removing elements is done through a Factory object and results
in the creation of a new ImmutableMap object. If an ImmutableMap already exists
with the given key set, then the existing one is returned; equality is compared
with a FoldingSetNodeID. The time and space complexity of add or remove
operations is logarithmic in the size of the original map.

Other Map-Like Container Options

The STL provides several other options, such as std::multimap and the various
“hash_map” like containers (whether from C++ TR1 or from the SGI library). We
never use hash_set and unordered_set because they are generally very expensive
(each insertion requires a malloc) and very non-portable.

std::multimap is useful if you want to map a key to multiple values, but has all
the drawbacks of std::map. A sorted vector or some other approach is almost
always better.

Bit storage containers (BitVector, SparseBitVector)

Unlike the other containers, there are only two bit storage containers, and
choosing when to use each is relatively straightforward.

One additional option is std::vector<bool>: we discourage its use for two
reasons 1) the implementation in many common compilers (e.g. commonly
available versions of GCC) is extremely inefficient and 2) the C++ standards
committee is likely to deprecate this container and/or change it significantly
somehow. In any case, please don’t use it.

BitVector

The BitVector container provides a dynamic size set of bits for manipulation.
It supports individual bit setting/testing, as well as set operations. The set
operations take time O(size of bitvector), but operations are performed one word
at a time, instead of one bit at a time. This makes the BitVector very fast for
set operations compared to other containers. Use the BitVector when you expect
the number of set bits to be high (i.e. a dense set).

SmallBitVector

The SmallBitVector container provides the same interface as BitVector, but it is
optimized for the case where only a small number of bits, less than 25 or so,
are needed. It also transparently supports larger bit counts, but slightly less
efficiently than a plain BitVector, so SmallBitVector should only be used when
larger counts are rare.

At this time, SmallBitVector does not support set operations (and, or, xor), and
its operator[] does not provide an assignable lvalue.

SparseBitVector

The SparseBitVector container is much like BitVector, with one major difference:
Only the bits that are set, are stored. This makes the SparseBitVector much
more space efficient than BitVector when the set is sparse, as well as making
set operations O(number of set bits) instead of O(size of universe). The
downside to the SparseBitVector is that setting and testing of random bits is
O(N), and on large SparseBitVectors, this can be slower than BitVector. In our
implementation, setting or testing bits in sorted order (either forwards or
reverse) is O(1) worst case. Testing and setting bits within 128 bits (depends
on size) of the current bit is also O(1). As a general statement,
testing/setting bits in a SparseBitVector is O(distance away from last set bit).

Debugging

A handful of GDB pretty printers [https://sourceware.org/gdb/onlinedocs/gdb/Pretty-Printing.html] are
provided for some of the core LLVM libraries. To use them, execute the
following (or add it to your ~/.gdbinit):

source /path/to/llvm/src/utils/gdb-scripts/prettyprinters.py

It also might be handy to enable the print pretty [http://ftp.gnu.org/old-gnu/Manuals/gdb/html_node/gdb_57.html] option to
avoid data structures being printed as a big block of text.

Helpful Hints for Common Operations

This section describes how to perform some very simple transformations of LLVM
code. This is meant to give examples of common idioms used, showing the
practical side of LLVM transformations.

Because this is a “how-to” section, you should also read about the main classes
that you will be working with. The Core LLVM Class Hierarchy Reference contains details and descriptions of the main classes that you
should know about.

Basic Inspection and Traversal Routines

The LLVM compiler infrastructure have many different data structures that may be
traversed. Following the example of the C++ standard template library, the
techniques used to traverse these various data structures are all basically the
same. For a enumerable sequence of values, the XXXbegin() function (or
method) returns an iterator to the start of the sequence, the XXXend()
function returns an iterator pointing to one past the last valid element of the
sequence, and there is some XXXiterator data type that is common between the
two operations.

Because the pattern for iteration is common across many different aspects of the
program representation, the standard template library algorithms may be used on
them, and it is easier to remember how to iterate. First we show a few common
examples of the data structures that need to be traversed. Other data
structures are traversed in very similar ways.

Iterating over the BasicBlock in a Function

It’s quite common to have a Function instance that you’d like to transform
in some way; in particular, you’d like to manipulate its BasicBlocks. To
facilitate this, you’ll need to iterate over all of the BasicBlocks that
constitute the Function. The following is an example that prints the name
of a BasicBlock and the number of Instructions it contains:

Function &Func = ...
for (BasicBlock &BB : Func)
 // Print out the name of the basic block if it has one, and then the
 // number of instructions that it contains
 errs() << "Basic block (name=" << BB.getName() << ") has "
 << BB.size() << " instructions.\n";

Iterating over the Instruction in a BasicBlock

Just like when dealing with BasicBlocks in Functions, it’s easy to
iterate over the individual instructions that make up BasicBlocks. Here’s
a code snippet that prints out each instruction in a BasicBlock:

BasicBlock& BB = ...
for (Instruction &I : BB)
 // The next statement works since operator<<(ostream&,...)
 // is overloaded for Instruction&
 errs() << I << "\n";

However, this isn’t really the best way to print out the contents of a
BasicBlock! Since the ostream operators are overloaded for virtually
anything you’ll care about, you could have just invoked the print routine on the
basic block itself: errs() << BB << "\n";.

Iterating over the Instruction in a Function

If you’re finding that you commonly iterate over a Function’s
BasicBlocks and then that BasicBlock’s Instructions,
InstIterator should be used instead. You’ll need to include
llvm/IR/InstIterator.h (doxygen [http://llvm.org/doxygen/InstIterator_8h.html]) and then instantiate
InstIterators explicitly in your code. Here’s a small example that shows
how to dump all instructions in a function to the standard error stream:

#include "llvm/IR/InstIterator.h"

// F is a pointer to a Function instance
for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
 errs() << *I << "\n";

Easy, isn’t it? You can also use InstIterators to fill a work list with
its initial contents. For example, if you wanted to initialize a work list to
contain all instructions in a Function F, all you would need to do is
something like:

std::set<Instruction*> worklist;
// or better yet, SmallPtrSet<Instruction*, 64> worklist;

for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
 worklist.insert(&*I);

The STL set worklist would now contain all instructions in the Function
pointed to by F.

Turning an iterator into a class pointer (and vice-versa)

Sometimes, it’ll be useful to grab a reference (or pointer) to a class instance
when all you’ve got at hand is an iterator. Well, extracting a reference or a
pointer from an iterator is very straight-forward. Assuming that i is a
BasicBlock::iterator and j is a BasicBlock::const_iterator:

Instruction& inst = *i; // Grab reference to instruction reference
Instruction* pinst = &*i; // Grab pointer to instruction reference
const Instruction& inst = *j;

However, the iterators you’ll be working with in the LLVM framework are special:
they will automatically convert to a ptr-to-instance type whenever they need to.
Instead of dereferencing the iterator and then taking the address of the result,
you can simply assign the iterator to the proper pointer type and you get the
dereference and address-of operation as a result of the assignment (behind the
scenes, this is a result of overloading casting mechanisms). Thus the second
line of the last example,

Instruction *pinst = &*i;

is semantically equivalent to

Instruction *pinst = i;

It’s also possible to turn a class pointer into the corresponding iterator, and
this is a constant time operation (very efficient). The following code snippet
illustrates use of the conversion constructors provided by LLVM iterators. By
using these, you can explicitly grab the iterator of something without actually
obtaining it via iteration over some structure:

void printNextInstruction(Instruction* inst) {
 BasicBlock::iterator it(inst);
 ++it; // After this line, it refers to the instruction after *inst
 if (it != inst->getParent()->end()) errs() << *it << "\n";
}

Unfortunately, these implicit conversions come at a cost; they prevent these
iterators from conforming to standard iterator conventions, and thus from being
usable with standard algorithms and containers. For example, they prevent the
following code, where B is a BasicBlock, from compiling:

llvm::SmallVector<llvm::Instruction *, 16>(B->begin(), B->end());

Because of this, these implicit conversions may be removed some day, and
operator* changed to return a pointer instead of a reference.

Finding call sites: a slightly more complex example

Say that you’re writing a FunctionPass and would like to count all the locations
in the entire module (that is, across every Function) where a certain
function (i.e., some Function *) is already in scope. As you’ll learn
later, you may want to use an InstVisitor to accomplish this in a much more
straight-forward manner, but this example will allow us to explore how you’d do
it if you didn’t have InstVisitor around. In pseudo-code, this is what we
want to do:

initialize callCounter to zero
for each Function f in the Module
 for each BasicBlock b in f
 for each Instruction i in b
 if (i is a CallInst and calls the given function)
 increment callCounter

And the actual code is (remember, because we’re writing a FunctionPass, our
FunctionPass-derived class simply has to override the runOnFunction
method):

Function* targetFunc = ...;

class OurFunctionPass : public FunctionPass {
 public:
 OurFunctionPass(): callCounter(0) { }

 virtual runOnFunction(Function& F) {
 for (BasicBlock &B : F) {
 for (Instruction &I: B) {
 if (auto *CallInst = dyn_cast<CallInst>(&I)) {
 // We know we've encountered a call instruction, so we
 // need to determine if it's a call to the
 // function pointed to by m_func or not.
 if (CallInst->getCalledFunction() == targetFunc)
 ++callCounter;
 }
 }
 }
 }

 private:
 unsigned callCounter;
};

Treating calls and invokes the same way

You may have noticed that the previous example was a bit oversimplified in that
it did not deal with call sites generated by ‘invoke’ instructions. In this,
and in other situations, you may find that you want to treat CallInsts and
InvokeInsts the same way, even though their most-specific common base
class is Instruction, which includes lots of less closely-related things.
For these cases, LLVM provides a handy wrapper class called CallSite
(doxygen [http://llvm.org/doxygen/classllvm_1_1CallSite.html]) It is
essentially a wrapper around an Instruction pointer, with some methods that
provide functionality common to CallInsts and InvokeInsts.

This class has “value semantics”: it should be passed by value, not by reference
and it should not be dynamically allocated or deallocated using operator new
or operator delete. It is efficiently copyable, assignable and
constructable, with costs equivalents to that of a bare pointer. If you look at
its definition, it has only a single pointer member.

Iterating over def-use & use-def chains

Frequently, we might have an instance of the Value class (doxygen [http://llvm.org/doxygen/classllvm_1_1Value.html]) and we want to determine
which User s use the Value. The list of all Users of a particular
Value is called a def-use chain. For example, let’s say we have a
Function* named F to a particular function foo. Finding all of the
instructions that use foo is as simple as iterating over the def-use
chain of F:

Function *F = ...;

for (User *U : F->users()) {
 if (Instruction *Inst = dyn_cast<Instruction>(U)) {
 errs() << "F is used in instruction:\n";
 errs() << *Inst << "\n";
 }

Alternatively, it’s common to have an instance of the User Class (doxygen [http://llvm.org/doxygen/classllvm_1_1User.html]) and need to know what
Values are used by it. The list of all Values used by a User is
known as a use-def chain. Instances of class Instruction are common
User s, so we might want to iterate over all of the values that a particular
instruction uses (that is, the operands of the particular Instruction):

Instruction *pi = ...;

for (Use &U : pi->operands()) {
 Value *v = U.get();
 // ...
}

Declaring objects as const is an important tool of enforcing mutation free
algorithms (such as analyses, etc.). For this purpose above iterators come in
constant flavors as Value::const_use_iterator and
Value::const_op_iterator. They automatically arise when calling
use/op_begin() on const Value*s or const User*s respectively.
Upon dereferencing, they return const Use*s. Otherwise the above patterns
remain unchanged.

Iterating over predecessors & successors of blocks

Iterating over the predecessors and successors of a block is quite easy with the
routines defined in "llvm/IR/CFG.h". Just use code like this to
iterate over all predecessors of BB:

#include "llvm/IR/CFG.h"
BasicBlock *BB = ...;

for (BasicBlock *Pred : predecessors(BB)) {
 // ...
}

Similarly, to iterate over successors use successors.

Making simple changes

There are some primitive transformation operations present in the LLVM
infrastructure that are worth knowing about. When performing transformations,
it’s fairly common to manipulate the contents of basic blocks. This section
describes some of the common methods for doing so and gives example code.

Creating and inserting new Instructions

Instantiating Instructions

Creation of Instructions is straight-forward: simply call the constructor
for the kind of instruction to instantiate and provide the necessary parameters.
For example, an AllocaInst only requires a (const-ptr-to) Type. Thus:

auto *ai = new AllocaInst(Type::Int32Ty);

will create an AllocaInst instance that represents the allocation of one
integer in the current stack frame, at run time. Each Instruction subclass
is likely to have varying default parameters which change the semantics of the
instruction, so refer to the doxygen documentation for the subclass of
Instruction [http://llvm.org/doxygen/classllvm_1_1Instruction.html] that
you’re interested in instantiating.

Naming values

It is very useful to name the values of instructions when you’re able to, as
this facilitates the debugging of your transformations. If you end up looking
at generated LLVM machine code, you definitely want to have logical names
associated with the results of instructions! By supplying a value for the
Name (default) parameter of the Instruction constructor, you associate a
logical name with the result of the instruction’s execution at run time. For
example, say that I’m writing a transformation that dynamically allocates space
for an integer on the stack, and that integer is going to be used as some kind
of index by some other code. To accomplish this, I place an AllocaInst at
the first point in the first BasicBlock of some Function, and I’m
intending to use it within the same Function. I might do:

auto *pa = new AllocaInst(Type::Int32Ty, 0, "indexLoc");

where indexLoc is now the logical name of the instruction’s execution value,
which is a pointer to an integer on the run time stack.

Inserting instructions

There are essentially three ways to insert an Instruction into an existing
sequence of instructions that form a BasicBlock:

	Insertion into an explicit instruction list

Given a BasicBlock* pb, an Instruction* pi within that BasicBlock,
and a newly-created instruction we wish to insert before *pi, we do the
following:

BasicBlock *pb = ...;
Instruction *pi = ...;
auto *newInst = new Instruction(...);

pb->getInstList().insert(pi, newInst); // Inserts newInst before pi in pb

Appending to the end of a BasicBlock is so common that the Instruction
class and Instruction-derived classes provide constructors which take a
pointer to a BasicBlock to be appended to. For example code that looked
like:

BasicBlock *pb = ...;
auto *newInst = new Instruction(...);

pb->getInstList().push_back(newInst); // Appends newInst to pb

becomes:

BasicBlock *pb = ...;
auto *newInst = new Instruction(..., pb);

which is much cleaner, especially if you are creating long instruction
streams.

	Insertion into an implicit instruction list

Instruction instances that are already in BasicBlocks are implicitly
associated with an existing instruction list: the instruction list of the
enclosing basic block. Thus, we could have accomplished the same thing as the
above code without being given a BasicBlock by doing:

Instruction *pi = ...;
auto *newInst = new Instruction(...);

pi->getParent()->getInstList().insert(pi, newInst);

In fact, this sequence of steps occurs so frequently that the Instruction
class and Instruction-derived classes provide constructors which take (as
a default parameter) a pointer to an Instruction which the newly-created
Instruction should precede. That is, Instruction constructors are
capable of inserting the newly-created instance into the BasicBlock of a
provided instruction, immediately before that instruction. Using an
Instruction constructor with a insertBefore (default) parameter, the
above code becomes:

Instruction* pi = ...;
auto *newInst = new Instruction(..., pi);

which is much cleaner, especially if you’re creating a lot of instructions and
adding them to BasicBlocks.

	Insertion using an instance of IRBuilder

Inserting several Instructions can be quite laborious using the previous
methods. The IRBuilder is a convenience class that can be used to add
several instructions to the end of a BasicBlock or before a particular
Instruction. It also supports constant folding and renaming named
registers (see IRBuilder’s template arguments).

The example below demonstrates a very simple use of the IRBuilder where
three instructions are inserted before the instruction pi. The first two
instructions are Call instructions and third instruction multiplies the return
value of the two calls.

Instruction *pi = ...;
IRBuilder<> Builder(pi);
CallInst* callOne = Builder.CreateCall(...);
CallInst* callTwo = Builder.CreateCall(...);
Value* result = Builder.CreateMul(callOne, callTwo);

The example below is similar to the above example except that the created
IRBuilder inserts instructions at the end of the BasicBlock pb.

BasicBlock *pb = ...;
IRBuilder<> Builder(pb);
CallInst* callOne = Builder.CreateCall(...);
CallInst* callTwo = Builder.CreateCall(...);
Value* result = Builder.CreateMul(callOne, callTwo);

See Kaleidoscope: Code generation to LLVM IR for a practical use of the IRBuilder.

Deleting Instructions

Deleting an instruction from an existing sequence of instructions that form a
BasicBlock is very straight-forward: just call the instruction’s
eraseFromParent() method. For example:

Instruction *I = .. ;
I->eraseFromParent();

This unlinks the instruction from its containing basic block and deletes it. If
you’d just like to unlink the instruction from its containing basic block but
not delete it, you can use the removeFromParent() method.

Replacing an Instruction with another Value

Replacing individual instructions

Including “llvm/Transforms/Utils/BasicBlockUtils.h [http://llvm.org/doxygen/BasicBlockUtils_8h_source.html]” permits use of two
very useful replace functions: ReplaceInstWithValue and
ReplaceInstWithInst.

Deleting Instructions

	ReplaceInstWithValue

This function replaces all uses of a given instruction with a value, and then
removes the original instruction. The following example illustrates the
replacement of the result of a particular AllocaInst that allocates memory
for a single integer with a null pointer to an integer.

AllocaInst* instToReplace = ...;
BasicBlock::iterator ii(instToReplace);

ReplaceInstWithValue(instToReplace->getParent()->getInstList(), ii,
 Constant::getNullValue(PointerType::getUnqual(Type::Int32Ty)));

	ReplaceInstWithInst

This function replaces a particular instruction with another instruction,
inserting the new instruction into the basic block at the location where the
old instruction was, and replacing any uses of the old instruction with the
new instruction. The following example illustrates the replacement of one
AllocaInst with another.

AllocaInst* instToReplace = ...;
BasicBlock::iterator ii(instToReplace);

ReplaceInstWithInst(instToReplace->getParent()->getInstList(), ii,
 new AllocaInst(Type::Int32Ty, 0, "ptrToReplacedInt"));

Replacing multiple uses of Users and Values

You can use Value::replaceAllUsesWith and User::replaceUsesOfWith to
change more than one use at a time. See the doxygen documentation for the
Value Class [http://llvm.org/doxygen/classllvm_1_1Value.html] and User Class [http://llvm.org/doxygen/classllvm_1_1User.html], respectively, for more
information.

Deleting GlobalVariables

Deleting a global variable from a module is just as easy as deleting an
Instruction. First, you must have a pointer to the global variable that you
wish to delete. You use this pointer to erase it from its parent, the module.
For example:

GlobalVariable *GV = .. ;

GV->eraseFromParent();

How to Create Types

In generating IR, you may need some complex types. If you know these types
statically, you can use TypeBuilder<...>::get(), defined in
llvm/Support/TypeBuilder.h, to retrieve them. TypeBuilder has two forms
depending on whether you’re building types for cross-compilation or native
library use. TypeBuilder<T, true> requires that T be independent of the
host environment, meaning that it’s built out of types from the llvm::types
(doxygen [http://llvm.org/doxygen/namespacellvm_1_1types.html]) namespace
and pointers, functions, arrays, etc. built of those. TypeBuilder<T, false>
additionally allows native C types whose size may depend on the host compiler.
For example,

FunctionType *ft = TypeBuilder<types::i<8>(types::i<32>*), true>::get();

is easier to read and write than the equivalent

std::vector<const Type*> params;
params.push_back(PointerType::getUnqual(Type::Int32Ty));
FunctionType *ft = FunctionType::get(Type::Int8Ty, params, false);

See the class comment [http://llvm.org/doxygen/TypeBuilder_8h_source.html#l00001] for more details.

Threads and LLVM

This section describes the interaction of the LLVM APIs with multithreading,
both on the part of client applications, and in the JIT, in the hosted
application.

Note that LLVM’s support for multithreading is still relatively young. Up
through version 2.5, the execution of threaded hosted applications was
supported, but not threaded client access to the APIs. While this use case is
now supported, clients must adhere to the guidelines specified below to ensure
proper operation in multithreaded mode.

Note that, on Unix-like platforms, LLVM requires the presence of GCC’s atomic
intrinsics in order to support threaded operation. If you need a
multhreading-capable LLVM on a platform without a suitably modern system
compiler, consider compiling LLVM and LLVM-GCC in single-threaded mode, and
using the resultant compiler to build a copy of LLVM with multithreading
support.

Ending Execution with llvm_shutdown()

When you are done using the LLVM APIs, you should call llvm_shutdown() to
deallocate memory used for internal structures.

Lazy Initialization with ManagedStatic

ManagedStatic is a utility class in LLVM used to implement static
initialization of static resources, such as the global type tables. In a
single-threaded environment, it implements a simple lazy initialization scheme.
When LLVM is compiled with support for multi-threading, however, it uses
double-checked locking to implement thread-safe lazy initialization.

Achieving Isolation with LLVMContext

LLVMContext is an opaque class in the LLVM API which clients can use to
operate multiple, isolated instances of LLVM concurrently within the same
address space. For instance, in a hypothetical compile-server, the compilation
of an individual translation unit is conceptually independent from all the
others, and it would be desirable to be able to compile incoming translation
units concurrently on independent server threads. Fortunately, LLVMContext
exists to enable just this kind of scenario!

Conceptually, LLVMContext provides isolation. Every LLVM entity
(Modules, Values, Types, Constants, etc.) in LLVM’s
in-memory IR belongs to an LLVMContext. Entities in different contexts
cannot interact with each other: Modules in different contexts cannot be
linked together, Functions cannot be added to Modules in different
contexts, etc. What this means is that is safe to compile on multiple
threads simultaneously, as long as no two threads operate on entities within the
same context.

In practice, very few places in the API require the explicit specification of a
LLVMContext, other than the Type creation/lookup APIs. Because every
Type carries a reference to its owning context, most other entities can
determine what context they belong to by looking at their own Type. If you
are adding new entities to LLVM IR, please try to maintain this interface
design.

Threads and the JIT

LLVM’s “eager” JIT compiler is safe to use in threaded programs. Multiple
threads can call ExecutionEngine::getPointerToFunction() or
ExecutionEngine::runFunction() concurrently, and multiple threads can run
code output by the JIT concurrently. The user must still ensure that only one
thread accesses IR in a given LLVMContext while another thread might be
modifying it. One way to do that is to always hold the JIT lock while accessing
IR outside the JIT (the JIT modifies the IR by adding CallbackVHs).
Another way is to only call getPointerToFunction() from the
LLVMContext’s thread.

When the JIT is configured to compile lazily (using
ExecutionEngine::DisableLazyCompilation(false)), there is currently a race
condition [https://bugs.llvm.org/show_bug.cgi?id=5184] in updating call sites
after a function is lazily-jitted. It’s still possible to use the lazy JIT in a
threaded program if you ensure that only one thread at a time can call any
particular lazy stub and that the JIT lock guards any IR access, but we suggest
using only the eager JIT in threaded programs.

Advanced Topics

This section describes some of the advanced or obscure API’s that most clients
do not need to be aware of. These API’s tend manage the inner workings of the
LLVM system, and only need to be accessed in unusual circumstances.

The ValueSymbolTable class

The ValueSymbolTable (doxygen [http://llvm.org/doxygen/classllvm_1_1ValueSymbolTable.html]) class provides
a symbol table that the Function and Module classes use for
naming value definitions. The symbol table can provide a name for any Value.

Note that the SymbolTable class should not be directly accessed by most
clients. It should only be used when iteration over the symbol table names
themselves are required, which is very special purpose. Note that not all LLVM
Values have names, and those without names (i.e. they have an empty name) do
not exist in the symbol table.

Symbol tables support iteration over the values in the symbol table with
begin/end/iterator and supports querying to see if a specific name is in the
symbol table (with lookup). The ValueSymbolTable class exposes no
public mutator methods, instead, simply call setName on a value, which will
autoinsert it into the appropriate symbol table.

The User and owned Use classes’ memory layout

The User (doxygen [http://llvm.org/doxygen/classllvm_1_1User.html])
class provides a basis for expressing the ownership of User towards other
Value instance [http://llvm.org/doxygen/classllvm_1_1Value.html]s. The
Use (doxygen [http://llvm.org/doxygen/classllvm_1_1Use.html]) helper
class is employed to do the bookkeeping and to facilitate O(1) addition and
removal.

Interaction and relationship between User and Use objects

A subclass of User can choose between incorporating its Use objects or
refer to them out-of-line by means of a pointer. A mixed variant (some Use
s inline others hung off) is impractical and breaks the invariant that the
Use objects belonging to the same User form a contiguous array.

We have 2 different layouts in the User (sub)classes:

	Layout a)

The Use object(s) are inside (resp. at fixed offset) of the User
object and there are a fixed number of them.

	Layout b)

The Use object(s) are referenced by a pointer to an array from the
User object and there may be a variable number of them.

As of v2.4 each layout still possesses a direct pointer to the start of the
array of Uses. Though not mandatory for layout a), we stick to this
redundancy for the sake of simplicity. The User object also stores the
number of Use objects it has. (Theoretically this information can also be
calculated given the scheme presented below.)

Special forms of allocation operators (operator new) enforce the following
memory layouts:

	Layout a) is modelled by prepending the User object by the Use[]
array.

...---.---.---.---.-------...
 | P | P | P | P | User
'''---'---'---'---'-------'''

	Layout b) is modelled by pointing at the Use[] array.

.-------...
| User
'-------'''
 |
 v
 .---.---.---.---...
 | P | P | P | P |
 '---'---'---'---'''

(In the above figures ‘P’ stands for the Use** that is stored in
each Use object in the member Use::Prev)

The waymarking algorithm

Since the Use objects are deprived of the direct (back)pointer to their
User objects, there must be a fast and exact method to recover it. This is
accomplished by the following scheme:

A bit-encoding in the 2 LSBits (least significant bits) of the Use::Prev
allows to find the start of the User object:

	00 — binary digit 0

	01 — binary digit 1

	10 — stop and calculate (s)

	11 — full stop (S)

Given a Use*, all we have to do is to walk till we get a stop and we either
have a User immediately behind or we have to walk to the next stop picking
up digits and calculating the offset:

.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.----------------
| 1 | s | 1 | 0 | 1 | 0 | s | 1 | 1 | 0 | s | 1 | 1 | s | 1 | S | User (or User*)
'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'----------------
 |+15 |+10 |+6 |+3 |+1
 | | | | | __>
 | | | | __________>
 | | | ______________________>
 | | ______________________________________>
 | __>

Only the significant number of bits need to be stored between the stops, so that
the worst case is 20 memory accesses when there are 1000 Use objects
associated with a User.

Reference implementation

The following literate Haskell fragment demonstrates the concept:

> import Test.QuickCheck
>
> digits :: Int -> [Char] -> [Char]
> digits 0 acc = '0' : acc
> digits 1 acc = '1' : acc
> digits n acc = digits (n `div` 2) $ digits (n `mod` 2) acc
>
> dist :: Int -> [Char] -> [Char]
> dist 0 [] = ['S']
> dist 0 acc = acc
> dist 1 acc = let r = dist 0 acc in 's' : digits (length r) r
> dist n acc = dist (n - 1) $ dist 1 acc
>
> takeLast n ss = reverse $ take n $ reverse ss
>
> test = takeLast 40 $ dist 20 []
>

Printing <test> gives: "1s100000s11010s10100s1111s1010s110s11s1S"

The reverse algorithm computes the length of the string just by examining a
certain prefix:

> pref :: [Char] -> Int
> pref "S" = 1
> pref ('s':'1':rest) = decode 2 1 rest
> pref (_:rest) = 1 + pref rest
>
> decode walk acc ('0':rest) = decode (walk + 1) (acc * 2) rest
> decode walk acc ('1':rest) = decode (walk + 1) (acc * 2 + 1) rest
> decode walk acc _ = walk + acc
>

Now, as expected, printing <pref test> gives 40.

We can quickCheck this with following property:

> testcase = dist 2000 []
> testcaseLength = length testcase
>
> identityProp n = n > 0 && n <= testcaseLength ==> length arr == pref arr
> where arr = takeLast n testcase
>

As expected <quickCheck identityProp> gives:

*Main> quickCheck identityProp
OK, passed 100 tests.

Let’s be a bit more exhaustive:

>
> deepCheck p = check (defaultConfig { configMaxTest = 500 }) p
>

And here is the result of <deepCheck identityProp>:

*Main> deepCheck identityProp
OK, passed 500 tests.

Tagging considerations

To maintain the invariant that the 2 LSBits of each Use** in Use never
change after being set up, setters of Use::Prev must re-tag the new
Use** on every modification. Accordingly getters must strip the tag bits.

For layout b) instead of the User we find a pointer (User* with LSBit
set). Following this pointer brings us to the User. A portable trick
ensures that the first bytes of User (if interpreted as a pointer) never has
the LSBit set. (Portability is relying on the fact that all known compilers
place the vptr in the first word of the instances.)

Designing Type Hiercharies and Polymorphic Interfaces

There are two different design patterns that tend to result in the use of
virtual dispatch for methods in a type hierarchy in C++ programs. The first is
a genuine type hierarchy where different types in the hierarchy model
a specific subset of the functionality and semantics, and these types nest
strictly within each other. Good examples of this can be seen in the Value
or Type type hierarchies.

A second is the desire to dispatch dynamically across a collection of
polymorphic interface implementations. This latter use case can be modeled with
virtual dispatch and inheritance by defining an abstract interface base class
which all implementations derive from and override. However, this
implementation strategy forces an “is-a” relationship to exist that is not
actually meaningful. There is often not some nested hierarchy of useful
generalizations which code might interact with and move up and down. Instead,
there is a singular interface which is dispatched across a range of
implementations.

The preferred implementation strategy for the second use case is that of
generic programming (sometimes called “compile-time duck typing” or “static
polymorphism”). For example, a template over some type parameter T can be
instantiated across any particular implementation that conforms to the
interface or concept. A good example here is the highly generic properties of
any type which models a node in a directed graph. LLVM models these primarily
through templates and generic programming. Such templates include the
LoopInfoBase and DominatorTreeBase. When this type of polymorphism
truly needs dynamic dispatch you can generalize it using a technique
called concept-based polymorphism. This pattern emulates the interfaces and
behaviors of templates using a very limited form of virtual dispatch for type
erasure inside its implementation. You can find examples of this technique in
the PassManager.h system, and there is a more detailed introduction to it
by Sean Parent in several of his talks and papers:

	Inheritance Is The Base Class of Evil [http://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil]
- The GoingNative 2013 talk describing this technique, and probably the best
place to start.

	Value Semantics and Concepts-based Polymorphism [http://www.youtube.com/watch?v=_BpMYeUFXv8] - The C++Now! 2012 talk
describing this technique in more detail.

	Sean Parent’s Papers and Presentations [http://github.com/sean-parent/sean-parent.github.com/wiki/Papers-and-Presentations]
- A Github project full of links to slides, video, and sometimes code.

When deciding between creating a type hierarchy (with either tagged or virtual
dispatch) and using templates or concepts-based polymorphism, consider whether
there is some refinement of an abstract base class which is a semantically
meaningful type on an interface boundary. If anything more refined than the
root abstract interface is meaningless to talk about as a partial extension of
the semantic model, then your use case likely fits better with polymorphism and
you should avoid using virtual dispatch. However, there may be some exigent
circumstances that require one technique or the other to be used.

If you do need to introduce a type hierarchy, we prefer to use explicitly
closed type hierarchies with manual tagged dispatch and/or RTTI rather than the
open inheritance model and virtual dispatch that is more common in C++ code.
This is because LLVM rarely encourages library consumers to extend its core
types, and leverages the closed and tag-dispatched nature of its hierarchies to
generate significantly more efficient code. We have also found that a large
amount of our usage of type hierarchies fits better with tag-based pattern
matching rather than dynamic dispatch across a common interface. Within LLVM we
have built custom helpers to facilitate this design. See this document’s
section on isa and dyn_cast and our detailed document which describes how you can implement this
pattern for use with the LLVM helpers.

ABI Breaking Checks

Checks and asserts that alter the LLVM C++ ABI are predicated on the
preprocessor symbol LLVM_ENABLE_ABI_BREAKING_CHECKS – LLVM
libraries built with LLVM_ENABLE_ABI_BREAKING_CHECKS are not ABI
compatible LLVM libraries built without it defined. By default,
turning on assertions also turns on LLVM_ENABLE_ABI_BREAKING_CHECKS
so a default +Asserts build is not ABI compatible with a
default -Asserts build. Clients that want ABI compatibility
between +Asserts and -Asserts builds should use the CMake or autoconf
build systems to set LLVM_ENABLE_ABI_BREAKING_CHECKS independently
of LLVM_ENABLE_ASSERTIONS.

The Core LLVM Class Hierarchy Reference

#include "llvm/IR/Type.h"

header source: Type.h [http://llvm.org/doxygen/Type_8h_source.html]

doxygen info: Type Clases [http://llvm.org/doxygen/classllvm_1_1Type.html]

The Core LLVM classes are the primary means of representing the program being
inspected or transformed. The core LLVM classes are defined in header files in
the include/llvm/IR directory, and implemented in the lib/IR
directory. It’s worth noting that, for historical reasons, this library is
called libLLVMCore.so, not libLLVMIR.so as you might expect.

The Type class and Derived Types

Type is a superclass of all type classes. Every Value has a Type.
Type cannot be instantiated directly but only through its subclasses.
Certain primitive types (VoidType, LabelType, FloatType and
DoubleType) have hidden subclasses. They are hidden because they offer no
useful functionality beyond what the Type class offers except to distinguish
themselves from other subclasses of Type.

All other types are subclasses of DerivedType. Types can be named, but this
is not a requirement. There exists exactly one instance of a given shape at any
one time. This allows type equality to be performed with address equality of
the Type Instance. That is, given two Type* values, the types are identical
if the pointers are identical.

Important Public Methods

	bool isIntegerTy() const: Returns true for any integer type.

	bool isFloatingPointTy(): Return true if this is one of the five
floating point types.

	bool isSized(): Return true if the type has known size. Things
that don’t have a size are abstract types, labels and void.

Important Derived Types

	IntegerType

	Subclass of DerivedType that represents integer types of any bit width. Any
bit width between IntegerType::MIN_INT_BITS (1) and
IntegerType::MAX_INT_BITS (~8 million) can be represented.

	static const IntegerType* get(unsigned NumBits): get an integer
type of a specific bit width.

	unsigned getBitWidth() const: Get the bit width of an integer type.

	SequentialType

	This is subclassed by ArrayType and VectorType.

	const Type * getElementType() const: Returns the type of each
of the elements in the sequential type.

	uint64_t getNumElements() const: Returns the number of elements
in the sequential type.

	ArrayType

	This is a subclass of SequentialType and defines the interface for array
types.

	PointerType

	Subclass of Type for pointer types.

	VectorType

	Subclass of SequentialType for vector types. A vector type is similar to an
ArrayType but is distinguished because it is a first class type whereas
ArrayType is not. Vector types are used for vector operations and are usually
small vectors of an integer or floating point type.

	StructType

	Subclass of DerivedTypes for struct types.

	FunctionType

	Subclass of DerivedTypes for function types.

	bool isVarArg() const: Returns true if it’s a vararg function.

	const Type * getReturnType() const: Returns the return type of the
function.

	const Type * getParamType (unsigned i): Returns the type of the ith
parameter.

	const unsigned getNumParams() const: Returns the number of formal
parameters.

The Module class

#include "llvm/IR/Module.h"

header source: Module.h [http://llvm.org/doxygen/Module_8h_source.html]

doxygen info: Module Class [http://llvm.org/doxygen/classllvm_1_1Module.html]

The Module class represents the top level structure present in LLVM
programs. An LLVM module is effectively either a translation unit of the
original program or a combination of several translation units merged by the
linker. The Module class keeps track of a list of Functions, a list of GlobalVariables, and a SymbolTable.
Additionally, it contains a few helpful member functions that try to make common
operations easy.

Important Public Members of the Module class

	Module::Module(std::string name = "")

Constructing a Module is easy. You can optionally provide a name for it
(probably based on the name of the translation unit).

	
Module::iterator - Typedef for function list iterator

Module::const_iterator - Typedef for const_iterator.

begin(), end(), size(), empty()

These are forwarding methods that make it easy to access the contents of a
Module object’s Function list.

	Module::FunctionListType &getFunctionList()

Returns the list of Functions. This is necessary to use
when you need to update the list or perform a complex action that doesn’t have
a forwarding method.

	
Module::global_iterator - Typedef for global variable list iterator

Module::const_global_iterator - Typedef for const_iterator.

global_begin(), global_end(), global_size(), global_empty()

These are forwarding methods that make it easy to access the contents of a
Module object’s GlobalVariable list.

	Module::GlobalListType &getGlobalList()

Returns the list of GlobalVariables. This is necessary to use when you
need to update the list or perform a complex action that doesn’t have a
forwarding method.

	SymbolTable *getSymbolTable()

Return a reference to the SymbolTable for this Module.

	Function *getFunction(StringRef Name) const

Look up the specified function in the Module SymbolTable. If it does not
exist, return null.

	Function *getOrInsertFunction(const std::string &Name, const FunctionType
*T)

Look up the specified function in the Module SymbolTable. If it does not
exist, add an external declaration for the function and return it.

	std::string getTypeName(const Type *Ty)

If there is at least one entry in the SymbolTable for the specified Type,
return it. Otherwise return the empty string.

	bool addTypeName(const std::string &Name, const Type *Ty)

Insert an entry in the SymbolTable mapping Name to Ty. If there is
already an entry for this name, true is returned and the SymbolTable is not
modified.

The Value class

#include "llvm/IR/Value.h"

header source: Value.h [http://llvm.org/doxygen/Value_8h_source.html]

doxygen info: Value Class [http://llvm.org/doxygen/classllvm_1_1Value.html]

The Value class is the most important class in the LLVM Source base. It
represents a typed value that may be used (among other things) as an operand to
an instruction. There are many different types of Values, such as
Constants, Arguments. Even Instructions and Functions are Values.

A particular Value may be used many times in the LLVM representation for a
program. For example, an incoming argument to a function (represented with an
instance of the Argument class) is “used” by every instruction in the function
that references the argument. To keep track of this relationship, the Value
class keeps a list of all of the Users that is using it (the User class
is a base class for all nodes in the LLVM graph that can refer to Values).
This use list is how LLVM represents def-use information in the program, and is
accessible through the use_* methods, shown below.

Because LLVM is a typed representation, every LLVM Value is typed, and this
Type is available through the getType() method. In addition, all LLVM
values can be named. The “name” of the Value is a symbolic string printed
in the LLVM code:

%foo = add i32 1, 2

The name of this instruction is “foo”. NOTE that the name of any value may
be missing (an empty string), so names should ONLY be used for debugging
(making the source code easier to read, debugging printouts), they should not be
used to keep track of values or map between them. For this purpose, use a
std::map of pointers to the Value itself instead.

One important aspect of LLVM is that there is no distinction between an SSA
variable and the operation that produces it. Because of this, any reference to
the value produced by an instruction (or the value available as an incoming
argument, for example) is represented as a direct pointer to the instance of the
class that represents this value. Although this may take some getting used to,
it simplifies the representation and makes it easier to manipulate.

Important Public Members of the Value class

	
Value::use_iterator - Typedef for iterator over the use-list

Value::const_use_iterator - Typedef for const_iterator over the
use-list

unsigned use_size() - Returns the number of users of the value.

bool use_empty() - Returns true if there are no users.

use_iterator use_begin() - Get an iterator to the start of the
use-list.

use_iterator use_end() - Get an iterator to the end of the use-list.

User *use_back() - Returns the last element in the list.

These methods are the interface to access the def-use information in LLVM.
As with all other iterators in LLVM, the naming conventions follow the
conventions defined by the STL.

	Type *getType() const
This method returns the Type of the Value.

	
bool hasName() const

std::string getName() const

void setName(const std::string &Name)

This family of methods is used to access and assign a name to a Value, be
aware of the precaution above.

	void replaceAllUsesWith(Value *V)

This method traverses the use list of a Value changing all Users of the
current value to refer to “V” instead. For example, if you detect that an
instruction always produces a constant value (for example through constant
folding), you can replace all uses of the instruction with the constant like
this:

Inst->replaceAllUsesWith(ConstVal);

The User class

#include "llvm/IR/User.h"

header source: User.h [http://llvm.org/doxygen/User_8h_source.html]

doxygen info: User Class [http://llvm.org/doxygen/classllvm_1_1User.html]

Superclass: Value

The User class is the common base class of all LLVM nodes that may refer to
Values. It exposes a list of “Operands” that are all of the Values
that the User is referring to. The User class itself is a subclass of
Value.

The operands of a User point directly to the LLVM Value that it refers
to. Because LLVM uses Static Single Assignment (SSA) form, there can only be
one definition referred to, allowing this direct connection. This connection
provides the use-def information in LLVM.

Important Public Members of the User class

The User class exposes the operand list in two ways: through an index access
interface and through an iterator based interface.

	
Value *getOperand(unsigned i)

unsigned getNumOperands()

These two methods expose the operands of the User in a convenient form for
direct access.

	
User::op_iterator - Typedef for iterator over the operand list

op_iterator op_begin() - Get an iterator to the start of the operand
list.

op_iterator op_end() - Get an iterator to the end of the operand list.

Together, these methods make up the iterator based interface to the operands
of a User.

The Instruction class

#include "llvm/IR/Instruction.h"

header source: Instruction.h [http://llvm.org/doxygen/Instruction_8h_source.html]

doxygen info: Instruction Class [http://llvm.org/doxygen/classllvm_1_1Instruction.html]

Superclasses: User, Value

The Instruction class is the common base class for all LLVM instructions.
It provides only a few methods, but is a very commonly used class. The primary
data tracked by the Instruction class itself is the opcode (instruction
type) and the parent BasicBlock the Instruction is embedded into. To
represent a specific type of instruction, one of many subclasses of
Instruction are used.

Because the Instruction class subclasses the User class, its operands can
be accessed in the same way as for other Users (with the
getOperand()/getNumOperands() and op_begin()/op_end() methods).
An important file for the Instruction class is the llvm/Instruction.def
file. This file contains some meta-data about the various different types of
instructions in LLVM. It describes the enum values that are used as opcodes
(for example Instruction::Add and Instruction::ICmp), as well as the
concrete sub-classes of Instruction that implement the instruction (for
example BinaryOperator and CmpInst). Unfortunately, the use of macros in this
file confuses doxygen, so these enum values don’t show up correctly in the
doxygen output [http://llvm.org/doxygen/classllvm_1_1Instruction.html].

Important Subclasses of the Instruction class

	BinaryOperator

This subclasses represents all two operand instructions whose operands must be
the same type, except for the comparison instructions.

	CastInst
This subclass is the parent of the 12 casting instructions. It provides
common operations on cast instructions.

	CmpInst

This subclass represents the two comparison instructions,
ICmpInst (integer opreands), and
FCmpInst (floating point operands).

	TerminatorInst

This subclass is the parent of all terminator instructions (those which can
terminate a block).

Important Public Members of the Instruction class

	BasicBlock *getParent()

Returns the BasicBlock that this
Instruction is embedded into.

	bool mayWriteToMemory()

Returns true if the instruction writes to memory, i.e. it is a call,
free, invoke, or store.

	unsigned getOpcode()

Returns the opcode for the Instruction.

	Instruction *clone() const

Returns another instance of the specified instruction, identical in all ways
to the original except that the instruction has no parent (i.e. it’s not
embedded into a BasicBlock), and it has no name.

The Constant class and subclasses

Constant represents a base class for different types of constants. It is
subclassed by ConstantInt, ConstantArray, etc. for representing the various
types of Constants. GlobalValue is also a subclass, which represents the
address of a global variable or function.

Important Subclasses of Constant

	ConstantInt : This subclass of Constant represents an integer constant of
any width.

	const APInt& getValue() const: Returns the underlying
value of this constant, an APInt value.

	int64_t getSExtValue() const: Converts the underlying APInt value to an
int64_t via sign extension. If the value (not the bit width) of the APInt
is too large to fit in an int64_t, an assertion will result. For this
reason, use of this method is discouraged.

	uint64_t getZExtValue() const: Converts the underlying APInt value
to a uint64_t via zero extension. IF the value (not the bit width) of the
APInt is too large to fit in a uint64_t, an assertion will result. For this
reason, use of this method is discouraged.

	static ConstantInt* get(const APInt& Val): Returns the ConstantInt
object that represents the value provided by Val. The type is implied
as the IntegerType that corresponds to the bit width of Val.

	static ConstantInt* get(const Type *Ty, uint64_t Val): Returns the
ConstantInt object that represents the value provided by Val for integer
type Ty.

	ConstantFP : This class represents a floating point constant.

	double getValue() const: Returns the underlying value of this constant.

	ConstantArray : This represents a constant array.

	const std::vector<Use> &getValues() const: Returns a vector of
component constants that makeup this array.

	ConstantStruct : This represents a constant struct.

	const std::vector<Use> &getValues() const: Returns a vector of
component constants that makeup this array.

	GlobalValue : This represents either a global variable or a function. In
either case, the value is a constant fixed address (after linking).

The GlobalValue class

#include "llvm/IR/GlobalValue.h"

header source: GlobalValue.h [http://llvm.org/doxygen/GlobalValue_8h_source.html]

doxygen info: GlobalValue Class [http://llvm.org/doxygen/classllvm_1_1GlobalValue.html]

Superclasses: Constant, User, Value

Global values (GlobalVariables or Functions) are the
only LLVM values that are visible in the bodies of all Functions. Because they are visible at global scope, they are also
subject to linking with other globals defined in different translation units.
To control the linking process, GlobalValues know their linkage rules.
Specifically, GlobalValues know whether they have internal or external
linkage, as defined by the LinkageTypes enumeration.

If a GlobalValue has internal linkage (equivalent to being static in C),
it is not visible to code outside the current translation unit, and does not
participate in linking. If it has external linkage, it is visible to external
code, and does participate in linking. In addition to linkage information,
GlobalValues keep track of which Module they are currently part of.

Because GlobalValues are memory objects, they are always referred to by
their address. As such, the Type of a global is always a pointer to its
contents. It is important to remember this when using the GetElementPtrInst
instruction because this pointer must be dereferenced first. For example, if
you have a GlobalVariable (a subclass of GlobalValue) that is an array
of 24 ints, type [24 x i32], then the GlobalVariable is a pointer to
that array. Although the address of the first element of this array and the
value of the GlobalVariable are the same, they have different types. The
GlobalVariable’s type is [24 x i32]. The first element’s type is
i32. Because of this, accessing a global value requires you to dereference
the pointer with GetElementPtrInst first, then its elements can be accessed.
This is explained in the LLVM Language Reference Manual.

Important Public Members of the GlobalValue class

	
bool hasInternalLinkage() const

bool hasExternalLinkage() const

void setInternalLinkage(bool HasInternalLinkage)

These methods manipulate the linkage characteristics of the GlobalValue.

	Module *getParent()

This returns the Module that the
GlobalValue is currently embedded into.

The Function class

#include "llvm/IR/Function.h"

header source: Function.h [http://llvm.org/doxygen/Function_8h_source.html]

doxygen info: Function Class [http://llvm.org/doxygen/classllvm_1_1Function.html]

Superclasses: GlobalValue, Constant, User, Value

The Function class represents a single procedure in LLVM. It is actually
one of the more complex classes in the LLVM hierarchy because it must keep track
of a large amount of data. The Function class keeps track of a list of
BasicBlocks, a list of formal Arguments, and a SymbolTable.

The list of BasicBlocks is the most commonly used part of Function
objects. The list imposes an implicit ordering of the blocks in the function,
which indicate how the code will be laid out by the backend. Additionally, the
first BasicBlock is the implicit entry node for the Function. It is not
legal in LLVM to explicitly branch to this initial block. There are no implicit
exit nodes, and in fact there may be multiple exit nodes from a single
Function. If the BasicBlock list is empty, this indicates that the
Function is actually a function declaration: the actual body of the function
hasn’t been linked in yet.

In addition to a list of BasicBlocks, the Function class also keeps track
of the list of formal Arguments that the function receives. This container
manages the lifetime of the Argument nodes, just like the BasicBlock list does
for the BasicBlocks.

The SymbolTable is a very rarely used LLVM feature that is only used when you
have to look up a value by name. Aside from that, the SymbolTable is used
internally to make sure that there are not conflicts between the names of
Instructions, BasicBlocks, or Arguments in the function body.

Note that Function is a GlobalValue and therefore also a Constant. The
value of the function is its address (after linking) which is guaranteed to be
constant.

Important Public Members of the Function

	Function(const FunctionType *Ty, LinkageTypes Linkage,
const std::string &N = "", Module* Parent = 0)

Constructor used when you need to create new Functions to add the
program. The constructor must specify the type of the function to create and
what type of linkage the function should have. The FunctionType argument
specifies the formal arguments and return value for the function. The same
FunctionType value can be used to create multiple functions. The Parent
argument specifies the Module in which the function is defined. If this
argument is provided, the function will automatically be inserted into that
module’s list of functions.

	bool isDeclaration()

Return whether or not the Function has a body defined. If the function is
“external”, it does not have a body, and thus must be resolved by linking with
a function defined in a different translation unit.

	
Function::iterator - Typedef for basic block list iterator

Function::const_iterator - Typedef for const_iterator.

begin(), end(), size(), empty()

These are forwarding methods that make it easy to access the contents of a
Function object’s BasicBlock list.

	Function::BasicBlockListType &getBasicBlockList()

Returns the list of BasicBlocks. This is necessary to use when you need to
update the list or perform a complex action that doesn’t have a forwarding
method.

	
Function::arg_iterator - Typedef for the argument list iterator

Function::const_arg_iterator - Typedef for const_iterator.

arg_begin(), arg_end(), arg_size(), arg_empty()

These are forwarding methods that make it easy to access the contents of a
Function object’s Argument list.

	Function::ArgumentListType &getArgumentList()

Returns the list of Argument. This is necessary to use when you need to
update the list or perform a complex action that doesn’t have a forwarding
method.

	BasicBlock &getEntryBlock()

Returns the entry BasicBlock for the function. Because the entry block
for the function is always the first block, this returns the first block of
the Function.

	
Type *getReturnType()

FunctionType *getFunctionType()

This traverses the Type of the Function and returns the return type of
the function, or the FunctionType of the actual function.

	SymbolTable *getSymbolTable()

Return a pointer to the SymbolTable for this Function.

The GlobalVariable class

#include "llvm/IR/GlobalVariable.h"

header source: GlobalVariable.h [http://llvm.org/doxygen/GlobalVariable_8h_source.html]

doxygen info: GlobalVariable Class [http://llvm.org/doxygen/classllvm_1_1GlobalVariable.html]

Superclasses: GlobalValue, Constant, User, Value

Global variables are represented with the (surprise surprise) GlobalVariable
class. Like functions, GlobalVariables are also subclasses of
GlobalValue, and as such are always referenced by their address (global values
must live in memory, so their “name” refers to their constant address). See
GlobalValue for more on this. Global variables may have an initial value
(which must be a Constant), and if they have an initializer, they may be marked
as “constant” themselves (indicating that their contents never change at
runtime).

Important Public Members of the GlobalVariable class

	GlobalVariable(const Type *Ty, bool isConstant, LinkageTypes &Linkage,
Constant *Initializer = 0, const std::string &Name = "", Module* Parent = 0)

Create a new global variable of the specified type. If isConstant is true
then the global variable will be marked as unchanging for the program. The
Linkage parameter specifies the type of linkage (internal, external, weak,
linkonce, appending) for the variable. If the linkage is InternalLinkage,
WeakAnyLinkage, WeakODRLinkage, LinkOnceAnyLinkage or LinkOnceODRLinkage, then
the resultant global variable will have internal linkage. AppendingLinkage
concatenates together all instances (in different translation units) of the
variable into a single variable but is only applicable to arrays. See the
LLVM Language Reference for further details
on linkage types. Optionally an initializer, a name, and the module to put
the variable into may be specified for the global variable as well.

	bool isConstant() const

Returns true if this is a global variable that is known not to be modified at
runtime.

	bool hasInitializer()

Returns true if this GlobalVariable has an intializer.

	Constant *getInitializer()

Returns the initial value for a GlobalVariable. It is not legal to call
this method if there is no initializer.

The BasicBlock class

#include "llvm/IR/BasicBlock.h"

header source: BasicBlock.h [http://llvm.org/doxygen/BasicBlock_8h_source.html]

doxygen info: BasicBlock Class [http://llvm.org/doxygen/classllvm_1_1BasicBlock.html]

Superclass: Value

This class represents a single entry single exit section of the code, commonly
known as a basic block by the compiler community. The BasicBlock class
maintains a list of Instructions, which form the body of the block. Matching
the language definition, the last element of this list of instructions is always
a terminator instruction (a subclass of the TerminatorInst class).

In addition to tracking the list of instructions that make up the block, the
BasicBlock class also keeps track of the Function that
it is embedded into.

Note that BasicBlocks themselves are Values, because they are
referenced by instructions like branches and can go in the switch tables.
BasicBlocks have type label.

Important Public Members of the BasicBlock class

	BasicBlock(const std::string &Name = "", Function *Parent = 0)

The BasicBlock constructor is used to create new basic blocks for
insertion into a function. The constructor optionally takes a name for the
new block, and a Function to insert it into. If the
Parent parameter is specified, the new BasicBlock is automatically
inserted at the end of the specified Function, if not
specified, the BasicBlock must be manually inserted into the Function.

	
BasicBlock::iterator - Typedef for instruction list iterator

BasicBlock::const_iterator - Typedef for const_iterator.

begin(), end(), front(), back(),
size(), empty()
STL-style functions for accessing the instruction list.

These methods and typedefs are forwarding functions that have the same
semantics as the standard library methods of the same names. These methods
expose the underlying instruction list of a basic block in a way that is easy
to manipulate. To get the full complement of container operations (including
operations to update the list), you must use the getInstList() method.

	BasicBlock::InstListType &getInstList()

This method is used to get access to the underlying container that actually
holds the Instructions. This method must be used when there isn’t a
forwarding function in the BasicBlock class for the operation that you
would like to perform. Because there are no forwarding functions for
“updating” operations, you need to use this if you want to update the contents
of a BasicBlock.

	Function *getParent()

Returns a pointer to Function the block is embedded into,
or a null pointer if it is homeless.

	TerminatorInst *getTerminator()

Returns a pointer to the terminator instruction that appears at the end of the
BasicBlock. If there is no terminator instruction, or if the last
instruction in the block is not a terminator, then a null pointer is returned.

The Argument class

This subclass of Value defines the interface for incoming formal arguments to a
function. A Function maintains a list of its formal arguments. An argument has
a pointer to the parent Function.

LLVM Extensions

	Introduction

	General Assembly Syntax

	C99-style Hexadecimal Floating-point Constants

	Machine-specific Assembly Syntax

	X86/COFF-Dependent

	Relocations

	.linkonce Directive

	.section Directive

	ARM64/COFF-Dependent

	Relocations

	ELF-Dependent

	.section Directive

	.linker-options Section (linker options)

	SHT_LLVM_CALL_GRAPH_PROFILE Section (Call Graph Profile)

	SHT_LLVM_ADDRSIG Section (address-significance table)

	CodeView-Dependent

	.cv_file Directive

	.cv_func_id Directive

	.cv_inline_site_id Directive

	.cv_loc Directive

	.cv_linetable Directive

	.cv_inline_linetable Directive

	.cv_def_range Directive

	.cv_stringtable Directive

	.cv_filechecksums Directive

	.cv_filechecksumoffset Directive

	.cv_fpo_data Directive

	Target Specific Behaviour

	X86

	Relocations

	Windows on ARM

	Stack Probe Emission

	Variable Length Arrays

	Windows on ARM64

	Stack Probe Emission

Introduction

This document describes extensions to tools and formats LLVM seeks compatibility
with.

General Assembly Syntax

C99-style Hexadecimal Floating-point Constants

LLVM’s assemblers allow floating-point constants to be written in C99’s
hexadecimal format instead of decimal if desired.

.section .data
.float 0x1c2.2ap3

Machine-specific Assembly Syntax

X86/COFF-Dependent

Relocations

The following additional relocation types are supported:

@IMGREL (AT&T syntax only) generates an image-relative relocation that
corresponds to the COFF relocation types IMAGE_REL_I386_DIR32NB (32-bit) or
IMAGE_REL_AMD64_ADDR32NB (64-bit).

.text
fun:
 mov foo@IMGREL(%ebx, %ecx, 4), %eax

.section .pdata
 .long fun@IMGREL
 .long (fun@imgrel + 0x3F)
 .long $unwind$fun@imgrel

.secrel32 generates a relocation that corresponds to the COFF relocation
types IMAGE_REL_I386_SECREL (32-bit) or IMAGE_REL_AMD64_SECREL (64-bit).

.secidx relocation generates an index of the section that contains
the target. It corresponds to the COFF relocation types
IMAGE_REL_I386_SECTION (32-bit) or IMAGE_REL_AMD64_SECTION (64-bit).

.section .debug$S,"rn"
 .long 4
 .long 242
 .long 40
 .secrel32 _function_name + 0
 .secidx _function_name
 ...

.linkonce Directive

Syntax:

.linkonce [comdat type]

Supported COMDAT types:

	discard

	Discards duplicate sections with the same COMDAT symbol. This is the default
if no type is specified.

	one_only

	If the symbol is defined multiple times, the linker issues an error.

	same_size

	Duplicates are discarded, but the linker issues an error if any have
different sizes.

	same_contents

	Duplicates are discarded, but the linker issues an error if any duplicates
do not have exactly the same content.

	largest

	Links the largest section from among the duplicates.

	newest

	Links the newest section from among the duplicates.

.section .text$foo
.linkonce
 ...

.section Directive

MC supports passing the information in .linkonce at the end of
.section. For example, these two codes are equivalent

.section secName, "dr", discard, "Symbol1"
.globl Symbol1
Symbol1:
.long 1

.section secName, "dr"
.linkonce discard
.globl Symbol1
Symbol1:
.long 1

Note that in the combined form the COMDAT symbol is explicit. This
extension exists to support multiple sections with the same name in
different COMDATs:

.section secName, "dr", discard, "Symbol1"
.globl Symbol1
Symbol1:
.long 1

.section secName, "dr", discard, "Symbol2"
.globl Symbol2
Symbol2:
.long 1

In addition to the types allowed with .linkonce, .section also accepts
associative. The meaning is that the section is linked if a certain other
COMDAT section is linked. This other section is indicated by the comdat symbol
in this directive. It can be any symbol defined in the associated section, but
is usually the associated section’s comdat.

The following restrictions apply to the associated section:

	It must be a COMDAT section.

	It cannot be another associative COMDAT section.

In the following example the symobl sym is the comdat symbol of .foo
and .bar is associated to .foo.

.section .foo,"bw",discard, "sym"
.section .bar,"rd",associative, "sym"

MC supports these flags in the COFF .section directive:

	b: BSS section (IMAGE_SCN_CNT_INITIALIZED_DATA)

	d: Data section (IMAGE_SCN_CNT_UNINITIALIZED_DATA)

	n: Section is not loaded (IMAGE_SCN_LNK_REMOVE)

	r: Read-only

	s: Shared section

	w: Writable

	x: Executable section

	y: Not readable

	D: Discardable (IMAGE_SCN_MEM_DISCARDABLE)

These flags are all compatible with gas, with the exception of the D flag,
which gnu as does not support. For gas compatibility, sections with a name
starting with “.debug” are implicitly discardable.

ARM64/COFF-Dependent

Relocations

The following additional symbol variants are supported:

:secrel_lo12: generates a relocation that corresponds to the COFF relocation
types IMAGE_REL_ARM64_SECREL_LOW12A or IMAGE_REL_ARM64_SECREL_LOW12L.

:secrel_hi12: generates a relocation that corresponds to the COFF relocation
type IMAGE_REL_ARM64_SECREL_HIGH12A.

add x0, x0, :secrel_hi12:symbol
ldr x0, [x0, :secrel_lo12:symbol]

add x1, x1, :secrel_hi12:symbol
add x1, x1, :secrel_lo12:symbol
...

ELF-Dependent

.section Directive

In order to support creating multiple sections with the same name and comdat,
it is possible to add an unique number at the end of the .seciton directive.
For example, the following code creates two sections named .text.

.section .text,"ax",@progbits,unique,1
nop

.section .text,"ax",@progbits,unique,2
nop

The unique number is not present in the resulting object at all. It is just used
in the assembler to differentiate the sections.

The ‘o’ flag is mapped to SHF_LINK_ORDER. If it is present, a symbol
must be given that identifies the section to be placed is the
.sh_link.

.section .foo,"a",@progbits
.Ltmp:
.section .bar,"ao",@progbits,.Ltmp

which is equivalent to just

.section .foo,"a",@progbits
.section .bar,"ao",@progbits,.foo

.linker-options Section (linker options)

In order to support passing linker options from the frontend to the linker, a
special section of type SHT_LLVM_LINKER_OPTIONS (usually named
.linker-options though the name is not significant as it is identified by
the type). The contents of this section is a simple pair-wise encoding of
directives for consideration by the linker. The strings are encoded as standard
null-terminated UTF-8 strings. They are emitted inline to avoid having the
linker traverse the object file for retrieving the value. The linker is
permitted to not honour the option and instead provide a warning/error to the
user that the requested option was not honoured.

The section has type SHT_LLVM_LINKER_OPTIONS and has the SHF_EXCLUDE
flag to ensure that the section is treated as opaque by linkers which do not
support the feature and will not be emitted into the final linked binary.

This would be equivalent to the follow raw assembly:

.section ".linker-options","e",@llvm_linker_options
.asciz "option 1"
.asciz "value 1"
.asciz "option 2"
.asciz "value 2"

The following directives are specified:

	lib

The parameter identifies a library to be linked against. The library will
be looked up in the default and any specified library search paths
(specified to this point).

	libpath

The paramter identifies an additional library search path to be considered
when looking up libraries after the inclusion of this option.

SHT_LLVM_CALL_GRAPH_PROFILE Section (Call Graph Profile)

This section is used to pass a call graph profile to the linker which can be
used to optimize the placement of sections. It contains a sequence of
(from symbol, to symbol, weight) tuples.

It shall have a type of SHT_LLVM_CALL_GRAPH_PROFILE (0x6fff4c02), shall
have the SHF_EXCLUDE flag set, the sh_link member shall hold the section
header index of the associated symbol table, and shall have a sh_entsize of
16. It should be named .llvm.call-graph-profile.

The contents of the section shall be a sequence of Elf_CGProfile entries.

typedef struct {
 Elf_Word cgp_from;
 Elf_Word cgp_to;
 Elf_Xword cgp_weight;
} Elf_CGProfile;

	cgp_from

	The symbol index of the source of the edge.

	cgp_to

	The symbol index of the destination of the edge.

	cgp_weight

	The weight of the edge.

This is represented in assembly as:

.cg_profile from, to, 42

.cg_profile directives are processed at the end of the file. It is an error
if either from or to are undefined temporary symbols. If either symbol
is a temporary symbol, then the section symbol is used instead. If either
symbol is undefined, then that symbol is defined as if .weak symbol has been
written at the end of the file. This forces the symbol to show up in the symbol
table.

SHT_LLVM_ADDRSIG Section (address-significance table)

This section is used to mark symbols as address-significant, i.e. the address
of the symbol is used in a comparison or leaks outside the translation unit. It
has the same meaning as the absence of the LLVM attributes unnamed_addr
and local_unnamed_addr.

Any sections referred to by symbols that are not marked as address-significant
in any object file may be safely merged by a linker without breaking the
address uniqueness guarantee provided by the C and C++ language standards.

The contents of the section are a sequence of ULEB128-encoded integers
referring to the symbol table indexes of the address-significant symbols.

There are two associated assembly directives:

.addrsig

This instructs the assembler to emit an address-significance table. Without
this directive, all symbols are considered address-significant.

.addrsig_sym sym

This marks sym as address-significant.

CodeView-Dependent

.cv_file Directive

	Syntax:

	.cv_file FileNumber FileName [checksum] [checksumkind]

.cv_func_id Directive

Introduces a function ID that can be used with .cv_loc.

	Syntax:

	.cv_func_id FunctionId

.cv_inline_site_id Directive

Introduces a function ID that can be used with .cv_loc. Includes
inlined at source location information for use in the line table of the
caller, whether the caller is a real function or another inlined call site.

	Syntax:

	.cv_inline_site_id FunctionId within Function inlined_at FileNumber Line [Colomn]

.cv_loc Directive

The first number is a file number, must have been previously assigned with a
.file directive, the second number is the line number and optionally the
third number is a column position (zero if not specified). The remaining
optional items are .loc sub-directives.

	Syntax:

	.cv_loc FunctionId FileNumber [Line] [Column] [prologue_end] [is_stmt value]

.cv_linetable Directive

	Syntax:

	.cv_linetable FunctionId , FunctionStart , FunctionEnd

.cv_inline_linetable Directive

	Syntax:

	.cv_inline_linetable PrimaryFunctionId , FileNumber Line FunctionStart FunctionEnd

.cv_def_range Directive

The GapStart and GapEnd options may be repeated as needed.

	Syntax:

	.cv_def_range RangeStart RangeEnd [GapStart GapEnd] , bytes

.cv_stringtable Directive

.cv_filechecksums Directive

.cv_filechecksumoffset Directive

	Syntax:

	.cv_filechecksumoffset FileNumber

.cv_fpo_data Directive

	Syntax:

	.cv_fpo_data procsym

Target Specific Behaviour

X86

Relocations

@ABS8 can be applied to symbols which appear as immediate operands to
instructions that have an 8-bit immediate form for that operand. It causes
the assembler to use the 8-bit form and an 8-bit relocation (e.g. R_386_8
or R_X86_64_8) for the symbol.

For example:

cmpq $foo@ABS8, %rdi

This causes the assembler to select the form of the 64-bit cmpq instruction
that takes an 8-bit immediate operand that is sign extended to 64 bits, as
opposed to cmpq $foo, %rdi which takes a 32-bit immediate operand. This
is also not the same as cmpb $foo, %dil, which is an 8-bit comparison.

Windows on ARM

Stack Probe Emission

The reference implementation (Microsoft Visual Studio 2012) emits stack probes
in the following fashion:

movw r4, #constant
bl __chkstk
sub.w sp, sp, r4

However, this has the limitation of 32 MiB (±16MiB). In order to accommodate
larger binaries, LLVM supports the use of -mcode-model=large to allow a 4GiB
range via a slight deviation. It will generate an indirect jump as follows:

movw r4, #constant
movw r12, :lower16:__chkstk
movt r12, :upper16:__chkstk
blx r12
sub.w sp, sp, r4

Variable Length Arrays

The reference implementation (Microsoft Visual Studio 2012) does not permit the
emission of Variable Length Arrays (VLAs).

The Windows ARM Itanium ABI extends the base ABI by adding support for emitting
a dynamic stack allocation. When emitting a variable stack allocation, a call
to __chkstk is emitted unconditionally to ensure that guard pages are setup
properly. The emission of this stack probe emission is handled similar to the
standard stack probe emission.

The MSVC environment does not emit code for VLAs currently.

Windows on ARM64

Stack Probe Emission

The reference implementation (Microsoft Visual Studio 2017) emits stack probes
in the following fashion:

mov x15, #constant
bl __chkstk
sub sp, sp, x15, lsl #4

However, this has the limitation of 256 MiB (±128MiB). In order to accommodate
larger binaries, LLVM supports the use of -mcode-model=large to allow a 8GiB
(±4GiB) range via a slight deviation. It will generate an indirect jump as
follows:

mov x15, #constant
adrp x16, __chkstk
add x16, x16, :lo12:__chkstk
blr x16
sub sp, sp, x15, lsl #4

libFuzzer – a library for coverage-guided fuzz testing.

	Introduction

	Versions

	Getting Started

	Options

	Output

	Examples

	Advanced features

	Developing libFuzzer

	FAQ

	Trophies

Introduction

LibFuzzer is in-process, coverage-guided, evolutionary fuzzing engine.

LibFuzzer is linked with the library under test, and feeds fuzzed inputs to the
library via a specific fuzzing entrypoint (aka “target function”); the fuzzer
then tracks which areas of the code are reached, and generates mutations on the
corpus of input data in order to maximize the code coverage.
The code coverage
information for libFuzzer is provided by LLVM’s SanitizerCoverage [http://clang.llvm.org/docs/SanitizerCoverage.html]
instrumentation.

Contact: libfuzzer(#)googlegroups.com

Versions

LibFuzzer is under active development so you will need the current
(or at least a very recent) version of the Clang compiler (see building Clang from trunk [http://clang.llvm.org/get_started.html])

Refer to https://releases.llvm.org/5.0.0/docs/LibFuzzer.html for documentation on the older version.

Getting Started

	Fuzz Target

	Fuzzer Usage

	Corpus

	Running

	Parallel Fuzzing

	Resuming merge

Fuzz Target

The first step in using libFuzzer on a library is to implement a
fuzz target – a function that accepts an array of bytes and
does something interesting with these bytes using the API under test.
Like this:

// fuzz_target.cc
extern "C" int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) {
 DoSomethingInterestingWithMyAPI(Data, Size);
 return 0; // Non-zero return values are reserved for future use.
}

Note that this fuzz target does not depend on libFuzzer in any way
and so it is possible and even desirable to use it with other fuzzing engines
e.g. AFL [http://lcamtuf.coredump.cx/afl/] and/or Radamsa [https://github.com/aoh/radamsa].

Some important things to remember about fuzz targets:

	The fuzzing engine will execute the fuzz target many times with different inputs in the same process.

	It must tolerate any kind of input (empty, huge, malformed, etc).

	It must not exit() on any input.

	It may use threads but ideally all threads should be joined at the end of the function.

	It must be as deterministic as possible. Non-determinism (e.g. random decisions not based on the input bytes) will make fuzzing inefficient.

	It must be fast. Try avoiding cubic or greater complexity, logging, or excessive memory consumption.

	Ideally, it should not modify any global state (although that’s not strict).

	Usually, the narrower the target the better. E.g. if your target can parse several data formats, split it into several targets, one per format.

Fuzzer Usage

Recent versions of Clang (starting from 6.0) include libFuzzer, and no extra installation is necessary.

In order to build your fuzzer binary, use the -fsanitize=fuzzer flag during the
compilation and linking. In most cases you may want to combine libFuzzer with
AddressSanitizer [http://clang.llvm.org/docs/AddressSanitizer.html] (ASAN), UndefinedBehaviorSanitizer [http://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html] (UBSAN), or both. You can
also build with MemorySanitizer [http://clang.llvm.org/docs/MemorySanitizer.html] (MSAN), but support is experimental:

clang -g -O1 -fsanitize=fuzzer mytarget.c # Builds the fuzz target w/o sanitizers
clang -g -O1 -fsanitize=fuzzer,address mytarget.c # Builds the fuzz target with ASAN
clang -g -O1 -fsanitize=fuzzer,signed-integer-overflow mytarget.c # Builds the fuzz target with a part of UBSAN
clang -g -O1 -fsanitize=fuzzer,memory mytarget.c # Builds the fuzz target with MSAN

This will perform the necessary instrumentation, as well as linking with the libFuzzer library.
Note that -fsanitize=fuzzer links in the libFuzzer’s main() symbol.

If modifying CFLAGS of a large project, which also compiles executables
requiring their own main symbol, it may be desirable to request just the
instrumentation without linking:

clang -fsanitize=fuzzer-no-link mytarget.c

Then libFuzzer can be linked to the desired driver by passing in
-fsanitize=fuzzer during the linking stage.

Corpus

Coverage-guided fuzzers like libFuzzer rely on a corpus of sample inputs for the
code under test. This corpus should ideally be seeded with a varied collection
of valid and invalid inputs for the code under test; for example, for a graphics
library the initial corpus might hold a variety of different small PNG/JPG/GIF
files. The fuzzer generates random mutations based around the sample inputs in
the current corpus. If a mutation triggers execution of a previously-uncovered
path in the code under test, then that mutation is saved to the corpus for
future variations.

LibFuzzer will work without any initial seeds, but will be less
efficient if the library under test accepts complex,
structured inputs.

The corpus can also act as a sanity/regression check, to confirm that the
fuzzing entrypoint still works and that all of the sample inputs run through
the code under test without problems.

If you have a large corpus (either generated by fuzzing or acquired by other means)
you may want to minimize it while still preserving the full coverage. One way to do that
is to use the -merge=1 flag:

mkdir NEW_CORPUS_DIR # Store minimized corpus here.
./my_fuzzer -merge=1 NEW_CORPUS_DIR FULL_CORPUS_DIR

You may use the same flag to add more interesting items to an existing corpus.
Only the inputs that trigger new coverage will be added to the first corpus.

./my_fuzzer -merge=1 CURRENT_CORPUS_DIR NEW_POTENTIALLY_INTERESTING_INPUTS_DIR

Running

To run the fuzzer, first create a Corpus directory that holds the
initial “seed” sample inputs:

mkdir CORPUS_DIR
cp /some/input/samples/* CORPUS_DIR

Then run the fuzzer on the corpus directory:

./my_fuzzer CORPUS_DIR # -max_len=1000 -jobs=20 ...

As the fuzzer discovers new interesting test cases (i.e. test cases that
trigger coverage of new paths through the code under test), those test cases
will be added to the corpus directory.

By default, the fuzzing process will continue indefinitely – at least until
a bug is found. Any crashes or sanitizer failures will be reported as usual,
stopping the fuzzing process, and the particular input that triggered the bug
will be written to disk (typically as crash-<sha1>, leak-<sha1>,
or timeout-<sha1>).

Parallel Fuzzing

Each libFuzzer process is single-threaded, unless the library under test starts
its own threads. However, it is possible to run multiple libFuzzer processes in
parallel with a shared corpus directory; this has the advantage that any new
inputs found by one fuzzer process will be available to the other fuzzer
processes (unless you disable this with the -reload=0 option).

This is primarily controlled by the -jobs=N option, which indicates that
that N fuzzing jobs should be run to completion (i.e. until a bug is found or
time/iteration limits are reached). These jobs will be run across a set of
worker processes, by default using half of the available CPU cores; the count of
worker processes can be overridden by the -workers=N option. For example,
running with -jobs=30 on a 12-core machine would run 6 workers by default,
with each worker averaging 5 bugs by completion of the entire process.

Resuming merge

Merging large corpora may be time consuming, and it is often desirable to do it
on preemptable VMs, where the process may be killed at any time.
In order to seamlessly resume the merge, use the -merge_control_file flag
and use killall -SIGUSR1 /path/to/fuzzer/binary to stop the merge gracefully. Example:

% rm -f SomeLocalPath
% ./my_fuzzer CORPUS1 CORPUS2 -merge=1 -merge_control_file=SomeLocalPath
...
MERGE-INNER: using the control file 'SomeLocalPath'
...
While this is running, do `killall -SIGUSR1 my_fuzzer` in another console
==9015== INFO: libFuzzer: exiting as requested

This will leave the file SomeLocalPath with the partial state of the merge.
Now, you can continue the merge by executing the same command. The merge
will continue from where it has been interrupted.
% ./my_fuzzer CORPUS1 CORPUS2 -merge=1 -merge_control_file=SomeLocalPath
...
MERGE-OUTER: non-empty control file provided: 'SomeLocalPath'
MERGE-OUTER: control file ok, 32 files total, first not processed file 20
...

Options

To run the fuzzer, pass zero or more corpus directories as command line
arguments. The fuzzer will read test inputs from each of these corpus
directories, and any new test inputs that are generated will be written
back to the first corpus directory:

./fuzzer [-flag1=val1 [-flag2=val2 ...]] [dir1 [dir2 ...]]

If a list of files (rather than directories) are passed to the fuzzer program,
then it will re-run those files as test inputs but will not perform any fuzzing.
In this mode the fuzzer binary can be used as a regression test (e.g. on a
continuous integration system) to check the target function and saved inputs
still work.

The most important command line options are:

	-help

	Print help message.

	-seed

	Random seed. If 0 (the default), the seed is generated.

	-runs

	Number of individual test runs, -1 (the default) to run indefinitely.

	-max_len

	Maximum length of a test input. If 0 (the default), libFuzzer tries to guess
a good value based on the corpus (and reports it).

	-timeout

	Timeout in seconds, default 1200. If an input takes longer than this timeout,
the process is treated as a failure case.

	-rss_limit_mb

	Memory usage limit in Mb, default 2048. Use 0 to disable the limit.
If an input requires more than this amount of RSS memory to execute,
the process is treated as a failure case.
The limit is checked in a separate thread every second.
If running w/o ASAN/MSAN, you may use ‘ulimit -v’ instead.

	-malloc_limit_mb

	If non-zero, the fuzzer will exit if the target tries to allocate this
number of Mb with one malloc call.
If zero (default) same limit as rss_limit_mb is applied.

	-timeout_exitcode

	Exit code (default 77) used if libFuzzer reports a timeout.

	-error_exitcode

	Exit code (default 77) used if libFuzzer itself (not a sanitizer) reports a bug (leak, OOM, etc).

	-max_total_time

	If positive, indicates the maximum total time in seconds to run the fuzzer.
If 0 (the default), run indefinitely.

	-merge

	If set to 1, any corpus inputs from the 2nd, 3rd etc. corpus directories
that trigger new code coverage will be merged into the first corpus
directory. Defaults to 0. This flag can be used to minimize a corpus.

	-merge_control_file

	Specify a control file used for the merge proccess.
If a merge process gets killed it tries to leave this file in a state
suitable for resuming the merge. By default a temporary file will be used.

	-minimize_crash

	If 1, minimizes the provided crash input.
Use with -runs=N or -max_total_time=N to limit the number of attempts.

	-reload

	If set to 1 (the default), the corpus directory is re-read periodically to
check for new inputs; this allows detection of new inputs that were discovered
by other fuzzing processes.

	-jobs

	Number of fuzzing jobs to run to completion. Default value is 0, which runs a
single fuzzing process until completion. If the value is >= 1, then this
number of jobs performing fuzzing are run, in a collection of parallel
separate worker processes; each such worker process has its
stdout/stderr redirected to fuzz-<JOB>.log.

	-workers

	Number of simultaneous worker processes to run the fuzzing jobs to completion
in. If 0 (the default), min(jobs, NumberOfCpuCores()/2) is used.

	-dict

	Provide a dictionary of input keywords; see Dictionaries.

	-use_counters

	Use coverage counters [http://clang.llvm.org/docs/SanitizerCoverage.html#coverage-counters] to generate approximate counts of how often code
blocks are hit; defaults to 1.

	-reduce_inputs

	Try to reduce the size of inputs while preserving their full feature sets;
defaults to 1.

	-use_value_profile

	Use value profile to guide corpus expansion; defaults to 0.

	-only_ascii

	If 1, generate only ASCII (isprint``+``isspace) inputs. Defaults to 0.

	-artifact_prefix

	Provide a prefix to use when saving fuzzing artifacts (crash, timeout, or
slow inputs) as $(artifact_prefix)file. Defaults to empty.

	-exact_artifact_path

	Ignored if empty (the default). If non-empty, write the single artifact on
failure (crash, timeout) as $(exact_artifact_path). This overrides
-artifact_prefix and will not use checksum in the file name. Do not use
the same path for several parallel processes.

	-print_pcs

	If 1, print out newly covered PCs. Defaults to 0.

	-print_final_stats

	If 1, print statistics at exit. Defaults to 0.

	-detect_leaks

	If 1 (default) and if LeakSanitizer is enabled
try to detect memory leaks during fuzzing (i.e. not only at shut down).

	-close_fd_mask

	Indicate output streams to close at startup. Be careful, this will
remove diagnostic output from target code (e.g. messages on assert failure).

	0 (default): close neither stdout nor stderr

	1 : close stdout

	2 : close stderr

	3 : close both stdout and stderr.

For the full list of flags run the fuzzer binary with -help=1.

Output

During operation the fuzzer prints information to stderr, for example:

INFO: Seed: 1523017872
INFO: Loaded 1 modules (16 guards): [0x744e60, 0x744ea0),
INFO: -max_len is not provided, using 64
INFO: A corpus is not provided, starting from an empty corpus
#0 READ units: 1
#1 INITED cov: 3 ft: 2 corp: 1/1b exec/s: 0 rss: 24Mb
#3811 NEW cov: 4 ft: 3 corp: 2/2b exec/s: 0 rss: 25Mb L: 1 MS: 5 ChangeBit-ChangeByte-ChangeBit-ShuffleBytes-ChangeByte-
#3827 NEW cov: 5 ft: 4 corp: 3/4b exec/s: 0 rss: 25Mb L: 2 MS: 1 CopyPart-
#3963 NEW cov: 6 ft: 5 corp: 4/6b exec/s: 0 rss: 25Mb L: 2 MS: 2 ShuffleBytes-ChangeBit-
#4167 NEW cov: 7 ft: 6 corp: 5/9b exec/s: 0 rss: 25Mb L: 3 MS: 1 InsertByte-
...

The early parts of the output include information about the fuzzer options and
configuration, including the current random seed (in the Seed: line; this
can be overridden with the -seed=N flag).

Further output lines have the form of an event code and statistics. The
possible event codes are:

	READ

	The fuzzer has read in all of the provided input samples from the corpus
directories.

	INITED

	The fuzzer has completed initialization, which includes running each of
the initial input samples through the code under test.

	NEW

	The fuzzer has created a test input that covers new areas of the code
under test. This input will be saved to the primary corpus directory.

	REDUCE

	The fuzzer has found a better (smaller) input that triggers previously
discovered features (set -reduce_inputs=0 to disable).

	pulse

	The fuzzer has generated 2n inputs (generated periodically to reassure
the user that the fuzzer is still working).

	DONE

	The fuzzer has completed operation because it has reached the specified
iteration limit (-runs) or time limit (-max_total_time).

	RELOAD

	The fuzzer is performing a periodic reload of inputs from the corpus
directory; this allows it to discover any inputs discovered by other
fuzzer processes (see Parallel Fuzzing).

Each output line also reports the following statistics (when non-zero):

	cov:

	Total number of code blocks or edges covered by executing the current corpus.

	ft:

	libFuzzer uses different signals to evaluate the code coverage:
edge coverage, edge counters, value profiles, indirect caller/callee pairs, etc.
These signals combined are called features (ft:).

	corp:

	Number of entries in the current in-memory test corpus and its size in bytes.

	lim:

	Current limit on the length of new entries in the corpus. Increases over time
until the max length (-max_len) is reached.

	exec/s:

	Number of fuzzer iterations per second.

	rss:

	Current memory consumption.

For NEW events, the output line also includes information about the mutation
operation that produced the new input:

	L:

	Size of the new input in bytes.

	MS: <n> <operations>

	Count and list of the mutation operations used to generate the input.

Examples

	Toy example

	More examples

Toy example

A simple function that does something interesting if it receives the input
“HI!”:

cat << EOF > test_fuzzer.cc
#include <stdint.h>
#include <stddef.h>
extern "C" int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) {
 if (size > 0 && data[0] == 'H')
 if (size > 1 && data[1] == 'I')
 if (size > 2 && data[2] == '!')
 __builtin_trap();
 return 0;
}
EOF
Build test_fuzzer.cc with asan and link against libFuzzer.a
clang++ -fsanitize=address -fsanitize-coverage=trace-pc-guard test_fuzzer.cc libFuzzer.a
Run the fuzzer with no corpus.
./a.out

You should get an error pretty quickly:

INFO: Seed: 1523017872
INFO: Loaded 1 modules (16 guards): [0x744e60, 0x744ea0),
INFO: -max_len is not provided, using 64
INFO: A corpus is not provided, starting from an empty corpus
#0 READ units: 1
#1 INITED cov: 3 ft: 2 corp: 1/1b exec/s: 0 rss: 24Mb
#3811 NEW cov: 4 ft: 3 corp: 2/2b exec/s: 0 rss: 25Mb L: 1 MS: 5 ChangeBit-ChangeByte-ChangeBit-ShuffleBytes-ChangeByte-
#3827 NEW cov: 5 ft: 4 corp: 3/4b exec/s: 0 rss: 25Mb L: 2 MS: 1 CopyPart-
#3963 NEW cov: 6 ft: 5 corp: 4/6b exec/s: 0 rss: 25Mb L: 2 MS: 2 ShuffleBytes-ChangeBit-
#4167 NEW cov: 7 ft: 6 corp: 5/9b exec/s: 0 rss: 25Mb L: 3 MS: 1 InsertByte-
==31511== ERROR: libFuzzer: deadly signal
...
artifact_prefix='./'; Test unit written to ./crash-b13e8756b13a00cf168300179061fb4b91fefbed

More examples

Examples of real-life fuzz targets and the bugs they find can be found
at http://tutorial.libfuzzer.info. Among other things you can learn how
to detect Heartbleed [http://en.wikipedia.org/wiki/Heartbleed] in one second.

Advanced features

	Dictionaries

	Tracing CMP instructions

	Value Profile

	Fuzzer-friendly build mode

	AFL compatibility

	How good is my fuzzer?

	User-supplied mutators

	Startup initialization

	Leaks

Dictionaries

LibFuzzer supports user-supplied dictionaries with input language keywords
or other interesting byte sequences (e.g. multi-byte magic values).
Use -dict=DICTIONARY_FILE. For some input languages using a dictionary
may significantly improve the search speed.
The dictionary syntax is similar to that used by AFL [http://lcamtuf.coredump.cx/afl/] for its -x option:

Lines starting with '#' and empty lines are ignored.

Adds "blah" (w/o quotes) to the dictionary.
kw1="blah"
Use \\ for backslash and \" for quotes.
kw2="\"ac\\dc\""
Use \xAB for hex values
kw3="\xF7\xF8"
the name of the keyword followed by '=' may be omitted:
"foo\x0Abar"

Tracing CMP instructions

With an additional compiler flag -fsanitize-coverage=trace-cmp
(on by default as part of -fsanitize=fuzzer, see SanitizerCoverageTraceDataFlow [http://clang.llvm.org/docs/SanitizerCoverage.html#tracing-data-flow])
libFuzzer will intercept CMP instructions and guide mutations based
on the arguments of intercepted CMP instructions. This may slow down
the fuzzing but is very likely to improve the results.

Value Profile

With -fsanitize-coverage=trace-cmp
and extra run-time flag -use_value_profile=1 the fuzzer will
collect value profiles for the parameters of compare instructions
and treat some new values as new coverage.

The current imlpementation does roughly the following:

	The compiler instruments all CMP instructions with a callback that receives both CMP arguments.

	The callback computes (caller_pc&4095) | (popcnt(Arg1 ^ Arg2) << 12) and uses this value to set a bit in a bitset.

	Every new observed bit in the bitset is treated as new coverage.

This feature has a potential to discover many interesting inputs,
but there are two downsides.
First, the extra instrumentation may bring up to 2x additional slowdown.
Second, the corpus may grow by several times.

Fuzzer-friendly build mode

Sometimes the code under test is not fuzzing-friendly. Examples:

	The target code uses a PRNG seeded e.g. by system time and
thus two consequent invocations may potentially execute different code paths
even if the end result will be the same. This will cause a fuzzer to treat
two similar inputs as significantly different and it will blow up the test corpus.
E.g. libxml uses rand() inside its hash table.

	The target code uses checksums to protect from invalid inputs.
E.g. png checks CRC for every chunk.

In many cases it makes sense to build a special fuzzing-friendly build
with certain fuzzing-unfriendly features disabled. We propose to use a common build macro
for all such cases for consistency: FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION.

void MyInitPRNG() {
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
 // In fuzzing mode the behavior of the code should be deterministic.
 srand(0);
#else
 srand(time(0));
#endif
}

AFL compatibility

LibFuzzer can be used together with AFL [http://lcamtuf.coredump.cx/afl/] on the same test corpus.
Both fuzzers expect the test corpus to reside in a directory, one file per input.
You can run both fuzzers on the same corpus, one after another:

./afl-fuzz -i testcase_dir -o findings_dir /path/to/program @@
./llvm-fuzz testcase_dir findings_dir # Will write new tests to testcase_dir

Periodically restart both fuzzers so that they can use each other’s findings.
Currently, there is no simple way to run both fuzzing engines in parallel while sharing the same corpus dir.

You may also use AFL on your target function LLVMFuzzerTestOneInput:
see an example here [https://github.com/llvm-mirror/compiler-rt/tree/master/lib/fuzzer/afl].

How good is my fuzzer?

Once you implement your target function LLVMFuzzerTestOneInput and fuzz it to death,
you will want to know whether the function or the corpus can be improved further.
One easy to use metric is, of course, code coverage.

We recommend to use
Clang Coverage [http://clang.llvm.org/docs/SourceBasedCodeCoverage.html],
to visualize and study your code coverage
(example [https://github.com/google/fuzzer-test-suite/blob/master/tutorial/libFuzzerTutorial.md#visualizing-coverage]).

User-supplied mutators

LibFuzzer allows to use custom (user-supplied) mutators,
see FuzzerInterface.h [https://github.com/llvm-mirror/compiler-rt/blob/master/lib/fuzzer/FuzzerInterface.h]

Startup initialization

If the library being tested needs to be initialized, there are several options.

The simplest way is to have a statically initialized global object inside
LLVMFuzzerTestOneInput (or in global scope if that works for you):

extern "C" int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) {
 static bool Initialized = DoInitialization();
 ...

Alternatively, you may define an optional init function and it will receive
the program arguments that you can read and modify. Do this only if you
really need to access argv/argc.

extern "C" int LLVMFuzzerInitialize(int *argc, char ***argv) {
 ReadAndMaybeModify(argc, argv);
 return 0;
}

Leaks

Binaries built with AddressSanitizer [http://clang.llvm.org/docs/AddressSanitizer.html] or LeakSanitizer [http://clang.llvm.org/docs/LeakSanitizer.html] will try to detect
memory leaks at the process shutdown.
For in-process fuzzing this is inconvenient
since the fuzzer needs to report a leak with a reproducer as soon as the leaky
mutation is found. However, running full leak detection after every mutation
is expensive.

By default (-detect_leaks=1) libFuzzer will count the number of
malloc and free calls when executing every mutation.
If the numbers don’t match (which by itself doesn’t mean there is a leak)
libFuzzer will invoke the more expensive LeakSanitizer [http://clang.llvm.org/docs/LeakSanitizer.html]
pass and if the actual leak is found, it will be reported with the reproducer
and the process will exit.

If your target has massive leaks and the leak detection is disabled
you will eventually run out of RAM (see the -rss_limit_mb flag).

Developing libFuzzer

LibFuzzer is built as a part of LLVM project by default on macos and Linux.
Users of other operating systems can explicitly request compilation using
-DLIBFUZZER_ENABLE=YES flag.
Tests are run using check-fuzzer target from the build directory
which was configured with -DLIBFUZZER_ENABLE_TESTS=ON flag.

ninja check-fuzzer

FAQ

Q. Why doesn’t libFuzzer use any of the LLVM support?

There are two reasons.

First, we want this library to be used outside of the LLVM without users having to
build the rest of LLVM. This may sound unconvincing for many LLVM folks,
but in practice the need for building the whole LLVM frightens many potential
users – and we want more users to use this code.

Second, there is a subtle technical reason not to rely on the rest of LLVM, or
any other large body of code (maybe not even STL). When coverage instrumentation
is enabled, it will also instrument the LLVM support code which will blow up the
coverage set of the process (since the fuzzer is in-process). In other words, by
using more external dependencies we will slow down the fuzzer while the main
reason for it to exist is extreme speed.

Q. What about Windows then? The fuzzer contains code that does not build on Windows.

Volunteers are welcome.

Q. When libFuzzer is not a good solution for a problem?

	If the test inputs are validated by the target library and the validator
asserts/crashes on invalid inputs, in-process fuzzing is not applicable.

	Bugs in the target library may accumulate without being detected. E.g. a memory
corruption that goes undetected at first and then leads to a crash while
testing another input. This is why it is highly recommended to run this
in-process fuzzer with all sanitizers to detect most bugs on the spot.

	It is harder to protect the in-process fuzzer from excessive memory
consumption and infinite loops in the target library (still possible).

	The target library should not have significant global state that is not
reset between the runs.

	Many interesting target libraries are not designed in a way that supports
the in-process fuzzer interface (e.g. require a file path instead of a
byte array).

	If a single test run takes a considerable fraction of a second (or
more) the speed benefit from the in-process fuzzer is negligible.

	If the target library runs persistent threads (that outlive
execution of one test) the fuzzing results will be unreliable.

Q. So, what exactly this Fuzzer is good for?

This Fuzzer might be a good choice for testing libraries that have relatively
small inputs, each input takes < 10ms to run, and the library code is not expected
to crash on invalid inputs.
Examples: regular expression matchers, text or binary format parsers, compression,
network, crypto.

Trophies

	Thousands of bugs found on OSS-Fuzz: https://opensource.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html

	GLIBC: https://sourceware.org/glibc/wiki/FuzzingLibc

	MUSL LIBC: [1] [http://git.musl-libc.org/cgit/musl/commit/?id=39dfd58417ef642307d90306e1c7e50aaec5a35c] [2] [http://www.openwall.com/lists/oss-security/2015/03/30/3]

	pugixml [https://github.com/zeux/pugixml/issues/39]

	PCRE: Search for “LLVM fuzzer” in http://vcs.pcre.org/pcre2/code/trunk/ChangeLog?view=markup;
also in bugzilla [https://bugs.exim.org/buglist.cgi?bug_status=__all__&content=libfuzzer&no_redirect=1&order=Importance&product=PCRE&query_format=specific]

	ICU [http://bugs.icu-project.org/trac/ticket/11838]

	Freetype [https://savannah.nongnu.org/search/?words=LibFuzzer&type_of_search=bugs&Search=Search&exact=1#options]

	Harfbuzz [https://github.com/behdad/harfbuzz/issues/139]

	SQLite [http://www3.sqlite.org/cgi/src/info/088009efdd56160b]

	Python [http://bugs.python.org/issue25388]

	OpenSSL/BoringSSL: [1] [https://boringssl.googlesource.com/boringssl/+/cb852981cd61733a7a1ae4fd8755b7ff950e857d] [2] [https://openssl.org/news/secadv/20160301.txt] [3] [https://boringssl.googlesource.com/boringssl/+/2b07fa4b22198ac02e0cee8f37f3337c3dba91bc] [4] [https://boringssl.googlesource.com/boringssl/+/6b6e0b20893e2be0e68af605a60ffa2cbb0ffa64] [5] [https://github.com/openssl/openssl/pull/931/commits/dd5ac557f052cc2b7f718ac44a8cb7ac6f77dca8] [6] [https://github.com/openssl/openssl/pull/931/commits/19b5b9194071d1d84e38ac9a952e715afbc85a81]

	Libxml2 [https://bugzilla.gnome.org/buglist.cgi?bug_status=__all__&content=libFuzzer&list_id=68957&order=Importance&product=libxml2&query_format=specific] and [HT206167] [https://support.apple.com/en-gb/HT206167] (CVE-2015-5312, CVE-2015-7500, CVE-2015-7942)

	Linux Kernel’s BPF verifier [https://github.com/iovisor/bpf-fuzzer]

	Linux Kernel’s Crypto code [https://www.spinics.net/lists/stable/msg199712.html]

	Capstone: [1] [https://github.com/aquynh/capstone/issues/600] [2] [https://github.com/aquynh/capstone/commit/6b88d1d51eadf7175a8f8a11b690684443b11359]

	file:[1] [http://bugs.gw.com/view.php?id=550] [2] [http://bugs.gw.com/view.php?id=551] [3] [http://bugs.gw.com/view.php?id=553] [4] [http://bugs.gw.com/view.php?id=554]

	Radare2: [1] [https://github.com/revskills?tab=contributions&from=2016-04-09]

	gRPC: [1] [https://github.com/grpc/grpc/pull/6071/commits/df04c1f7f6aec6e95722ec0b023a6b29b6ea871c] [2] [https://github.com/grpc/grpc/pull/6071/commits/22a3dfd95468daa0db7245a4e8e6679a52847579] [3] [https://github.com/grpc/grpc/pull/6071/commits/9cac2a12d9e181d130841092e9d40fa3309d7aa7] [4] [https://github.com/grpc/grpc/pull/6012/commits/82a91c91d01ce9b999c8821ed13515883468e203] [5] [https://github.com/grpc/grpc/pull/6202/commits/2e3e0039b30edaf89fb93bfb2c1d0909098519fa] [6] [https://github.com/grpc/grpc/pull/6106/files]

	WOFF2: [1] [https://github.com/google/woff2/commit/a15a8ab]

	LLVM: Clang [https://llvm.org/bugs/show_bug.cgi?id=23057], Clang-format [https://llvm.org/bugs/show_bug.cgi?id=23052], libc++ [https://llvm.org/bugs/show_bug.cgi?id=24411], llvm-as [https://llvm.org/bugs/show_bug.cgi?id=24639], Demangler [https://bugs.chromium.org/p/chromium/issues/detail?id=606626], Disassembler: http://reviews.llvm.org/rL247405, http://reviews.llvm.org/rL247414, http://reviews.llvm.org/rL247416, http://reviews.llvm.org/rL247417, http://reviews.llvm.org/rL247420, http://reviews.llvm.org/rL247422.

	Tensorflow: [1] [https://da-data.blogspot.com/2017/01/finding-bugs-in-tensorflow-with.html]

	Ffmpeg: [1] [https://github.com/FFmpeg/FFmpeg/commit/c92f55847a3d9cd12db60bfcd0831ff7f089c37c] [2] [https://github.com/FFmpeg/FFmpeg/commit/25ab1a65f3acb5ec67b53fb7a2463a7368f1ad16] [3] [https://github.com/FFmpeg/FFmpeg/commit/85d23e5cbc9ad6835eef870a5b4247de78febe56] [4] [https://github.com/FFmpeg/FFmpeg/commit/04bd1b38ee6b8df410d0ab8d4949546b6c4af26a]

	Wireshark [https://bugs.wireshark.org/bugzilla/buglist.cgi?bug_status=UNCONFIRMED&bug_status=CONFIRMED&bug_status=IN_PROGRESS&bug_status=INCOMPLETE&bug_status=RESOLVED&bug_status=VERIFIED&f0=OP&f1=OP&f2=product&f3=component&f4=alias&f5=short_desc&f7=content&f8=CP&f9=CP&j1=OR&o2=substring&o3=substring&o4=substring&o5=substring&o6=substring&o7=matches&order=bug_id%20DESC&query_format=advanced&v2=libfuzzer&v3=libfuzzer&v4=libfuzzer&v5=libfuzzer&v6=libfuzzer&v7=%22libfuzzer%22]

	QEMU [https://researchcenter.paloaltonetworks.com/2017/09/unit42-palo-alto-networks-discovers-new-qemu-vulnerability/]

Fuzzing LLVM libraries and tools

	Introduction

	Available Fuzzers

	clang-fuzzer

	clang-proto-fuzzer

	clang-format-fuzzer

	llvm-as-fuzzer

	llvm-dwarfdump-fuzzer

	llvm-demangle-fuzzer

	llvm-isel-fuzzer

	llvm-opt-fuzzer

	llvm-mc-assemble-fuzzer

	llvm-mc-disassemble-fuzzer

	Mutators and Input Generators

	Generic Random Fuzzing

	Structured Fuzzing using libprotobuf-mutator

	Structured Fuzzing of LLVM IR

	Building and Running

	Configuring LLVM to Build Fuzzers

	Continuously Running and Finding Bugs

	Utilities for Writing Fuzzers

Introduction

The LLVM tree includes a number of fuzzers for various components. These are
built on top of LibFuzzer.

Available Fuzzers

clang-fuzzer

A generic fuzzer that tries to compile textual input as C++ code. Some of the
bugs this fuzzer has reported are on bugzilla [https://llvm.org/pr23057] and on OSS Fuzz’s
tracker [https://bugs.chromium.org/p/oss-fuzz/issues/list?q=proj-llvm+clang-fuzzer].

clang-proto-fuzzer

A libprotobuf-mutator based fuzzer that compiles valid C++ programs generated from a protobuf
class that describes a subset of the C++ language.

This fuzzer accepts clang command line options after ignore_remaining_args=1.
For example, the following command will fuzz clang with a higher optimization
level:

% bin/clang-proto-fuzzer <corpus-dir> -ignore_remaining_args=1 -O3

clang-format-fuzzer

A generic fuzzer that runs clang-format [https://clang.llvm.org/docs/ClangFormat.html] on C++ text fragments. Some of the
bugs this fuzzer has reported are on bugzilla [https://llvm.org/pr23052]
and on OSS Fuzz’s tracker [https://bugs.chromium.org/p/oss-fuzz/issues/list?q=proj-llvm+clang-format-fuzzer].

llvm-as-fuzzer

A generic fuzzer that tries to parse text as LLVM assembly.
Some of the bugs this fuzzer has reported are on bugzilla [https://llvm.org/pr24639].

llvm-dwarfdump-fuzzer

A generic fuzzer that interprets inputs as object files and runs
llvm-dwarfdump on them. Some of the bugs
this fuzzer has reported are on OSS Fuzz’s tracker [https://bugs.chromium.org/p/oss-fuzz/issues/list?q=proj-llvm+llvm-dwarfdump-fuzzer]

llvm-demangle-fuzzer

A generic fuzzer for the Itanium demangler used in various LLVM tools. We’ve
fuzzed __cxa_demangle to death, why not fuzz LLVM’s implementation of the same
function!

llvm-isel-fuzzer

A structured LLVM IR fuzzer aimed at finding bugs in instruction selection.

This fuzzer accepts flags after ignore_remaining_args=1. The flags match
those of llc and the triple is required. For example,
the following command would fuzz AArch64 with Global Instruction Selection:

% bin/llvm-isel-fuzzer <corpus-dir> -ignore_remaining_args=1 -mtriple aarch64 -global-isel -O0

Some flags can also be specified in the binary name itself in order to support
OSS Fuzz, which has trouble with required arguments. To do this, you can copy
or move llvm-isel-fuzzer to llvm-isel-fuzzer--x-y-z, separating options
from the binary name using “–”. The valid options are architecture names
(aarch64, x86_64), optimization levels (O0, O2), or specific
keywords, like gisel for enabling global instruction selection. In this
mode, the same example could be run like so:

% bin/llvm-isel-fuzzer--aarch64-O0-gisel <corpus-dir>

llvm-opt-fuzzer

A structured LLVM IR fuzzer aimed at finding bugs in optimization passes.

It receives optimzation pipeline and runs it for each fuzzer input.

Interface of this fuzzer almost directly mirrors llvm-isel-fuzzer. Both
mtriple and passes arguments are required. Passes are specified in a
format suitable for the new pass manager.

% bin/llvm-opt-fuzzer <corpus-dir> -ignore_remaining_args=1 -mtriple x86_64 -passes instcombine

Similarly to the llvm-isel-fuzzer arguments in some predefined configurations
might be embedded directly into the binary file name:

% bin/llvm-opt-fuzzer--x86_64-instcombine <corpus-dir>

llvm-mc-assemble-fuzzer

A generic fuzzer that fuzzes the MC layer’s assemblers by treating inputs as
target specific assembly.

Note that this fuzzer has an unusual command line interface which is not fully
compatible with all of libFuzzer’s features. Fuzzer arguments must be passed
after --fuzzer-args, and any llc flags must use two dashes. For
example, to fuzz the AArch64 assembler you might use the following command:

llvm-mc-fuzzer --triple=aarch64-linux-gnu --fuzzer-args -max_len=4

This scheme will likely change in the future.

llvm-mc-disassemble-fuzzer

A generic fuzzer that fuzzes the MC layer’s disassemblers by treating inputs
as assembled binary data.

Note that this fuzzer has an unusual command line interface which is not fully
compatible with all of libFuzzer’s features. See the notes above about
llvm-mc-assemble-fuzzer for details.

Mutators and Input Generators

The inputs for a fuzz target are generated via random mutations of a
corpus. There are a few options for the kinds of
mutations that a fuzzer in LLVM might want.

Generic Random Fuzzing

The most basic form of input mutation is to use the built in mutators of
LibFuzzer. These simply treat the input corpus as a bag of bits and make random
mutations. This type of fuzzer is good for stressing the surface layers of a
program, and is good at testing things like lexers, parsers, or binary
protocols.

Some of the in-tree fuzzers that use this type of mutator are clang-fuzzer,
clang-format-fuzzer, llvm-as-fuzzer, llvm-dwarfdump-fuzzer,
llvm-mc-assemble-fuzzer, and llvm-mc-disassemble-fuzzer.

Structured Fuzzing using libprotobuf-mutator

We can use libprotobuf-mutator [https://github.com/google/libprotobuf-mutator] in order to perform structured fuzzing and
stress deeper layers of programs. This works by defining a protobuf class that
translates arbitrary data into structurally interesting input. Specifically, we
use this to work with a subset of the C++ language and perform mutations that
produce valid C++ programs in order to exercise parts of clang that are more
interesting than parser error handling.

To build this kind of fuzzer you need protobuf [https://github.com/google/protobuf] and its dependencies
installed, and you need to specify some extra flags when configuring the build
with CMake. For example, clang-proto-fuzzer can be enabled by
adding -DCLANG_ENABLE_PROTO_FUZZER=ON to the flags described in
Configuring LLVM to Build Fuzzers.

The only in-tree fuzzer that uses libprotobuf-mutator today is
clang-proto-fuzzer.

Structured Fuzzing of LLVM IR

We also use a more direct form of structured fuzzing for fuzzers that take
LLVM IR as input. This is achieved through the FuzzMutate
library, which was discussed at EuroLLVM 2017 [https://www.youtube.com/watch?v=UBbQ_s6hNgg].

The FuzzMutate library is used to structurally fuzz backends in
llvm-isel-fuzzer.

Building and Running

Configuring LLVM to Build Fuzzers

Fuzzers will be built and linked to libFuzzer by default as long as you build
LLVM with sanitizer coverage enabled. You would typically also enable at least
one sanitizer to find bugs faster. The most common way to build the fuzzers is
by adding the following two flags to your CMake invocation:
-DLLVM_USE_SANITIZER=Address -DLLVM_USE_SANITIZE_COVERAGE=On.

Note

If you have compiler-rt checked out in an LLVM tree when building
with sanitizers, you’ll want to specify -DLLVM_BUILD_RUNTIME=Off
to avoid building the sanitizers themselves with sanitizers enabled.

Continuously Running and Finding Bugs

There used to be a public buildbot running LLVM fuzzers continuously, and while
this did find issues, it didn’t have a very good way to report problems in an
actionable way. Because of this, we’re moving towards using OSS Fuzz [https://github.com/google/oss-fuzz] more
instead.

You can browse the LLVM project issue list [https://bugs.chromium.org/p/oss-fuzz/issues/list?q=Proj-llvm] for the bugs found by
LLVM on OSS Fuzz [https://github.com/google/oss-fuzz/blob/master/projects/llvm]. These are also mailed to the llvm-bugs mailing
list [http://lists.llvm.org/cgi-bin/mailman/listinfo/llvm-bugs].

Utilities for Writing Fuzzers

There are some utilities available for writing fuzzers in LLVM.

Some helpers for handling the command line interface are available in
include/llvm/FuzzMutate/FuzzerCLI.h, including functions to parse command
line options in a consistent way and to implement standalone main functions so
your fuzzer can be built and tested when not built against libFuzzer.

There is also some handling of the CMake config for fuzzers, where you should
use the add_llvm_fuzzer to set up fuzzer targets. This function works
similarly to functions such as add_llvm_tool, but they take care of linking
to LibFuzzer when appropriate and can be passed the DUMMY_MAIN argument to
enable standalone testing.

Scudo Hardened Allocator

	Introduction

	Design

	Usage

Introduction

The Scudo Hardened Allocator is a user-mode allocator based on LLVM Sanitizer’s
CombinedAllocator, which aims at providing additional mitigations against heap
based vulnerabilities, while maintaining good performance.

Currently, the allocator supports (was tested on) the following architectures:

	i386 (& i686) (32-bit);

	x86_64 (64-bit);

	armhf (32-bit);

	AArch64 (64-bit);

	MIPS (32-bit & 64-bit).

The name “Scudo” has been retained from the initial implementation (Escudo
meaning Shield in Spanish and Portuguese).

Design

Allocator

Scudo can be considered a Frontend to the Sanitizers’ common allocator (later
referenced as the Backend). It is split between a Primary allocator, fast and
efficient, that services smaller allocation sizes, and a Secondary allocator
that services larger allocation sizes and is backed by the operating system
memory mapping primitives.

Scudo was designed with security in mind, but aims at striking a good balance
between security and performance. It is highly tunable and configurable.

Chunk Header

Every chunk of heap memory will be preceded by a chunk header. This has two
purposes, the first one being to store various information about the chunk,
the second one being to detect potential heap overflows. In order to achieve
this, the header will be checksummed, involving the pointer to the chunk itself
and a global secret. Any corruption of the header will be detected when said
header is accessed, and the process terminated.

The following information is stored in the header:

	the 16-bit checksum;

	the class ID for that chunk, which is the “bucket” where the chunk resides
for Primary backed allocations, or 0 for Secondary backed allocations;

	the size (Primary) or unused bytes amount (Secondary) for that chunk, which is
necessary for computing the size of the chunk;

	the state of the chunk (available, allocated or quarantined);

	the allocation type (malloc, new, new[] or memalign), to detect potential
mismatches in the allocation APIs used;

	the offset of the chunk, which is the distance in bytes from the beginning of
the returned chunk to the beginning of the Backend allocation;

This header fits within 8 bytes, on all platforms supported.

The checksum is computed as a CRC32 (made faster with hardware support)
of the global secret, the chunk pointer itself, and the 8 bytes of header with
the checksum field zeroed out. It is not intended to be cryptographically
strong.

The header is atomically loaded and stored to prevent races. This is important
as two consecutive chunks could belong to different threads. We also want to
avoid any type of double fetches of information located in the header, and use
local copies of the header for this purpose.

Delayed Freelist

A delayed freelist allows us to not return a chunk directly to the Backend, but
to keep it aside for a while. Once a criterion is met, the delayed freelist is
emptied, and the quarantined chunks are returned to the Backend. This helps
mitigate use-after-free vulnerabilities by reducing the determinism of the
allocation and deallocation patterns.

This feature is using the Sanitizer’s Quarantine as its base, and the amount of
memory that it can hold is configurable by the user (see the Options section
below).

Randomness

It is important for the allocator to not make use of fixed addresses. We use
the dynamic base option for the SizeClassAllocator, allowing us to benefit
from the randomness of the system memory mapping functions.

Usage

Library

The allocator static library can be built from the LLVM build tree thanks to
the scudo CMake rule. The associated tests can be exercised thanks to the
check-scudo CMake rule.

Linking the static library to your project can require the use of the
whole-archive linker flag (or equivalent), depending on your linker.
Additional flags might also be necessary.

Your linked binary should now make use of the Scudo allocation and deallocation
functions.

You may also build Scudo like this:

cd $LLVM/projects/compiler-rt/lib
clang++ -fPIC -std=c++11 -msse4.2 -O2 -I. scudo/*.cpp \
 $(\ls sanitizer_common/*.{cc,S} | grep -v "sanitizer_termination\|sanitizer_common_nolibc\|sancov_\|sanitizer_unwind\|sanitizer_symbol") \
 -shared -o libscudo.so -pthread

and then use it with existing binaries as follows:

LD_PRELOAD=`pwd`/libscudo.so ./a.out

Clang

With a recent version of Clang (post rL317337), the allocator can be linked with
a binary at compilation using the -fsanitize=scudo command-line argument, if
the target platform is supported. Currently, the only other Sanitizer Scudo is
compatible with is UBSan (eg: -fsanitize=scudo,undefined). Compiling with
Scudo will also enforce PIE for the output binary.

Options

Several aspects of the allocator can be configured on a per process basis
through the following ways:

	at compile time, by defining SCUDO_DEFAULT_OPTIONS to the options string
you want set by default;

	by defining a __scudo_default_options function in one’s program that
returns the options string to be parsed. Said function must have the following
prototype: extern "C" const char* __scudo_default_options(void), with a
default visibility. This will override the compile time define;

	through the environment variable SCUDO_OPTIONS, containing the options string
to be parsed. Options defined this way will override any definition made
through __scudo_default_options.

The options string follows a syntax similar to ASan, where distinct options
can be assigned in the same string, separated by colons.

For example, using the environment variable:

SCUDO_OPTIONS="DeleteSizeMismatch=1:QuarantineSizeKb=64" ./a.out

Or using the function:

extern "C" const char *__scudo_default_options() {
 return "DeleteSizeMismatch=1:QuarantineSizeKb=64";
}

The following options are available:

	Option

	64-bit default

	32-bit default

	Description

	QuarantineSizeKb

	256

	64

	The size (in Kb) of quarantine used to delay
the actual deallocation of chunks. Lower value
may reduce memory usage but decrease the
effectiveness of the mitigation; a negative
value will fallback to the defaults. Setting
both this and ThreadLocalQuarantineSizeKb to
zero will disable the quarantine entirely.

	QuarantineChunksUpToSize

	2048

	512

	Size (in bytes) up to which chunks can be
quarantined.

	ThreadLocalQuarantineSizeKb

	1024

	256

	The size (in Kb) of per-thread cache use to
offload the global quarantine. Lower value may
reduce memory usage but might increase
contention on the global quarantine. Setting
both this and QuarantineSizeKb to zero will
disable the quarantine entirely.

	DeallocationTypeMismatch

	true

	true

	Whether or not we report errors on
malloc/delete, new/free, new/delete[], etc.

	DeleteSizeMismatch

	true

	true

	Whether or not we report errors on mismatch
between sizes of new and delete.

	ZeroContents

	false

	false

	Whether or not we zero chunk contents on
allocation and deallocation.

Allocator related common Sanitizer options can also be passed through Scudo
options, such as allocator_may_return_null or abort_on_error. A detailed
list including those can be found here:
https://github.com/google/sanitizers/wiki/SanitizerCommonFlags.

Using -opt-bisect-limit to debug optimization errors

	Introduction

	Getting Started

	Bisection Index Values

	Example Usage

	Pass Skipping Implementation

	Adding Finer Granularity

Introduction

The -opt-bisect-limit option provides a way to disable all optimization passes
above a specified limit without modifying the way in which the Pass Managers
are populated. The intention of this option is to assist in tracking down
problems where incorrect transformations during optimization result in incorrect
run-time behavior.

This feature is implemented on an opt-in basis. Passes which can be safely
skipped while still allowing correct code generation call a function to
check the opt-bisect limit before performing optimizations. Passes which
either must be run or do not modify the IR do not perform this check and are
therefore never skipped. Generally, this means analysis passes, passes
that are run at CodeGenOpt::None and passes which are required for register
allocation.

The -opt-bisect-limit option can be used with any tool, including front ends
such as clang, that uses the core LLVM library for optimization and code
generation. The exact syntax for invoking the option is discussed below.

This feature is not intended to replace other debugging tools such as bugpoint.
Rather it provides an alternate course of action when reproducing the problem
requires a complex build infrastructure that would make using bugpoint
impractical or when reproducing the failure requires a sequence of
transformations that is difficult to replicate with tools like opt and llc.

Getting Started

The -opt-bisect-limit command line option can be passed directly to tools such
as opt, llc and lli. The syntax is as follows:

<tool name> [other options] -opt-bisect-limit=<limit>

If a value of -1 is used the tool will perform all optimizations but a message
will be printed to stderr for each optimization that could be skipped
indicating the index value that is associated with that optimization. To skip
optimizations, pass the value of the last optimization to be performed as the
opt-bisect-limit. All optimizations with a higher index value will be skipped.

In order to use the -opt-bisect-limit option with a driver that provides a
wrapper around the LLVM core library, an additional prefix option may be
required, as defined by the driver. For example, to use this option with
clang, the “-mllvm” prefix must be used. A typical clang invocation would look
like this:

clang -O2 -mllvm -opt-bisect-limit=256 my_file.c

The -opt-bisect-limit option may also be applied to link-time optimizations by
using a prefix to indicate that this is a plug-in option for the linker. The
following syntax will set a bisect limit for LTO transformations:

When using lld, or ld64 (macOS)
clang -flto -Wl,-mllvm,-opt-bisect-limit=256 my_file.o my_other_file.o
When using Gold
clang -flto -Wl,-plugin-opt,-opt-bisect-limit=256 my_file.o my_other_file.o

LTO passes are run by a library instance invoked by the linker. Therefore any
passes run in the primary driver compilation phase are not affected by options
passed via ‘-Wl,-plugin-opt’ and LTO passes are not affected by options
passed to the driver-invoked LLVM invocation via ‘-mllvm’.

Bisection Index Values

The granularity of the optimizations associated with a single index value is
variable. Depending on how the optimization pass has been instrumented the
value may be associated with as much as all transformations that would have
been performed by an optimization pass on an IR unit for which it is invoked
(for instance, during a single call of runOnFunction for a FunctionPass) or as
little as a single transformation. The index values may also be nested so that
if an invocation of the pass is not skipped individual transformations within
that invocation may still be skipped.

The order of the values assigned is guaranteed to remain stable and consistent
from one run to the next up to and including the value specified as the limit.
Above the limit value skipping of optimizations can cause a change in the
numbering, but because all optimizations above the limit are skipped this
is not a problem.

When an opt-bisect index value refers to an entire invocation of the run
function for a pass, the pass will query whether or not it should be skipped
each time it is invoked and each invocation will be assigned a unique value.
For example, if a FunctionPass is used with a module containing three functions
a different index value will be assigned to the pass for each of the functions
as the pass is run. The pass may be run on two functions but skipped for the
third.

If the pass internally performs operations on a smaller IR unit the pass must be
specifically instrumented to enable bisection at this finer level of granularity
(see below for details).

Example Usage

$ opt -O2 -o test-opt.bc -opt-bisect-limit=16 test.ll

BISECT: running pass (1) Simplify the CFG on function (g)
BISECT: running pass (2) SROA on function (g)
BISECT: running pass (3) Early CSE on function (g)
BISECT: running pass (4) Infer set function attributes on module (test.ll)
BISECT: running pass (5) Interprocedural Sparse Conditional Constant Propagation on module (test.ll)
BISECT: running pass (6) Global Variable Optimizer on module (test.ll)
BISECT: running pass (7) Promote Memory to Register on function (g)
BISECT: running pass (8) Dead Argument Elimination on module (test.ll)
BISECT: running pass (9) Combine redundant instructions on function (g)
BISECT: running pass (10) Simplify the CFG on function (g)
BISECT: running pass (11) Remove unused exception handling info on SCC (<<null function>>)
BISECT: running pass (12) Function Integration/Inlining on SCC (<<null function>>)
BISECT: running pass (13) Deduce function attributes on SCC (<<null function>>)
BISECT: running pass (14) Remove unused exception handling info on SCC (f)
BISECT: running pass (15) Function Integration/Inlining on SCC (f)
BISECT: running pass (16) Deduce function attributes on SCC (f)
BISECT: NOT running pass (17) Remove unused exception handling info on SCC (g)
BISECT: NOT running pass (18) Function Integration/Inlining on SCC (g)
BISECT: NOT running pass (19) Deduce function attributes on SCC (g)
BISECT: NOT running pass (20) SROA on function (g)
BISECT: NOT running pass (21) Early CSE on function (g)
BISECT: NOT running pass (22) Speculatively execute instructions if target has divergent branches on function (g)
... etc. ...

Pass Skipping Implementation

The -opt-bisect-limit implementation depends on individual passes opting in to
the opt-bisect process. The OptBisect object that manages the process is
entirely passive and has no knowledge of how any pass is implemented. When a
pass is run if the pass may be skipped, it should call the OptBisect object to
see if it should be skipped.

The OptBisect object is intended to be accessed through LLVMContext and each
Pass base class contains a helper function that abstracts the details in order
to make this check uniform across all passes. These helper functions are:

bool ModulePass::skipModule(Module &M);
bool CallGraphSCCPass::skipSCC(CallGraphSCC &SCC);
bool FunctionPass::skipFunction(const Function &F);
bool BasicBlockPass::skipBasicBlock(const BasicBlock &BB);
bool LoopPass::skipLoop(const Loop *L);

A MachineFunctionPass should use FunctionPass::skipFunction() as such:

bool MyMachineFunctionPass::runOnMachineFunction(Function &MF) {
 if (skipFunction(*MF.getFunction())
 return false;
 // Otherwise, run the pass normally.
}

In addition to checking with the OptBisect class to see if the pass should be
skipped, the skipFunction(), skipLoop() and skipBasicBlock() helper functions
also look for the presence of the “optnone” function attribute. The calling
pass will be unable to determine whether it is being skipped because the
“optnone” attribute is present or because the opt-bisect-limit has been
reached. This is desirable because the behavior should be the same in either
case.

The majority of LLVM passes which can be skipped have already been instrumented
in the manner described above. If you are adding a new pass or believe you
have found a pass which is not being included in the opt-bisect process but
should be, you can add it as described above.

Adding Finer Granularity

Once the pass in which an incorrect transformation is performed has been
determined, it may be useful to perform further analysis in order to determine
which specific transformation is causing the problem. Debug counters
can be used for this purpose.

LLVM Alias Analysis Infrastructure

	Introduction

	AliasAnalysis Class Overview

	Representation of Pointers

	The alias method

	Must, May, and No Alias Responses

	The getModRefInfo methods

	Other useful AliasAnalysis methods

	The pointsToConstantMemory method

	The doesNotAccessMemory and onlyReadsMemory methods

	Writing a new AliasAnalysis Implementation

	Different Pass styles

	Required initialization calls

	Required methods to override

	Interfaces which may be specified

	AliasAnalysis chaining behavior

	Updating analysis results for transformations

	The deleteValue method

	The copyValue method

	The replaceWithNewValue method

	The addEscapingUse method

	Efficiency Issues

	Limitations

	Using alias analysis results

	Using the MemoryDependenceAnalysis Pass

	Using the AliasSetTracker class

	The AliasSetTracker implementation

	Using the AliasAnalysis interface directly

	Existing alias analysis implementations and clients

	Available AliasAnalysis implementations

	The -no-aa pass

	The -basicaa pass

	The -globalsmodref-aa pass

	The -steens-aa pass

	The -ds-aa pass

	The -scev-aa pass

	Alias analysis driven transformations

	The -adce pass

	The -licm pass

	The -argpromotion pass

	The -gvn, -memcpyopt, and -dse passes

	Clients for debugging and evaluation of implementations

	The -print-alias-sets pass

	The -aa-eval pass

	Memory Dependence Analysis

Introduction

Alias Analysis (aka Pointer Analysis) is a class of techniques which attempt to
determine whether or not two pointers ever can point to the same object in
memory. There are many different algorithms for alias analysis and many
different ways of classifying them: flow-sensitive vs. flow-insensitive,
context-sensitive vs. context-insensitive, field-sensitive
vs. field-insensitive, unification-based vs. subset-based, etc. Traditionally,
alias analyses respond to a query with a Must, May, or No alias response,
indicating that two pointers always point to the same object, might point to the
same object, or are known to never point to the same object.

The LLVM AliasAnalysis [http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html] class is the
primary interface used by clients and implementations of alias analyses in the
LLVM system. This class is the common interface between clients of alias
analysis information and the implementations providing it, and is designed to
support a wide range of implementations and clients (but currently all clients
are assumed to be flow-insensitive). In addition to simple alias analysis
information, this class exposes Mod/Ref information from those implementations
which can provide it, allowing for powerful analyses and transformations to work
well together.

This document contains information necessary to successfully implement this
interface, use it, and to test both sides. It also explains some of the finer
points about what exactly results mean.

AliasAnalysis Class Overview

The AliasAnalysis [http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html]
class defines the interface that the various alias analysis implementations
should support. This class exports two important enums: AliasResult and
ModRefResult which represent the result of an alias query or a mod/ref
query, respectively.

The AliasAnalysis interface exposes information about memory, represented in
several different ways. In particular, memory objects are represented as a
starting address and size, and function calls are represented as the actual
call or invoke instructions that performs the call. The
AliasAnalysis interface also exposes some helper methods which allow you to
get mod/ref information for arbitrary instructions.

All AliasAnalysis interfaces require that in queries involving multiple
values, values which are not constants are all
defined within the same function.

Representation of Pointers

Most importantly, the AliasAnalysis class provides several methods which are
used to query whether or not two memory objects alias, whether function calls
can modify or read a memory object, etc. For all of these queries, memory
objects are represented as a pair of their starting address (a symbolic LLVM
Value*) and a static size.

Representing memory objects as a starting address and a size is critically
important for correct Alias Analyses. For example, consider this (silly, but
possible) C code:

int i;
char C[2];
char A[10];
/* ... */
for (i = 0; i != 10; ++i) {
 C[0] = A[i]; /* One byte store */
 C[1] = A[9-i]; /* One byte store */
}

In this case, the basicaa pass will disambiguate the stores to C[0] and
C[1] because they are accesses to two distinct locations one byte apart, and
the accesses are each one byte. In this case, the Loop Invariant Code Motion
(LICM) pass can use store motion to remove the stores from the loop. In
constrast, the following code:

int i;
char C[2];
char A[10];
/* ... */
for (i = 0; i != 10; ++i) {
 ((short*)C)[0] = A[i]; /* Two byte store! */
 C[1] = A[9-i]; /* One byte store */
}

In this case, the two stores to C do alias each other, because the access to the
&C[0] element is a two byte access. If size information wasn’t available in
the query, even the first case would have to conservatively assume that the
accesses alias.

The alias method

The alias method is the primary interface used to determine whether or not
two memory objects alias each other. It takes two memory objects as input and
returns MustAlias, PartialAlias, MayAlias, or NoAlias as appropriate.

Like all AliasAnalysis interfaces, the alias method requires that either
the two pointer values be defined within the same function, or at least one of
the values is a constant.

Must, May, and No Alias Responses

The NoAlias response may be used when there is never an immediate dependence
between any memory reference based on one pointer and any memory reference
based the other. The most obvious example is when the two pointers point to
non-overlapping memory ranges. Another is when the two pointers are only ever
used for reading memory. Another is when the memory is freed and reallocated
between accesses through one pointer and accesses through the other — in this
case, there is a dependence, but it’s mediated by the free and reallocation.

As an exception to this is with the noalias keyword;
the “irrelevant” dependencies are ignored.

The MayAlias response is used whenever the two pointers might refer to the
same object.

The PartialAlias response is used when the two memory objects are known to
be overlapping in some way, regardless whether they start at the same address
or not.

The MustAlias response may only be returned if the two memory objects are
guaranteed to always start at exactly the same location. A MustAlias
response does not imply that the pointers compare equal.

The getModRefInfo methods

The getModRefInfo methods return information about whether the execution of
an instruction can read or modify a memory location. Mod/Ref information is
always conservative: if an instruction might read or write a location,
ModRef is returned.

The AliasAnalysis class also provides a getModRefInfo method for testing
dependencies between function calls. This method takes two call sites (CS1
& CS2), returns NoModRef if neither call writes to memory read or
written by the other, Ref if CS1 reads memory written by CS2,
Mod if CS1 writes to memory read or written by CS2, or ModRef if
CS1 might read or write memory written to by CS2. Note that this
relation is not commutative.

Other useful AliasAnalysis methods

Several other tidbits of information are often collected by various alias
analysis implementations and can be put to good use by various clients.

The pointsToConstantMemory method

The pointsToConstantMemory method returns true if and only if the analysis
can prove that the pointer only points to unchanging memory locations
(functions, constant global variables, and the null pointer). This information
can be used to refine mod/ref information: it is impossible for an unchanging
memory location to be modified.

The doesNotAccessMemory and onlyReadsMemory methods

These methods are used to provide very simple mod/ref information for function
calls. The doesNotAccessMemory method returns true for a function if the
analysis can prove that the function never reads or writes to memory, or if the
function only reads from constant memory. Functions with this property are
side-effect free and only depend on their input arguments, allowing them to be
eliminated if they form common subexpressions or be hoisted out of loops. Many
common functions behave this way (e.g., sin and cos) but many others do
not (e.g., acos, which modifies the errno variable).

The onlyReadsMemory method returns true for a function if analysis can prove
that (at most) the function only reads from non-volatile memory. Functions with
this property are side-effect free, only depending on their input arguments and
the state of memory when they are called. This property allows calls to these
functions to be eliminated and moved around, as long as there is no store
instruction that changes the contents of memory. Note that all functions that
satisfy the doesNotAccessMemory method also satisfy onlyReadsMemory.

Writing a new AliasAnalysis Implementation

Writing a new alias analysis implementation for LLVM is quite straight-forward.
There are already several implementations that you can use for examples, and the
following information should help fill in any details. For a examples, take a
look at the various alias analysis implementations included with LLVM.

Different Pass styles

The first step to determining what type of LLVM pass
you need to use for your Alias Analysis. As is the case with most other
analyses and transformations, the answer should be fairly obvious from what type
of problem you are trying to solve:

	If you require interprocedural analysis, it should be a Pass.

	If you are a function-local analysis, subclass FunctionPass.

	If you don’t need to look at the program at all, subclass ImmutablePass.

In addition to the pass that you subclass, you should also inherit from the
AliasAnalysis interface, of course, and use the RegisterAnalysisGroup
template to register as an implementation of AliasAnalysis.

Required initialization calls

Your subclass of AliasAnalysis is required to invoke two methods on the
AliasAnalysis base class: getAnalysisUsage and
InitializeAliasAnalysis. In particular, your implementation of
getAnalysisUsage should explicitly call into the
AliasAnalysis::getAnalysisUsage method in addition to doing any declaring
any pass dependencies your pass has. Thus you should have something like this:

void getAnalysisUsage(AnalysisUsage &AU) const {
 AliasAnalysis::getAnalysisUsage(AU);
 // declare your dependencies here.
}

Additionally, your must invoke the InitializeAliasAnalysis method from your
analysis run method (run for a Pass, runOnFunction for a
FunctionPass, or InitializePass for an ImmutablePass). For example
(as part of a Pass):

bool run(Module &M) {
 InitializeAliasAnalysis(this);
 // Perform analysis here...
 return false;
}

Required methods to override

You must override the getAdjustedAnalysisPointer method on all subclasses
of AliasAnalysis. An example implementation of this method would look like:

void *getAdjustedAnalysisPointer(const void* ID) override {
 if (ID == &AliasAnalysis::ID)
 return (AliasAnalysis*)this;
 return this;
}

Interfaces which may be specified

All of the AliasAnalysis [http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html] virtual methods
default to providing chaining to another alias
analysis implementation, which ends up returning conservatively correct
information (returning “May” Alias and “Mod/Ref” for alias and mod/ref queries
respectively). Depending on the capabilities of the analysis you are
implementing, you just override the interfaces you can improve.

AliasAnalysis chaining behavior

With only one special exception (the -no-aa pass)
every alias analysis pass chains to another alias analysis implementation (for
example, the user can specify “-basicaa -ds-aa -licm” to get the maximum
benefit from both alias analyses). The alias analysis class automatically
takes care of most of this for methods that you don’t override. For methods
that you do override, in code paths that return a conservative MayAlias or
Mod/Ref result, simply return whatever the superclass computes. For example:

AliasResult alias(const Value *V1, unsigned V1Size,
 const Value *V2, unsigned V2Size) {
 if (...)
 return NoAlias;
 ...

 // Couldn't determine a must or no-alias result.
 return AliasAnalysis::alias(V1, V1Size, V2, V2Size);
}

In addition to analysis queries, you must make sure to unconditionally pass LLVM
update notification methods to the superclass as well if you override them,
which allows all alias analyses in a change to be updated.

Updating analysis results for transformations

Alias analysis information is initially computed for a static snapshot of the
program, but clients will use this information to make transformations to the
code. All but the most trivial forms of alias analysis will need to have their
analysis results updated to reflect the changes made by these transformations.

The AliasAnalysis interface exposes four methods which are used to
communicate program changes from the clients to the analysis implementations.
Various alias analysis implementations should use these methods to ensure that
their internal data structures are kept up-to-date as the program changes (for
example, when an instruction is deleted), and clients of alias analysis must be
sure to call these interfaces appropriately.

The deleteValue method

The deleteValue method is called by transformations when they remove an
instruction or any other value from the program (including values that do not
use pointers). Typically alias analyses keep data structures that have entries
for each value in the program. When this method is called, they should remove
any entries for the specified value, if they exist.

The copyValue method

The copyValue method is used when a new value is introduced into the
program. There is no way to introduce a value into the program that did not
exist before (this doesn’t make sense for a safe compiler transformation), so
this is the only way to introduce a new value. This method indicates that the
new value has exactly the same properties as the value being copied.

The replaceWithNewValue method

This method is a simple helper method that is provided to make clients easier to
use. It is implemented by copying the old analysis information to the new
value, then deleting the old value. This method cannot be overridden by alias
analysis implementations.

The addEscapingUse method

The addEscapingUse method is used when the uses of a pointer value have
changed in ways that may invalidate precomputed analysis information.
Implementations may either use this callback to provide conservative responses
for points whose uses have change since analysis time, or may recompute some or
all of their internal state to continue providing accurate responses.

In general, any new use of a pointer value is considered an escaping use, and
must be reported through this callback, except for the uses below:

	A bitcast or getelementptr of the pointer

	A store through the pointer (but not a store of the pointer)

	A load through the pointer

Efficiency Issues

From the LLVM perspective, the only thing you need to do to provide an efficient
alias analysis is to make sure that alias analysis queries are serviced
quickly. The actual calculation of the alias analysis results (the “run”
method) is only performed once, but many (perhaps duplicate) queries may be
performed. Because of this, try to move as much computation to the run method
as possible (within reason).

Limitations

The AliasAnalysis infrastructure has several limitations which make writing a
new AliasAnalysis implementation difficult.

There is no way to override the default alias analysis. It would be very useful
to be able to do something like “opt -my-aa -O2” and have it use -my-aa
for all passes which need AliasAnalysis, but there is currently no support for
that, short of changing the source code and recompiling. Similarly, there is
also no way of setting a chain of analyses as the default.

There is no way for transform passes to declare that they preserve
AliasAnalysis implementations. The AliasAnalysis interface includes
deleteValue and copyValue methods which are intended to allow a pass to
keep an AliasAnalysis consistent, however there’s no way for a pass to declare
in its getAnalysisUsage that it does so. Some passes attempt to use
AU.addPreserved<AliasAnalysis>, however this doesn’t actually have any
effect.

Similarly, the opt -p option introduces ModulePass passes between each
pass, which prevents the use of FunctionPass alias analysis passes.

The AliasAnalysis API does have functions for notifying implementations when
values are deleted or copied, however these aren’t sufficient. There are many
other ways that LLVM IR can be modified which could be relevant to
AliasAnalysis implementations which can not be expressed.

The AliasAnalysisDebugger utility seems to suggest that AliasAnalysis
implementations can expect that they will be informed of any relevant Value
before it appears in an alias query. However, popular clients such as GVN
don’t support this, and are known to trigger errors when run with the
AliasAnalysisDebugger.

The AliasSetTracker class (which is used by LICM) makes a
non-deterministic number of alias queries. This can cause debugging techniques
involving pausing execution after a predetermined number of queries to be
unreliable.

Many alias queries can be reformulated in terms of other alias queries. When
multiple AliasAnalysis queries are chained together, it would make sense to
start those queries from the beginning of the chain, with care taken to avoid
infinite looping, however currently an implementation which wants to do this can
only start such queries from itself.

Using alias analysis results

There are several different ways to use alias analysis results. In order of
preference, these are:

Using the MemoryDependenceAnalysis Pass

The memdep pass uses alias analysis to provide high-level dependence
information about memory-using instructions. This will tell you which store
feeds into a load, for example. It uses caching and other techniques to be
efficient, and is used by Dead Store Elimination, GVN, and memcpy optimizations.

Using the AliasSetTracker class

Many transformations need information about alias sets that are active in
some scope, rather than information about pairwise aliasing. The
AliasSetTracker [http://llvm.org/doxygen/classllvm_1_1AliasSetTracker.html]
class is used to efficiently build these Alias Sets from the pairwise alias
analysis information provided by the AliasAnalysis interface.

First you initialize the AliasSetTracker by using the “add” methods to add
information about various potentially aliasing instructions in the scope you are
interested in. Once all of the alias sets are completed, your pass should
simply iterate through the constructed alias sets, using the AliasSetTracker
begin()/end() methods.

The AliasSets formed by the AliasSetTracker are guaranteed to be
disjoint, calculate mod/ref information and volatility for the set, and keep
track of whether or not all of the pointers in the set are Must aliases. The
AliasSetTracker also makes sure that sets are properly folded due to call
instructions, and can provide a list of pointers in each set.

As an example user of this, the Loop Invariant Code Motion pass uses AliasSetTrackers to calculate alias
sets for each loop nest. If an AliasSet in a loop is not modified, then all
load instructions from that set may be hoisted out of the loop. If any alias
sets are stored to and are must alias sets, then the stores may be sunk
to outside of the loop, promoting the memory location to a register for the
duration of the loop nest. Both of these transformations only apply if the
pointer argument is loop-invariant.

The AliasSetTracker implementation

The AliasSetTracker class is implemented to be as efficient as possible. It
uses the union-find algorithm to efficiently merge AliasSets when a pointer is
inserted into the AliasSetTracker that aliases multiple sets. The primary data
structure is a hash table mapping pointers to the AliasSet they are in.

The AliasSetTracker class must maintain a list of all of the LLVM Value*s
that are in each AliasSet. Since the hash table already has entries for each
LLVM Value* of interest, the AliasesSets thread the linked list through
these hash-table nodes to avoid having to allocate memory unnecessarily, and to
make merging alias sets extremely efficient (the linked list merge is constant
time).

You shouldn’t need to understand these details if you are just a client of the
AliasSetTracker, but if you look at the code, hopefully this brief description
will help make sense of why things are designed the way they are.

Using the AliasAnalysis interface directly

If neither of these utility class are what your pass needs, you should use the
interfaces exposed by the AliasAnalysis class directly. Try to use the
higher-level methods when possible (e.g., use mod/ref information instead of the
alias method directly if possible) to get the best precision and efficiency.

Existing alias analysis implementations and clients

If you’re going to be working with the LLVM alias analysis infrastructure, you
should know what clients and implementations of alias analysis are available.
In particular, if you are implementing an alias analysis, you should be aware of
the the clients that are useful for monitoring and evaluating different
implementations.

Available AliasAnalysis implementations

This section lists the various implementations of the AliasAnalysis
interface. With the exception of the -no-aa
implementation, all of these chain to other
alias analysis implementations.

The -no-aa pass

The -no-aa pass is just like what it sounds: an alias analysis that never
returns any useful information. This pass can be useful if you think that alias
analysis is doing something wrong and are trying to narrow down a problem.

The -basicaa pass

The -basicaa pass is an aggressive local analysis that knows many
important facts:

	Distinct globals, stack allocations, and heap allocations can never alias.

	Globals, stack allocations, and heap allocations never alias the null pointer.

	Different fields of a structure do not alias.

	Indexes into arrays with statically differing subscripts cannot alias.

	Many common standard C library functions never access memory or only read
memory.

	Pointers that obviously point to constant globals “pointToConstantMemory”.

	Function calls can not modify or references stack allocations if they never
escape from the function that allocates them (a common case for automatic
arrays).

The -globalsmodref-aa pass

This pass implements a simple context-sensitive mod/ref and alias analysis for
internal global variables that don’t “have their address taken”. If a global
does not have its address taken, the pass knows that no pointers alias the
global. This pass also keeps track of functions that it knows never access
memory or never read memory. This allows certain optimizations (e.g. GVN) to
eliminate call instructions entirely.

The real power of this pass is that it provides context-sensitive mod/ref
information for call instructions. This allows the optimizer to know that calls
to a function do not clobber or read the value of the global, allowing loads and
stores to be eliminated.

Note

This pass is somewhat limited in its scope (only support non-address taken
globals), but is very quick analysis.

The -steens-aa pass

The -steens-aa pass implements a variation on the well-known “Steensgaard’s
algorithm” for interprocedural alias analysis. Steensgaard’s algorithm is a
unification-based, flow-insensitive, context-insensitive, and field-insensitive
alias analysis that is also very scalable (effectively linear time).

The LLVM -steens-aa pass implements a “speculatively field-sensitive”
version of Steensgaard’s algorithm using the Data Structure Analysis framework.
This gives it substantially more precision than the standard algorithm while
maintaining excellent analysis scalability.

Note

-steens-aa is available in the optional “poolalloc” module. It is not part
of the LLVM core.

The -ds-aa pass

The -ds-aa pass implements the full Data Structure Analysis algorithm. Data
Structure Analysis is a modular unification-based, flow-insensitive,
context-sensitive, and speculatively field-sensitive alias
analysis that is also quite scalable, usually at O(n * log(n)).

This algorithm is capable of responding to a full variety of alias analysis
queries, and can provide context-sensitive mod/ref information as well. The
only major facility not implemented so far is support for must-alias
information.

Note

-ds-aa is available in the optional “poolalloc” module. It is not part of
the LLVM core.

The -scev-aa pass

The -scev-aa pass implements AliasAnalysis queries by translating them into
ScalarEvolution queries. This gives it a more complete understanding of
getelementptr instructions and loop induction variables than other alias
analyses have.

Alias analysis driven transformations

LLVM includes several alias-analysis driven transformations which can be used
with any of the implementations above.

The -adce pass

The -adce pass, which implements Aggressive Dead Code Elimination uses the
AliasAnalysis interface to delete calls to functions that do not have
side-effects and are not used.

The -licm pass

The -licm pass implements various Loop Invariant Code Motion related
transformations. It uses the AliasAnalysis interface for several different
transformations:

	It uses mod/ref information to hoist or sink load instructions out of loops if
there are no instructions in the loop that modifies the memory loaded.

	It uses mod/ref information to hoist function calls out of loops that do not
write to memory and are loop-invariant.

	It uses alias information to promote memory objects that are loaded and stored
to in loops to live in a register instead. It can do this if there are no may
aliases to the loaded/stored memory location.

The -argpromotion pass

The -argpromotion pass promotes by-reference arguments to be passed in
by-value instead. In particular, if pointer arguments are only loaded from it
passes in the value loaded instead of the address to the function. This pass
uses alias information to make sure that the value loaded from the argument
pointer is not modified between the entry of the function and any load of the
pointer.

The -gvn, -memcpyopt, and -dse passes

These passes use AliasAnalysis information to reason about loads and stores.

Clients for debugging and evaluation of implementations

These passes are useful for evaluating the various alias analysis
implementations. You can use them with commands like:

% opt -ds-aa -aa-eval foo.bc -disable-output -stats

The -print-alias-sets pass

The -print-alias-sets pass is exposed as part of the opt tool to print
out the Alias Sets formed by the AliasSetTracker class. This is useful if
you’re using the AliasSetTracker class. To use it, use something like:

% opt -ds-aa -print-alias-sets -disable-output

The -aa-eval pass

The -aa-eval pass simply iterates through all pairs of pointers in a
function and asks an alias analysis whether or not the pointers alias. This
gives an indication of the precision of the alias analysis. Statistics are
printed indicating the percent of no/may/must aliases found (a more precise
algorithm will have a lower number of may aliases).

Memory Dependence Analysis

Note

We are currently in the process of migrating things from
MemoryDependenceAnalysis to MemorySSA. Please try to use
that instead.

If you’re just looking to be a client of alias analysis information, consider
using the Memory Dependence Analysis interface instead. MemDep is a lazy,
caching layer on top of alias analysis that is able to answer the question of
what preceding memory operations a given instruction depends on, either at an
intra- or inter-block level. Because of its laziness and caching policy, using
MemDep can be a significant performance win over accessing alias analysis
directly.

MemorySSA

	Introduction

	MemorySSA Structure

	Design of MemorySSA

	The walker

	Locating clobbers yourself

	Build-time use optimization

	Invalidation and updating

	Phi placement

	Non-Goals

	Design tradeoffs

	Precision

	Use Optimization

Introduction

MemorySSA is an analysis that allows us to cheaply reason about the
interactions between various memory operations. Its goal is to replace
MemoryDependenceAnalysis for most (if not all) use-cases. This is because,
unless you’re very careful, use of MemoryDependenceAnalysis can easily
result in quadratic-time algorithms in LLVM. Additionally, MemorySSA doesn’t
have as many arbitrary limits as MemoryDependenceAnalysis, so you should get
better results, too.

At a high level, one of the goals of MemorySSA is to provide an SSA based
form for memory, complete with def-use and use-def chains, which
enables users to quickly find may-def and may-uses of memory operations.
It can also be thought of as a way to cheaply give versions to the complete
state of heap memory, and associate memory operations with those versions.

This document goes over how MemorySSA is structured, and some basic
intuition on how MemorySSA works.

A paper on MemorySSA (with notes about how it’s implemented in GCC) can be
found here [http://www.airs.com/dnovillo/Papers/mem-ssa.pdf]. Though, it’s
relatively out-of-date; the paper references multiple heap partitions, but GCC
eventually swapped to just using one, like we now have in LLVM. Like
GCC’s, LLVM’s MemorySSA is intraprocedural.

MemorySSA Structure

MemorySSA is a virtual IR. After it’s built, MemorySSA will contain a
structure that maps Instructions to MemoryAccesses, which are
MemorySSA’s parallel to LLVM Instructions.

Each MemoryAccess can be one of three types:

	MemoryPhi

	MemoryUse

	MemoryDef

MemoryPhis are PhiNodes, but for memory operations. If at any
point we have two (or more) MemoryDefs that could flow into a
BasicBlock, the block’s top MemoryAccess will be a
MemoryPhi. As in LLVM IR, MemoryPhis don’t correspond to any
concrete operation. As such, BasicBlocks are mapped to MemoryPhis
inside MemorySSA, whereas Instructions are mapped to MemoryUses
and MemoryDefs.

Note also that in SSA, Phi nodes merge must-reach definitions (that is,
definitions that must be new versions of variables). In MemorySSA, PHI nodes
merge may-reach definitions (that is, until disambiguated, the versions that
reach a phi node may or may not clobber a given variable).

MemoryUses are operations which use but don’t modify memory. An example of
a MemoryUse is a load, or a readonly function call.

MemoryDefs are operations which may either modify memory, or which
introduce some kind of ordering constraints. Examples of MemoryDefs
include stores, function calls, loads with acquire (or higher)
ordering, volatile operations, memory fences, etc.

Every function that exists has a special MemoryDef called liveOnEntry.
It dominates every MemoryAccess in the function that MemorySSA is being
run on, and implies that we’ve hit the top of the function. It’s the only
MemoryDef that maps to no Instruction in LLVM IR. Use of
liveOnEntry implies that the memory being used is either undefined or
defined before the function begins.

An example of all of this overlaid on LLVM IR (obtained by running opt
-passes='print<memoryssa>' -disable-output on an .ll file) is below. When
viewing this example, it may be helpful to view it in terms of clobbers. The
operands of a given MemoryAccess are all (potential) clobbers of said
MemoryAccess, and the value produced by a MemoryAccess can act as a clobber
for other MemoryAccesses. Another useful way of looking at it is in
terms of heap versions. In that view, operands of a given
MemoryAccess are the version of the heap before the operation, and
if the access produces a value, the value is the new version of the heap
after the operation.

define void @foo() {
entry:
 %p1 = alloca i8
 %p2 = alloca i8
 %p3 = alloca i8
 ; 1 = MemoryDef(liveOnEntry)
 store i8 0, i8* %p3
 br label %while.cond

while.cond:
 ; 6 = MemoryPhi({%0,1},{if.end,4})
 br i1 undef, label %if.then, label %if.else

if.then:
 ; 2 = MemoryDef(6)
 store i8 0, i8* %p1
 br label %if.end

if.else:
 ; 3 = MemoryDef(6)
 store i8 1, i8* %p2
 br label %if.end

if.end:
 ; 5 = MemoryPhi({if.then,2},{if.else,3})
 ; MemoryUse(5)
 %1 = load i8, i8* %p1
 ; 4 = MemoryDef(5)
 store i8 2, i8* %p2
 ; MemoryUse(1)
 %2 = load i8, i8* %p3
 br label %while.cond
}

The MemorySSA IR is shown in comments that precede the instructions they map
to (if such an instruction exists). For example, 1 = MemoryDef(liveOnEntry)
is a MemoryAccess (specifically, a MemoryDef), and it describes the LLVM
instruction store i8 0, i8* %p3. Other places in MemorySSA refer to this
particular MemoryDef as 1 (much like how one can refer to load i8, i8*
%p1 in LLVM with %1). Again, MemoryPhis don’t correspond to any LLVM
Instruction, so the line directly below a MemoryPhi isn’t special.

Going from the top down:

	6 = MemoryPhi({entry,1},{if.end,4}) notes that, when entering
while.cond, the reaching definition for it is either 1 or 4. This
MemoryPhi is referred to in the textual IR by the number 6.

	2 = MemoryDef(6) notes that store i8 0, i8* %p1 is a definition,
and its reaching definition before it is 6, or the MemoryPhi after
while.cond. (See the Build-time use optimization and Precision
sections below for why this MemoryDef isn’t linked to a separate,
disambiguated MemoryPhi.)

	3 = MemoryDef(6) notes that store i8 0, i8* %p2 is a definition; its
reaching definition is also 6.

	5 = MemoryPhi({if.then,2},{if.else,3}) notes that the clobber before
this block could either be 2 or 3.

	MemoryUse(5) notes that load i8, i8* %p1 is a use of memory, and that
it’s clobbered by 5.

	4 = MemoryDef(5) notes that store i8 2, i8* %p2 is a definition; it’s
reaching definition is 5.

	MemoryUse(1) notes that load i8, i8* %p3 is just a user of memory,
and the last thing that could clobber this use is above while.cond (e.g.
the store to %p3). In heap versioning parlance, it really only depends on
the heap version 1, and is unaffected by the new heap versions generated since
then.

As an aside, MemoryAccess is a Value mostly for convenience; it’s not
meant to interact with LLVM IR.

Design of MemorySSA

MemorySSA is an analysis that can be built for any arbitrary function. When
it’s built, it does a pass over the function’s IR in order to build up its
mapping of MemoryAccesses. You can then query MemorySSA for things
like the dominance relation between MemoryAccesses, and get the
MemoryAccess for any given Instruction .

When MemorySSA is done building, it also hands you a MemorySSAWalker
that you can use (see below).

The walker

A structure that helps MemorySSA do its job is the MemorySSAWalker, or
the walker, for short. The goal of the walker is to provide answers to clobber
queries beyond what’s represented directly by MemoryAccesses. For example,
given:

define void @foo() {
 %a = alloca i8
 %b = alloca i8

 ; 1 = MemoryDef(liveOnEntry)
 store i8 0, i8* %a
 ; 2 = MemoryDef(1)
 store i8 0, i8* %b
}

The store to %a is clearly not a clobber for the store to %b. It would
be the walker’s goal to figure this out, and return liveOnEntry when queried
for the clobber of MemoryAccess 2.

By default, MemorySSA provides a walker that can optimize MemoryDefs
and MemoryUses by consulting whatever alias analysis stack you happen to
be using. Walkers were built to be flexible, though, so it’s entirely reasonable
(and expected) to create more specialized walkers (e.g. one that specifically
queries GlobalsAA, one that always stops at MemoryPhi nodes, etc).

Locating clobbers yourself

If you choose to make your own walker, you can find the clobber for a
MemoryAccess by walking every MemoryDef that dominates said
MemoryAccess. The structure of MemoryDefs makes this relatively simple;
they ultimately form a linked list of every clobber that dominates the
MemoryAccess that you’re trying to optimize. In other words, the
definingAccess of a MemoryDef is always the nearest dominating
MemoryDef or MemoryPhi of said MemoryDef.

Build-time use optimization

MemorySSA will optimize some MemoryAccesses at build-time.
Specifically, we optimize the operand of every MemoryUse to point to the
actual clobber of said MemoryUse. This can be seen in the above example; the
second MemoryUse in if.end has an operand of 1, which is a
MemoryDef from the entry block. This is done to make walking,
value numbering, etc, faster and easier.

It is not possible to optimize MemoryDef in the same way, as we
restrict MemorySSA to one heap variable and, thus, one Phi node
per block.

Invalidation and updating

Because MemorySSA keeps track of LLVM IR, it needs to be updated whenever
the IR is updated. “Update”, in this case, includes the addition, deletion, and
motion of Instructions. The update API is being made on an as-needed basis.
If you’d like examples, GVNHoist is a user of MemorySSAs update API.

Phi placement

MemorySSA only places MemoryPhis where they’re actually
needed. That is, it is a pruned SSA form, like LLVM’s SSA form. For
example, consider:

define void @foo() {
entry:
 %p1 = alloca i8
 %p2 = alloca i8
 %p3 = alloca i8
 ; 1 = MemoryDef(liveOnEntry)
 store i8 0, i8* %p3
 br label %while.cond

while.cond:
 ; 3 = MemoryPhi({%0,1},{if.end,2})
 br i1 undef, label %if.then, label %if.else

if.then:
 br label %if.end

if.else:
 br label %if.end

if.end:
 ; MemoryUse(1)
 %1 = load i8, i8* %p1
 ; 2 = MemoryDef(3)
 store i8 2, i8* %p2
 ; MemoryUse(1)
 %2 = load i8, i8* %p3
 br label %while.cond
}

Because we removed the stores from if.then and if.else, a MemoryPhi
for if.end would be pointless, so we don’t place one. So, if you need to
place a MemoryDef in if.then or if.else, you’ll need to also create
a MemoryPhi for if.end.

If it turns out that this is a large burden, we can just place MemoryPhis
everywhere. Because we have Walkers that are capable of optimizing above said
phis, doing so shouldn’t prohibit optimizations.

Non-Goals

MemorySSA is meant to reason about the relation between memory
operations, and enable quicker querying.
It isn’t meant to be the single source of truth for all potential memory-related
optimizations. Specifically, care must be taken when trying to use MemorySSA
to reason about atomic or volatile operations, as in:

define i8 @foo(i8* %a) {
entry:
 br i1 undef, label %if.then, label %if.end

if.then:
 ; 1 = MemoryDef(liveOnEntry)
 %0 = load volatile i8, i8* %a
 br label %if.end

if.end:
 %av = phi i8 [0, %entry], [%0, %if.then]
 ret i8 %av
}

Going solely by MemorySSA’s analysis, hoisting the load to entry may
seem legal. Because it’s a volatile load, though, it’s not.

Design tradeoffs

Precision

MemorySSA in LLVM deliberately trades off precision for speed.
Let us think about memory variables as if they were disjoint partitions of the
heap (that is, if you have one variable, as above, it represents the entire
heap, and if you have multiple variables, each one represents some
disjoint portion of the heap)

First, because alias analysis results conflict with each other, and
each result may be what an analysis wants (IE
TBAA may say no-alias, and something else may say must-alias), it is
not possible to partition the heap the way every optimization wants.
Second, some alias analysis results are not transitive (IE A noalias B,
and B noalias C, does not mean A noalias C), so it is not possible to
come up with a precise partitioning in all cases without variables to
represent every pair of possible aliases. Thus, partitioning
precisely may require introducing at least N^2 new virtual variables,
phi nodes, etc.

Each of these variables may be clobbered at multiple def sites.

To give an example, if you were to split up struct fields into
individual variables, all aliasing operations that may-def multiple struct
fields, will may-def more than one of them. This is pretty common (calls,
copies, field stores, etc).

Experience with SSA forms for memory in other compilers has shown that
it is simply not possible to do this precisely, and in fact, doing it
precisely is not worth it, because now all the optimizations have to
walk tons and tons of virtual variables and phi nodes.

So we partition. At the point at which you partition, again,
experience has shown us there is no point in partitioning to more than
one variable. It simply generates more IR, and optimizations still
have to query something to disambiguate further anyway.

As a result, LLVM partitions to one variable.

Use Optimization

Unlike other partitioned forms, LLVM’s MemorySSA does make one
useful guarantee - all loads are optimized to point at the thing that
actually clobbers them. This gives some nice properties. For example,
for a given store, you can find all loads actually clobbered by that
store by walking the immediate uses of the store.

LLVM Bitcode File Format

	Abstract

	Overview

	Bitstream Format

	Magic Numbers

	Primitives

	Fixed Width Integers

	Variable Width Integers

	6-bit characters

	Word Alignment

	Abbreviation IDs

	Blocks

	ENTER_SUBBLOCK Encoding

	END_BLOCK Encoding

	Data Records

	UNABBREV_RECORD Encoding

	Abbreviated Record Encoding

	Abbreviations

	DEFINE_ABBREV Encoding

	Standard Blocks

	#0 - BLOCKINFO Block

	Bitcode Wrapper Format

	Native Object File Wrapper Format

	LLVM IR Encoding

	Basics

	LLVM IR Magic Number

	Signed VBRs

	LLVM IR Blocks

	MODULE_BLOCK Contents

	MODULE_CODE_VERSION Record

	MODULE_CODE_TRIPLE Record

	MODULE_CODE_DATALAYOUT Record

	MODULE_CODE_ASM Record

	MODULE_CODE_SECTIONNAME Record

	MODULE_CODE_DEPLIB Record

	MODULE_CODE_GLOBALVAR Record

	MODULE_CODE_FUNCTION Record

	MODULE_CODE_ALIAS Record

	MODULE_CODE_GCNAME Record

	PARAMATTR_BLOCK Contents

	PARAMATTR_CODE_ENTRY Record

	PARAMATTR_CODE_ENTRY_OLD Record

	PARAMATTR_GROUP_BLOCK Contents

	PARAMATTR_GRP_CODE_ENTRY Record

	TYPE_BLOCK Contents

	TYPE_CODE_NUMENTRY Record

	TYPE_CODE_VOID Record

	TYPE_CODE_HALF Record

	TYPE_CODE_FLOAT Record

	TYPE_CODE_DOUBLE Record

	TYPE_CODE_LABEL Record

	TYPE_CODE_OPAQUE Record

	TYPE_CODE_INTEGER Record

	TYPE_CODE_POINTER Record

	TYPE_CODE_FUNCTION_OLD Record

	TYPE_CODE_ARRAY Record

	TYPE_CODE_VECTOR Record

	TYPE_CODE_X86_FP80 Record

	TYPE_CODE_FP128 Record

	TYPE_CODE_PPC_FP128 Record

	TYPE_CODE_METADATA Record

	TYPE_CODE_X86_MMX Record

	TYPE_CODE_STRUCT_ANON Record

	TYPE_CODE_STRUCT_NAME Record

	TYPE_CODE_STRUCT_NAMED Record

	TYPE_CODE_FUNCTION Record

	CONSTANTS_BLOCK Contents

	FUNCTION_BLOCK Contents

	VALUE_SYMTAB_BLOCK Contents

	METADATA_BLOCK Contents

	METADATA_ATTACHMENT Contents

	STRTAB_BLOCK Contents

Abstract

This document describes the LLVM bitstream file format and the encoding of the
LLVM IR into it.

Overview

What is commonly known as the LLVM bitcode file format (also, sometimes
anachronistically known as bytecode) is actually two things: a bitstream
container format and an encoding of LLVM IR into the container format.

The bitstream format is an abstract encoding of structured data, very similar to
XML in some ways. Like XML, bitstream files contain tags, and nested
structures, and you can parse the file without having to understand the tags.
Unlike XML, the bitstream format is a binary encoding, and unlike XML it
provides a mechanism for the file to self-describe “abbreviations”, which are
effectively size optimizations for the content.

LLVM IR files may be optionally embedded into a wrapper structure, or in a
native object file. Both of these mechanisms make it easy to embed extra
data along with LLVM IR files.

This document first describes the LLVM bitstream format, describes the wrapper
format, then describes the record structure used by LLVM IR files.

Bitstream Format

The bitstream format is literally a stream of bits, with a very simple
structure. This structure consists of the following concepts:

	A “magic number” that identifies the contents of the stream.

	Encoding primitives like variable bit-rate integers.

	Blocks, which define nested content.

	Data Records, which describe entities within the file.

	Abbreviations, which specify compression optimizations for the file.

Note that the llvm-bcanalyzer tool can be
used to dump and inspect arbitrary bitstreams, which is very useful for
understanding the encoding.

Magic Numbers

The first four bytes of a bitstream are used as an application-specific magic
number. Generic bitcode tools may look at the first four bytes to determine
whether the stream is a known stream type. However, these tools should not
determine whether a bitstream is valid based on its magic number alone. New
application-specific bitstream formats are being developed all the time; tools
should not reject them just because they have a hitherto unseen magic number.

Primitives

A bitstream literally consists of a stream of bits, which are read in order
starting with the least significant bit of each byte. The stream is made up of
a number of primitive values that encode a stream of unsigned integer values.
These integers are encoded in two ways: either as Fixed Width Integers or as
Variable Width Integers.

Fixed Width Integers

Fixed-width integer values have their low bits emitted directly to the file.
For example, a 3-bit integer value encodes 1 as 001. Fixed width integers are
used when there are a well-known number of options for a field. For example,
boolean values are usually encoded with a 1-bit wide integer.

Variable Width Integers

Variable-width integer (VBR) values encode values of arbitrary size, optimizing
for the case where the values are small. Given a 4-bit VBR field, any 3-bit
value (0 through 7) is encoded directly, with the high bit set to zero. Values
larger than N-1 bits emit their bits in a series of N-1 bit chunks, where all
but the last set the high bit.

For example, the value 27 (0x1B) is encoded as 1011 0011 when emitted as a vbr4
value. The first set of four bits indicates the value 3 (011) with a
continuation piece (indicated by a high bit of 1). The next word indicates a
value of 24 (011 << 3) with no continuation. The sum (3+24) yields the value
27.

6-bit characters

6-bit characters encode common characters into a fixed 6-bit field. They
represent the following characters with the following 6-bit values:

'a' .. 'z' --- 0 .. 25
'A' .. 'Z' --- 26 .. 51
'0' .. '9' --- 52 .. 61
 '.' --- 62
 '_' --- 63

This encoding is only suitable for encoding characters and strings that consist
only of the above characters. It is completely incapable of encoding characters
not in the set.

Word Alignment

Occasionally, it is useful to emit zero bits until the bitstream is a multiple
of 32 bits. This ensures that the bit position in the stream can be represented
as a multiple of 32-bit words.

Abbreviation IDs

A bitstream is a sequential series of Blocks and Data Records. Both of
these start with an abbreviation ID encoded as a fixed-bitwidth field. The
width is specified by the current block, as described below. The value of the
abbreviation ID specifies either a builtin ID (which have special meanings,
defined below) or one of the abbreviation IDs defined for the current block by
the stream itself.

The set of builtin abbrev IDs is:

	0 - END_BLOCK — This abbrev ID marks the end of the current block.

	1 - ENTER_SUBBLOCK — This abbrev ID marks the beginning of a new
block.

	2 - DEFINE_ABBREV — This defines a new abbreviation.

	3 - UNABBREV_RECORD — This ID specifies the definition of an
unabbreviated record.

Abbreviation IDs 4 and above are defined by the stream itself, and specify an
abbreviated record encoding.

Blocks

Blocks in a bitstream denote nested regions of the stream, and are identified by
a content-specific id number (for example, LLVM IR uses an ID of 12 to represent
function bodies). Block IDs 0-7 are reserved for standard blocks whose
meaning is defined by Bitcode; block IDs 8 and greater are application
specific. Nested blocks capture the hierarchical structure of the data encoded
in it, and various properties are associated with blocks as the file is parsed.
Block definitions allow the reader to efficiently skip blocks in constant time
if the reader wants a summary of blocks, or if it wants to efficiently skip data
it does not understand. The LLVM IR reader uses this mechanism to skip function
bodies, lazily reading them on demand.

When reading and encoding the stream, several properties are maintained for the
block. In particular, each block maintains:

	A current abbrev id width. This value starts at 2 at the beginning of the
stream, and is set every time a block record is entered. The block entry
specifies the abbrev id width for the body of the block.

	A set of abbreviations. Abbreviations may be defined within a block, in
which case they are only defined in that block (neither subblocks nor
enclosing blocks see the abbreviation). Abbreviations can also be defined
inside a BLOCKINFO block, in which case they are defined in all blocks
that match the ID that the BLOCKINFO block is describing.

As sub blocks are entered, these properties are saved and the new sub-block has
its own set of abbreviations, and its own abbrev id width. When a sub-block is
popped, the saved values are restored.

ENTER_SUBBLOCK Encoding

 LLVM Block Frequency Terminology

LLVM Block Frequency Terminology

	Introduction

	Branch Probability

	Branch Weight

	Block Frequency

	Implementation: a series of DAGs

	Block Mass

	Loop Scale

	Implementation: Getting from mass and scale to frequency

	Block Bias

Introduction

Block Frequency is a metric for estimating the relative frequency of different
basic blocks. This document describes the terminology that the
BlockFrequencyInfo and MachineBlockFrequencyInfo analysis passes use.

Branch Probability

Blocks with multiple successors have probabilities associated with each
outgoing edge. These are called branch probabilities. For a given block, the
sum of its outgoing branch probabilities should be 1.0.

Branch Weight

Rather than storing fractions on each edge, we store an integer weight.
Weights are relative to the other edges of a given predecessor block. The
branch probability associated with a given edge is its own weight divided by
the sum of the weights on the predecessor’s outgoing edges.

For example, consider this IR:

define void @foo() {
 ; ...
 A:
 br i1 %cond, label %B, label %C, !prof !0
 ; ...
}
!0 = metadata !{metadata !"branch_weights", i32 7, i32 8}

and this simple graph representation:

A -> B (edge-weight: 7)
A -> C (edge-weight: 8)

The probability of branching from block A to block B is 7/15, and the
probability of branching from block A to block C is 8/15.

See LLVM Branch Weight Metadata for details about the branch weight IR
representation.

Block Frequency

Block frequency is a relative metric that represents the number of times a
block executes. The ratio of a block frequency to the entry block frequency is
the expected number of times the block will execute per entry to the function.

Block frequency is the main output of the BlockFrequencyInfo and
MachineBlockFrequencyInfo analysis passes.

Implementation: a series of DAGs

The implementation of the block frequency calculation analyses each loop,
bottom-up, ignoring backedges; i.e., as a DAG. After each loop is processed,
it’s packaged up to act as a pseudo-node in its parent loop’s (or the
function’s) DAG analysis.

Block Mass

For each DAG, the entry node is assigned a mass of UINT64_MAX and mass is
distributed to successors according to branch weights. Block Mass uses a
fixed-point representation where UINT64_MAX represents 1.0 and 0
represents a number just above 0.0.

After mass is fully distributed, in any cut of the DAG that separates the exit
nodes from the entry node, the sum of the block masses of the nodes succeeded
by a cut edge should equal UINT64_MAX. In other words, mass is conserved
as it “falls” through the DAG.

If a function’s basic block graph is a DAG, then block masses are valid block
frequencies. This works poorly in practise though, since downstream users rely
on adding block frequencies together without hitting the maximum.

Loop Scale

Loop scale is a metric that indicates how many times a loop iterates per entry.
As mass is distributed through the loop’s DAG, the (otherwise ignored) backedge
mass is collected. This backedge mass is used to compute the exit frequency,
and thus the loop scale.

Implementation: Getting from mass and scale to frequency

After analysing the complete series of DAGs, each block has a mass (local to
its containing loop, if any), and each loop pseudo-node has a loop scale and
its own mass (from its parent’s DAG).

We can get an initial frequency assignment (with entry frequency of 1.0) by
multiplying these masses and loop scales together. A given block’s frequency
is the product of its mass, the mass of containing loops’ pseudo nodes, and the
containing loops’ loop scales.

Since downstream users need integers (not floating point), this initial
frequency assignment is shifted as necessary into the range of uint64_t.

Block Bias

Block bias is a proposed absolute metric to indicate a bias toward or away
from a given block during a function’s execution. The idea is that bias can be
used in isolation to indicate whether a block is relatively hot or cold, or to
compare two blocks to indicate whether one is hotter or colder than the other.

The proposed calculation involves calculating a reference block frequency,
where:

	every branch weight is assumed to be 1 (i.e., every branch probability
distribution is even) and

	loop scales are ignored.

This reference frequency represents what the block frequency would be in an
unbiased graph.

The bias is the ratio of the block frequency to this reference block frequency.

 LLVM Branch Weight Metadata

LLVM Branch Weight Metadata

	Introduction

	Supported Instructions

	BranchInst

	SwitchInst

	IndirectBrInst

	CallInst

	Other

	Built-in expect Instructions

	if statement

	switch statement

	CFG Modifications

	Function Entry Counts

Introduction

Branch Weight Metadata represents branch weights as its likeliness to be taken
(see LLVM Block Frequency Terminology). Metadata is assigned to the
TerminatorInst as a MDNode of the MD_prof kind. The first operator
is always a MDString node with the string “branch_weights”. Number of
operators depends on the terminator type.

Branch weights might be fetch from the profiling file, or generated based on
__builtin_expect instruction.

All weights are represented as an unsigned 32-bit values, where higher value
indicates greater chance to be taken.

Supported Instructions

BranchInst

Metadata is only assigned to the conditional branches. There are two extra
operands for the true and the false branch.

!0 = metadata !{
 metadata !"branch_weights",
 i32 <TRUE_BRANCH_WEIGHT>,
 i32 <FALSE_BRANCH_WEIGHT>
}

SwitchInst

Branch weights are assigned to every case (including the default case which
is always case #0).

!0 = metadata !{
 metadata !"branch_weights",
 i32 <DEFAULT_BRANCH_WEIGHT>
 [, i32 <CASE_BRANCH_WEIGHT> ...]
}

IndirectBrInst

Branch weights are assigned to every destination.

!0 = metadata !{
 metadata !"branch_weights",
 i32 <LABEL_BRANCH_WEIGHT>
 [, i32 <LABEL_BRANCH_WEIGHT> ...]
}

CallInst

Calls may have branch weight metadata, containing the execution count of
the call. It is currently used in SamplePGO mode only, to augment the
block and entry counts which may not be accurate with sampling.

!0 = metadata !{
 metadata !"branch_weights",
 i32 <CALL_BRANCH_WEIGHT>
}

Other

Other terminator instructions are not allowed to contain Branch Weight Metadata.

Built-in expect Instructions

__builtin_expect(long exp, long c) instruction provides branch prediction
information. The return value is the value of exp.

It is especially useful in conditional statements. Currently Clang supports two
conditional statements:

if statement

The exp parameter is the condition. The c parameter is the expected
comparison value. If it is equal to 1 (true), the condition is likely to be
true, in other case condition is likely to be false. For example:

if (__builtin_expect(x > 0, 1)) {
 // This block is likely to be taken.
}

switch statement

The exp parameter is the value. The c parameter is the expected
value. If the expected value doesn’t show on the cases list, the default
case is assumed to be likely taken.

switch (__builtin_expect(x, 5)) {
default: break;
case 0: // ...
case 3: // ...
case 5: // This case is likely to be taken.
}

CFG Modifications

Branch Weight Metatada is not proof against CFG changes. If terminator operands’
are changed some action should be taken. In other case some misoptimizations may
occur due to incorrect branch prediction information.

Function Entry Counts

To allow comparing different functions during inter-procedural analysis and
optimization, MD_prof nodes can also be assigned to a function definition.
The first operand is a string indicating the name of the associated counter.

Currently, one counter is supported: “function_entry_count”. The second operand
is a 64-bit counter that indicates the number of times that this function was
invoked (in the case of instrumentation-based profiles). In the case of
sampling-based profiles, this operand is an approximation of how many times
the function was invoked.

For example, in the code below, the instrumentation for function foo()
indicates that it was called 2,590 times at runtime.

define i32 @foo() !prof !1 {
 ret i32 0
}
!1 = !{!"function_entry_count", i64 2590}

If “function_entry_count” has more than 2 operands, the later operands are
the GUID of the functions that needs to be imported by ThinLTO. This is only
set by sampling based profile. It is needed because the sampling based profile
was collected on a binary that had already imported and inlined these functions,
and we need to ensure the IR matches in the ThinLTO backends for profile
annotation. The reason why we cannot annotate this on the callsite is that it
can only goes down 1 level in the call chain. For the cases where
foo_in_a_cc()->bar_in_b_cc()->baz_in_c_cc(), we will need to go down 2 levels
in the call chain to import both bar_in_b_cc and baz_in_c_cc.

 LLVM bugpoint tool: design and usage

LLVM bugpoint tool: design and usage

	Description

	Design Philosophy

	Automatic Debugger Selection

	Crash debugger

	Code generator debugger

	Miscompilation debugger

	Advice for using bugpoint

	What to do when bugpoint isn’t enough

Description

bugpoint narrows down the source of problems in LLVM tools and passes. It
can be used to debug three types of failures: optimizer crashes, miscompilations
by optimizers, or bad native code generation (including problems in the static
and JIT compilers). It aims to reduce large test cases to small, useful ones.
For example, if opt crashes while optimizing a file, it will identify the
optimization (or combination of optimizations) that causes the crash, and reduce
the file down to a small example which triggers the crash.

For detailed case scenarios, such as debugging opt, or one of the LLVM code
generators, see How to submit an LLVM bug report.

Design Philosophy

bugpoint is designed to be a useful tool without requiring any hooks into
the LLVM infrastructure at all. It works with any and all LLVM passes and code
generators, and does not need to “know” how they work. Because of this, it may
appear to do stupid things or miss obvious simplifications. bugpoint is
also designed to trade off programmer time for computer time in the
compiler-debugging process; consequently, it may take a long period of
(unattended) time to reduce a test case, but we feel it is still worth it. Note
that bugpoint is generally very quick unless debugging a miscompilation
where each test of the program (which requires executing it) takes a long time.

Automatic Debugger Selection

bugpoint reads each .bc or .ll file specified on the command line
and links them together into a single module, called the test program. If any
LLVM passes are specified on the command line, it runs these passes on the test
program. If any of the passes crash, or if they produce malformed output (which
causes the verifier to abort), bugpoint starts the crash debugger.

Otherwise, if the -output option was not specified, bugpoint runs the
test program with the “safe” backend (which is assumed to generate good code) to
generate a reference output. Once bugpoint has a reference output for the
test program, it tries executing it with the selected code generator. If the
selected code generator crashes, bugpoint starts the crash debugger on
the code generator. Otherwise, if the resulting output differs from the
reference output, it assumes the difference resulted from a code generator
failure, and starts the code generator debugger.

Finally, if the output of the selected code generator matches the reference
output, bugpoint runs the test program after all of the LLVM passes have
been applied to it. If its output differs from the reference output, it assumes
the difference resulted from a failure in one of the LLVM passes, and enters the
miscompilation debugger. Otherwise, there is no problem bugpoint can
debug.

Crash debugger

If an optimizer or code generator crashes, bugpoint will try as hard as it
can to reduce the list of passes (for optimizer crashes) and the size of the
test program. First, bugpoint figures out which combination of optimizer
passes triggers the bug. This is useful when debugging a problem exposed by
opt, for example, because it runs over 38 passes.

Next, bugpoint tries removing functions from the test program, to reduce its
size. Usually it is able to reduce a test program to a single function, when
debugging intraprocedural optimizations. Once the number of functions has been
reduced, it attempts to delete various edges in the control flow graph, to
reduce the size of the function as much as possible. Finally, bugpoint
deletes any individual LLVM instructions whose absence does not eliminate the
failure. At the end, bugpoint should tell you what passes crash, give you a
bitcode file, and give you instructions on how to reproduce the failure with
opt or llc.

Code generator debugger

The code generator debugger attempts to narrow down the amount of code that is
being miscompiled by the selected code generator. To do this, it takes the test
program and partitions it into two pieces: one piece which it compiles with the
“safe” backend (into a shared object), and one piece which it runs with either
the JIT or the static LLC compiler. It uses several techniques to reduce the
amount of code pushed through the LLVM code generator, to reduce the potential
scope of the problem. After it is finished, it emits two bitcode files (called
“test” [to be compiled with the code generator] and “safe” [to be compiled with
the “safe” backend], respectively), and instructions for reproducing the
problem. The code generator debugger assumes that the “safe” backend produces
good code.

Miscompilation debugger

The miscompilation debugger works similarly to the code generator debugger. It
works by splitting the test program into two pieces, running the optimizations
specified on one piece, linking the two pieces back together, and then executing
the result. It attempts to narrow down the list of passes to the one (or few)
which are causing the miscompilation, then reduce the portion of the test
program which is being miscompiled. The miscompilation debugger assumes that
the selected code generator is working properly.

Advice for using bugpoint

bugpoint can be a remarkably useful tool, but it sometimes works in
non-obvious ways. Here are some hints and tips:

	In the code generator and miscompilation debuggers, bugpoint only works
with programs that have deterministic output. Thus, if the program outputs
argv[0], the date, time, or any other “random” data, bugpoint may
misinterpret differences in these data, when output, as the result of a
miscompilation. Programs should be temporarily modified to disable outputs
that are likely to vary from run to run.

	In the code generator and miscompilation debuggers, debugging will go faster
if you manually modify the program or its inputs to reduce the runtime, but
still exhibit the problem.

	bugpoint is extremely useful when working on a new optimization: it helps
track down regressions quickly. To avoid having to relink bugpoint every
time you change your optimization however, have bugpoint dynamically load
your optimization with the -load option.

	bugpoint can generate a lot of output and run for a long period of time.
It is often useful to capture the output of the program to file. For example,
in the C shell, you can run:

$ bugpoint ... |& tee bugpoint.log

to get a copy of bugpoint’s output in the file bugpoint.log, as well
as on your terminal.

	bugpoint cannot debug problems with the LLVM linker. If bugpoint
crashes before you see its “All input ok” message, you might try llvm-link
-v on the same set of input files. If that also crashes, you may be
experiencing a linker bug.

	bugpoint is useful for proactively finding bugs in LLVM. Invoking
bugpoint with the -find-bugs option will cause the list of specified
optimizations to be randomized and applied to the program. This process will
repeat until a bug is found or the user kills bugpoint.

	bugpoint can produce IR which contains long names. Run opt
-metarenamer over the IR to rename everything using easy-to-read,
metasyntactic names. Alternatively, run opt -strip -instnamer to rename
everything with very short (often purely numeric) names.

What to do when bugpoint isn’t enough

Sometimes, bugpoint is not enough. In particular, InstCombine and
TargetLowering both have visitor structured code with lots of potential
transformations. If the process of using bugpoint has left you with still too
much code to figure out and the problem seems to be in instcombine, the
following steps may help. These same techniques are useful with TargetLowering
as well.

Turn on -debug-only=instcombine and see which transformations within
instcombine are firing by selecting out lines with “IC” in them.

At this point, you have a decision to make. Is the number of transformations
small enough to step through them using a debugger? If so, then try that.

If there are too many transformations, then a source modification approach may
be helpful. In this approach, you can modify the source code of instcombine to
disable just those transformations that are being performed on your test input
and perform a binary search over the set of transformations. One set of places
to modify are the “visit*” methods of InstCombiner (e.g.
visitICmpInst) by adding a “return false” as the first line of the
method.

If that still doesn’t remove enough, then change the caller of
InstCombiner::DoOneIteration, InstCombiner::runOnFunction to limit the
number of iterations.

You may also find it useful to use “-stats” now to see what parts of
instcombine are firing. This can guide where to put additional reporting code.

At this point, if the amount of transformations is still too large, then
inserting code to limit whether or not to execute the body of the code in the
visit function can be helpful. Add a static counter which is incremented on
every invocation of the function. Then add code which simply returns false on
desired ranges. For example:

static int calledCount = 0;
calledCount++;
LLVM_DEBUG(if (calledCount < 212) return false);
LLVM_DEBUG(if (calledCount > 217) return false);
LLVM_DEBUG(if (calledCount == 213) return false);
LLVM_DEBUG(if (calledCount == 214) return false);
LLVM_DEBUG(if (calledCount == 215) return false);
LLVM_DEBUG(if (calledCount == 216) return false);
LLVM_DEBUG(dbgs() << "visitXOR calledCount: " << calledCount << "\n");
LLVM_DEBUG(dbgs() << "I: "; I->dump());

could be added to visitXOR to limit visitXor to being applied only to
calls 212 and 217. This is from an actual test case and raises an important
point—a simple binary search may not be sufficient, as transformations that
interact may require isolating more than one call. In TargetLowering, use
return SDNode(); instead of return false;.

Now that the number of transformations is down to a manageable number, try
examining the output to see if you can figure out which transformations are
being done. If that can be figured out, then do the usual debugging. If which
code corresponds to the transformation being performed isn’t obvious, set a
breakpoint after the call count based disabling and step through the code.
Alternatively, you can use “printf” style debugging to report waypoints.

 The LLVM Target-Independent Code Generator

The LLVM Target-Independent Code Generator

	Introduction

	Required components in the code generator

	The high-level design of the code generator

	Using TableGen for target description

	Target description classes

	The TargetMachine class

	The DataLayout class

	The TargetLowering class

	The TargetRegisterInfo class

	The TargetInstrInfo class

	The TargetFrameLowering class

	The TargetSubtarget class

	The TargetJITInfo class

	Machine code description classes

	The MachineInstr class

	Using the MachineInstrBuilder.h functions

	Fixed (preassigned) registers

	Call-clobbered registers

	Machine code in SSA form

	The MachineBasicBlock class

	The MachineFunction class

	MachineInstr Bundles

	The “MC” Layer

	The MCStreamer API

	The MCContext class

	The MCSymbol class

	The MCSection class

	The MCInst class

	Target-independent code generation algorithms

	Instruction Selection

	Introduction to SelectionDAGs

	SelectionDAG Instruction Selection Process

	Initial SelectionDAG Construction

	SelectionDAG LegalizeTypes Phase

	SelectionDAG Legalize Phase

	SelectionDAG Optimization Phase: the DAG Combiner

	SelectionDAG Select Phase

	SelectionDAG Scheduling and Formation Phase

	Future directions for the SelectionDAG

	SSA-based Machine Code Optimizations

	Live Intervals

	Live Variable Analysis

	Live Intervals Analysis

	Register Allocation

	How registers are represented in LLVM

	Mapping virtual registers to physical registers

	Handling two address instructions

	The SSA deconstruction phase

	Instruction folding

	Built in register allocators

	Prolog/Epilog Code Insertion

	Late Machine Code Optimizations

	Code Emission

	Emitting function stack size information

	VLIW Packetizer

	Mapping from instructions to functional units

	How the packetization tables are generated and used

	Implementing a Native Assembler

	Instruction Parsing

	Instruction Alias Processing

	Mnemonic Aliases

	Instruction Aliases

	Instruction Matching

	Target-specific Implementation Notes

	Target Feature Matrix

	Is Generally Reliable

	Assembly Parser

	Disassembler

	Inline Asm

	JIT Support

	.o File Writing

	Tail Calls

	Segmented Stacks

	Tail call optimization

	Sibling call optimization

	The X86 backend

	X86 Target Triples supported

	X86 Calling Conventions supported

	Representing X86 addressing modes in MachineInstrs

	X86 address spaces supported

	Instruction naming

	The PowerPC backend

	LLVM PowerPC ABI

	Frame Layout

	Prolog/Epilog

	Dynamic Allocation

	The NVPTX backend

	The extended Berkeley Packet Filter (eBPF) backend

	Instruction encoding (arithmetic and jump)

	Instruction encoding (load, store)

	Packet data access (BPF_ABS, BPF_IND)

	eBPF maps

	Function calls

	Program start

	The AMDGPU backend

Warning

This is a work in progress.

Introduction

The LLVM target-independent code generator is a framework that provides a suite
of reusable components for translating the LLVM internal representation to the
machine code for a specified target—either in assembly form (suitable for a
static compiler) or in binary machine code format (usable for a JIT
compiler). The LLVM target-independent code generator consists of six main
components:

	Abstract target description interfaces which capture important properties
about various aspects of the machine, independently of how they will be used.
These interfaces are defined in include/llvm/Target/.

	Classes used to represent the code being generated for a target. These
classes are intended to be abstract enough to represent the machine code for
any target machine. These classes are defined in
include/llvm/CodeGen/. At this level, concepts like “constant pool
entries” and “jump tables” are explicitly exposed.

	Classes and algorithms used to represent code at the object file level, the
MC Layer. These classes represent assembly level constructs like labels,
sections, and instructions. At this level, concepts like “constant pool
entries” and “jump tables” don’t exist.

	Target-independent algorithms used to implement various phases of native
code generation (register allocation, scheduling, stack frame representation,
etc). This code lives in lib/CodeGen/.

	Implementations of the abstract target description interfaces for
particular targets. These machine descriptions make use of the components
provided by LLVM, and can optionally provide custom target-specific passes,
to build complete code generators for a specific target. Target descriptions
live in lib/Target/.

	The target-independent JIT components. The LLVM JIT is completely target
independent (it uses the TargetJITInfo structure to interface for
target-specific issues. The code for the target-independent JIT lives in
lib/ExecutionEngine/JIT.

Depending on which part of the code generator you are interested in working on,
different pieces of this will be useful to you. In any case, you should be
familiar with the target description and machine code representation
classes. If you want to add a backend for a new target, you will need to
implement the target description classes for your new target and understand
the LLVM code representation. If you are interested in
implementing a new code generation algorithm, it should only depend on the
target-description and machine code representation classes, ensuring that it is
portable.

Required components in the code generator

The two pieces of the LLVM code generator are the high-level interface to the
code generator and the set of reusable components that can be used to build
target-specific backends. The two most important interfaces (

 Exception Handling in LLVM

Exception Handling in LLVM

	Introduction

	Itanium ABI Zero-cost Exception Handling

	Setjmp/Longjmp Exception Handling

	Windows Runtime Exception Handling

	Overview

	LLVM Code Generation

	Throw

	Try/Catch

	Cleanups

	Throw Filters

	Restrictions

	Exception Handling Intrinsics

	llvm.eh.typeid.for

	llvm.eh.begincatch

	llvm.eh.endcatch

	llvm.eh.exceptionpointer

	SJLJ Intrinsics

	llvm.eh.sjlj.setjmp

	llvm.eh.sjlj.longjmp

	llvm.eh.sjlj.lsda

	llvm.eh.sjlj.callsite

	Asm Table Formats

	Exception Handling Frame

	Exception Tables

	Exception Handling using the Windows Runtime

	Background on Windows exceptions

	SEH filter expressions

	New exception handling instructions

	Funclet parent tokens

	Funclet transitions

	Exception Handling support on the target

Introduction

This document is the central repository for all information pertaining to
exception handling in LLVM. It describes the format that LLVM exception
handling information takes, which is useful for those interested in creating
front-ends or dealing directly with the information. Further, this document
provides specific examples of what exception handling information is used for in
C and C++.

Itanium ABI Zero-cost Exception Handling

Exception handling for most programming languages is designed to recover from
conditions that rarely occur during general use of an application. To that end,
exception handling should not interfere with the main flow of an application’s
algorithm by performing checkpointing tasks, such as saving the current pc or
register state.

The Itanium ABI Exception Handling Specification defines a methodology for
providing outlying data in the form of exception tables without inlining
speculative exception handling code in the flow of an application’s main
algorithm. Thus, the specification is said to add “zero-cost” to the normal
execution of an application.

A more complete description of the Itanium ABI exception handling runtime
support of can be found at Itanium C++ ABI: Exception Handling [http://itanium-cxx-abi.github.io/cxx-abi/abi-eh.html]. A description of the
exception frame format can be found at Exception Frames [http://refspecs.linuxfoundation.org/LSB_3.0.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html],
with details of the DWARF 4 specification at DWARF 4 Standard [http://dwarfstd.org/Dwarf4Std.php]. A description for the C++ exception
table formats can be found at Exception Handling Tables [http://itanium-cxx-abi.github.io/cxx-abi/exceptions.pdf].

Setjmp/Longjmp Exception Handling

Setjmp/Longjmp (SJLJ) based exception handling uses LLVM intrinsics
llvm.eh.sjlj.setjmp and llvm.eh.sjlj.longjmp to handle control flow for
exception handling.

For each function which does exception processing — be it try/catch
blocks or cleanups — that function registers itself on a global frame
list. When exceptions are unwinding, the runtime uses this list to identify
which functions need processing.

Landing pad selection is encoded in the call site entry of the function
context. The runtime returns to the function via llvm.eh.sjlj.longjmp, where
a switch table transfers control to the appropriate landing pad based on the
index stored in the function context.

In contrast to DWARF exception handling, which encodes exception regions and
frame information in out-of-line tables, SJLJ exception handling builds and
removes the unwind frame context at runtime. This results in faster exception
handling at the expense of slower execution when no exceptions are thrown. As
exceptions are, by their nature, intended for uncommon code paths, DWARF
exception handling is generally preferred to SJLJ.

Windows Runtime Exception Handling

LLVM supports handling exceptions produced by the Windows runtime, but it
requires a very different intermediate representation. It is not based on the
“landingpad” instruction like the other two models, and is
described later in this document under Exception Handling using the Windows Runtime.

Overview

When an exception is thrown in LLVM code, the runtime does its best to find a
handler suited to processing the circumstance.

The runtime first attempts to find an exception frame corresponding to the
function where the exception was thrown. If the programming language supports
exception handling (e.g. C++), the exception frame contains a reference to an
exception table describing how to process the exception. If the language does
not support exception handling (e.g. C), or if the exception needs to be
forwarded to a prior activation, the exception frame contains information about
how to unwind the current activation and restore the state of the prior
activation. This process is repeated until the exception is handled. If the
exception is not handled and no activations remain, then the application is
terminated with an appropriate error message.

Because different programming languages have different behaviors when handling
exceptions, the exception handling ABI provides a mechanism for
supplying personalities. An exception handling personality is defined by
way of a personality function (e.g. __gxx_personality_v0 in C++),
which receives the context of the exception, an exception structure
containing the exception object type and value, and a reference to the exception
table for the current function. The personality function for the current
compile unit is specified in a common exception frame.

The organization of an exception table is language dependent. For C++, an
exception table is organized as a series of code ranges defining what to do if
an exception occurs in that range. Typically, the information associated with a
range defines which types of exception objects (using C++ type info) that are
handled in that range, and an associated action that should take place. Actions
typically pass control to a landing pad.

A landing pad corresponds roughly to the code found in the catch portion of
a try/catch sequence. When execution resumes at a landing pad, it
receives an exception structure and a selector value corresponding to the
type of exception thrown. The selector is then used to determine which catch
should actually process the exception.

LLVM Code Generation

From a C++ developer’s perspective, exceptions are defined in terms of the
throw and try/catch statements. In this section we will describe the
implementation of LLVM exception handling in terms of C++ examples.

Throw

Languages that support exception handling typically provide a throw
operation to initiate the exception process. Internally, a throw operation
breaks down into two steps.

	A request is made to allocate exception space for an exception structure.
This structure needs to survive beyond the current activation. This structure
will contain the type and value of the object being thrown.

	A call is made to the runtime to raise the exception, passing the exception
structure as an argument.

In C++, the allocation of the exception structure is done by the
__cxa_allocate_exception runtime function. The exception raising is handled
by __cxa_throw. The type of the exception is represented using a C++ RTTI
structure.

Try/Catch

A call within the scope of a try statement can potentially raise an
exception. In those circumstances, the LLVM C++ front-end replaces the call with
an invoke instruction. Unlike a call, the invoke has two potential
continuation points:

	where to continue when the call succeeds as per normal, and

	where to continue if the call raises an exception, either by a throw or the
unwinding of a throw

The term used to define the place where an invoke continues after an
exception is called a landing pad. LLVM landing pads are conceptually
alternative function entry points where an exception structure reference and a
type info index are passed in as arguments. The landing pad saves the exception
structure reference and then proceeds to select the catch block that corresponds
to the type info of the exception object.

The LLVM ‘landingpad’ Instruction is used to convey information about the landing
pad to the back end. For C++, the landingpad instruction returns a pointer
and integer pair corresponding to the pointer to the exception structure and
the selector value respectively.

The landingpad instruction looks for a reference to the personality
function to be used for this try/catch sequence in the parent
function’s attribute list. The instruction contains a list of cleanup,
catch, and filter clauses. The exception is tested against the clauses
sequentially from first to last. The clauses have the following meanings:

	catch <type> @ExcType

	This clause means that the landingpad block should be entered if the
exception being thrown is of type @ExcType or a subtype of
@ExcType. For C++, @ExcType is a pointer to the std::type_info
object (an RTTI object) representing the C++ exception type.

	If @ExcType is null, any exception matches, so the landingpad
should always be entered. This is used for C++ catch-all blocks (“catch
(...)”).

	When this clause is matched, the selector value will be equal to the value
returned by “@llvm.eh.typeid.for(i8* @ExcType)”. This will always be a
positive value.

	filter <type> [<type> @ExcType1, ..., <type> @ExcTypeN]

	This clause means that the landingpad should be entered if the exception
being thrown does not match any of the types in the list (which, for C++,
are again specified as std::type_info pointers).

	C++ front-ends use this to implement C++ exception specifications, such as
“void foo() throw (ExcType1, ..., ExcTypeN) { ... }”.

	When this clause is matched, the selector value will be negative.

	The array argument to filter may be empty; for example, “[0 x i8**]
undef”. This means that the landingpad should always be entered. (Note
that such a filter would not be equivalent to “catch i8* null”,
because filter and catch produce negative and positive selector
values respectively.)

	cleanup

	This clause means that the landingpad should always be entered.

	C++ front-ends use this for calling objects’ destructors.

	When this clause is matched, the selector value will be zero.

	The runtime may treat “cleanup” differently from “catch <type>
null”.

In C++, if an unhandled exception occurs, the language runtime will call
std::terminate(), but it is implementation-defined whether the runtime
unwinds the stack and calls object destructors first. For example, the GNU
C++ unwinder does not call object destructors when an unhandled exception
occurs. The reason for this is to improve debuggability: it ensures that
std::terminate() is called from the context of the throw, so that
this context is not lost by unwinding the stack. A runtime will typically
implement this by searching for a matching non-cleanup clause, and
aborting if it does not find one, before entering any landingpad blocks.

Once the landing pad has the type info selector, the code branches to the code
for the first catch. The catch then checks the value of the type info selector
against the index of type info for that catch. Since the type info index is not
known until all the type infos have been gathered in the backend, the catch code
must call the llvm.eh.typeid.for intrinsic to determine the index for a given
type info. If the catch fails to match the selector then control is passed on to
the next catch.

Finally, the entry and exit of catch code is bracketed with calls to
__cxa_begin_catch and __cxa_end_catch.

	__cxa_begin_catch takes an exception structure reference as an argument
and returns the value of the exception object.

	__cxa_end_catch takes no arguments. This function:

	Locates the most recently caught exception and decrements its handler
count,

	Removes the exception from the caught stack if the handler count goes to
zero, and

	Destroys the exception if the handler count goes to zero and the exception
was not re-thrown by throw.

Note

a rethrow from within the catch may replace this call with a
__cxa_rethrow.

Cleanups

A cleanup is extra code which needs to be run as part of unwinding a scope. C++
destructors are a typical example, but other languages and language extensions
provide a variety of different kinds of cleanups. In general, a landing pad may
need to run arbitrary amounts of cleanup code before actually entering a catch
block. To indicate the presence of cleanups, a ‘landingpad’ Instruction should have
a cleanup clause. Otherwise, the unwinder will not stop at the landing pad if
there are no catches or filters that require it to.

Note

Do not allow a new exception to propagate out of the execution of a
cleanup. This can corrupt the internal state of the unwinder. Different
languages describe different high-level semantics for these situations: for
example, C++ requires that the process be terminated, whereas Ada cancels both
exceptions and throws a third.

When all cleanups are finished, if the exception is not handled by the current
function, resume unwinding by calling the resume instruction,
passing in the result of the landingpad instruction for the original
landing pad.

Throw Filters

C++ allows the specification of which exception types may be thrown from a
function. To represent this, a top level landing pad may exist to filter out
invalid types. To express this in LLVM code the ‘landingpad’ Instruction will have a
filter clause. The clause consists of an array of type infos.
landingpad will return a negative value
if the exception does not match any of the type infos. If no match is found then
a call to __cxa_call_unexpected should be made, otherwise
_Unwind_Resume. Each of these functions requires a reference to the
exception structure. Note that the most general form of a landingpad
instruction can have any number of catch, cleanup, and filter clauses (though
having more than one cleanup is pointless). The LLVM C++ front-end can generate
such landingpad instructions due to inlining creating nested exception
handling scopes.

Restrictions

The unwinder delegates the decision of whether to stop in a call frame to that
call frame’s language-specific personality function. Not all unwinders guarantee
that they will stop to perform cleanups. For example, the GNU C++ unwinder
doesn’t do so unless the exception is actually caught somewhere further up the
stack.

In order for inlining to behave correctly, landing pads must be prepared to
handle selector results that they did not originally advertise. Suppose that a
function catches exceptions of type A, and it’s inlined into a function that
catches exceptions of type B. The inliner will update the landingpad
instruction for the inlined landing pad to include the fact that B is also
caught. If that landing pad assumes that it will only be entered to catch an
A, it’s in for a rude awakening. Consequently, landing pads must test for
the selector results they understand and then resume exception propagation with
the resume instruction if none of the conditions
match.

Exception Handling Intrinsics

In addition to the landingpad and resume instructions, LLVM uses several
intrinsic functions (name prefixed with llvm.eh) to provide exception
handling information at various points in generated code.

llvm.eh.typeid.for

i32 @llvm.eh.typeid.for(i8* %type_info)

This intrinsic returns the type info index in the exception table of the current
function. This value can be used to compare against the result of
landingpad instruction. The single argument is a reference to a type info.

Uses of this intrinsic are generated by the C++ front-end.

llvm.eh.begincatch

void @llvm.eh.begincatch(i8* %ehptr, i8* %ehobj)

This intrinsic marks the beginning of catch handling code within the blocks
following a landingpad instruction. The exact behavior of this function
depends on the compilation target and the personality function associated
with the landingpad instruction.

The first argument to this intrinsic is a pointer that was previously extracted
from the aggregate return value of the landingpad instruction. The second
argument to the intrinsic is a pointer to stack space where the exception object
should be stored. The runtime handles the details of copying the exception
object into the slot. If the second parameter is null, no copy occurs.

Uses of this intrinsic are generated by the C++ front-end. Many targets will
use implementation-specific functions (such as __cxa_begin_catch) instead
of this intrinsic. The intrinsic is provided for targets that require a more
abstract interface.

When used in the native Windows C++ exception handling implementation, this
intrinsic serves as a placeholder to delimit code before a catch handler is
outlined. When the handler is outlined, this intrinsic will be replaced
by instructions that retrieve the exception object pointer from the frame
allocation block.

llvm.eh.endcatch

void @llvm.eh.endcatch()

This intrinsic marks the end of catch handling code within the current block,
which will be a successor of a block which called llvm.eh.begincatch''.
The exact behavior of this function depends on the compilation target and the
personality function associated with the corresponding ``landingpad
instruction.

There may be more than one call to llvm.eh.endcatch for any given call to
llvm.eh.begincatch with each llvm.eh.endcatch call corresponding to the
end of a different control path. All control paths following a call to
llvm.eh.begincatch must reach a call to llvm.eh.endcatch.

Uses of this intrinsic are generated by the C++ front-end. Many targets will
use implementation-specific functions (such as __cxa_begin_catch) instead
of this intrinsic. The intrinsic is provided for targets that require a more
abstract interface.

When used in the native Windows C++ exception handling implementation, this
intrinsic serves as a placeholder to delimit code before a catch handler is
outlined. After the handler is outlined, this intrinsic is simply removed.

llvm.eh.exceptionpointer

i8 addrspace(N)* @llvm.eh.padparam.pNi8(token %catchpad)

This intrinsic retrieves a pointer to the exception caught by the given
catchpad.

SJLJ Intrinsics

The llvm.eh.sjlj intrinsics are used internally within LLVM’s
backend. Uses of them are generated by the backend’s
SjLjEHPrepare pass.

llvm.eh.sjlj.setjmp

i32 @llvm.eh.sjlj.setjmp(i8* %setjmp_buf)

For SJLJ based exception handling, this intrinsic forces register saving for the
current function and stores the address of the following instruction for use as
a destination address by llvm.eh.sjlj.longjmp. The buffer format and the
overall functioning of this intrinsic is compatible with the GCC
__builtin_setjmp implementation allowing code built with the clang and GCC
to interoperate.

The single parameter is a pointer to a five word buffer in which the calling
context is saved. The front end places the frame pointer in the first word, and
the target implementation of this intrinsic should place the destination address
for a llvm.eh.sjlj.longjmp in the second word. The following three words are
available for use in a target-specific manner.

llvm.eh.sjlj.longjmp

void @llvm.eh.sjlj.longjmp(i8* %setjmp_buf)

For SJLJ based exception handling, the llvm.eh.sjlj.longjmp intrinsic is
used to implement __builtin_longjmp(). The single parameter is a pointer to
a buffer populated by llvm.eh.sjlj.setjmp. The frame pointer and stack
pointer are restored from the buffer, then control is transferred to the
destination address.

llvm.eh.sjlj.lsda

i8* @llvm.eh.sjlj.lsda()

For SJLJ based exception handling, the llvm.eh.sjlj.lsda intrinsic returns
the address of the Language Specific Data Area (LSDA) for the current
function. The SJLJ front-end code stores this address in the exception handling
function context for use by the runtime.

llvm.eh.sjlj.callsite

void @llvm.eh.sjlj.callsite(i32 %call_site_num)

For SJLJ based exception handling, the llvm.eh.sjlj.callsite intrinsic
identifies the callsite value associated with the following invoke
instruction. This is used to ensure that landing pad entries in the LSDA are
generated in matching order.

Asm Table Formats

There are two tables that are used by the exception handling runtime to
determine which actions should be taken when an exception is thrown.

Exception Handling Frame

An exception handling frame eh_frame is very similar to the unwind frame
used by DWARF debug info. The frame contains all the information necessary to
tear down the current frame and restore the state of the prior frame. There is
an exception handling frame for each function in a compile unit, plus a common
exception handling frame that defines information common to all functions in the
unit.

The format of this call frame information (CFI) is often platform-dependent,
however. ARM, for example, defines their own format. Apple has their own compact
unwind info format. On Windows, another format is used for all architectures
since 32-bit x86. LLVM will emit whatever information is required by the
target.

Exception Tables

An exception table contains information about what actions to take when an
exception is thrown in a particular part of a function’s code. This is typically
referred to as the language-specific data area (LSDA). The format of the LSDA
table is specific to the personality function, but the majority of personalities
out there use a variation of the tables consumed by __gxx_personality_v0.
There is one exception table per function, except leaf functions and functions
that have calls only to non-throwing functions. They do not need an exception
table.

Exception Handling using the Windows Runtime

Background on Windows exceptions

Interacting with exceptions on Windows is significantly more complicated than
on Itanium C++ ABI platforms. The fundamental difference between the two models
is that Itanium EH is designed around the idea of “successive unwinding,” while
Windows EH is not.

Under Itanium, throwing an exception typically involes allocating thread local
memory to hold the exception, and calling into the EH runtime. The runtime
identifies frames with appropriate exception handling actions, and successively
resets the register context of the current thread to the most recently active
frame with actions to run. In LLVM, execution resumes at a landingpad
instruction, which produces register values provided by the runtime. If a
function is only cleaning up allocated resources, the function is responsible
for calling _Unwind_Resume to transition to the next most recently active
frame after it is finished cleaning up. Eventually, the frame responsible for
handling the exception calls __cxa_end_catch to destroy the exception,
release its memory, and resume normal control flow.

The Windows EH model does not use these successive register context resets.
Instead, the active exception is typically described by a frame on the stack.
In the case of C++ exceptions, the exception object is allocated in stack memory
and its address is passed to __CxxThrowException. General purpose structured
exceptions (SEH) are more analogous to Linux signals, and they are dispatched by
userspace DLLs provided with Windows. Each frame on the stack has an assigned EH
personality routine, which decides what actions to take to handle the exception.
There are a few major personalities for C and C++ code: the C++ personality
(__CxxFrameHandler3) and the SEH personalities (_except_handler3,
_except_handler4, and __C_specific_handler). All of them implement
cleanups by calling back into a “funclet” contained in the parent function.

Funclets, in this context, are regions of the parent function that can be called
as though they were a function pointer with a very special calling convention.
The frame pointer of the parent frame is passed into the funclet either using
the standard EBP register or as the first parameter register, depending on the
architecture. The funclet implements the EH action by accessing local variables
in memory through the frame pointer, and returning some appropriate value,
continuing the EH process. No variables live in to or out of the funclet can be
allocated in registers.

The C++ personality also uses funclets to contain the code for catch blocks
(i.e. all user code between the braces in catch (Type obj) { ... }). The
runtime must use funclets for catch bodies because the C++ exception object is
allocated in a child stack frame of the function handling the exception. If the
runtime rewound the stack back to frame of the catch, the memory holding the
exception would be overwritten quickly by subsequent function calls. The use of
funclets also allows __CxxFrameHandler3 to implement rethrow without
resorting to TLS. Instead, the runtime throws a special exception, and then uses
SEH (__try / __except) to resume execution with new information in the child
frame.

In other words, the successive unwinding approach is incompatible with Visual
C++ exceptions and general purpose Windows exception handling. Because the C++
exception object lives in stack memory, LLVM cannot provide a custom personality
function that uses landingpads. Similarly, SEH does not provide any mechanism
to rethrow an exception or continue unwinding. Therefore, LLVM must use the IR
constructs described later in this document to implement compatible exception
handling.

SEH filter expressions

The SEH personality functions also use funclets to implement filter expressions,
which allow executing arbitrary user code to decide which exceptions to catch.
Filter expressions should not be confused with the filter clause of the LLVM
landingpad instruction. Typically filter expressions are used to determine
if the exception came from a particular DLL or code region, or if code faulted
while accessing a particular memory address range. LLVM does not currently have
IR to represent filter expressions because it is difficult to represent their
control dependencies. Filter expressions run during the first phase of EH,
before cleanups run, making it very difficult to build a faithful control flow
graph. For now, the new EH instructions cannot represent SEH filter
expressions, and frontends must outline them ahead of time. Local variables of
the parent function can be escaped and accessed using the llvm.localescape
and llvm.localrecover intrinsics.

New exception handling instructions

The primary design goal of the new EH instructions is to support funclet
generation while preserving information about the CFG so that SSA formation
still works. As a secondary goal, they are designed to be generic across MSVC
and Itanium C++ exceptions. They make very few assumptions about the data
required by the personality, so long as it uses the familiar core EH actions:
catch, cleanup, and terminate. However, the new instructions are hard to modify
without knowing details of the EH personality. While they can be used to
represent Itanium EH, the landingpad model is strictly better for optimization
purposes.

The following new instructions are considered “exception handling pads”, in that
they must be the first non-phi instruction of a basic block that may be the
unwind destination of an EH flow edge:
catchswitch, catchpad, and cleanuppad.
As with landingpads, when entering a try scope, if the
frontend encounters a call site that may throw an exception, it should emit an
invoke that unwinds to a catchswitch block. Similarly, inside the scope of a
C++ object with a destructor, invokes should unwind to a cleanuppad.

New instructions are also used to mark the points where control is transferred
out of a catch/cleanup handler (which will correspond to exits from the
generated funclet). A catch handler which reaches its end by normal execution
executes a catchret instruction, which is a terminator indicating where in
the function control is returned to. A cleanup handler which reaches its end
by normal execution executes a cleanupret instruction, which is a terminator
indicating where the active exception will unwind to next.

Each of these new EH pad instructions has a way to identify which action should
be considered after this action. The catchswitch instruction is a terminator
and has an unwind destination operand analogous to the unwind destination of an
invoke. The cleanuppad instruction is not
a terminator, so the unwind destination is stored on the cleanupret
instruction instead. Successfully executing a catch handler should resume
normal control flow, so neither catchpad nor catchret instructions can
unwind. All of these “unwind edges” may refer to a basic block that contains an
EH pad instruction, or they may unwind to the caller. Unwinding to the caller
has roughly the same semantics as the resume instruction in the landingpad
model. When inlining through an invoke, instructions that unwind to the caller
are hooked up to unwind to the unwind destination of the call site.

Putting things together, here is a hypothetical lowering of some C++ that uses
all of the new IR instructions:

struct Cleanup {
 Cleanup();
 ~Cleanup();
 int m;
};
void may_throw();
int f() noexcept {
 try {
 Cleanup obj;
 may_throw();
 } catch (int e) {
 may_throw();
 return e;
 }
 return 0;
}

define i32 @f() nounwind personality i32 (...)* @__CxxFrameHandler3 {
entry:
 %obj = alloca %struct.Cleanup, align 4
 %e = alloca i32, align 4
 %call = invoke %struct.Cleanup* @"\01??0Cleanup@@QEAA@XZ"(%struct.Cleanup* nonnull %obj)
 to label %invoke.cont unwind label %lpad.catch

invoke.cont: ; preds = %entry
 invoke void @"\01?may_throw@@YAXXZ"()
 to label %invoke.cont.2 unwind label %lpad.cleanup

invoke.cont.2: ; preds = %invoke.cont
 call void @"\01??_DCleanup@@QEAA@XZ"(%struct.Cleanup* nonnull %obj) nounwind
 br label %return

return: ; preds = %invoke.cont.3, %invoke.cont.2
 %retval.0 = phi i32 [0, %invoke.cont.2], [%3, %invoke.cont.3]
 ret i32 %retval.0

lpad.cleanup: ; preds = %invoke.cont.2
 %0 = cleanuppad within none []
 call void @"\01??1Cleanup@@QEAA@XZ"(%struct.Cleanup* nonnull %obj) nounwind
 cleanupret %0 unwind label %lpad.catch

lpad.catch: ; preds = %lpad.cleanup, %entry
 %1 = catchswitch within none [label %catch.body] unwind label %lpad.terminate

catch.body: ; preds = %lpad.catch
 %catch = catchpad within %1 [%rtti.TypeDescriptor2* @"\01??_R0H@8", i32 0, i32* %e]
 invoke void @"\01?may_throw@@YAXXZ"()
 to label %invoke.cont.3 unwind label %lpad.terminate

invoke.cont.3: ; preds = %catch.body
 %3 = load i32, i32* %e, align 4
 catchret from %catch to label %return

lpad.terminate: ; preds = %catch.body, %lpad.catch
 cleanuppad within none []
 call void @"\01?terminate@@YAXXZ"
 unreachable
}

Funclet parent tokens

In order to produce tables for EH personalities that use funclets, it is
necessary to recover the nesting that was present in the source. This funclet
parent relationship is encoded in the IR using tokens produced by the new “pad”
instructions. The token operand of a “pad” or “ret” instruction indicates which
funclet it is in, or “none” if it is not nested within another funclet.

The catchpad and cleanuppad instructions establish new funclets, and
their tokens are consumed by other “pad” instructions to establish membership.
The catchswitch instruction does not create a funclet, but it produces a
token that is always consumed by its immediate successor catchpad
instructions. This ensures that every catch handler modelled by a catchpad
belongs to exactly one catchswitch, which models the dispatch point after a
C++ try.

Here is an example of what this nesting looks like using some hypothetical
C++ code:

void f() {
 try {
 throw;
 } catch (...) {
 try {
 throw;
 } catch (...) {
 }
 }
}

define void @f() #0 personality i8* bitcast (i32 (...)* @__CxxFrameHandler3 to i8*) {
entry:
 invoke void @_CxxThrowException(i8* null, %eh.ThrowInfo* null) #1
 to label %unreachable unwind label %catch.dispatch

catch.dispatch: ; preds = %entry
 %0 = catchswitch within none [label %catch] unwind to caller

catch: ; preds = %catch.dispatch
 %1 = catchpad within %0 [i8* null, i32 64, i8* null]
 invoke void @_CxxThrowException(i8* null, %eh.ThrowInfo* null) #1
 to label %unreachable unwind label %catch.dispatch2

catch.dispatch2: ; preds = %catch
 %2 = catchswitch within %1 [label %catch3] unwind to caller

catch3: ; preds = %catch.dispatch2
 %3 = catchpad within %2 [i8* null, i32 64, i8* null]
 catchret from %3 to label %try.cont

try.cont: ; preds = %catch3
 catchret from %1 to label %try.cont6

try.cont6: ; preds = %try.cont
 ret void

unreachable: ; preds = %catch, %entry
 unreachable
}

The “inner” catchswitch consumes %1 which is produced by the outer
catchswitch.

Funclet transitions

The EH tables for personalities that use funclets make implicit use of the
funclet nesting relationship to encode unwind destinations, and so are
constrained in the set of funclet transitions they can represent. The related
LLVM IR instructions accordingly have constraints that ensure encodability of
the EH edges in the flow graph.

A catchswitch, catchpad, or cleanuppad is said to be “entered”
when it executes. It may subsequently be “exited” by any of the following
means:

	A catchswitch is immediately exited when none of its constituent
catchpads are appropriate for the in-flight exception and it unwinds
to its unwind destination or the caller.

	A catchpad and its parent catchswitch are both exited when a
catchret from the catchpad is executed.

	A cleanuppad is exited when a cleanupret from it is executed.

	Any of these pads is exited when control unwinds to the function’s caller,
either by a call which unwinds all the way to the function’s caller,
a nested catchswitch marked “unwinds to caller”, or a nested
cleanuppad’s cleanupret marked “unwinds to caller".

	Any of these pads is exited when an unwind edge (from an invoke,
nested catchswitch, or nested cleanuppad’s cleanupret)
unwinds to a destination pad that is not a descendant of the given pad.

Note that the ret instruction is not a valid way to exit a funclet pad;
it is undefined behavior to execute a ret when a pad has been entered but
not exited.

A single unwind edge may exit any number of pads (with the restrictions that
the edge from a catchswitch must exit at least itself, and the edge from
a cleanupret must exit at least its cleanuppad), and then must enter
exactly one pad, which must be distinct from all the exited pads. The parent
of the pad that an unwind edge enters must be the most-recently-entered
not-yet-exited pad (after exiting from any pads that the unwind edge exits),
or “none” if there is no such pad. This ensures that the stack of executing
funclets at run-time always corresponds to some path in the funclet pad tree
that the parent tokens encode.

All unwind edges which exit any given funclet pad (including cleanupret
edges exiting their cleanuppad and catchswitch edges exiting their
catchswitch) must share the same unwind destination. Similarly, any
funclet pad which may be exited by unwind to caller must not be exited by
any exception edges which unwind anywhere other than the caller. This
ensures that each funclet as a whole has only one unwind destination, which
EH tables for funclet personalities may require. Note that any unwind edge
which exits a catchpad also exits its parent catchswitch, so this
implies that for any given catchswitch, its unwind destination must also
be the unwind destination of any unwind edge that exits any of its constituent
catchpads. Because catchswitch has no nounwind variant, and
because IR producers are not required to annotate calls which will not
unwind as nounwind, it is legal to nest a call or an “unwind to
caller” catchswitch within a funclet pad that has an unwind
destination other than caller; it is undefined behavior for such a call
or catchswitch to unwind.

Finally, the funclet pads’ unwind destinations cannot form a cycle. This
ensures that EH lowering can construct “try regions” with a tree-like
structure, which funclet-based personalities may require.

Exception Handling support on the target

In order to support exception handling on particular target, there are a few
items need to be implemented.

	CFI directives

First, you have to assign each target register with a unique DWARF number.
Then in TargetFrameLowering’s emitPrologue, you have to emit CFI
directives [https://sourceware.org/binutils/docs/as/CFI-directives.html]
to specify how to calculate the CFA (Canonical Frame Address) and how register
is restored from the address pointed by the CFA with an offset. The assembler
is instructed by CFI directives to build .eh_frame section, which is used
by th unwinder to unwind stack during exception handling.

	getExceptionPointerRegister and getExceptionSelectorRegister

TargetLowering must implement both functions. The personality function
passes the exception structure (a pointer) and selector value (an integer)
to the landing pad through the registers specified by getExceptionPointerRegister
and getExceptionSelectorRegister respectively. On most platforms, they
will be GPRs and will be the same as the ones specified in the calling convention.

	EH_RETURN

The ISD node represents the undocumented GCC extension __builtin_eh_return (offset, handler),
which adjusts the stack by offset and then jumps to the handler. __builtin_eh_return
is used in GCC unwinder (libgcc [https://gcc.gnu.org/onlinedocs/gccint/Libgcc.html]),
but not in LLVM unwinder (libunwind [https://clang.llvm.org/docs/Toolchain.html#unwind-library]).
If you are on the top of libgcc and have particular requirement on your target,
you have to handle EH_RETURN in TargetLowering.

If you don’t leverage the existing runtime (libstdc++ and libgcc),
you have to take a look on libc++ [https://libcxx.llvm.org/] and
libunwind [https://clang.llvm.org/docs/Toolchain.html#unwind-library]
to see what have to be done there. For libunwind, you have to do the following

	__libunwind_config.h

Define macros for your target.

	include/libunwind.h

Define enum for the target registers.

	src/Registers.hpp

Define Registers class for your target, implement setter and getter functions.

	src/UnwindCursor.hpp

Define dwarfEncoding and stepWithCompactEncoding for your Registers
class.

	src/UnwindRegistersRestore.S

Write an assembly function to restore all your target registers from the memory.

	src/UnwindRegistersSave.S

Write an assembly function to save all your target registers on the memory.

 LLVM Link Time Optimization: Design and Implementation

LLVM Link Time Optimization: Design and Implementation

	Description

	Design Philosophy

	Example of link time optimization

	Alternative Approaches

	Multi-phase communication between libLTO and linker

	Phase 1 : Read LLVM Bitcode Files

	Phase 2 : Symbol Resolution

	Phase 3 : Optimize Bitcode Files

	Phase 4 : Symbol Resolution after optimization

	libLTO

	lto_module_t

	lto_code_gen_t

Description

LLVM features powerful intermodular optimizations which can be used at link
time. Link Time Optimization (LTO) is another name for intermodular
optimization when performed during the link stage. This document describes the
interface and design between the LTO optimizer and the linker.

Design Philosophy

The LLVM Link Time Optimizer provides complete transparency, while doing
intermodular optimization, in the compiler tool chain. Its main goal is to let
the developer take advantage of intermodular optimizations without making any
significant changes to the developer’s makefiles or build system. This is
achieved through tight integration with the linker. In this model, the linker
treats LLVM bitcode files like native object files and allows mixing and
matching among them. The linker uses libLTO, a shared object, to handle LLVM
bitcode files. This tight integration between the linker and LLVM optimizer
helps to do optimizations that are not possible in other models. The linker
input allows the optimizer to avoid relying on conservative escape analysis.

Example of link time optimization

The following example illustrates the advantages of LTO’s integrated approach
and clean interface. This example requires a system linker which supports LTO
through the interface described in this document. Here, clang transparently
invokes system linker.

	Input source file a.c is compiled into LLVM bitcode form.

	Input source file main.c is compiled into native object code.

--- a.h ---
extern int foo1(void);
extern void foo2(void);
extern void foo4(void);

--- a.c ---
#include "a.h"

static signed int i = 0;

void foo2(void) {
 i = -1;
}

static int foo3() {
 foo4();
 return 10;
}

int foo1(void) {
 int data = 0;

 if (i < 0)
 data = foo3();

 data = data + 42;
 return data;
}

--- main.c ---
#include <stdio.h>
#include "a.h"

void foo4(void) {
 printf("Hi\n");
}

int main() {
 return foo1();
}

To compile, run:

% clang -flto -c a.c -o a.o # <-- a.o is LLVM bitcode file
% clang -c main.c -o main.o # <-- main.o is native object file
% clang -flto a.o main.o -o main # <-- standard link command with -flto

	In this example, the linker recognizes that foo2() is an externally
visible symbol defined in LLVM bitcode file. The linker completes its usual
symbol resolution pass and finds that foo2() is not used
anywhere. This information is used by the LLVM optimizer and it
removes foo2().

	As soon as foo2() is removed, the optimizer recognizes that condition i
< 0 is always false, which means foo3() is never used. Hence, the
optimizer also removes foo3().

	And this in turn, enables linker to remove foo4().

This example illustrates the advantage of tight integration with the
linker. Here, the optimizer can not remove foo3() without the linker’s
input.

Alternative Approaches

	Compiler driver invokes link time optimizer separately.

	In this model the link time optimizer is not able to take advantage of
information collected during the linker’s normal symbol resolution phase.
In the above example, the optimizer can not remove foo2() without the
linker’s input because it is externally visible. This in turn prohibits the
optimizer from removing foo3().

	Use separate tool to collect symbol information from all object files.

	In this model, a new, separate, tool or library replicates the linker’s
capability to collect information for link time optimization. Not only is
this code duplication difficult to justify, but it also has several other
disadvantages. For example, the linking semantics and the features provided
by the linker on various platform are not unique. This means, this new tool
needs to support all such features and platforms in one super tool or a
separate tool per platform is required. This increases maintenance cost for
link time optimizer significantly, which is not necessary. This approach
also requires staying synchronized with linker developments on various
platforms, which is not the main focus of the link time optimizer. Finally,
this approach increases end user’s build time due to the duplication of work
done by this separate tool and the linker itself.

Multi-phase communication between libLTO and linker

The linker collects information about symbol definitions and uses in various
link objects which is more accurate than any information collected by other
tools during typical build cycles. The linker collects this information by
looking at the definitions and uses of symbols in native .o files and using
symbol visibility information. The linker also uses user-supplied information,
such as a list of exported symbols. LLVM optimizer collects control flow
information, data flow information and knows much more about program structure
from the optimizer’s point of view. Our goal is to take advantage of tight
integration between the linker and the optimizer by sharing this information
during various linking phases.

Phase 1 : Read LLVM Bitcode Files

The linker first reads all object files in natural order and collects symbol
information. This includes native object files as well as LLVM bitcode files.
To minimize the cost to the linker in the case that all .o files are native
object files, the linker only calls lto_module_create() when a supplied
object file is found to not be a native object file. If lto_module_create()
returns that the file is an LLVM bitcode file, the linker then iterates over the
module using lto_module_get_symbol_name() and
lto_module_get_symbol_attribute() to get all symbols defined and referenced.
This information is added to the linker’s global symbol table.

The lto* functions are all implemented in a shared object libLTO. This allows
the LLVM LTO code to be updated independently of the linker tool. On platforms
that support it, the shared object is lazily loaded.

Phase 2 : Symbol Resolution

In this stage, the linker resolves symbols using global symbol table. It may
report undefined symbol errors, read archive members, replace weak symbols, etc.
The linker is able to do this seamlessly even though it does not know the exact
content of input LLVM bitcode files. If dead code stripping is enabled then the
linker collects the list of live symbols.

Phase 3 : Optimize Bitcode Files

After symbol resolution, the linker tells the LTO shared object which symbols
are needed by native object files. In the example above, the linker reports
that only foo1() is used by native object files using
lto_codegen_add_must_preserve_symbol(). Next the linker invokes the LLVM
optimizer and code generators using lto_codegen_compile() which returns a
native object file creating by merging the LLVM bitcode files and applying
various optimization passes.

Phase 4 : Symbol Resolution after optimization

In this phase, the linker reads optimized a native object file and updates the
internal global symbol table to reflect any changes. The linker also collects
information about any changes in use of external symbols by LLVM bitcode
files. In the example above, the linker notes that foo4() is not used any
more. If dead code stripping is enabled then the linker refreshes the live
symbol information appropriately and performs dead code stripping.

After this phase, the linker continues linking as if it never saw LLVM bitcode
files.

libLTO

libLTO is a shared object that is part of the LLVM tools, and is intended
for use by a linker. libLTO provides an abstract C interface to use the LLVM
interprocedural optimizer without exposing details of LLVM’s internals. The
intention is to keep the interface as stable as possible even when the LLVM
optimizer continues to evolve. It should even be possible for a completely
different compilation technology to provide a different libLTO that works with
their object files and the standard linker tool.

lto_module_t

A non-native object file is handled via an lto_module_t. The following
functions allow the linker to check if a file (on disk or in a memory buffer) is
a file which libLTO can process:

lto_module_is_object_file(const char*)
lto_module_is_object_file_for_target(const char*, const char*)
lto_module_is_object_file_in_memory(const void*, size_t)
lto_module_is_object_file_in_memory_for_target(const void*, size_t, const char*)

If the object file can be processed by libLTO, the linker creates a
lto_module_t by using one of:

lto_module_create(const char*)
lto_module_create_from_memory(const void*, size_t)

and when done, the handle is released via

lto_module_dispose(lto_module_t)

The linker can introspect the non-native object file by getting the number of
symbols and getting the name and attributes of each symbol via:

lto_module_get_num_symbols(lto_module_t)
lto_module_get_symbol_name(lto_module_t, unsigned int)
lto_module_get_symbol_attribute(lto_module_t, unsigned int)

The attributes of a symbol include the alignment, visibility, and kind.

lto_code_gen_t

Once the linker has loaded each non-native object files into an
lto_module_t, it can request libLTO to process them all and generate a
native object file. This is done in a couple of steps. First, a code generator
is created with:

lto_codegen_create()

Then, each non-native object file is added to the code generator with:

lto_codegen_add_module(lto_code_gen_t, lto_module_t)

The linker then has the option of setting some codegen options. Whether or not
to generate DWARF debug info is set with:

lto_codegen_set_debug_model(lto_code_gen_t)

which kind of position independence is set with:

lto_codegen_set_pic_model(lto_code_gen_t)

And each symbol that is referenced by a native object file or otherwise must not
be optimized away is set with:

lto_codegen_add_must_preserve_symbol(lto_code_gen_t, const char*)

After all these settings are done, the linker requests that a native object file
be created from the modules with the settings using:

lto_codegen_compile(lto_code_gen_t, size*)

which returns a pointer to a buffer containing the generated native object file.
The linker then parses that and links it with the rest of the native object
files.

 Segmented Stacks in LLVM

Segmented Stacks in LLVM

	Introduction

	Implementation Details

	Allocating Stacklets

	Variable Sized Allocas

Introduction

Segmented stack allows stack space to be allocated incrementally than as a
monolithic chunk (of some worst case size) at thread initialization. This is
done by allocating stack blocks (henceforth called stacklets) and linking them
into a doubly linked list. The function prologue is responsible for checking if
the current stacklet has enough space for the function to execute; and if not,
call into the libgcc runtime to allocate more stack space. Segmented stacks are
enabled with the "split-stack" attribute on LLVM functions.

The runtime functionality is already there in libgcc [http://gcc.gnu.org/wiki/SplitStacks].

Implementation Details

Allocating Stacklets

As mentioned above, the function prologue checks if the current stacklet has
enough space. The current approach is to use a slot in the TCB to store the
current stack limit (minus the amount of space needed to allocate a new block) -
this slot’s offset is again dictated by libgcc. The generated
assembly looks like this on x86-64:

 leaq -8(%rsp), %r10
 cmpq %fs:112, %r10
 jg .LBB0_2

 # More stack space needs to be allocated
 movabsq $8, %r10 # The amount of space needed
 movabsq $0, %r11 # The total size of arguments passed on stack
 callq __morestack
 ret # The reason for this extra return is explained below
.LBB0_2:
 # Usual prologue continues here

The size of function arguments on the stack needs to be passed to
__morestack (this function is implemented in libgcc) since that number
of bytes has to be copied from the previous stacklet to the current one. This is
so that SP (and FP) relative addressing of function arguments work as expected.

The unusual ret is needed to have the function which made a call to
__morestack return correctly. __morestack, instead of returning, calls
into .LBB0_2. This is possible since both, the size of the ret
instruction and the PC of call to __morestack are known. When the function
body returns, control is transferred back to __morestack. __morestack
then de-allocates the new stacklet, restores the correct SP value, and does a
second return, which returns control to the correct caller.

Variable Sized Allocas

The section on allocating stacklets automatically assumes that every stack
frame will be of fixed size. However, LLVM allows the use of the llvm.alloca
intrinsic to allocate dynamically sized blocks of memory on the stack. When
faced with such a variable-sized alloca, code is generated to:

	Check if the current stacklet has enough space. If yes, just bump the SP, like
in the normal case.

	If not, generate a call to libgcc, which allocates the memory from the
heap.

The memory allocated from the heap is linked into a list in the current
stacklet, and freed along with the same. This prevents a memory leak.

 TableGen Fundamentals

TableGen Fundamentals

Moved

The TableGen fundamentals documentation has moved to a directory on its own
and is now available at TableGen. Please, change your links to
that page.

 TableGen

TableGen

	Introduction

	The TableGen program

	Running TableGen

	Example

	Syntax

	Basic concepts

	TableGen backends

	TableGen Deficiencies

Introduction

TableGen’s purpose is to help a human develop and maintain records of
domain-specific information. Because there may be a large number of these
records, it is specifically designed to allow writing flexible descriptions and
for common features of these records to be factored out. This reduces the
amount of duplication in the description, reduces the chance of error, and makes
it easier to structure domain specific information.

The core part of TableGen parses a file, instantiates the declarations, and
hands the result off to a domain-specific backend for processing.

The current major users of TableGen are The LLVM Target-Independent Code Generator
and the
Clang diagnostics and attributes [http://clang.llvm.org/docs/UsersManual.html#controlling-errors-and-warnings].

Note that if you work on TableGen much, and use emacs or vim, that you can find
an emacs “TableGen mode” and a vim language file in the llvm/utils/emacs and
llvm/utils/vim directories of your LLVM distribution, respectively.

The TableGen program

TableGen files are interpreted by the TableGen program: llvm-tblgen available
on your build directory under bin. It is not installed in the system (or where
your sysroot is set to), since it has no use beyond LLVM’s build process.

Running TableGen

TableGen runs just like any other LLVM tool. The first (optional) argument
specifies the file to read. If a filename is not specified, llvm-tblgen
reads from standard input.

To be useful, one of the backends must be used. These backends are
selectable on the command line (type ‘llvm-tblgen -help’ for a list). For
example, to get a list of all of the definitions that subclass a particular type
(which can be useful for building up an enum list of these records), use the
-print-enums option:

$ llvm-tblgen X86.td -print-enums -class=Register
AH, AL, AX, BH, BL, BP, BPL, BX, CH, CL, CX, DH, DI, DIL, DL, DX, EAX, EBP, EBX,
ECX, EDI, EDX, EFLAGS, EIP, ESI, ESP, FP0, FP1, FP2, FP3, FP4, FP5, FP6, IP,
MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7, R10, R10B, R10D, R10W, R11, R11B, R11D,
R11W, R12, R12B, R12D, R12W, R13, R13B, R13D, R13W, R14, R14B, R14D, R14W, R15,
R15B, R15D, R15W, R8, R8B, R8D, R8W, R9, R9B, R9D, R9W, RAX, RBP, RBX, RCX, RDI,
RDX, RIP, RSI, RSP, SI, SIL, SP, SPL, ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
XMM0, XMM1, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, XMM2, XMM3, XMM4, XMM5,
XMM6, XMM7, XMM8, XMM9,

$ llvm-tblgen X86.td -print-enums -class=Instruction
ABS_F, ABS_Fp32, ABS_Fp64, ABS_Fp80, ADC32mi, ADC32mi8, ADC32mr, ADC32ri,
ADC32ri8, ADC32rm, ADC32rr, ADC64mi32, ADC64mi8, ADC64mr, ADC64ri32, ADC64ri8,
ADC64rm, ADC64rr, ADD16mi, ADD16mi8, ADD16mr, ADD16ri, ADD16ri8, ADD16rm,
ADD16rr, ADD32mi, ADD32mi8, ADD32mr, ADD32ri, ADD32ri8, ADD32rm, ADD32rr,
ADD64mi32, ADD64mi8, ADD64mr, ADD64ri32, ...

The default backend prints out all of the records. There is also a general
backend which outputs all the records as a JSON data structure, enabled using
the -dump-json option.

If you plan to use TableGen, you will most likely have to write a backend
that extracts the information specific to what you need and formats it in the
appropriate way. You can do this by extending TableGen itself in C++, or by
writing a script in any language that can consume the JSON output.

Example

With no other arguments, llvm-tblgen parses the specified file and prints out all
of the classes, then all of the definitions. This is a good way to see what the
various definitions expand to fully. Running this on the X86.td file prints
this (at the time of this writing):

...
def ADD32rr { // Instruction X86Inst I
 string Namespace = "X86";
 dag OutOperandList = (outs GR32:$dst);
 dag InOperandList = (ins GR32:$src1, GR32:$src2);
 string AsmString = "add{l}\t{$src2, $dst|$dst, $src2}";
 list<dag> Pattern = [(set GR32:$dst, (add GR32:$src1, GR32:$src2))];
 list<Register> Uses = [];
 list<Register> Defs = [EFLAGS];
 list<Predicate> Predicates = [];
 int CodeSize = 3;
 int AddedComplexity = 0;
 bit isReturn = 0;
 bit isBranch = 0;
 bit isIndirectBranch = 0;
 bit isBarrier = 0;
 bit isCall = 0;
 bit canFoldAsLoad = 0;
 bit mayLoad = 0;
 bit mayStore = 0;
 bit isImplicitDef = 0;
 bit isConvertibleToThreeAddress = 1;
 bit isCommutable = 1;
 bit isTerminator = 0;
 bit isReMaterializable = 0;
 bit isPredicable = 0;
 bit hasDelaySlot = 0;
 bit usesCustomInserter = 0;
 bit hasCtrlDep = 0;
 bit isNotDuplicable = 0;
 bit hasSideEffects = 0;
 InstrItinClass Itinerary = NoItinerary;
 string Constraints = "";
 string DisableEncoding = "";
 bits<8> Opcode = { 0, 0, 0, 0, 0, 0, 0, 1 };
 Format Form = MRMDestReg;
 bits<6> FormBits = { 0, 0, 0, 0, 1, 1 };
 ImmType ImmT = NoImm;
 bits<3> ImmTypeBits = { 0, 0, 0 };
 bit hasOpSizePrefix = 0;
 bit hasAdSizePrefix = 0;
 bits<4> Prefix = { 0, 0, 0, 0 };
 bit hasREX_WPrefix = 0;
 FPFormat FPForm = ?;
 bits<3> FPFormBits = { 0, 0, 0 };
}
...

This definition corresponds to the 32-bit register-register add instruction
of the x86 architecture. def ADD32rr defines a record named
ADD32rr, and the comment at the end of the line indicates the superclasses
of the definition. The body of the record contains all of the data that
TableGen assembled for the record, indicating that the instruction is part of
the “X86” namespace, the pattern indicating how the instruction is selected by
the code generator, that it is a two-address instruction, has a particular
encoding, etc. The contents and semantics of the information in the record are
specific to the needs of the X86 backend, and are only shown as an example.

As you can see, a lot of information is needed for every instruction supported
by the code generator, and specifying it all manually would be unmaintainable,
prone to bugs, and tiring to do in the first place. Because we are using
TableGen, all of the information was derived from the following definition:

let Defs = [EFLAGS],
 isCommutable = 1, // X = ADD Y,Z --> X = ADD Z,Y
 isConvertibleToThreeAddress = 1 in // Can transform into LEA.
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst),
 (ins GR32:$src1, GR32:$src2),
 "add{l}\t{$src2, $dst|$dst, $src2}",
 [(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;

This definition makes use of the custom class I (extended from the custom
class X86Inst), which is defined in the X86-specific TableGen file, to
factor out the common features that instructions of its class share. A key
feature of TableGen is that it allows the end-user to define the abstractions
they prefer to use when describing their information.

Syntax

TableGen has a syntax that is loosely based on C++ templates, with built-in
types and specification. In addition, TableGen’s syntax introduces some
automation concepts like multiclass, foreach, let, etc.

Basic concepts

TableGen files consist of two key parts: ‘classes’ and ‘definitions’, both of
which are considered ‘records’.

TableGen records have a unique name, a list of values, and a list of
superclasses. The list of values is the main data that TableGen builds for each
record; it is this that holds the domain specific information for the
application. The interpretation of this data is left to a specific backend,
but the structure and format rules are taken care of and are fixed by
TableGen.

TableGen definitions are the concrete form of ‘records’. These generally do
not have any undefined values, and are marked with the ‘def’ keyword.

def FeatureFPARMv8 : SubtargetFeature<"fp-armv8", "HasFPARMv8", "true",
 "Enable ARMv8 FP">;

In this example, FeatureFPARMv8 is SubtargetFeature record initialised
with some values. The names of the classes are defined via the
keyword class either on the same file or some other included. Most target
TableGen files include the generic ones in include/llvm/Target.

TableGen classes are abstract records that are used to build and describe
other records. These classes allow the end-user to build abstractions for
either the domain they are targeting (such as “Register”, “RegisterClass”, and
“Instruction” in the LLVM code generator) or for the implementor to help factor
out common properties of records (such as “FPInst”, which is used to represent
floating point instructions in the X86 backend). TableGen keeps track of all of
the classes that are used to build up a definition, so the backend can find all
definitions of a particular class, such as “Instruction”.

class ProcNoItin<string Name, list<SubtargetFeature> Features>
 : Processor<Name, NoItineraries, Features>;

Here, the class ProcNoItin, receiving parameters Name of type string and
a list of target features is specializing the class Processor by passing the
arguments down as well as hard-coding NoItineraries.

TableGen multiclasses are groups of abstract records that are instantiated
all at once. Each instantiation can result in multiple TableGen definitions.
If a multiclass inherits from another multiclass, the definitions in the
sub-multiclass become part of the current multiclass, as if they were declared
in the current multiclass.

multiclass ro_signed_pats<string T, string Rm, dag Base, dag Offset, dag Extend,
 dag address, ValueType sty> {
def : Pat<(i32 (!cast<SDNode>("sextload" # sty) address)),
 (!cast<Instruction>("LDRS" # T # "w_" # Rm # "_RegOffset")
 Base, Offset, Extend)>;

def : Pat<(i64 (!cast<SDNode>("sextload" # sty) address)),
 (!cast<Instruction>("LDRS" # T # "x_" # Rm # "_RegOffset")
 Base, Offset, Extend)>;
}

defm : ro_signed_pats<"B", Rm, Base, Offset, Extend,
 !foreach(decls.pattern, address,
 !subst(SHIFT, imm_eq0, decls.pattern)),
 i8>;

See the TableGen Language Introduction for more generic
information on the usage of the language, and the
TableGen Language Reference for more in-depth description
of the formal language specification.

TableGen backends

TableGen files have no real meaning without a back-end. The default operation
of running llvm-tblgen is to print the information in a textual format, but
that’s only useful for debugging of the TableGen files themselves. The power
in TableGen is, however, to interpret the source files into an internal
representation that can be generated into anything you want.

Current usage of TableGen is to create huge include files with tables that you
can either include directly (if the output is in the language you’re coding),
or be used in pre-processing via macros surrounding the include of the file.

Direct output can be used if the back-end already prints a table in C format
or if the output is just a list of strings (for error and warning messages).
Pre-processed output should be used if the same information needs to be used
in different contexts (like Instruction names), so your back-end should print
a meta-information list that can be shaped into different compile-time formats.

See the TableGen BackEnds for more information.

TableGen Deficiencies

Despite being very generic, TableGen has some deficiencies that have been
pointed out numerous times. The common theme is that, while TableGen allows
you to build Domain-Specific-Languages, the final languages that you create
lack the power of other DSLs, which in turn increase considerably the size
and complexity of TableGen files.

At the same time, TableGen allows you to create virtually any meaning of
the basic concepts via custom-made back-ends, which can pervert the original
design and make it very hard for newcomers to understand the evil TableGen
file.

There are some in favour of extending the semantics even more, but making sure
back-ends adhere to strict rules. Others are suggesting we should move to less,
more powerful DSLs designed with specific purposes, or even re-using existing
DSLs.

Either way, this is a discussion that will likely span across several years,
if not decades. You can read more in the TableGen Deficiencies
document.

 TableGen BackEnds

TableGen BackEnds

	Introduction

	LLVM BackEnds

	CodeEmitter

	RegisterInfo

	InstrInfo

	AsmWriter

	AsmMatcher

	Disassembler

	PseudoLowering

	CallingConv

	DAGISel

	DFAPacketizer

	FastISel

	Subtarget

	Intrinsic

	OptParserDefs

	SearchableTables

	CTags

	X86EVEX2VEX

	Clang BackEnds

	ClangAttrClasses

	ClangAttrParserStringSwitches

	ClangAttrImpl

	ClangAttrList

	ClangAttrPCHRead

	ClangAttrPCHWrite

	ClangAttrSpellings

	ClangAttrSpellingListIndex

	ClangAttrVisitor

	ClangAttrTemplateInstantiate

	ClangAttrParsedAttrList

	ClangAttrParsedAttrImpl

	ClangAttrParsedAttrKinds

	ClangAttrDump

	ClangDiagsDefs

	ClangDiagGroups

	ClangDiagsIndexName

	ClangCommentNodes

	ClangDeclNodes

	ClangStmtNodes

	ClangSACheckers

	ClangCommentHTMLTags

	ClangCommentHTMLTagsProperties

	ClangCommentHTMLNamedCharacterReferences

	ClangCommentCommandInfo

	ClangCommentCommandList

	ArmNeon

	ArmNeonSema

	ArmNeonTest

	AttrDocs

	General BackEnds

	JSON

	How to write a back-end

Introduction

TableGen backends are at the core of TableGen’s functionality. The source files
provide the semantics to a generated (in memory) structure, but it’s up to the
backend to print this out in a way that is meaningful to the user (normally a
C program including a file or a textual list of warnings, options and error
messages).

TableGen is used by both LLVM and Clang with very different goals. LLVM uses it
as a way to automate the generation of massive amounts of information regarding
instructions, schedules, cores and architecture features. Some backends generate
output that is consumed by more than one source file, so they need to be created
in a way that is easy to use pre-processor tricks. Some backends can also print
C code structures, so that they can be directly included as-is.

Clang, on the other hand, uses it mainly for diagnostic messages (errors,
warnings, tips) and attributes, so more on the textual end of the scale.

LLVM BackEnds

Warning

This document is raw. Each section below needs three sub-sections: description
of its purpose with a list of users, output generated from generic input, and
finally why it needed a new backend (in case there’s something similar).

Overall, each backend will take the same TableGen file type and transform into
similar output for different targets/uses. There is an implicit contract between
the TableGen files, the back-ends and their users.

For instance, a global contract is that each back-end produces macro-guarded
sections. Based on whether the file is included by a header or a source file,
or even in which context of each file the include is being used, you have
todefine a macro just before including it, to get the right output:

#define GET_REGINFO_TARGET_DESC
#include "ARMGenRegisterInfo.inc"

And just part of the generated file would be included. This is useful if
you need the same information in multiple formats (instantiation, initialization,
getter/setter functions, etc) from the same source TableGen file without having
to re-compile the TableGen file multiple times.

Sometimes, multiple macros might be defined before the same include file to
output multiple blocks:

#define GET_REGISTER_MATCHER
#define GET_SUBTARGET_FEATURE_NAME
#define GET_MATCHER_IMPLEMENTATION
#include "ARMGenAsmMatcher.inc"

The macros will be undef’d automatically as they’re used, in the include file.

On all LLVM back-ends, the llvm-tblgen binary will be executed on the root
TableGen file <Target>.td, which should include all others. This guarantees
that all information needed is accessible, and that no duplication is needed
in the TableGen files.

CodeEmitter

Purpose: CodeEmitterGen uses the descriptions of instructions and their fields to
construct an automated code emitter: a function that, given a MachineInstr,
returns the (currently, 32-bit unsigned) value of the instruction.

Output: C++ code, implementing the target’s CodeEmitter
class by overriding the virtual functions as <Target>CodeEmitter::function().

Usage: Used to include directly at the end of <Target>MCCodeEmitter.cpp.

RegisterInfo

Purpose: This tablegen backend is responsible for emitting a description of a target
register file for a code generator. It uses instances of the Register,
RegisterAliases, and RegisterClass classes to gather this information.

Output: C++ code with enums and structures representing the register mappings,
properties, masks, etc.

Usage: Both on <Target>BaseRegisterInfo and <Target>MCTargetDesc (headers
and source files) with macros defining in which they are for declaration vs.
initialization issues.

InstrInfo

Purpose: This tablegen backend is responsible for emitting a description of the target
instruction set for the code generator. (what are the differences from CodeEmitter?)

Output: C++ code with enums and structures representing the instruction mappings,
properties, masks, etc.

Usage: Both on <Target>BaseInstrInfo and <Target>MCTargetDesc (headers
and source files) with macros defining in which they are for declaration vs.
initialization issues.

AsmWriter

Purpose: Emits an assembly printer for the current target.

Output: Implementation of <Target>InstPrinter::printInstruction(), among
other things.

Usage: Included directly into InstPrinter/<Target>InstPrinter.cpp.

AsmMatcher

Purpose: Emits a target specifier matcher for
converting parsed assembly operands in the MCInst structures. It also
emits a matcher for custom operand parsing. Extensive documentation is
written on the AsmMatcherEmitter.cpp file.

Output: Assembler parsers’ matcher functions, declarations, etc.

Usage: Used in back-ends’ AsmParser/<Target>AsmParser.cpp for
building the AsmParser class.

Disassembler

Purpose: Contains disassembler table emitters for various
architectures. Extensive documentation is written on the
DisassemblerEmitter.cpp file.

Output: Decoding tables, static decoding functions, etc.

Usage: Directly included in Disassembler/<Target>Disassembler.cpp
to cater for all default decodings, after all hand-made ones.

PseudoLowering

Purpose: Generate pseudo instruction lowering.

Output: Implements <Target>AsmPrinter::emitPseudoExpansionLowering().

Usage: Included directly into <Target>AsmPrinter.cpp.

CallingConv

Purpose: Responsible for emitting descriptions of the calling
conventions supported by this target.

Output: Implement static functions to deal with calling conventions
chained by matching styles, returning false on no match.

Usage: Used in ISelLowering and FastIsel as function pointers to
implementation returned by a CC selection function.

DAGISel

Purpose: Generate a DAG instruction selector.

Output: Creates huge functions for automating DAG selection.

Usage: Included in <Target>ISelDAGToDAG.cpp inside the target’s
implementation of SelectionDAGISel.

DFAPacketizer

Purpose: This class parses the Schedule.td file and produces an API that
can be used to reason about whether an instruction can be added to a packet
on a VLIW architecture. The class internally generates a deterministic finite
automaton (DFA) that models all possible mappings of machine instructions
to functional units as instructions are added to a packet.

Output: Scheduling tables for GPU back-ends (Hexagon, AMD).

Usage: Included directly on <Target>InstrInfo.cpp.

FastISel

Purpose: This tablegen backend emits code for use by the “fast”
instruction selection algorithm. See the comments at the top of
lib/CodeGen/SelectionDAG/FastISel.cpp for background. This file
scans through the target’s tablegen instruction-info files
and extracts instructions with obvious-looking patterns, and it emits
code to look up these instructions by type and operator.

Output: Generates Predicate and FastEmit methods.

Usage: Implements private methods of the targets’ implementation
of FastISel class.

Subtarget

Purpose: Generate subtarget enumerations.

Output: Enums, globals, local tables for sub-target information.

Usage: Populates <Target>Subtarget and
MCTargetDesc/<Target>MCTargetDesc files (both headers and source).

Intrinsic

Purpose: Generate (target) intrinsic information.

OptParserDefs

Purpose: Print enum values for a class.

SearchableTables

Purpose: Generate custom searchable tables.

Output: Enums, global tables and lookup helper functions.

Usage: This backend allows generating free-form, target-specific tables
from TableGen records. The ARM and AArch64 targets use this backend to generate
tables of system registers; the AMDGPU target uses it to generate meta-data
about complex image and memory buffer instructions.

More documentation is available in include/llvm/TableGen/SearchableTable.td,
which also contains the definitions of TableGen classes which must be
instantiated in order to define the enums and tables emitted by this backend.

CTags

Purpose: This tablegen backend emits an index of definitions in ctags(1)
format. A helper script, utils/TableGen/tdtags, provides an easier-to-use
interface; run ‘tdtags -H’ for documentation.

X86EVEX2VEX

Purpose: This X86 specific tablegen backend emits tables that map EVEX
encoded instructions to their VEX encoded identical instruction.

Clang BackEnds

ClangAttrClasses

Purpose: Creates Attrs.inc, which contains semantic attribute class
declarations for any attribute in Attr.td that has not set ASTNode = 0.
This file is included as part of Attr.h.

ClangAttrParserStringSwitches

Purpose: Creates AttrParserStringSwitches.inc, which contains
StringSwitch::Case statements for parser-related string switches. Each switch
is given its own macro (such as CLANG_ATTR_ARG_CONTEXT_LIST, or
CLANG_ATTR_IDENTIFIER_ARG_LIST), which is expected to be defined before
including AttrParserStringSwitches.inc, and undefined after.

ClangAttrImpl

Purpose: Creates AttrImpl.inc, which contains semantic attribute class
definitions for any attribute in Attr.td that has not set ASTNode = 0.
This file is included as part of AttrImpl.cpp.

ClangAttrList

Purpose: Creates AttrList.inc, which is used when a list of semantic
attribute identifiers is required. For instance, AttrKinds.h includes this
file to generate the list of attr::Kind enumeration values. This list is
separated out into multiple categories: attributes, inheritable attributes, and
inheritable parameter attributes. This categorization happens automatically
based on information in Attr.td and is used to implement the classof
functionality required for dyn_cast and similar APIs.

ClangAttrPCHRead

Purpose: Creates AttrPCHRead.inc, which is used to deserialize attributes
in the ASTReader::ReadAttributes function.

ClangAttrPCHWrite

Purpose: Creates AttrPCHWrite.inc, which is used to serialize attributes in
the ASTWriter::WriteAttributes function.

ClangAttrSpellings

Purpose: Creates AttrSpellings.inc, which is used to implement the
__has_attribute feature test macro.

ClangAttrSpellingListIndex

Purpose: Creates AttrSpellingListIndex.inc, which is used to map parsed
attribute spellings (including which syntax or scope was used) to an attribute
spelling list index. These spelling list index values are internal
implementation details exposed via
AttributeList::getAttributeSpellingListIndex.

ClangAttrVisitor

Purpose: Creates AttrVisitor.inc, which is used when implementing
recursive AST visitors.

ClangAttrTemplateInstantiate

Purpose: Creates AttrTemplateInstantiate.inc, which implements the
instantiateTemplateAttribute function, used when instantiating a template
that requires an attribute to be cloned.

ClangAttrParsedAttrList

Purpose: Creates AttrParsedAttrList.inc, which is used to generate the
AttributeList::Kind parsed attribute enumeration.

ClangAttrParsedAttrImpl

Purpose: Creates AttrParsedAttrImpl.inc, which is used by
AttributeList.cpp to implement several functions on the AttributeList
class. This functionality is implemented via the AttrInfoMap ParsedAttrInfo
array, which contains one element per parsed attribute object.

ClangAttrParsedAttrKinds

Purpose: Creates AttrParsedAttrKinds.inc, which is used to implement the
AttributeList::getKind function, mapping a string (and syntax) to a parsed
attribute AttributeList::Kind enumeration.

ClangAttrDump

Purpose: Creates AttrDump.inc, which dumps information about an attribute.
It is used to implement ASTDumper::dumpAttr.

ClangDiagsDefs

Generate Clang diagnostics definitions.

ClangDiagGroups

Generate Clang diagnostic groups.

ClangDiagsIndexName

Generate Clang diagnostic name index.

ClangCommentNodes

Generate Clang AST comment nodes.

ClangDeclNodes

Generate Clang AST declaration nodes.

ClangStmtNodes

Generate Clang AST statement nodes.

ClangSACheckers

Generate Clang Static Analyzer checkers.

ClangCommentHTMLTags

Generate efficient matchers for HTML tag names that are used in documentation comments.

ClangCommentHTMLTagsProperties

Generate efficient matchers for HTML tag properties.

ClangCommentHTMLNamedCharacterReferences

Generate function to translate named character references to UTF-8 sequences.

ClangCommentCommandInfo

Generate command properties for commands that are used in documentation comments.

ClangCommentCommandList

Generate list of commands that are used in documentation comments.

ArmNeon

Generate arm_neon.h for clang.

ArmNeonSema

Generate ARM NEON sema support for clang.

ArmNeonTest

Generate ARM NEON tests for clang.

AttrDocs

Purpose: Creates AttributeReference.rst from AttrDocs.td, and is
used for documenting user-facing attributes.

General BackEnds

JSON

Purpose: Output all the values in every def, as a JSON data
structure that can be easily parsed by a variety of languages. Useful
for writing custom backends without having to modify TableGen itself,
or for performing auxiliary analysis on the same TableGen data passed
to a built-in backend.

Output:

The root of the output file is a JSON object (i.e. dictionary),
containing the following fixed keys:

	!tablegen_json_version: a numeric version field that will
increase if an incompatible change is ever made to the structure of
this data. The format described here corresponds to version 1.

	!instanceof: a dictionary whose keys are the class names defined
in the TableGen input. For each key, the corresponding value is an
array of strings giving the names of def records that derive
from that class. So root["!instanceof"]["Instruction"], for
example, would list the names of all the records deriving from the
class Instruction.

For each def record, the root object also has a key for the record
name. The corresponding value is a subsidiary object containing the
following fixed keys:

	!superclasses: an array of strings giving the names of all the
classes that this record derives from.

	!fields: an array of strings giving the names of all the variables
in this record that were defined with the field keyword.

	!name: a string giving the name of the record. This is always
identical to the key in the JSON root object corresponding to this
record’s dictionary. (If the record is anonymous, the name is
arbitrary.)

	!anonymous: a boolean indicating whether the record’s name was
specified by the TableGen input (if it is false), or invented by
TableGen itself (if true).

For each variable defined in a record, the def object for that
record also has a key for the variable name. The corresponding value
is a translation into JSON of the variable’s value, using the
conventions described below.

Some TableGen data types are translated directly into the
corresponding JSON type:

	A completely undefined value (e.g. for a variable declared without
initializer in some superclass of this record, and never initialized
by the record itself or any other superclass) is emitted as the JSON
null value.

	int and bit values are emitted as numbers. Note that
TableGen int values are capable of holding integers too large to
be exactly representable in IEEE double precision. The integer
literal in the JSON output will show the full exact integer value.
So if you need to retrieve large integers with full precision, you
should use a JSON reader capable of translating such literals back
into 64-bit integers without losing precision, such as Python’s
standard json module.

	string and code values are emitted as JSON strings.

	list<T> values, for any element type T, are emitted as JSON
arrays. Each element of the array is represented in turn using these
same conventions.

	bits values are also emitted as arrays. A bits array is
ordered from least-significant bit to most-significant. So the
element with index i corresponds to the bit described as
x{i} in TableGen source. However, note that this means that
scripting languages are likely to display the array in the
opposite order from the way it appears in the TableGen source or in
the diagnostic -print-records output.

All other TableGen value types are emitted as a JSON object,
containing two standard fields: kind is a discriminator describing
which kind of value the object represents, and printable is a
string giving the same representation of the value that would appear
in -print-records.

	A reference to a def object has kind=="def", and has an
extra field def giving the name of the object referred to.

	A reference to another variable in the same record has
kind=="var", and has an extra field var giving the name of
the variable referred to.

	A reference to a specific bit of a bits-typed variable in the
same record has kind=="varbit", and has two extra fields:
var gives the name of the variable referred to, and index
gives the index of the bit.

	A value of type dag has kind=="dag", and has two extra
fields. operator gives the initial value after the opening
parenthesis of the dag initializer; args is an array giving the
following arguments. The elements of args are arrays of length
2, giving the value of each argument followed by its colon-suffixed
name (if any). For example, in the JSON representation of the dag
value (Op 22, "hello":$foo) (assuming that Op is the name of
a record defined elsewhere with a def statement):

	operator will be an object in which kind=="def" and
def=="Op"

	args will be the array [[22, null], ["hello", "foo"]].

	If any other kind of value or complicated expression appears in the
output, it will have kind=="complex", and no additional fields.
These values are not expected to be needed by backends. The standard
printable field can be used to extract a representation of them
in TableGen source syntax if necessary.

How to write a back-end

TODO.

Until we get a step-by-step HowTo for writing TableGen backends, you can at
least grab the boilerplate (build system, new files, etc.) from Clang’s
r173931.

TODO: How they work, how to write one. This section should not contain details
about any particular backend, except maybe -print-enums as an example. This
should highlight the APIs in TableGen/Record.h.

 TableGen Language Reference

TableGen Language Reference

	Introduction

	Notation

	Lexical Analysis

	Syntax

	classes

	Declarations

	Types

	Values

	Bodies

	def

	defm

	defset

	foreach

	Top-Level let

	multiclass

Warning

This document is extremely rough. If you find something lacking, please
fix it, file a documentation bug, or ask about it on llvm-dev.

Introduction

This document is meant to be a normative spec about the TableGen language
in and of itself (i.e. how to understand a given construct in terms of how
it affects the final set of records represented by the TableGen file). If
you are unsure if this document is really what you are looking for, please
read the introduction to TableGen first.

Notation

The lexical and syntax notation used here is intended to imitate
Python’s [http://docs.python.org/py3k/reference/introduction.html#notation]. In particular, for lexical definitions, the productions
operate at the character level and there is no implied whitespace between
elements. The syntax definitions operate at the token level, so there is
implied whitespace between tokens.

Lexical Analysis

TableGen supports BCPL (// ...) and nestable C-style (/* ... */)
comments.

The following is a listing of the basic punctuation tokens:

- + [] { } () < > : ; . = ? #

Numeric literals take one of the following forms:

TokInteger ::= DecimalInteger | HexInteger | BinInteger
DecimalInteger ::= ["+" | "-"] ("0"..."9")+
HexInteger ::= "0x" ("0"..."9" | "a"..."f" | "A"..."F")+
BinInteger ::= "0b" ("0" | "1")+

One aspect to note is that the DecimalInteger token includes the
+ or -, as opposed to having + and - be unary operators as
most languages do.

Also note that BinInteger creates a value of type bits<n>
(where n is the number of bits). This will implicitly convert to
integers when needed.

TableGen has identifier-like tokens:

ualpha ::= "a"..."z" | "A"..."Z" | "_"
TokIdentifier ::= ("0"..."9")* ualpha (ualpha | "0"..."9")*
TokVarName ::= "$" ualpha (ualpha | "0"..."9")*

Note that unlike most languages, TableGen allows TokIdentifier to
begin with a number. In case of ambiguity, a token will be interpreted as a
numeric literal rather than an identifier.

TableGen also has two string-like literals:

TokString ::= '"' <non-'"' characters and C-like escapes> '"'
TokCodeFragment ::= "[{" <shortest text not containing "}]"> "}]"

TokCodeFragment is essentially a multiline string literal
delimited by [{ and }].

Note

The current implementation accepts the following C-like escapes:

\\ \' \" \t \n

TableGen also has the following keywords:

bit bits class code dag
def foreach defm field in
int let list multiclass string

TableGen also has “bang operators” which have a
wide variety of meanings:

BangOperator ::= one of
 !eq !if !head !tail !con
 !add !shl !sra !srl !and
 !or !empty !subst !foreach !strconcat
 !cast !listconcat !size !foldl
 !isa !dag !le !lt !ge
 !gt !ne

Syntax

TableGen has an include mechanism. It does not play a role in the
syntax per se, since it is lexically replaced with the contents of the
included file.

IncludeDirective ::= "include" TokString

TableGen’s top-level production consists of “objects”.

TableGenFile ::= Object*
Object ::= Class | Def | Defm | Defset | Let | MultiClass |

classes

Class ::= "class" TokIdentifier [TemplateArgList] ObjectBody
TemplateArgList ::= "<" Declaration ("," Declaration)* ">"

A class declaration creates a record which other records can inherit
from. A class can be parametrized by a list of “template arguments”, whose
values can be used in the class body.

A given class can only be defined once. A class declaration is
considered to define the class if any of the following is true:

	The TemplateArgList is present.

	The Body in the ObjectBody is present and is not empty.

	The BaseClassList in the ObjectBody is present.

You can declare an empty class by giving and empty TemplateArgList
and an empty ObjectBody. This can serve as a restricted form of
forward declaration: note that records deriving from the forward-declared
class will inherit no fields from it since the record expansion is done
when the record is parsed.

Every class has an implicit template argument called NAME, which is set
to the name of the instantiating def or defm. The result is undefined
if the class is instantiated by an anonymous record.

Declarations

The declaration syntax is pretty much what you would expect as a C++
programmer.

Declaration ::= Type TokIdentifier ["=" Value]

It assigns the value to the identifier.

Types

Type ::= "string" | "code" | "bit" | "int" | "dag"
 | "bits" "<" TokInteger ">"
 | "list" "<" Type ">"
 | ClassID
ClassID ::= TokIdentifier

Both string and code correspond to the string type; the difference
is purely to indicate programmer intention.

The ClassID must identify a class that has been previously
declared or defined.

Values

Value ::= SimpleValue ValueSuffix*
ValueSuffix ::= "{" RangeList "}"
 | "[" RangeList "]"
 | "." TokIdentifier
RangeList ::= RangePiece ("," RangePiece)*
RangePiece ::= TokInteger
 | TokInteger "-" TokInteger
 | TokInteger TokInteger

The peculiar last form of RangePiece is due to the fact that the
“-” is included in the TokInteger, hence 1-5 gets lexed as
two consecutive TokInteger’s, with values 1 and -5,
instead of “1”, “-“, and “5”.
The RangeList can be thought of as specifying “list slice” in some
contexts.

SimpleValue has a number of forms:

SimpleValue ::= TokIdentifier

The value will be the variable referenced by the identifier. It can be one
of:

	name of a def, such as the use of Bar in:

def Bar : SomeClass {
 int X = 5;
}

def Foo {
 SomeClass Baz = Bar;
}

	value local to a def, such as the use of Bar in:

def Foo {
 int Bar = 5;
 int Baz = Bar;
}

Values defined in superclasses can be accessed the same way.

	a template arg of a class, such as the use of Bar in:

class Foo<int Bar> {
 int Baz = Bar;
}

	value local to a class, such as the use of Bar in:

class Foo {
 int Bar = 5;
 int Baz = Bar;
}

	a template arg to a multiclass, such as the use of Bar in:

multiclass Foo<int Bar> {
 def : SomeClass<Bar>;
}

	the iteration variable of a foreach, such as the use of i in:

foreach i = 0-5 in
def Foo#i;

	a variable defined by defset

	the implicit template argument NAME in a class or multiclass

SimpleValue ::= TokInteger

This represents the numeric value of the integer.

SimpleValue ::= TokString+

Multiple adjacent string literals are concatenated like in C/C++. The value
is the concatenation of the strings.

SimpleValue ::= TokCodeFragment

The value is the string value of the code fragment.

SimpleValue ::= "?"

? represents an “unset” initializer.

SimpleValue ::= "{" ValueList "}"
ValueList ::= [ValueListNE]
ValueListNE ::= Value ("," Value)*

This represents a sequence of bits, as would be used to initialize a
bits<n> field (where n is the number of bits).

SimpleValue ::= ClassID "<" ValueListNE ">"

This generates a new anonymous record definition (as would be created by an
unnamed def inheriting from the given class with the given template
arguments) and the value is the value of that record definition.

SimpleValue ::= "[" ValueList "]" ["<" Type ">"]

A list initializer. The optional Type can be used to indicate a
specific element type, otherwise the element type will be deduced from the
given values.

SimpleValue ::= "(" DagArg [DagArgList] ")"
DagArgList ::= DagArg ("," DagArg)*
DagArg ::= Value [":" TokVarName] | TokVarName

The initial DagArg is called the “operator” of the dag.

SimpleValue ::= BangOperator ["<" Type ">"] "(" ValueListNE ")"

Bodies

ObjectBody ::= BaseClassList Body
BaseClassList ::= [":" BaseClassListNE]
BaseClassListNE ::= SubClassRef ("," SubClassRef)*
SubClassRef ::= (ClassID | MultiClassID) ["<" ValueList ">"]
DefmID ::= TokIdentifier

The version with the MultiClassID is only valid in the
BaseClassList of a defm.
The MultiClassID should be the name of a multiclass.

It is after parsing the base class list that the “let stack” is applied.

Body ::= ";" | "{" BodyList "}"
BodyList ::= BodyItem*
BodyItem ::= Declaration ";"
 | "let" TokIdentifier ["{" RangeList "}"] "=" Value ";"

The let form allows overriding the value of an inherited field.

def

Def ::= "def" [Value] ObjectBody

Defines a record whose name is given by the optional Value. The value
is parsed in a special mode where global identifiers (records and variables
defined by defset) are not recognized, and all unrecognized identifiers
are interpreted as strings.

If no name is given, the record is anonymous. The final name of anonymous
records is undefined, but globally unique.

Special handling occurs if this def appears inside a multiclass or
a foreach.

When a non-anonymous record is defined in a multiclass and the given name
does not contain a reference to the implicit template argument NAME, such
a reference will automatically be prepended. That is, the following are
equivalent inside a multiclass:

def Foo;
def NAME#Foo;

defm

Defm ::= "defm" [Value] ":" BaseClassListNE ";"

The BaseClassList is a list of at least one multiclass and any
number of class’s. The multiclass’s must occur before any class’s.

Instantiates all records defined in all given multiclass’s and adds the
given class’s as superclasses.

The name is parsed in the same special mode used by def. If the name is
missing, a globally unique string is used instead (but instantiated records
are not considered to be anonymous, unless they were originally defined by an
anonymous def) That is, the following have different semantics:

defm : SomeMultiClass<...>; // some globally unique name
defm "" : SomeMultiClass<...>; // empty name string

When it occurs inside a multiclass, the second variant is equivalent to
defm NAME : More generally, when defm occurs in a multiclass and
its name does not contain a reference to the implicit template argument
NAME, such a reference will automatically be prepended. That is, the
following are equivalent inside a multiclass:

defm Foo : SomeMultiClass<...>;
defm NAME#Foo : SomeMultiClass<...>;

defset

Defset ::= "defset" Type TokIdentifier "=" "{" Object* "}"

All records defined inside the braces via def and defm are collected
in a globally accessible list of the given name (in addition to being added
to the global collection of records as usual). Anonymous records created inside
initializier expressions using the Class<args...> syntax are never collected
in a defset.

The given type must be list<A>, where A is some class. It is an error
to define a record (via def or defm) inside the braces which doesn’t
derive from A.

foreach

Foreach ::= "foreach" ForeachDeclaration "in" "{" Object* "}"
 | "foreach" ForeachDeclaration "in" Object
ForeachDeclaration ::= ID "=" ("{" RangeList "}" | RangePiece | Value)

The value assigned to the variable in the declaration is iterated over and
the object or object list is reevaluated with the variable set at each
iterated value.

Note that the productions involving RangeList and RangePiece have precedence
over the more generic value parsing based on the first token.

Top-Level let

Let ::= "let" LetList "in" "{" Object* "}"
 | "let" LetList "in" Object
LetList ::= LetItem ("," LetItem)*
LetItem ::= TokIdentifier [RangeList] "=" Value

This is effectively equivalent to let inside the body of a record
except that it applies to multiple records at a time. The bindings are
applied at the end of parsing the base classes of a record.

multiclass

MultiClass ::= "multiclass" TokIdentifier [TemplateArgList]
 [":" BaseMultiClassList] "{" MultiClassObject+ "}"
BaseMultiClassList ::= MultiClassID ("," MultiClassID)*
MultiClassID ::= TokIdentifier
MultiClassObject ::= Def | Defm | Let | Foreach

 TableGen Language Introduction

TableGen Language Introduction

	Introduction

	TableGen syntax

	TableGen primitives

	TableGen comments

	The TableGen type system

	TableGen values and expressions

	Classes and definitions

	Value definitions

	‘let’ expressions

	Class template arguments

	Multiclass definitions and instances

	File scope entities

	File inclusion

	‘let’ expressions

	Looping

	Code Generator backend info

Warning

This document is extremely rough. If you find something lacking, please
fix it, file a documentation bug, or ask about it on llvm-dev.

Introduction

This document is not meant to be a normative spec about the TableGen language
in and of itself (i.e. how to understand a given construct in terms of how
it affects the final set of records represented by the TableGen file). For
the formal language specification, see TableGen Language Reference.

TableGen syntax

TableGen doesn’t care about the meaning of data (that is up to the backend to
define), but it does care about syntax, and it enforces a simple type system.
This section describes the syntax and the constructs allowed in a TableGen file.

TableGen primitives

TableGen comments

TableGen supports C++ style “//” comments, which run to the end of the
line, and it also supports nestable “/* */” comments.

The TableGen type system

TableGen files are strongly typed, in a simple (but complete) type-system.
These types are used to perform automatic conversions, check for errors, and to
help interface designers constrain the input that they allow. Every value
definition is required to have an associated type.

TableGen supports a mixture of very low-level types (such as bit) and very
high-level types (such as dag). This flexibility is what allows it to
describe a wide range of information conveniently and compactly. The TableGen
types are:

	bit

	A ‘bit’ is a boolean value that can hold either 0 or 1.

	int

	The ‘int’ type represents a simple 32-bit integer value, such as 5.

	string

	The ‘string’ type represents an ordered sequence of characters of arbitrary
length.

	code

	The code type represents a code fragment, which can be single/multi-line
string literal.

	bits<n>

	A ‘bits’ type is an arbitrary, but fixed, size integer that is broken up
into individual bits. This type is useful because it can handle some bits
being defined while others are undefined.

	list<ty>

	This type represents a list whose elements are some other type. The
contained type is arbitrary: it can even be another list type.

	Class type

	Specifying a class name in a type context means that the defined value must
be a subclass of the specified class. This is useful in conjunction with
the list type, for example, to constrain the elements of the list to a
common base class (e.g., a list<Register> can only contain definitions
derived from the “Register” class).

	dag

	This type represents a nestable directed graph of elements.

To date, these types have been sufficient for describing things that TableGen
has been used for, but it is straight-forward to extend this list if needed.

TableGen values and expressions

TableGen allows for a pretty reasonable number of different expression forms
when building up values. These forms allow the TableGen file to be written in a
natural syntax and flavor for the application. The current expression forms
supported include:

	?

	uninitialized field

	0b1001011

	binary integer value.
Note that this is sized by the number of bits given and will not be
silently extended/truncated.

	7

	decimal integer value

	0x7F

	hexadecimal integer value

	"foo"

	a single-line string value, can be assigned to string or code variable.

	[{ ... }]

	usually called a “code fragment”, but is just a multiline string literal

	[X, Y, Z]<type>

	list value. <type> is the type of the list element and is usually optional.
In rare cases, TableGen is unable to deduce the element type in which case
the user must specify it explicitly.

	{ a, b, 0b10 }

	initializer for a “bits<4>” value.
1-bit from “a”, 1-bit from “b”, 2-bits from 0b10.

	value

	value reference

	value{17}

	access to one bit of a value

	value{15-17}

	access to an ordered sequence of bits of a value, in particular value{15-17}
produces an order that is the reverse of value{17-15}.

	DEF

	reference to a record definition

	CLASS<val list>

	reference to a new anonymous definition of CLASS with the specified template
arguments.

	X.Y

	reference to the subfield of a value

	list[4-7,17,2-3]

	A slice of the ‘list’ list, including elements 4,5,6,7,17,2, and 3 from it.
Elements may be included multiple times.

foreach <var> = [<list>] in { <body> }

	foreach <var> = [<list>] in <def>

	Replicate <body> or <def>, replacing instances of <var> with each value
in <list>. <var> is scoped at the level of the foreach loop and must
not conflict with any other object introduced in <body> or <def>. Only
defs and defms are expanded within <body>.

foreach <var> = 0-15 in ...

	foreach <var> = {0-15,32-47} in ...

	Loop over ranges of integers. The braces are required for multiple ranges.

	(DEF a, b)

	a dag value. The first element is required to be a record definition, the
remaining elements in the list may be arbitrary other values, including
nested `dag’ values.

	!con(a, b, ...)

	Concatenate two or more DAG nodes. Their operations must equal.

Example: !con((op a1:$name1, a2:$name2), (op b1:$name3)) results in
the DAG node (op a1:$name1, a2:$name2, b1:$name3).

	!dag(op, children, names)

	Generate a DAG node programmatically. ‘children’ and ‘names’ must be lists
of equal length or unset (‘?’). ‘names’ must be a ‘list<string>’.

Due to limitations of the type system, ‘children’ must be a list of items
of a common type. In practice, this means that they should either have the
same type or be records with a common superclass. Mixing dag and non-dag
items is not possible. However, ‘?’ can be used.

Example: !dag(op, [a1, a2, ?], [“name1”, “name2”, “name3”]) results in
(op a1:$name1, a2:$name2, ?:$name3).

	!listconcat(a, b, ...)

	A list value that is the result of concatenating the ‘a’ and ‘b’ lists.
The lists must have the same element type.
More than two arguments are accepted with the result being the concatenation
of all the lists given.

	!strconcat(a, b, ...)

	A string value that is the result of concatenating the ‘a’ and ‘b’ strings.
More than two arguments are accepted with the result being the concatenation
of all the strings given.

	str1#str2

	“#” (paste) is a shorthand for !strconcat. It may concatenate things that
are not quoted strings, in which case an implicit !cast<string> is done on
the operand of the paste.

	!cast<type>(a)

	If ‘a’ is a string, a record of type type obtained by looking up the
string ‘a’ in the list of all records defined by the time that all template
arguments in ‘a’ are fully resolved.

For example, if !cast<type>(a) appears in a multiclass definition, or in a
class instantiated inside of a multiclass definition, and ‘a’ does not
reference any template arguments of the multiclass, then a record of name
‘a’ must be instantiated earlier in the source file. If ‘a’ does reference
a template argument, then the lookup is delayed until defm statements
instantiating the multiclass (or later, if the defm occurs in another
multiclass and template arguments of the inner multiclass that are
referenced by ‘a’ are substituted by values that themselves contain
references to template arguments of the outer multiclass).

If the type of ‘a’ does not match type, TableGen aborts with an error.

Otherwise, perform a normal type cast e.g. between an int and a bit, or
between record types. This allows casting a record to a subclass, though if
the types do not match, constant folding will be inhibited. !cast<string>
is a special case in that the argument can be an int or a record. In the
latter case, the record’s name is returned.

	!isa<type>(a)

	Returns an integer: 1 if ‘a’ is dynamically of the given type, 0 otherwise.

	!subst(a, b, c)

	If ‘a’ and ‘b’ are of string type or are symbol references, substitute ‘b’
for ‘a’ in ‘c.’ This operation is analogous to $(subst) in GNU make.

	!foreach(a, b, c)

	For each member of dag or list ‘b’ apply operator ‘c’. ‘a’ is the name
of a variable that will be substituted by members of ‘b’ in ‘c’.
This operation is analogous to $(foreach) in GNU make.

	!foldl(start, lst, a, b, expr)

	Perform a left-fold over ‘lst’ with the given starting value. ‘a’ and ‘b’
are variable names which will be substituted in ‘expr’. If you think of
expr as a function f(a,b), the fold will compute
‘f(…f(f(start, lst[0]), lst[1]), …), lst[n-1])’ for a list of length n.
As usual, ‘a’ will be of the type of ‘start’, and ‘b’ will be of the type
of elements of ‘lst’. These types need not be the same, but ‘expr’ must be
of the same type as ‘start’.

	!head(a)

	The first element of list ‘a.’

	!tail(a)

	The 2nd-N elements of list ‘a.’

	!empty(a)

	An integer {0,1} indicating whether list ‘a’ is empty.

	!size(a)

	An integer indicating the number of elements in list ‘a’.

	!if(a,b,c)

	‘b’ if the result of ‘int’ or ‘bit’ operator ‘a’ is nonzero, ‘c’ otherwise.

	!eq(a,b)

	‘bit 1’ if string a is equal to string b, 0 otherwise. This only operates
on string, int and bit objects. Use !cast<string> to compare other types of
objects.

	!ne(a,b)

	The negation of !eq(a,b).

	!le(a,b), !lt(a,b), !ge(a,b), !gt(a,b)

	(Signed) comparison of integer values that returns bit 1 or 0 depending on
the result of the comparison.

	!shl(a,b) !srl(a,b) !sra(a,b)

	The usual shift operators. Operations are on 64-bit integers, the result
is undefined for shift counts outside [0, 63].

	!add(a,b,...) !and(a,b,...) !or(a,b,...)

	The usual arithmetic and binary operators.

Note that all of the values have rules specifying how they convert to values
for different types. These rules allow you to assign a value like “7”
to a “bits<4>” value, for example.

Classes and definitions

As mentioned in the introduction, classes and definitions (collectively known as
‘records’) in TableGen are the main high-level unit of information that TableGen
collects. Records are defined with a def or class keyword, the record
name, and an optional list of “template arguments”. If the record has
superclasses, they are specified as a comma separated list that starts with a
colon character (“:”). If value definitions or let expressions are
needed for the class, they are enclosed in curly braces (“{}”); otherwise,
the record ends with a semicolon.

Here is a simple TableGen file:

class C { bit V = 1; }
def X : C;
def Y : C {
 string Greeting = "hello";
}

This example defines two definitions, X and Y, both of which derive from
the C class. Because of this, they both get the V bit value. The Y
definition also gets the Greeting member as well.

In general, classes are useful for collecting together the commonality between a
group of records and isolating it in a single place. Also, classes permit the
specification of default values for their subclasses, allowing the subclasses to
override them as they wish.

Value definitions

Value definitions define named entries in records. A value must be defined
before it can be referred to as the operand for another value definition or
before the value is reset with a let expression. A value is defined by
specifying a TableGen type and a name. If an initial value is available, it
may be specified after the type with an equal sign. Value definitions require
terminating semicolons.

‘let’ expressions

A record-level let expression is used to change the value of a value definition
in a record. This is primarily useful when a superclass defines a value that a
derived class or definition wants to override. Let expressions consist of the
‘let’ keyword followed by a value name, an equal sign (“=”), and a new
value. For example, a new class could be added to the example above, redefining
the V field for all of its subclasses:

class D : C { let V = 0; }
def Z : D;

In this case, the Z definition will have a zero value for its V value,
despite the fact that it derives (indirectly) from the C class, because the
D class overrode its value.

References between variables in a record are substituted late, which gives
let expressions unusual power. Consider this admittedly silly example:

class A<int x> {
 int Y = x;
 int Yplus1 = !add(Y, 1);
 int xplus1 = !add(x, 1);
}
def Z : A<5> {
 let Y = 10;
}

The value of Z.xplus1 will be 6, but the value of Z.Yplus1 is 11. Use
this power wisely.

Class template arguments

TableGen permits the definition of parameterized classes as well as normal
concrete classes. Parameterized TableGen classes specify a list of variable
bindings (which may optionally have defaults) that are bound when used. Here is
a simple example:

class FPFormat<bits<3> val> {
 bits<3> Value = val;
}
def NotFP : FPFormat<0>;
def ZeroArgFP : FPFormat<1>;
def OneArgFP : FPFormat<2>;
def OneArgFPRW : FPFormat<3>;
def TwoArgFP : FPFormat<4>;
def CompareFP : FPFormat<5>;
def CondMovFP : FPFormat<6>;
def SpecialFP : FPFormat<7>;

In this case, template arguments are used as a space efficient way to specify a
list of “enumeration values”, each with a “Value” field set to the specified
integer.

The more esoteric forms of TableGen expressions are useful in conjunction
with template arguments. As an example:

class ModRefVal<bits<2> val> {
 bits<2> Value = val;
}

def None : ModRefVal<0>;
def Mod : ModRefVal<1>;
def Ref : ModRefVal<2>;
def ModRef : ModRefVal<3>;

class Value<ModRefVal MR> {
 // Decode some information into a more convenient format, while providing
 // a nice interface to the user of the "Value" class.
 bit isMod = MR.Value{0};
 bit isRef = MR.Value{1};

 // other stuff...
}

// Example uses
def bork : Value<Mod>;
def zork : Value<Ref>;
def hork : Value<ModRef>;

This is obviously a contrived example, but it shows how template arguments can
be used to decouple the interface provided to the user of the class from the
actual internal data representation expected by the class. In this case,
running llvm-tblgen on the example prints the following definitions:

def bork { // Value
 bit isMod = 1;
 bit isRef = 0;
}
def hork { // Value
 bit isMod = 1;
 bit isRef = 1;
}
def zork { // Value
 bit isMod = 0;
 bit isRef = 1;
}

This shows that TableGen was able to dig into the argument and extract a piece
of information that was requested by the designer of the “Value” class. For
more realistic examples, please see existing users of TableGen, such as the X86
backend.

Multiclass definitions and instances

While classes with template arguments are a good way to factor commonality
between two instances of a definition, multiclasses allow a convenient notation
for defining multiple definitions at once (instances of implicitly constructed
classes). For example, consider an 3-address instruction set whose instructions
come in two forms: “reg = reg op reg” and “reg = reg op imm”
(e.g. SPARC). In this case, you’d like to specify in one place that this
commonality exists, then in a separate place indicate what all the ops are.

Here is an example TableGen fragment that shows this idea:

def ops;
def GPR;
def Imm;
class inst<int opc, string asmstr, dag operandlist>;

multiclass ri_inst<int opc, string asmstr> {
 def _rr : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"),
 (ops GPR:$dst, GPR:$src1, GPR:$src2)>;
 def _ri : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"),
 (ops GPR:$dst, GPR:$src1, Imm:$src2)>;
}

// Instantiations of the ri_inst multiclass.
defm ADD : ri_inst<0b111, "add">;
defm SUB : ri_inst<0b101, "sub">;
defm MUL : ri_inst<0b100, "mul">;
...

The name of the resultant definitions has the multidef fragment names appended
to them, so this defines ADD_rr, ADD_ri, SUB_rr, etc. A defm may
inherit from multiple multiclasses, instantiating definitions from each
multiclass. Using a multiclass this way is exactly equivalent to instantiating
the classes multiple times yourself, e.g. by writing:

def ops;
def GPR;
def Imm;
class inst<int opc, string asmstr, dag operandlist>;

class rrinst<int opc, string asmstr>
 : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"),
 (ops GPR:$dst, GPR:$src1, GPR:$src2)>;

class riinst<int opc, string asmstr>
 : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"),
 (ops GPR:$dst, GPR:$src1, Imm:$src2)>;

// Instantiations of the ri_inst multiclass.
def ADD_rr : rrinst<0b111, "add">;
def ADD_ri : riinst<0b111, "add">;
def SUB_rr : rrinst<0b101, "sub">;
def SUB_ri : riinst<0b101, "sub">;
def MUL_rr : rrinst<0b100, "mul">;
def MUL_ri : riinst<0b100, "mul">;
...

A defm can also be used inside a multiclass providing several levels of
multiclass instantiations.

class Instruction<bits<4> opc, string Name> {
 bits<4> opcode = opc;
 string name = Name;
}

multiclass basic_r<bits<4> opc> {
 def rr : Instruction<opc, "rr">;
 def rm : Instruction<opc, "rm">;
}

multiclass basic_s<bits<4> opc> {
 defm SS : basic_r<opc>;
 defm SD : basic_r<opc>;
 def X : Instruction<opc, "x">;
}

multiclass basic_p<bits<4> opc> {
 defm PS : basic_r<opc>;
 defm PD : basic_r<opc>;
 def Y : Instruction<opc, "y">;
}

defm ADD : basic_s<0xf>, basic_p<0xf>;
...

// Results
def ADDPDrm { ...
def ADDPDrr { ...
def ADDPSrm { ...
def ADDPSrr { ...
def ADDSDrm { ...
def ADDSDrr { ...
def ADDY { ...
def ADDX { ...

defm declarations can inherit from classes too, the rule to follow is that
the class list must start after the last multiclass, and there must be at least
one multiclass before them.

class XD { bits<4> Prefix = 11; }
class XS { bits<4> Prefix = 12; }

class I<bits<4> op> {
 bits<4> opcode = op;
}

multiclass R {
 def rr : I<4>;
 def rm : I<2>;
}

multiclass Y {
 defm SS : R, XD;
 defm SD : R, XS;
}

defm Instr : Y;

// Results
def InstrSDrm {
 bits<4> opcode = { 0, 0, 1, 0 };
 bits<4> Prefix = { 1, 1, 0, 0 };
}
...
def InstrSSrr {
 bits<4> opcode = { 0, 1, 0, 0 };
 bits<4> Prefix = { 1, 0, 1, 1 };
}

File scope entities

File inclusion

TableGen supports the ‘include’ token, which textually substitutes the
specified file in place of the include directive. The filename should be
specified as a double quoted string immediately after the ‘include’ keyword.
Example:

include "foo.td"

‘let’ expressions

“Let” expressions at file scope are similar to “let” expressions within a
record, except they can specify a value binding for multiple records at a
time, and may be useful in certain other cases. File-scope let expressions are
really just another way that TableGen allows the end-user to factor out
commonality from the records.

File-scope “let” expressions take a comma-separated list of bindings to apply,
and one or more records to bind the values in. Here are some examples:

let isTerminator = 1, isReturn = 1, isBarrier = 1, hasCtrlDep = 1 in
 def RET : I<0xC3, RawFrm, (outs), (ins), "ret", [(X86retflag 0)]>;

let isCall = 1 in
 // All calls clobber the non-callee saved registers...
 let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0,
 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, EFLAGS] in {
 def CALLpcrel32 : Ii32<0xE8, RawFrm, (outs), (ins i32imm:$dst,variable_ops),
 "call\t${dst:call}", []>;
 def CALL32r : I<0xFF, MRM2r, (outs), (ins GR32:$dst, variable_ops),
 "call\t{*}$dst", [(X86call GR32:$dst)]>;
 def CALL32m : I<0xFF, MRM2m, (outs), (ins i32mem:$dst, variable_ops),
 "call\t{*}$dst", []>;
 }

File-scope “let” expressions are often useful when a couple of definitions need
to be added to several records, and the records do not otherwise need to be
opened, as in the case with the CALL* instructions above.

It’s also possible to use “let” expressions inside multiclasses, providing more
ways to factor out commonality from the records, specially if using several
levels of multiclass instantiations. This also avoids the need of using “let”
expressions within subsequent records inside a multiclass.

multiclass basic_r<bits<4> opc> {
 let Predicates = [HasSSE2] in {
 def rr : Instruction<opc, "rr">;
 def rm : Instruction<opc, "rm">;
 }
 let Predicates = [HasSSE3] in
 def rx : Instruction<opc, "rx">;
}

multiclass basic_ss<bits<4> opc> {
 let IsDouble = 0 in
 defm SS : basic_r<opc>;

 let IsDouble = 1 in
 defm SD : basic_r<opc>;
}

defm ADD : basic_ss<0xf>;

Looping

TableGen supports the ‘foreach’ block, which textually replicates the loop
body, substituting iterator values for iterator references in the body.
Example:

foreach i = [0, 1, 2, 3] in {
 def R#i : Register<...>;
 def F#i : Register<...>;
}

This will create objects R0, R1, R2 and R3. foreach blocks
may be nested. If there is only one item in the body the braces may be
elided:

foreach i = [0, 1, 2, 3] in
 def R#i : Register<...>;

Code Generator backend info

Expressions used by code generator to describe instructions and isel patterns:

	(implicit a)

	an implicitly defined physical register. This tells the dag instruction
selection emitter the input pattern’s extra definitions matches implicit
physical register definitions.

 TableGen Deficiencies

TableGen Deficiencies

	Introduction

	Known Problems

Introduction

Despite being very generic, TableGen has some deficiencies that have been
pointed out numerous times. The common theme is that, while TableGen allows
you to build Domain-Specific-Languages, the final languages that you create
lack the power of other DSLs, which in turn increase considerably the size
and complexity of TableGen files.

At the same time, TableGen allows you to create virtually any meaning of
the basic concepts via custom-made back-ends, which can pervert the original
design and make it very hard for newcomers to understand it.

There are some in favour of extending the semantics even more, but making sure
back-ends adhere to strict rules. Others suggesting we should move to more
powerful DSLs designed with specific purposes, or even re-using existing
DSLs.

Known Problems

TODO: Add here frequently asked questions about why TableGen doesn’t do
what you want, how it might, and how we could extend/restrict it to
be more use friendly.

 Debugging JIT-ed Code With GDB

Debugging JIT-ed Code With GDB

Background

Without special runtime support, debugging dynamically generated code with
GDB (as well as most debuggers) can be quite painful. Debuggers generally
read debug information from the object file of the code, but for JITed
code, there is no such file to look for.

In order to communicate the necessary debug info to GDB, an interface for
registering JITed code with debuggers has been designed and implemented for
GDB and LLVM MCJIT. At a high level, whenever MCJIT generates new machine code,
it does so in an in-memory object file that contains the debug information in
DWARF format. MCJIT then adds this in-memory object file to a global list of
dynamically generated object files and calls a special function
(__jit_debug_register_code) marked noinline that GDB knows about. When
GDB attaches to a process, it puts a breakpoint in this function and loads all
of the object files in the global list. When MCJIT calls the registration
function, GDB catches the breakpoint signal, loads the new object file from
the inferior’s memory, and resumes the execution. In this way, GDB can get the
necessary debug information.

GDB Version

In order to debug code JIT-ed by LLVM, you need GDB 7.0 or newer, which is
available on most modern distributions of Linux. The version of GDB that
Apple ships with Xcode has been frozen at 6.3 for a while. LLDB may be a
better option for debugging JIT-ed code on Mac OS X.

Debugging MCJIT-ed code

The emerging MCJIT component of LLVM allows full debugging of JIT-ed code with
GDB. This is due to MCJIT’s ability to use the MC emitter to provide full
DWARF debugging information to GDB.

Note that lli has to be passed the -use-mcjit flag to JIT the code with
MCJIT instead of the old JIT.

Example

Consider the following C code (with line numbers added to make the example
easier to follow):

1 int compute_factorial(int n)
2 {
3 if (n <= 1)
4 return 1;
5
6 int f = n;
7 while (--n > 1)
8 f *= n;
9 return f;
10 }
11
12
13 int main(int argc, char** argv)
14 {
15 if (argc < 2)
16 return -1;
17 char firstletter = argv[1][0];
18 int result = compute_factorial(firstletter - '0');
19
20 // Returned result is clipped at 255...
21 return result;
22 }

Here is a sample command line session that shows how to build and run this
code via lli inside GDB:

$ $BINPATH/clang -cc1 -O0 -g -emit-llvm showdebug.c
$ gdb --quiet --args $BINPATH/lli -use-mcjit showdebug.ll 5
Reading symbols from $BINPATH/lli...done.
(gdb) b showdebug.c:6
No source file named showdebug.c.
Make breakpoint pending on future shared library load? (y or [n]) y
Breakpoint 1 (showdebug.c:6) pending.
(gdb) r
Starting program: $BINPATH/lli -use-mcjit showdebug.ll 5
[Thread debugging using libthread_db enabled]

Breakpoint 1, compute_factorial (n=5) at showdebug.c:6
6 int f = n;
(gdb) p n
$1 = 5
(gdb) p f
$2 = 0
(gdb) n
7 while (--n > 1)
(gdb) p f
$3 = 5
(gdb) b showdebug.c:9
Breakpoint 2 at 0x7ffff7ed404c: file showdebug.c, line 9.
(gdb) c
Continuing.

Breakpoint 2, compute_factorial (n=1) at showdebug.c:9
9 return f;
(gdb) p f
$4 = 120
(gdb) bt
#0 compute_factorial (n=1) at showdebug.c:9
#1 0x00007ffff7ed40a9 in main (argc=2, argv=0x16677e0) at showdebug.c:18
#2 0x3500000001652748 in ?? ()
#3 0x00000000016677e0 in ?? ()
#4 0x0000000000000002 in ?? ()
#5 0x0000000000d953b3 in llvm::MCJIT::runFunction (this=0x16151f0, F=0x1603020, ArgValues=...) at /home/ebenders_test/llvm_svn_rw/lib/ExecutionEngine/MCJIT/MCJIT.cpp:161
#6 0x0000000000dc8872 in llvm::ExecutionEngine::runFunctionAsMain (this=0x16151f0, Fn=0x1603020, argv=..., envp=0x7fffffffe040)
 at /home/ebenders_test/llvm_svn_rw/lib/ExecutionEngine/ExecutionEngine.cpp:397
#7 0x000000000059c583 in main (argc=4, argv=0x7fffffffe018, envp=0x7fffffffe040) at /home/ebenders_test/llvm_svn_rw/tools/lli/lli.cpp:324
(gdb) finish
Run till exit from #0 compute_factorial (n=1) at showdebug.c:9
0x00007ffff7ed40a9 in main (argc=2, argv=0x16677e0) at showdebug.c:18
18 int result = compute_factorial(firstletter - '0');
Value returned is $5 = 120
(gdb) p result
$6 = 23406408
(gdb) n
21 return result;
(gdb) p result
$7 = 120
(gdb) c
Continuing.

Program exited with code 0170.
(gdb)

 The LLVM gold plugin

The LLVM gold plugin

Introduction

Building with link time optimization requires cooperation from
the system linker. LTO support on Linux systems is available via the
gold linker [http://sourceware.org/binutils] which supports LTO via plugins. This is the same mechanism
used by the GCC LTO [http://gcc.gnu.org/wiki/LinkTimeOptimization] project.

The LLVM gold plugin implements the gold plugin interface on top of
libLTO. The same plugin can also be used by other tools such as
ar and nm. Note that ld.bfd from binutils version 2.21.51.0.2
and above also supports LTO via plugins. However, usage of the LLVM
gold plugin with ld.bfd is not tested and therefore not officially
supported or recommended.

How to build it

You need to have gold with plugin support and build the LLVMgold plugin.
The gold linker is installed as ld.gold. To see whether gold is the default
on your system, run /usr/bin/ld -v. It will report “GNU
gold” or else “GNU ld” if not. If gold is already installed at
/usr/bin/ld.gold, one option is to simply make that the default by
backing up your existing /usr/bin/ld and creating a symbolic link
with ln -s /usr/bin/ld.gold /usr/bin/ld. Alternatively, you can build
with clang’s -fuse-ld=gold or add -fuse-ld=gold to LDFLAGS, which will
cause the clang driver to invoke /usr/bin/ld.gold directly.

If you have gold installed, check for plugin support by running
/usr/bin/ld.gold -plugin. If it complains “missing argument” then
you have plugin support. If not, and you get an error such as “unknown option”,
then you will either need to build gold or install a version with plugin
support.

	Download, configure and build gold with plugin support:

$ git clone --depth 1 git://sourceware.org/git/binutils-gdb.git binutils
$ mkdir build
$ cd build
$../binutils/configure --enable-gold --enable-plugins --disable-werror
$ make all-gold

That should leave you with build/gold/ld-new which supports
the -plugin option. Running make will additionally build
build/binutils/ar and nm-new binaries supporting plugins.

Once you’re ready to switch to using gold, backup your existing
/usr/bin/ld then replace it with ld-new. Alternatively, install
in /usr/bin/ld.gold and use -fuse-ld=gold as described earlier.

Optionally, add --enable=gold=default to the above configure invocation
to automatically install the newly built gold as the default linker with
make install.

	Build the LLVMgold plugin. Run CMake with
-DLLVM_BINUTILS_INCDIR=/path/to/binutils/include. The correct include
path will contain the file plugin-api.h.

Usage

You should produce bitcode files from clang with the option
-flto. This flag will also cause clang to look for the gold plugin in
the lib directory under its prefix and pass the -plugin option to
ld. It will not look for an alternate linker without -fuse-ld=gold,
which is why you otherwise need gold to be the installed system linker in
your path.

ar and nm also accept the -plugin option and it’s possible to
to install LLVMgold.so to /usr/lib/bfd-plugins for a seamless setup.
If you built your own gold, be sure to install the ar and nm-new you
built to /usr/bin.

Example of link time optimization

The following example shows a worked example of the gold plugin mixing LLVM
bitcode and native code.

--- a.c ---
#include <stdio.h>

extern void foo1(void);
extern void foo4(void);

void foo2(void) {
 printf("Foo2\n");
}

void foo3(void) {
 foo4();
}

int main(void) {
 foo1();
}

--- b.c ---
#include <stdio.h>

extern void foo2(void);

void foo1(void) {
 foo2();
}

void foo4(void) {
 printf("Foo4");
}

--- command lines ---
$ clang -flto a.c -c -o a.o # <-- a.o is LLVM bitcode file
$ ar q a.a a.o # <-- a.a is an archive with LLVM bitcode
$ clang b.c -c -o b.o # <-- b.o is native object file
$ clang -flto a.a b.o -o main # <-- link with LLVMgold plugin

Gold informs the plugin that foo3 is never referenced outside the IR,
leading LLVM to delete that function. However, unlike in the libLTO
example gold does not currently eliminate foo4.

Quickstart for using LTO with autotooled projects

Once your system ld, ar, and nm all support LLVM bitcode,
everything is in place for an easy to use LTO build of autotooled projects:

	Follow the instructions on how to build LLVMgold.so.

	Install the newly built binutils to $PREFIX

	Copy Release/lib/LLVMgold.so to $PREFIX/lib/bfd-plugins/

	Set environment variables ($PREFIX is where you installed clang and
binutils):

export CC="$PREFIX/bin/clang -flto"
export CXX="$PREFIX/bin/clang++ -flto"
export AR="$PREFIX/bin/ar"
export NM="$PREFIX/bin/nm"
export RANLIB=/bin/true #ranlib is not needed, and doesn't support .bc files in .a

	Or you can just set your path:

export PATH="$PREFIX/bin:$PATH"
export CC="clang -flto"
export CXX="clang++ -flto"
export RANLIB=/bin/true

	Configure and build the project as usual:

% ./configure && make && make check

The environment variable settings may work for non-autotooled projects too,
but you may need to set the LD environment variable as well.

Licensing

Gold is licensed under the GPLv3. LLVMgold uses the interface file
plugin-api.h from gold which means that the resulting LLVMgold.so
binary is also GPLv3. This can still be used to link non-GPLv3 programs
just as much as gold could without the plugin.

 LLVM’s Optional Rich Disassembly Output

LLVM’s Optional Rich Disassembly Output

	Introduction

	Instruction Annotations

	Contextual markups

	C API Details

Introduction

LLVM’s default disassembly output is raw text. To allow consumers more ability
to introspect the instructions’ textual representation or to reformat for a more
user friendly display there is an optional rich disassembly output.

This optional output is sufficient to reference into individual portions of the
instruction text. This is intended for clients like disassemblers, list file
generators, and pretty-printers, which need more than the raw instructions and
the ability to print them.

To provide this functionality the assembly text is marked up with annotations.
The markup is simple enough in syntax to be robust even in the case of version
mismatches between consumers and producers. That is, the syntax generally does
not carry semantics beyond “this text has an annotation,” so consumers can
simply ignore annotations they do not understand or do not care about.

After calling LLVMCreateDisasm() to create a disassembler context the
optional output is enable with this call:

LLVMSetDisasmOptions(DC, LLVMDisassembler_Option_UseMarkup);

Then subsequent calls to LLVMDisasmInstruction() will return output strings
with the marked up annotations.

Instruction Annotations

Contextual markups

Annoated assembly display will supply contextual markup to help clients more
efficiently implement things like pretty printers. Most markup will be target
independent, so clients can effectively provide good display without any target
specific knowledge.

Annotated assembly goes through the normal instruction printer, but optionally
includes contextual tags on portions of the instruction string. An annotation
is any ‘<’ ‘>’ delimited section of text(1).

annotation: '<' tag-name tag-modifier-list ':' annotated-text '>'
tag-name: identifier
tag-modifier-list: comma delimited identifier list

The tag-name is an identifier which gives the type of the annotation. For the
first pass, this will be very simple, with memory references, registers, and
immediates having the tag names “mem”, “reg”, and “imm”, respectively.

The tag-modifier-list is typically additional target-specific context, such as
register class.

Clients should accept and ignore any tag-names or tag-modifiers they do not
understand, allowing the annotations to grow in richness without breaking older
clients.

For example, a possible annotation of an ARM load of a stack-relative location
might be annotated as:

ldr <reg gpr:r0>, <mem regoffset:[<reg gpr:sp>, <imm:#4>]>

1: For assembly dialects in which ‘<’ and/or ‘>’ are legal tokens, a literal token is escaped by following immediately with a repeat of the character. For example, a literal ‘<’ character is output as ‘<<’ in an annotated assembly string.

C API Details

The intended consumers of this information use the C API, therefore the new C
API function for the disassembler will be added to provide an option to produce
disassembled instructions with annotations, LLVMSetDisasmOptions() and the
LLVMDisassembler_Option_UseMarkup option (see above).

 System Library

System Library

Abstract

This document provides some details on LLVM’s System Library, located in the
source at lib/System and include/llvm/System. The library’s purpose is
to shield LLVM from the differences between operating systems for the few
services LLVM needs from the operating system. Much of LLVM is written using
portability features of standard C++. However, in a few areas, system dependent
facilities are needed and the System Library is the wrapper around those system
calls.

By centralizing LLVM’s use of operating system interfaces, we make it possible
for the LLVM tool chain and runtime libraries to be more easily ported to new
platforms since (theoretically) only lib/System needs to be ported. This
library also unclutters the rest of LLVM from #ifdef use and special cases for
specific operating systems. Such uses are replaced with simple calls to the
interfaces provided in include/llvm/System.

Note that the System Library is not intended to be a complete operating system
wrapper (such as the Adaptive Communications Environment (ACE) or Apache
Portable Runtime (APR)), but only provides the functionality necessary to
support LLVM.

The System Library was written by Reid Spencer who formulated the design based
on similar work originating from the eXtensible Programming System (XPS).
Several people helped with the effort; especially, Jeff Cohen and Henrik Bach
on the Win32 port.

Keeping LLVM Portable

In order to keep LLVM portable, LLVM developers should adhere to a set of
portability rules associated with the System Library. Adherence to these rules
should help the System Library achieve its goal of shielding LLVM from the
variations in operating system interfaces and doing so efficiently. The
following sections define the rules needed to fulfill this objective.

Don’t Include System Headers

Except in lib/System, no LLVM source code should directly #include a
system header. Care has been taken to remove all such #includes from LLVM
while lib/System was being developed. Specifically this means that header
files like “unistd.h”, “windows.h”, “stdio.h”, and “string.h”
are forbidden to be included by LLVM source code outside the implementation of
lib/System.

To obtain system-dependent functionality, existing interfaces to the system
found in include/llvm/System should be used. If an appropriate interface is
not available, it should be added to include/llvm/System and implemented in
lib/System for all supported platforms.

Don’t Expose System Headers

The System Library must shield LLVM from all system headers. To obtain
system level functionality, LLVM source must #include "llvm/System/Thing.h"
and nothing else. This means that Thing.h cannot expose any system header
files. This protects LLVM from accidentally using system specific functionality
and only allows it via the lib/System interface.

Use Standard C Headers

The standard C headers (the ones beginning with “c”) are allowed to be
exposed through the lib/System interface. These headers and the things they
declare are considered to be platform agnostic. LLVM source files may include
them directly or obtain their inclusion through lib/System interfaces.

Use Standard C++ Headers

The standard C++ headers from the standard C++ library and standard
template library may be exposed through the lib/System interface. These
headers and the things they declare are considered to be platform agnostic.
LLVM source files may include them or obtain their inclusion through
lib/System interfaces.

High Level Interface

The entry points specified in the interface of lib/System must be aimed at
completing some reasonably high level task needed by LLVM. We do not want to
simply wrap each operating system call. It would be preferable to wrap several
operating system calls that are always used in conjunction with one another by
LLVM.

For example, consider what is needed to execute a program, wait for it to
complete, and return its result code. On Unix, this involves the following
operating system calls: getenv, fork, execve, and wait. The
correct thing for lib/System to provide is a function, say
ExecuteProgramAndWait, that implements the functionality completely. what
we don’t want is wrappers for the operating system calls involved.

There must not be a one-to-one relationship between operating system
calls and the System library’s interface. Any such interface function will be
suspicious.

No Unused Functionality

There must be no functionality specified in the interface of lib/System
that isn’t actually used by LLVM. We’re not writing a general purpose operating
system wrapper here, just enough to satisfy LLVM’s needs. And, LLVM doesn’t
need much. This design goal aims to keep the lib/System interface small and
understandable which should foster its actual use and adoption.

No Duplicate Implementations

The implementation of a function for a given platform must be written exactly
once. This implies that it must be possible to apply a function’s
implementation to multiple operating systems if those operating systems can
share the same implementation. This rule applies to the set of operating
systems supported for a given class of operating system (e.g. Unix, Win32).

No Virtual Methods

The System Library interfaces can be called quite frequently by LLVM. In order
to make those calls as efficient as possible, we discourage the use of virtual
methods. There is no need to use inheritance for implementation differences, it
just adds complexity. The #include mechanism works just fine.

No Exposed Functions

Any functions defined by system libraries (i.e. not defined by lib/System)
must not be exposed through the lib/System interface, even if the header
file for that function is not exposed. This prevents inadvertent use of system
specific functionality.

For example, the stat system call is notorious for having variations in the
data it provides. lib/System must not declare stat nor allow it to be
declared. Instead it should provide its own interface to discovering
information about files and directories. Those interfaces may be implemented in
terms of stat but that is strictly an implementation detail. The interface
provided by the System Library must be implemented on all platforms (even those
without stat).

No Exposed Data

Any data defined by system libraries (i.e. not defined by lib/System) must
not be exposed through the lib/System interface, even if the header file
for that function is not exposed. As with functions, this prevents inadvertent
use of data that might not exist on all platforms.

Minimize Soft Errors

Operating system interfaces will generally provide error results for every
little thing that could go wrong. In almost all cases, you can divide these
error results into two groups: normal/good/soft and abnormal/bad/hard. That is,
some of the errors are simply information like “file not found”, “insufficient
privileges”, etc. while other errors are much harder like “out of space”, “bad
disk sector”, or “system call interrupted”. We’ll call the first group “soft”
errors and the second group “hard” errors.

lib/System must always attempt to minimize soft errors. This is a design
requirement because the minimization of soft errors can affect the granularity
and the nature of the interface. In general, if you find that you’re wanting to
throw soft errors, you must review the granularity of the interface because it
is likely you’re trying to implement something that is too low level. The rule
of thumb is to provide interface functions that can’t fail, except when
faced with hard errors.

For a trivial example, suppose we wanted to add an “OpenFileForWriting”
function. For many operating systems, if the file doesn’t exist, attempting to
open the file will produce an error. However, lib/System should not simply
throw that error if it occurs because its a soft error. The problem is that the
interface function, OpenFileForWriting is too low level. It should be
OpenOrCreateFileForWriting. In the case of the soft “doesn’t exist” error,
this function would just create it and then open it for writing.

This design principle needs to be maintained in lib/System because it
avoids the propagation of soft error handling throughout the rest of LLVM.
Hard errors will generally just cause a termination for an LLVM tool so don’t
be bashful about throwing them.

Rules of thumb:

	Don’t throw soft errors, only hard errors.

	If you’re tempted to throw a soft error, re-think the interface.

	Handle internally the most common normal/good/soft error conditions
so the rest of LLVM doesn’t have to.

No throw Specifications

None of the lib/System interface functions may be declared with C++
throw() specifications on them. This requirement makes sure that the
compiler does not insert additional exception handling code into the interface
functions. This is a performance consideration: lib/System functions are at
the bottom of many call chains and as such can be frequently called. We need
them to be as efficient as possible. However, no routines in the system
library should actually throw exceptions.

Code Organization

Implementations of the System Library interface are separated by their general
class of operating system. Currently only Unix and Win32 classes are defined
but more could be added for other operating system classifications. To
distinguish which implementation to compile, the code in lib/System uses
the LLVM_ON_UNIX and _WIN32 #defines. Each source file in
lib/System, after implementing the generic (operating system independent)
functionality needs to include the correct implementation using a set of
#if defined(LLVM_ON_XYZ) directives. For example, if we had
lib/System/File.cpp, we’d expect to see in that file:

#if defined(LLVM_ON_UNIX)
#include "Unix/File.cpp"
#endif
#if defined(_WIN32)
#include "Win32/File.cpp"
#endif

The implementation in lib/System/Unix/File.cpp should handle all Unix
variants. The implementation in lib/System/Win32/File.cpp should handle all
Win32 variants. What this does is quickly differentiate the basic class of
operating system that will provide the implementation. The specific details for
a given platform must still be determined through the use of #ifdef.

Consistent Semantics

The implementation of a lib/System interface can vary drastically between
platforms. That’s okay as long as the end result of the interface function is
the same. For example, a function to create a directory is pretty straight
forward on all operating system. System V IPC on the other hand isn’t even
supported on all platforms. Instead of “supporting” System V IPC,
lib/System should provide an interface to the basic concept of
inter-process communications. The implementations might use System V IPC if
that was available or named pipes, or whatever gets the job done effectively
for a given operating system. In all cases, the interface and the
implementation must be semantically consistent.

 Source Level Debugging with LLVM

Source Level Debugging with LLVM

	Introduction

	Philosophy behind LLVM debugging information

	Debug information consumers

	Debug information and optimizations

	Debugging information format

	Debugger intrinsic functions

	llvm.dbg.addr

	llvm.dbg.declare

	llvm.dbg.value

	Object lifetimes and scoping

	C/C++ front-end specific debug information

	C/C++ source file information

	C/C++ global variable information

	C/C++ function information

	Debugging information format

	Debugging Information Extension for Objective C Properties

	Introduction

	Proposal

	New DWARF Tags

	New DWARF Attributes

	New DWARF Constants

	Name Accelerator Tables

	Introduction

	Hash Tables

	Standard Hash Tables

	Name Hash Tables

	Details

	Header Layout

	Fixed Lookup

	Contents

	Language Extensions and File Format Changes

	Objective-C Extensions

	Mach-O Changes

	CodeView Debug Info Format

	Format Background

	Working with CodeView

	Testing Debug Info Preservation in Optimizations

	The debugify utility

	Fixing errors

	Using debugify

	debugify in regression tests

Introduction

This document is the central repository for all information pertaining to debug
information in LLVM. It describes the actual format that the LLVM debug
information takes, which is useful for those interested in creating
front-ends or dealing directly with the information. Further, this document
provides specific examples of what debug information for C/C++ looks like.

Philosophy behind LLVM debugging information

The idea of the LLVM debugging information is to capture how the important
pieces of the source-language’s Abstract Syntax Tree map onto LLVM code.
Several design aspects have shaped the solution that appears here. The
important ones are:

	Debugging information should have very little impact on the rest of the
compiler. No transformations, analyses, or code generators should need to
be modified because of debugging information.

	LLVM optimizations should interact in well-defined and easily described
ways with the debugging information.

	Because LLVM is designed to support arbitrary programming languages,
LLVM-to-LLVM tools should not need to know anything about the semantics of
the source-level-language.

	Source-level languages are often widely different from one another.
LLVM should not put any restrictions of the flavor of the source-language,
and the debugging information should work with any language.

	With code generator support, it should be possible to use an LLVM compiler
to compile a program to native machine code and standard debugging
formats. This allows compatibility with traditional machine-code level
debuggers, like GDB or DBX.

The approach used by the LLVM implementation is to use a small set of
intrinsic functions to define a mapping
between LLVM program objects and the source-level objects. The description of
the source-level program is maintained in LLVM metadata in an
implementation-defined format (the C/C++ front-end
currently uses working draft 7 of the DWARF 3 standard [http://www.eagercon.com/dwarf/dwarf3std.htm]).

When a program is being debugged, a debugger interacts with the user and turns
the stored debug information into source-language specific information. As
such, a debugger must be aware of the source-language, and is thus tied to a
specific language or family of languages.

Debug information consumers

The role of debug information is to provide meta information normally stripped
away during the compilation process. This meta information provides an LLVM
user a relationship between generated code and the original program source
code.

Currently, there are two backend consumers of debug info: DwarfDebug and
CodeViewDebug. DwarfDebug produces DWARF suitable for use with GDB, LLDB, and
other DWARF-based debuggers. CodeViewDebug produces CodeView,
the Microsoft debug info format, which is usable with Microsoft debuggers such
as Visual Studio and WinDBG. LLVM’s debug information format is mostly derived
from and inspired by DWARF, but it is feasible to translate into other target
debug info formats such as STABS.

It would also be reasonable to use debug information to feed profiling tools
for analysis of generated code, or, tools for reconstructing the original
source from generated code.

Debug information and optimizations

An extremely high priority of LLVM debugging information is to make it interact
well with optimizations and analysis. In particular, the LLVM debug
information provides the following guarantees:

	LLVM debug information always provides information to accurately read
the source-level state of the program, regardless of which LLVM
optimizations have been run, and without any modification to the
optimizations themselves. However, some optimizations may impact the
ability to modify the current state of the program with a debugger, such
as setting program variables, or calling functions that have been
deleted.

	As desired, LLVM optimizations can be upgraded to be aware of debugging
information, allowing them to update the debugging information as they
perform aggressive optimizations. This means that, with effort, the LLVM
optimizers could optimize debug code just as well as non-debug code.

	LLVM debug information does not prevent optimizations from
happening (for example inlining, basic block reordering/merging/cleanup,
tail duplication, etc).

	LLVM debug information is automatically optimized along with the rest of
the program, using existing facilities. For example, duplicate
information is automatically merged by the linker, and unused information
is automatically removed.

Basically, the debug information allows you to compile a program with
“-O0 -g” and get full debug information, allowing you to arbitrarily modify
the program as it executes from a debugger. Compiling a program with
“-O3 -g” gives you full debug information that is always available and
accurate for reading (e.g., you get accurate stack traces despite tail call
elimination and inlining), but you might lose the ability to modify the program
and call functions which were optimized out of the program, or inlined away
completely.

The LLVM test suite provides a framework to test
optimizer’s handling of debugging information. It can be run like this:

% cd llvm/projects/test-suite/MultiSource/Benchmarks # or some other level
% make TEST=dbgopt

This will test impact of debugging information on optimization passes. If
debugging information influences optimization passes then it will be reported
as a failure. See LLVM Testing Infrastructure Guide for more information on LLVM test
infrastructure and how to run various tests.

Debugging information format

LLVM debugging information has been carefully designed to make it possible for
the optimizer to optimize the program and debugging information without
necessarily having to know anything about debugging information. In
particular, the use of metadata avoids duplicated debugging information from
the beginning, and the global dead code elimination pass automatically deletes
debugging information for a function if it decides to delete the function.

To do this, most of the debugging information (descriptors for types,
variables, functions, source files, etc) is inserted by the language front-end
in the form of LLVM metadata.

Debug information is designed to be agnostic about the target debugger and
debugging information representation (e.g. DWARF/Stabs/etc). It uses a generic
pass to decode the information that represents variables, types, functions,
namespaces, etc: this allows for arbitrary source-language semantics and
type-systems to be used, as long as there is a module written for the target
debugger to interpret the information.

To provide basic functionality, the LLVM debugger does have to make some
assumptions about the source-level language being debugged, though it keeps
these to a minimum. The only common features that the LLVM debugger assumes
exist are source files, and program objects. These abstract objects are used by a
debugger to form stack traces, show information about local variables, etc.

This section of the documentation first describes the representation aspects
common to any source-language. C/C++ front-end specific debug information describes the data layout
conventions used by the C and C++ front-ends.

Debug information descriptors are specialized metadata nodes, first-class subclasses of Metadata.

Debugger intrinsic functions

LLVM uses several intrinsic functions (name prefixed with “llvm.dbg”) to
track source local variables through optimization and code generation.

llvm.dbg.addr

void @llvm.dbg.addr(metadata, metadata, metadata)

This intrinsic provides information about a local element (e.g., variable).
The first argument is metadata holding the address of variable, typically a
static alloca in the function entry block. The second argument is a
local variable containing a description of
the variable. The third argument is a complex expression. An llvm.dbg.addr intrinsic describes the
address of a source variable.

%i.addr = alloca i32, align 4
call void @llvm.dbg.addr(metadata i32* %i.addr, metadata !1,
 metadata !DIExpression()), !dbg !2
!1 = !DILocalVariable(name: "i", ...) ; int i
!2 = !DILocation(...)
...
%buffer = alloca [256 x i8], align 8
; The address of i is buffer+64.
call void @llvm.dbg.addr(metadata [256 x i8]* %buffer, metadata !3,
 metadata !DIExpression(DW_OP_plus, 64)), !dbg !4
!3 = !DILocalVariable(name: "i", ...) ; int i
!4 = !DILocation(...)

A frontend should generate exactly one call to llvm.dbg.addr at the point
of declaration of a source variable. Optimization passes that fully promote the
variable from memory to SSA values will replace this call with possibly
multiple calls to llvm.dbg.value. Passes that delete stores are effectively
partial promotion, and they will insert a mix of calls to llvm.dbg.value
and llvm.dbg.addr to track the source variable value when it is available.
After optimization, there may be multiple calls to llvm.dbg.addr describing
the program points where the variables lives in memory. All calls for the same
concrete source variable must agree on the memory location.

llvm.dbg.declare

void @llvm.dbg.declare(metadata, metadata, metadata)

This intrinsic is identical to llvm.dbg.addr, except that there can only be
one call to llvm.dbg.declare for a given concrete local variable. It is not control-dependent, meaning that if
a call to llvm.dbg.declare exists and has a valid location argument, that
address is considered to be the true home of the variable across its entire
lifetime. This makes it hard for optimizations to preserve accurate debug info
in the presence of llvm.dbg.declare, so we are transitioning away from it,
and we plan to deprecate it in future LLVM releases.

llvm.dbg.value

void @llvm.dbg.value(metadata, metadata, metadata)

This intrinsic provides information when a user source variable is set to a new
value. The first argument is the new value (wrapped as metadata). The second
argument is a local variable containing a
description of the variable. The third argument is a complex expression.

An llvm.dbg.value intrinsic describes the value of a source variable
directly, not its address. Note that the value operand of this intrinsic may
be indirect (i.e, a pointer to the source variable), provided that interpreting
the complex expression derives the direct value.

Object lifetimes and scoping

In many languages, the local variables in functions can have their lifetimes or
scopes limited to a subset of a function. In the C family of languages, for
example, variables are only live (readable and writable) within the source
block that they are defined in. In functional languages, values are only
readable after they have been defined. Though this is a very obvious concept,
it is non-trivial to model in LLVM, because it has no notion of scoping in this
sense, and does not want to be tied to a language’s scoping rules.

In order to handle this, the LLVM debug format uses the metadata attached to
llvm instructions to encode line number and scoping information. Consider the
following C fragment, for example:

1. void foo() {
2. int X = 21;
3. int Y = 22;
4. {
5. int Z = 23;
6. Z = X;
7. }
8. X = Y;
9. }

Compiled to LLVM, this function would be represented like this:

; Function Attrs: nounwind ssp uwtable
define void @foo() #0 !dbg !4 {
entry:
 %X = alloca i32, align 4
 %Y = alloca i32, align 4
 %Z = alloca i32, align 4
 call void @llvm.dbg.declare(metadata i32* %X, metadata !11, metadata !13), !dbg !14
 store i32 21, i32* %X, align 4, !dbg !14
 call void @llvm.dbg.declare(metadata i32* %Y, metadata !15, metadata !13), !dbg !16
 store i32 22, i32* %Y, align 4, !dbg !16
 call void @llvm.dbg.declare(metadata i32* %Z, metadata !17, metadata !13), !dbg !19
 store i32 23, i32* %Z, align 4, !dbg !19
 %0 = load i32, i32* %X, align 4, !dbg !20
 store i32 %0, i32* %Z, align 4, !dbg !21
 %1 = load i32, i32* %Y, align 4, !dbg !22
 store i32 %1, i32* %X, align 4, !dbg !23
 ret void, !dbg !24
}

; Function Attrs: nounwind readnone
declare void @llvm.dbg.declare(metadata, metadata, metadata) #1

attributes #0 = { nounwind ssp uwtable "less-precise-fpmad"="false" "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "stack-protector-buffer-size"="8" "unsafe-fp-math"="false" "use-soft-float"="false" }
attributes #1 = { nounwind readnone }

!llvm.dbg.cu = !{!0}
!llvm.module.flags = !{!7, !8, !9}
!llvm.ident = !{!10}

!0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang version 3.7.0 (trunk 231150) (llvm/trunk 231154)", isOptimized: false, runtimeVersion: 0, emissionKind: FullDebug, enums: !2, retainedTypes: !2, subprograms: !3, globals: !2, imports: !2)
!1 = !DIFile(filename: "/dev/stdin", directory: "/Users/dexonsmith/data/llvm/debug-info")
!2 = !{}
!3 = !{!4}
!4 = distinct !DISubprogram(name: "foo", scope: !1, file: !1, line: 1, type: !5, isLocal: false, isDefinition: true, scopeLine: 1, isOptimized: false, variables: !2)
!5 = !DISubroutineType(types: !6)
!6 = !{null}
!7 = !{i32 2, !"Dwarf Version", i32 2}
!8 = !{i32 2, !"Debug Info Version", i32 3}
!9 = !{i32 1, !"PIC Level", i32 2}
!10 = !{!"clang version 3.7.0 (trunk 231150) (llvm/trunk 231154)"}
!11 = !DILocalVariable(name: "X", scope: !4, file: !1, line: 2, type: !12)
!12 = !DIBasicType(name: "int", size: 32, align: 32, encoding: DW_ATE_signed)
!13 = !DIExpression()
!14 = !DILocation(line: 2, column: 9, scope: !4)
!15 = !DILocalVariable(name: "Y", scope: !4, file: !1, line: 3, type: !12)
!16 = !DILocation(line: 3, column: 9, scope: !4)
!17 = !DILocalVariable(name: "Z", scope: !18, file: !1, line: 5, type: !12)
!18 = distinct !DILexicalBlock(scope: !4, file: !1, line: 4, column: 5)
!19 = !DILocation(line: 5, column: 11, scope: !18)
!20 = !DILocation(line: 6, column: 11, scope: !18)
!21 = !DILocation(line: 6, column: 9, scope: !18)
!22 = !DILocation(line: 8, column: 9, scope: !4)
!23 = !DILocation(line: 8, column: 7, scope: !4)
!24 = !DILocation(line: 9, column: 3, scope: !4)

This example illustrates a few important details about LLVM debugging
information. In particular, it shows how the llvm.dbg.declare intrinsic and
location information, which are attached to an instruction, are applied
together to allow a debugger to analyze the relationship between statements,
variable definitions, and the code used to implement the function.

call void @llvm.dbg.declare(metadata i32* %X, metadata !11, metadata !13), !dbg !14
 ; [debug line = 2:7] [debug variable = X]

The first intrinsic %llvm.dbg.declare encodes debugging information for the
variable X. The metadata !dbg !14 attached to the intrinsic provides
scope information for the variable X.

!14 = !DILocation(line: 2, column: 9, scope: !4)
!4 = distinct !DISubprogram(name: "foo", scope: !1, file: !1, line: 1, type: !5,
 isLocal: false, isDefinition: true, scopeLine: 1,
 isOptimized: false, variables: !2)

Here !14 is metadata providing location information. In this example, scope is encoded by !4, a
subprogram descriptor. This way the location
information attached to the intrinsics indicates that the variable X is
declared at line number 2 at a function level scope in function foo.

Now lets take another example.

call void @llvm.dbg.declare(metadata i32* %Z, metadata !17, metadata !13), !dbg !19
 ; [debug line = 5:9] [debug variable = Z]

The third intrinsic %llvm.dbg.declare encodes debugging information for
variable Z. The metadata !dbg !19 attached to the intrinsic provides
scope information for the variable Z.

!18 = distinct !DILexicalBlock(scope: !4, file: !1, line: 4, column: 5)
!19 = !DILocation(line: 5, column: 11, scope: !18)

Here !19 indicates that Z is declared at line number 5 and column
number 0 inside of lexical scope !18. The lexical scope itself resides
inside of subprogram !4 described above.

The scope information attached with each instruction provides a straightforward
way to find instructions covered by a scope.

C/C++ front-end specific debug information

The C and C++ front-ends represent information about the program in a format
that is effectively identical to DWARF 3.0 [http://www.eagercon.com/dwarf/dwarf3std.htm] in terms of information
content. This allows code generators to trivially support native debuggers by
generating standard dwarf information, and contains enough information for
non-dwarf targets to translate it as needed.

This section describes the forms used to represent C and C++ programs. Other
languages could pattern themselves after this (which itself is tuned to
representing programs in the same way that DWARF 3 does), or they could choose
to provide completely different forms if they don’t fit into the DWARF model.
As support for debugging information gets added to the various LLVM
source-language front-ends, the information used should be documented here.

The following sections provide examples of a few C/C++ constructs and the debug
information that would best describe those constructs. The canonical
references are the DIDescriptor classes defined in
include/llvm/IR/DebugInfo.h and the implementations of the helper functions
in lib/IR/DIBuilder.cpp.

C/C++ source file information

llvm::Instruction provides easy access to metadata attached with an
instruction. One can extract line number information encoded in LLVM IR using
Instruction::getDebugLoc() and DILocation::getLine().

if (DILocation *Loc = I->getDebugLoc()) { // Here I is an LLVM instruction
 unsigned Line = Loc->getLine();
 StringRef File = Loc->getFilename();
 StringRef Dir = Loc->getDirectory();
}

C/C++ global variable information

Given an integer global variable declared as follows:

_Alignas(8) int MyGlobal = 100;

a C/C++ front-end would generate the following descriptors:

;;
;; Define the global itself.
;;
@MyGlobal = global i32 100, align 8, !dbg !0

;;
;; List of debug info of globals
;;
!llvm.dbg.cu = !{!1}

;; Some unrelated metadata.
!llvm.module.flags = !{!6, !7}
!llvm.ident = !{!8}

;; Define the global variable itself
!0 = distinct !DIGlobalVariable(name: "MyGlobal", scope: !1, file: !2, line: 1, type: !5, isLocal: false, isDefinition: true, align: 64)

;; Define the compile unit.
!1 = distinct !DICompileUnit(language: DW_LANG_C99, file: !2,
 producer: "clang version 4.0.0 (http://llvm.org/git/clang.git ae4deadbea242e8ea517eef662c30443f75bd086) (http://llvm.org/git/llvm.git 818b4c1539df3e51dc7e62c89ead4abfd348827d)",
 isOptimized: false, runtimeVersion: 0, emissionKind: FullDebug,
 enums: !3, globals: !4)

;;
;; Define the file
;;
!2 = !DIFile(filename: "/dev/stdin",
 directory: "/Users/dexonsmith/data/llvm/debug-info")

;; An empty array.
!3 = !{}

;; The Array of Global Variables
!4 = !{!0}

;;
;; Define the type
;;
!5 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)

;; Dwarf version to output.
!6 = !{i32 2, !"Dwarf Version", i32 4}

;; Debug info schema version.
!7 = !{i32 2, !"Debug Info Version", i32 3}

;; Compiler identification
!8 = !{!"clang version 4.0.0 (http://llvm.org/git/clang.git ae4deadbea242e8ea517eef662c30443f75bd086) (http://llvm.org/git/llvm.git 818b4c1539df3e51dc7e62c89ead4abfd348827d)"}

The align value in DIGlobalVariable description specifies variable alignment in
case it was forced by C11 _Alignas(), C++11 alignas() keywords or compiler
attribute __attribute__((aligned ())). In other case (when this field is missing)
alignment is considered default. This is used when producing DWARF output
for DW_AT_alignment value.

C/C++ function information

Given a function declared as follows:

int main(int argc, char *argv[]) {
 return 0;
}

a C/C++ front-end would generate the following descriptors:

;;
;; Define the anchor for subprograms.
;;
!4 = !DISubprogram(name: "main", scope: !1, file: !1, line: 1, type: !5,
 isLocal: false, isDefinition: true, scopeLine: 1,
 flags: DIFlagPrototyped, isOptimized: false,
 variables: !2)

;;
;; Define the subprogram itself.
;;
define i32 @main(i32 %argc, i8** %argv) !dbg !4 {
...
}

Debugging information format

Debugging Information Extension for Objective C Properties

Introduction

Objective C provides a simpler way to declare and define accessor methods using
declared properties. The language provides features to declare a property and
to let compiler synthesize accessor methods.

The debugger lets developer inspect Objective C interfaces and their instance
variables and class variables. However, the debugger does not know anything
about the properties defined in Objective C interfaces. The debugger consumes
information generated by compiler in DWARF format. The format does not support
encoding of Objective C properties. This proposal describes DWARF extensions to
encode Objective C properties, which the debugger can use to let developers
inspect Objective C properties.

Proposal

Objective C properties exist separately from class members. A property can be
defined only by “setter” and “getter” selectors, and be calculated anew on each
access. Or a property can just be a direct access to some declared ivar.
Finally it can have an ivar “automatically synthesized” for it by the compiler,
in which case the property can be referred to in user code directly using the
standard C dereference syntax as well as through the property “dot” syntax, but
there is no entry in the @interface declaration corresponding to this ivar.

To facilitate debugging, these properties we will add a new DWARF TAG into the
DW_TAG_structure_type definition for the class to hold the description of a
given property, and a set of DWARF attributes that provide said description.
The property tag will also contain the name and declared type of the property.

If there is a related ivar, there will also be a DWARF property attribute placed
in the DW_TAG_member DIE for that ivar referring back to the property TAG
for that property. And in the case where the compiler synthesizes the ivar
directly, the compiler is expected to generate a DW_TAG_member for that
ivar (with the DW_AT_artificial set to 1), whose name will be the name used
to access this ivar directly in code, and with the property attribute pointing
back to the property it is backing.

The following examples will serve as illustration for our discussion:

@interface I1 {
 int n2;
}

@property int p1;
@property int p2;
@end

@implementation I1
@synthesize p1;
@synthesize p2 = n2;
@end

This produces the following DWARF (this is a “pseudo dwarfdump” output):

0x00000100: TAG_structure_type [7] *
 AT_APPLE_runtime_class(0x10)
 AT_name("I1")
 AT_decl_file("Objc_Property.m")
 AT_decl_line(3)

0x00000110 TAG_APPLE_property
 AT_name ("p1")
 AT_type ({0x00000150} (int))

0x00000120: TAG_APPLE_property
 AT_name ("p2")
 AT_type ({0x00000150} (int))

0x00000130: TAG_member [8]
 AT_name("_p1")
 AT_APPLE_property ({0x00000110} "p1")
 AT_type({0x00000150} (int))
 AT_artificial (0x1)

0x00000140: TAG_member [8]
 AT_name("n2")
 AT_APPLE_property ({0x00000120} "p2")
 AT_type({0x00000150} (int))

0x00000150: AT_type((int))

Note, the current convention is that the name of the ivar for an
auto-synthesized property is the name of the property from which it derives
with an underscore prepended, as is shown in the example. But we actually
don’t need to know this convention, since we are given the name of the ivar
directly.

Also, it is common practice in ObjC to have different property declarations in
the @interface and @implementation - e.g. to provide a read-only property in
the interface,and a read-write interface in the implementation. In that case,
the compiler should emit whichever property declaration will be in force in the
current translation unit.

Developers can decorate a property with attributes which are encoded using
DW_AT_APPLE_property_attribute.

@property (readonly, nonatomic) int pr;

TAG_APPLE_property [8]
 AT_name("pr")
 AT_type ({0x00000147} (int))
 AT_APPLE_property_attribute (DW_APPLE_PROPERTY_readonly, DW_APPLE_PROPERTY_nonatomic)

The setter and getter method names are attached to the property using
DW_AT_APPLE_property_setter and DW_AT_APPLE_property_getter attributes.

@interface I1
@property (setter=myOwnP3Setter:) int p3;
-(void)myOwnP3Setter:(int)a;
@end

@implementation I1
@synthesize p3;
-(void)myOwnP3Setter:(int)a{ }
@end

The DWARF for this would be:

0x000003bd: TAG_structure_type [7] *
 AT_APPLE_runtime_class(0x10)
 AT_name("I1")
 AT_decl_file("Objc_Property.m")
 AT_decl_line(3)

0x000003cd TAG_APPLE_property
 AT_name ("p3")
 AT_APPLE_property_setter ("myOwnP3Setter:")
 AT_type({0x00000147} (int))

0x000003f3: TAG_member [8]
 AT_name("_p3")
 AT_type ({0x00000147} (int))
 AT_APPLE_property ({0x000003cd})
 AT_artificial (0x1)

New DWARF Tags

	TAG

	Value

	DW_TAG_APPLE_property

	0x4200

New DWARF Attributes

	Attribute

	Value

	Classes

	DW_AT_APPLE_property

	0x3fed

	Reference

	DW_AT_APPLE_property_getter

	0x3fe9

	String

	DW_AT_APPLE_property_setter

	0x3fea

	String

	DW_AT_APPLE_property_attribute

	0x3feb

	Constant

New DWARF Constants

	Name

	Value

	DW_APPLE_PROPERTY_readonly

	0x01

	DW_APPLE_PROPERTY_getter

	0x02

	DW_APPLE_PROPERTY_assign

	0x04

	DW_APPLE_PROPERTY_readwrite

	0x08

	DW_APPLE_PROPERTY_retain

	0x10

	DW_APPLE_PROPERTY_copy

	0x20

	DW_APPLE_PROPERTY_nonatomic

	0x40

	DW_APPLE_PROPERTY_setter

	0x80

	DW_APPLE_PROPERTY_atomic

	0x100

	DW_APPLE_PROPERTY_weak

	0x200

	DW_APPLE_PROPERTY_strong

	0x400

	DW_APPLE_PROPERTY_unsafe_unretained

	0x800

	DW_APPLE_PROPERTY_nullability

	0x1000

	DW_APPLE_PROPERTY_null_resettable

	0x2000

	DW_APPLE_PROPERTY_class

	0x4000

Name Accelerator Tables

Introduction

The “.debug_pubnames” and “.debug_pubtypes” formats are not what a
debugger needs. The “pub” in the section name indicates that the entries
in the table are publicly visible names only. This means no static or hidden
functions show up in the “.debug_pubnames”. No static variables or private
class variables are in the “.debug_pubtypes”. Many compilers add different
things to these tables, so we can’t rely upon the contents between gcc, icc, or
clang.

The typical query given by users tends not to match up with the contents of
these tables. For example, the DWARF spec states that “In the case of the name
of a function member or static data member of a C++ structure, class or union,
the name presented in the “.debug_pubnames” section is not the simple name
given by the DW_AT_name attribute of the referenced debugging information
entry, but rather the fully qualified name of the data or function member.”
So the only names in these tables for complex C++ entries is a fully
qualified name. Debugger users tend not to enter their search strings as
“a::b::c(int,const Foo&) const”, but rather as “c”, “b::c” , or
“a::b::c”. So the name entered in the name table must be demangled in
order to chop it up appropriately and additional names must be manually entered
into the table to make it effective as a name lookup table for debuggers to
use.

All debuggers currently ignore the “.debug_pubnames” table as a result of
its inconsistent and useless public-only name content making it a waste of
space in the object file. These tables, when they are written to disk, are not
sorted in any way, leaving every debugger to do its own parsing and sorting.
These tables also include an inlined copy of the string values in the table
itself making the tables much larger than they need to be on disk, especially
for large C++ programs.

Can’t we just fix the sections by adding all of the names we need to this
table? No, because that is not what the tables are defined to contain and we
won’t know the difference between the old bad tables and the new good tables.
At best we could make our own renamed sections that contain all of the data we
need.

These tables are also insufficient for what a debugger like LLDB needs. LLDB
uses clang for its expression parsing where LLDB acts as a PCH. LLDB is then
often asked to look for type “foo” or namespace “bar”, or list items in
namespace “baz”. Namespaces are not included in the pubnames or pubtypes
tables. Since clang asks a lot of questions when it is parsing an expression,
we need to be very fast when looking up names, as it happens a lot. Having new
accelerator tables that are optimized for very quick lookups will benefit this
type of debugging experience greatly.

We would like to generate name lookup tables that can be mapped into memory
from disk, and used as is, with little or no up-front parsing. We would also
be able to control the exact content of these different tables so they contain
exactly what we need. The Name Accelerator Tables were designed to fix these
issues. In order to solve these issues we need to:

	Have a format that can be mapped into memory from disk and used as is

	Lookups should be very fast

	Extensible table format so these tables can be made by many producers

	Contain all of the names needed for typical lookups out of the box

	Strict rules for the contents of tables

Table size is important and the accelerator table format should allow the reuse
of strings from common string tables so the strings for the names are not
duplicated. We also want to make sure the table is ready to be used as-is by
simply mapping the table into memory with minimal header parsing.

The name lookups need to be fast and optimized for the kinds of lookups that
debuggers tend to do. Optimally we would like to touch as few parts of the
mapped table as possible when doing a name lookup and be able to quickly find
the name entry we are looking for, or discover there are no matches. In the
case of debuggers we optimized for lookups that fail most of the time.

Each table that is defined should have strict rules on exactly what is in the
accelerator tables and documented so clients can rely on the content.

Hash Tables

Standard Hash Tables

Typical hash tables have a header, buckets, and each bucket points to the
bucket contents:

.------------.
HEADER
BUCKETS

DATA
`------------'

The BUCKETS are an array of offsets to DATA for each hash:

.------------.
| 0x00001000 | BUCKETS[0]
| 0x00002000 | BUCKETS[1]
| 0x00002200 | BUCKETS[2]
| 0x000034f0 | BUCKETS[3]
| | ...
| 0xXXXXXXXX | BUCKETS[n_buckets]
'------------'

So for bucket[3] in the example above, we have an offset into the table
0x000034f0 which points to a chain of entries for the bucket. Each bucket must
contain a next pointer, full 32 bit hash value, the string itself, and the data
for the current string value.

 .------------.
0x000034f0: | 0x00003500 | next pointer
 | 0x12345678 | 32 bit hash
 | "erase" | string value
 | data[n] | HashData for this bucket
 |------------|
0x00003500: | 0x00003550 | next pointer
 | 0x29273623 | 32 bit hash
 | "dump" | string value
 | data[n] | HashData for this bucket
 |------------|
0x00003550: | 0x00000000 | next pointer
 | 0x82638293 | 32 bit hash
 | "main" | string value
 | data[n] | HashData for this bucket
 `------------'

The problem with this layout for debuggers is that we need to optimize for the
negative lookup case where the symbol we’re searching for is not present. So
if we were to lookup “printf” in the table above, we would make a 32-bit
hash for “printf”, it might match bucket[3]. We would need to go to
the offset 0x000034f0 and start looking to see if our 32 bit hash matches. To
do so, we need to read the next pointer, then read the hash, compare it, and
skip to the next bucket. Each time we are skipping many bytes in memory and
touching new pages just to do the compare on the full 32 bit hash. All of
these accesses then tell us that we didn’t have a match.

Name Hash Tables

To solve the issues mentioned above we have structured the hash tables a bit
differently: a header, buckets, an array of all unique 32 bit hash values,
followed by an array of hash value data offsets, one for each hash value, then
the data for all hash values:

.-------------.
HEADER
BUCKETS

HASHES

OFFSETS

DATA
`-------------'

The BUCKETS in the name tables are an index into the HASHES array. By
making all of the full 32 bit hash values contiguous in memory, we allow
ourselves to efficiently check for a match while touching as little memory as
possible. Most often checking the 32 bit hash values is as far as the lookup
goes. If it does match, it usually is a match with no collisions. So for a
table with “n_buckets” buckets, and “n_hashes” unique 32 bit hash
values, we can clarify the contents of the BUCKETS, HASHES and
OFFSETS as:

.-------------------------.
| HEADER.magic | uint32_t
| HEADER.version | uint16_t
| HEADER.hash_function | uint16_t
| HEADER.bucket_count | uint32_t
| HEADER.hashes_count | uint32_t
| HEADER.header_data_len | uint32_t
| HEADER_DATA | HeaderData
|-------------------------|
| BUCKETS | uint32_t[n_buckets] // 32 bit hash indexes
|-------------------------|
| HASHES | uint32_t[n_hashes] // 32 bit hash values
|-------------------------|
| OFFSETS | uint32_t[n_hashes] // 32 bit offsets to hash value data
|-------------------------|
| ALL HASH DATA |
`-------------------------'

So taking the exact same data from the standard hash example above we end up
with:

 .------------.
 | HEADER |
 |------------|
 | 0 | BUCKETS[0]
 | 2 | BUCKETS[1]
 | 5 | BUCKETS[2]
 | 6 | BUCKETS[3]
 | | ...
 | ... | BUCKETS[n_buckets]
 |------------|
 | 0x........ | HASHES[0]
 | 0x........ | HASHES[1]
 | 0x........ | HASHES[2]
 | 0x........ | HASHES[3]
 | 0x........ | HASHES[4]
 | 0x........ | HASHES[5]
 | 0x12345678 | HASHES[6] hash for BUCKETS[3]
 | 0x29273623 | HASHES[7] hash for BUCKETS[3]
 | 0x82638293 | HASHES[8] hash for BUCKETS[3]
 | 0x........ | HASHES[9]
 | 0x........ | HASHES[10]
 | 0x........ | HASHES[11]
 | 0x........ | HASHES[12]
 | 0x........ | HASHES[13]
 | 0x........ | HASHES[n_hashes]
 |------------|
 | 0x........ | OFFSETS[0]
 | 0x........ | OFFSETS[1]
 | 0x........ | OFFSETS[2]
 | 0x........ | OFFSETS[3]
 | 0x........ | OFFSETS[4]
 | 0x........ | OFFSETS[5]
 | 0x000034f0 | OFFSETS[6] offset for BUCKETS[3]
 | 0x00003500 | OFFSETS[7] offset for BUCKETS[3]
 | 0x00003550 | OFFSETS[8] offset for BUCKETS[3]
 | 0x........ | OFFSETS[9]
 | 0x........ | OFFSETS[10]
 | 0x........ | OFFSETS[11]
 | 0x........ | OFFSETS[12]
 | 0x........ | OFFSETS[13]
 | 0x........ | OFFSETS[n_hashes]
 |------------|
 | |
 | |
 | |
 | |
 | |
 |------------|
0x000034f0: | 0x00001203 | .debug_str ("erase")
 | 0x00000004 | A 32 bit array count - number of HashData with name "erase"
 | 0x........ | HashData[0]
 | 0x........ | HashData[1]
 | 0x........ | HashData[2]
 | 0x........ | HashData[3]
 | 0x00000000 | String offset into .debug_str (terminate data for hash)
 |------------|
0x00003500: | 0x00001203 | String offset into .debug_str ("collision")
 | 0x00000002 | A 32 bit array count - number of HashData with name "collision"
 | 0x........ | HashData[0]
 | 0x........ | HashData[1]
 | 0x00001203 | String offset into .debug_str ("dump")
 | 0x00000003 | A 32 bit array count - number of HashData with name "dump"
 | 0x........ | HashData[0]
 | 0x........ | HashData[1]
 | 0x........ | HashData[2]
 | 0x00000000 | String offset into .debug_str (terminate data for hash)
 |------------|
0x00003550: | 0x00001203 | String offset into .debug_str ("main")
 | 0x00000009 | A 32 bit array count - number of HashData with name "main"
 | 0x........ | HashData[0]
 | 0x........ | HashData[1]
 | 0x........ | HashData[2]
 | 0x........ | HashData[3]
 | 0x........ | HashData[4]
 | 0x........ | HashData[5]
 | 0x........ | HashData[6]
 | 0x........ | HashData[7]
 | 0x........ | HashData[8]
 | 0x00000000 | String offset into .debug_str (terminate data for hash)
 `------------'

So we still have all of the same data, we just organize it more efficiently for
debugger lookup. If we repeat the same “printf” lookup from above, we
would hash “printf” and find it matches BUCKETS[3] by taking the 32 bit
hash value and modulo it by n_buckets. BUCKETS[3] contains “6” which
is the index into the HASHES table. We would then compare any consecutive
32 bit hashes values in the HASHES array as long as the hashes would be in
BUCKETS[3]. We do this by verifying that each subsequent hash value modulo
n_buckets is still 3. In the case of a failed lookup we would access the
memory for BUCKETS[3], and then compare a few consecutive 32 bit hashes
before we know that we have no match. We don’t end up marching through
multiple words of memory and we really keep the number of processor data cache
lines being accessed as small as possible.

The string hash that is used for these lookup tables is the Daniel J.
Bernstein hash which is also used in the ELF GNU_HASH sections. It is a
very good hash for all kinds of names in programs with very few hash
collisions.

Empty buckets are designated by using an invalid hash index of UINT32_MAX.

Details

These name hash tables are designed to be generic where specializations of the
table get to define additional data that goes into the header (“HeaderData”),
how the string value is stored (“KeyType”) and the content of the data for each
hash value.

Header Layout

The header has a fixed part, and the specialized part. The exact format of the
header is:

struct Header
{
 uint32_t magic; // 'HASH' magic value to allow endian detection
 uint16_t version; // Version number
 uint16_t hash_function; // The hash function enumeration that was used
 uint32_t bucket_count; // The number of buckets in this hash table
 uint32_t hashes_count; // The total number of unique hash values and hash data offsets in this table
 uint32_t header_data_len; // The bytes to skip to get to the hash indexes (buckets) for correct alignment
 // Specifically the length of the following HeaderData field - this does not
 // include the size of the preceding fields
 HeaderData header_data; // Implementation specific header data
};

The header starts with a 32 bit “magic” value which must be 'HASH'
encoded as an ASCII integer. This allows the detection of the start of the
hash table and also allows the table’s byte order to be determined so the table
can be correctly extracted. The “magic” value is followed by a 16 bit
version number which allows the table to be revised and modified in the
future. The current version number is 1. hash_function is a uint16_t
enumeration that specifies which hash function was used to produce this table.
The current values for the hash function enumerations include:

enum HashFunctionType
{
 eHashFunctionDJB = 0u, // Daniel J Bernstein hash function
};

bucket_count is a 32 bit unsigned integer that represents how many buckets
are in the BUCKETS array. hashes_count is the number of unique 32 bit
hash values that are in the HASHES array, and is the same number of offsets
are contained in the OFFSETS array. header_data_len specifies the size
in bytes of the HeaderData that is filled in by specialized versions of
this table.

Fixed Lookup

The header is followed by the buckets, hashes, offsets, and hash value data.

struct FixedTable
{
 uint32_t buckets[Header.bucket_count]; // An array of hash indexes into the "hashes[]" array below
 uint32_t hashes [Header.hashes_count]; // Every unique 32 bit hash for the entire table is in this table
 uint32_t offsets[Header.hashes_count]; // An offset that corresponds to each item in the "hashes[]" array above
};

buckets is an array of 32 bit indexes into the hashes array. The
hashes array contains all of the 32 bit hash values for all names in the
hash table. Each hash in the hashes table has an offset in the offsets
array that points to the data for the hash value.

This table setup makes it very easy to repurpose these tables to contain
different data, while keeping the lookup mechanism the same for all tables.
This layout also makes it possible to save the table to disk and map it in
later and do very efficient name lookups with little or no parsing.

DWARF lookup tables can be implemented in a variety of ways and can store a lot
of information for each name. We want to make the DWARF tables extensible and
able to store the data efficiently so we have used some of the DWARF features
that enable efficient data storage to define exactly what kind of data we store
for each name.

The HeaderData contains a definition of the contents of each HashData chunk.
We might want to store an offset to all of the debug information entries (DIEs)
for each name. To keep things extensible, we create a list of items, or
Atoms, that are contained in the data for each name. First comes the type of
the data in each atom:

enum AtomType
{
 eAtomTypeNULL = 0u,
 eAtomTypeDIEOffset = 1u, // DIE offset, check form for encoding
 eAtomTypeCUOffset = 2u, // DIE offset of the compiler unit header that contains the item in question
 eAtomTypeTag = 3u, // DW_TAG_xxx value, should be encoded as DW_FORM_data1 (if no tags exceed 255) or DW_FORM_data2
 eAtomTypeNameFlags = 4u, // Flags from enum NameFlags
 eAtomTypeTypeFlags = 5u, // Flags from enum TypeFlags
};

The enumeration values and their meanings are:

eAtomTypeNULL - a termination atom that specifies the end of the atom list
eAtomTypeDIEOffset - an offset into the .debug_info section for the DWARF DIE for this name
eAtomTypeCUOffset - an offset into the .debug_info section for the CU that contains the DIE
eAtomTypeDIETag - The DW_TAG_XXX enumeration value so you don't have to parse the DWARF to see what it is
eAtomTypeNameFlags - Flags for functions and global variables (isFunction, isInlined, isExternal...)
eAtomTypeTypeFlags - Flags for types (isCXXClass, isObjCClass, ...)

Then we allow each atom type to define the atom type and how the data for each
atom type data is encoded:

struct Atom
{
 uint16_t type; // AtomType enum value
 uint16_t form; // DWARF DW_FORM_XXX defines
};

The form type above is from the DWARF specification and defines the exact
encoding of the data for the Atom type. See the DWARF specification for the
DW_FORM_ definitions.

struct HeaderData
{
 uint32_t die_offset_base;
 uint32_t atom_count;
 Atoms atoms[atom_count0];
};

HeaderData defines the base DIE offset that should be added to any atoms
that are encoded using the DW_FORM_ref1, DW_FORM_ref2,
DW_FORM_ref4, DW_FORM_ref8 or DW_FORM_ref_udata. It also defines
what is contained in each HashData object – Atom.form tells us how large
each field will be in the HashData and the Atom.type tells us how this data
should be interpreted.

For the current implementations of the “.apple_names” (all functions +
globals), the “.apple_types” (names of all types that are defined), and
the “.apple_namespaces” (all namespaces), we currently set the Atom
array to be:

HeaderData.atom_count = 1;
HeaderData.atoms[0].type = eAtomTypeDIEOffset;
HeaderData.atoms[0].form = DW_FORM_data4;

This defines the contents to be the DIE offset (eAtomTypeDIEOffset) that is
encoded as a 32 bit value (DW_FORM_data4). This allows a single name to have
multiple matching DIEs in a single file, which could come up with an inlined
function for instance. Future tables could include more information about the
DIE such as flags indicating if the DIE is a function, method, block,
or inlined.

The KeyType for the DWARF table is a 32 bit string table offset into the
“.debug_str” table. The “.debug_str” is the string table for the DWARF which
may already contain copies of all of the strings. This helps make sure, with
help from the compiler, that we reuse the strings between all of the DWARF
sections and keeps the hash table size down. Another benefit to having the
compiler generate all strings as DW_FORM_strp in the debug info, is that
DWARF parsing can be made much faster.

After a lookup is made, we get an offset into the hash data. The hash data
needs to be able to deal with 32 bit hash collisions, so the chunk of data
at the offset in the hash data consists of a triple:

uint32_t str_offset
uint32_t hash_data_count
HashData[hash_data_count]

If “str_offset” is zero, then the bucket contents are done. 99.9% of the
hash data chunks contain a single item (no 32 bit hash collision):

.------------.
| 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main")
| 0x00000004 | uint32_t HashData count
| 0x........ | uint32_t HashData[0] DIE offset
| 0x........ | uint32_t HashData[1] DIE offset
| 0x........ | uint32_t HashData[2] DIE offset
| 0x........ | uint32_t HashData[3] DIE offset
| 0x00000000 | uint32_t KeyType (end of hash chain)
`------------'

If there are collisions, you will have multiple valid string offsets:

.------------.
| 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main")
| 0x00000004 | uint32_t HashData count
| 0x........ | uint32_t HashData[0] DIE offset
| 0x........ | uint32_t HashData[1] DIE offset
| 0x........ | uint32_t HashData[2] DIE offset
| 0x........ | uint32_t HashData[3] DIE offset
| 0x00002023 | uint32_t KeyType (.debug_str[0x0002023] => "print")
| 0x00000002 | uint32_t HashData count
| 0x........ | uint32_t HashData[0] DIE offset
| 0x........ | uint32_t HashData[1] DIE offset
| 0x00000000 | uint32_t KeyType (end of hash chain)
`------------'

Current testing with real world C++ binaries has shown that there is around 1
32 bit hash collision per 100,000 name entries.

Contents

As we said, we want to strictly define exactly what is included in the
different tables. For DWARF, we have 3 tables: “.apple_names”,
“.apple_types”, and “.apple_namespaces”.

“.apple_names” sections should contain an entry for each DWARF DIE whose
DW_TAG is a DW_TAG_label, DW_TAG_inlined_subroutine, or
DW_TAG_subprogram that has address attributes: DW_AT_low_pc,
DW_AT_high_pc, DW_AT_ranges or DW_AT_entry_pc. It also contains
DW_TAG_variable DIEs that have a DW_OP_addr in the location (global and
static variables). All global and static variables should be included,
including those scoped within functions and classes. For example using the
following code:

static int var = 0;

void f ()
{
 static int var = 0;
}

Both of the static var variables would be included in the table. All
functions should emit both their full names and their basenames. For C or C++,
the full name is the mangled name (if available) which is usually in the
DW_AT_MIPS_linkage_name attribute, and the DW_AT_name contains the
function basename. If global or static variables have a mangled name in a
DW_AT_MIPS_linkage_name attribute, this should be emitted along with the
simple name found in the DW_AT_name attribute.

“.apple_types” sections should contain an entry for each DWARF DIE whose
tag is one of:

	DW_TAG_array_type

	DW_TAG_class_type

	DW_TAG_enumeration_type

	DW_TAG_pointer_type

	DW_TAG_reference_type

	DW_TAG_string_type

	DW_TAG_structure_type

	DW_TAG_subroutine_type

	DW_TAG_typedef

	DW_TAG_union_type

	DW_TAG_ptr_to_member_type

	DW_TAG_set_type

	DW_TAG_subrange_type

	DW_TAG_base_type

	DW_TAG_const_type

	DW_TAG_file_type

	DW_TAG_namelist

	DW_TAG_packed_type

	DW_TAG_volatile_type

	DW_TAG_restrict_type

	DW_TAG_atomic_type

	DW_TAG_interface_type

	DW_TAG_unspecified_type

	DW_TAG_shared_type

Only entries with a DW_AT_name attribute are included, and the entry must
not be a forward declaration (DW_AT_declaration attribute with a non-zero
value). For example, using the following code:

int main ()
{
 int *b = 0;
 return *b;
}

We get a few type DIEs:

0x00000067: TAG_base_type [5]
 AT_encoding(DW_ATE_signed)
 AT_name("int")
 AT_byte_size(0x04)

0x0000006e: TAG_pointer_type [6]
 AT_type({0x00000067} (int))
 AT_byte_size(0x08)

The DW_TAG_pointer_type is not included because it does not have a DW_AT_name.

“.apple_namespaces” section should contain all DW_TAG_namespace DIEs.
If we run into a namespace that has no name this is an anonymous namespace, and
the name should be output as “(anonymous namespace)” (without the quotes).
Why? This matches the output of the abi::cxa_demangle() that is in the
standard C++ library that demangles mangled names.

Language Extensions and File Format Changes

Objective-C Extensions

“.apple_objc” section should contain all DW_TAG_subprogram DIEs for an
Objective-C class. The name used in the hash table is the name of the
Objective-C class itself. If the Objective-C class has a category, then an
entry is made for both the class name without the category, and for the class
name with the category. So if we have a DIE at offset 0x1234 with a name of
method “-[NSString(my_additions) stringWithSpecialString:]”, we would add
an entry for “NSString” that points to DIE 0x1234, and an entry for
“NSString(my_additions)” that points to 0x1234. This allows us to quickly
track down all Objective-C methods for an Objective-C class when doing
expressions. It is needed because of the dynamic nature of Objective-C where
anyone can add methods to a class. The DWARF for Objective-C methods is also
emitted differently from C++ classes where the methods are not usually
contained in the class definition, they are scattered about across one or more
compile units. Categories can also be defined in different shared libraries.
So we need to be able to quickly find all of the methods and class functions
given the Objective-C class name, or quickly find all methods and class
functions for a class + category name. This table does not contain any
selector names, it just maps Objective-C class names (or class names +
category) to all of the methods and class functions. The selectors are added
as function basenames in the “.debug_names” section.

In the “.apple_names” section for Objective-C functions, the full name is
the entire function name with the brackets (“-[NSString
stringWithCString:]”) and the basename is the selector only
(“stringWithCString:”).

Mach-O Changes

The sections names for the apple hash tables are for non-mach-o files. For
mach-o files, the sections should be contained in the __DWARF segment with
names as follows:

	“.apple_names” -> “__apple_names”

	“.apple_types” -> “__apple_types”

	“.apple_namespaces” -> “__apple_namespac” (16 character limit)

	“.apple_objc” -> “__apple_objc”

CodeView Debug Info Format

LLVM supports emitting CodeView, the Microsoft debug info format, and this
section describes the design and implementation of that support.

Format Background

CodeView as a format is clearly oriented around C++ debugging, and in C++, the
majority of debug information tends to be type information. Therefore, the
overriding design constraint of CodeView is the separation of type information
from other “symbol” information so that type information can be efficiently
merged across translation units. Both type information and symbol information is
generally stored as a sequence of records, where each record begins with a
16-bit record size and a 16-bit record kind.

Type information is usually stored in the .debug$T section of the object
file. All other debug info, such as line info, string table, symbol info, and
inlinee info, is stored in one or more .debug$S sections. There may only be
one .debug$T section per object file, since all other debug info refers to
it. If a PDB (enabled by the /Zi MSVC option) was used during compilation,
the .debug$T section will contain only an LF_TYPESERVER2 record pointing
to the PDB. When using PDBs, symbol information appears to remain in the object
file .debug$S sections.

Type records are referred to by their index, which is the number of records in
the stream before a given record plus 0x1000. Many common basic types, such
as the basic integral types and unqualified pointers to them, are represented
using type indices less than 0x1000. Such basic types are built in to
CodeView consumers and do not require type records.

Each type record may only contain type indices that are less than its own type
index. This ensures that the graph of type stream references is acyclic. While
the source-level type graph may contain cycles through pointer types (consider a
linked list struct), these cycles are removed from the type stream by always
referring to the forward declaration record of user-defined record types. Only
“symbol” records in the .debug$S streams may refer to complete,
non-forward-declaration type records.

Working with CodeView

These are instructions for some common tasks for developers working to improve
LLVM’s CodeView support. Most of them revolve around using the CodeView dumper
embedded in llvm-readobj.

	Testing MSVC’s output:

$ cl -c -Z7 foo.cpp # Use /Z7 to keep types in the object file
$ llvm-readobj -codeview foo.obj

	Getting LLVM IR debug info out of Clang:

$ clang -g -gcodeview --target=x86_64-windows-msvc foo.cpp -S -emit-llvm

Use this to generate LLVM IR for LLVM test cases.

	Generate and dump CodeView from LLVM IR metadata:

$ llc foo.ll -filetype=obj -o foo.obj
$ llvm-readobj -codeview foo.obj > foo.txt

Use this pattern in lit test cases and FileCheck the output of llvm-readobj

Improving LLVM’s CodeView support is a process of finding interesting type
records, constructing a C++ test case that makes MSVC emit those records,
dumping the records, understanding them, and then generating equivalent records
in LLVM’s backend.

Testing Debug Info Preservation in Optimizations

The following paragraphs are an introduction to the debugify utility
and examples of how to use it in regression tests to check debug info
preservation after optimizations.

The debugify utility

The debugify synthetic debug info testing utility consists of two
main parts. The debugify pass and the check-debugify one. They are
meant to be used with opt for development purposes.

The first applies synthetic debug information to every instruction of the module,
while the latter checks that this DI is still available after an optimization
has occurred, reporting any errors/warnings while doing so.

The instructions are assigned sequentially increasing line locations,
and are immediately used by debug value intrinsics when possible.

For example, here is a module before:

define void @f(i32* %x) {
entry:
 %x.addr = alloca i32*, align 8
 store i32* %x, i32** %x.addr, align 8
 %0 = load i32*, i32** %x.addr, align 8
 store i32 10, i32* %0, align 4
 ret void
}

and after running opt -debugify on it we get:

define void @f(i32* %x) !dbg !6 {
entry:
 %x.addr = alloca i32*, align 8, !dbg !12
 call void @llvm.dbg.value(metadata i32** %x.addr, metadata !9, metadata !DIExpression()), !dbg !12
 store i32* %x, i32** %x.addr, align 8, !dbg !13
 %0 = load i32*, i32** %x.addr, align 8, !dbg !14
 call void @llvm.dbg.value(metadata i32* %0, metadata !11, metadata !DIExpression()), !dbg !14
 store i32 10, i32* %0, align 4, !dbg !15
 ret void, !dbg !16
}

!llvm.dbg.cu = !{!0}
!llvm.debugify = !{!3, !4}
!llvm.module.flags = !{!5}

!0 = distinct !DICompileUnit(language: DW_LANG_C, file: !1, producer: "debugify", isOptimized: true, runtimeVersion: 0, emissionKind: FullDebug, enums: !2)
!1 = !DIFile(filename: "debugify-sample.ll", directory: "/")
!2 = !{}
!3 = !{i32 5}
!4 = !{i32 2}
!5 = !{i32 2, !"Debug Info Version", i32 3}
!6 = distinct !DISubprogram(name: "f", linkageName: "f", scope: null, file: !1, line: 1, type: !7, isLocal: false, isDefinition: true, scopeLine: 1, isOptimized: true, unit: !0, retainedNodes: !8)
!7 = !DISubroutineType(types: !2)
!8 = !{!9, !11}
!9 = !DILocalVariable(name: "1", scope: !6, file: !1, line: 1, type: !10)
!10 = !DIBasicType(name: "ty64", size: 64, encoding: DW_ATE_unsigned)
!11 = !DILocalVariable(name: "2", scope: !6, file: !1, line: 3, type: !10)
!12 = !DILocation(line: 1, column: 1, scope: !6)
!13 = !DILocation(line: 2, column: 1, scope: !6)
!14 = !DILocation(line: 3, column: 1, scope: !6)
!15 = !DILocation(line: 4, column: 1, scope: !6)
!16 = !DILocation(line: 5, column: 1, scope: !6)

The following is an example of the -check-debugify output:

$ opt -enable-debugify -loop-vectorize llvm/test/Transforms/LoopVectorize/i8-induction.ll -disable-output
ERROR: Instruction with empty DebugLoc in function f -- %index = phi i32 [0, %vector.ph], [%index.next, %vector.body]

Errors/warnings can range from instructions with empty debug location to an
instruction having a type that’s incompatible with the source variable it describes,
all the way to missing lines and missing debug value intrinsics.

Fixing errors

Each of the errors above has a relevant API available to fix it.

	In the case of missing debug location, Instruction::setDebugLoc or possibly
IRBuilder::setCurrentDebugLocation when using a Builder and the new location
should be reused.

	When a debug value has incompatible type llvm::replaceAllDbgUsesWith can be used.
After a RAUW call an incompatible type error can occur because RAUW does not handle
widening and narrowing of variables while llvm::replaceAllDbgUsesWith does. It is
also capable of changing the DWARF expression used by the debugger to describe the variable.
It also prevents use-before-def by salvaging or deleting invalid debug values.

	When a debug value is missing llvm::salvageDebugInfo can be used when no replacement
exists, or llvm::replaceAllDbgUsesWith when a replacement exists.

Using debugify

In order for check-debugify to work, the DI must be coming from
debugify. Thus, modules with existing DI will be skipped.

The most straightforward way to use debugify is as follows:

$ opt -debugify -pass-to-test -check-debugify sample.ll

This will inject synthetic DI to sample.ll run the pass-to-test
and then check for missing DI.

Some other ways to run debugify are avaliable:

Same as the above example.
$ opt -enable-debugify -pass-to-test sample.ll

Suppresses verbose debugify output.
$ opt -enable-debugify -debugify-quiet -pass-to-test sample.ll

Prepend -debugify before and append -check-debugify -strip after
each pass on the pipeline (similar to -verify-each).
$ opt -debugify-each -O2 sample.ll

debugify can also be used to test a backend, e.g:

$ opt -debugify < sample.ll | llc -o -

debugify in regression tests

The -debugify pass is especially helpful when it comes to testing that
a given pass preserves DI while transforming the module. For this to work,
the -debugify output must be stable enough to use in regression tests.
Changes to this pass are not allowed to break existing tests.

It allows us to test for DI loss in the same tests we check that the
transformation is actually doing what it should.

Here is an example from test/Transforms/InstCombine/cast-mul-select.ll:

; RUN: opt < %s -debugify -instcombine -S | FileCheck %s --check-prefix=DEBUGINFO

define i32 @mul(i32 %x, i32 %y) {
; DBGINFO-LABEL: @mul(
; DBGINFO-NEXT: [[C:%.*]] = mul i32 {{.*}}
; DBGINFO-NEXT: call void @llvm.dbg.value(metadata i32 [[C]]
; DBGINFO-NEXT: [[D:%.*]] = and i32 {{.*}}
; DBGINFO-NEXT: call void @llvm.dbg.value(metadata i32 [[D]]

 %A = trunc i32 %x to i8
 %B = trunc i32 %y to i8
 %C = mul i8 %A, %B
 %D = zext i8 %C to i32
 ret i32 %D
}

Here we test that the two dbg.value instrinsics are preserved and
are correctly pointing to the [[C]] and [[D]] variables.

Note

Note, that when writing this kind of regression tests, it is important
to make them as robust as possible. That’s why we should try to avoid
hardcoding line/variable numbers in check lines. If for example you test
for a DILocation to have a specific line number, and someone later adds
an instruction before the one we check the test will fail. In the cases this
can’t be avoided (say, if a test wouldn’t be precise enough), moving the
test to it’s own file is preferred.

 Auto-Vectorization in LLVM

Auto-Vectorization in LLVM

	The Loop Vectorizer

	Usage

	Command line flags

	Pragma loop hint directives

	Diagnostics

	Features

	Loops with unknown trip count

	Runtime Checks of Pointers

	Reductions

	Inductions

	If Conversion

	Pointer Induction Variables

	Reverse Iterators

	Scatter / Gather

	Vectorization of Mixed Types

	Global Structures Alias Analysis

	Vectorization of function calls

	Partial unrolling during vectorization

	Performance

	Ongoing Development Directions

	The SLP Vectorizer

	Details

	Usage

LLVM has two vectorizers: The Loop Vectorizer,
which operates on Loops, and the SLP Vectorizer. These vectorizers
focus on different optimization opportunities and use different techniques.
The SLP vectorizer merges multiple scalars that are found in the code into
vectors while the Loop Vectorizer widens instructions in loops
to operate on multiple consecutive iterations.

Both the Loop Vectorizer and the SLP Vectorizer are enabled by default.

The Loop Vectorizer

Usage

The Loop Vectorizer is enabled by default, but it can be disabled
through clang using the command line flag:

$ clang ... -fno-vectorize file.c

Command line flags

The loop vectorizer uses a cost model to decide on the optimal vectorization factor
and unroll factor. However, users of the vectorizer can force the vectorizer to use
specific values. Both ‘clang’ and ‘opt’ support the flags below.

Users can control the vectorization SIMD width using the command line flag “-force-vector-width”.

$ clang -mllvm -force-vector-width=8 ...
$ opt -loop-vectorize -force-vector-width=8 ...

Users can control the unroll factor using the command line flag “-force-vector-interleave”

$ clang -mllvm -force-vector-interleave=2 ...
$ opt -loop-vectorize -force-vector-interleave=2 ...

Pragma loop hint directives

The #pragma clang loop directive allows loop vectorization hints to be
specified for the subsequent for, while, do-while, or c++11 range-based for
loop. The directive allows vectorization and interleaving to be enabled or
disabled. Vector width as well as interleave count can also be manually
specified. The following example explicitly enables vectorization and
interleaving:

#pragma clang loop vectorize(enable) interleave(enable)
while(...) {
 ...
}

The following example implicitly enables vectorization and interleaving by
specifying a vector width and interleaving count:

#pragma clang loop vectorize_width(2) interleave_count(2)
for(...) {
 ...
}

See the Clang
language extensions [http://clang.llvm.org/docs/LanguageExtensions.html#extensions-for-loop-hint-optimizations]
for details.

Diagnostics

Many loops cannot be vectorized including loops with complicated control flow,
unvectorizable types, and unvectorizable calls. The loop vectorizer generates
optimization remarks which can be queried using command line options to identify
and diagnose loops that are skipped by the loop-vectorizer.

Optimization remarks are enabled using:

-Rpass=loop-vectorize identifies loops that were successfully vectorized.

-Rpass-missed=loop-vectorize identifies loops that failed vectorization and
indicates if vectorization was specified.

-Rpass-analysis=loop-vectorize identifies the statements that caused
vectorization to fail. If in addition -fsave-optimization-record is
provided, multiple causes of vectorization failure may be listed (this behavior
might change in the future).

Consider the following loop:

#pragma clang loop vectorize(enable)
for (int i = 0; i < Length; i++) {
 switch(A[i]) {
 case 0: A[i] = i*2; break;
 case 1: A[i] = i; break;
 default: A[i] = 0;
 }
}

The command line -Rpass-missed=loop-vectorized prints the remark:

no_switch.cpp:4:5: remark: loop not vectorized: vectorization is explicitly enabled [-Rpass-missed=loop-vectorize]

And the command line -Rpass-analysis=loop-vectorize indicates that the
switch statement cannot be vectorized.

no_switch.cpp:4:5: remark: loop not vectorized: loop contains a switch statement [-Rpass-analysis=loop-vectorize]
 switch(A[i]) {
 ^

To ensure line and column numbers are produced include the command line options
-gline-tables-only and -gcolumn-info. See the Clang user manual [http://clang.llvm.org/docs/UsersManual.html#options-to-emit-optimization-reports]
for details

Features

The LLVM Loop Vectorizer has a number of features that allow it to vectorize
complex loops.

Loops with unknown trip count

The Loop Vectorizer supports loops with an unknown trip count.
In the loop below, the iteration start and finish points are unknown,
and the Loop Vectorizer has a mechanism to vectorize loops that do not start
at zero. In this example, ‘n’ may not be a multiple of the vector width, and
the vectorizer has to execute the last few iterations as scalar code. Keeping
a scalar copy of the loop increases the code size.

void bar(float *A, float* B, float K, int start, int end) {
 for (int i = start; i < end; ++i)
 A[i] *= B[i] + K;
}

Runtime Checks of Pointers

In the example below, if the pointers A and B point to consecutive addresses,
then it is illegal to vectorize the code because some elements of A will be
written before they are read from array B.

Some programmers use the ‘restrict’ keyword to notify the compiler that the
pointers are disjointed, but in our example, the Loop Vectorizer has no way of
knowing that the pointers A and B are unique. The Loop Vectorizer handles this
loop by placing code that checks, at runtime, if the arrays A and B point to
disjointed memory locations. If arrays A and B overlap, then the scalar version
of the loop is executed.

void bar(float *A, float* B, float K, int n) {
 for (int i = 0; i < n; ++i)
 A[i] *= B[i] + K;
}

Reductions

In this example the sum variable is used by consecutive iterations of
the loop. Normally, this would prevent vectorization, but the vectorizer can
detect that ‘sum’ is a reduction variable. The variable ‘sum’ becomes a vector
of integers, and at the end of the loop the elements of the array are added
together to create the correct result. We support a number of different
reduction operations, such as addition, multiplication, XOR, AND and OR.

int foo(int *A, int *B, int n) {
 unsigned sum = 0;
 for (int i = 0; i < n; ++i)
 sum += A[i] + 5;
 return sum;
}

We support floating point reduction operations when -ffast-math is used.

Inductions

In this example the value of the induction variable i is saved into an
array. The Loop Vectorizer knows to vectorize induction variables.

void bar(float *A, float* B, float K, int n) {
 for (int i = 0; i < n; ++i)
 A[i] = i;
}

If Conversion

The Loop Vectorizer is able to “flatten” the IF statement in the code and
generate a single stream of instructions. The Loop Vectorizer supports any
control flow in the innermost loop. The innermost loop may contain complex
nesting of IFs, ELSEs and even GOTOs.

int foo(int *A, int *B, int n) {
 unsigned sum = 0;
 for (int i = 0; i < n; ++i)
 if (A[i] > B[i])
 sum += A[i] + 5;
 return sum;
}

Pointer Induction Variables

This example uses the “accumulate” function of the standard c++ library. This
loop uses C++ iterators, which are pointers, and not integer indices.
The Loop Vectorizer detects pointer induction variables and can vectorize
this loop. This feature is important because many C++ programs use iterators.

int baz(int *A, int n) {
 return std::accumulate(A, A + n, 0);
}

Reverse Iterators

The Loop Vectorizer can vectorize loops that count backwards.

int foo(int *A, int *B, int n) {
 for (int i = n; i > 0; --i)
 A[i] +=1;
}

Scatter / Gather

The Loop Vectorizer can vectorize code that becomes a sequence of scalar instructions
that scatter/gathers memory.

int foo(int * A, int * B, int n) {
 for (intptr_t i = 0; i < n; ++i)
 A[i] += B[i * 4];
}

In many situations the cost model will inform LLVM that this is not beneficial
and LLVM will only vectorize such code if forced with “-mllvm -force-vector-width=#”.

Vectorization of Mixed Types

The Loop Vectorizer can vectorize programs with mixed types. The Vectorizer
cost model can estimate the cost of the type conversion and decide if
vectorization is profitable.

int foo(int *A, char *B, int n, int k) {
 for (int i = 0; i < n; ++i)
 A[i] += 4 * B[i];
}

Global Structures Alias Analysis

Access to global structures can also be vectorized, with alias analysis being
used to make sure accesses don’t alias. Run-time checks can also be added on
pointer access to structure members.

Many variations are supported, but some that rely on undefined behaviour being
ignored (as other compilers do) are still being left un-vectorized.

struct { int A[100], K, B[100]; } Foo;

int foo() {
 for (int i = 0; i < 100; ++i)
 Foo.A[i] = Foo.B[i] + 100;
}

Vectorization of function calls

The Loop Vectorize can vectorize intrinsic math functions.
See the table below for a list of these functions.

	pow

	exp

	exp2

	sin

	cos

	sqrt

	log

	log2

	log10

	fabs

	floor

	ceil

	fma

	trunc

	nearbyint

	
	
	fmuladd

The loop vectorizer knows about special instructions on the target and will
vectorize a loop containing a function call that maps to the instructions. For
example, the loop below will be vectorized on Intel x86 if the SSE4.1 roundps
instruction is available.

void foo(float *f) {
 for (int i = 0; i != 1024; ++i)
 f[i] = floorf(f[i]);
}

Partial unrolling during vectorization

Modern processors feature multiple execution units, and only programs that contain a
high degree of parallelism can fully utilize the entire width of the machine.
The Loop Vectorizer increases the instruction level parallelism (ILP) by
performing partial-unrolling of loops.

In the example below the entire array is accumulated into the variable ‘sum’.
This is inefficient because only a single execution port can be used by the processor.
By unrolling the code the Loop Vectorizer allows two or more execution ports
to be used simultaneously.

int foo(int *A, int *B, int n) {
 unsigned sum = 0;
 for (int i = 0; i < n; ++i)
 sum += A[i];
 return sum;
}

The Loop Vectorizer uses a cost model to decide when it is profitable to unroll loops.
The decision to unroll the loop depends on the register pressure and the generated code size.

Performance

This section shows the execution time of Clang on a simple benchmark:
gcc-loops [http://llvm.org/viewvc/llvm-project/test-suite/trunk/SingleSource/UnitTests/Vectorizer/].
This benchmarks is a collection of loops from the GCC autovectorization
page [http://gcc.gnu.org/projects/tree-ssa/vectorization.html] by Dorit Nuzman.

The chart below compares GCC-4.7, ICC-13, and Clang-SVN with and without loop vectorization at -O3, tuned for “corei7-avx”, running on a Sandybridge iMac.
The Y-axis shows the time in msec. Lower is better. The last column shows the geomean of all the kernels.

[image: _images/gcc-loops.png]
And Linpack-pc with the same configuration. Result is Mflops, higher is better.

[image: _images/linpack-pc.png]

Ongoing Development Directions

	Vectorization Plan

	Modeling the process and upgrading the infrastructure of LLVM’s Loop Vectorizer.

The SLP Vectorizer

Details

The goal of SLP vectorization (a.k.a. superword-level parallelism) is
to combine similar independent instructions
into vector instructions. Memory accesses, arithmetic operations, comparison
operations, PHI-nodes, can all be vectorized using this technique.

For example, the following function performs very similar operations on its
inputs (a1, b1) and (a2, b2). The basic-block vectorizer may combine these
into vector operations.

void foo(int a1, int a2, int b1, int b2, int *A) {
 A[0] = a1*(a1 + b1)/b1 + 50*b1/a1;
 A[1] = a2*(a2 + b2)/b2 + 50*b2/a2;
}

The SLP-vectorizer processes the code bottom-up, across basic blocks, in search of scalars to combine.

Usage

The SLP Vectorizer is enabled by default, but it can be disabled
through clang using the command line flag:

$ clang -fno-slp-vectorize file.c

 Vectorization Plan

Vectorization Plan

	Abstract

	High-level Design

	Vectorization Workflow

	Design Guidelines

	Definitions

	The Planning Process and VPlan Roadmap

	Related LLVM components

	References

Abstract

The vectorization transformation can be rather complicated, involving several
potential alternatives, especially for outer-loops 1 but also possibly for
innermost loops. These alternatives may have significant performance impact,
both positive and negative. A cost model is therefore employed to identify the
best alternative, including the alternative of avoiding any transformation
altogether.

The Vectorization Plan is an explicit model for describing vectorization
candidates. It serves for both optimizing candidates including estimating their
cost reliably, and for performing their final translation into IR. This
facilitates dealing with multiple vectorization candidates.

High-level Design

Vectorization Workflow

VPlan-based vectorization involves three major steps, taking a “scenario-based
approach” to vectorization planning:

	Legal Step: check if a loop can be legally vectorized; encode constraints and
artifacts if so.

	Plan Step:

	Build initial VPlans following the constraints and decisions taken by
Legal Step 1, and compute their cost.

	Apply optimizations to the VPlans, possibly forking additional VPlans.
Prune sub-optimal VPlans having relatively high cost.

	Execute Step: materialize the best VPlan. Note that this is the only step
that modifies the IR.

Design Guidelines

In what follows, the term “input IR” refers to code that is fed into the
vectorizer whereas the term “output IR” refers to code that is generated by the
vectorizer. The output IR contains code that has been vectorized or “widened”
according to a loop Vectorization Factor (VF), and/or loop unroll-and-jammed
according to an Unroll Factor (UF).
The design of VPlan follows several high-level guidelines:

	Analysis-like: building and manipulating VPlans must not modify the input IR.
In particular, if the best option is not to vectorize at all, the
vectorization process terminates before reaching Step 3, and compilation
should proceed as if VPlans had not been built.

	Align Cost & Execute: each VPlan must support both estimating the cost and
generating the output IR code, such that the cost estimation evaluates the
to-be-generated code reliably.

	Support vectorizing additional constructs:

	Outer-loop vectorization. In particular, VPlan must be able to model the
control-flow of the output IR which may include multiple basic-blocks and
nested loops.

	SLP vectorization.

	Combinations of the above, including nested vectorization: vectorizing
both an inner loop and an outer-loop at the same time (each with its own
VF and UF), mixed vectorization: vectorizing a loop with SLP patterns
inside 4, (re)vectorizing input IR containing vector code.

	Function vectorization 2.

	Support multiple candidates efficiently. In particular, similar candidates
related to a range of possible VF’s and UF’s must be represented efficiently.
Potential versioning needs to be supported efficiently.

	Support vectorizing idioms, such as interleaved groups of strided loads or
stores. This is achieved by modeling a sequence of output instructions using
a “Recipe”, which is responsible for computing its cost and generating its
code.

	Encapsulate Single-Entry Single-Exit regions (SESE). During vectorization
such regions may need to be, for example, predicated and linearized, or
replicated VF*UF times to handle scalarized and predicated instructions.
Innerloops are also modelled as SESE regions.

	Support instruction-level analysis and transformation, as part of Planning
Step 2.b: During vectorization instructions may need to be traversed, moved,
replaced by other instructions or be created. For example, vector idiom
detection and formation involves searching for and optimizing instruction
patterns.

Definitions

The low-level design of VPlan comprises of the following classes.

	LoopVectorizationPlanner

	A LoopVectorizationPlanner is designed to handle the vectorization of a loop
or a loop nest. It can construct, optimize and discard one or more VPlans,
each VPlan modelling a distinct way to vectorize the loop or the loop nest.
Once the best VPlan is determined, including the best VF and UF, this VPlan
drives the generation of output IR.

	VPlan

	A model of a vectorized candidate for a given input IR loop or loop nest. This
candidate is represented using a Hierarchical CFG. VPlan supports estimating
the cost and driving the generation of the output IR code it represents.

	Hierarchical CFG

	A control-flow graph whose nodes are basic-blocks or Hierarchical CFG’s. The
Hierarchical CFG data structure is similar to the Tile Tree 5, where
cross-Tile edges are lifted to connect Tiles instead of the original
basic-blocks as in Sharir 6, promoting the Tile encapsulation. The terms
Region and Block are used rather than Tile 5 to avoid confusion with loop
tiling.

	VPBlockBase

	The building block of the Hierarchical CFG. A pure-virtual base-class of
VPBasicBlock and VPRegionBlock, see below. VPBlockBase models the hierarchical
control-flow relations with other VPBlocks. Note that in contrast to the IR
BasicBlock, a VPBlockBase models its control-flow successors and predecessors
directly, rather than through a Terminator branch or through predecessor
branches that “use” the VPBlockBase.

	VPBasicBlock

	VPBasicBlock is a subclass of VPBlockBase, and serves as the leaves of the
Hierarchical CFG. It represents a sequence of output IR instructions that will
appear consecutively in an output IR basic-block. The instructions of this
basic-block originate from one or more VPBasicBlocks. VPBasicBlock holds a
sequence of zero or more VPRecipes that model the cost and generation of the
output IR instructions.

	VPRegionBlock

	VPRegionBlock is a subclass of VPBlockBase. It models a collection of
VPBasicBlocks and VPRegionBlocks which form a SESE subgraph of the output IR
CFG. A VPRegionBlock may indicate that its contents are to be replicated a
constant number of times when output IR is generated, effectively representing
a loop with constant trip-count that will be completely unrolled. This is used
to support scalarized and predicated instructions with a single model for
multiple candidate VF’s and UF’s.

	VPRecipeBase

	A pure-virtual base class modeling a sequence of one or more output IR
instructions, possibly based on one or more input IR instructions. These
input IR instructions are referred to as “Ingredients” of the Recipe. A Recipe
may specify how its ingredients are to be transformed to produce the output IR
instructions; e.g., cloned once, replicated multiple times or widened
according to selected VF.

	VPValue

	The base of VPlan’s def-use relations class hierarchy. When instantiated, it
models a constant or a live-in Value in VPlan. It has users, which are of type
VPUser, but no operands.

	VPUser

	A VPValue representing a general vertex in the def-use graph of VPlan. It has
operands which are of type VPValue. When instantiated, it represents a
live-out Instruction that exists outside VPlan. VPUser is similar in some
aspects to LLVM’s User class.

	VPInstruction

	A VPInstruction is both a VPRecipe and a VPUser. It models a single
VPlan-level instruction to be generated if the VPlan is executed, including
its opcode and possibly additional characteristics. It is the basis for
writing instruction-level analyses and optimizations in VPlan as creating,
replacing or moving VPInstructions record both def-use and scheduling
decisions. VPInstructions also extend LLVM IR’s opcodes with idiomatic
operations that enrich the Vectorizer’s semantics.

	VPTransformState

	Stores information used for generating output IR, passed from
LoopVectorizationPlanner to its selected VPlan for execution, and used to pass
additional information down to VPBlocks and VPRecipes.

The Planning Process and VPlan Roadmap

Transforming the Loop Vectorizer to use VPlan follows a staged approach. First,
VPlan is used to record the final vectorization decisions, and to execute them:
the Hierarchical CFG models the planned control-flow, and Recipes capture
decisions taken inside basic-blocks. Next, VPlan will be used also as the basis
for taking these decisions, effectively turning them into a series of
VPlan-to-VPlan algorithms. Finally, VPlan will support the planning process
itself including cost-based analyses for making these decisions, to fully
support compositional and iterative decision making.

Some decisions are local to an instruction in the loop, such as whether to widen
it into a vector instruction or replicate it, keeping the generated instructions
in place. Other decisions, however, involve moving instructions, replacing them
with other instructions, and/or introducing new instructions. For example, a
cast may sink past a later instruction and be widened to handle first-order
recurrence; an interleave group of strided gathers or scatters may effectively
move to one place where they are replaced with shuffles and a common wide vector
load or store; new instructions may be introduced to compute masks, shuffle the
elements of vectors, and pack scalar values into vectors or vice-versa.

In order for VPlan to support making instruction-level decisions and analyses,
it needs to model the relevant instructions along with their def/use relations.
This too follows a staged approach: first, the new instructions that compute
masks are modeled as VPInstructions, along with their induced def/use subgraph.
This effectively models masks in VPlan, facilitating VPlan-based predication.
Next, the logic embedded within each Recipe for generating its instructions at
VPlan execution time, will instead take part in the planning process by modeling
them as VPInstructions. Finally, only logic that applies to instructions as a
group will remain in Recipes, such as interleave groups and potentially other
idiom groups having synergistic cost.

Related LLVM components

	SLP Vectorizer: one can compare the VPlan model with LLVM’s existing SLP
tree, where TSLP 3 adds Plan Step 2.b.

	RegionInfo: one can compare VPlan’s H-CFG with the Region Analysis as used by
Polly 7.

	Loop Vectorizer: the Vectorization Plan aims to upgrade the infrastructure of
the Loop Vectorizer and extend it to handle outer loops 8, 9.

References

	1

	“Outer-loop vectorization: revisited for short SIMD architectures”, Dorit
Nuzman and Ayal Zaks, PACT 2008.

	2

	“Proposal for function vectorization and loop vectorization with function
calls”, Xinmin Tian, [cfe-dev [http://lists.llvm.org/pipermail/cfe-dev/2016-March/047732.html]].,
March 2, 2016.
See also review [https://reviews.llvm.org/D22792].

	3

	“Throttling Automatic Vectorization: When Less is More”, Vasileios
Porpodas and Tim Jones, PACT 2015 and LLVM Developers’ Meeting 2015.

	4

	“Exploiting mixed SIMD parallelism by reducing data reorganization
overhead”, Hao Zhou and Jingling Xue, CGO 2016.

	5(1,2)

	“Register Allocation via Hierarchical Graph Coloring”, David Callahan and
Brian Koblenz, PLDI 1991

	6

	“Structural analysis: A new approach to flow analysis in optimizing
compilers”, M. Sharir, Journal of Computer Languages, Jan. 1980

	7

	“Enabling Polyhedral Optimizations in LLVM”, Tobias Grosser, Diploma
thesis, 2011.

	8

	“Introducing VPlan to the Loop Vectorizer”, Gil Rapaport and Ayal Zaks,
European LLVM Developers’ Meeting 2017.

	9

	“Extending LoopVectorizer: OpenMP4.5 SIMD and Outer Loop
Auto-Vectorization”, Intel Vectorizer Team, LLVM Developers’ Meeting 2016.

 Writing an LLVM Backend

Writing an LLVM Backend

	Introduction

	Audience

	Prerequisite Reading

	Basic Steps

	Preliminaries

	Target Machine

	Target Registration

	Register Set and Register Classes

	Defining a Register

	Defining a Register Class

	Implement a subclass of TargetRegisterInfo

	Instruction Set

	Instruction Operand Mapping

	Instruction Operand Name Mapping

	Instruction Operand Types

	Instruction Scheduling

	Instruction Relation Mapping

	Implement a subclass of TargetInstrInfo

	Branch Folding and If Conversion

	Instruction Selector

	The SelectionDAG Legalize Phase

	Promote

	Expand

	Custom

	Legal

	Calling Conventions

	Assembly Printer

	Subtarget Support

	JIT Support

	Machine Code Emitter

	Target JIT Info

Introduction

This document describes techniques for writing compiler backends that convert
the LLVM Intermediate Representation (IR) to code for a specified machine or
other languages. Code intended for a specific machine can take the form of
either assembly code or binary code (usable for a JIT compiler).

The backend of LLVM features a target-independent code generator that may
create output for several types of target CPUs — including X86, PowerPC,
ARM, and SPARC. The backend may also be used to generate code targeted at SPUs
of the Cell processor or GPUs to support the execution of compute kernels.

The document focuses on existing examples found in subdirectories of
llvm/lib/Target in a downloaded LLVM release. In particular, this document
focuses on the example of creating a static compiler (one that emits text
assembly) for a SPARC target, because SPARC has fairly standard
characteristics, such as a RISC instruction set and straightforward calling
conventions.

Audience

The audience for this document is anyone who needs to write an LLVM backend to
generate code for a specific hardware or software target.

Prerequisite Reading

These essential documents must be read before reading this document:

	LLVM Language Reference Manual — a reference manual for
the LLVM assembly language.

	The LLVM Target-Independent Code Generator — a guide to the components (classes and code
generation algorithms) for translating the LLVM internal representation into
machine code for a specified target. Pay particular attention to the
descriptions of code generation stages: Instruction Selection, Scheduling and
Formation, SSA-based Optimization, Register Allocation, Prolog/Epilog Code
Insertion, Late Machine Code Optimizations, and Code Emission.

	TableGen — a document that describes the TableGen
(tblgen) application that manages domain-specific information to support
LLVM code generation. TableGen processes input from a target description
file (.td suffix) and generates C++ code that can be used for code
generation.

	Writing an LLVM Pass — The assembly printer is a FunctionPass, as
are several SelectionDAG processing steps.

To follow the SPARC examples in this document, have a copy of The SPARC
Architecture Manual, Version 8 [http://www.sparc.org/standards/V8.pdf] for
reference. For details about the ARM instruction set, refer to the ARM
Architecture Reference Manual [http://infocenter.arm.com/]. For more about
the GNU Assembler format (GAS), see Using As [http://sourceware.org/binutils/docs/as/index.html], especially for the
assembly printer. “Using As” contains a list of target machine dependent
features.

Basic Steps

To write a compiler backend for LLVM that converts the LLVM IR to code for a
specified target (machine or other language), follow these steps:

	Create a subclass of the TargetMachine class that describes
characteristics of your target machine. Copy existing examples of specific
TargetMachine class and header files; for example, start with
SparcTargetMachine.cpp and SparcTargetMachine.h, but change the file
names for your target. Similarly, change code that references “Sparc” to
reference your target.

	Describe the register set of the target. Use TableGen to generate code for
register definition, register aliases, and register classes from a
target-specific RegisterInfo.td input file. You should also write
additional code for a subclass of the TargetRegisterInfo class that
represents the class register file data used for register allocation and also
describes the interactions between registers.

	Describe the instruction set of the target. Use TableGen to generate code
for target-specific instructions from target-specific versions of
TargetInstrFormats.td and TargetInstrInfo.td. You should write
additional code for a subclass of the TargetInstrInfo class to represent
machine instructions supported by the target machine.

	Describe the selection and conversion of the LLVM IR from a Directed Acyclic
Graph (DAG) representation of instructions to native target-specific
instructions. Use TableGen to generate code that matches patterns and
selects instructions based on additional information in a target-specific
version of TargetInstrInfo.td. Write code for XXXISelDAGToDAG.cpp,
where XXX identifies the specific target, to perform pattern matching and
DAG-to-DAG instruction selection. Also write code in XXXISelLowering.cpp
to replace or remove operations and data types that are not supported
natively in a SelectionDAG.

	Write code for an assembly printer that converts LLVM IR to a GAS format for
your target machine. You should add assembly strings to the instructions
defined in your target-specific version of TargetInstrInfo.td. You
should also write code for a subclass of AsmPrinter that performs the
LLVM-to-assembly conversion and a trivial subclass of TargetAsmInfo.

	Optionally, add support for subtargets (i.e., variants with different
capabilities). You should also write code for a subclass of the
TargetSubtarget class, which allows you to use the -mcpu= and
-mattr= command-line options.

	Optionally, add JIT support and create a machine code emitter (subclass of
TargetJITInfo) that is used to emit binary code directly into memory.

In the .cpp and .h. files, initially stub up these methods and then
implement them later. Initially, you may not know which private members that
the class will need and which components will need to be subclassed.

Preliminaries

To actually create your compiler backend, you need to create and modify a few
files. The absolute minimum is discussed here. But to actually use the LLVM
target-independent code generator, you must perform the steps described in the
LLVM Target-Independent Code Generator document.

First, you should create a subdirectory under lib/Target to hold all the
files related to your target. If your target is called “Dummy”, create the
directory lib/Target/Dummy.

In this new directory, create a CMakeLists.txt. It is easiest to copy a
CMakeLists.txt of another target and modify it. It should at least contain
the LLVM_TARGET_DEFINITIONS variable. The library can be named LLVMDummy
(for example, see the MIPS target). Alternatively, you can split the library
into LLVMDummyCodeGen and LLVMDummyAsmPrinter, the latter of which
should be implemented in a subdirectory below lib/Target/Dummy (for example,
see the PowerPC target).

Note that these two naming schemes are hardcoded into llvm-config. Using
any other naming scheme will confuse llvm-config and produce a lot of
(seemingly unrelated) linker errors when linking llc.

To make your target actually do something, you need to implement a subclass of
TargetMachine. This implementation should typically be in the file
lib/Target/DummyTargetMachine.cpp, but any file in the lib/Target
directory will be built and should work. To use LLVM’s target independent code
generator, you should do what all current machine backends do: create a
subclass of LLVMTargetMachine. (To create a target from scratch, create a
subclass of TargetMachine.)

To get LLVM to actually build and link your target, you need to run cmake
with -DLLVM_EXPERIMENTAL_TARGETS_TO_BUILD=Dummy. This will build your
target without needing to add it to the list of all the targets.

Once your target is stable, you can add it to the LLVM_ALL_TARGETS variable
located in the main CMakeLists.txt.

Target Machine

LLVMTargetMachine is designed as a base class for targets implemented with
the LLVM target-independent code generator. The LLVMTargetMachine class
should be specialized by a concrete target class that implements the various
virtual methods. LLVMTargetMachine is defined as a subclass of
TargetMachine in include/llvm/Target/TargetMachine.h. The
TargetMachine class implementation (TargetMachine.cpp) also processes
numerous command-line options.

To create a concrete target-specific subclass of LLVMTargetMachine, start
by copying an existing TargetMachine class and header. You should name the
files that you create to reflect your specific target. For instance, for the
SPARC target, name the files SparcTargetMachine.h and
SparcTargetMachine.cpp.

For a target machine XXX, the implementation of XXXTargetMachine must
have access methods to obtain objects that represent target components. These
methods are named get*Info, and are intended to obtain the instruction set
(getInstrInfo), register set (getRegisterInfo), stack frame layout
(getFrameInfo), and similar information. XXXTargetMachine must also
implement the getDataLayout method to access an object with target-specific
data characteristics, such as data type size and alignment requirements.

For instance, for the SPARC target, the header file SparcTargetMachine.h
declares prototypes for several get*Info and getDataLayout methods that
simply return a class member.

namespace llvm {

class Module;

class SparcTargetMachine : public LLVMTargetMachine {
 const DataLayout DataLayout; // Calculates type size & alignment
 SparcSubtarget Subtarget;
 SparcInstrInfo InstrInfo;
 TargetFrameInfo FrameInfo;

protected:
 virtual const TargetAsmInfo *createTargetAsmInfo() const;

public:
 SparcTargetMachine(const Module &M, const std::string &FS);

 virtual const SparcInstrInfo *getInstrInfo() const {return &InstrInfo; }
 virtual const TargetFrameInfo *getFrameInfo() const {return &FrameInfo; }
 virtual const TargetSubtarget *getSubtargetImpl() const{return &Subtarget; }
 virtual const TargetRegisterInfo *getRegisterInfo() const {
 return &InstrInfo.getRegisterInfo();
 }
 virtual const DataLayout *getDataLayout() const { return &DataLayout; }
 static unsigned getModuleMatchQuality(const Module &M);

 // Pass Pipeline Configuration
 virtual bool addInstSelector(PassManagerBase &PM, bool Fast);
 virtual bool addPreEmitPass(PassManagerBase &PM, bool Fast);
};

} // end namespace llvm

	getInstrInfo()

	getRegisterInfo()

	getFrameInfo()

	getDataLayout()

	getSubtargetImpl()

For some targets, you also need to support the following methods:

	getTargetLowering()

	getJITInfo()

Some architectures, such as GPUs, do not support jumping to an arbitrary
program location and implement branching using masked execution and loop using
special instructions around the loop body. In order to avoid CFG modifications
that introduce irreducible control flow not handled by such hardware, a target
must call setRequiresStructuredCFG(true) when being initialized.

In addition, the XXXTargetMachine constructor should specify a
TargetDescription string that determines the data layout for the target
machine, including characteristics such as pointer size, alignment, and
endianness. For example, the constructor for SparcTargetMachine contains
the following:

SparcTargetMachine::SparcTargetMachine(const Module &M, const std::string &FS)
 : DataLayout("E-p:32:32-f128:128:128"),
 Subtarget(M, FS), InstrInfo(Subtarget),
 FrameInfo(TargetFrameInfo::StackGrowsDown, 8, 0) {
}

Hyphens separate portions of the TargetDescription string.

	An upper-case “E” in the string indicates a big-endian target data model.
A lower-case “e” indicates little-endian.

	“p:” is followed by pointer information: size, ABI alignment, and
preferred alignment. If only two figures follow “p:”, then the first
value is pointer size, and the second value is both ABI and preferred
alignment.

	Then a letter for numeric type alignment: “i”, “f”, “v”, or
“a” (corresponding to integer, floating point, vector, or aggregate).
“i”, “v”, or “a” are followed by ABI alignment and preferred
alignment. “f” is followed by three values: the first indicates the size
of a long double, then ABI alignment, and then ABI preferred alignment.

Target Registration

You must also register your target with the TargetRegistry, which is what
other LLVM tools use to be able to lookup and use your target at runtime. The
TargetRegistry can be used directly, but for most targets there are helper
templates which should take care of the work for you.

All targets should declare a global Target object which is used to
represent the target during registration. Then, in the target’s TargetInfo
library, the target should define that object and use the RegisterTarget
template to register the target. For example, the Sparc registration code
looks like this:

Target llvm::getTheSparcTarget();

extern "C" void LLVMInitializeSparcTargetInfo() {
 RegisterTarget<Triple::sparc, /*HasJIT=*/false>
 X(getTheSparcTarget(), "sparc", "Sparc");
}

This allows the TargetRegistry to look up the target by name or by target
triple. In addition, most targets will also register additional features which
are available in separate libraries. These registration steps are separate,
because some clients may wish to only link in some parts of the target — the
JIT code generator does not require the use of the assembler printer, for
example. Here is an example of registering the Sparc assembly printer:

extern "C" void LLVMInitializeSparcAsmPrinter() {
 RegisterAsmPrinter<SparcAsmPrinter> X(getTheSparcTarget());
}

For more information, see “llvm/Target/TargetRegistry.h”.

Register Set and Register Classes

You should describe a concrete target-specific class that represents the
register file of a target machine. This class is called XXXRegisterInfo
(where XXX identifies the target) and represents the class register file
data that is used for register allocation. It also describes the interactions
between registers.

You also need to define register classes to categorize related registers. A
register class should be added for groups of registers that are all treated the
same way for some instruction. Typical examples are register classes for
integer, floating-point, or vector registers. A register allocator allows an
instruction to use any register in a specified register class to perform the
instruction in a similar manner. Register classes allocate virtual registers
to instructions from these sets, and register classes let the
target-independent register allocator automatically choose the actual
registers.

Much of the code for registers, including register definition, register
aliases, and register classes, is generated by TableGen from
XXXRegisterInfo.td input files and placed in XXXGenRegisterInfo.h.inc
and XXXGenRegisterInfo.inc output files. Some of the code in the
implementation of XXXRegisterInfo requires hand-coding.

Defining a Register

The XXXRegisterInfo.td file typically starts with register definitions for
a target machine. The Register class (specified in Target.td) is used
to define an object for each register. The specified string n becomes the
Name of the register. The basic Register object does not have any
subregisters and does not specify any aliases.

class Register<string n> {
 string Namespace = "";
 string AsmName = n;
 string Name = n;
 int SpillSize = 0;
 int SpillAlignment = 0;
 list<Register> Aliases = [];
 list<Register> SubRegs = [];
 list<int> DwarfNumbers = [];
}

For example, in the X86RegisterInfo.td file, there are register definitions
that utilize the Register class, such as:

def AL : Register<"AL">, DwarfRegNum<[0, 0, 0]>;

This defines the register AL and assigns it values (with DwarfRegNum)
that are used by gcc, gdb, or a debug information writer to identify a
register. For register AL, DwarfRegNum takes an array of 3 values
representing 3 different modes: the first element is for X86-64, the second for
exception handling (EH) on X86-32, and the third is generic. -1 is a special
Dwarf number that indicates the gcc number is undefined, and -2 indicates the
register number is invalid for this mode.

From the previously described line in the X86RegisterInfo.td file, TableGen
generates this code in the X86GenRegisterInfo.inc file:

static const unsigned GR8[] = { X86::AL, ... };

const unsigned AL_AliasSet[] = { X86::AX, X86::EAX, X86::RAX, 0 };

const TargetRegisterDesc RegisterDescriptors[] = {
 ...
{ "AL", "AL", AL_AliasSet, Empty_SubRegsSet, Empty_SubRegsSet, AL_SuperRegsSet }, ...

From the register info file, TableGen generates a TargetRegisterDesc object
for each register. TargetRegisterDesc is defined in
include/llvm/Target/TargetRegisterInfo.h with the following fields:

struct TargetRegisterDesc {
 const char *AsmName; // Assembly language name for the register
 const char *Name; // Printable name for the reg (for debugging)
 const unsigned *AliasSet; // Register Alias Set
 const unsigned *SubRegs; // Sub-register set
 const unsigned *ImmSubRegs; // Immediate sub-register set
 const unsigned *SuperRegs; // Super-register set
};

TableGen uses the entire target description file (.td) to determine text
names for the register (in the AsmName and Name fields of
TargetRegisterDesc) and the relationships of other registers to the defined
register (in the other TargetRegisterDesc fields). In this example, other
definitions establish the registers “AX”, “EAX”, and “RAX” as
aliases for one another, so TableGen generates a null-terminated array
(AL_AliasSet) for this register alias set.

The Register class is commonly used as a base class for more complex
classes. In Target.td, the Register class is the base for the
RegisterWithSubRegs class that is used to define registers that need to
specify subregisters in the SubRegs list, as shown here:

class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
 let SubRegs = subregs;
}

In SparcRegisterInfo.td, additional register classes are defined for SPARC:
a Register subclass, SparcReg, and further subclasses: Ri, Rf,
and Rd. SPARC registers are identified by 5-bit ID numbers, which is a
feature common to these subclasses. Note the use of “let” expressions to
override values that are initially defined in a superclass (such as SubRegs
field in the Rd class).

class SparcReg<string n> : Register<n> {
 field bits<5> Num;
 let Namespace = "SP";
}
// Ri - 32-bit integer registers
class Ri<bits<5> num, string n> :
SparcReg<n> {
 let Num = num;
}
// Rf - 32-bit floating-point registers
class Rf<bits<5> num, string n> :
SparcReg<n> {
 let Num = num;
}
// Rd - Slots in the FP register file for 64-bit floating-point values.
class Rd<bits<5> num, string n, list<Register> subregs> : SparcReg<n> {
 let Num = num;
 let SubRegs = subregs;
}

In the SparcRegisterInfo.td file, there are register definitions that
utilize these subclasses of Register, such as:

def G0 : Ri< 0, "G0">, DwarfRegNum<[0]>;
def G1 : Ri< 1, "G1">, DwarfRegNum<[1]>;
...
def F0 : Rf< 0, "F0">, DwarfRegNum<[32]>;
def F1 : Rf< 1, "F1">, DwarfRegNum<[33]>;
...
def D0 : Rd< 0, "F0", [F0, F1]>, DwarfRegNum<[32]>;
def D1 : Rd< 2, "F2", [F2, F3]>, DwarfRegNum<[34]>;

The last two registers shown above (D0 and D1) are double-precision
floating-point registers that are aliases for pairs of single-precision
floating-point sub-registers. In addition to aliases, the sub-register and
super-register relationships of the defined register are in fields of a
register’s TargetRegisterDesc.

Defining a Register Class

The RegisterClass class (specified in Target.td) is used to define an
object that represents a group of related registers and also defines the
default allocation order of the registers. A target description file
XXXRegisterInfo.td that uses Target.td can construct register classes
using the following class:

class RegisterClass<string namespace,
list<ValueType> regTypes, int alignment, dag regList> {
 string Namespace = namespace;
 list<ValueType> RegTypes = regTypes;
 int Size = 0; // spill size, in bits; zero lets tblgen pick the size
 int Alignment = alignment;

 // CopyCost is the cost of copying a value between two registers
 // default value 1 means a single instruction
 // A negative value means copying is extremely expensive or impossible
 int CopyCost = 1;
 dag MemberList = regList;

 // for register classes that are subregisters of this class
 list<RegisterClass> SubRegClassList = [];

 code MethodProtos = [{}]; // to insert arbitrary code
 code MethodBodies = [{}];
}

To define a RegisterClass, use the following 4 arguments:

	The first argument of the definition is the name of the namespace.

	The second argument is a list of ValueType register type values that are
defined in include/llvm/CodeGen/ValueTypes.td. Defined values include
integer types (such as i16, i32, and i1 for Boolean),
floating-point types (f32, f64), and vector types (for example,
v8i16 for an 8 x i16 vector). All registers in a RegisterClass
must have the same ValueType, but some registers may store vector data in
different configurations. For example a register that can process a 128-bit
vector may be able to handle 16 8-bit integer elements, 8 16-bit integers, 4
32-bit integers, and so on.

	The third argument of the RegisterClass definition specifies the
alignment required of the registers when they are stored or loaded to
memory.

	The final argument, regList, specifies which registers are in this class.
If an alternative allocation order method is not specified, then regList
also defines the order of allocation used by the register allocator. Besides
simply listing registers with (add R0, R1, ...), more advanced set
operators are available. See include/llvm/Target/Target.td for more
information.

In SparcRegisterInfo.td, three RegisterClass objects are defined:
FPRegs, DFPRegs, and IntRegs. For all three register classes, the
first argument defines the namespace with the string “SP”. FPRegs
defines a group of 32 single-precision floating-point registers (F0 to
F31); DFPRegs defines a group of 16 double-precision registers
(D0-D15).

// F0, F1, F2, ..., F31
def FPRegs : RegisterClass<"SP", [f32], 32, (sequence "F%u", 0, 31)>;

def DFPRegs : RegisterClass<"SP", [f64], 64,
 (add D0, D1, D2, D3, D4, D5, D6, D7, D8,
 D9, D10, D11, D12, D13, D14, D15)>;

def IntRegs : RegisterClass<"SP", [i32], 32,
 (add L0, L1, L2, L3, L4, L5, L6, L7,
 I0, I1, I2, I3, I4, I5,
 O0, O1, O2, O3, O4, O5, O7,
 G1,
 // Non-allocatable regs:
 G2, G3, G4,
 O6, // stack ptr
 I6, // frame ptr
 I7, // return address
 G0, // constant zero
 G5, G6, G7 // reserved for kernel
)>;

Using SparcRegisterInfo.td with TableGen generates several output files
that are intended for inclusion in other source code that you write.
SparcRegisterInfo.td generates SparcGenRegisterInfo.h.inc, which should
be included in the header file for the implementation of the SPARC register
implementation that you write (SparcRegisterInfo.h). In
SparcGenRegisterInfo.h.inc a new structure is defined called
SparcGenRegisterInfo that uses TargetRegisterInfo as its base. It also
specifies types, based upon the defined register classes: DFPRegsClass,
FPRegsClass, and IntRegsClass.

SparcRegisterInfo.td also generates SparcGenRegisterInfo.inc, which is
included at the bottom of SparcRegisterInfo.cpp, the SPARC register
implementation. The code below shows only the generated integer registers and
associated register classes. The order of registers in IntRegs reflects
the order in the definition of IntRegs in the target description file.

// IntRegs Register Class...
static const unsigned IntRegs[] = {
 SP::L0, SP::L1, SP::L2, SP::L3, SP::L4, SP::L5,
 SP::L6, SP::L7, SP::I0, SP::I1, SP::I2, SP::I3,
 SP::I4, SP::I5, SP::O0, SP::O1, SP::O2, SP::O3,
 SP::O4, SP::O5, SP::O7, SP::G1, SP::G2, SP::G3,
 SP::G4, SP::O6, SP::I6, SP::I7, SP::G0, SP::G5,
 SP::G6, SP::G7,
};

// IntRegsVTs Register Class Value Types...
static const MVT::ValueType IntRegsVTs[] = {
 MVT::i32, MVT::Other
};

namespace SP { // Register class instances
 DFPRegsClass DFPRegsRegClass;
 FPRegsClass FPRegsRegClass;
 IntRegsClass IntRegsRegClass;
...
 // IntRegs Sub-register Classes...
 static const TargetRegisterClass* const IntRegsSubRegClasses [] = {
 NULL
 };
...
 // IntRegs Super-register Classes..
 static const TargetRegisterClass* const IntRegsSuperRegClasses [] = {
 NULL
 };
...
 // IntRegs Register Class sub-classes...
 static const TargetRegisterClass* const IntRegsSubclasses [] = {
 NULL
 };
...
 // IntRegs Register Class super-classes...
 static const TargetRegisterClass* const IntRegsSuperclasses [] = {
 NULL
 };

 IntRegsClass::IntRegsClass() : TargetRegisterClass(IntRegsRegClassID,
 IntRegsVTs, IntRegsSubclasses, IntRegsSuperclasses, IntRegsSubRegClasses,
 IntRegsSuperRegClasses, 4, 4, 1, IntRegs, IntRegs + 32) {}
}

The register allocators will avoid using reserved registers, and callee saved
registers are not used until all the volatile registers have been used. That
is usually good enough, but in some cases it may be necessary to provide custom
allocation orders.

Implement a subclass of TargetRegisterInfo

The final step is to hand code portions of XXXRegisterInfo, which
implements the interface described in TargetRegisterInfo.h (see
The TargetRegisterInfo class). These functions return 0, NULL, or
false, unless overridden. Here is a list of functions that are overridden
for the SPARC implementation in SparcRegisterInfo.cpp:

	getCalleeSavedRegs — Returns a list of callee-saved registers in the
order of the desired callee-save stack frame offset.

	getReservedRegs — Returns a bitset indexed by physical register
numbers, indicating if a particular register is unavailable.

	hasFP — Return a Boolean indicating if a function should have a
dedicated frame pointer register.

	eliminateCallFramePseudoInstr — If call frame setup or destroy pseudo
instructions are used, this can be called to eliminate them.

	eliminateFrameIndex — Eliminate abstract frame indices from
instructions that may use them.

	emitPrologue — Insert prologue code into the function.

	emitEpilogue — Insert epilogue code into the function.

Instruction Set

During the early stages of code generation, the LLVM IR code is converted to a
SelectionDAG with nodes that are instances of the SDNode class
containing target instructions. An SDNode has an opcode, operands, type
requirements, and operation properties. For example, is an operation
commutative, does an operation load from memory. The various operation node
types are described in the include/llvm/CodeGen/SelectionDAGNodes.h file
(values of the NodeType enum in the ISD namespace).

TableGen uses the following target description (.td) input files to
generate much of the code for instruction definition:

	Target.td — Where the Instruction, Operand, InstrInfo, and
other fundamental classes are defined.

	TargetSelectionDAG.td — Used by SelectionDAG instruction selection
generators, contains SDTC* classes (selection DAG type constraint),
definitions of SelectionDAG nodes (such as imm, cond, bb,
add, fadd, sub), and pattern support (Pattern, Pat,
PatFrag, PatLeaf, ComplexPattern.

	XXXInstrFormats.td — Patterns for definitions of target-specific
instructions.

	XXXInstrInfo.td — Target-specific definitions of instruction templates,
condition codes, and instructions of an instruction set. For architecture
modifications, a different file name may be used. For example, for Pentium
with SSE instruction, this file is X86InstrSSE.td, and for Pentium with
MMX, this file is X86InstrMMX.td.

There is also a target-specific XXX.td file, where XXX is the name of
the target. The XXX.td file includes the other .td input files, but
its contents are only directly important for subtargets.

You should describe a concrete target-specific class XXXInstrInfo that
represents machine instructions supported by a target machine.
XXXInstrInfo contains an array of XXXInstrDescriptor objects, each of
which describes one instruction. An instruction descriptor defines:

	Opcode mnemonic

	Number of operands

	List of implicit register definitions and uses

	Target-independent properties (such as memory access, is commutable)

	Target-specific flags

The Instruction class (defined in Target.td) is mostly used as a base for
more complex instruction classes.

class Instruction {
 string Namespace = "";
 dag OutOperandList; // A dag containing the MI def operand list.
 dag InOperandList; // A dag containing the MI use operand list.
 string AsmString = ""; // The .s format to print the instruction with.
 list<dag> Pattern; // Set to the DAG pattern for this instruction.
 list<Register> Uses = [];
 list<Register> Defs = [];
 list<Predicate> Predicates = []; // predicates turned into isel match code
 ... remainder not shown for space ...
}

A SelectionDAG node (SDNode) should contain an object representing a
target-specific instruction that is defined in XXXInstrInfo.td. The
instruction objects should represent instructions from the architecture manual
of the target machine (such as the SPARC Architecture Manual for the SPARC
target).

A single instruction from the architecture manual is often modeled as multiple
target instructions, depending upon its operands. For example, a manual might
describe an add instruction that takes a register or an immediate operand. An
LLVM target could model this with two instructions named ADDri and
ADDrr.

You should define a class for each instruction category and define each opcode
as a subclass of the category with appropriate parameters such as the fixed
binary encoding of opcodes and extended opcodes. You should map the register
bits to the bits of the instruction in which they are encoded (for the JIT).
Also you should specify how the instruction should be printed when the
automatic assembly printer is used.

As is described in the SPARC Architecture Manual, Version 8, there are three
major 32-bit formats for instructions. Format 1 is only for the CALL
instruction. Format 2 is for branch on condition codes and SETHI (set high
bits of a register) instructions. Format 3 is for other instructions.

Each of these formats has corresponding classes in SparcInstrFormat.td.
InstSP is a base class for other instruction classes. Additional base
classes are specified for more precise formats: for example in
SparcInstrFormat.td, F2_1 is for SETHI, and F2_2 is for
branches. There are three other base classes: F3_1 for register/register
operations, F3_2 for register/immediate operations, and F3_3 for
floating-point operations. SparcInstrInfo.td also adds the base class
Pseudo for synthetic SPARC instructions.

SparcInstrInfo.td largely consists of operand and instruction definitions
for the SPARC target. In SparcInstrInfo.td, the following target
description file entry, LDrr, defines the Load Integer instruction for a
Word (the LD SPARC opcode) from a memory address to a register. The first
parameter, the value 3 (112), is the operation value for this
category of operation. The second parameter (0000002) is the
specific operation value for LD/Load Word. The third parameter is the
output destination, which is a register operand and defined in the Register
target description file (IntRegs).

def LDrr : F3_1 <3, 0b000000, (outs IntRegs:$dst), (ins MEMrr:$addr),
 "ld [$addr], $dst",
 [(set i32:$dst, (load ADDRrr:$addr))]>;

The fourth parameter is the input source, which uses the address operand
MEMrr that is defined earlier in SparcInstrInfo.td:

def MEMrr : Operand<i32> {
 let PrintMethod = "printMemOperand";
 let MIOperandInfo = (ops IntRegs, IntRegs);
}

The fifth parameter is a string that is used by the assembly printer and can be
left as an empty string until the assembly printer interface is implemented.
The sixth and final parameter is the pattern used to match the instruction
during the SelectionDAG Select Phase described in The LLVM Target-Independent Code Generator.
This parameter is detailed in the next section, Instruction Selector.

Instruction class definitions are not overloaded for different operand types,
so separate versions of instructions are needed for register, memory, or
immediate value operands. For example, to perform a Load Integer instruction
for a Word from an immediate operand to a register, the following instruction
class is defined:

def LDri : F3_2 <3, 0b000000, (outs IntRegs:$dst), (ins MEMri:$addr),
 "ld [$addr], $dst",
 [(set i32:$dst, (load ADDRri:$addr))]>;

Writing these definitions for so many similar instructions can involve a lot of
cut and paste. In .td files, the multiclass directive enables the
creation of templates to define several instruction classes at once (using the
defm directive). For example in SparcInstrInfo.td, the multiclass
pattern F3_12 is defined to create 2 instruction classes each time
F3_12 is invoked:

multiclass F3_12 <string OpcStr, bits<6> Op3Val, SDNode OpNode> {
 def rr : F3_1 <2, Op3Val,
 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
 !strconcat(OpcStr, " $b, $c, $dst"),
 [(set i32:$dst, (OpNode i32:$b, i32:$c))]>;
 def ri : F3_2 <2, Op3Val,
 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
 !strconcat(OpcStr, " $b, $c, $dst"),
 [(set i32:$dst, (OpNode i32:$b, simm13:$c))]>;
}

So when the defm directive is used for the XOR and ADD
instructions, as seen below, it creates four instruction objects: XORrr,
XORri, ADDrr, and ADDri.

defm XOR : F3_12<"xor", 0b000011, xor>;
defm ADD : F3_12<"add", 0b000000, add>;

SparcInstrInfo.td also includes definitions for condition codes that are
referenced by branch instructions. The following definitions in
SparcInstrInfo.td indicate the bit location of the SPARC condition code.
For example, the 10th bit represents the “greater than” condition for
integers, and the 22nd bit represents the “greater than” condition for
floats.

def ICC_NE : ICC_VAL< 9>; // Not Equal
def ICC_E : ICC_VAL< 1>; // Equal
def ICC_G : ICC_VAL<10>; // Greater
...
def FCC_U : FCC_VAL<23>; // Unordered
def FCC_G : FCC_VAL<22>; // Greater
def FCC_UG : FCC_VAL<21>; // Unordered or Greater
...

(Note that Sparc.h also defines enums that correspond to the same SPARC
condition codes. Care must be taken to ensure the values in Sparc.h
correspond to the values in SparcInstrInfo.td. I.e., SPCC::ICC_NE = 9,
SPCC::FCC_U = 23 and so on.)

Instruction Operand Mapping

The code generator backend maps instruction operands to fields in the
instruction. Operands are assigned to unbound fields in the instruction in the
order they are defined. Fields are bound when they are assigned a value. For
example, the Sparc target defines the XNORrr instruction as a F3_1
format instruction having three operands.

def XNORrr : F3_1<2, 0b000111,
 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
 "xnor $b, $c, $dst",
 [(set i32:$dst, (not (xor i32:$b, i32:$c)))]>;

The instruction templates in SparcInstrFormats.td show the base class for
F3_1 is InstSP.

class InstSP<dag outs, dag ins, string asmstr, list<dag> pattern> : Instruction {
 field bits<32> Inst;
 let Namespace = "SP";
 bits<2> op;
 let Inst{31-30} = op;
 dag OutOperandList = outs;
 dag InOperandList = ins;
 let AsmString = asmstr;
 let Pattern = pattern;
}

InstSP leaves the op field unbound.

class F3<dag outs, dag ins, string asmstr, list<dag> pattern>
 : InstSP<outs, ins, asmstr, pattern> {
 bits<5> rd;
 bits<6> op3;
 bits<5> rs1;
 let op{1} = 1; // Op = 2 or 3
 let Inst{29-25} = rd;
 let Inst{24-19} = op3;
 let Inst{18-14} = rs1;
}

F3 binds the op field and defines the rd, op3, and rs1
fields. F3 format instructions will bind the operands rd, op3, and
rs1 fields.

class F3_1<bits<2> opVal, bits<6> op3val, dag outs, dag ins,
 string asmstr, list<dag> pattern> : F3<outs, ins, asmstr, pattern> {
 bits<8> asi = 0; // asi not currently used
 bits<5> rs2;
 let op = opVal;
 let op3 = op3val;
 let Inst{13} = 0; // i field = 0
 let Inst{12-5} = asi; // address space identifier
 let Inst{4-0} = rs2;
}

F3_1 binds the op3 field and defines the rs2 fields. F3_1
format instructions will bind the operands to the rd, rs1, and rs2
fields. This results in the XNORrr instruction binding $dst, $b,
and $c operands to the rd, rs1, and rs2 fields respectively.

Instruction Operand Name Mapping

TableGen will also generate a function called getNamedOperandIdx() which
can be used to look up an operand’s index in a MachineInstr based on its
TableGen name. Setting the UseNamedOperandTable bit in an instruction’s
TableGen definition will add all of its operands to an enumeration in the
llvm::XXX:OpName namespace and also add an entry for it into the OperandMap
table, which can be queried using getNamedOperandIdx()

int DstIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::dst); // => 0
int BIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::b); // => 1
int CIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::c); // => 2
int DIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::d); // => -1

...

The entries in the OpName enum are taken verbatim from the TableGen definitions,
so operands with lowercase names will have lower case entries in the enum.

To include the getNamedOperandIdx() function in your backend, you will need
to define a few preprocessor macros in XXXInstrInfo.cpp and XXXInstrInfo.h.
For example:

XXXInstrInfo.cpp:

#define GET_INSTRINFO_NAMED_OPS // For getNamedOperandIdx() function
#include "XXXGenInstrInfo.inc"

XXXInstrInfo.h:

#define GET_INSTRINFO_OPERAND_ENUM // For OpName enum
#include "XXXGenInstrInfo.inc"

namespace XXX {
 int16_t getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIndex);
} // End namespace XXX

Instruction Operand Types

TableGen will also generate an enumeration consisting of all named Operand
types defined in the backend, in the llvm::XXX::OpTypes namespace.
Some common immediate Operand types (for instance i8, i32, i64, f32, f64)
are defined for all targets in include/llvm/Target/Target.td, and are
available in each Target’s OpTypes enum. Also, only named Operand types appear
in the enumeration: anonymous types are ignored.
For example, the X86 backend defines brtarget and brtarget8, both
instances of the TableGen Operand class, which represent branch target
operands:

def brtarget : Operand<OtherVT>;
def brtarget8 : Operand<OtherVT>;

This results in:

namespace X86 {
namespace OpTypes {
enum OperandType {
 ...
 brtarget,
 brtarget8,
 ...
 i32imm,
 i64imm,
 ...
 OPERAND_TYPE_LIST_END
} // End namespace OpTypes
} // End namespace X86

In typical TableGen fashion, to use the enum, you will need to define a
preprocessor macro:

#define GET_INSTRINFO_OPERAND_TYPES_ENUM // For OpTypes enum
#include "XXXGenInstrInfo.inc"

Instruction Scheduling

Instruction itineraries can be queried using MCDesc::getSchedClass(). The
value can be named by an enumeration in llvm::XXX::Sched namespace generated
by TableGen in XXXGenInstrInfo.inc. The name of the schedule classes are
the same as provided in XXXSchedule.td plus a default NoItinerary class.

The schedule models are generated by TableGen by the SubtargetEmitter,
using the CodeGenSchedModels class. This is distinct from the itinerary
method of specifying machine resource use. The tool utils/schedcover.py
can be used to determine which instructions have been covered by the
schedule model description and which haven’t. The first step is to use the
instructions below to create an output file. Then run schedcover.py on the
output file:

$ <src>/utils/schedcover.py <build>/lib/Target/AArch64/tblGenSubtarget.with
instruction, default, CortexA53Model, CortexA57Model, CycloneModel, ExynosM1Model, FalkorModel, KryoModel, ThunderX2T99Model, ThunderXT8XModel
ABSv16i8, WriteV, , , CyWriteV3, M1WriteNMISC1, FalkorWr_2VXVY_2cyc, KryoWrite_2cyc_XY_XY_150ln, ,
ABSv1i64, WriteV, , , CyWriteV3, M1WriteNMISC1, FalkorWr_1VXVY_2cyc, KryoWrite_2cyc_XY_noRSV_67ln, ,
...

To capture the debug output from generating a schedule model, change to the
appropriate target directory and use the following command:
command with the subtarget-emitter debug option:

$ <build>/bin/llvm-tblgen -debug-only=subtarget-emitter -gen-subtarget \
 -I <src>/lib/Target/<target> -I <src>/include \
 -I <src>/lib/Target <src>/lib/Target/<target>/<target>.td \
 -o <build>/lib/Target/<target>/<target>GenSubtargetInfo.inc.tmp \
 > tblGenSubtarget.dbg 2>&1

Where <build> is the build directory, src is the source directory,
and <target> is the name of the target.
To double check that the above command is what is needed, one can capture the
exact TableGen command from a build by using:

$ VERBOSE=1 make ...

and search for llvm-tblgen commands in the output.

Instruction Relation Mapping

This TableGen feature is used to relate instructions with each other. It is
particularly useful when you have multiple instruction formats and need to
switch between them after instruction selection. This entire feature is driven
by relation models which can be defined in XXXInstrInfo.td files
according to the target-specific instruction set. Relation models are defined
using InstrMapping class as a base. TableGen parses all the models
and generates instruction relation maps using the specified information.
Relation maps are emitted as tables in the XXXGenInstrInfo.inc file
along with the functions to query them. For the detailed information on how to
use this feature, please refer to How To Use Instruction Mappings.

Implement a subclass of TargetInstrInfo

The final step is to hand code portions of XXXInstrInfo, which implements
the interface described in TargetInstrInfo.h (see The TargetInstrInfo class).
These functions return 0 or a Boolean or they assert, unless overridden.
Here’s a list of functions that are overridden for the SPARC implementation in
SparcInstrInfo.cpp:

	isLoadFromStackSlot — If the specified machine instruction is a direct
load from a stack slot, return the register number of the destination and the
FrameIndex of the stack slot.

	isStoreToStackSlot — If the specified machine instruction is a direct
store to a stack slot, return the register number of the destination and the
FrameIndex of the stack slot.

	copyPhysReg — Copy values between a pair of physical registers.

	storeRegToStackSlot — Store a register value to a stack slot.

	loadRegFromStackSlot — Load a register value from a stack slot.

	storeRegToAddr — Store a register value to memory.

	loadRegFromAddr — Load a register value from memory.

	foldMemoryOperand — Attempt to combine instructions of any load or
store instruction for the specified operand(s).

Branch Folding and If Conversion

Performance can be improved by combining instructions or by eliminating
instructions that are never reached. The AnalyzeBranch method in
XXXInstrInfo may be implemented to examine conditional instructions and
remove unnecessary instructions. AnalyzeBranch looks at the end of a
machine basic block (MBB) for opportunities for improvement, such as branch
folding and if conversion. The BranchFolder and IfConverter machine
function passes (see the source files BranchFolding.cpp and
IfConversion.cpp in the lib/CodeGen directory) call AnalyzeBranch
to improve the control flow graph that represents the instructions.

Several implementations of AnalyzeBranch (for ARM, Alpha, and X86) can be
examined as models for your own AnalyzeBranch implementation. Since SPARC
does not implement a useful AnalyzeBranch, the ARM target implementation is
shown below.

AnalyzeBranch returns a Boolean value and takes four parameters:

	MachineBasicBlock &MBB — The incoming block to be examined.

	MachineBasicBlock *&TBB — A destination block that is returned. For a
conditional branch that evaluates to true, TBB is the destination.

	MachineBasicBlock *&FBB — For a conditional branch that evaluates to
false, FBB is returned as the destination.

	std::vector<MachineOperand> &Cond — List of operands to evaluate a
condition for a conditional branch.

In the simplest case, if a block ends without a branch, then it falls through
to the successor block. No destination blocks are specified for either TBB
or FBB, so both parameters return NULL. The start of the
AnalyzeBranch (see code below for the ARM target) shows the function
parameters and the code for the simplest case.

bool ARMInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
 MachineBasicBlock *&TBB,
 MachineBasicBlock *&FBB,
 std::vector<MachineOperand> &Cond) const
{
 MachineBasicBlock::iterator I = MBB.end();
 if (I == MBB.begin() || !isUnpredicatedTerminator(--I))
 return false;

If a block ends with a single unconditional branch instruction, then
AnalyzeBranch (shown below) should return the destination of that branch in
the TBB parameter.

if (LastOpc == ARM::B || LastOpc == ARM::tB) {
 TBB = LastInst->getOperand(0).getMBB();
 return false;
}

If a block ends with two unconditional branches, then the second branch is
never reached. In that situation, as shown below, remove the last branch
instruction and return the penultimate branch in the TBB parameter.

if ((SecondLastOpc == ARM::B || SecondLastOpc == ARM::tB) &&
 (LastOpc == ARM::B || LastOpc == ARM::tB)) {
 TBB = SecondLastInst->getOperand(0).getMBB();
 I = LastInst;
 I->eraseFromParent();
 return false;
}

A block may end with a single conditional branch instruction that falls through
to successor block if the condition evaluates to false. In that case,
AnalyzeBranch (shown below) should return the destination of that
conditional branch in the TBB parameter and a list of operands in the
Cond parameter to evaluate the condition.

if (LastOpc == ARM::Bcc || LastOpc == ARM::tBcc) {
 // Block ends with fall-through condbranch.
 TBB = LastInst->getOperand(0).getMBB();
 Cond.push_back(LastInst->getOperand(1));
 Cond.push_back(LastInst->getOperand(2));
 return false;
}

If a block ends with both a conditional branch and an ensuing unconditional
branch, then AnalyzeBranch (shown below) should return the conditional
branch destination (assuming it corresponds to a conditional evaluation of
“true”) in the TBB parameter and the unconditional branch destination
in the FBB (corresponding to a conditional evaluation of “false”). A
list of operands to evaluate the condition should be returned in the Cond
parameter.

unsigned SecondLastOpc = SecondLastInst->getOpcode();

if ((SecondLastOpc == ARM::Bcc && LastOpc == ARM::B) ||
 (SecondLastOpc == ARM::tBcc && LastOpc == ARM::tB)) {
 TBB = SecondLastInst->getOperand(0).getMBB();
 Cond.push_back(SecondLastInst->getOperand(1));
 Cond.push_back(SecondLastInst->getOperand(2));
 FBB = LastInst->getOperand(0).getMBB();
 return false;
}

For the last two cases (ending with a single conditional branch or ending with
one conditional and one unconditional branch), the operands returned in the
Cond parameter can be passed to methods of other instructions to create new
branches or perform other operations. An implementation of AnalyzeBranch
requires the helper methods RemoveBranch and InsertBranch to manage
subsequent operations.

AnalyzeBranch should return false indicating success in most circumstances.
AnalyzeBranch should only return true when the method is stumped about what
to do, for example, if a block has three terminating branches.
AnalyzeBranch may return true if it encounters a terminator it cannot
handle, such as an indirect branch.

Instruction Selector

LLVM uses a SelectionDAG to represent LLVM IR instructions, and nodes of
the SelectionDAG ideally represent native target instructions. During code
generation, instruction selection passes are performed to convert non-native
DAG instructions into native target-specific instructions. The pass described
in XXXISelDAGToDAG.cpp is used to match patterns and perform DAG-to-DAG
instruction selection. Optionally, a pass may be defined (in
XXXBranchSelector.cpp) to perform similar DAG-to-DAG operations for branch
instructions. Later, the code in XXXISelLowering.cpp replaces or removes
operations and data types not supported natively (legalizes) in a
SelectionDAG.

TableGen generates code for instruction selection using the following target
description input files:

	XXXInstrInfo.td — Contains definitions of instructions in a
target-specific instruction set, generates XXXGenDAGISel.inc, which is
included in XXXISelDAGToDAG.cpp.

	XXXCallingConv.td — Contains the calling and return value conventions
for the target architecture, and it generates XXXGenCallingConv.inc,
which is included in XXXISelLowering.cpp.

The implementation of an instruction selection pass must include a header that
declares the FunctionPass class or a subclass of FunctionPass. In
XXXTargetMachine.cpp, a Pass Manager (PM) should add each instruction
selection pass into the queue of passes to run.

The LLVM static compiler (llc) is an excellent tool for visualizing the
contents of DAGs. To display the SelectionDAG before or after specific
processing phases, use the command line options for llc, described at
SelectionDAG Instruction Selection Process.

To describe instruction selector behavior, you should add patterns for lowering
LLVM code into a SelectionDAG as the last parameter of the instruction
definitions in XXXInstrInfo.td. For example, in SparcInstrInfo.td,
this entry defines a register store operation, and the last parameter describes
a pattern with the store DAG operator.

def STrr : F3_1< 3, 0b000100, (outs), (ins MEMrr:$addr, IntRegs:$src),
 "st $src, [$addr]", [(store i32:$src, ADDRrr:$addr)]>;

ADDRrr is a memory mode that is also defined in SparcInstrInfo.td:

def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>;

The definition of ADDRrr refers to SelectADDRrr, which is a function
defined in an implementation of the Instructor Selector (such as
SparcISelDAGToDAG.cpp).

In lib/Target/TargetSelectionDAG.td, the DAG operator for store is defined
below:

def store : PatFrag<(ops node:$val, node:$ptr),
 (st node:$val, node:$ptr), [{
 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N))
 return !ST->isTruncatingStore() &&
 ST->getAddressingMode() == ISD::UNINDEXED;
 return false;
}]>;

XXXInstrInfo.td also generates (in XXXGenDAGISel.inc) the
SelectCode method that is used to call the appropriate processing method
for an instruction. In this example, SelectCode calls Select_ISD_STORE
for the ISD::STORE opcode.

SDNode *SelectCode(SDValue N) {
 ...
 MVT::ValueType NVT = N.getNode()->getValueType(0);
 switch (N.getOpcode()) {
 case ISD::STORE: {
 switch (NVT) {
 default:
 return Select_ISD_STORE(N);
 break;
 }
 break;
 }
 ...

The pattern for STrr is matched, so elsewhere in XXXGenDAGISel.inc,
code for STrr is created for Select_ISD_STORE. The Emit_22 method
is also generated in XXXGenDAGISel.inc to complete the processing of this
instruction.

SDNode *Select_ISD_STORE(const SDValue &N) {
 SDValue Chain = N.getOperand(0);
 if (Predicate_store(N.getNode())) {
 SDValue N1 = N.getOperand(1);
 SDValue N2 = N.getOperand(2);
 SDValue CPTmp0;
 SDValue CPTmp1;

 // Pattern: (st:void i32:i32:$src,
 // ADDRrr:i32:$addr)<<P:Predicate_store>>
 // Emits: (STrr:void ADDRrr:i32:$addr, IntRegs:i32:$src)
 // Pattern complexity = 13 cost = 1 size = 0
 if (SelectADDRrr(N, N2, CPTmp0, CPTmp1) &&
 N1.getNode()->getValueType(0) == MVT::i32 &&
 N2.getNode()->getValueType(0) == MVT::i32) {
 return Emit_22(N, SP::STrr, CPTmp0, CPTmp1);
 }
...

The SelectionDAG Legalize Phase

The Legalize phase converts a DAG to use types and operations that are natively
supported by the target. For natively unsupported types and operations, you
need to add code to the target-specific XXXTargetLowering implementation to
convert unsupported types and operations to supported ones.

In the constructor for the XXXTargetLowering class, first use the
addRegisterClass method to specify which types are supported and which
register classes are associated with them. The code for the register classes
are generated by TableGen from XXXRegisterInfo.td and placed in
XXXGenRegisterInfo.h.inc. For example, the implementation of the
constructor for the SparcTargetLowering class (in SparcISelLowering.cpp)
starts with the following code:

addRegisterClass(MVT::i32, SP::IntRegsRegisterClass);
addRegisterClass(MVT::f32, SP::FPRegsRegisterClass);
addRegisterClass(MVT::f64, SP::DFPRegsRegisterClass);

You should examine the node types in the ISD namespace
(include/llvm/CodeGen/SelectionDAGNodes.h) and determine which operations
the target natively supports. For operations that do not have native
support, add a callback to the constructor for the XXXTargetLowering class,
so the instruction selection process knows what to do. The TargetLowering
class callback methods (declared in llvm/Target/TargetLowering.h) are:

	setOperationAction — General operation.

	setLoadExtAction — Load with extension.

	setTruncStoreAction — Truncating store.

	setIndexedLoadAction — Indexed load.

	setIndexedStoreAction — Indexed store.

	setConvertAction — Type conversion.

	setCondCodeAction — Support for a given condition code.

Note: on older releases, setLoadXAction is used instead of
setLoadExtAction. Also, on older releases, setCondCodeAction may not
be supported. Examine your release to see what methods are specifically
supported.

These callbacks are used to determine that an operation does or does not work
with a specified type (or types). And in all cases, the third parameter is a
LegalAction type enum value: Promote, Expand, Custom, or
Legal. SparcISelLowering.cpp contains examples of all four
LegalAction values.

Promote

For an operation without native support for a given type, the specified type
may be promoted to a larger type that is supported. For example, SPARC does
not support a sign-extending load for Boolean values (i1 type), so in
SparcISelLowering.cpp the third parameter below, Promote, changes
i1 type values to a large type before loading.

setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);

Expand

For a type without native support, a value may need to be broken down further,
rather than promoted. For an operation without native support, a combination
of other operations may be used to similar effect. In SPARC, the
floating-point sine and cosine trig operations are supported by expansion to
other operations, as indicated by the third parameter, Expand, to
setOperationAction:

setOperationAction(ISD::FSIN, MVT::f32, Expand);
setOperationAction(ISD::FCOS, MVT::f32, Expand);

Custom

For some operations, simple type promotion or operation expansion may be
insufficient. In some cases, a special intrinsic function must be implemented.

For example, a constant value may require special treatment, or an operation
may require spilling and restoring registers in the stack and working with
register allocators.

As seen in SparcISelLowering.cpp code below, to perform a type conversion
from a floating point value to a signed integer, first the
setOperationAction should be called with Custom as the third parameter:

setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);

In the LowerOperation method, for each Custom operation, a case
statement should be added to indicate what function to call. In the following
code, an FP_TO_SINT opcode will call the LowerFP_TO_SINT method:

SDValue SparcTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
 switch (Op.getOpcode()) {
 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
 ...
 }
}

Finally, the LowerFP_TO_SINT method is implemented, using an FP register to
convert the floating-point value to an integer.

static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
 assert(Op.getValueType() == MVT::i32);
 Op = DAG.getNode(SPISD::FTOI, MVT::f32, Op.getOperand(0));
 return DAG.getNode(ISD::BITCAST, MVT::i32, Op);
}

Legal

The Legal LegalizeAction enum value simply indicates that an operation
is natively supported. Legal represents the default condition, so it
is rarely used. In SparcISelLowering.cpp, the action for CTPOP (an
operation to count the bits set in an integer) is natively supported only for
SPARC v9. The following code enables the Expand conversion technique for
non-v9 SPARC implementations.

setOperationAction(ISD::CTPOP, MVT::i32, Expand);
...
if (TM.getSubtarget<SparcSubtarget>().isV9())
 setOperationAction(ISD::CTPOP, MVT::i32, Legal);

Calling Conventions

To support target-specific calling conventions, XXXGenCallingConv.td uses
interfaces (such as CCIfType and CCAssignToReg) that are defined in
lib/Target/TargetCallingConv.td. TableGen can take the target descriptor
file XXXGenCallingConv.td and generate the header file
XXXGenCallingConv.inc, which is typically included in
XXXISelLowering.cpp. You can use the interfaces in
TargetCallingConv.td to specify:

	The order of parameter allocation.

	Where parameters and return values are placed (that is, on the stack or in
registers).

	Which registers may be used.

	Whether the caller or callee unwinds the stack.

The following example demonstrates the use of the CCIfType and
CCAssignToReg interfaces. If the CCIfType predicate is true (that is,
if the current argument is of type f32 or f64), then the action is
performed. In this case, the CCAssignToReg action assigns the argument
value to the first available register: either R0 or R1.

CCIfType<[f32,f64], CCAssignToReg<[R0, R1]>>

SparcCallingConv.td contains definitions for a target-specific return-value
calling convention (RetCC_Sparc32) and a basic 32-bit C calling convention
(CC_Sparc32). The definition of RetCC_Sparc32 (shown below) indicates
which registers are used for specified scalar return types. A single-precision
float is returned to register F0, and a double-precision float goes to
register D0. A 32-bit integer is returned in register I0 or I1.

def RetCC_Sparc32 : CallingConv<[
 CCIfType<[i32], CCAssignToReg<[I0, I1]>>,
 CCIfType<[f32], CCAssignToReg<[F0]>>,
 CCIfType<[f64], CCAssignToReg<[D0]>>
]>;

The definition of CC_Sparc32 in SparcCallingConv.td introduces
CCAssignToStack, which assigns the value to a stack slot with the specified
size and alignment. In the example below, the first parameter, 4, indicates
the size of the slot, and the second parameter, also 4, indicates the stack
alignment along 4-byte units. (Special cases: if size is zero, then the ABI
size is used; if alignment is zero, then the ABI alignment is used.)

def CC_Sparc32 : CallingConv<[
 // All arguments get passed in integer registers if there is space.
 CCIfType<[i32, f32, f64], CCAssignToReg<[I0, I1, I2, I3, I4, I5]>>,
 CCAssignToStack<4, 4>
]>;

CCDelegateTo is another commonly used interface, which tries to find a
specified sub-calling convention, and, if a match is found, it is invoked. In
the following example (in X86CallingConv.td), the definition of
RetCC_X86_32_C ends with CCDelegateTo. After the current value is
assigned to the register ST0 or ST1, the RetCC_X86Common is
invoked.

def RetCC_X86_32_C : CallingConv<[
 CCIfType<[f32], CCAssignToReg<[ST0, ST1]>>,
 CCIfType<[f64], CCAssignToReg<[ST0, ST1]>>,
 CCDelegateTo<RetCC_X86Common>
]>;

CCIfCC is an interface that attempts to match the given name to the current
calling convention. If the name identifies the current calling convention,
then a specified action is invoked. In the following example (in
X86CallingConv.td), if the Fast calling convention is in use, then
RetCC_X86_32_Fast is invoked. If the SSECall calling convention is in
use, then RetCC_X86_32_SSE is invoked.

def RetCC_X86_32 : CallingConv<[
 CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
 CCIfCC<"CallingConv::X86_SSECall", CCDelegateTo<RetCC_X86_32_SSE>>,
 CCDelegateTo<RetCC_X86_32_C>
]>;

Other calling convention interfaces include:

	CCIf <predicate, action> — If the predicate matches, apply the action.

	CCIfInReg <action> — If the argument is marked with the “inreg”
attribute, then apply the action.

	CCIfNest <action> — If the argument is marked with the “nest”
attribute, then apply the action.

	CCIfNotVarArg <action> — If the current function does not take a
variable number of arguments, apply the action.

	CCAssignToRegWithShadow <registerList, shadowList> — similar to
CCAssignToReg, but with a shadow list of registers.

	CCPassByVal <size, align> — Assign value to a stack slot with the
minimum specified size and alignment.

	CCPromoteToType <type> — Promote the current value to the specified
type.

	CallingConv <[actions]> — Define each calling convention that is
supported.

Assembly Printer

During the code emission stage, the code generator may utilize an LLVM pass to
produce assembly output. To do this, you want to implement the code for a
printer that converts LLVM IR to a GAS-format assembly language for your target
machine, using the following steps:

	Define all the assembly strings for your target, adding them to the
instructions defined in the XXXInstrInfo.td file. (See
Instruction Set.) TableGen will produce an output file
(XXXGenAsmWriter.inc) with an implementation of the printInstruction
method for the XXXAsmPrinter class.

	Write XXXTargetAsmInfo.h, which contains the bare-bones declaration of
the XXXTargetAsmInfo class (a subclass of TargetAsmInfo).

	Write XXXTargetAsmInfo.cpp, which contains target-specific values for
TargetAsmInfo properties and sometimes new implementations for methods.

	Write XXXAsmPrinter.cpp, which implements the AsmPrinter class that
performs the LLVM-to-assembly conversion.

The code in XXXTargetAsmInfo.h is usually a trivial declaration of the
XXXTargetAsmInfo class for use in XXXTargetAsmInfo.cpp. Similarly,
XXXTargetAsmInfo.cpp usually has a few declarations of XXXTargetAsmInfo
replacement values that override the default values in TargetAsmInfo.cpp.
For example in SparcTargetAsmInfo.cpp:

SparcTargetAsmInfo::SparcTargetAsmInfo(const SparcTargetMachine &TM) {
 Data16bitsDirective = "\t.half\t";
 Data32bitsDirective = "\t.word\t";
 Data64bitsDirective = 0; // .xword is only supported by V9.
 ZeroDirective = "\t.skip\t";
 CommentString = "!";
 ConstantPoolSection = "\t.section \".rodata\",#alloc\n";
}

The X86 assembly printer implementation (X86TargetAsmInfo) is an example
where the target specific TargetAsmInfo class uses an overridden methods:
ExpandInlineAsm.

A target-specific implementation of AsmPrinter is written in
XXXAsmPrinter.cpp, which implements the AsmPrinter class that converts
the LLVM to printable assembly. The implementation must include the following
headers that have declarations for the AsmPrinter and
MachineFunctionPass classes. The MachineFunctionPass is a subclass of
FunctionPass.

#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/MachineFunctionPass.h"

As a FunctionPass, AsmPrinter first calls doInitialization to set
up the AsmPrinter. In SparcAsmPrinter, a Mangler object is
instantiated to process variable names.

In XXXAsmPrinter.cpp, the runOnMachineFunction method (declared in
MachineFunctionPass) must be implemented for XXXAsmPrinter. In
MachineFunctionPass, the runOnFunction method invokes
runOnMachineFunction. Target-specific implementations of
runOnMachineFunction differ, but generally do the following to process each
machine function:

	Call SetupMachineFunction to perform initialization.

	Call EmitConstantPool to print out (to the output stream) constants which
have been spilled to memory.

	Call EmitJumpTableInfo to print out jump tables used by the current
function.

	Print out the label for the current function.

	Print out the code for the function, including basic block labels and the
assembly for the instruction (using printInstruction)

The XXXAsmPrinter implementation must also include the code generated by
TableGen that is output in the XXXGenAsmWriter.inc file. The code in
XXXGenAsmWriter.inc contains an implementation of the printInstruction
method that may call these methods:

	printOperand

	printMemOperand

	printCCOperand (for conditional statements)

	printDataDirective

	printDeclare

	printImplicitDef

	printInlineAsm

The implementations of printDeclare, printImplicitDef,
printInlineAsm, and printLabel in AsmPrinter.cpp are generally
adequate for printing assembly and do not need to be overridden.

The printOperand method is implemented with a long switch/case
statement for the type of operand: register, immediate, basic block, external
symbol, global address, constant pool index, or jump table index. For an
instruction with a memory address operand, the printMemOperand method
should be implemented to generate the proper output. Similarly,
printCCOperand should be used to print a conditional operand.

doFinalization should be overridden in XXXAsmPrinter, and it should be
called to shut down the assembly printer. During doFinalization, global
variables and constants are printed to output.

Subtarget Support

Subtarget support is used to inform the code generation process of instruction
set variations for a given chip set. For example, the LLVM SPARC
implementation provided covers three major versions of the SPARC microprocessor
architecture: Version 8 (V8, which is a 32-bit architecture), Version 9 (V9, a
64-bit architecture), and the UltraSPARC architecture. V8 has 16
double-precision floating-point registers that are also usable as either 32
single-precision or 8 quad-precision registers. V8 is also purely big-endian.
V9 has 32 double-precision floating-point registers that are also usable as 16
quad-precision registers, but cannot be used as single-precision registers.
The UltraSPARC architecture combines V9 with UltraSPARC Visual Instruction Set
extensions.

If subtarget support is needed, you should implement a target-specific
XXXSubtarget class for your architecture. This class should process the
command-line options -mcpu= and -mattr=.

TableGen uses definitions in the Target.td and Sparc.td files to
generate code in SparcGenSubtarget.inc. In Target.td, shown below, the
SubtargetFeature interface is defined. The first 4 string parameters of
the SubtargetFeature interface are a feature name, an attribute set by the
feature, the value of the attribute, and a description of the feature. (The
fifth parameter is a list of features whose presence is implied, and its
default value is an empty array.)

class SubtargetFeature<string n, string a, string v, string d,
 list<SubtargetFeature> i = []> {
 string Name = n;
 string Attribute = a;
 string Value = v;
 string Desc = d;
 list<SubtargetFeature> Implies = i;
}

In the Sparc.td file, the SubtargetFeature is used to define the
following features.

def FeatureV9 : SubtargetFeature<"v9", "IsV9", "true",
 "Enable SPARC-V9 instructions">;
def FeatureV8Deprecated : SubtargetFeature<"deprecated-v8",
 "V8DeprecatedInsts", "true",
 "Enable deprecated V8 instructions in V9 mode">;
def FeatureVIS : SubtargetFeature<"vis", "IsVIS", "true",
 "Enable UltraSPARC Visual Instruction Set extensions">;

Elsewhere in Sparc.td, the Proc class is defined and then is used to
define particular SPARC processor subtypes that may have the previously
described features.

class Proc<string Name, list<SubtargetFeature> Features>
 : Processor<Name, NoItineraries, Features>;

def : Proc<"generic", []>;
def : Proc<"v8", []>;
def : Proc<"supersparc", []>;
def : Proc<"sparclite", []>;
def : Proc<"f934", []>;
def : Proc<"hypersparc", []>;
def : Proc<"sparclite86x", []>;
def : Proc<"sparclet", []>;
def : Proc<"tsc701", []>;
def : Proc<"v9", [FeatureV9]>;
def : Proc<"ultrasparc", [FeatureV9, FeatureV8Deprecated]>;
def : Proc<"ultrasparc3", [FeatureV9, FeatureV8Deprecated]>;
def : Proc<"ultrasparc3-vis", [FeatureV9, FeatureV8Deprecated, FeatureVIS]>;

From Target.td and Sparc.td files, the resulting
SparcGenSubtarget.inc specifies enum values to identify the features,
arrays of constants to represent the CPU features and CPU subtypes, and the
ParseSubtargetFeatures method that parses the features string that sets
specified subtarget options. The generated SparcGenSubtarget.inc file
should be included in the SparcSubtarget.cpp. The target-specific
implementation of the XXXSubtarget method should follow this pseudocode:

XXXSubtarget::XXXSubtarget(const Module &M, const std::string &FS) {
 // Set the default features
 // Determine default and user specified characteristics of the CPU
 // Call ParseSubtargetFeatures(FS, CPU) to parse the features string
 // Perform any additional operations
}

JIT Support

The implementation of a target machine optionally includes a Just-In-Time (JIT)
code generator that emits machine code and auxiliary structures as binary
output that can be written directly to memory. To do this, implement JIT code
generation by performing the following steps:

	Write an XXXCodeEmitter.cpp file that contains a machine function pass
that transforms target-machine instructions into relocatable machine
code.

	Write an XXXJITInfo.cpp file that implements the JIT interfaces for
target-specific code-generation activities, such as emitting machine code and
stubs.

	Modify XXXTargetMachine so that it provides a TargetJITInfo object
through its getJITInfo method.

There are several different approaches to writing the JIT support code. For
instance, TableGen and target descriptor files may be used for creating a JIT
code generator, but are not mandatory. For the Alpha and PowerPC target
machines, TableGen is used to generate XXXGenCodeEmitter.inc, which
contains the binary coding of machine instructions and the
getBinaryCodeForInstr method to access those codes. Other JIT
implementations do not.

Both XXXJITInfo.cpp and XXXCodeEmitter.cpp must include the
llvm/CodeGen/MachineCodeEmitter.h header file that defines the
MachineCodeEmitter class containing code for several callback functions
that write data (in bytes, words, strings, etc.) to the output stream.

Machine Code Emitter

In XXXCodeEmitter.cpp, a target-specific of the Emitter class is
implemented as a function pass (subclass of MachineFunctionPass). The
target-specific implementation of runOnMachineFunction (invoked by
runOnFunction in MachineFunctionPass) iterates through the
MachineBasicBlock calls emitInstruction to process each instruction and
emit binary code. emitInstruction is largely implemented with case
statements on the instruction types defined in XXXInstrInfo.h. For
example, in X86CodeEmitter.cpp, the emitInstruction method is built
around the following switch/case statements:

switch (Desc->TSFlags & X86::FormMask) {
case X86II::Pseudo: // for not yet implemented instructions
 ... // or pseudo-instructions
 break;
case X86II::RawFrm: // for instructions with a fixed opcode value
 ...
 break;
case X86II::AddRegFrm: // for instructions that have one register operand
 ... // added to their opcode
 break;
case X86II::MRMDestReg:// for instructions that use the Mod/RM byte
 ... // to specify a destination (register)
 break;
case X86II::MRMDestMem:// for instructions that use the Mod/RM byte
 ... // to specify a destination (memory)
 break;
case X86II::MRMSrcReg: // for instructions that use the Mod/RM byte
 ... // to specify a source (register)
 break;
case X86II::MRMSrcMem: // for instructions that use the Mod/RM byte
 ... // to specify a source (memory)
 break;
case X86II::MRM0r: case X86II::MRM1r: // for instructions that operate on
case X86II::MRM2r: case X86II::MRM3r: // a REGISTER r/m operand and
case X86II::MRM4r: case X86II::MRM5r: // use the Mod/RM byte and a field
case X86II::MRM6r: case X86II::MRM7r: // to hold extended opcode data
 ...
 break;
case X86II::MRM0m: case X86II::MRM1m: // for instructions that operate on
case X86II::MRM2m: case X86II::MRM3m: // a MEMORY r/m operand and
case X86II::MRM4m: case X86II::MRM5m: // use the Mod/RM byte and a field
case X86II::MRM6m: case X86II::MRM7m: // to hold extended opcode data
 ...
 break;
case X86II::MRMInitReg: // for instructions whose source and
 ... // destination are the same register
 break;
}

The implementations of these case statements often first emit the opcode and
then get the operand(s). Then depending upon the operand, helper methods may
be called to process the operand(s). For example, in X86CodeEmitter.cpp,
for the X86II::AddRegFrm case, the first data emitted (by emitByte) is
the opcode added to the register operand. Then an object representing the
machine operand, MO1, is extracted. The helper methods such as
isImmediate, isGlobalAddress, isExternalSymbol,
isConstantPoolIndex, and isJumpTableIndex determine the operand type.
(X86CodeEmitter.cpp also has private methods such as emitConstant,
emitGlobalAddress, emitExternalSymbolAddress, emitConstPoolAddress,
and emitJumpTableAddress that emit the data into the output stream.)

case X86II::AddRegFrm:
 MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg()));

 if (CurOp != NumOps) {
 const MachineOperand &MO1 = MI.getOperand(CurOp++);
 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
 if (MO1.isImmediate())
 emitConstant(MO1.getImm(), Size);
 else {
 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
 if (Opcode == X86::MOV64ri)
 rt = X86::reloc_absolute_dword; // FIXME: add X86II flag?
 if (MO1.isGlobalAddress()) {
 bool NeedStub = isa<Function>(MO1.getGlobal());
 bool isLazy = gvNeedsLazyPtr(MO1.getGlobal());
 emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
 NeedStub, isLazy);
 } else if (MO1.isExternalSymbol())
 emitExternalSymbolAddress(MO1.getSymbolName(), rt);
 else if (MO1.isConstantPoolIndex())
 emitConstPoolAddress(MO1.getIndex(), rt);
 else if (MO1.isJumpTableIndex())
 emitJumpTableAddress(MO1.getIndex(), rt);
 }
 }
 break;

In the previous example, XXXCodeEmitter.cpp uses the variable rt, which
is a RelocationType enum that may be used to relocate addresses (for
example, a global address with a PIC base offset). The RelocationType enum
for that target is defined in the short target-specific XXXRelocations.h
file. The RelocationType is used by the relocate method defined in
XXXJITInfo.cpp to rewrite addresses for referenced global symbols.

For example, X86Relocations.h specifies the following relocation types for
the X86 addresses. In all four cases, the relocated value is added to the
value already in memory. For reloc_pcrel_word and reloc_picrel_word,
there is an additional initial adjustment.

enum RelocationType {
 reloc_pcrel_word = 0, // add reloc value after adjusting for the PC loc
 reloc_picrel_word = 1, // add reloc value after adjusting for the PIC base
 reloc_absolute_word = 2, // absolute relocation; no additional adjustment
 reloc_absolute_dword = 3 // absolute relocation; no additional adjustment
};

Target JIT Info

XXXJITInfo.cpp implements the JIT interfaces for target-specific
code-generation activities, such as emitting machine code and stubs. At
minimum, a target-specific version of XXXJITInfo implements the following:

	getLazyResolverFunction — Initializes the JIT, gives the target a
function that is used for compilation.

	emitFunctionStub — Returns a native function with a specified address
for a callback function.

	relocate — Changes the addresses of referenced globals, based on
relocation types.

	Callback function that are wrappers to a function stub that is used when the
real target is not initially known.

getLazyResolverFunction is generally trivial to implement. It makes the
incoming parameter as the global JITCompilerFunction and returns the
callback function that will be used a function wrapper. For the Alpha target
(in AlphaJITInfo.cpp), the getLazyResolverFunction implementation is
simply:

TargetJITInfo::LazyResolverFn AlphaJITInfo::getLazyResolverFunction(
 JITCompilerFn F) {
 JITCompilerFunction = F;
 return AlphaCompilationCallback;
}

For the X86 target, the getLazyResolverFunction implementation is a little
more complicated, because it returns a different callback function for
processors with SSE instructions and XMM registers.

The callback function initially saves and later restores the callee register
values, incoming arguments, and frame and return address. The callback
function needs low-level access to the registers or stack, so it is typically
implemented with assembler.

 How To Use Instruction Mappings

How To Use Instruction Mappings

	Introduction

	InstrMapping Class Overview

	Sample Example

Introduction

This document contains information about adding instruction mapping support
for a target. The motivation behind this feature comes from the need to switch
between different instruction formats during various optimizations. One approach
could be to use switch cases which list all the instructions along with formats
they can transition to. However, it has large maintenance overhead
because of the hardcoded instruction names. Also, whenever a new instruction is
added in the .td files, all the relevant switch cases should be modified
accordingly. Instead, the same functionality could be achieved with TableGen and
some support from the .td files for a fraction of maintenance cost.

InstrMapping Class Overview

TableGen uses relationship models to map instructions with each other. These
models are described using InstrMapping class as a base. Each model sets
various fields of the InstrMapping class such that they can uniquely
describe all the instructions using that model. TableGen parses all the relation
models and uses the information to construct relation tables which relate
instructions with each other. These tables are emitted in the
XXXInstrInfo.inc file along with the functions to query them. Following
is the definition of InstrMapping class definied in Target.td file:

class InstrMapping {
 // Used to reduce search space only to the instructions using this
 // relation model.
 string FilterClass;

 // List of fields/attributes that should be same for all the instructions in
 // a row of the relation table. Think of this as a set of properties shared
 // by all the instructions related by this relationship.
 list<string> RowFields = [];

 // List of fields/attributes that are same for all the instructions
 // in a column of the relation table.
 list<string> ColFields = [];

 // Values for the fields/attributes listed in 'ColFields' corresponding to
 // the key instruction. This is the instruction that will be transformed
 // using this relation model.
 list<string> KeyCol = [];

 // List of values for the fields/attributes listed in 'ColFields', one for
 // each column in the relation table. These are the instructions a key
 // instruction will be transformed into.
 list<list<string> > ValueCols = [];
}

Sample Example

Let’s say that we want to have a function
int getPredOpcode(uint16_t Opcode, enum PredSense inPredSense) which
takes a non-predicated instruction and returns its predicated true or false form
depending on some input flag, inPredSense. The first step in the process is
to define a relationship model that relates predicated instructions to their
non-predicated form by assigning appropriate values to the InstrMapping
fields. For this relationship, non-predicated instructions are treated as key
instruction since they are the one used to query the interface function.

def getPredOpcode : InstrMapping {
 // Choose a FilterClass that is used as a base class for all the
 // instructions modeling this relationship. This is done to reduce the
 // search space only to these set of instructions.
 let FilterClass = "PredRel";

 // Instructions with same values for all the fields in RowFields form a
 // row in the resulting relation table.
 // For example, if we want to relate 'ADD' (non-predicated) with 'Add_pt'
 // (predicated true) and 'Add_pf' (predicated false), then all 3
 // instructions need to have same value for BaseOpcode field. It can be any
 // unique value (Ex: XYZ) and should not be shared with any other
 // instruction not related to 'add'.
 let RowFields = ["BaseOpcode"];

 // List of attributes that can be used to define key and column instructions
 // for a relation. Key instruction is passed as an argument
 // to the function used for querying relation tables. Column instructions
 // are the instructions they (key) can transform into.
 //
 // Here, we choose 'PredSense' as ColFields since this is the unique
 // attribute of the key (non-predicated) and column (true/false)
 // instructions involved in this relationship model.
 let ColFields = ["PredSense"];

 // The key column contains non-predicated instructions.
 let KeyCol = ["none"];

 // Two value columns - first column contains instructions with
 // PredSense=true while second column has instructions with PredSense=false.
 let ValueCols = [["true"], ["false"]];
}

TableGen uses the above relationship model to emit relation table that maps
non-predicated instructions with their predicated forms. It also outputs the
interface function
int getPredOpcode(uint16_t Opcode, enum PredSense inPredSense) to query
the table. Here, Function getPredOpcode takes two arguments, opcode of the
current instruction and PredSense of the desired instruction, and returns
predicated form of the instruction, if found in the relation table.
In order for an instruction to be added into the relation table, it needs
to include relevant information in its definition. For example, consider
following to be the current definitions of ADD, ADD_pt (true) and ADD_pf (false)
instructions:

def ADD : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$a, IntRegs:$b),
 "$dst = add($a, $b)",
 [(set (i32 IntRegs:$dst), (add (i32 IntRegs:$a),
 (i32 IntRegs:$b)))]>;

def ADD_Pt : ALU32_rr<(outs IntRegs:$dst),
 (ins PredRegs:$p, IntRegs:$a, IntRegs:$b),
 "if ($p) $dst = add($a, $b)",
 []>;

def ADD_Pf : ALU32_rr<(outs IntRegs:$dst),
 (ins PredRegs:$p, IntRegs:$a, IntRegs:$b),
 "if (!$p) $dst = add($a, $b)",
 []>;

In this step, we modify these instructions to include the information
required by the relationship model, <tt>getPredOpcode</tt>, so that they can
be related.

def ADD : PredRel, ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$a, IntRegs:$b),
 "$dst = add($a, $b)",
 [(set (i32 IntRegs:$dst), (add (i32 IntRegs:$a),
 (i32 IntRegs:$b)))]> {
 let BaseOpcode = "ADD";
 let PredSense = "none";
}

def ADD_Pt : PredRel, ALU32_rr<(outs IntRegs:$dst),
 (ins PredRegs:$p, IntRegs:$a, IntRegs:$b),
 "if ($p) $dst = add($a, $b)",
 []> {
 let BaseOpcode = "ADD";
 let PredSense = "true";
}

def ADD_Pf : PredRel, ALU32_rr<(outs IntRegs:$dst),
 (ins PredRegs:$p, IntRegs:$a, IntRegs:$b),
 "if (!$p) $dst = add($a, $b)",
 []> {
 let BaseOpcode = "ADD";
 let PredSense = "false";
}

Please note that all the above instructions use PredRel as a base class.
This is extremely important since TableGen uses it as a filter for selecting
instructions for getPredOpcode model. Any instruction not derived from
PredRel is excluded from the analysis. BaseOpcode is another important
field. Since it’s selected as a RowFields of the model, it is required
to have the same value for all 3 instructions in order to be related. Next,
PredSense is used to determine their column positions by comparing its value
with KeyCol and ValueCols. If an instruction sets its PredSense
value to something not used in the relation model, it will not be assigned
a column in the relation table.

 Garbage Collection with LLVM

Garbage Collection with LLVM

	Abstract

	Quick Start

	Introduction

	What is Garbage Collection?

	Goals and non-goals

	LLVM IR Features

	Specifying GC code generation: gc "..."

	Identifying GC roots on the stack

	Using gc.statepoint

	Using llvm.gcwrite

	Reading and writing references in the heap

	Write barrier: llvm.gcwrite

	Read barrier: llvm.gcread

	Built In GC Strategies

	The Shadow Stack GC

	The ‘Erlang’ and ‘Ocaml’ GCs

	The Statepoint Example GC

	The CoreCLR GC

	Custom GC Strategies

	Collector Requirements

	Implementing a collector plugin

	Overview of available features

	Computing stack maps

	Initializing roots to null: InitRoots

	Custom lowering of intrinsics: CustomRoots, CustomReadBarriers, and CustomWriteBarriers

	Generating safe points: NeededSafePoints

	Emitting assembly code: GCMetadataPrinter

	References

Abstract

This document covers how to integrate LLVM into a compiler for a language which
supports garbage collection. Note that LLVM itself does not provide a
garbage collector. You must provide your own.

Quick Start

First, you should pick a collector strategy. LLVM includes a number of built
in ones, but you can also implement a loadable plugin with a custom definition.
Note that the collector strategy is a description of how LLVM should generate
code such that it interacts with your collector and runtime, not a description
of the collector itself.

Next, mark your generated functions as using your chosen collector strategy.
From c++, you can call:

F.setGC(<collector description name>);

This will produce IR like the following fragment:

define void @foo() gc "<collector description name>" { ... }

When generating LLVM IR for your functions, you will need to:

	Use @llvm.gcread and/or @llvm.gcwrite in place of standard load and
store instructions. These intrinsics are used to represent load and store
barriers. If you collector does not require such barriers, you can skip
this step.

	Use the memory allocation routines provided by your garbage collector’s
runtime library.

	If your collector requires them, generate type maps according to your
runtime’s binary interface. LLVM is not involved in the process. In
particular, the LLVM type system is not suitable for conveying such
information though the compiler.

	Insert any coordination code required for interacting with your collector.
Many collectors require running application code to periodically check a
flag and conditionally call a runtime function. This is often referred to
as a safepoint poll.

You will need to identify roots (i.e. references to heap objects your collector
needs to know about) in your generated IR, so that LLVM can encode them into
your final stack maps. Depending on the collector strategy chosen, this is
accomplished by using either the @llvm.gcroot intrinsics or an
gc.statepoint relocation sequence.

Don’t forget to create a root for each intermediate value that is generated when
evaluating an expression. In h(f(), g()), the result of f() could
easily be collected if evaluating g() triggers a collection.

Finally, you need to link your runtime library with the generated program
executable (for a static compiler) or ensure the appropriate symbols are
available for the runtime linker (for a JIT compiler).

Introduction

What is Garbage Collection?

Garbage collection is a widely used technique that frees the programmer from
having to know the lifetimes of heap objects, making software easier to produce
and maintain. Many programming languages rely on garbage collection for
automatic memory management. There are two primary forms of garbage collection:
conservative and accurate.

Conservative garbage collection often does not require any special support from
either the language or the compiler: it can handle non-type-safe programming
languages (such as C/C++) and does not require any special information from the
compiler. The Boehm collector [http://www.hpl.hp.com/personal/Hans_Boehm/gc/] is an example of a
state-of-the-art conservative collector.

Accurate garbage collection requires the ability to identify all pointers in the
program at run-time (which requires that the source-language be type-safe in
most cases). Identifying pointers at run-time requires compiler support to
locate all places that hold live pointer variables at run-time, including the
processor stack and registers.

Conservative garbage collection is attractive because it does not require any
special compiler support, but it does have problems. In particular, because the
conservative garbage collector cannot know that a particular word in the
machine is a pointer, it cannot move live objects in the heap (preventing the
use of compacting and generational GC algorithms) and it can occasionally suffer
from memory leaks due to integer values that happen to point to objects in the
program. In addition, some aggressive compiler transformations can break
conservative garbage collectors (though these seem rare in practice).

Accurate garbage collectors do not suffer from any of these problems, but they
can suffer from degraded scalar optimization of the program. In particular,
because the runtime must be able to identify and update all pointers active in
the program, some optimizations are less effective. In practice, however, the
locality and performance benefits of using aggressive garbage collection
techniques dominates any low-level losses.

This document describes the mechanisms and interfaces provided by LLVM to
support accurate garbage collection.

Goals and non-goals

LLVM’s intermediate representation provides garbage collection intrinsics that offer support for a broad class of collector models. For
instance, the intrinsics permit:

	semi-space collectors

	mark-sweep collectors

	generational collectors

	incremental collectors

	concurrent collectors

	cooperative collectors

	reference counting

We hope that the support built into the LLVM IR is sufficient to support a
broad class of garbage collected languages including Scheme, ML, Java, C#,
Perl, Python, Lua, Ruby, other scripting languages, and more.

Note that LLVM does not itself provide a garbage collector — this should
be part of your language’s runtime library. LLVM provides a framework for
describing the garbage collectors requirements to the compiler. In particular,
LLVM provides support for generating stack maps at call sites, polling for a
safepoint, and emitting load and store barriers. You can also extend LLVM -
possibly through a loadable code generation plugins - to
generate code and data structures which conforms to the binary interface
specified by the runtime library. This is similar to the relationship between
LLVM and DWARF debugging info, for example. The difference primarily lies in
the lack of an established standard in the domain of garbage collection — thus
the need for a flexible extension mechanism.

The aspects of the binary interface with which LLVM’s GC support is
concerned are:

	Creation of GC safepoints within code where collection is allowed to execute
safely.

	Computation of the stack map. For each safe point in the code, object
references within the stack frame must be identified so that the collector may
traverse and perhaps update them.

	Write barriers when storing object references to the heap. These are commonly
used to optimize incremental scans in generational collectors.

	Emission of read barriers when loading object references. These are useful
for interoperating with concurrent collectors.

There are additional areas that LLVM does not directly address:

	Registration of global roots with the runtime.

	Registration of stack map entries with the runtime.

	The functions used by the program to allocate memory, trigger a collection,
etc.

	Computation or compilation of type maps, or registration of them with the
runtime. These are used to crawl the heap for object references.

In general, LLVM’s support for GC does not include features which can be
adequately addressed with other features of the IR and does not specify a
particular binary interface. On the plus side, this means that you should be
able to integrate LLVM with an existing runtime. On the other hand, it can
have the effect of leaving a lot of work for the developer of a novel
language. We try to mitigate this by providing built in collector strategy
descriptions that can work with many common collector designs and easy
extension points. If you don’t already have a specific binary interface
you need to support, we recommend trying to use one of these built in collector
strategies.

LLVM IR Features

This section describes the garbage collection facilities provided by the
LLVM intermediate representation. The exact behavior of these
IR features is specified by the selected GC strategy description.

Specifying GC code generation: gc "..."

define <returntype> @name(...) gc "name" { ... }

The gc function attribute is used to specify the desired GC strategy to the
compiler. Its programmatic equivalent is the setGC method of Function.

Setting gc "name" on a function triggers a search for a matching subclass
of GCStrategy. Some collector strategies are built in. You can add others
using either the loadable plugin mechanism, or by patching your copy of LLVM.
It is the selected GC strategy which defines the exact nature of the code
generated to support GC. If none is found, the compiler will raise an error.

Specifying the GC style on a per-function basis allows LLVM to link together
programs that use different garbage collection algorithms (or none at all).

Identifying GC roots on the stack

LLVM currently supports two different mechanisms for describing references in
compiled code at safepoints. llvm.gcroot is the older mechanism;
gc.statepoint has been added more recently. At the moment, you can choose
either implementation (on a per GC strategy basis). Longer
term, we will probably either migrate away from llvm.gcroot entirely, or
substantially merge their implementations. Note that most new development
work is focused on gc.statepoint.

Using gc.statepoint

This page contains detailed documentation for
gc.statepoint.

Using llvm.gcwrite

void @llvm.gcroot(i8** %ptrloc, i8* %metadata)

The llvm.gcroot intrinsic is used to inform LLVM that a stack variable
references an object on the heap and is to be tracked for garbage collection.
The exact impact on generated code is specified by the Function’s selected
GC strategy. All calls to llvm.gcroot must reside
inside the first basic block.

The first argument must be a value referring to an alloca instruction or a
bitcast of an alloca. The second contains a pointer to metadata that should be
associated with the pointer, and must be a constant or global value
address. If your target collector uses tags, use a null pointer for metadata.

A compiler which performs manual SSA construction must ensure that SSA
values representing GC references are stored in to the alloca passed to the
respective gcroot before every call site and reloaded after every call.
A compiler which uses mem2reg to raise imperative code using alloca into
SSA form need only add a call to @llvm.gcroot for those variables which
are pointers into the GC heap.

It is also important to mark intermediate values with llvm.gcroot. For
example, consider h(f(), g()). Beware leaking the result of f() in the
case that g() triggers a collection. Note, that stack variables must be
initialized and marked with llvm.gcroot in function’s prologue.

The %metadata argument can be used to avoid requiring heap objects to have
‘isa’ pointers or tag bits. [Appel89, Goldberg91, Tolmach94] If specified,
its value will be tracked along with the location of the pointer in the stack
frame.

Consider the following fragment of Java code:

{
 Object X; // A null-initialized reference to an object
 ...
}

This block (which may be located in the middle of a function or in a loop nest),
could be compiled to this LLVM code:

Entry:
 ;; In the entry block for the function, allocate the
 ;; stack space for X, which is an LLVM pointer.
 %X = alloca %Object*

 ;; Tell LLVM that the stack space is a stack root.
 ;; Java has type-tags on objects, so we pass null as metadata.
 %tmp = bitcast %Object** %X to i8**
 call void @llvm.gcroot(i8** %tmp, i8* null)
 ...

 ;; "CodeBlock" is the block corresponding to the start
 ;; of the scope above.
CodeBlock:
 ;; Java null-initializes pointers.
 store %Object* null, %Object** %X

 ...

 ;; As the pointer goes out of scope, store a null value into
 ;; it, to indicate that the value is no longer live.
 store %Object* null, %Object** %X
 ...

Reading and writing references in the heap

Some collectors need to be informed when the mutator (the program that needs
garbage collection) either reads a pointer from or writes a pointer to a field
of a heap object. The code fragments inserted at these points are called read
barriers and write barriers, respectively. The amount of code that needs to
be executed is usually quite small and not on the critical path of any
computation, so the overall performance impact of the barrier is tolerable.

Barriers often require access to the object pointer rather than the derived
pointer (which is a pointer to the field within the object). Accordingly,
these intrinsics take both pointers as separate arguments for completeness. In
this snippet, %object is the object pointer, and %derived is the derived
pointer:

;; An array type.
%class.Array = type { %class.Object, i32, [0 x %class.Object*] }
...

;; Load the object pointer from a gcroot.
%object = load %class.Array** %object_addr

;; Compute the derived pointer.
%derived = getelementptr %object, i32 0, i32 2, i32 %n

LLVM does not enforce this relationship between the object and derived pointer
(although a particular collector strategy might). However, it
would be an unusual collector that violated it.

The use of these intrinsics is naturally optional if the target GC does not
require the corresponding barrier. The GC strategy used with such a collector
should replace the intrinsic calls with the corresponding load or
store instruction if they are used.

One known deficiency with the current design is that the barrier intrinsics do
not include the size or alignment of the underlying operation performed. It is
currently assumed that the operation is of pointer size and the alignment is
assumed to be the target machine’s default alignment.

Write barrier: llvm.gcwrite

void @llvm.gcwrite(i8* %value, i8* %object, i8** %derived)

For write barriers, LLVM provides the llvm.gcwrite intrinsic function. It
has exactly the same semantics as a non-volatile store to the derived
pointer (the third argument). The exact code generated is specified by the
Function’s selected GC strategy.

Many important algorithms require write barriers, including generational and
concurrent collectors. Additionally, write barriers could be used to implement
reference counting.

Read barrier: llvm.gcread

i8* @llvm.gcread(i8* %object, i8** %derived)

For read barriers, LLVM provides the llvm.gcread intrinsic function. It has
exactly the same semantics as a non-volatile load from the derived pointer
(the second argument). The exact code generated is specified by the Function’s
selected GC strategy.

Read barriers are needed by fewer algorithms than write barriers, and may have a
greater performance impact since pointer reads are more frequent than writes.

Built In GC Strategies

LLVM includes built in support for several varieties of garbage collectors.

The Shadow Stack GC

To use this collector strategy, mark your functions with:

F.setGC("shadow-stack");

Unlike many GC algorithms which rely on a cooperative code generator to compile
stack maps, this algorithm carefully maintains a linked list of stack roots
[Henderson2002]. This so-called “shadow stack” mirrors the
machine stack. Maintaining this data structure is slower than using a stack map
compiled into the executable as constant data, but has a significant portability
advantage because it requires no special support from the target code generator,
and does not require tricky platform-specific code to crawl the machine stack.

The tradeoff for this simplicity and portability is:

	High overhead per function call.

	Not thread-safe.

Still, it’s an easy way to get started. After your compiler and runtime are up
and running, writing a plugin will allow you to take advantage
of more advanced GC features of LLVM in order to
improve performance.

The shadow stack doesn’t imply a memory allocation algorithm. A semispace
collector or building atop malloc are great places to start, and can be
implemented with very little code.

When it comes time to collect, however, your runtime needs to traverse the stack
roots, and for this it needs to integrate with the shadow stack. Luckily, doing
so is very simple. (This code is heavily commented to help you understand the
data structure, but there are only 20 lines of meaningful code.)

/// The map for a single function's stack frame. One of these is
/// compiled as constant data into the executable for each function.
///
/// Storage of metadata values is elided if the %metadata parameter to
/// @llvm.gcroot is null.
struct FrameMap {
 int32_t NumRoots; //< Number of roots in stack frame.
 int32_t NumMeta; //< Number of metadata entries. May be < NumRoots.
 const void *Meta[0]; //< Metadata for each root.
};

/// A link in the dynamic shadow stack. One of these is embedded in
/// the stack frame of each function on the call stack.
struct StackEntry {
 StackEntry *Next; //< Link to next stack entry (the caller's).
 const FrameMap *Map; //< Pointer to constant FrameMap.
 void *Roots[0]; //< Stack roots (in-place array).
};

/// The head of the singly-linked list of StackEntries. Functions push
/// and pop onto this in their prologue and epilogue.
///
/// Since there is only a global list, this technique is not threadsafe.
StackEntry *llvm_gc_root_chain;

/// Calls Visitor(root, meta) for each GC root on the stack.
/// root and meta are exactly the values passed to
/// @llvm.gcroot.
///
/// Visitor could be a function to recursively mark live objects. Or it
/// might copy them to another heap or generation.
///
/// @param Visitor A function to invoke for every GC root on the stack.
void visitGCRoots(void (*Visitor)(void **Root, const void *Meta)) {
 for (StackEntry *R = llvm_gc_root_chain; R; R = R->Next) {
 unsigned i = 0;

 // For roots [0, NumMeta), the metadata pointer is in the FrameMap.
 for (unsigned e = R->Map->NumMeta; i != e; ++i)
 Visitor(&R->Roots[i], R->Map->Meta[i]);

 // For roots [NumMeta, NumRoots), the metadata pointer is null.
 for (unsigned e = R->Map->NumRoots; i != e; ++i)
 Visitor(&R->Roots[i], NULL);
 }
}

The ‘Erlang’ and ‘Ocaml’ GCs

LLVM ships with two example collectors which leverage the gcroot
mechanisms. To our knowledge, these are not actually used by any language
runtime, but they do provide a reasonable starting point for someone interested
in writing an gcroot compatible GC plugin. In particular, these are the
only in tree examples of how to produce a custom binary stack map format using
a gcroot strategy.

As there names imply, the binary format produced is intended to model that
used by the Erlang and OCaml compilers respectively.

The Statepoint Example GC

F.setGC("statepoint-example");

This GC provides an example of how one might use the infrastructure provided
by gc.statepoint. This example GC is compatible with the
PlaceSafepoints and RewriteStatepointsForGC utility passes
which simplify gc.statepoint sequence insertion. If you need to build a
custom GC strategy around the gc.statepoints mechanisms, it is recommended
that you use this one as a starting point.

This GC strategy does not support read or write barriers. As a result, these
intrinsics are lowered to normal loads and stores.

The stack map format generated by this GC strategy can be found in the
Stack Map Section using a format documented here. This format is intended to be the standard
format supported by LLVM going forward.

The CoreCLR GC

F.setGC("coreclr");

This GC leverages the gc.statepoint mechanism to support the
CoreCLR [https://github.com/dotnet/coreclr] runtime.

Support for this GC strategy is a work in progress. This strategy will
differ from
statepoint-example GC strategy in
certain aspects like:

	Base-pointers of interior pointers are not explicitly
tracked and reported.

	A different format is used for encoding stack maps.

	Safe-point polls are only needed before loop-back edges
and before tail-calls (not needed at function-entry).

Custom GC Strategies

If none of the built in GC strategy descriptions met your needs above, you will
need to define a custom GCStrategy and possibly, a custom LLVM pass to perform
lowering. Your best example of where to start defining a custom GCStrategy
would be to look at one of the built in strategies.

You may be able to structure this additional code as a loadable plugin library.
Loadable plugins are sufficient if all you need is to enable a different
combination of built in functionality, but if you need to provide a custom
lowering pass, you will need to build a patched version of LLVM. If you think
you need a patched build, please ask for advice on llvm-dev. There may be an
easy way we can extend the support to make it work for your use case without
requiring a custom build.

Collector Requirements

You should be able to leverage any existing collector library that includes the following elements:

	A memory allocator which exposes an allocation function your compiled
code can call.

	A binary format for the stack map. A stack map describes the location
of references at a safepoint and is used by precise collectors to identify
references within a stack frame on the machine stack. Note that collectors
which conservatively scan the stack don’t require such a structure.

	A stack crawler to discover functions on the call stack, and enumerate the
references listed in the stack map for each call site.

	A mechanism for identifying references in global locations (e.g. global
variables).

	If you collector requires them, an LLVM IR implementation of your collectors
load and store barriers. Note that since many collectors don’t require
barriers at all, LLVM defaults to lowering such barriers to normal loads
and stores unless you arrange otherwise.

Implementing a collector plugin

User code specifies which GC code generation to use with the gc function
attribute or, equivalently, with the setGC method of Function.

To implement a GC plugin, it is necessary to subclass llvm::GCStrategy,
which can be accomplished in a few lines of boilerplate code. LLVM’s
infrastructure provides access to several important algorithms. For an
uncontroversial collector, all that remains may be to compile LLVM’s computed
stack map to assembly code (using the binary representation expected by the
runtime library). This can be accomplished in about 100 lines of code.

This is not the appropriate place to implement a garbage collected heap or a
garbage collector itself. That code should exist in the language’s runtime
library. The compiler plugin is responsible for generating code which conforms
to the binary interface defined by library, most essentially the stack map.

To subclass llvm::GCStrategy and register it with the compiler:

// lib/MyGC/MyGC.cpp - Example LLVM GC plugin

#include "llvm/CodeGen/GCStrategy.h"
#include "llvm/CodeGen/GCMetadata.h"
#include "llvm/Support/Compiler.h"

using namespace llvm;

namespace {
 class LLVM_LIBRARY_VISIBILITY MyGC : public GCStrategy {
 public:
 MyGC() {}
 };

 GCRegistry::Add<MyGC>
 X("mygc", "My bespoke garbage collector.");
}

This boilerplate collector does nothing. More specifically:

	llvm.gcread calls are replaced with the corresponding load
instruction.

	llvm.gcwrite calls are replaced with the corresponding store
instruction.

	No safe points are added to the code.

	The stack map is not compiled into the executable.

Using the LLVM makefiles, this code
can be compiled as a plugin using a simple makefile:

lib/MyGC/Makefile

LEVEL := ../..
LIBRARYNAME = MyGC
LOADABLE_MODULE = 1

include $(LEVEL)/Makefile.common

Once the plugin is compiled, code using it may be compiled using llc
-load=MyGC.so (though MyGC.so may have some other platform-specific
extension):

$ cat sample.ll
define void @f() gc "mygc" {
entry:
 ret void
}
$ llvm-as < sample.ll | llc -load=MyGC.so

It is also possible to statically link the collector plugin into tools, such as
a language-specific compiler front-end.

Overview of available features

GCStrategy provides a range of features through which a plugin may do useful
work. Some of these are callbacks, some are algorithms that can be enabled,
disabled, or customized. This matrix summarizes the supported (and planned)
features and correlates them with the collection techniques which typically
require them.

	Algorithm

	Done

	Shadow
stack

	refcount

	mark-
sweep

	copying

	incremental

	threaded

	concurrent

	stack map

	✔

	
	
	✘

	✘

	✘

	✘

	✘

	initialize
roots

	✔

	✘

	✘

	✘

	✘

	✘

	✘

	✘

	derived
pointers

	NO

	
	
	
	
	
	N*

	N*

	custom
lowering

	✔

	
	
	
	
	
	
	

	gcroot

	✔

	✘

	✘

	
	
	
	
	

	gcwrite

	✔

	
	✘

	
	
	✘

	
	✘

	gcread

	✔

	
	
	
	
	
	
	✘

	safe
points

	
	
	
	
	
	
	
	

	in
calls

	✔

	
	
	✘

	✘

	✘

	✘

	✘

	before
calls

	✔

	
	
	
	
	
	✘

	✘

	for
loops

	NO

	
	
	
	
	
	N

	N

	before
escape

	✔

	
	
	
	
	
	✘

	✘

	emit code
at safe
points

	NO

	
	
	
	
	
	N

	N

	output

	
	
	
	
	
	
	
	

	assembly

	✔

	
	
	✘

	✘

	✘

	✘

	✘

	JIT

	NO

	
	
	?

	?

	?

	?

	?

	obj

	NO

	
	
	?

	?

	?

	?

	?

	live
analysis

	NO

	
	
	?

	?

	?

	?

	?

	register
map

	NO

	
	
	?

	?

	?

	?

	?

	* Derived pointers only pose a hasard to copying collections.

	? denotes a feature which could be utilized if available.

To be clear, the collection techniques above are defined as:

	Shadow Stack

	The mutator carefully maintains a linked list of stack roots.

	Reference Counting

	The mutator maintains a reference count for each object and frees an object
when its count falls to zero.

	Mark-Sweep

	When the heap is exhausted, the collector marks reachable objects starting
from the roots, then deallocates unreachable objects in a sweep phase.

	Copying

	As reachability analysis proceeds, the collector copies objects from one heap
area to another, compacting them in the process. Copying collectors enable
highly efficient “bump pointer” allocation and can improve locality of
reference.

	Incremental

	(Including generational collectors.) Incremental collectors generally have all
the properties of a copying collector (regardless of whether the mature heap
is compacting), but bring the added complexity of requiring write barriers.

	Threaded

	Denotes a multithreaded mutator; the collector must still stop the mutator
(“stop the world”) before beginning reachability analysis. Stopping a
multithreaded mutator is a complicated problem. It generally requires highly
platform-specific code in the runtime, and the production of carefully
designed machine code at safe points.

	Concurrent

	In this technique, the mutator and the collector run concurrently, with the
goal of eliminating pause times. In a cooperative collector, the mutator
further aids with collection should a pause occur, allowing collection to take
advantage of multiprocessor hosts. The “stop the world” problem of threaded
collectors is generally still present to a limited extent. Sophisticated
marking algorithms are necessary. Read barriers may be necessary.

As the matrix indicates, LLVM’s garbage collection infrastructure is already
suitable for a wide variety of collectors, but does not currently extend to
multithreaded programs. This will be added in the future as there is
interest.

Computing stack maps

LLVM automatically computes a stack map. One of the most important features
of a GCStrategy is to compile this information into the executable in
the binary representation expected by the runtime library.

The stack map consists of the location and identity of each GC root in the
each function in the module. For each root:

	RootNum: The index of the root.

	StackOffset: The offset of the object relative to the frame pointer.

	RootMetadata: The value passed as the %metadata parameter to the
@llvm.gcroot intrinsic.

Also, for the function as a whole:

	
	getFrameSize(): The overall size of the function’s initial stack frame,

	not accounting for any dynamic allocation.

	roots_size(): The count of roots in the function.

To access the stack map, use GCFunctionMetadata::roots_begin() and
-end() from the GCMetadataPrinter:

for (iterator I = begin(), E = end(); I != E; ++I) {
 GCFunctionInfo *FI = *I;
 unsigned FrameSize = FI->getFrameSize();
 size_t RootCount = FI->roots_size();

 for (GCFunctionInfo::roots_iterator RI = FI->roots_begin(),
 RE = FI->roots_end();
 RI != RE; ++RI) {
 int RootNum = RI->Num;
 int RootStackOffset = RI->StackOffset;
 Constant *RootMetadata = RI->Metadata;
 }
}

If the llvm.gcroot intrinsic is eliminated before code generation by a
custom lowering pass, LLVM will compute an empty stack map. This may be useful
for collector plugins which implement reference counting or a shadow stack.

Initializing roots to null: InitRoots

MyGC::MyGC() {
 InitRoots = true;
}

When set, LLVM will automatically initialize each root to null upon entry to
the function. This prevents the GC’s sweep phase from visiting uninitialized
pointers, which will almost certainly cause it to crash. This initialization
occurs before custom lowering, so the two may be used together.

Since LLVM does not yet compute liveness information, there is no means of
distinguishing an uninitialized stack root from an initialized one. Therefore,
this feature should be used by all GC plugins. It is enabled by default.

Custom lowering of intrinsics: CustomRoots, CustomReadBarriers, and CustomWriteBarriers

For GCs which use barriers or unusual treatment of stack roots, these
flags allow the collector to perform arbitrary transformations of the
LLVM IR:

class MyGC : public GCStrategy {
public:
 MyGC() {
 CustomRoots = true;
 CustomReadBarriers = true;
 CustomWriteBarriers = true;
 }
};

If any of these flags are set, LLVM suppresses its default lowering for
the corresponding intrinsics. Instead, you must provide a custom Pass
which lowers the intrinsics as desired. If you have opted in to custom
lowering of a particular intrinsic your pass must eliminate all
instances of the corresponding intrinsic in functions which opt in to
your GC. The best example of such a pass is the ShadowStackGC and it’s
ShadowStackGCLowering pass.

There is currently no way to register such a custom lowering pass
without building a custom copy of LLVM.

Generating safe points: NeededSafePoints

LLVM can compute four kinds of safe points:

namespace GC {
 /// PointKind - The type of a collector-safe point.
 ///
 enum PointKind {
 Loop, //< Instr is a loop (backwards branch).
 Return, //< Instr is a return instruction.
 PreCall, //< Instr is a call instruction.
 PostCall //< Instr is the return address of a call.
 };
}

A collector can request any combination of the four by setting the
NeededSafePoints mask:

MyGC::MyGC() {
 NeededSafePoints = 1 << GC::Loop
 | 1 << GC::Return
 | 1 << GC::PreCall
 | 1 << GC::PostCall;
}

It can then use the following routines to access safe points.

for (iterator I = begin(), E = end(); I != E; ++I) {
 GCFunctionInfo *MD = *I;
 size_t PointCount = MD->size();

 for (GCFunctionInfo::iterator PI = MD->begin(),
 PE = MD->end(); PI != PE; ++PI) {
 GC::PointKind PointKind = PI->Kind;
 unsigned PointNum = PI->Num;
 }
}

Almost every collector requires PostCall safe points, since these correspond
to the moments when the function is suspended during a call to a subroutine.

Threaded programs generally require Loop safe points to guarantee that the
application will reach a safe point within a bounded amount of time, even if it
is executing a long-running loop which contains no function calls.

Threaded collectors may also require Return and PreCall safe points to
implement “stop the world” techniques using self-modifying code, where it is
important that the program not exit the function without reaching a safe point
(because only the topmost function has been patched).

Emitting assembly code: GCMetadataPrinter

LLVM allows a plugin to print arbitrary assembly code before and after the rest
of a module’s assembly code. At the end of the module, the GC can compile the
LLVM stack map into assembly code. (At the beginning, this information is not
yet computed.)

Since AsmWriter and CodeGen are separate components of LLVM, a separate abstract
base class and registry is provided for printing assembly code, the
GCMetadaPrinter and GCMetadataPrinterRegistry. The AsmWriter will look
for such a subclass if the GCStrategy sets UsesMetadata:

MyGC::MyGC() {
 UsesMetadata = true;
}

This separation allows JIT-only clients to be smaller.

Note that LLVM does not currently have analogous APIs to support code generation
in the JIT, nor using the object writers.

// lib/MyGC/MyGCPrinter.cpp - Example LLVM GC printer

#include "llvm/CodeGen/GCMetadataPrinter.h"
#include "llvm/Support/Compiler.h"

using namespace llvm;

namespace {
 class LLVM_LIBRARY_VISIBILITY MyGCPrinter : public GCMetadataPrinter {
 public:
 virtual void beginAssembly(AsmPrinter &AP);

 virtual void finishAssembly(AsmPrinter &AP);
 };

 GCMetadataPrinterRegistry::Add<MyGCPrinter>
 X("mygc", "My bespoke garbage collector.");
}

The collector should use AsmPrinter to print portable assembly code. The
collector itself contains the stack map for the entire module, and may access
the GCFunctionInfo using its own begin() and end() methods. Here’s
a realistic example:

#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/Target/TargetAsmInfo.h"
#include "llvm/Target/TargetMachine.h"

void MyGCPrinter::beginAssembly(AsmPrinter &AP) {
 // Nothing to do.
}

void MyGCPrinter::finishAssembly(AsmPrinter &AP) {
 MCStreamer &OS = AP.OutStreamer;
 unsigned IntPtrSize = AP.getPointerSize();

 // Put this in the data section.
 OS.SwitchSection(AP.getObjFileLowering().getDataSection());

 // For each function...
 for (iterator FI = begin(), FE = end(); FI != FE; ++FI) {
 GCFunctionInfo &MD = **FI;

 // A compact GC layout. Emit this data structure:
 //
 // struct {
 // int32_t PointCount;
 // void *SafePointAddress[PointCount];
 // int32_t StackFrameSize; // in words
 // int32_t StackArity;
 // int32_t LiveCount;
 // int32_t LiveOffsets[LiveCount];
 // } __gcmap_<FUNCTIONNAME>;

 // Align to address width.
 AP.EmitAlignment(IntPtrSize == 4 ? 2 : 3);

 // Emit PointCount.
 OS.AddComment("safe point count");
 AP.emitInt32(MD.size());

 // And each safe point...
 for (GCFunctionInfo::iterator PI = MD.begin(),
 PE = MD.end(); PI != PE; ++PI) {
 // Emit the address of the safe point.
 OS.AddComment("safe point address");
 MCSymbol *Label = PI->Label;
 AP.EmitLabelPlusOffset(Label/*Hi*/, 0/*Offset*/, 4/*Size*/);
 }

 // Stack information never change in safe points! Only print info from the
 // first call-site.
 GCFunctionInfo::iterator PI = MD.begin();

 // Emit the stack frame size.
 OS.AddComment("stack frame size (in words)");
 AP.emitInt32(MD.getFrameSize() / IntPtrSize);

 // Emit stack arity, i.e. the number of stacked arguments.
 unsigned RegisteredArgs = IntPtrSize == 4 ? 5 : 6;
 unsigned StackArity = MD.getFunction().arg_size() > RegisteredArgs ?
 MD.getFunction().arg_size() - RegisteredArgs : 0;
 OS.AddComment("stack arity");
 AP.emitInt32(StackArity);

 // Emit the number of live roots in the function.
 OS.AddComment("live root count");
 AP.emitInt32(MD.live_size(PI));

 // And for each live root...
 for (GCFunctionInfo::live_iterator LI = MD.live_begin(PI),
 LE = MD.live_end(PI);
 LI != LE; ++LI) {
 // Emit live root's offset within the stack frame.
 OS.AddComment("stack index (offset / wordsize)");
 AP.emitInt32(LI->StackOffset);
 }
 }
}

References

[Appel89] Runtime Tags Aren’t Necessary. Andrew W. Appel. Lisp and Symbolic
Computation 19(7):703-705, July 1989.

[Goldberg91] Tag-free garbage collection for strongly typed programming
languages. Benjamin Goldberg. ACM SIGPLAN PLDI‘91.

[Tolmach94] Tag-free garbage collection using explicit type parameters. Andrew
Tolmach. Proceedings of the 1994 ACM conference on LISP and functional
programming.

[Henderson2002] Accurate Garbage Collection in an Uncooperative Environment [http://citeseer.ist.psu.edu/henderson02accurate.html]

 Writing an LLVM Pass

Writing an LLVM Pass

	Introduction — What is a pass?

	Quick Start — Writing hello world

	Setting up the build environment

	Basic code required

	Running a pass with opt

	Pass classes and requirements

	The ImmutablePass class

	The ModulePass class

	The runOnModule method

	The CallGraphSCCPass class

	The doInitialization(CallGraph &) method

	The runOnSCC method

	The doFinalization(CallGraph &) method

	The FunctionPass class

	The doInitialization(Module &) method

	The runOnFunction method

	The doFinalization(Module &) method

	The LoopPass class

	The doInitialization(Loop *, LPPassManager &) method

	The runOnLoop method

	The doFinalization() method

	The RegionPass class

	The doInitialization(Region *, RGPassManager &) method

	The runOnRegion method

	The doFinalization() method

	The BasicBlockPass class

	The doInitialization(Function &) method

	The runOnBasicBlock method

	The doFinalization(Function &) method

	The MachineFunctionPass class

	The runOnMachineFunction(MachineFunction &MF) method

	Pass registration

	The print method

	Specifying interactions between passes

	The getAnalysisUsage method

	The AnalysisUsage::addRequired<> and AnalysisUsage::addRequiredTransitive<> methods

	The AnalysisUsage::addPreserved<> method

	Example implementations of getAnalysisUsage

	The getAnalysis<> and getAnalysisIfAvailable<> methods

	Implementing Analysis Groups

	Analysis Group Concepts

	Using RegisterAnalysisGroup

	Pass Statistics

	What PassManager does

	The releaseMemory method

	Registering dynamically loaded passes

	Using existing registries

	Creating new registries

	Using GDB with dynamically loaded passes

	Setting a breakpoint in your pass

	Miscellaneous Problems

	Future extensions planned

	Multithreaded LLVM

Introduction — What is a pass?

The LLVM Pass Framework is an important part of the LLVM system, because LLVM
passes are where most of the interesting parts of the compiler exist. Passes
perform the transformations and optimizations that make up the compiler, they
build the analysis results that are used by these transformations, and they
are, above all, a structuring technique for compiler code.

All LLVM passes are subclasses of the Pass [http://llvm.org/doxygen/classllvm_1_1Pass.html] class, which implement
functionality by overriding virtual methods inherited from Pass. Depending
on how your pass works, you should inherit from the ModulePass , CallGraphSCCPass, FunctionPass , or LoopPass, or RegionPass, or BasicBlockPass classes, which gives the system more
information about what your pass does, and how it can be combined with other
passes. One of the main features of the LLVM Pass Framework is that it
schedules passes to run in an efficient way based on the constraints that your
pass meets (which are indicated by which class they derive from).

We start by showing you how to construct a pass, everything from setting up the
code, to compiling, loading, and executing it. After the basics are down, more
advanced features are discussed.

Quick Start — Writing hello world

Here we describe how to write the “hello world” of passes. The “Hello” pass is
designed to simply print out the name of non-external functions that exist in
the program being compiled. It does not modify the program at all, it just
inspects it. The source code and files for this pass are available in the LLVM
source tree in the lib/Transforms/Hello directory.

Setting up the build environment

First, configure and build LLVM. Next, you need to create a new directory
somewhere in the LLVM source base. For this example, we’ll assume that you
made lib/Transforms/Hello. Finally, you must set up a build script
that will compile the source code for the new pass. To do this,
copy the following into CMakeLists.txt:

add_llvm_loadable_module(LLVMHello
 Hello.cpp

 PLUGIN_TOOL
 opt
)

and the following line into lib/Transforms/CMakeLists.txt:

add_subdirectory(Hello)

(Note that there is already a directory named Hello with a sample “Hello”
pass; you may play with it – in which case you don’t need to modify any
CMakeLists.txt files – or, if you want to create everything from scratch,
use another name.)

This build script specifies that Hello.cpp file in the current directory
is to be compiled and linked into a shared object $(LEVEL)/lib/LLVMHello.so that
can be dynamically loaded by the opt tool via its -load
option. If your operating system uses a suffix other than .so (such as
Windows or Mac OS X), the appropriate extension will be used.

Now that we have the build scripts set up, we just need to write the code for
the pass itself.

Basic code required

Now that we have a way to compile our new pass, we just have to write it.
Start out with:

#include "llvm/Pass.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/raw_ostream.h"

Which are needed because we are writing a Pass [http://llvm.org/doxygen/classllvm_1_1Pass.html], we are operating on
Function [http://llvm.org/doxygen/classllvm_1_1Function.html]s, and we will
be doing some printing.

Next we have:

using namespace llvm;

… which is required because the functions from the include files live in the
llvm namespace.

Next we have:

namespace {

… which starts out an anonymous namespace. Anonymous namespaces are to C++
what the “static” keyword is to C (at global scope). It makes the things
declared inside of the anonymous namespace visible only to the current file.
If you’re not familiar with them, consult a decent C++ book for more
information.

Next, we declare our pass itself:

struct Hello : public FunctionPass {

This declares a “Hello” class that is a subclass of FunctionPass. The different builtin pass subclasses
are described in detail later, but
for now, know that FunctionPass operates on a function at a time.

static char ID;
Hello() : FunctionPass(ID) {}

This declares pass identifier used by LLVM to identify pass. This allows LLVM
to avoid using expensive C++ runtime information.

 bool runOnFunction(Function &F) override {
 errs() << "Hello: ";
 errs().write_escaped(F.getName()) << '\n';
 return false;
 }
}; // end of struct Hello
} // end of anonymous namespace

We declare a runOnFunction method,
which overrides an abstract virtual method inherited from FunctionPass. This is where we are supposed to do our
thing, so we just print out our message with the name of each function.

char Hello::ID = 0;

We initialize pass ID here. LLVM uses ID’s address to identify a pass, so
initialization value is not important.

static RegisterPass<Hello> X("hello", "Hello World Pass",
 false /* Only looks at CFG */,
 false /* Analysis Pass */);

Lastly, we register our class
Hello, giving it a command line argument “hello”, and a name “Hello
World Pass”. The last two arguments describe its behavior: if a pass walks CFG
without modifying it then the third argument is set to true; if a pass is
an analysis pass, for example dominator tree pass, then true is supplied as
the fourth argument.

As a whole, the .cpp file looks like:

#include "llvm/Pass.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;

namespace {
struct Hello : public FunctionPass {
 static char ID;
 Hello() : FunctionPass(ID) {}

 bool runOnFunction(Function &F) override {
 errs() << "Hello: ";
 errs().write_escaped(F.getName()) << '\n';
 return false;
 }
}; // end of struct Hello
} // end of anonymous namespace

char Hello::ID = 0;
static RegisterPass<Hello> X("hello", "Hello World Pass",
 false /* Only looks at CFG */,
 false /* Analysis Pass */);

Now that it’s all together, compile the file with a simple “gmake” command
from the top level of your build directory and you should get a new file
“lib/LLVMHello.so”. Note that everything in this file is
contained in an anonymous namespace — this reflects the fact that passes
are self contained units that do not need external interfaces (although they
can have them) to be useful.

Running a pass with opt

Now that you have a brand new shiny shared object file, we can use the
opt command to run an LLVM program through your pass. Because you
registered your pass with RegisterPass, you will be able to use the
opt tool to access it, once loaded.

To test it, follow the example at the end of the Getting Started with the LLVM System to
compile “Hello World” to LLVM. We can now run the bitcode file (hello.bc) for
the program through our transformation like this (or course, any bitcode file
will work):

$ opt -load lib/LLVMHello.so -hello < hello.bc > /dev/null
Hello: __main
Hello: puts
Hello: main

The -load option specifies that opt should load your pass
as a shared object, which makes “-hello” a valid command line argument
(which is one reason you need to register your pass). Because the Hello pass does not modify
the program in any interesting way, we just throw away the result of
opt (sending it to /dev/null).

To see what happened to the other string you registered, try running
opt with the -help option:

$ opt -load lib/LLVMHello.so -help
OVERVIEW: llvm .bc -> .bc modular optimizer and analysis printer

USAGE: opt [subcommand] [options] <input bitcode file>

OPTIONS:
 Optimizations available:
...
 -guard-widening - Widen guards
 -gvn - Global Value Numbering
 -gvn-hoist - Early GVN Hoisting of Expressions
 -hello - Hello World Pass
 -indvars - Induction Variable Simplification
 -inferattrs - Infer set function attributes
...

The pass name gets added as the information string for your pass, giving some
documentation to users of opt. Now that you have a working pass,
you would go ahead and make it do the cool transformations you want. Once you
get it all working and tested, it may become useful to find out how fast your
pass is. The PassManager provides a
nice command line option (--time-passes) that allows you to get
information about the execution time of your pass along with the other passes
you queue up. For example:

$ opt -load lib/LLVMHello.so -hello -time-passes < hello.bc > /dev/null
Hello: __main
Hello: puts
Hello: main
===---===
 ... Pass execution timing report ...
===---===
 Total Execution Time: 0.0007 seconds (0.0005 wall clock)

 ---User Time--- --User+System-- ---Wall Time--- --- Name ---
 0.0004 (55.3%) 0.0004 (55.3%) 0.0004 (75.7%) Bitcode Writer
 0.0003 (44.7%) 0.0003 (44.7%) 0.0001 (13.6%) Hello World Pass
 0.0000 (0.0%) 0.0000 (0.0%) 0.0001 (10.7%) Module Verifier
 0.0007 (100.0%) 0.0007 (100.0%) 0.0005 (100.0%) Total

As you can see, our implementation above is pretty fast. The additional
passes listed are automatically inserted by the opt tool to verify
that the LLVM emitted by your pass is still valid and well formed LLVM, which
hasn’t been broken somehow.

Now that you have seen the basics of the mechanics behind passes, we can talk
about some more details of how they work and how to use them.

Pass classes and requirements

One of the first things that you should do when designing a new pass is to
decide what class you should subclass for your pass. The Hello World example uses the FunctionPass class for its implementation, but we did
not discuss why or when this should occur. Here we talk about the classes
available, from the most general to the most specific.

When choosing a superclass for your Pass, you should choose the most
specific class possible, while still being able to meet the requirements
listed. This gives the LLVM Pass Infrastructure information necessary to
optimize how passes are run, so that the resultant compiler isn’t unnecessarily
slow.

The ImmutablePass class

The most plain and boring type of pass is the “ImmutablePass [http://llvm.org/doxygen/classllvm_1_1ImmutablePass.html]” class. This pass
type is used for passes that do not have to be run, do not change state, and
never need to be updated. This is not a normal type of transformation or
analysis, but can provide information about the current compiler configuration.

Although this pass class is very infrequently used, it is important for
providing information about the current target machine being compiled for, and
other static information that can affect the various transformations.

ImmutablePasses never invalidate other transformations, are never
invalidated, and are never “run”.

The ModulePass class

The ModulePass [http://llvm.org/doxygen/classllvm_1_1ModulePass.html] class
is the most general of all superclasses that you can use. Deriving from
ModulePass indicates that your pass uses the entire program as a unit,
referring to function bodies in no predictable order, or adding and removing
functions. Because nothing is known about the behavior of ModulePass
subclasses, no optimization can be done for their execution.

A module pass can use function level passes (e.g. dominators) using the
getAnalysis interface getAnalysis<DominatorTree>(llvm::Function *) to
provide the function to retrieve analysis result for, if the function pass does
not require any module or immutable passes. Note that this can only be done
for functions for which the analysis ran, e.g. in the case of dominators you
should only ask for the DominatorTree for function definitions, not
declarations.

To write a correct ModulePass subclass, derive from ModulePass and
overload the runOnModule method with the following signature:

The runOnModule method

virtual bool runOnModule(Module &M) = 0;

The runOnModule method performs the interesting work of the pass. It
should return true if the module was modified by the transformation and
false otherwise.

The CallGraphSCCPass class

The CallGraphSCCPass [http://llvm.org/doxygen/classllvm_1_1CallGraphSCCPass.html] is used by
passes that need to traverse the program bottom-up on the call graph (callees
before callers). Deriving from CallGraphSCCPass provides some mechanics
for building and traversing the CallGraph, but also allows the system to
optimize execution of CallGraphSCCPasses. If your pass meets the
requirements outlined below, and doesn’t meet the requirements of a
FunctionPass or BasicBlockPass, you should derive from
CallGraphSCCPass.

TODO: explain briefly what SCC, Tarjan’s algo, and B-U mean.

To be explicit, CallGraphSCCPass subclasses are:

	… not allowed to inspect or modify any Functions other than those
in the current SCC and the direct callers and direct callees of the SCC.

	… required to preserve the current CallGraph object, updating it to
reflect any changes made to the program.

	… not allowed to add or remove SCC’s from the current Module, though
they may change the contents of an SCC.

	… allowed to add or remove global variables from the current Module.

	… allowed to maintain state across invocations of runOnSCC (including global data).

Implementing a CallGraphSCCPass is slightly tricky in some cases because it
has to handle SCCs with more than one node in it. All of the virtual methods
described below should return true if they modified the program, or
false if they didn’t.

The doInitialization(CallGraph &) method

virtual bool doInitialization(CallGraph &CG);

The doInitialization method is allowed to do most of the things that
CallGraphSCCPasses are not allowed to do. They can add and remove
functions, get pointers to functions, etc. The doInitialization method is
designed to do simple initialization type of stuff that does not depend on the
SCCs being processed. The doInitialization method call is not scheduled to
overlap with any other pass executions (thus it should be very fast).

The runOnSCC method

virtual bool runOnSCC(CallGraphSCC &SCC) = 0;

The runOnSCC method performs the interesting work of the pass, and should
return true if the module was modified by the transformation, false
otherwise.

The doFinalization(CallGraph &) method

virtual bool doFinalization(CallGraph &CG);

The doFinalization method is an infrequently used method that is called
when the pass framework has finished calling runOnSCC for every SCC in the program being compiled.

The FunctionPass class

In contrast to ModulePass subclasses, FunctionPass [http://llvm.org/doxygen/classllvm_1_1Pass.html] subclasses do have a
predictable, local behavior that can be expected by the system. All
FunctionPass execute on each function in the program independent of all of
the other functions in the program. FunctionPasses do not require that
they are executed in a particular order, and FunctionPasses do not modify
external functions.

To be explicit, FunctionPass subclasses are not allowed to:

	Inspect or modify a Function other than the one currently being processed.

	Add or remove Functions from the current Module.

	Add or remove global variables from the current Module.

	Maintain state across invocations of runOnFunction (including global data).

Implementing a FunctionPass is usually straightforward (See the Hello
World pass for example).
FunctionPasses may overload three virtual methods to do their work. All
of these methods should return true if they modified the program, or
false if they didn’t.

The doInitialization(Module &) method

virtual bool doInitialization(Module &M);

The doInitialization method is allowed to do most of the things that
FunctionPasses are not allowed to do. They can add and remove functions,
get pointers to functions, etc. The doInitialization method is designed to
do simple initialization type of stuff that does not depend on the functions
being processed. The doInitialization method call is not scheduled to
overlap with any other pass executions (thus it should be very fast).

A good example of how this method should be used is the LowerAllocations [http://llvm.org/doxygen/LowerAllocations_8cpp-source.html] pass. This pass
converts malloc and free instructions into platform dependent
malloc() and free() function calls. It uses the doInitialization
method to get a reference to the malloc and free functions that it
needs, adding prototypes to the module if necessary.

The runOnFunction method

virtual bool runOnFunction(Function &F) = 0;

The runOnFunction method must be implemented by your subclass to do the
transformation or analysis work of your pass. As usual, a true value
should be returned if the function is modified.

The doFinalization(Module &) method

virtual bool doFinalization(Module &M);

The doFinalization method is an infrequently used method that is called
when the pass framework has finished calling runOnFunction for every function in the program being
compiled.

The LoopPass class

All LoopPass execute on each loop in the function independent of all of the
other loops in the function. LoopPass processes loops in loop nest order
such that outer most loop is processed last.

LoopPass subclasses are allowed to update loop nest using LPPassManager
interface. Implementing a loop pass is usually straightforward.
LoopPasses may overload three virtual methods to do their work. All
these methods should return true if they modified the program, or false
if they didn’t.

A LoopPass subclass which is intended to run as part of the main loop pass
pipeline needs to preserve all of the same function analyses that the other
loop passes in its pipeline require. To make that easier,
a getLoopAnalysisUsage function is provided by LoopUtils.h. It can be
called within the subclass’s getAnalysisUsage override to get consistent
and correct behavior. Analogously, INITIALIZE_PASS_DEPENDENCY(LoopPass)
will initialize this set of function analyses.

The doInitialization(Loop *, LPPassManager &) method

virtual bool doInitialization(Loop *, LPPassManager &LPM);

The doInitialization method is designed to do simple initialization type of
stuff that does not depend on the functions being processed. The
doInitialization method call is not scheduled to overlap with any other
pass executions (thus it should be very fast). LPPassManager interface
should be used to access Function or Module level analysis information.

The runOnLoop method

virtual bool runOnLoop(Loop *, LPPassManager &LPM) = 0;

The runOnLoop method must be implemented by your subclass to do the
transformation or analysis work of your pass. As usual, a true value
should be returned if the function is modified. LPPassManager interface
should be used to update loop nest.

The doFinalization() method

virtual bool doFinalization();

The doFinalization method is an infrequently used method that is called
when the pass framework has finished calling runOnLoop for every loop in the program being compiled.

The RegionPass class

RegionPass is similar to LoopPass,
but executes on each single entry single exit region in the function.
RegionPass processes regions in nested order such that the outer most
region is processed last.

RegionPass subclasses are allowed to update the region tree by using the
RGPassManager interface. You may overload three virtual methods of
RegionPass to implement your own region pass. All these methods should
return true if they modified the program, or false if they did not.

The doInitialization(Region *, RGPassManager &) method

virtual bool doInitialization(Region *, RGPassManager &RGM);

The doInitialization method is designed to do simple initialization type of
stuff that does not depend on the functions being processed. The
doInitialization method call is not scheduled to overlap with any other
pass executions (thus it should be very fast). RPPassManager interface
should be used to access Function or Module level analysis information.

The runOnRegion method

virtual bool runOnRegion(Region *, RGPassManager &RGM) = 0;

The runOnRegion method must be implemented by your subclass to do the
transformation or analysis work of your pass. As usual, a true value should be
returned if the region is modified. RGPassManager interface should be used to
update region tree.

The doFinalization() method

virtual bool doFinalization();

The doFinalization method is an infrequently used method that is called
when the pass framework has finished calling runOnRegion for every region in the program being
compiled.

The BasicBlockPass class

BasicBlockPasses are just like FunctionPass’s , except that they must limit their scope
of inspection and modification to a single basic block at a time. As such,
they are not allowed to do any of the following:

	Modify or inspect any basic blocks outside of the current one.

	Maintain state across invocations of runOnBasicBlock.

	Modify the control flow graph (by altering terminator instructions)

	Any of the things forbidden for FunctionPasses.

BasicBlockPasses are useful for traditional local and “peephole”
optimizations. They may override the same doInitialization(Module &) and doFinalization(Module &) methods that FunctionPass’s have, but also have the following virtual
methods that may also be implemented:

The doInitialization(Function &) method

virtual bool doInitialization(Function &F);

The doInitialization method is allowed to do most of the things that
BasicBlockPasses are not allowed to do, but that FunctionPasses
can. The doInitialization method is designed to do simple initialization
that does not depend on the BasicBlocks being processed. The
doInitialization method call is not scheduled to overlap with any other
pass executions (thus it should be very fast).

The runOnBasicBlock method

virtual bool runOnBasicBlock(BasicBlock &BB) = 0;

Override this function to do the work of the BasicBlockPass. This function
is not allowed to inspect or modify basic blocks other than the parameter, and
are not allowed to modify the CFG. A true value must be returned if the
basic block is modified.

The doFinalization(Function &) method

virtual bool doFinalization(Function &F);

The doFinalization method is an infrequently used method that is called
when the pass framework has finished calling runOnBasicBlock for every BasicBlock in the program
being compiled. This can be used to perform per-function finalization.

The MachineFunctionPass class

A MachineFunctionPass is a part of the LLVM code generator that executes on
the machine-dependent representation of each LLVM function in the program.

Code generator passes are registered and initialized specially by
TargetMachine::addPassesToEmitFile and similar routines, so they cannot
generally be run from the opt or bugpoint commands.

A MachineFunctionPass is also a FunctionPass, so all the restrictions
that apply to a FunctionPass also apply to it. MachineFunctionPasses
also have additional restrictions. In particular, MachineFunctionPasses
are not allowed to do any of the following:

	Modify or create any LLVM IR Instructions, BasicBlocks,
Arguments, Functions, GlobalVariables,
GlobalAliases, or Modules.

	Modify a MachineFunction other than the one currently being processed.

	Maintain state across invocations of runOnMachineFunction (including global data).

The runOnMachineFunction(MachineFunction &MF) method

virtual bool runOnMachineFunction(MachineFunction &MF) = 0;

runOnMachineFunction can be considered the main entry point of a
MachineFunctionPass; that is, you should override this method to do the
work of your MachineFunctionPass.

The runOnMachineFunction method is called on every MachineFunction in a
Module, so that the MachineFunctionPass may perform optimizations on
the machine-dependent representation of the function. If you want to get at
the LLVM Function for the MachineFunction you’re working on, use
MachineFunction’s getFunction() accessor method — but remember, you
may not modify the LLVM Function or its contents from a
MachineFunctionPass.

Pass registration

In the Hello World example pass we
illustrated how pass registration works, and discussed some of the reasons that
it is used and what it does. Here we discuss how and why passes are
registered.

As we saw above, passes are registered with the RegisterPass template. The
template parameter is the name of the pass that is to be used on the command
line to specify that the pass should be added to a program (for example, with
opt or bugpoint). The first argument is the name of the
pass, which is to be used for the -help output of programs, as well
as for debug output generated by the –debug-pass option.

If you want your pass to be easily dumpable, you should implement the virtual
print method:

The print method

virtual void print(llvm::raw_ostream &O, const Module *M) const;

The print method must be implemented by “analyses” in order to print a
human readable version of the analysis results. This is useful for debugging
an analysis itself, as well as for other people to figure out how an analysis
works. Use the opt -analyze argument to invoke this method.

The llvm::raw_ostream parameter specifies the stream to write the results
on, and the Module parameter gives a pointer to the top level module of the
program that has been analyzed. Note however that this pointer may be NULL
in certain circumstances (such as calling the Pass::dump() from a
debugger), so it should only be used to enhance debug output, it should not be
depended on.

Specifying interactions between passes

One of the main responsibilities of the PassManager is to make sure that
passes interact with each other correctly. Because PassManager tries to
optimize the execution of passes it
must know how the passes interact with each other and what dependencies exist
between the various passes. To track this, each pass can declare the set of
passes that are required to be executed before the current pass, and the passes
which are invalidated by the current pass.

Typically this functionality is used to require that analysis results are
computed before your pass is run. Running arbitrary transformation passes can
invalidate the computed analysis results, which is what the invalidation set
specifies. If a pass does not implement the getAnalysisUsage method, it defaults to not having any
prerequisite passes, and invalidating all other passes.

The getAnalysisUsage method

virtual void getAnalysisUsage(AnalysisUsage &Info) const;

By implementing the getAnalysisUsage method, the required and invalidated
sets may be specified for your transformation. The implementation should fill
in the AnalysisUsage [http://llvm.org/doxygen/classllvm_1_1AnalysisUsage.html] object with
information about which passes are required and not invalidated. To do this, a
pass may call any of the following methods on the AnalysisUsage object:

The AnalysisUsage::addRequired<> and AnalysisUsage::addRequiredTransitive<> methods

If your pass requires a previous pass to be executed (an analysis for example),
it can use one of these methods to arrange for it to be run before your pass.
LLVM has many different types of analyses and passes that can be required,
spanning the range from DominatorSet to BreakCriticalEdges. Requiring
BreakCriticalEdges, for example, guarantees that there will be no critical
edges in the CFG when your pass has been run.

Some analyses chain to other analyses to do their job. For example, an
AliasAnalysis <AliasAnalysis> implementation is required to chain to other alias analysis passes. In cases where
analyses chain, the addRequiredTransitive method should be used instead of
the addRequired method. This informs the PassManager that the
transitively required pass should be alive as long as the requiring pass is.

The AnalysisUsage::addPreserved<> method

One of the jobs of the PassManager is to optimize how and when analyses are
run. In particular, it attempts to avoid recomputing data unless it needs to.
For this reason, passes are allowed to declare that they preserve (i.e., they
don’t invalidate) an existing analysis if it’s available. For example, a
simple constant folding pass would not modify the CFG, so it can’t possibly
affect the results of dominator analysis. By default, all passes are assumed
to invalidate all others.

The AnalysisUsage class provides several methods which are useful in
certain circumstances that are related to addPreserved. In particular, the
setPreservesAll method can be called to indicate that the pass does not
modify the LLVM program at all (which is true for analyses), and the
setPreservesCFG method can be used by transformations that change
instructions in the program but do not modify the CFG or terminator
instructions (note that this property is implicitly set for
BasicBlockPasses).

addPreserved is particularly useful for transformations like
BreakCriticalEdges. This pass knows how to update a small set of loop and
dominator related analyses if they exist, so it can preserve them, despite the
fact that it hacks on the CFG.

Example implementations of getAnalysisUsage

// This example modifies the program, but does not modify the CFG
void LICM::getAnalysisUsage(AnalysisUsage &AU) const {
 AU.setPreservesCFG();
 AU.addRequired<LoopInfoWrapperPass>();
}

The getAnalysis<> and getAnalysisIfAvailable<> methods

The Pass::getAnalysis<> method is automatically inherited by your class,
providing you with access to the passes that you declared that you required
with the getAnalysisUsage
method. It takes a single template argument that specifies which pass class
you want, and returns a reference to that pass. For example:

bool LICM::runOnFunction(Function &F) {
 LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 //...
}

This method call returns a reference to the pass desired. You may get a
runtime assertion failure if you attempt to get an analysis that you did not
declare as required in your getAnalysisUsage implementation. This method can be
called by your run* method implementation, or by any other local method
invoked by your run* method.

A module level pass can use function level analysis info using this interface.
For example:

bool ModuleLevelPass::runOnModule(Module &M) {
 //...
 DominatorTree &DT = getAnalysis<DominatorTree>(Func);
 //...
}

In above example, runOnFunction for DominatorTree is called by pass
manager before returning a reference to the desired pass.

If your pass is capable of updating analyses if they exist (e.g.,
BreakCriticalEdges, as described above), you can use the
getAnalysisIfAvailable method, which returns a pointer to the analysis if
it is active. For example:

if (DominatorSet *DS = getAnalysisIfAvailable<DominatorSet>()) {
 // A DominatorSet is active. This code will update it.
}

Implementing Analysis Groups

Now that we understand the basics of how passes are defined, how they are used,
and how they are required from other passes, it’s time to get a little bit
fancier. All of the pass relationships that we have seen so far are very
simple: one pass depends on one other specific pass to be run before it can
run. For many applications, this is great, for others, more flexibility is
required.

In particular, some analyses are defined such that there is a single simple
interface to the analysis results, but multiple ways of calculating them.
Consider alias analysis for example. The most trivial alias analysis returns
“may alias” for any alias query. The most sophisticated analysis a
flow-sensitive, context-sensitive interprocedural analysis that can take a
significant amount of time to execute (and obviously, there is a lot of room
between these two extremes for other implementations). To cleanly support
situations like this, the LLVM Pass Infrastructure supports the notion of
Analysis Groups.

Analysis Group Concepts

An Analysis Group is a single simple interface that may be implemented by
multiple different passes. Analysis Groups can be given human readable names
just like passes, but unlike passes, they need not derive from the Pass
class. An analysis group may have one or more implementations, one of which is
the “default” implementation.

Analysis groups are used by client passes just like other passes are: the
AnalysisUsage::addRequired() and Pass::getAnalysis() methods. In order
to resolve this requirement, the PassManager scans the available passes to see if any
implementations of the analysis group are available. If none is available, the
default implementation is created for the pass to use. All standard rules for
interaction between passes still
apply.

Although Pass Registration is
optional for normal passes, all analysis group implementations must be
registered, and must use the INITIALIZE_AG_PASS template to join the
implementation pool. Also, a default implementation of the interface must
be registered with RegisterAnalysisGroup.

As a concrete example of an Analysis Group in action, consider the
AliasAnalysis [http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html]
analysis group. The default implementation of the alias analysis interface
(the basicaa [http://llvm.org/doxygen/structBasicAliasAnalysis.html] pass)
just does a few simple checks that don’t require significant analysis to
compute (such as: two different globals can never alias each other, etc).
Passes that use the AliasAnalysis [http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html] interface (for
example the gvn [http://llvm.org/doxygen/classllvm_1_1GVN.html] pass), do not
care which implementation of alias analysis is actually provided, they just use
the designated interface.

From the user’s perspective, commands work just like normal. Issuing the
command opt -gvn ... will cause the basicaa class to be instantiated
and added to the pass sequence. Issuing the command opt -somefancyaa -gvn
... will cause the gvn pass to use the somefancyaa alias analysis
(which doesn’t actually exist, it’s just a hypothetical example) instead.

Using RegisterAnalysisGroup

The RegisterAnalysisGroup template is used to register the analysis group
itself, while the INITIALIZE_AG_PASS is used to add pass implementations to
the analysis group. First, an analysis group should be registered, with a
human readable name provided for it. Unlike registration of passes, there is
no command line argument to be specified for the Analysis Group Interface
itself, because it is “abstract”:

static RegisterAnalysisGroup<AliasAnalysis> A("Alias Analysis");

Once the analysis is registered, passes can declare that they are valid
implementations of the interface by using the following code:

namespace {
 // Declare that we implement the AliasAnalysis interface
 INITIALIZE_AG_PASS(FancyAA, AliasAnalysis , "somefancyaa",
 "A more complex alias analysis implementation",
 false, // Is CFG Only?
 true, // Is Analysis?
 false); // Is default Analysis Group implementation?
}

This just shows a class FancyAA that uses the INITIALIZE_AG_PASS macro
both to register and to “join” the AliasAnalysis [http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html] analysis group.
Every implementation of an analysis group should join using this macro.

namespace {
 // Declare that we implement the AliasAnalysis interface
 INITIALIZE_AG_PASS(BasicAA, AliasAnalysis, "basicaa",
 "Basic Alias Analysis (default AA impl)",
 false, // Is CFG Only?
 true, // Is Analysis?
 true); // Is default Analysis Group implementation?
}

Here we show how the default implementation is specified (using the final
argument to the INITIALIZE_AG_PASS template). There must be exactly one
default implementation available at all times for an Analysis Group to be used.
Only default implementation can derive from ImmutablePass. Here we declare
that the BasicAliasAnalysis [http://llvm.org/doxygen/structBasicAliasAnalysis.html] pass is the default
implementation for the interface.

Pass Statistics

The Statistic [http://llvm.org/doxygen/Statistic_8h_source.html] class is
designed to be an easy way to expose various success metrics from passes.
These statistics are printed at the end of a run, when the -stats
command line option is enabled on the command line. See the Statistics
section in the Programmer’s Manual for details.

What PassManager does

The PassManager [http://llvm.org/doxygen/PassManager_8h_source.html] class [http://llvm.org/doxygen/classllvm_1_1PassManager.html] takes a list of
passes, ensures their prerequisites
are set up correctly, and then schedules passes to run efficiently. All of the
LLVM tools that run passes use the PassManager for execution of these passes.

The PassManager does two main things to try to reduce the execution time of a
series of passes:

	Share analysis results. The PassManager attempts to avoid
recomputing analysis results as much as possible. This means keeping track
of which analyses are available already, which analyses get invalidated, and
which analyses are needed to be run for a pass. An important part of work
is that the PassManager tracks the exact lifetime of all analysis
results, allowing it to free memory allocated to holding analysis results
as soon as they are no longer needed.

	Pipeline the execution of passes on the program. The PassManager
attempts to get better cache and memory usage behavior out of a series of
passes by pipelining the passes together. This means that, given a series
of consecutive FunctionPass, it
will execute all of the FunctionPass on the first function, then all of the
FunctionPasses on the second
function, etc… until the entire program has been run through the passes.

This improves the cache behavior of the compiler, because it is only
touching the LLVM program representation for a single function at a time,
instead of traversing the entire program. It reduces the memory consumption
of compiler, because, for example, only one DominatorSet [http://llvm.org/doxygen/classllvm_1_1DominatorSet.html] needs to be
calculated at a time. This also makes it possible to implement some
interesting enhancements in the future.

The effectiveness of the PassManager is influenced directly by how much
information it has about the behaviors of the passes it is scheduling. For
example, the “preserved” set is intentionally conservative in the face of an
unimplemented getAnalysisUsage
method. Not implementing when it should be implemented will have the effect of
not allowing any analysis results to live across the execution of your pass.

The PassManager class exposes a --debug-pass command line options that
is useful for debugging pass execution, seeing how things work, and diagnosing
when you should be preserving more analyses than you currently are. (To get
information about all of the variants of the --debug-pass option, just type
“opt -help-hidden”).

By using the –debug-pass=Structure option, for example, we can see how our
Hello World pass interacts with other
passes. Lets try it out with the gvn and licm passes:

$ opt -load lib/LLVMHello.so -gvn -licm --debug-pass=Structure < hello.bc > /dev/null
ModulePass Manager
 FunctionPass Manager
 Dominator Tree Construction
 Basic Alias Analysis (stateless AA impl)
 Function Alias Analysis Results
 Memory Dependence Analysis
 Global Value Numbering
 Natural Loop Information
 Canonicalize natural loops
 Loop-Closed SSA Form Pass
 Basic Alias Analysis (stateless AA impl)
 Function Alias Analysis Results
 Scalar Evolution Analysis
 Loop Pass Manager
 Loop Invariant Code Motion
 Module Verifier
 Bitcode Writer

This output shows us when passes are constructed.
Here we see that GVN uses dominator tree information to do its job. The LICM pass
uses natural loop information, which uses dominator tree as well.

After the LICM pass, the module verifier runs (which is automatically added by
the opt tool), which uses the dominator tree to check that the
resultant LLVM code is well formed. Note that the dominator tree is computed
once, and shared by three passes.

Lets see how this changes when we run the Hello World pass in between the two passes:

$ opt -load lib/LLVMHello.so -gvn -hello -licm --debug-pass=Structure < hello.bc > /dev/null
ModulePass Manager
 FunctionPass Manager
 Dominator Tree Construction
 Basic Alias Analysis (stateless AA impl)
 Function Alias Analysis Results
 Memory Dependence Analysis
 Global Value Numbering
 Hello World Pass
 Dominator Tree Construction
 Natural Loop Information
 Canonicalize natural loops
 Loop-Closed SSA Form Pass
 Basic Alias Analysis (stateless AA impl)
 Function Alias Analysis Results
 Scalar Evolution Analysis
 Loop Pass Manager
 Loop Invariant Code Motion
 Module Verifier
 Bitcode Writer
Hello: __main
Hello: puts
Hello: main

Here we see that the Hello World pass
has killed the Dominator Tree pass, even though it doesn’t modify the code at
all! To fix this, we need to add the following getAnalysisUsage method to our pass:

// We don't modify the program, so we preserve all analyses
void getAnalysisUsage(AnalysisUsage &AU) const override {
 AU.setPreservesAll();
}

Now when we run our pass, we get this output:

$ opt -load lib/LLVMHello.so -gvn -hello -licm --debug-pass=Structure < hello.bc > /dev/null
Pass Arguments: -gvn -hello -licm
ModulePass Manager
 FunctionPass Manager
 Dominator Tree Construction
 Basic Alias Analysis (stateless AA impl)
 Function Alias Analysis Results
 Memory Dependence Analysis
 Global Value Numbering
 Hello World Pass
 Natural Loop Information
 Canonicalize natural loops
 Loop-Closed SSA Form Pass
 Basic Alias Analysis (stateless AA impl)
 Function Alias Analysis Results
 Scalar Evolution Analysis
 Loop Pass Manager
 Loop Invariant Code Motion
 Module Verifier
 Bitcode Writer
Hello: __main
Hello: puts
Hello: main

Which shows that we don’t accidentally invalidate dominator information
anymore, and therefore do not have to compute it twice.

The releaseMemory method

virtual void releaseMemory();

The PassManager automatically determines when to compute analysis results,
and how long to keep them around for. Because the lifetime of the pass object
itself is effectively the entire duration of the compilation process, we need
some way to free analysis results when they are no longer useful. The
releaseMemory virtual method is the way to do this.

If you are writing an analysis or any other pass that retains a significant
amount of state (for use by another pass which “requires” your pass and uses
the getAnalysis method) you should
implement releaseMemory to, well, release the memory allocated to maintain
this internal state. This method is called after the run* method for the
class, before the next call of run* in your pass.

Registering dynamically loaded passes

Size matters when constructing production quality tools using LLVM, both for
the purposes of distribution, and for regulating the resident code size when
running on the target system. Therefore, it becomes desirable to selectively
use some passes, while omitting others and maintain the flexibility to change
configurations later on. You want to be able to do all this, and, provide
feedback to the user. This is where pass registration comes into play.

The fundamental mechanisms for pass registration are the
MachinePassRegistry class and subclasses of MachinePassRegistryNode.

An instance of MachinePassRegistry is used to maintain a list of
MachinePassRegistryNode objects. This instance maintains the list and
communicates additions and deletions to the command line interface.

An instance of MachinePassRegistryNode subclass is used to maintain
information provided about a particular pass. This information includes the
command line name, the command help string and the address of the function used
to create an instance of the pass. A global static constructor of one of these
instances registers with a corresponding MachinePassRegistry, the static
destructor unregisters. Thus a pass that is statically linked in the tool
will be registered at start up. A dynamically loaded pass will register on
load and unregister at unload.

Using existing registries

There are predefined registries to track instruction scheduling
(RegisterScheduler) and register allocation (RegisterRegAlloc) machine
passes. Here we will describe how to register a register allocator machine
pass.

Implement your register allocator machine pass. In your register allocator
.cpp file add the following include:

#include "llvm/CodeGen/RegAllocRegistry.h"

Also in your register allocator .cpp file, define a creator function in the
form:

FunctionPass *createMyRegisterAllocator() {
 return new MyRegisterAllocator();
}

Note that the signature of this function should match the type of
RegisterRegAlloc::FunctionPassCtor. In the same file add the “installing”
declaration, in the form:

static RegisterRegAlloc myRegAlloc("myregalloc",
 "my register allocator help string",
 createMyRegisterAllocator);

Note the two spaces prior to the help string produces a tidy result on the
-help query.

$ llc -help
 ...
 -regalloc - Register allocator to use (default=linearscan)
 =linearscan - linear scan register allocator
 =local - local register allocator
 =simple - simple register allocator
 =myregalloc - my register allocator help string
 ...

And that’s it. The user is now free to use -regalloc=myregalloc as an
option. Registering instruction schedulers is similar except use the
RegisterScheduler class. Note that the
RegisterScheduler::FunctionPassCtor is significantly different from
RegisterRegAlloc::FunctionPassCtor.

To force the load/linking of your register allocator into the
llc/lli tools, add your creator function’s global
declaration to Passes.h and add a “pseudo” call line to
llvm/Codegen/LinkAllCodegenComponents.h.

Creating new registries

The easiest way to get started is to clone one of the existing registries; we
recommend llvm/CodeGen/RegAllocRegistry.h. The key things to modify are
the class name and the FunctionPassCtor type.

Then you need to declare the registry. Example: if your pass registry is
RegisterMyPasses then define:

MachinePassRegistry RegisterMyPasses::Registry;

And finally, declare the command line option for your passes. Example:

cl::opt<RegisterMyPasses::FunctionPassCtor, false,
 RegisterPassParser<RegisterMyPasses> >
MyPassOpt("mypass",
 cl::init(&createDefaultMyPass),
 cl::desc("my pass option help"));

Here the command option is “mypass”, with createDefaultMyPass as the
default creator.

Using GDB with dynamically loaded passes

Unfortunately, using GDB with dynamically loaded passes is not as easy as it
should be. First of all, you can’t set a breakpoint in a shared object that
has not been loaded yet, and second of all there are problems with inlined
functions in shared objects. Here are some suggestions to debugging your pass
with GDB.

For sake of discussion, I’m going to assume that you are debugging a
transformation invoked by opt, although nothing described here
depends on that.

Setting a breakpoint in your pass

First thing you do is start gdb on the opt process:

$ gdb opt
GNU gdb 5.0
Copyright 2000 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "sparc-sun-solaris2.6"...
(gdb)

Note that opt has a lot of debugging information in it, so it takes
time to load. Be patient. Since we cannot set a breakpoint in our pass yet
(the shared object isn’t loaded until runtime), we must execute the process,
and have it stop before it invokes our pass, but after it has loaded the shared
object. The most foolproof way of doing this is to set a breakpoint in
PassManager::run and then run the process with the arguments you want:

$ (gdb) break llvm::PassManager::run
Breakpoint 1 at 0x2413bc: file Pass.cpp, line 70.
(gdb) run test.bc -load $(LLVMTOP)/llvm/Debug+Asserts/lib/[libname].so -[passoption]
Starting program: opt test.bc -load $(LLVMTOP)/llvm/Debug+Asserts/lib/[libname].so -[passoption]
Breakpoint 1, PassManager::run (this=0xffbef174, M=@0x70b298) at Pass.cpp:70
70 bool PassManager::run(Module &M) { return PM->run(M); }
(gdb)

Once the opt stops in the PassManager::run method you are now
free to set breakpoints in your pass so that you can trace through execution or
do other standard debugging stuff.

Miscellaneous Problems

Once you have the basics down, there are a couple of problems that GDB has,
some with solutions, some without.

	Inline functions have bogus stack information. In general, GDB does a pretty
good job getting stack traces and stepping through inline functions. When a
pass is dynamically loaded however, it somehow completely loses this
capability. The only solution I know of is to de-inline a function (move it
from the body of a class to a .cpp file).

	Restarting the program breaks breakpoints. After following the information
above, you have succeeded in getting some breakpoints planted in your pass.
Next thing you know, you restart the program (i.e., you type “run” again),
and you start getting errors about breakpoints being unsettable. The only
way I have found to “fix” this problem is to delete the breakpoints that are
already set in your pass, run the program, and re-set the breakpoints once
execution stops in PassManager::run.

Hopefully these tips will help with common case debugging situations. If you’d
like to contribute some tips of your own, just contact Chris.

Future extensions planned

Although the LLVM Pass Infrastructure is very capable as it stands, and does
some nifty stuff, there are things we’d like to add in the future. Here is
where we are going:

Multithreaded LLVM

Multiple CPU machines are becoming more common and compilation can never be
fast enough: obviously we should allow for a multithreaded compiler. Because
of the semantics defined for passes above (specifically they cannot maintain
state across invocations of their run* methods), a nice clean way to
implement a multithreaded compiler would be for the PassManager class to
create multiple instances of each pass object, and allow the separate instances
to be hacking on different parts of the program at the same time.

This implementation would prevent each of the passes from having to implement
multithreaded constructs, requiring only the LLVM core to have locking in a few
places (for global resources). Although this is a simple extension, we simply
haven’t had time (or multiprocessor machines, thus a reason) to implement this.
Despite that, we have kept the LLVM passes SMP ready, and you should too.

 How To Use Attributes

How To Use Attributes

	Introduction

	Attribute

	AttributeList

	AttrBuilder

Introduction

Attributes in LLVM have changed in some fundamental ways. It was necessary to
do this to support expanding the attributes to encompass more than a handful of
attributes — e.g. command line options. The old way of handling attributes
consisted of representing them as a bit mask of values. This bit mask was
stored in a “list” structure that was reference counted. The advantage of this
was that attributes could be manipulated with ‘or’s and ‘and’s. The
disadvantage of this was that there was limited room for expansion, and
virtually no support for attribute-value pairs other than alignment.

In the new scheme, an Attribute object represents a single attribute that’s
uniqued. You use the Attribute::get methods to create a new Attribute
object. An attribute can be a single “enum” value (the enum being the
Attribute::AttrKind enum), a string representing a target-dependent
attribute, or an attribute-value pair. Some examples:

	Target-independent: noinline, zext

	Target-dependent: "no-sse", "thumb2"

	Attribute-value pair: "cpu" = "cortex-a8", align = 4

Note: for an attribute value pair, we expect a target-dependent attribute to
have a string for the value.

Attribute

An Attribute object is designed to be passed around by value.

Because attributes are no longer represented as a bit mask, you will need to
convert any code which does treat them as a bit mask to use the new query
methods on the Attribute class.

AttributeList

The AttributeList stores a collection of Attribute objects for each kind of
object that may have an attribute associated with it: the function as a whole,
the return type, or the function’s parameters. A function’s attributes are at
index AttributeList::FunctionIndex; the return type’s attributes are at
index AttributeList::ReturnIndex; and the function’s parameters’ attributes
are at indices 1, …, n (where ‘n’ is the number of parameters). Most methods
on the AttributeList class take an index parameter.

An AttributeList is also a uniqued and immutable object. You create an
AttributeList through the AttributeList::get methods. You can add and
remove attributes, which result in the creation of a new AttributeList.

An AttributeList object is designed to be passed around by value.

Note: It is advised that you do not use the AttributeList “introspection”
methods (e.g. Raw, getRawPointer, etc.). These methods break
encapsulation, and may be removed in a future release (i.e. LLVM 4.0).

AttrBuilder

Lastly, we have a “builder” class to help create the AttributeList object
without having to create several different intermediate uniqued
AttributeList objects. The AttrBuilder class allows you to add and
remove attributes at will. The attributes won’t be uniqued until you call the
appropriate AttributeList::get method.

An AttrBuilder object is not designed to be passed around by value. It
should be passed by reference.

Note: It is advised that you do not use the AttrBuilder::addRawValue()
method or the AttrBuilder(uint64_t Val) constructor. These are for
backwards compatibility and may be removed in a future release (i.e. LLVM 4.0).

And that’s basically it! A lot of functionality is hidden behind these classes,
but the interfaces are pretty straight forward.

 User Guide for NVPTX Back-end

User Guide for NVPTX Back-end

	Introduction

	Conventions

	Marking Functions as Kernels

	Address Spaces

	Triples

	NVPTX Intrinsics

	Address Space Conversion

	‘llvm.nvvm.ptr.*.to.gen’ Intrinsics

	‘llvm.nvvm.ptr.gen.to.*’ Intrinsics

	Reading PTX Special Registers

	‘llvm.nvvm.read.ptx.sreg.*’

	Barriers

	‘llvm.nvvm.barrier0’

	Other Intrinsics

	Linking with Libdevice

	Reflection Parameters

	Executing PTX

	Common Issues

	ptxas complains of undefined function: __nvvm_reflect

	Tutorial: A Simple Compute Kernel

	The Kernel

	Dissecting the Kernel

	Data Layout

	Target Intrinsics

	Address Spaces

	Kernel Metadata

	Running the Kernel

	Tutorial: Linking with Libdevice

Introduction

To support GPU programming, the NVPTX back-end supports a subset of LLVM IR
along with a defined set of conventions used to represent GPU programming
concepts. This document provides an overview of the general usage of the back-
end, including a description of the conventions used and the set of accepted
LLVM IR.

Note

This document assumes a basic familiarity with CUDA and the PTX
assembly language. Information about the CUDA Driver API and the PTX assembly
language can be found in the CUDA documentation [http://docs.nvidia.com/cuda/index.html].

Conventions

Marking Functions as Kernels

In PTX, there are two types of functions: device functions, which are only
callable by device code, and kernel functions, which are callable by host
code. By default, the back-end will emit device functions. Metadata is used to
declare a function as a kernel function. This metadata is attached to the
nvvm.annotations named metadata object, and has the following format:

!0 = !{<function-ref>, metadata !"kernel", i32 1}

The first parameter is a reference to the kernel function. The following
example shows a kernel function calling a device function in LLVM IR. The
function @my_kernel is callable from host code, but @my_fmad is not.

define float @my_fmad(float %x, float %y, float %z) {
 %mul = fmul float %x, %y
 %add = fadd float %mul, %z
 ret float %add
}

define void @my_kernel(float* %ptr) {
 %val = load float, float* %ptr
 %ret = call float @my_fmad(float %val, float %val, float %val)
 store float %ret, float* %ptr
 ret void
}

!nvvm.annotations = !{!1}
!1 = !{void (float*)* @my_kernel, !"kernel", i32 1}

When compiled, the PTX kernel functions are callable by host-side code.

Address Spaces

The NVPTX back-end uses the following address space mapping:

	Address Space

	Memory Space

	0

	Generic

	1

	Global

	2

	Internal Use

	3

	Shared

	4

	Constant

	5

	Local

Every global variable and pointer type is assigned to one of these address
spaces, with 0 being the default address space. Intrinsics are provided which
can be used to convert pointers between the generic and non-generic address
spaces.

As an example, the following IR will define an array @g that resides in
global device memory.

@g = internal addrspace(1) global [4 x i32] [i32 0, i32 1, i32 2, i32 3]

LLVM IR functions can read and write to this array, and host-side code can
copy data to it by name with the CUDA Driver API.

Note that since address space 0 is the generic space, it is illegal to have
global variables in address space 0. Address space 0 is the default address
space in LLVM, so the addrspace(N) annotation is required for global
variables.

Triples

The NVPTX target uses the module triple to select between 32/64-bit code
generation and the driver-compiler interface to use. The triple architecture
can be one of nvptx (32-bit PTX) or nvptx64 (64-bit PTX). The
operating system should be one of cuda or nvcl, which determines the
interface used by the generated code to communicate with the driver. Most
users will want to use cuda as the operating system, which makes the
generated PTX compatible with the CUDA Driver API.

Example: 32-bit PTX for CUDA Driver API: nvptx-nvidia-cuda

Example: 64-bit PTX for CUDA Driver API: nvptx64-nvidia-cuda

NVPTX Intrinsics

Address Space Conversion

‘llvm.nvvm.ptr.*.to.gen’ Intrinsics

Syntax:

These are overloaded intrinsics. You can use these on any pointer types.

declare i8* @llvm.nvvm.ptr.global.to.gen.p0i8.p1i8(i8 addrspace(1)*)
declare i8* @llvm.nvvm.ptr.shared.to.gen.p0i8.p3i8(i8 addrspace(3)*)
declare i8* @llvm.nvvm.ptr.constant.to.gen.p0i8.p4i8(i8 addrspace(4)*)
declare i8* @llvm.nvvm.ptr.local.to.gen.p0i8.p5i8(i8 addrspace(5)*)

Overview:

The ‘llvm.nvvm.ptr.*.to.gen’ intrinsics convert a pointer in a non-generic
address space to a generic address space pointer.

Semantics:

These intrinsics modify the pointer value to be a valid generic address space
pointer.

‘llvm.nvvm.ptr.gen.to.*’ Intrinsics

Syntax:

These are overloaded intrinsics. You can use these on any pointer types.

declare i8 addrspace(1)* @llvm.nvvm.ptr.gen.to.global.p1i8.p0i8(i8*)
declare i8 addrspace(3)* @llvm.nvvm.ptr.gen.to.shared.p3i8.p0i8(i8*)
declare i8 addrspace(4)* @llvm.nvvm.ptr.gen.to.constant.p4i8.p0i8(i8*)
declare i8 addrspace(5)* @llvm.nvvm.ptr.gen.to.local.p5i8.p0i8(i8*)

Overview:

The ‘llvm.nvvm.ptr.gen.to.*’ intrinsics convert a pointer in the generic
address space to a pointer in the target address space. Note that these
intrinsics are only useful if the address space of the target address space of
the pointer is known. It is not legal to use address space conversion
intrinsics to convert a pointer from one non-generic address space to another
non-generic address space.

Semantics:

These intrinsics modify the pointer value to be a valid pointer in the target
non-generic address space.

Reading PTX Special Registers

‘llvm.nvvm.read.ptx.sreg.*’

Syntax:

declare i32 @llvm.nvvm.read.ptx.sreg.tid.x()
declare i32 @llvm.nvvm.read.ptx.sreg.tid.y()
declare i32 @llvm.nvvm.read.ptx.sreg.tid.z()
declare i32 @llvm.nvvm.read.ptx.sreg.ntid.x()
declare i32 @llvm.nvvm.read.ptx.sreg.ntid.y()
declare i32 @llvm.nvvm.read.ptx.sreg.ntid.z()
declare i32 @llvm.nvvm.read.ptx.sreg.ctaid.x()
declare i32 @llvm.nvvm.read.ptx.sreg.ctaid.y()
declare i32 @llvm.nvvm.read.ptx.sreg.ctaid.z()
declare i32 @llvm.nvvm.read.ptx.sreg.nctaid.x()
declare i32 @llvm.nvvm.read.ptx.sreg.nctaid.y()
declare i32 @llvm.nvvm.read.ptx.sreg.nctaid.z()
declare i32 @llvm.nvvm.read.ptx.sreg.warpsize()

Overview:

The ‘@llvm.nvvm.read.ptx.sreg.*’ intrinsics provide access to the PTX
special registers, in particular the kernel launch bounds. These registers
map in the following way to CUDA builtins:

	CUDA Builtin

	PTX Special Register Intrinsic

	threadId

	@llvm.nvvm.read.ptx.sreg.tid.*

	blockIdx

	@llvm.nvvm.read.ptx.sreg.ctaid.*

	blockDim

	@llvm.nvvm.read.ptx.sreg.ntid.*

	gridDim

	@llvm.nvvm.read.ptx.sreg.nctaid.*

Barriers

‘llvm.nvvm.barrier0’

Syntax:

declare void @llvm.nvvm.barrier0()

Overview:

The ‘@llvm.nvvm.barrier0()’ intrinsic emits a PTX bar.sync 0
instruction, equivalent to the __syncthreads() call in CUDA.

Other Intrinsics

For the full set of NVPTX intrinsics, please see the
include/llvm/IR/IntrinsicsNVVM.td file in the LLVM source tree.

Linking with Libdevice

The CUDA Toolkit comes with an LLVM bitcode library called libdevice that
implements many common mathematical functions. This library can be used as a
high-performance math library for any compilers using the LLVM NVPTX target.
The library can be found under nvvm/libdevice/ in the CUDA Toolkit and
there is a separate version for each compute architecture.

For a list of all math functions implemented in libdevice, see
libdevice Users Guide [http://docs.nvidia.com/cuda/libdevice-users-guide/index.html].

To accommodate various math-related compiler flags that can affect code
generation of libdevice code, the library code depends on a special LLVM IR
pass (NVVMReflect) to handle conditional compilation within LLVM IR. This
pass looks for calls to the @__nvvm_reflect function and replaces them
with constants based on the defined reflection parameters. Such conditional
code often follows a pattern:

float my_function(float a) {
 if (__nvvm_reflect("FASTMATH"))
 return my_function_fast(a);
 else
 return my_function_precise(a);
}

The default value for all unspecified reflection parameters is zero.

The NVVMReflect pass should be executed early in the optimization
pipeline, immediately after the link stage. The internalize pass is also
recommended to remove unused math functions from the resulting PTX. For an
input IR module module.bc, the following compilation flow is recommended:

	Save list of external functions in module.bc

	Link module.bc with libdevice.compute_XX.YY.bc

	Internalize all functions not in list from (1)

	Eliminate all unused internal functions

	Run NVVMReflect pass

	Run standard optimization pipeline

Note

linkonce and linkonce_odr linkage types are not suitable for the
libdevice functions. It is possible to link two IR modules that have been
linked against libdevice using different reflection variables.

Since the NVVMReflect pass replaces conditionals with constants, it will
often leave behind dead code of the form:

entry:
 ..
 br i1 true, label %foo, label %bar
foo:
 ..
bar:
 ; Dead code
 ..

Therefore, it is recommended that NVVMReflect is executed early in the
optimization pipeline before dead-code elimination.

The NVPTX TargetMachine knows how to schedule NVVMReflect at the beginning
of your pass manager; just use the following code when setting up your pass
manager:

std::unique_ptr<TargetMachine> TM = ...;
PassManagerBuilder PMBuilder(...);
if (TM)
 TM->adjustPassManager(PMBuilder);

Reflection Parameters

The libdevice library currently uses the following reflection parameters to
control code generation:

	Flag

	Description

	__CUDA_FTZ=[0,1]

	Use optimized code paths that flush subnormals to zero

The value of this flag is determined by the “nvvm-reflect-ftz” module flag.
The following sets the ftz flag to 1.

!llvm.module.flag = !{!0}
!0 = !{i32 4, !"nvvm-reflect-ftz", i32 1}

(i32 4 indicates that the value set here overrides the value in another
module we link with. See the LangRef <LangRef.html#module-flags-metadata>
for details.)

Executing PTX

The most common way to execute PTX assembly on a GPU device is to use the CUDA
Driver API. This API is a low-level interface to the GPU driver and allows for
JIT compilation of PTX code to native GPU machine code.

Initializing the Driver API:

CUdevice device;
CUcontext context;

// Initialize the driver API
cuInit(0);
// Get a handle to the first compute device
cuDeviceGet(&device, 0);
// Create a compute device context
cuCtxCreate(&context, 0, device);

JIT compiling a PTX string to a device binary:

CUmodule module;
CUfunction function;

// JIT compile a null-terminated PTX string
cuModuleLoadData(&module, (void*)PTXString);

// Get a handle to the "myfunction" kernel function
cuModuleGetFunction(&function, module, "myfunction");

For full examples of executing PTX assembly, please see the CUDA Samples [https://developer.nvidia.com/cuda-downloads] distribution.

Common Issues

ptxas complains of undefined function: __nvvm_reflect

When linking with libdevice, the NVVMReflect pass must be used. See
Linking with Libdevice for more information.

Tutorial: A Simple Compute Kernel

To start, let us take a look at a simple compute kernel written directly in
LLVM IR. The kernel implements vector addition, where each thread computes one
element of the output vector C from the input vectors A and B. To make this
easier, we also assume that only a single CTA (thread block) will be launched,
and that it will be one dimensional.

The Kernel

target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"
target triple = "nvptx64-nvidia-cuda"

; Intrinsic to read X component of thread ID
declare i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind

define void @kernel(float addrspace(1)* %A,
 float addrspace(1)* %B,
 float addrspace(1)* %C) {
entry:
 ; What is my ID?
 %id = tail call i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind

 ; Compute pointers into A, B, and C
 %ptrA = getelementptr float, float addrspace(1)* %A, i32 %id
 %ptrB = getelementptr float, float addrspace(1)* %B, i32 %id
 %ptrC = getelementptr float, float addrspace(1)* %C, i32 %id

 ; Read A, B
 %valA = load float, float addrspace(1)* %ptrA, align 4
 %valB = load float, float addrspace(1)* %ptrB, align 4

 ; Compute C = A + B
 %valC = fadd float %valA, %valB

 ; Store back to C
 store float %valC, float addrspace(1)* %ptrC, align 4

 ret void
}

!nvvm.annotations = !{!0}
!0 = !{void (float addrspace(1)*,
 float addrspace(1)*,
 float addrspace(1)*)* @kernel, !"kernel", i32 1}

We can use the LLVM llc tool to directly run the NVPTX code generator:

llc -mcpu=sm_20 kernel.ll -o kernel.ptx

Note

If you want to generate 32-bit code, change p:64:64:64 to p:32:32:32
in the module data layout string and use nvptx-nvidia-cuda as the
target triple.

The output we get from llc (as of LLVM 3.4):

//
// Generated by LLVM NVPTX Back-End
//

.version 3.1
.target sm_20
.address_size 64

 // .globl kernel
 // @kernel
.visible .entry kernel(
 .param .u64 kernel_param_0,
 .param .u64 kernel_param_1,
 .param .u64 kernel_param_2
)
{
 .reg .f32 %f<4>;
 .reg .s32 %r<2>;
 .reg .s64 %rl<8>;

// %bb.0: // %entry
 ld.param.u64 %rl1, [kernel_param_0];
 mov.u32 %r1, %tid.x;
 mul.wide.s32 %rl2, %r1, 4;
 add.s64 %rl3, %rl1, %rl2;
 ld.param.u64 %rl4, [kernel_param_1];
 add.s64 %rl5, %rl4, %rl2;
 ld.param.u64 %rl6, [kernel_param_2];
 add.s64 %rl7, %rl6, %rl2;
 ld.global.f32 %f1, [%rl3];
 ld.global.f32 %f2, [%rl5];
 add.f32 %f3, %f1, %f2;
 st.global.f32 [%rl7], %f3;
 ret;
}

Dissecting the Kernel

Now let us dissect the LLVM IR that makes up this kernel.

Data Layout

The data layout string determines the size in bits of common data types, their
ABI alignment, and their storage size. For NVPTX, you should use one of the
following:

32-bit PTX:

target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"

64-bit PTX:

target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"

Target Intrinsics

In this example, we use the @llvm.nvvm.read.ptx.sreg.tid.x intrinsic to
read the X component of the current thread’s ID, which corresponds to a read
of register %tid.x in PTX. The NVPTX back-end supports a large set of
intrinsics. A short list is shown below; please see
include/llvm/IR/IntrinsicsNVVM.td for the full list.

	Intrinsic

	CUDA Equivalent

	i32 @llvm.nvvm.read.ptx.sreg.tid.{x,y,z}

	threadIdx.{x,y,z}

	i32 @llvm.nvvm.read.ptx.sreg.ctaid.{x,y,z}

	blockIdx.{x,y,z}

	i32 @llvm.nvvm.read.ptx.sreg.ntid.{x,y,z}

	blockDim.{x,y,z}

	i32 @llvm.nvvm.read.ptx.sreg.nctaid.{x,y,z}

	gridDim.{x,y,z}

	void @llvm.nvvm.barrier0()

	__syncthreads()

Address Spaces

You may have noticed that all of the pointer types in the LLVM IR example had
an explicit address space specifier. What is address space 1? NVIDIA GPU
devices (generally) have four types of memory:

	Global: Large, off-chip memory

	Shared: Small, on-chip memory shared among all threads in a CTA

	Local: Per-thread, private memory

	Constant: Read-only memory shared across all threads

These different types of memory are represented in LLVM IR as address spaces.
There is also a fifth address space used by the NVPTX code generator that
corresponds to the “generic” address space. This address space can represent
addresses in any other address space (with a few exceptions). This allows
users to write IR functions that can load/store memory using the same
instructions. Intrinsics are provided to convert pointers between the generic
and non-generic address spaces.

See Address Spaces and NVPTX Intrinsics for more information.

Kernel Metadata

In PTX, a function can be either a kernel function (callable from the host
program), or a device function (callable only from GPU code). You can think
of kernel functions as entry-points in the GPU program. To mark an LLVM IR
function as a kernel function, we make use of special LLVM metadata. The
NVPTX back-end will look for a named metadata node called
nvvm.annotations. This named metadata must contain a list of metadata that
describe the IR. For our purposes, we need to declare a metadata node that
assigns the “kernel” attribute to the LLVM IR function that should be emitted
as a PTX kernel function. These metadata nodes take the form:

!{<function ref>, metadata !"kernel", i32 1}

For the previous example, we have:

!nvvm.annotations = !{!0}
!0 = !{void (float addrspace(1)*,
 float addrspace(1)*,
 float addrspace(1)*)* @kernel, !"kernel", i32 1}

Here, we have a single metadata declaration in nvvm.annotations. This
metadata annotates our @kernel function with the kernel attribute.

Running the Kernel

Generating PTX from LLVM IR is all well and good, but how do we execute it on
a real GPU device? The CUDA Driver API provides a convenient mechanism for
loading and JIT compiling PTX to a native GPU device, and launching a kernel.
The API is similar to OpenCL. A simple example showing how to load and
execute our vector addition code is shown below. Note that for brevity this
code does not perform much error checking!

Note

You can also use the ptxas tool provided by the CUDA Toolkit to offline
compile PTX to machine code (SASS) for a specific GPU architecture. Such
binaries can be loaded by the CUDA Driver API in the same way as PTX. This
can be useful for reducing startup time by precompiling the PTX kernels.

#include <iostream>
#include <fstream>
#include <cassert>
#include "cuda.h"

void checkCudaErrors(CUresult err) {
 assert(err == CUDA_SUCCESS);
}

/// main - Program entry point
int main(int argc, char **argv) {
 CUdevice device;
 CUmodule cudaModule;
 CUcontext context;
 CUfunction function;
 CUlinkState linker;
 int devCount;

 // CUDA initialization
 checkCudaErrors(cuInit(0));
 checkCudaErrors(cuDeviceGetCount(&devCount));
 checkCudaErrors(cuDeviceGet(&device, 0));

 char name[128];
 checkCudaErrors(cuDeviceGetName(name, 128, device));
 std::cout << "Using CUDA Device [0]: " << name << "\n";

 int devMajor, devMinor;
 checkCudaErrors(cuDeviceComputeCapability(&devMajor, &devMinor, device));
 std::cout << "Device Compute Capability: "
 << devMajor << "." << devMinor << "\n";
 if (devMajor < 2) {
 std::cerr << "ERROR: Device 0 is not SM 2.0 or greater\n";
 return 1;
 }

 std::ifstream t("kernel.ptx");
 if (!t.is_open()) {
 std::cerr << "kernel.ptx not found\n";
 return 1;
 }
 std::string str((std::istreambuf_iterator<char>(t)),
 std::istreambuf_iterator<char>());

 // Create driver context
 checkCudaErrors(cuCtxCreate(&context, 0, device));

 // Create module for object
 checkCudaErrors(cuModuleLoadDataEx(&cudaModule, str.c_str(), 0, 0, 0));

 // Get kernel function
 checkCudaErrors(cuModuleGetFunction(&function, cudaModule, "kernel"));

 // Device data
 CUdeviceptr devBufferA;
 CUdeviceptr devBufferB;
 CUdeviceptr devBufferC;

 checkCudaErrors(cuMemAlloc(&devBufferA, sizeof(float)*16));
 checkCudaErrors(cuMemAlloc(&devBufferB, sizeof(float)*16));
 checkCudaErrors(cuMemAlloc(&devBufferC, sizeof(float)*16));

 float* hostA = new float[16];
 float* hostB = new float[16];
 float* hostC = new float[16];

 // Populate input
 for (unsigned i = 0; i != 16; ++i) {
 hostA[i] = (float)i;
 hostB[i] = (float)(2*i);
 hostC[i] = 0.0f;
 }

 checkCudaErrors(cuMemcpyHtoD(devBufferA, &hostA[0], sizeof(float)*16));
 checkCudaErrors(cuMemcpyHtoD(devBufferB, &hostB[0], sizeof(float)*16));

 unsigned blockSizeX = 16;
 unsigned blockSizeY = 1;
 unsigned blockSizeZ = 1;
 unsigned gridSizeX = 1;
 unsigned gridSizeY = 1;
 unsigned gridSizeZ = 1;

 // Kernel parameters
 void *KernelParams[] = { &devBufferA, &devBufferB, &devBufferC };

 std::cout << "Launching kernel\n";

 // Kernel launch
 checkCudaErrors(cuLaunchKernel(function, gridSizeX, gridSizeY, gridSizeZ,
 blockSizeX, blockSizeY, blockSizeZ,
 0, NULL, KernelParams, NULL));

 // Retrieve device data
 checkCudaErrors(cuMemcpyDtoH(&hostC[0], devBufferC, sizeof(float)*16));

 std::cout << "Results:\n";
 for (unsigned i = 0; i != 16; ++i) {
 std::cout << hostA[i] << " + " << hostB[i] << " = " << hostC[i] << "\n";
 }

 // Clean up after ourselves
 delete [] hostA;
 delete [] hostB;
 delete [] hostC;

 // Clean-up
 checkCudaErrors(cuMemFree(devBufferA));
 checkCudaErrors(cuMemFree(devBufferB));
 checkCudaErrors(cuMemFree(devBufferC));
 checkCudaErrors(cuModuleUnload(cudaModule));
 checkCudaErrors(cuCtxDestroy(context));

 return 0;
}

You will need to link with the CUDA driver and specify the path to cuda.h.

clang++ sample.cpp -o sample -O2 -g -I/usr/local/cuda-5.5/include -lcuda

We don’t need to specify a path to libcuda.so since this is installed in a
system location by the driver, not the CUDA toolkit.

If everything goes as planned, you should see the following output when
running the compiled program:

Using CUDA Device [0]: GeForce GTX 680
Device Compute Capability: 3.0
Launching kernel
Results:
0 + 0 = 0
1 + 2 = 3
2 + 4 = 6
3 + 6 = 9
4 + 8 = 12
5 + 10 = 15
6 + 12 = 18
7 + 14 = 21
8 + 16 = 24
9 + 18 = 27
10 + 20 = 30
11 + 22 = 33
12 + 24 = 36
13 + 26 = 39
14 + 28 = 42
15 + 30 = 45

Note

You will likely see a different device identifier based on your hardware

Tutorial: Linking with Libdevice

In this tutorial, we show a simple example of linking LLVM IR with the
libdevice library. We will use the same kernel as the previous tutorial,
except that we will compute C = pow(A, B) instead of C = A + B.
Libdevice provides an __nv_powf function that we will use.

target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"
target triple = "nvptx64-nvidia-cuda"

; Intrinsic to read X component of thread ID
declare i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind
; libdevice function
declare float @__nv_powf(float, float)

define void @kernel(float addrspace(1)* %A,
 float addrspace(1)* %B,
 float addrspace(1)* %C) {
entry:
 ; What is my ID?
 %id = tail call i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind

 ; Compute pointers into A, B, and C
 %ptrA = getelementptr float, float addrspace(1)* %A, i32 %id
 %ptrB = getelementptr float, float addrspace(1)* %B, i32 %id
 %ptrC = getelementptr float, float addrspace(1)* %C, i32 %id

 ; Read A, B
 %valA = load float, float addrspace(1)* %ptrA, align 4
 %valB = load float, float addrspace(1)* %ptrB, align 4

 ; Compute C = pow(A, B)
 %valC = call float @__nv_powf(float %valA, float %valB)

 ; Store back to C
 store float %valC, float addrspace(1)* %ptrC, align 4

 ret void
}

!nvvm.annotations = !{!0}
!0 = !{void (float addrspace(1)*,
 float addrspace(1)*,
 float addrspace(1)*)* @kernel, !"kernel", i32 1}

To compile this kernel, we perform the following steps:

	Link with libdevice

	Internalize all but the public kernel function

	Run NVVMReflect and set __CUDA_FTZ to 0

	Optimize the linked module

	Codegen the module

These steps can be performed by the LLVM llvm-link, opt, and llc
tools. In a complete compiler, these steps can also be performed entirely
programmatically by setting up an appropriate pass configuration (see
Linking with Libdevice).

llvm-link t2.bc libdevice.compute_20.10.bc -o t2.linked.bc
opt -internalize -internalize-public-api-list=kernel -nvvm-reflect-list=__CUDA_FTZ=0 -nvvm-reflect -O3 t2.linked.bc -o t2.opt.bc
llc -mcpu=sm_20 t2.opt.bc -o t2.ptx

Note

The -nvvm-reflect-list=_CUDA_FTZ=0 is not strictly required, as any
undefined variables will default to zero. It is shown here for evaluation
purposes.

This gives us the following PTX (excerpt):

//
// Generated by LLVM NVPTX Back-End
//

.version 3.1
.target sm_20
.address_size 64

 // .globl kernel
 // @kernel
.visible .entry kernel(
 .param .u64 kernel_param_0,
 .param .u64 kernel_param_1,
 .param .u64 kernel_param_2
)
{
 .reg .pred %p<30>;
 .reg .f32 %f<111>;
 .reg .s32 %r<21>;
 .reg .s64 %rl<8>;

// %bb.0: // %entry
 ld.param.u64 %rl2, [kernel_param_0];
 mov.u32 %r3, %tid.x;
 ld.param.u64 %rl3, [kernel_param_1];
 mul.wide.s32 %rl4, %r3, 4;
 add.s64 %rl5, %rl2, %rl4;
 ld.param.u64 %rl6, [kernel_param_2];
 add.s64 %rl7, %rl3, %rl4;
 add.s64 %rl1, %rl6, %rl4;
 ld.global.f32 %f1, [%rl5];
 ld.global.f32 %f2, [%rl7];
 setp.eq.f32 %p1, %f1, 0f3F800000;
 setp.eq.f32 %p2, %f2, 0f00000000;
 or.pred %p3, %p1, %p2;
 @%p3 bra BB0_1;
 bra.uni BB0_2;
BB0_1:
 mov.f32 %f110, 0f3F800000;
 st.global.f32 [%rl1], %f110;
 ret;
BB0_2: // %__nv_isnanf.exit.i
 abs.f32 %f4, %f1;
 setp.gtu.f32 %p4, %f4, 0f7F800000;
 @%p4 bra BB0_4;
// %bb.3: // %__nv_isnanf.exit5.i
 abs.f32 %f5, %f2;
 setp.le.f32 %p5, %f5, 0f7F800000;
 @%p5 bra BB0_5;
BB0_4: // %.critedge1.i
 add.f32 %f110, %f1, %f2;
 st.global.f32 [%rl1], %f110;
 ret;
BB0_5: // %__nv_isinff.exit.i

 ...

BB0_26: // %__nv_truncf.exit.i.i.i.i.i
 mul.f32 %f90, %f107, 0f3FB8AA3B;
 cvt.rzi.f32.f32 %f91, %f90;
 mov.f32 %f92, 0fBF317200;
 fma.rn.f32 %f93, %f91, %f92, %f107;
 mov.f32 %f94, 0fB5BFBE8E;
 fma.rn.f32 %f95, %f91, %f94, %f93;
 mul.f32 %f89, %f95, 0f3FB8AA3B;
 // inline asm
 ex2.approx.ftz.f32 %f88,%f89;
 // inline asm
 add.f32 %f96, %f91, 0f00000000;
 ex2.approx.f32 %f97, %f96;
 mul.f32 %f98, %f88, %f97;
 setp.lt.f32 %p15, %f107, 0fC2D20000;
 selp.f32 %f99, 0f00000000, %f98, %p15;
 setp.gt.f32 %p16, %f107, 0f42D20000;
 selp.f32 %f110, 0f7F800000, %f99, %p16;
 setp.eq.f32 %p17, %f110, 0f7F800000;
 @%p17 bra BB0_28;
// %bb.27:
 fma.rn.f32 %f110, %f110, %f108, %f110;
BB0_28: // %__internal_accurate_powf.exit.i
 setp.lt.f32 %p18, %f1, 0f00000000;
 setp.eq.f32 %p19, %f3, 0f3F800000;
 and.pred %p20, %p18, %p19;
 @!%p20 bra BB0_30;
 bra.uni BB0_29;
BB0_29:
 mov.b32 %r9, %f110;
 xor.b32 %r10, %r9, -2147483648;
 mov.b32 %f110, %r10;
BB0_30: // %__nv_powf.exit
 st.global.f32 [%rl1], %f110;
 ret;
}

 User Guide for AMDGPU Backend

User Guide for AMDGPU Backend

	Introduction

	LLVM

	Target Triples

	Processors

	Target Features

	Address Spaces

	Memory Scopes

	AMDGPU Intrinsics

	AMDGPU Attributes

	Code Object

	Header

	Sections

	Note Records

	Symbols

	Relocation Records

	DWARF

	Address Space Mapping

	Register Mapping

	Source Text

	Code Conventions

	AMDHSA

	Code Object Target Identification

	Code Object Metadata

	Kernel Dispatch

	Memory Spaces

	Image and Samplers

	HSA Signals

	HSA AQL Queue

	Kernel Descriptor

	Kernel Descriptor for GFX6-GFX9

	Initial Kernel Execution State

	Kernel Prolog

	M0

	Flat Scratch

	Memory Model

	Trap Handler ABI

	AMDPAL

	User Data

	Compute User Data

	Graphics User Data

	Global Internal Table

	Unspecified OS

	Trap Handler ABI

	Source Languages

	OpenCL

	HCC

	Assembler

	Instructions

	Operands

	Modifiers

	Instruction Examples

	DS

	FLAT

	MUBUF

	SMRD/SMEM

	SOP1

	SOP2

	SOPC

	SOPP

	VALU

	HSA Code Object Directives

	.hsa_code_object_version major, minor

	.hsa_code_object_isa [major, minor, stepping, vendor, arch]

	.amdgpu_hsa_kernel (name)

	.amd_kernel_code_t

	Predefined Symbols (-mattr=+code-object-v3)

	.amdgcn.gfx_generation_number

	.amdgcn.next_free_vgpr

	.amdgcn.next_free_sgpr

	Code Object Directives (-mattr=+code-object-v3)

	.amdgcn_target <target>

	.amdhsa_kernel <name>

	Example HSA Source Code (-mattr=+code-object-v3)

	Additional Documentation

Introduction

The AMDGPU backend provides ISA code generation for AMD GPUs, starting with the
R600 family up until the current GCN families. It lives in the
lib/Target/AMDGPU directory.

LLVM

Target Triples

Use the clang -target <Architecture>-<Vendor>-<OS>-<Environment> option to
specify the target triple:

AMDGPU Architectures

	Architecture

	Description

	r600

	AMD GPUs HD2XXX-HD6XXX for graphics and compute shaders.

	amdgcn

	AMD GPUs GCN GFX6 onwards for graphics and compute shaders.

AMDGPU Vendors

	Vendor

	Description

	amd

	Can be used for all AMD GPU usage.

	mesa3d

	Can be used if the OS is mesa3d.

AMDGPU Operating Systems

	OS

	Description

	<empty>

	Defaults to the unknown OS.

	amdhsa

	Compute kernels executed on HSA [HSA] compatible runtimes
such as AMD’s ROCm [AMD-ROCm].

	amdpal

	Graphic shaders and compute kernels executed on AMD PAL
runtime.

	mesa3d

	Graphic shaders and compute kernels executed on Mesa 3D
runtime.

AMDGPU Environments

	Environment

	Description

	<empty>

	Default.

Processors

Use the clang -mcpu <Processor> option to specify the AMD GPU processor. The
names from both the Processor and Alternative Processor can be used.

AMDGPU Processors

	Processor

	Alternative
Processor

	Target
Triple
Architecture

	dGPU/
APU

	Target
Features
Supported
[Default]

	ROCm
Support

	Example
Products

	Radeon HD 2000/3000 Series (R600) [AMD-RADEON-HD-2000-3000]

	r600

	
	r600

	dGPU

	
	
	

	r630

	
	r600

	dGPU

	
	
	

	rs880

	
	r600

	dGPU

	
	
	

	rv670

	
	r600

	dGPU

	
	
	

	Radeon HD 4000 Series (R700) [AMD-RADEON-HD-4000]

	rv710

	
	r600

	dGPU

	
	
	

	rv730

	
	r600

	dGPU

	
	
	

	rv770

	
	r600

	dGPU

	
	
	

	Radeon HD 5000 Series (Evergreen) [AMD-RADEON-HD-5000]

	cedar

	
	r600

	dGPU

	
	
	

	cypress

	
	r600

	dGPU

	
	
	

	juniper

	
	r600

	dGPU

	
	
	

	redwood

	
	r600

	dGPU

	
	
	

	sumo

	
	r600

	dGPU

	
	
	

	Radeon HD 6000 Series (Northern Islands) [AMD-RADEON-HD-6000]

	barts

	
	r600

	dGPU

	
	
	

	caicos

	
	r600

	dGPU

	
	
	

	cayman

	
	r600

	dGPU

	
	
	

	turks

	
	r600

	dGPU

	
	
	

	GCN GFX6 (Southern Islands (SI)) [AMD-GCN-GFX6]

	gfx600

	
	tahiti

	amdgcn

	dGPU

	
	
	

	gfx601

	
	hainan

	oland

	pitcairn

	verde

	amdgcn

	dGPU

	
	
	

	GCN GFX7 (Sea Islands (CI)) [AMD-GCN-GFX7]

	gfx700

	
	kaveri

	amdgcn

	APU

	
	
	
	A6-7000

	A6 Pro-7050B

	A8-7100

	A8 Pro-7150B

	A10-7300

	A10 Pro-7350B

	FX-7500

	A8-7200P

	A10-7400P

	FX-7600P

	gfx701

	
	hawaii

	amdgcn

	dGPU

	
	ROCm

	
	FirePro W8100

	FirePro W9100

	FirePro S9150

	FirePro S9170

	gfx702

	
	amdgcn

	dGPU

	
	ROCm

	
	Radeon R9 290

	Radeon R9 290x

	Radeon R390

	Radeon R390x

	gfx703

	
	kabini

	mullins

	amdgcn

	APU

	
	
	
	E1-2100

	E1-2200

	E1-2500

	E2-3000

	E2-3800

	A4-5000

	A4-5100

	A6-5200

	A4 Pro-3340B

	gfx704

	
	bonaire

	amdgcn

	dGPU

	
	
	
	Radeon HD 7790

	Radeon HD 8770

	R7 260

	R7 260X

	GCN GFX8 (Volcanic Islands (VI)) [AMD-GCN-GFX8]

	gfx801

	
	carrizo

	amdgcn

	APU

	
	xnack
[on]

	
	
	A6-8500P

	Pro A6-8500B

	A8-8600P

	Pro A8-8600B

	FX-8800P

	Pro A12-8800B

	

	
	amdgcn

	APU

	
	xnack
[on]

	ROCm

	
	A10-8700P

	Pro A10-8700B

	A10-8780P

	

	
	amdgcn

	APU

	
	xnack
[on]

	
	
	A10-9600P

	A10-9630P

	A12-9700P

	A12-9730P

	FX-9800P

	FX-9830P

	

	
	amdgcn

	APU

	
	xnack
[on]

	
	
	E2-9010

	A6-9210

	A9-9410

	gfx802

	
	iceland

	tonga

	amdgcn

	dGPU

	
	xnack
[off]

	ROCm

	
	FirePro S7150

	FirePro S7100

	FirePro W7100

	Radeon R285

	Radeon R9 380

	Radeon R9 385

	Mobile FirePro
M7170

	gfx803

	
	fiji

	amdgcn

	dGPU

	
	xnack
[off]

	ROCm

	
	Radeon R9 Nano

	Radeon R9 Fury

	Radeon R9 FuryX

	Radeon Pro Duo

	FirePro S9300x2

	Radeon Instinct MI8

	

	
	polaris10

	amdgcn

	dGPU

	
	xnack
[off]

	ROCm

	
	Radeon RX 470

	Radeon RX 480

	Radeon Instinct MI6

	

	
	polaris11

	amdgcn

	dGPU

	
	xnack
[off]

	ROCm

	
	Radeon RX 460

	gfx810

	
	stoney

	amdgcn

	APU

	
	xnack
[on]

	
	

	GCN GFX9 [AMD-GCN-GFX9]

	gfx900

	
	amdgcn

	dGPU

	
	xnack
[off]

	ROCm

	
	Radeon Vega
Frontier Edition

	Radeon RX Vega 56

	Radeon RX Vega 64

	Radeon RX Vega 64
Liquid

	Radeon Instinct MI25

	gfx902

	
	amdgcn

	APU

	
	xnack
[on]

	
	
	Ryzen 3 2200G

	Ryzen 5 2400G

	gfx904

	
	amdgcn

	dGPU

	
	xnack
[off]

	
	TBA

	gfx906

	
	amdgcn

	dGPU

	
	xnack
[off]

	
	TBA

Target Features

Target features control how code is generated to support certain
processor specific features. Not all target features are supported by
all processors. The runtime must ensure that the features supported by
the device used to execute the code match the features enabled when
generating the code. A mismatch of features may result in incorrect
execution, or a reduction in performance.

The target features supported by each processor, and the default value
used if not specified explicitly, is listed in
AMDGPU Processors.

Use the clang -m[no-]<TargetFeature> option to specify the AMD GPU
target features.

For example:

	-mxnack

	Enable the xnack feature.

	-mno-xnack

	Disable the xnack feature.

AMDGPU Target Features

	Target Feature

	Description

	-m[no-]xnack

	Enable/disable generating code that has
memory clauses that are compatible with
having XNACK replay enabled.

This is used for demand paging and page
migration. If XNACK replay is enabled in
the device, then if a page fault occurs
the code may execute incorrectly if the
xnack feature is not enabled. Executing
code that has the feature enabled on a
device that does not have XNACK replay
enabled will execute correctly, but may
be less performant than code with the
feature disabled.

Address Spaces

The AMDGPU backend uses the following address space mappings.

The memory space names used in the table, aside from the region memory space, is
from the OpenCL standard.

LLVM Address Space number is used throughout LLVM (for example, in LLVM IR).

Address Space Mapping

	LLVM Address Space

	Memory Space

	0

	Generic (Flat)

	1

	Global

	2

	Region (GDS)

	3

	Local (group/LDS)

	4

	Constant

	5

	Private (Scratch)

	6

	Constant 32-bit

Memory Scopes

This section provides LLVM memory synchronization scopes supported by the AMDGPU
backend memory model when the target triple OS is amdhsa (see
Memory Model and Target Triples).

The memory model supported is based on the HSA memory model [HSA] which is
based in turn on HRF-indirect with scope inclusion [HRF]. The happens-before
relation is transitive over the synchonizes-with relation independent of scope,
and synchonizes-with allows the memory scope instances to be inclusive (see
table AMDHSA LLVM Sync Scopes).

This is different to the OpenCL [OpenCL] memory model which does not have scope
inclusion and requires the memory scopes to exactly match. However, this
is conservatively correct for OpenCL.

AMDHSA LLVM Sync Scopes

	LLVM Sync Scope

	Description

	none

	The default: system.

Synchronizes with, and participates in modification and
seq_cst total orderings with, other operations (except
image operations) for all address spaces (except private,
or generic that accesses private) provided the other
operation’s sync scope is:

	system.

	agent and executed by a thread on the same agent.

	workgroup and executed by a thread in the same
workgroup.

	wavefront and executed by a thread in the same
wavefront.

	agent

	Synchronizes with, and participates in modification and
seq_cst total orderings with, other operations (except
image operations) for all address spaces (except private,
or generic that accesses private) provided the other
operation’s sync scope is:

	system or agent and executed by a thread on the
same agent.

	workgroup and executed by a thread in the same
workgroup.

	wavefront and executed by a thread in the same
wavefront.

	workgroup

	Synchronizes with, and participates in modification and
seq_cst total orderings with, other operations (except
image operations) for all address spaces (except private,
or generic that accesses private) provided the other
operation’s sync scope is:

	system, agent or workgroup and executed by a
thread in the same workgroup.

	wavefront and executed by a thread in the same
wavefront.

	wavefront

	Synchronizes with, and participates in modification and
seq_cst total orderings with, other operations (except
image operations) for all address spaces (except private,
or generic that accesses private) provided the other
operation’s sync scope is:

	system, agent, workgroup or wavefront
and executed by a thread in the same wavefront.

	singlethread

	Only synchronizes with, and participates in modification
and seq_cst total orderings with, other operations (except
image operations) running in the same thread for all
address spaces (for example, in signal handlers).

AMDGPU Intrinsics

The AMDGPU backend implements the following LLVM IR intrinsics.

This section is WIP.

AMDGPU Attributes

The AMDGPU backend supports the following LLVM IR attributes.

AMDGPU LLVM IR Attributes

	LLVM Attribute

	Description

	“amdgpu-flat-work-group-size”=”min,max”

	Specify the minimum and maximum flat work group sizes that
will be specified when the kernel is dispatched. Generated
by the amdgpu_flat_work_group_size CLANG attribute [CLANG-ATTR].

	“amdgpu-implicitarg-num-bytes”=”n”

	Number of kernel argument bytes to add to the kernel
argument block size for the implicit arguments. This
varies by OS and language (for OpenCL see
OpenCL kernel implicit arguments appended for AMDHSA OS).

	“amdgpu-max-work-group-size”=”n”

	Specify the maximum work-group size that will be specifed
when the kernel is dispatched.

	“amdgpu-num-sgpr”=”n”

	Specifies the number of SGPRs to use. Generated by
the amdgpu_num_sgpr CLANG attribute [CLANG-ATTR].

	“amdgpu-num-vgpr”=”n”

	Specifies the number of VGPRs to use. Generated by the
amdgpu_num_vgpr CLANG attribute [CLANG-ATTR].

	“amdgpu-waves-per-eu”=”m,n”

	Specify the minimum and maximum number of waves per
execution unit. Generated by the amdgpu_waves_per_eu
CLANG attribute [CLANG-ATTR].

Code Object

The AMDGPU backend generates a standard ELF [ELF] relocatable code object that
can be linked by lld to produce a standard ELF shared code object which can
be loaded and executed on an AMDGPU target.

Header

The AMDGPU backend uses the following ELF header:

AMDGPU ELF Header

	Field

	Value

	e_ident[EI_CLASS]

	ELFCLASS64

	e_ident[EI_DATA]

	ELFDATA2LSB

	e_ident[EI_OSABI]

	
	ELFOSABI_NONE

	ELFOSABI_AMDGPU_HSA

	ELFOSABI_AMDGPU_PAL

	ELFOSABI_AMDGPU_MESA3D

	e_ident[EI_ABIVERSION]

	
	ELFABIVERSION_AMDGPU_HSA

	ELFABIVERSION_AMDGPU_PAL

	ELFABIVERSION_AMDGPU_MESA3D

	e_type

	
	ET_REL

	ET_DYN

	e_machine

	EM_AMDGPU

	e_entry

	0

	e_flags

	See AMDGPU ELF Header e_flags

AMDGPU ELF Header Enumeration Values

	Name

	Value

	EM_AMDGPU

	224

	ELFOSABI_NONE

	0

	ELFOSABI_AMDGPU_HSA

	64

	ELFOSABI_AMDGPU_PAL

	65

	ELFOSABI_AMDGPU_MESA3D

	66

	ELFABIVERSION_AMDGPU_HSA

	1

	ELFABIVERSION_AMDGPU_PAL

	0

	ELFABIVERSION_AMDGPU_MESA3D

	0

	e_ident[EI_CLASS]

	The ELF class is:

	ELFCLASS32 for r600 architecture.

	ELFCLASS64 for amdgcn architecture which only supports 64
bit applications.

	e_ident[EI_DATA]

	All AMDGPU targets use ELFDATA2LSB for little-endian byte ordering.

	e_ident[EI_OSABI]

	One of the following AMD GPU architecture specific OS ABIs
(see AMDGPU Operating Systems):

	ELFOSABI_NONE for unknown OS.

	ELFOSABI_AMDGPU_HSA for amdhsa OS.

	ELFOSABI_AMDGPU_PAL for amdpal OS.

	ELFOSABI_AMDGPU_MESA3D for mesa3D OS.

	e_ident[EI_ABIVERSION]

	The ABI version of the AMD GPU architecture specific OS ABI to which the code
object conforms:

	ELFABIVERSION_AMDGPU_HSA is used to specify the version of AMD HSA
runtime ABI.

	ELFABIVERSION_AMDGPU_PAL is used to specify the version of AMD PAL
runtime ABI.

	ELFABIVERSION_AMDGPU_MESA3D is used to specify the version of AMD MESA
3D runtime ABI.

	e_type

	Can be one of the following values:

	ET_REL

	The type produced by the AMD GPU backend compiler as it is relocatable code
object.

	ET_DYN

	The type produced by the linker as it is a shared code object.

The AMD HSA runtime loader requires a ET_DYN code object.

	e_machine

	The value EM_AMDGPU is used for the machine for all processors supported
by the r600 and amdgcn architectures (see
AMDGPU Processors). The specific processor is specified in the
EF_AMDGPU_MACH bit field of the e_flags (see
AMDGPU ELF Header e_flags).

	e_entry

	The entry point is 0 as the entry points for individual kernels must be
selected in order to invoke them through AQL packets.

	e_flags

	The AMDGPU backend uses the following ELF header flags:

AMDGPU ELF Header e_flags

	Name

	Value

	Description

	AMDGPU Processor Flag

	See AMDGPU Processors.

	EF_AMDGPU_MACH

	0x000000ff

	AMDGPU processor selection
mask for
EF_AMDGPU_MACH_xxx values
defined in
AMDGPU EF_AMDGPU_MACH Values.

	EF_AMDGPU_XNACK

	0x00000100

	Indicates if the xnack
target feature is
enabled for all code
contained in the code object.
If the processor
does not support the
xnack target
feature then must
be 0.
See
Target Features.

AMDGPU EF_AMDGPU_MACH Values

	Name

	Value

	Description (see
AMDGPU Processors)

	EF_AMDGPU_MACH_NONE

	0x000

	not specified

	EF_AMDGPU_MACH_R600_R600

	0x001

	r600

	EF_AMDGPU_MACH_R600_R630

	0x002

	r630

	EF_AMDGPU_MACH_R600_RS880

	0x003

	rs880

	EF_AMDGPU_MACH_R600_RV670

	0x004

	rv670

	EF_AMDGPU_MACH_R600_RV710

	0x005

	rv710

	EF_AMDGPU_MACH_R600_RV730

	0x006

	rv730

	EF_AMDGPU_MACH_R600_RV770

	0x007

	rv770

	EF_AMDGPU_MACH_R600_CEDAR

	0x008

	cedar

	EF_AMDGPU_MACH_R600_CYPRESS

	0x009

	cypress

	EF_AMDGPU_MACH_R600_JUNIPER

	0x00a

	juniper

	EF_AMDGPU_MACH_R600_REDWOOD

	0x00b

	redwood

	EF_AMDGPU_MACH_R600_SUMO

	0x00c

	sumo

	EF_AMDGPU_MACH_R600_BARTS

	0x00d

	barts

	EF_AMDGPU_MACH_R600_CAICOS

	0x00e

	caicos

	EF_AMDGPU_MACH_R600_CAYMAN

	0x00f

	cayman

	EF_AMDGPU_MACH_R600_TURKS

	0x010

	turks

	reserved

	0x011 -
0x01f

	Reserved for r600
architecture processors.

	EF_AMDGPU_MACH_AMDGCN_GFX600

	0x020

	gfx600

	EF_AMDGPU_MACH_AMDGCN_GFX601

	0x021

	gfx601

	EF_AMDGPU_MACH_AMDGCN_GFX700

	0x022

	gfx700

	EF_AMDGPU_MACH_AMDGCN_GFX701

	0x023

	gfx701

	EF_AMDGPU_MACH_AMDGCN_GFX702

	0x024

	gfx702

	EF_AMDGPU_MACH_AMDGCN_GFX703

	0x025

	gfx703

	EF_AMDGPU_MACH_AMDGCN_GFX704

	0x026

	gfx704

	reserved

	0x027

	Reserved.

	EF_AMDGPU_MACH_AMDGCN_GFX801

	0x028

	gfx801

	EF_AMDGPU_MACH_AMDGCN_GFX802

	0x029

	gfx802

	EF_AMDGPU_MACH_AMDGCN_GFX803

	0x02a

	gfx803

	EF_AMDGPU_MACH_AMDGCN_GFX810

	0x02b

	gfx810

	EF_AMDGPU_MACH_AMDGCN_GFX900

	0x02c

	gfx900

	EF_AMDGPU_MACH_AMDGCN_GFX902

	0x02d

	gfx902

	EF_AMDGPU_MACH_AMDGCN_GFX904

	0x02e

	gfx904

	EF_AMDGPU_MACH_AMDGCN_GFX906

	0x02f

	gfx906

	reserved

	0x030

	Reserved.

Sections

An AMDGPU target ELF code object has the standard ELF sections which include:

AMDGPU ELF Sections

	Name

	Type

	Attributes

	.bss

	SHT_NOBITS

	SHF_ALLOC + SHF_WRITE

	.data

	SHT_PROGBITS

	SHF_ALLOC + SHF_WRITE

	.debug_*

	SHT_PROGBITS

	none

	.dynamic

	SHT_DYNAMIC

	SHF_ALLOC

	.dynstr

	SHT_PROGBITS

	SHF_ALLOC

	.dynsym

	SHT_PROGBITS

	SHF_ALLOC

	.got

	SHT_PROGBITS

	SHF_ALLOC + SHF_WRITE

	.hash

	SHT_HASH

	SHF_ALLOC

	.note

	SHT_NOTE

	none

	.relaname

	SHT_RELA

	none

	.rela.dyn

	SHT_RELA

	none

	.rodata

	SHT_PROGBITS

	SHF_ALLOC

	.shstrtab

	SHT_STRTAB

	none

	.strtab

	SHT_STRTAB

	none

	.symtab

	SHT_SYMTAB

	none

	.text

	SHT_PROGBITS

	SHF_ALLOC + SHF_EXECINSTR

These sections have their standard meanings (see [ELF]) and are only generated
if needed.

	.debug*

	The standard DWARF sections. See DWARF for information on the
DWARF produced by the AMDGPU backend.

	.dynamic, .dynstr, .dynsym, .hash

	The standard sections used by a dynamic loader.

	.note

	See Note Records for the note records supported by the AMDGPU
backend.

	.relaname, .rela.dyn

	For relocatable code objects, name is the name of the section that the
relocation records apply. For example, .rela.text is the section name for
relocation records associated with the .text section.

For linked shared code objects, .rela.dyn contains all the relocation
records from each of the relocatable code object’s .relaname sections.

See Relocation Records for the relocation records supported by
the AMDGPU backend.

	.text

	The executable machine code for the kernels and functions they call. Generated
as position independent code. See Code Conventions for
information on conventions used in the isa generation.

Note Records

As required by ELFCLASS32 and ELFCLASS64, minimal zero byte padding must
be generated after the name field to ensure the desc field is 4 byte
aligned. In addition, minimal zero byte padding must be generated to ensure the
desc field size is a multiple of 4 bytes. The sh_addralign field of the
.note section must be at least 4 to indicate at least 8 byte alignment.

The AMDGPU backend code object uses the following ELF note records in the
.note section. The Description column specifies the layout of the note
record’s desc field. All fields are consecutive bytes. Note records with
variable size strings have a corresponding *_size field that specifies the
number of bytes, including the terminating null character, in the string. The
string(s) come immediately after the preceding fields.

Additional note records can be present.

AMDGPU ELF Note Records

	Name

	Type

	Description

	“AMD”

	NT_AMD_AMDGPU_HSA_METADATA

	<metadata null terminated string>

AMDGPU ELF Note Record Enumeration Values

	Name

	Value

	reserved

	0-9

	NT_AMD_AMDGPU_HSA_METADATA

	10

	reserved

	11

	NT_AMD_AMDGPU_HSA_METADATA

	Specifies extensible metadata associated with the code objects executed on HSA
[HSA] compatible runtimes such as AMD’s ROCm [AMD-ROCm]. It is required when
the target triple OS is amdhsa (see Target Triples). See
Code Object Metadata for the syntax of the code
object metadata string.

Symbols

Symbols include the following:

AMDGPU ELF Symbols

	Name

	Type

	Section

	Description

	link-name

	STT_OBJECT

	
	.data

	.rodata

	.bss

	Global variable

	link-name.kd

	STT_OBJECT

	
	.rodata

	Kernel descriptor

	link-name

	STT_FUNC

	
	.text

	Kernel entry point

	Global variable

	Global variables both used and defined by the compilation unit.

If the symbol is defined in the compilation unit then it is allocated in the
appropriate section according to if it has initialized data or is readonly.

If the symbol is external then its section is STN_UNDEF and the loader
will resolve relocations using the definition provided by another code object
or explicitly defined by the runtime.

All global symbols, whether defined in the compilation unit or external, are
accessed by the machine code indirectly through a GOT table entry. This
allows them to be preemptable. The GOT table is only supported when the target
triple OS is amdhsa (see Target Triples).

	Kernel descriptor

	Every HSA kernel has an associated kernel descriptor. It is the address of the
kernel descriptor that is used in the AQL dispatch packet used to invoke the
kernel, not the kernel entry point. The layout of the HSA kernel descriptor is
defined in Kernel Descriptor.

	Kernel entry point

	Every HSA kernel also has a symbol for its machine code entry point.

Relocation Records

AMDGPU backend generates Elf64_Rela relocation records. Supported
relocatable fields are:

	word32

	This specifies a 32-bit field occupying 4 bytes with arbitrary byte
alignment. These values use the same byte order as other word values in the
AMD GPU architecture.

	word64

	This specifies a 64-bit field occupying 8 bytes with arbitrary byte
alignment. These values use the same byte order as other word values in the
AMD GPU architecture.

Following notations are used for specifying relocation calculations:

	A

	Represents the addend used to compute the value of the relocatable field.

	G

	Represents the offset into the global offset table at which the relocation
entry’s symbol will reside during execution.

	GOT

	Represents the address of the global offset table.

	P

	Represents the place (section offset for et_rel or address for et_dyn)
of the storage unit being relocated (computed using r_offset).

	S

	Represents the value of the symbol whose index resides in the relocation
entry. Relocations not using this must specify a symbol index of STN_UNDEF.

	B

	Represents the base address of a loaded executable or shared object which is
the difference between the ELF address and the actual load address. Relocations
using this are only valid in executable or shared objects.

The following relocation types are supported:

AMDGPU ELF Relocation Records

	Relocation Type

	Kind

	Value

	Field

	Calculation

	R_AMDGPU_NONE

	
	0

	none

	none

	R_AMDGPU_ABS32_LO

	Static,
Dynamic

	1

	word32

	(S + A) & 0xFFFFFFFF

	R_AMDGPU_ABS32_HI

	Static,
Dynamic

	2

	word32

	(S + A) >> 32

	R_AMDGPU_ABS64

	Static,
Dynamic

	3

	word64

	S + A

	R_AMDGPU_REL32

	Static

	4

	word32

	S + A - P

	R_AMDGPU_REL64

	Static

	5

	word64

	S + A - P

	R_AMDGPU_ABS32

	Static,
Dynamic

	6

	word32

	S + A

	R_AMDGPU_GOTPCREL

	Static

	7

	word32

	G + GOT + A - P

	R_AMDGPU_GOTPCREL32_LO

	Static

	8

	word32

	(G + GOT + A - P) & 0xFFFFFFFF

	R_AMDGPU_GOTPCREL32_HI

	Static

	9

	word32

	(G + GOT + A - P) >> 32

	R_AMDGPU_REL32_LO

	Static

	10

	word32

	(S + A - P) & 0xFFFFFFFF

	R_AMDGPU_REL32_HI

	Static

	11

	word32

	(S + A - P) >> 32

	reserved

	
	12

	
	

	R_AMDGPU_RELATIVE64

	Dynamic

	13

	word64

	B + A

R_AMDGPU_ABS32_LO and R_AMDGPU_ABS32_HI are only supported by
the mesa3d OS, which does not support R_AMDGPU_ABS64.

There is no current OS loader support for 32 bit programs and so
R_AMDGPU_ABS32 is not used.

DWARF

Standard DWARF [DWARF] Version 5 sections can be generated. These contain
information that maps the code object executable code and data to the source
language constructs. It can be used by tools such as debuggers and profilers.

Address Space Mapping

The following address space mapping is used:

AMDGPU DWARF Address Space Mapping

	DWARF Address Space

	Memory Space

	1

	Private (Scratch)

	2

	Local (group/LDS)

	omitted

	Global

	omitted

	Constant

	omitted

	Generic (Flat)

	not supported

	Region (GDS)

See Address Spaces for information on the memory space terminology
used in the table.

An address_class attribute is generated on pointer type DIEs to specify the
DWARF address space of the value of the pointer when it is in the private or
local address space. Otherwise the attribute is omitted.

An XDEREF operation is generated in location list expressions for variables
that are allocated in the private and local address space. Otherwise no
XDREF is omitted.

Register Mapping

This section is WIP.

Source Text

Source text for online-compiled programs (e.g. those compiled by the OpenCL
runtime) may be embedded into the DWARF v5 line table using the clang
-gembed-source option, described in table AMDGPU Debug Options.

For example:

	-gembed-source

	Enable the embedded source DWARF v5 extension.

	-gno-embed-source

	Disable the embedded source DWARF v5 extension.

AMDGPU Debug Options

	Debug Flag

	Description

	-g[no-]embed-source

	Enable/disable embedding source text in DWARF
debug sections. Useful for environments where
source cannot be written to disk, such as
when performing online compilation.

This option enables one extended content types in the DWARF v5 Line Number
Program Header, which is used to encode embedded source.

AMDGPU DWARF Line Number Program Header Extended Content Types

	Content Type

	Form

	DW_LNCT_LLVM_source

	DW_FORM_line_strp

The source field will contain the UTF-8 encoded, null-terminated source text
with '\n' line endings. When the source field is present, consumers can use
the embedded source instead of attempting to discover the source on disk. When
the source field is absent, consumers can access the file to get the source
text.

The above content type appears in the file_name_entry_format field of the
line table prologue, and its corresponding value appear in the file_names
field. The current encoding of the content type is documented in table
AMDGPU DWARF Line Number Program Header Extended Content Types Encoding

AMDGPU DWARF Line Number Program Header Extended Content Types Encoding

	Content Type

	Value

	DW_LNCT_LLVM_source

	0x2001

Code Conventions

This section provides code conventions used for each supported target triple OS
(see Target Triples).

AMDHSA

This section provides code conventions used when the target triple OS is
amdhsa (see Target Triples).

Code Object Target Identification

The AMDHSA OS uses the following syntax to specify the code object
target as a single string:

<Architecture>-<Vendor>-<OS>-<Environment>-<Processor><Target Features>

Where:

	<Architecture>, <Vendor>, <OS> and <Environment>
are the same as the Target Triple (see
Target Triples).

	<Processor> is the same as the Processor (see
Processors).

	<Target Features> is a list of the enabled Target Features
(see Target Features), each prefixed by a plus, that
apply to Processor. The list must be in the same order as listed
in the table AMDGPU Target Features. Note that Target
Features must be included in the list if they are enabled even if
that is the default for Processor.

For example:

"amdgcn-amd-amdhsa--gfx902+xnack"

Code Object Metadata

The code object metadata specifies extensible metadata associated with the code
objects executed on HSA [HSA] compatible runtimes such as AMD’s ROCm
[AMD-ROCm]. It is specified by the NT_AMD_AMDGPU_HSA_METADATA note record
(see Note Records) and is required when the target triple OS is
amdhsa (see Target Triples). It must contain the minimum
information necessary to support the ROCM kernel queries. For example, the
segment sizes needed in a dispatch packet. In addition, a high level language
runtime may require other information to be included. For example, the AMD
OpenCL runtime records kernel argument information.

The metadata is specified as a YAML formatted string (see [YAML] and
YAML I/O).

The metadata is represented as a single YAML document comprised of the mapping
defined in table AMDHSA Code Object Metadata Mapping and
referenced tables.

For boolean values, the string values of false and true are used for
false and true respectively.

Additional information can be added to the mappings. To avoid conflicts, any
non-AMD key names should be prefixed by “vendor-name.”.

AMDHSA Code Object Metadata Mapping

	String Key

	Value Type

	Required?

	Description

	“Version”

	sequence of
2 integers

	Required

	
	The first integer is the major
version. Currently 1.

	The second integer is the minor
version. Currently 0.

	“Printf”

	sequence of
strings

	
	Each string is encoded information
about a printf function call. The
encoded information is organized as
fields separated by colon (‘:’):

ID:N:S[0]:S[1]:...:S[N-1]:FormatString

where:

	ID

	A 32 bit integer as a unique id for
each printf function call

	N

	A 32 bit integer equal to the number
of arguments of printf function call
minus 1

	S[i] (where i = 0, 1, … , N-1)

	32 bit integers for the size in bytes
of the i-th FormatString argument of
the printf function call

	FormatString

	The format string passed to the
printf function call.

	“Kernels”

	sequence of
mapping

	Required

	Sequence of the mappings for each
kernel in the code object. See
AMDHSA Code Object Kernel Metadata Mapping
for the definition of the mapping.

AMDHSA Code Object Kernel Metadata Mapping

	String Key

	Value Type

	Required?

	Description

	“Name”

	string

	Required

	Source name of the kernel.

	“SymbolName”

	string

	Required

	Name of the kernel
descriptor ELF symbol.

	“Language”

	string

	
	Source language of the kernel.
Values include:

	“OpenCL C”

	“OpenCL C++”

	“HCC”

	“OpenMP”

	“LanguageVersion”

	sequence of
2 integers

	
	
	The first integer is the major
version.

	The second integer is the
minor version.

	“Attrs”

	mapping

	
	Mapping of kernel attributes.
See
AMDHSA Code Object Kernel Attribute Metadata Mapping
for the mapping definition.

	“Args”

	sequence of
mapping

	
	Sequence of mappings of the
kernel arguments. See
AMDHSA Code Object Kernel Argument Metadata Mapping
for the definition of the mapping.

	“CodeProps”

	mapping

	
	Mapping of properties related to
the kernel code. See
AMDHSA Code Object Kernel Code Properties Metadata Mapping
for the mapping definition.

AMDHSA Code Object Kernel Attribute Metadata Mapping

	String Key

	Value Type

	Required?

	Description

	“ReqdWorkGroupSize”

	sequence of
3 integers

	
	If not 0, 0, 0 then all values
must be >=1 and the dispatch
work-group size X, Y, Z must
correspond to the specified
values. Defaults to 0, 0, 0.

Corresponds to the OpenCL
reqd_work_group_size
attribute.

	“WorkGroupSizeHint”

	sequence of
3 integers

	
	The dispatch work-group size
X, Y, Z is likely to be the
specified values.

Corresponds to the OpenCL
work_group_size_hint
attribute.

	“VecTypeHint”

	string

	
	The name of a scalar or vector
type.

Corresponds to the OpenCL
vec_type_hint attribute.

	“RuntimeHandle”

	string

	
	The external symbol name
associated with a kernel.
OpenCL runtime allocates a
global buffer for the symbol
and saves the kernel’s address
to it, which is used for
device side enqueueing. Only
available for device side
enqueued kernels.

AMDHSA Code Object Kernel Argument Metadata Mapping

	String Key

	Value Type

	Required?

	Description

	“Name”

	string

	
	Kernel argument name.

	“TypeName”

	string

	
	Kernel argument type name.

	“Size”

	integer

	Required

	Kernel argument size in bytes.

	“Align”

	integer

	Required

	Kernel argument alignment in
bytes. Must be a power of two.

	“ValueKind”

	string

	Required

	Kernel argument kind that
specifies how to set up the
corresponding argument.
Values include:

	“ByValue”

	The argument is copied
directly into the kernarg.

	“GlobalBuffer”

	A global address space pointer
to the buffer data is passed
in the kernarg.

	“DynamicSharedPointer”

	A group address space pointer
to dynamically allocated LDS
is passed in the kernarg.

	“Sampler”

	A global address space
pointer to a S# is passed in
the kernarg.

	“Image”

	A global address space
pointer to a T# is passed in
the kernarg.

	“Pipe”

	A global address space pointer
to an OpenCL pipe is passed in
the kernarg.

	“Queue”

	A global address space pointer
to an OpenCL device enqueue
queue is passed in the
kernarg.

	“HiddenGlobalOffsetX”

	The OpenCL grid dispatch
global offset for the X
dimension is passed in the
kernarg.

	“HiddenGlobalOffsetY”

	The OpenCL grid dispatch
global offset for the Y
dimension is passed in the
kernarg.

	“HiddenGlobalOffsetZ”

	The OpenCL grid dispatch
global offset for the Z
dimension is passed in the
kernarg.

	“HiddenNone”

	An argument that is not used
by the kernel. Space needs to
be left for it, but it does
not need to be set up.

	“HiddenPrintfBuffer”

	A global address space pointer
to the runtime printf buffer
is passed in kernarg.

	“HiddenDefaultQueue”

	A global address space pointer
to the OpenCL device enqueue
queue that should be used by
the kernel by default is
passed in the kernarg.

	“HiddenCompletionAction”

	A global address space pointer
to help link enqueued kernels into
the ancestor tree for determining
when the parent kernel has finished.

	“ValueType”

	string

	Required

	Kernel argument value type. Only
present if “ValueKind” is
“ByValue”. For vector data
types, the value is for the
element type. Values include:

	“Struct”

	“I8”

	“U8”

	“I16”

	“U16”

	“F16”

	“I32”

	“U32”

	“F32”

	“I64”

	“U64”

	“F64”

	“PointeeAlign”

	integer

	
	Alignment in bytes of pointee
type for pointer type kernel
argument. Must be a power
of 2. Only present if
“ValueKind” is
“DynamicSharedPointer”.

	“AddrSpaceQual”

	string

	
	Kernel argument address space
qualifier. Only present if
“ValueKind” is “GlobalBuffer” or
“DynamicSharedPointer”. Values
are:

	“Private”

	“Global”

	“Constant”

	“Local”

	“Generic”

	“Region”

	“AccQual”

	string

	
	Kernel argument access
qualifier. Only present if
“ValueKind” is “Image” or
“Pipe”. Values
are:

	“ReadOnly”

	“WriteOnly”

	“ReadWrite”

	“ActualAccQual”

	string

	
	The actual memory accesses
performed by the kernel on the
kernel argument. Only present if
“ValueKind” is “GlobalBuffer”,
“Image”, or “Pipe”. This may be
more restrictive than indicated
by “AccQual” to reflect what the
kernel actual does. If not
present then the runtime must
assume what is implied by
“AccQual” and “IsConst”. Values
are:

	“ReadOnly”

	“WriteOnly”

	“ReadWrite”

	“IsConst”

	boolean

	
	Indicates if the kernel argument
is const qualified. Only present
if “ValueKind” is
“GlobalBuffer”.

	“IsRestrict”

	boolean

	
	Indicates if the kernel argument
is restrict qualified. Only
present if “ValueKind” is
“GlobalBuffer”.

	“IsVolatile”

	boolean

	
	Indicates if the kernel argument
is volatile qualified. Only
present if “ValueKind” is
“GlobalBuffer”.

	“IsPipe”

	boolean

	
	Indicates if the kernel argument
is pipe qualified. Only present
if “ValueKind” is “Pipe”.

AMDHSA Code Object Kernel Code Properties Metadata Mapping

	String Key

	Value Type

	Required?

	Description

	“KernargSegmentSize”

	integer

	Required

	The size in bytes of
the kernarg segment
that holds the values
of the arguments to
the kernel.

	“GroupSegmentFixedSize”

	integer

	Required

	The amount of group
segment memory
required by a
work-group in
bytes. This does not
include any
dynamically allocated
group segment memory
that may be added
when the kernel is
dispatched.

	“PrivateSegmentFixedSize”

	integer

	Required

	The amount of fixed
private address space
memory required for a
work-item in
bytes. If the kernel
uses a dynamic call
stack then additional
space must be added
to this value for the
call stack.

	“KernargSegmentAlign”

	integer

	Required

	The maximum byte
alignment of
arguments in the
kernarg segment. Must
be a power of 2.

	“WavefrontSize”

	integer

	Required

	Wavefront size. Must
be a power of 2.

	“NumSGPRs”

	integer

	Required

	Number of scalar
registers used by a
wavefront for
GFX6-GFX9. This
includes the special
SGPRs for VCC, Flat
Scratch (GFX7-GFX9)
and XNACK (for
GFX8-GFX9). It does
not include the 16
SGPR added if a trap
handler is
enabled. It is not
rounded up to the
allocation
granularity.

	“NumVGPRs”

	integer

	Required

	Number of vector
registers used by
each work-item for
GFX6-GFX9

	“MaxFlatWorkGroupSize”

	integer

	Required

	Maximum flat
work-group size
supported by the
kernel in work-items.
Must be >=1 and
consistent with
ReqdWorkGroupSize if
not 0, 0, 0.

	“NumSpilledSGPRs”

	integer

	
	Number of stores from
a scalar register to
a register allocator
created spill
location.

	“NumSpilledVGPRs”

	integer

	
	Number of stores from
a vector register to
a register allocator
created spill
location.

Kernel Dispatch

The HSA architected queuing language (AQL) defines a user space memory interface
that can be used to control the dispatch of kernels, in an agent independent
way. An agent can have zero or more AQL queues created for it using the ROCm
runtime, in which AQL packets (all of which are 64 bytes) can be placed. See the
HSA Platform System Architecture Specification [HSA] for the AQL queue
mechanics and packet layouts.

The packet processor of a kernel agent is responsible for detecting and
dispatching HSA kernels from the AQL queues associated with it. For AMD GPUs the
packet processor is implemented by the hardware command processor (CP),
asynchronous dispatch controller (ADC) and shader processor input controller
(SPI).

The ROCm runtime can be used to allocate an AQL queue object. It uses the kernel
mode driver to initialize and register the AQL queue with CP.

To dispatch a kernel the following actions are performed. This can occur in the
CPU host program, or from an HSA kernel executing on a GPU.

	A pointer to an AQL queue for the kernel agent on which the kernel is to be
executed is obtained.

	A pointer to the kernel descriptor (see
Kernel Descriptor) of the kernel to execute is
obtained. It must be for a kernel that is contained in a code object that that
was loaded by the ROCm runtime on the kernel agent with which the AQL queue is
associated.

	Space is allocated for the kernel arguments using the ROCm runtime allocator
for a memory region with the kernarg property for the kernel agent that will
execute the kernel. It must be at least 16 byte aligned.

	Kernel argument values are assigned to the kernel argument memory
allocation. The layout is defined in the HSA Programmer’s Language Reference
[HSA]. For AMDGPU the kernel execution directly accesses the kernel argument
memory in the same way constant memory is accessed. (Note that the HSA
specification allows an implementation to copy the kernel argument contents to
another location that is accessed by the kernel.)

	An AQL kernel dispatch packet is created on the AQL queue. The ROCm runtime
api uses 64 bit atomic operations to reserve space in the AQL queue for the
packet. The packet must be set up, and the final write must use an atomic
store release to set the packet kind to ensure the packet contents are
visible to the kernel agent. AQL defines a doorbell signal mechanism to
notify the kernel agent that the AQL queue has been updated. These rules, and
the layout of the AQL queue and kernel dispatch packet is defined in the HSA
System Architecture Specification [HSA].

	A kernel dispatch packet includes information about the actual dispatch,
such as grid and work-group size, together with information from the code
object about the kernel, such as segment sizes. The ROCm runtime queries on
the kernel symbol can be used to obtain the code object values which are
recorded in the Code Object Metadata.

	CP executes micro-code and is responsible for detecting and setting up the
GPU to execute the wavefronts of a kernel dispatch.

	CP ensures that when the a wavefront starts executing the kernel machine
code, the scalar general purpose registers (SGPR) and vector general purpose
registers (VGPR) are set up as required by the machine code. The required
setup is defined in the Kernel Descriptor. The initial
register state is defined in
Initial Kernel Execution State.

	The prolog of the kernel machine code (see
Kernel Prolog) sets up the machine state as necessary
before continuing executing the machine code that corresponds to the kernel.

	When the kernel dispatch has completed execution, CP signals the completion
signal specified in the kernel dispatch packet if not 0.

Memory Spaces

The memory space properties are:

AMDHSA Memory Spaces

	Memory Space Name

	HSA Segment
Name

	Hardware
Name

	Address
Size

	NULL Value

	Private

	private

	scratch

	32

	0x00000000

	Local

	group

	LDS

	32

	0xFFFFFFFF

	Global

	global

	global

	64

	0x0000000000000000

	Constant

	constant

	same as
global

	64

	0x0000000000000000

	Generic

	flat

	flat

	64

	0x0000000000000000

	Region

	N/A

	GDS

	32

	not implemented
for AMDHSA

The global and constant memory spaces both use global virtual addresses, which
are the same virtual address space used by the CPU. However, some virtual
addresses may only be accessible to the CPU, some only accessible by the GPU,
and some by both.

Using the constant memory space indicates that the data will not change during
the execution of the kernel. This allows scalar read instructions to be
used. The vector and scalar L1 caches are invalidated of volatile data before
each kernel dispatch execution to allow constant memory to change values between
kernel dispatches.

The local memory space uses the hardware Local Data Store (LDS) which is
automatically allocated when the hardware creates work-groups of wavefronts, and
freed when all the wavefronts of a work-group have terminated. The data store
(DS) instructions can be used to access it.

The private memory space uses the hardware scratch memory support. If the kernel
uses scratch, then the hardware allocates memory that is accessed using
wavefront lane dword (4 byte) interleaving. The mapping used from private
address to physical address is:

wavefront-scratch-base +
(private-address * wavefront-size * 4) +
(wavefront-lane-id * 4)

There are different ways that the wavefront scratch base address is determined
by a wavefront (see Initial Kernel Execution State). This
memory can be accessed in an interleaved manner using buffer instruction with
the scratch buffer descriptor and per wavefront scratch offset, by the scratch
instructions, or by flat instructions. If each lane of a wavefront accesses the
same private address, the interleaving results in adjacent dwords being accessed
and hence requires fewer cache lines to be fetched. Multi-dword access is not
supported except by flat and scratch instructions in GFX9.

The generic address space uses the hardware flat address support available in
GFX7-GFX9. This uses two fixed ranges of virtual addresses (the private and
local appertures), that are outside the range of addressible global memory, to
map from a flat address to a private or local address.

FLAT instructions can take a flat address and access global, private (scratch)
and group (LDS) memory depending in if the address is within one of the
apperture ranges. Flat access to scratch requires hardware aperture setup and
setup in the kernel prologue (see Flat Scratch). Flat
access to LDS requires hardware aperture setup and M0 (GFX7-GFX8) register setup
(see M0).

To convert between a segment address and a flat address the base address of the
appertures address can be used. For GFX7-GFX8 these are available in the
HSA AQL Queue the address of which can be obtained with
Queue Ptr SGPR (see Initial Kernel Execution State). For
GFX9 the appature base addresses are directly available as inline constant
registers SRC_SHARED_BASE/LIMIT and SRC_PRIVATE_BASE/LIMIT. In 64 bit
address mode the apperture sizes are 2^32 bytes and the base is aligned to 2^32
which makes it easier to convert from flat to segment or segment to flat.

Image and Samplers

Image and sample handles created by the ROCm runtime are 64 bit addresses of a
hardware 32 byte V# and 48 byte S# object respectively. In order to support the
HSA query_sampler operations two extra dwords are used to store the HSA BRIG
enumeration values for the queries that are not trivially deducible from the S#
representation.

HSA Signals

HSA signal handles created by the ROCm runtime are 64 bit addresses of a
structure allocated in memory accessible from both the CPU and GPU. The
structure is defined by the ROCm runtime and subject to change between releases
(see [AMD-ROCm-github]).

HSA AQL Queue

The HSA AQL queue structure is defined by the ROCm runtime and subject to change
between releases (see [AMD-ROCm-github]). For some processors it contains
fields needed to implement certain language features such as the flat address
aperture bases. It also contains fields used by CP such as managing the
allocation of scratch memory.

Kernel Descriptor

A kernel descriptor consists of the information needed by CP to initiate the
execution of a kernel, including the entry point address of the machine code
that implements the kernel.

Kernel Descriptor for GFX6-GFX9

CP microcode requires the Kernel descriptor to be allocated on 64 byte
alignment.

Kernel Descriptor for GFX6-GFX9

	Bits

	Size

	Field Name

	Description

	31:0

	4 bytes

	GROUP_SEGMENT_FIXED_SIZE

	The amount of fixed local
address space memory
required for a work-group
in bytes. This does not
include any dynamically
allocated local address
space memory that may be
added when the kernel is
dispatched.

	63:32

	4 bytes

	PRIVATE_SEGMENT_FIXED_SIZE

	The amount of fixed
private address space
memory required for a
work-item in bytes. If
is_dynamic_callstack is 1
then additional space must
be added to this value for
the call stack.

	127:64

	8 bytes

	
	Reserved, must be 0.

	191:128

	8 bytes

	KERNEL_CODE_ENTRY_BYTE_OFFSET

	Byte offset (possibly
negative) from base
address of kernel
descriptor to kernel’s
entry point instruction
which must be 256 byte
aligned.

	383:192

	24
bytes

	
	Reserved, must be 0.

	415:384

	4 bytes

	COMPUTE_PGM_RSRC1

	Compute Shader (CS)
program settings used by
CP to set up
COMPUTE_PGM_RSRC1
configuration
register. See
compute_pgm_rsrc1 for GFX6-GFX9.

	447:416

	4 bytes

	COMPUTE_PGM_RSRC2

	Compute Shader (CS)
program settings used by
CP to set up
COMPUTE_PGM_RSRC2
configuration
register. See
compute_pgm_rsrc2 for GFX6-GFX9.

	448

	1 bit

	ENABLE_SGPR_PRIVATE_SEGMENT
_BUFFER

	Enable the setup of the
SGPR user data registers
(see
Initial Kernel Execution State).

The total number of SGPR
user data registers
requested must not exceed
16 and match value in
compute_pgm_rsrc2.user_sgpr.user_sgpr_count.
Any requests beyond 16
will be ignored.

	449

	1 bit

	ENABLE_SGPR_DISPATCH_PTR

	see above

	450

	1 bit

	ENABLE_SGPR_QUEUE_PTR

	see above

	451

	1 bit

	ENABLE_SGPR_KERNARG_SEGMENT_PTR

	see above

	452

	1 bit

	ENABLE_SGPR_DISPATCH_ID

	see above

	453

	1 bit

	ENABLE_SGPR_FLAT_SCRATCH_INIT

	see above

	454

	1 bit

	ENABLE_SGPR_PRIVATE_SEGMENT
_SIZE

	see above

	455

	1 bit

	
	Reserved, must be 0.

	511:456

	8 bytes

	
	Reserved, must be 0.

	512

	Total size 64 bytes.

compute_pgm_rsrc1 for GFX6-GFX9

	Bits

	Size

	Field Name

	Description

	5:0

	6 bits

	GRANULATED_WORKITEM_VGPR_COUNT

	Number of vector register
blocks used by each work-item;
granularity is device
specific:

	GFX6-GFX9

	
	vgprs_used 0..256

	max(0, ceil(vgprs_used / 4) - 1)

Where vgprs_used is defined
as the highest VGPR number
explicitly referenced plus
one.

Used by CP to set up
COMPUTE_PGM_RSRC1.VGPRS.

The
Assembler
calculates this
automatically for the
selected processor from
values provided to the
.amdhsa_kernel directive
by the
.amdhsa_next_free_vgpr
nested directive (see
AMDHSA Kernel Assembler Directives).

	9:6

	4 bits

	GRANULATED_WAVEFRONT_SGPR_COUNT

	Number of scalar register
blocks used by a wavefront;
granularity is device
specific:

	GFX6-GFX8

	
	sgprs_used 0..112

	max(0, ceil(sgprs_used / 8) - 1)

	GFX9

	
	sgprs_used 0..112

	2 * max(0, ceil(sgprs_used / 16) - 1)

Where sgprs_used is
defined as the highest
SGPR number explicitly
referenced plus one, plus
a target-specific number
of additional special
SGPRs for VCC,
FLAT_SCRATCH (GFX7+) and
XNACK_MASK (GFX8+), and
any additional
target-specific
limitations. It does not
include the 16 SGPRs added
if a trap handler is
enabled.

The target-specific
limitations and special
SGPR layout are defined in
the hardware
documentation, which can
be found in the
Processors
table.

Used by CP to set up
COMPUTE_PGM_RSRC1.SGPRS.

The
Assembler
calculates this
automatically for the
selected processor from
values provided to the
.amdhsa_kernel directive
by the
.amdhsa_next_free_sgpr
and .amdhsa_reserve_*
nested directives (see
AMDHSA Kernel Assembler Directives).

	11:10

	2 bits

	PRIORITY

	Must be 0.

Start executing wavefront
at the specified priority.

CP is responsible for
filling in
COMPUTE_PGM_RSRC1.PRIORITY.

	13:12

	2 bits

	FLOAT_ROUND_MODE_32

	Wavefront starts execution
with specified rounding
mode for single (32
bit) floating point
precision floating point
operations.

Floating point rounding
mode values are defined in
Floating Point Rounding Mode Enumeration Values.

Used by CP to set up
COMPUTE_PGM_RSRC1.FLOAT_MODE.

	15:14

	2 bits

	FLOAT_ROUND_MODE_16_64

	Wavefront starts execution
with specified rounding
denorm mode for half/double (16
and 64 bit) floating point
precision floating point
operations.

Floating point rounding
mode values are defined in
Floating Point Rounding Mode Enumeration Values.

Used by CP to set up
COMPUTE_PGM_RSRC1.FLOAT_MODE.

	17:16

	2 bits

	FLOAT_DENORM_MODE_32

	Wavefront starts execution
with specified denorm mode
for single (32
bit) floating point
precision floating point
operations.

Floating point denorm mode
values are defined in
Floating Point Denorm Mode Enumeration Values.

Used by CP to set up
COMPUTE_PGM_RSRC1.FLOAT_MODE.

	19:18

	2 bits

	FLOAT_DENORM_MODE_16_64

	Wavefront starts execution
with specified denorm mode
for half/double (16
and 64 bit) floating point
precision floating point
operations.

Floating point denorm mode
values are defined in
Floating Point Denorm Mode Enumeration Values.

Used by CP to set up
COMPUTE_PGM_RSRC1.FLOAT_MODE.

	20

	1 bit

	PRIV

	Must be 0.

Start executing wavefront
in privilege trap handler
mode.

CP is responsible for
filling in
COMPUTE_PGM_RSRC1.PRIV.

	21

	1 bit

	ENABLE_DX10_CLAMP

	Wavefront starts execution
with DX10 clamp mode
enabled. Used by the vector
ALU to force DX10 style
treatment of NaN’s (when
set, clamp NaN to zero,
otherwise pass NaN
through).

Used by CP to set up
COMPUTE_PGM_RSRC1.DX10_CLAMP.

	22

	1 bit

	DEBUG_MODE

	Must be 0.

Start executing wavefront
in single step mode.

CP is responsible for
filling in
COMPUTE_PGM_RSRC1.DEBUG_MODE.

	23

	1 bit

	ENABLE_IEEE_MODE

	Wavefront starts execution
with IEEE mode
enabled. Floating point
opcodes that support
exception flag gathering
will quiet and propagate
signaling-NaN inputs per
IEEE 754-2008. Min_dx10 and
max_dx10 become IEEE
754-2008 compliant due to
signaling-NaN propagation
and quieting.

Used by CP to set up
COMPUTE_PGM_RSRC1.IEEE_MODE.

	24

	1 bit

	BULKY

	Must be 0.

Only one work-group allowed
to execute on a compute
unit.

CP is responsible for
filling in
COMPUTE_PGM_RSRC1.BULKY.

	25

	1 bit

	CDBG_USER

	Must be 0.

Flag that can be used to
control debugging code.

CP is responsible for
filling in
COMPUTE_PGM_RSRC1.CDBG_USER.

	26

	1 bit

	FP16_OVFL

	
	GFX6-GFX8

	Reserved, must be 0.

	GFX9

	Wavefront starts execution
with specified fp16 overflow
mode.

	If 0, fp16 overflow generates
+/-INF values.

	If 1, fp16 overflow that is the
result of an +/-INF input value
or divide by 0 produces a +/-INF,
otherwise clamps computed
overflow to +/-MAX_FP16 as
appropriate.

Used by CP to set up
COMPUTE_PGM_RSRC1.FP16_OVFL.

	31:27

	5 bits

	
	Reserved, must be 0.

	32

	Total size 4 bytes

compute_pgm_rsrc2 for GFX6-GFX9

	Bits

	Size

	Field Name

	Description

	0

	1 bit

	ENABLE_SGPR_PRIVATE_SEGMENT
_WAVEFRONT_OFFSET

	Enable the setup of the
SGPR wavefront scratch offset
system register (see
Initial Kernel Execution State).

Used by CP to set up
COMPUTE_PGM_RSRC2.SCRATCH_EN.

	5:1

	5 bits

	USER_SGPR_COUNT

	The total number of SGPR
user data registers
requested. This number must
match the number of user
data registers enabled.

Used by CP to set up
COMPUTE_PGM_RSRC2.USER_SGPR.

	6

	1 bit

	ENABLE_TRAP_HANDLER

	Must be 0.

This bit represents
COMPUTE_PGM_RSRC2.TRAP_PRESENT,
which is set by the CP if
the runtime has installed a
trap handler.

	7

	1 bit

	ENABLE_SGPR_WORKGROUP_ID_X

	Enable the setup of the
system SGPR register for
the work-group id in the X
dimension (see
Initial Kernel Execution State).

Used by CP to set up
COMPUTE_PGM_RSRC2.TGID_X_EN.

	8

	1 bit

	ENABLE_SGPR_WORKGROUP_ID_Y

	Enable the setup of the
system SGPR register for
the work-group id in the Y
dimension (see
Initial Kernel Execution State).

Used by CP to set up
COMPUTE_PGM_RSRC2.TGID_Y_EN.

	9

	1 bit

	ENABLE_SGPR_WORKGROUP_ID_Z

	Enable the setup of the
system SGPR register for
the work-group id in the Z
dimension (see
Initial Kernel Execution State).

Used by CP to set up
COMPUTE_PGM_RSRC2.TGID_Z_EN.

	10

	1 bit

	ENABLE_SGPR_WORKGROUP_INFO

	Enable the setup of the
system SGPR register for
work-group information (see
Initial Kernel Execution State).

Used by CP to set up
COMPUTE_PGM_RSRC2.TGID_SIZE_EN.

	12:11

	2 bits

	ENABLE_VGPR_WORKITEM_ID

	Enable the setup of the
VGPR system registers used
for the work-item ID.
System VGPR Work-Item ID Enumeration Values
defines the values.

Used by CP to set up
COMPUTE_PGM_RSRC2.TIDIG_CMP_CNT.

	13

	1 bit

	ENABLE_EXCEPTION_ADDRESS_WATCH

	Must be 0.

Wavefront starts execution
with address watch
exceptions enabled which
are generated when L1 has
witnessed a thread access
an address of
interest.

CP is responsible for
filling in the address
watch bit in
COMPUTE_PGM_RSRC2.EXCP_EN_MSB
according to what the
runtime requests.

	14

	1 bit

	ENABLE_EXCEPTION_MEMORY

	Must be 0.

Wavefront starts execution
with memory violation
exceptions exceptions
enabled which are generated
when a memory violation has
occurred for this wavefront from
L1 or LDS
(write-to-read-only-memory,
mis-aligned atomic, LDS
address out of range,
illegal address, etc.).

CP sets the memory
violation bit in
COMPUTE_PGM_RSRC2.EXCP_EN_MSB
according to what the
runtime requests.

	23:15

	9 bits

	GRANULATED_LDS_SIZE

	Must be 0.

CP uses the rounded value
from the dispatch packet,
not this value, as the
dispatch may contain
dynamically allocated group
segment memory. CP writes
directly to
COMPUTE_PGM_RSRC2.LDS_SIZE.

Amount of group segment
(LDS) to allocate for each
work-group. Granularity is
device specific:

	GFX6:

	roundup(lds-size / (64 * 4))

	GFX7-GFX9:

	roundup(lds-size / (128 * 4))

	24

	1 bit

	ENABLE_EXCEPTION_IEEE_754_FP
_INVALID_OPERATION

	Wavefront starts execution
with specified exceptions
enabled.

Used by CP to set up
COMPUTE_PGM_RSRC2.EXCP_EN
(set from bits 0..6).

IEEE 754 FP Invalid
Operation

	25

	1 bit

	ENABLE_EXCEPTION_FP_DENORMAL
_SOURCE

	FP Denormal one or more
input operands is a
denormal number

	26

	1 bit

	ENABLE_EXCEPTION_IEEE_754_FP
_DIVISION_BY_ZERO

	IEEE 754 FP Division by
Zero

	27

	1 bit

	ENABLE_EXCEPTION_IEEE_754_FP
_OVERFLOW

	IEEE 754 FP FP Overflow

	28

	1 bit

	ENABLE_EXCEPTION_IEEE_754_FP
_UNDERFLOW

	IEEE 754 FP Underflow

	29

	1 bit

	ENABLE_EXCEPTION_IEEE_754_FP
_INEXACT

	IEEE 754 FP Inexact

	30

	1 bit

	ENABLE_EXCEPTION_INT_DIVIDE_BY
_ZERO

	Integer Division by Zero
(rcp_iflag_f32 instruction
only)

	31

	1 bit

	
	Reserved, must be 0.

	32

	Total size 4 bytes.

Floating Point Rounding Mode Enumeration Values

	Enumeration Name

	Value

	Description

	FLOAT_ROUND_MODE_NEAR_EVEN

	0

	Round Ties To Even

	FLOAT_ROUND_MODE_PLUS_INFINITY

	1

	Round Toward +infinity

	FLOAT_ROUND_MODE_MINUS_INFINITY

	2

	Round Toward -infinity

	FLOAT_ROUND_MODE_ZERO

	3

	Round Toward 0

Floating Point Denorm Mode Enumeration Values

	Enumeration Name

	Value

	Description

	FLOAT_DENORM_MODE_FLUSH_SRC_DST

	0

	Flush Source and Destination
Denorms

	FLOAT_DENORM_MODE_FLUSH_DST

	1

	Flush Output Denorms

	FLOAT_DENORM_MODE_FLUSH_SRC

	2

	Flush Source Denorms

	FLOAT_DENORM_MODE_FLUSH_NONE

	3

	No Flush

System VGPR Work-Item ID Enumeration Values

	Enumeration Name

	Value

	Description

	SYSTEM_VGPR_WORKITEM_ID_X

	0

	Set work-item X dimension
ID.

	SYSTEM_VGPR_WORKITEM_ID_X_Y

	1

	Set work-item X and Y
dimensions ID.

	SYSTEM_VGPR_WORKITEM_ID_X_Y_Z

	2

	Set work-item X, Y and Z
dimensions ID.

	SYSTEM_VGPR_WORKITEM_ID_UNDEFINED

	3

	Undefined.

Initial Kernel Execution State

This section defines the register state that will be set up by the packet
processor prior to the start of execution of every wavefront. This is limited by
the constraints of the hardware controllers of CP/ADC/SPI.

The order of the SGPR registers is defined, but the compiler can specify which
ones are actually setup in the kernel descriptor using the enable_sgpr_* bit
fields (see Kernel Descriptor). The register numbers used
for enabled registers are dense starting at SGPR0: the first enabled register is
SGPR0, the next enabled register is SGPR1 etc.; disabled registers do not have
an SGPR number.

The initial SGPRs comprise up to 16 User SRGPs that are set by CP and apply to
all wavefronts of the grid. It is possible to specify more than 16 User SGPRs using
the enable_sgpr_* bit fields, in which case only the first 16 are actually
initialized. These are then immediately followed by the System SGPRs that are
set up by ADC/SPI and can have different values for each wavefront of the grid
dispatch.

SGPR register initial state is defined in
SGPR Register Set Up Order.

SGPR Register Set Up Order

	SGPR Order

	Name
(kernel descriptor enable
field)

	Number
of
SGPRs

	Description

	First

	Private Segment Buffer
(enable_sgpr_private
_segment_buffer)

	4

	V# that can be used, together
with Scratch Wavefront Offset
as an offset, to access the
private memory space using a
segment address.

CP uses the value provided by
the runtime.

	then

	Dispatch Ptr
(enable_sgpr_dispatch_ptr)

	2

	64 bit address of AQL dispatch
packet for kernel dispatch
actually executing.

	then

	Queue Ptr
(enable_sgpr_queue_ptr)

	2

	64 bit address of amd_queue_t
object for AQL queue on which
the dispatch packet was
queued.

	then

	Kernarg Segment Ptr
(enable_sgpr_kernarg
_segment_ptr)

	2

	64 bit address of Kernarg
segment. This is directly
copied from the
kernarg_address in the kernel
dispatch packet.

Having CP load it once avoids
loading it at the beginning of
every wavefront.

	then

	Dispatch Id
(enable_sgpr_dispatch_id)

	2

	64 bit Dispatch ID of the
dispatch packet being
executed.

	then

	Flat Scratch Init
(enable_sgpr_flat_scratch
_init)

	2

	This is 2 SGPRs:

	GFX6

	Not supported.

	GFX7-GFX8

	The first SGPR is a 32 bit
byte offset from
SH_HIDDEN_PRIVATE_BASE_VIMID
to per SPI base of memory
for scratch for the queue
executing the kernel
dispatch. CP obtains this
from the runtime. (The
Scratch Segment Buffer base
address is
SH_HIDDEN_PRIVATE_BASE_VIMID
plus this offset.) The value
of Scratch Wavefront Offset must
be added to this offset by
the kernel machine code,
right shifted by 8, and
moved to the FLAT_SCRATCH_HI
SGPR register.
FLAT_SCRATCH_HI corresponds
to SGPRn-4 on GFX7, and
SGPRn-6 on GFX8 (where SGPRn
is the highest numbered SGPR
allocated to the wavefront).
FLAT_SCRATCH_HI is
multiplied by 256 (as it is
in units of 256 bytes) and
added to
SH_HIDDEN_PRIVATE_BASE_VIMID
to calculate the per wavefront
FLAT SCRATCH BASE in flat
memory instructions that
access the scratch
apperture.

The second SGPR is 32 bit
byte size of a single
work-item’s scratch memory
usage. CP obtains this from
the runtime, and it is
always a multiple of DWORD.
CP checks that the value in
the kernel dispatch packet
Private Segment Byte Size is
not larger, and requests the
runtime to increase the
queue’s scratch size if
necessary. The kernel code
must move it to
FLAT_SCRATCH_LO which is
SGPRn-3 on GFX7 and SGPRn-5
on GFX8. FLAT_SCRATCH_LO is
used as the FLAT SCRATCH
SIZE in flat memory
instructions. Having CP load
it once avoids loading it at
the beginning of every
wavefront.

	GFX9

	This is the
64 bit base address of the
per SPI scratch backing
memory managed by SPI for
the queue executing the
kernel dispatch. CP obtains
this from the runtime (and
divides it if there are
multiple Shader Arrays each
with its own SPI). The value
of Scratch Wavefront Offset must
be added by the kernel
machine code and the result
moved to the FLAT_SCRATCH
SGPR which is SGPRn-6 and
SGPRn-5. It is used as the
FLAT SCRATCH BASE in flat
memory instructions.

	then

	Private Segment Size

	1

	The 32 bit byte size of a
(enable_sgpr_private single
work-item’s
scratch_segment_size) memory
allocation. This is the
value from the kernel
dispatch packet Private
Segment Byte Size rounded up
by CP to a multiple of
DWORD.

Having CP load it once avoids
loading it at the beginning of
every wavefront.

This is not used for
GFX7-GFX8 since it is the same
value as the second SGPR of
Flat Scratch Init. However, it
may be needed for GFX9 which
changes the meaning of the
Flat Scratch Init value.

	then

	Grid Work-Group Count X
(enable_sgpr_grid
_workgroup_count_X)

	1

	32 bit count of the number of
work-groups in the X dimension
for the grid being
executed. Computed from the
fields in the kernel dispatch
packet as ((grid_size.x +
workgroup_size.x - 1) /
workgroup_size.x).

	then

	Grid Work-Group Count Y
(enable_sgpr_grid
_workgroup_count_Y &&
less than 16 previous
SGPRs)

	1

	32 bit count of the number of
work-groups in the Y dimension
for the grid being
executed. Computed from the
fields in the kernel dispatch
packet as ((grid_size.y +
workgroup_size.y - 1) /
workgroupSize.y).

Only initialized if <16
previous SGPRs initialized.

	then

	Grid Work-Group Count Z
(enable_sgpr_grid
_workgroup_count_Z &&
less than 16 previous
SGPRs)

	1

	32 bit count of the number of
work-groups in the Z dimension
for the grid being
executed. Computed from the
fields in the kernel dispatch
packet as ((grid_size.z +
workgroup_size.z - 1) /
workgroupSize.z).

Only initialized if <16
previous SGPRs initialized.

	then

	Work-Group Id X
(enable_sgpr_workgroup_id
_X)

	1

	32 bit work-group id in X
dimension of grid for
wavefront.

	then

	Work-Group Id Y
(enable_sgpr_workgroup_id
_Y)

	1

	32 bit work-group id in Y
dimension of grid for
wavefront.

	then

	Work-Group Id Z
(enable_sgpr_workgroup_id
_Z)

	1

	32 bit work-group id in Z
dimension of grid for
wavefront.

	then

	Work-Group Info
(enable_sgpr_workgroup
_info)

	1

	{first_wavefront, 14’b0000,
ordered_append_term[10:0],
threadgroup_size_in_wavefronts[5:0]}

	then

	Scratch Wavefront Offset
(enable_sgpr_private
_segment_wavefront_offset)

	1

	32 bit byte offset from base
of scratch base of queue
executing the kernel
dispatch. Must be used as an
offset with Private
segment address when using
Scratch Segment Buffer. It
must be used to set up FLAT
SCRATCH for flat addressing
(see
Flat Scratch).

The order of the VGPR registers is defined, but the compiler can specify which
ones are actually setup in the kernel descriptor using the enable_vgpr* bit
fields (see Kernel Descriptor). The register numbers used
for enabled registers are dense starting at VGPR0: the first enabled register is
VGPR0, the next enabled register is VGPR1 etc.; disabled registers do not have a
VGPR number.

VGPR register initial state is defined in
VGPR Register Set Up Order.

VGPR Register Set Up Order

	VGPR Order

	Name
(kernel descriptor enable
field)

	Number
of
VGPRs

	Description

	First

	Work-Item Id X
(Always initialized)

	1

	32 bit work item id in X
dimension of work-group for
wavefront lane.

	then

	Work-Item Id Y
(enable_vgpr_workitem_id
> 0)

	1

	32 bit work item id in Y
dimension of work-group for
wavefront lane.

	then

	Work-Item Id Z
(enable_vgpr_workitem_id
> 1)

	1

	32 bit work item id in Z
dimension of work-group for
wavefront lane.

The setting of registers is done by GPU CP/ADC/SPI hardware as follows:

	SGPRs before the Work-Group Ids are set by CP using the 16 User Data
registers.

	Work-group Id registers X, Y, Z are set by ADC which supports any
combination including none.

	Scratch Wavefront Offset is set by SPI in a per wavefront basis which is why
its value cannot included with the flat scratch init value which is per queue.

	The VGPRs are set by SPI which only supports specifying either (X), (X, Y)
or (X, Y, Z).

Flat Scratch register pair are adjacent SGRRs so they can be moved as a 64 bit
value to the hardware required SGPRn-3 and SGPRn-4 respectively.

The global segment can be accessed either using buffer instructions (GFX6 which
has V# 64 bit address support), flat instructions (GFX7-GFX9), or global
instructions (GFX9).

If buffer operations are used then the compiler can generate a V# with the
following properties:

	base address of 0

	no swizzle

	ATC: 1 if IOMMU present (such as APU)

	ptr64: 1

	MTYPE set to support memory coherence that matches the runtime (such as CC for
APU and NC for dGPU).

Kernel Prolog

M0

	GFX6-GFX8

	The M0 register must be initialized with a value at least the total LDS size
if the kernel may access LDS via DS or flat operations. Total LDS size is
available in dispatch packet. For M0, it is also possible to use maximum
possible value of LDS for given target (0x7FFF for GFX6 and 0xFFFF for
GFX7-GFX8).

	GFX9

	The M0 register is not used for range checking LDS accesses and so does not
need to be initialized in the prolog.

Flat Scratch

If the kernel may use flat operations to access scratch memory, the prolog code
must set up FLAT_SCRATCH register pair (FLAT_SCRATCH_LO/FLAT_SCRATCH_HI which
are in SGPRn-4/SGPRn-3). Initialization uses Flat Scratch Init and Scratch Wavefront
Offset SGPR registers (see Initial Kernel Execution State):

	GFX6

	Flat scratch is not supported.

	GFX7-GFX8

	
	The low word of Flat Scratch Init is 32 bit byte offset from
SH_HIDDEN_PRIVATE_BASE_VIMID to the base of scratch backing memory
being managed by SPI for the queue executing the kernel dispatch. This is
the same value used in the Scratch Segment Buffer V# base address. The
prolog must add the value of Scratch Wavefront Offset to get the wavefront’s byte
scratch backing memory offset from SH_HIDDEN_PRIVATE_BASE_VIMID. Since
FLAT_SCRATCH_LO is in units of 256 bytes, the offset must be right shifted
by 8 before moving into FLAT_SCRATCH_LO.

	The second word of Flat Scratch Init is 32 bit byte size of a single
work-items scratch memory usage. This is directly loaded from the kernel
dispatch packet Private Segment Byte Size and rounded up to a multiple of
DWORD. Having CP load it once avoids loading it at the beginning of every
wavefront. The prolog must move it to FLAT_SCRATCH_LO for use as FLAT SCRATCH
SIZE.

	GFX9

	The Flat Scratch Init is the 64 bit address of the base of scratch backing
memory being managed by SPI for the queue executing the kernel dispatch. The
prolog must add the value of Scratch Wavefront Offset and moved to the FLAT_SCRATCH
pair for use as the flat scratch base in flat memory instructions.

Memory Model

This section describes the mapping of LLVM memory model onto AMDGPU machine code
(see Memory Model for Concurrent Operations). The implementation is WIP.

The AMDGPU backend supports the memory synchronization scopes specified in
Memory Scopes.

The code sequences used to implement the memory model are defined in table
AMDHSA Memory Model Code Sequences GFX6-GFX9.

The sequences specify the order of instructions that a single thread must
execute. The s_waitcnt and buffer_wbinvl1_vol are defined with respect
to other memory instructions executed by the same thread. This allows them to be
moved earlier or later which can allow them to be combined with other instances
of the same instruction, or hoisted/sunk out of loops to improve
performance. Only the instructions related to the memory model are given;
additional s_waitcnt instructions are required to ensure registers are
defined before being used. These may be able to be combined with the memory
model s_waitcnt instructions as described above.

The AMDGPU backend supports the following memory models:

	HSA Memory Model [HSA]

	The HSA memory model uses a single happens-before relation for all address
spaces (see Address Spaces).

	OpenCL Memory Model [OpenCL]

	The OpenCL memory model which has separate happens-before relations for the
global and local address spaces. Only a fence specifying both global and
local address space, and seq_cst instructions join the relationships. Since
the LLVM memfence instruction does not allow an address space to be
specified the OpenCL fence has to convervatively assume both local and
global address space was specified. However, optimizations can often be
done to eliminate the additional s_waitcnt instructions when there are
no intervening memory instructions which access the corresponding address
space. The code sequences in the table indicate what can be omitted for the
OpenCL memory. The target triple environment is used to determine if the
source language is OpenCL (see OpenCL).

ds/flat_load/store/atomic instructions to local memory are termed LDS
operations.

buffer/global/flat_load/store/atomic instructions to global memory are
termed vector memory operations.

For GFX6-GFX9:

	Each agent has multiple compute units (CU).

	Each CU has multiple SIMDs that execute wavefronts.

	The wavefronts for a single work-group are executed in the same CU but may be
executed by different SIMDs.

	Each CU has a single LDS memory shared by the wavefronts of the work-groups
executing on it.

	All LDS operations of a CU are performed as wavefront wide operations in a
global order and involve no caching. Completion is reported to a wavefront in
execution order.

	The LDS memory has multiple request queues shared by the SIMDs of a
CU. Therefore, the LDS operations performed by different wavefronts of a work-group
can be reordered relative to each other, which can result in reordering the
visibility of vector memory operations with respect to LDS operations of other
wavefronts in the same work-group. A s_waitcnt lgkmcnt(0) is required to
ensure synchronization between LDS operations and vector memory operations
between wavefronts of a work-group, but not between operations performed by the
same wavefront.

	The vector memory operations are performed as wavefront wide operations and
completion is reported to a wavefront in execution order. The exception is
that for GFX7-GFX9 flat_load/store/atomic instructions can report out of
vector memory order if they access LDS memory, and out of LDS operation order
if they access global memory.

	The vector memory operations access a single vector L1 cache shared by all
SIMDs a CU. Therefore, no special action is required for coherence between the
lanes of a single wavefront, or for coherence between wavefronts in the same
work-group. A buffer_wbinvl1_vol is required for coherence between wavefronts
executing in different work-groups as they may be executing on different CUs.

	The scalar memory operations access a scalar L1 cache shared by all wavefronts
on a group of CUs. The scalar and vector L1 caches are not coherent. However,
scalar operations are used in a restricted way so do not impact the memory
model. See Memory Spaces.

	The vector and scalar memory operations use an L2 cache shared by all CUs on
the same agent.

	The L2 cache has independent channels to service disjoint ranges of virtual
addresses.

	Each CU has a separate request queue per channel. Therefore, the vector and
scalar memory operations performed by wavefronts executing in different work-groups
(which may be executing on different CUs) of an agent can be reordered
relative to each other. A s_waitcnt vmcnt(0) is required to ensure
synchronization between vector memory operations of different CUs. It ensures a
previous vector memory operation has completed before executing a subsequent
vector memory or LDS operation and so can be used to meet the requirements of
acquire and release.

	The L2 cache can be kept coherent with other agents on some targets, or ranges
of virtual addresses can be set up to bypass it to ensure system coherence.

Private address space uses buffer_load/store using the scratch V# (GFX6-GFX8),
or scratch_load/store (GFX9). Since only a single thread is accessing the
memory, atomic memory orderings are not meaningful and all accesses are treated
as non-atomic.

Constant address space uses buffer/global_load instructions (or equivalent
scalar memory instructions). Since the constant address space contents do not
change during the execution of a kernel dispatch it is not legal to perform
stores, and atomic memory orderings are not meaningful and all access are
treated as non-atomic.

A memory synchronization scope wider than work-group is not meaningful for the
group (LDS) address space and is treated as work-group.

The memory model does not support the region address space which is treated as
non-atomic.

Acquire memory ordering is not meaningful on store atomic instructions and is
treated as non-atomic.

Release memory ordering is not meaningful on load atomic instructions and is
treated a non-atomic.

Acquire-release memory ordering is not meaningful on load or store atomic
instructions and is treated as acquire and release respectively.

AMDGPU backend only uses scalar memory operations to access memory that is
proven to not change during the execution of the kernel dispatch. This includes
constant address space and global address space for program scope const
variables. Therefore the kernel machine code does not have to maintain the
scalar L1 cache to ensure it is coherent with the vector L1 cache. The scalar
and vector L1 caches are invalidated between kernel dispatches by CP since
constant address space data may change between kernel dispatch executions. See
Memory Spaces.

The one execption is if scalar writes are used to spill SGPR registers. In this
case the AMDGPU backend ensures the memory location used to spill is never
accessed by vector memory operations at the same time. If scalar writes are used
then a s_dcache_wb is inserted before the s_endpgm and before a function
return since the locations may be used for vector memory instructions by a
future wavefront that uses the same scratch area, or a function call that creates a
frame at the same address, respectively. There is no need for a s_dcache_inv
as all scalar writes are write-before-read in the same thread.

Scratch backing memory (which is used for the private address space)
is accessed with MTYPE NC_NV (non-coherenent non-volatile). Since the private
address space is only accessed by a single thread, and is always
write-before-read, there is never a need to invalidate these entries from the L1
cache. Hence all cache invalidates are done as *_vol to only invalidate the
volatile cache lines.

On dGPU the kernarg backing memory is accessed as UC (uncached) to avoid needing
to invalidate the L2 cache. This also causes it to be treated as
non-volatile and so is not invalidated by *_vol. On APU it is accessed as CC
(cache coherent) and so the L2 cache will coherent with the CPU and other
agents.

AMDHSA Memory Model Code Sequences GFX6-GFX9

	LLVM Instr

	LLVM Memory
Ordering

	LLVM Memory
Sync Scope

	AMDGPU
Address
Space

	AMDGPU Machine Code

	Non-Atomic

	load

	none

	none

	
	global

	generic

	private

	constant

	
	!volatile & !nontemporal

	buffer/global/flat_load

	volatile & !nontemporal

	buffer/global/flat_load
glc=1

	nontemporal

	buffer/global/flat_load
glc=1 slc=1

	load

	none

	none

	
	local

	
	ds_load

	store

	none

	none

	
	global

	generic

	private

	constant

	
	!nontemporal

	buffer/global/flat_store

	nontemporal

	buffer/global/flat_stote
glc=1 slc=1

	store

	none

	none

	
	local

	
	ds_store

	Unordered Atomic

	load atomic

	unordered

	any

	any

	Same as non-atomic.

	store atomic

	unordered

	any

	any

	Same as non-atomic.

	atomicrmw

	unordered

	any

	any

	Same as monotonic
atomic.

	Monotonic Atomic

	load atomic

	monotonic

	
	singlethread

	wavefront

	workgroup

	
	global

	generic

	
	buffer/global/flat_load

	load atomic

	monotonic

	
	singlethread

	wavefront

	workgroup

	
	local

	
	ds_load

	load atomic

	monotonic

	
	agent

	system

	
	global

	generic

	
	buffer/global/flat_load
glc=1

	store atomic

	monotonic

	
	singlethread

	wavefront

	workgroup

	agent

	system

	
	global

	generic

	
	buffer/global/flat_store

	store atomic

	monotonic

	
	singlethread

	wavefront

	workgroup

	
	local

	
	ds_store

	atomicrmw

	monotonic

	
	singlethread

	wavefront

	workgroup

	agent

	system

	
	global

	generic

	
	buffer/global/flat_atomic

	atomicrmw

	monotonic

	
	singlethread

	wavefront

	workgroup

	
	local

	
	ds_atomic

	Acquire Atomic

	load atomic

	acquire

	
	singlethread

	wavefront

	
	global

	local

	generic

	
	buffer/global/ds/flat_load

	load atomic

	acquire

	
	workgroup

	
	global

	
	buffer/global/flat_load

	load atomic

	acquire

	
	workgroup

	
	local

	
	ds_load

	s_waitcnt lgkmcnt(0)

	If OpenCL, omit.

	Must happen before
any following
global/generic
load/load
atomic/store/store
atomic/atomicrmw.

	Ensures any
following global
data read is no
older than the load
atomic value being
acquired.

	load atomic

	acquire

	
	workgroup

	
	generic

	
	flat_load

	s_waitcnt lgkmcnt(0)

	If OpenCL, omit.

	Must happen before
any following
global/generic
load/load
atomic/store/store
atomic/atomicrmw.

	Ensures any
following global
data read is no
older than the load
atomic value being
acquired.

	load atomic

	acquire

	
	agent

	system

	
	global

	
	buffer/global/flat_load
glc=1

	s_waitcnt vmcnt(0)

	Must happen before
following
buffer_wbinvl1_vol.

	Ensures the load
has completed
before invalidating
the cache.

	buffer_wbinvl1_vol

	Must happen before
any following
global/generic
load/load
atomic/atomicrmw.

	Ensures that
following
loads will not see
stale global data.

	load atomic

	acquire

	
	agent

	system

	
	generic

	
	flat_load glc=1

	s_waitcnt vmcnt(0) &
lgkmcnt(0)

	If OpenCL omit
lgkmcnt(0).

	Must happen before
following
buffer_wbinvl1_vol.

	Ensures the flat_load
has completed
before invalidating
the cache.

	buffer_wbinvl1_vol

	Must happen before
any following
global/generic
load/load
atomic/atomicrmw.

	Ensures that
following loads
will not see stale
global data.

	atomicrmw

	acquire

	
	singlethread

	wavefront

	
	global

	local

	generic

	
	buffer/global/ds/flat_atomic

	atomicrmw

	acquire

	
	workgroup

	
	global

	
	buffer/global/flat_atomic

	atomicrmw

	acquire

	
	workgroup

	
	local

	
	ds_atomic

	waitcnt lgkmcnt(0)

	If OpenCL, omit.

	Must happen before
any following
global/generic
load/load
atomic/store/store
atomic/atomicrmw.

	Ensures any
following global
data read is no
older than the
atomicrmw value
being acquired.

	atomicrmw

	acquire

	
	workgroup

	
	generic

	
	flat_atomic

	waitcnt lgkmcnt(0)

	If OpenCL, omit.

	Must happen before
any following
global/generic
load/load
atomic/store/store
atomic/atomicrmw.

	Ensures any
following global
data read is no
older than the
atomicrmw value
being acquired.

	atomicrmw

	acquire

	
	agent

	system

	
	global

	
	buffer/global/flat_atomic

	s_waitcnt vmcnt(0)

	Must happen before
following
buffer_wbinvl1_vol.

	Ensures the
atomicrmw has
completed before
invalidating the
cache.

	buffer_wbinvl1_vol

	Must happen before
any following
global/generic
load/load
atomic/atomicrmw.

	Ensures that
following loads
will not see stale
global data.

	atomicrmw

	acquire

	
	agent

	system

	
	generic

	
	flat_atomic

	s_waitcnt vmcnt(0) &
lgkmcnt(0)

	If OpenCL, omit
lgkmcnt(0).

	Must happen before
following
buffer_wbinvl1_vol.

	Ensures the
atomicrmw has
completed before
invalidating the
cache.

	buffer_wbinvl1_vol

	Must happen before
any following
global/generic
load/load
atomic/atomicrmw.

	Ensures that
following loads
will not see stale
global data.

	fence

	acquire

	
	singlethread

	wavefront

	none

	none

	fence

	acquire

	
	workgroup

	none

	
	s_waitcnt lgkmcnt(0)

	If OpenCL and
address space is
not generic, omit.

	However, since LLVM
currently has no
address space on
the fence need to
conservatively
always generate. If
fence had an
address space then
set to address
space of OpenCL
fence flag, or to
generic if both
local and global
flags are
specified.

	Must happen after
any preceding
local/generic load
atomic/atomicrmw
with an equal or
wider sync scope
and memory ordering
stronger than
unordered (this is
termed the
fence-paired-atomic).

	Must happen before
any following
global/generic
load/load
atomic/store/store
atomic/atomicrmw.

	Ensures any
following global
data read is no
older than the
value read by the
fence-paired-atomic.

	fence

	acquire

	
	agent

	system

	none

	
	s_waitcnt lgkmcnt(0) &
vmcnt(0)

	If OpenCL and
address space is
not generic, omit
lgkmcnt(0).

	However, since LLVM
currently has no
address space on
the fence need to
conservatively
always generate
(see comment for
previous fence).

	Could be split into
separate s_waitcnt
vmcnt(0) and
s_waitcnt
lgkmcnt(0) to allow
them to be
independently moved
according to the
following rules.

	s_waitcnt vmcnt(0)
must happen after
any preceding
global/generic load
atomic/atomicrmw
with an equal or
wider sync scope
and memory ordering
stronger than
unordered (this is
termed the
fence-paired-atomic).

	s_waitcnt lgkmcnt(0)
must happen after
any preceding
local/generic load
atomic/atomicrmw
with an equal or
wider sync scope
and memory ordering
stronger than
unordered (this is
termed the
fence-paired-atomic).

	Must happen before
the following
buffer_wbinvl1_vol.

	Ensures that the
fence-paired atomic
has completed
before invalidating
the
cache. Therefore
any following
locations read must
be no older than
the value read by
the
fence-paired-atomic.

	buffer_wbinvl1_vol

	Must happen before any
following global/generic
load/load
atomic/store/store
atomic/atomicrmw.

	Ensures that
following loads
will not see stale
global data.

	Release Atomic

	store atomic

	release

	
	singlethread

	wavefront

	
	global

	local

	generic

	
	buffer/global/ds/flat_store

	store atomic

	release

	
	workgroup

	
	global

	
	s_waitcnt lgkmcnt(0)

	If OpenCL, omit.

	Must happen after
any preceding
local/generic
load/store/load
atomic/store
atomic/atomicrmw.

	Must happen before
the following
store.

	Ensures that all
memory operations
to local have
completed before
performing the
store that is being
released.

	buffer/global/flat_store

	store atomic

	release

	
	workgroup

	
	local

	
	ds_store

	store atomic

	release

	
	workgroup

	
	generic

	
	s_waitcnt lgkmcnt(0)

	If OpenCL, omit.

	Must happen after
any preceding
local/generic
load/store/load
atomic/store
atomic/atomicrmw.

	Must happen before
the following
store.

	Ensures that all
memory operations
to local have
completed before
performing the
store that is being
released.

	flat_store

	store atomic

	release

	
	agent

	system

	
	global

	generic

	
	s_waitcnt lgkmcnt(0) &
vmcnt(0)

	If OpenCL, omit
lgkmcnt(0).

	Could be split into
separate s_waitcnt
vmcnt(0) and
s_waitcnt
lgkmcnt(0) to allow
them to be
independently moved
according to the
following rules.

	s_waitcnt vmcnt(0)
must happen after
any preceding
global/generic
load/store/load
atomic/store
atomic/atomicrmw.

	s_waitcnt lgkmcnt(0)
must happen after
any preceding
local/generic
load/store/load
atomic/store
atomic/atomicrmw.

	Must happen before
the following
store.

	Ensures that all
memory operations
to memory have
completed before
performing the
store that is being
released.

	buffer/global/ds/flat_store

	atomicrmw

	release

	
	singlethread

	wavefront

	
	global

	local

	generic

	
	buffer/global/ds/flat_atomic

	atomicrmw

	release

	
	workgroup

	
	global

	
	s_waitcnt lgkmcnt(0)

	If OpenCL, omit.

	Must happen after
any preceding
local/generic
load/store/load
atomic/store
atomic/atomicrmw.

	Must happen before
the following
atomicrmw.

	Ensures that all
memory operations
to local have
completed before
performing the
atomicrmw that is
being released.

	buffer/global/flat_atomic

	atomicrmw

	release

	
	workgroup

	
	local

	
	ds_atomic

	atomicrmw

	release

	
	workgroup

	
	generic

	
	s_waitcnt lgkmcnt(0)

	If OpenCL, omit.

	Must happen after
any preceding
local/generic
load/store/load
atomic/store
atomic/atomicrmw.

	Must happen before
the following
atomicrmw.

	Ensures that all
memory operations
to local have
completed before
performing the
atomicrmw that is
being released.

	flat_atomic

	atomicrmw

	release

	
	agent

	system

	
	global

	generic

	
	s_waitcnt lgkmcnt(0) &
vmcnt(0)

	If OpenCL, omit
lgkmcnt(0).

	Could be split into
separate s_waitcnt
vmcnt(0) and
s_waitcnt
lgkmcnt(0) to allow
them to be
independently moved
according to the
following rules.

	s_waitcnt vmcnt(0)
must happen after
any preceding
global/generic
load/store/load
atomic/store
atomic/atomicrmw.

	s_waitcnt lgkmcnt(0)
must happen after
any preceding
local/generic
load/store/load
atomic/store
atomic/atomicrmw.

	Must happen before
the following
atomicrmw.

	Ensures that all
memory operations
to global and local
have completed
before performing
the atomicrmw that
is being released.

	buffer/global/ds/flat_atomic

	fence

	release

	
	singlethread

	wavefront

	none

	none

	fence

	release

	
	workgroup

	none

	
	s_waitcnt lgkmcnt(0)

	If OpenCL and
address space is
not generic, omit.

	However, since LLVM
currently has no
address space on
the fence need to
conservatively
always generate. If
fence had an
address space then
set to address
space of OpenCL
fence flag, or to
generic if both
local and global
flags are
specified.

	Must happen after
any preceding
local/generic
load/load
atomic/store/store
atomic/atomicrmw.

	Must happen before
any following store
atomic/atomicrmw
with an equal or
wider sync scope
and memory ordering
stronger than
unordered (this is
termed the
fence-paired-atomic).

	Ensures that all
memory operations
to local have
completed before
performing the
following
fence-paired-atomic.

	fence

	release

	
	agent

	system

	none

	
	s_waitcnt lgkmcnt(0) &
vmcnt(0)

	If OpenCL and
address space is
not generic, omit
lgkmcnt(0).

	If OpenCL and
address space is
local, omit
vmcnt(0).

	However, since LLVM
currently has no
address space on
the fence need to
conservatively
always generate. If
fence had an
address space then
set to address
space of OpenCL
fence flag, or to
generic if both
local and global
flags are
specified.

	Could be split into
separate s_waitcnt
vmcnt(0) and
s_waitcnt
lgkmcnt(0) to allow
them to be
independently moved
according to the
following rules.

	s_waitcnt vmcnt(0)
must happen after
any preceding
global/generic
load/store/load
atomic/store
atomic/atomicrmw.

	s_waitcnt lgkmcnt(0)
must happen after
any preceding
local/generic
load/store/load
atomic/store
atomic/atomicrmw.

	Must happen before
any following store
atomic/atomicrmw
with an equal or
wider sync scope
and memory ordering
stronger than
unordered (this is
termed the
fence-paired-atomic).

	Ensures that all
memory operations
have
completed before
performing the
following
fence-paired-atomic.

	Acquire-Release Atomic

	atomicrmw

	acq_rel

	
	singlethread

	wavefront

	
	global

	local

	generic

	
	buffer/global/ds/flat_atomic

	atomicrmw

	acq_rel

	
	workgroup

	
	global

	
	s_waitcnt lgkmcnt(0)

	If OpenCL, omit.

	Must happen after
any preceding
local/generic
load/store/load
atomic/store
atomic/atomicrmw.

	Must happen before
the following
atomicrmw.

	Ensures that all
memory operations
to local have
completed before
performing the
atomicrmw that is
being released.

	buffer/global/flat_atomic

	atomicrmw

	acq_rel

	
	workgroup

	
	local

	
	ds_atomic

	s_waitcnt lgkmcnt(0)

	If OpenCL, omit.

	Must happen before
any following
global/generic
load/load
atomic/store/store
atomic/atomicrmw.

	Ensures any
following global
data read is no
older than the load
atomic value being
acquired.

	atomicrmw

	acq_rel

	
	workgroup

	
	generic

	
	s_waitcnt lgkmcnt(0)

	If OpenCL, omit.

	Must happen after
any preceding
local/generic
load/store/load
atomic/store
atomic/atomicrmw.

	Must happen before
the following
atomicrmw.

	Ensures that all
memory operations
to local have
completed before
performing the
atomicrmw that is
being released.

	flat_atomic

	s_waitcnt lgkmcnt(0)

	If OpenCL, omit.

	Must happen before
any following
global/generic
load/load
atomic/store/store
atomic/atomicrmw.

	Ensures any
following global
data read is no
older than the load
atomic value being
acquired.

	atomicrmw

	acq_rel

	
	agent

	system

	
	global

	
	s_waitcnt lgkmcnt(0) &
vmcnt(0)

	If OpenCL, omit
lgkmcnt(0).

	Could be split into
separate s_waitcnt
vmcnt(0) and
s_waitcnt
lgkmcnt(0) to allow
them to be
independently moved
according to the
following rules.

	s_waitcnt vmcnt(0)
must happen after
any preceding
global/generic
load/store/load
atomic/store
atomic/atomicrmw.

	s_waitcnt lgkmcnt(0)
must happen after
any preceding
local/generic
load/store/load
atomic/store
atomic/atomicrmw.

	Must happen before
the following
atomicrmw.

	Ensures that all
memory operations
to global have
completed before
performing the
atomicrmw that is
being released.

	buffer/global/flat_atomic

	s_waitcnt vmcnt(0)

	Must happen before
following
buffer_wbinvl1_vol.

	Ensures the
atomicrmw has
completed before
invalidating the
cache.

	buffer_wbinvl1_vol

	Must happen before
any following
global/generic
load/load
atomic/atomicrmw.

	Ensures that
following loads
will not see stale
global data.

	atomicrmw

	acq_rel

	
	agent

	system

	
	generic

	
	s_waitcnt lgkmcnt(0) &
vmcnt(0)

	If OpenCL, omit
lgkmcnt(0).

	Could be split into
separate s_waitcnt
vmcnt(0) and
s_waitcnt
lgkmcnt(0) to allow
them to be
independently moved
according to the
following rules.

	s_waitcnt vmcnt(0)
must happen after
any preceding
global/generic
load/store/load
atomic/store
atomic/atomicrmw.

	s_waitcnt lgkmcnt(0)
must happen after
any preceding
local/generic
load/store/load
atomic/store
atomic/atomicrmw.

	Must happen before
the following
atomicrmw.

	Ensures that all
memory operations
to global have
completed before
performing the
atomicrmw that is
being released.

	flat_atomic

	s_waitcnt vmcnt(0) &
lgkmcnt(0)

	If OpenCL, omit
lgkmcnt(0).

	Must happen before
following
buffer_wbinvl1_vol.

	Ensures the
atomicrmw has
completed before
invalidating the
cache.

	buffer_wbinvl1_vol

	Must happen before
any following
global/generic
load/load
atomic/atomicrmw.

	Ensures that
following loads
will not see stale
global data.

	fence

	acq_rel

	
	singlethread

	wavefront

	none

	none

	fence

	acq_rel

	
	workgroup

	none

	
	s_waitcnt lgkmcnt(0)

	If OpenCL and
address space is
not generic, omit.

	However,
since LLVM
currently has no
address space on
the fence need to
conservatively
always generate
(see comment for
previous fence).

	Must happen after
any preceding
local/generic
load/load
atomic/store/store
atomic/atomicrmw.

	Must happen before
any following
global/generic
load/load
atomic/store/store
atomic/atomicrmw.

	Ensures that all
memory operations
to local have
completed before
performing any
following global
memory operations.

	Ensures that the
preceding
local/generic load
atomic/atomicrmw
with an equal or
wider sync scope
and memory ordering
stronger than
unordered (this is
termed the
acquire-fence-paired-atomic
) has completed
before following
global memory
operations. This
satisfies the
requirements of
acquire.

	Ensures that all
previous memory
operations have
completed before a
following
local/generic store
atomic/atomicrmw
with an equal or
wider sync scope
and memory ordering
stronger than
unordered (this is
termed the
release-fence-paired-atomic
). This satisfies the
requirements of
release.

	fence

	acq_rel

	
	agent

	system

	none

	
	s_waitcnt lgkmcnt(0) &
vmcnt(0)

	If OpenCL and
address space is
not generic, omit
lgkmcnt(0).

	However, since LLVM
currently has no
address space on
the fence need to
conservatively
always generate
(see comment for
previous fence).

	Could be split into
separate s_waitcnt
vmcnt(0) and
s_waitcnt
lgkmcnt(0) to allow
them to be
independently moved
according to the
following rules.

	s_waitcnt vmcnt(0)
must happen after
any preceding
global/generic
load/store/load
atomic/store
atomic/atomicrmw.

	s_waitcnt lgkmcnt(0)
must happen after
any preceding
local/generic
load/store/load
atomic/store
atomic/atomicrmw.

	Must happen before
the following
buffer_wbinvl1_vol.

	Ensures that the
preceding
global/local/generic
load
atomic/atomicrmw
with an equal or
wider sync scope
and memory ordering
stronger than
unordered (this is
termed the
acquire-fence-paired-atomic
) has completed
before invalidating
the cache. This
satisfies the
requirements of
acquire.

	Ensures that all
previous memory
operations have
completed before a
following
global/local/generic
store
atomic/atomicrmw
with an equal or
wider sync scope
and memory ordering
stronger than
unordered (this is
termed the
release-fence-paired-atomic
). This satisfies the
requirements of
release.

	buffer_wbinvl1_vol

	Must happen before
any following
global/generic
load/load
atomic/store/store
atomic/atomicrmw.

	Ensures that
following loads
will not see stale
global data. This
satisfies the
requirements of
acquire.

	Sequential Consistent Atomic

	load atomic

	seq_cst

	
	singlethread

	wavefront

	
	global

	local

	generic

	Same as corresponding
load atomic acquire,
except must generated
all instructions even
for OpenCL.

	load atomic

	seq_cst

	
	workgroup

	
	global

	generic

	
	s_waitcnt lgkmcnt(0)

	Must
happen after
preceding
global/generic load
atomic/store
atomic/atomicrmw
with memory
ordering of seq_cst
and with equal or
wider sync scope.
(Note that seq_cst
fences have their
own s_waitcnt
lgkmcnt(0) and so do
not need to be
considered.)

	Ensures any
preceding
sequential
consistent local
memory instructions
have completed
before executing
this sequentially
consistent
instruction. This
prevents reordering
a seq_cst store
followed by a
seq_cst load. (Note
that seq_cst is
stronger than
acquire/release as
the reordering of
load acquire
followed by a store
release is
prevented by the
waitcnt of
the release, but
there is nothing
preventing a store
release followed by
load acquire from
competing out of
order.)

	Following
instructions same as
corresponding load
atomic acquire,
except must generated
all instructions even
for OpenCL.

	load atomic

	seq_cst

	
	workgroup

	
	local

	Same as corresponding
load atomic acquire,
except must generated
all instructions even
for OpenCL.

	load atomic

	seq_cst

	
	agent

	system

	
	global

	generic

	
	s_waitcnt lgkmcnt(0) &
vmcnt(0)

	Could be split into
separate s_waitcnt
vmcnt(0)
and s_waitcnt
lgkmcnt(0) to allow
them to be
independently moved
according to the
following rules.

	waitcnt lgkmcnt(0)
must happen after
preceding
global/generic load
atomic/store
atomic/atomicrmw
with memory
ordering of seq_cst
and with equal or
wider sync scope.
(Note that seq_cst
fences have their
own s_waitcnt
lgkmcnt(0) and so do
not need to be
considered.)

	waitcnt vmcnt(0)
must happen after
preceding
global/generic load
atomic/store
atomic/atomicrmw
with memory
ordering of seq_cst
and with equal or
wider sync scope.
(Note that seq_cst
fences have their
own s_waitcnt
vmcnt(0) and so do
not need to be
considered.)

	Ensures any
preceding
sequential
consistent global
memory instructions
have completed
before executing
this sequentially
consistent
instruction. This
prevents reordering
a seq_cst store
followed by a
seq_cst load. (Note
that seq_cst is
stronger than
acquire/release as
the reordering of
load acquire
followed by a store
release is
prevented by the
waitcnt of
the release, but
there is nothing
preventing a store
release followed by
load acquire from
competing out of
order.)

	Following
instructions same as
corresponding load
atomic acquire,
except must generated
all instructions even
for OpenCL.

	store atomic

	seq_cst

	
	singlethread

	wavefront

	workgroup

	
	global

	local

	generic

	Same as corresponding
store atomic release,
except must generated
all instructions even
for OpenCL.

	store atomic

	seq_cst

	
	agent

	system

	
	global

	generic

	Same as corresponding
store atomic release,
except must generated
all instructions even
for OpenCL.

	atomicrmw

	seq_cst

	
	singlethread

	wavefront

	workgroup

	
	global

	local

	generic

	Same as corresponding
atomicrmw acq_rel,
except must generated
all instructions even
for OpenCL.

	atomicrmw

	seq_cst

	
	agent

	system

	
	global

	generic

	Same as corresponding
atomicrmw acq_rel,
except must generated
all instructions even
for OpenCL.

	fence

	seq_cst

	
	singlethread

	wavefront

	workgroup

	agent

	system

	none

	Same as corresponding
fence acq_rel,
except must generated
all instructions even
for OpenCL.

The memory order also adds the single thread optimization constrains defined in
table
AMDHSA Memory Model Single Thread Optimization Constraints GFX6-GFX9.

AMDHSA Memory Model Single Thread Optimization Constraints GFX6-GFX9

	LLVM Memory

	Optimization Constraints

	Ordering

	

	unordered

	none

	monotonic

	none

	acquire

	
	If a load atomic/atomicrmw then no following load/load
atomic/store/ store atomic/atomicrmw/fence instruction can
be moved before the acquire.

	If a fence then same as load atomic, plus no preceding
associated fence-paired-atomic can be moved after the fence.

	release

	
	If a store atomic/atomicrmw then no preceding load/load
atomic/store/ store atomic/atomicrmw/fence instruction can
be moved after the release.

	If a fence then same as store atomic, plus no following
associated fence-paired-atomic can be moved before the
fence.

	acq_rel

	Same constraints as both acquire and release.

	seq_cst

	
	If a load atomic then same constraints as acquire, plus no
preceding sequentially consistent load atomic/store
atomic/atomicrmw/fence instruction can be moved after the
seq_cst.

	If a store atomic then the same constraints as release, plus
no following sequentially consistent load atomic/store
atomic/atomicrmw/fence instruction can be moved before the
seq_cst.

	If an atomicrmw/fence then same constraints as acq_rel.

Trap Handler ABI

For code objects generated by AMDGPU backend for HSA [HSA] compatible runtimes
(such as ROCm [AMD-ROCm]), the runtime installs a trap handler that supports
the s_trap instruction with the following usage:

AMDGPU Trap Handler for AMDHSA OS

	Usage

	Code Sequence

	Trap Handler
Inputs

	Description

	reserved

	s_trap 0x00

	
	Reserved by hardware.

	debugtrap(arg)

	s_trap 0x01

	
	SGPR0-1:

	queue_ptr

	VGPR0:

	arg

	Reserved for HSA
debugtrap
intrinsic (not
implemented).

	llvm.trap

	s_trap 0x02

	
	SGPR0-1:

	queue_ptr

	Causes dispatch to be
terminated and its
associated queue put
into the error state.

	llvm.debugtrap

	s_trap 0x03

	
	
	If debugger not
installed then
behaves as a
no-operation. The
trap handler is
entered and
immediately returns
to continue
execution of the
wavefront.

	If the debugger is
installed, causes
the debug trap to be
reported by the
debugger and the
wavefront is put in
the halt state until
resumed by the
debugger.

	reserved

	s_trap 0x04

	
	Reserved.

	reserved

	s_trap 0x05

	
	Reserved.

	reserved

	s_trap 0x06

	
	Reserved.

	debugger breakpoint

	s_trap 0x07

	
	Reserved for debugger
breakpoints.

	reserved

	s_trap 0x08

	
	Reserved.

	reserved

	s_trap 0xfe

	
	Reserved.

	reserved

	s_trap 0xff

	
	Reserved.

AMDPAL

This section provides code conventions used when the target triple OS is
amdpal (see Target Triples) for passing runtime parameters
from the application/runtime to each invocation of a hardware shader. These
parameters include both generic, application-controlled parameters called
user data as well as system-generated parameters that are a product of the
draw or dispatch execution.

User Data

Each hardware stage has a set of 32-bit user data registers which can be
written from a command buffer and then loaded into SGPRs when waves are launched
via a subsequent dispatch or draw operation. This is the way most arguments are
passed from the application/runtime to a hardware shader.

Compute User Data

Compute shader user data mappings are simpler than graphics shaders, and have a
fixed mapping.

Note that there are always 10 available user data entries in registers -
entries beyond that limit must be fetched from memory (via the spill table
pointer) by the shader.

PAL Compute Shader User Data Registers

	User Register

	Description

	0

	Global Internal Table (32-bit pointer)

	1

	Per-Shader Internal Table (32-bit pointer)

	2 - 11

	Application-Controlled User Data (10 32-bit values)

	12

	Spill Table (32-bit pointer)

	13 - 14

	Thread Group Count (64-bit pointer)

	15

	GDS Range

Graphics User Data

Graphics pipelines support a much more flexible user data mapping:

PAL Graphics Shader User Data Registers

	User Register

	Description

	0

	Global Internal Table (32-bit pointer)

	
	

	Per-Shader Internal Table (32-bit pointer)

	
	1-15

	Application Controlled User Data
(1-15 Contiguous 32-bit Values in Registers)

	
	

	Spill Table (32-bit pointer)

	
	

	Draw Index (First Stage Only)

	
	

	Vertex Offset (First Stage Only)

	
	

	Instance Offset (First Stage Only)

The placement of the global internal table remains fixed in the first user
data SGPR register. Otherwise all parameters are optional, and can be mapped
to any desired user data SGPR register, with the following regstrictions:

	Draw Index, Vertex Offset, and Instance Offset can only be used by the first
activehardware stage in a graphics pipeline (i.e. where the API vertex
shader runs).

	Application-controlled user data must be mapped into a contiguous range of
user data registers.

	The application-controlled user data range supports compaction remapping, so
only entries that are actually consumed by the shader must be assigned to
corresponding registers. Note that in order to support an efficient runtime
implementation, the remapping must pack registers in the same order as
entries, with unused entries removed.

Global Internal Table

The global internal table is a table of shader resource descriptors (SRDs) that
define how certain engine-wide, runtime-managed resources should be accessed
from a shader. The majority of these resources have HW-defined formats, and it
is up to the compiler to write/read data as required by the target hardware.

The following table illustrates the required format:

PAL Global Internal Table

	Offset

	Description

	0-3

	Graphics Scratch SRD

	4-7

	Compute Scratch SRD

	8-11

	ES/GS Ring Output SRD

	12-15

	ES/GS Ring Input SRD

	16-19

	GS/VS Ring Output #0

	20-23

	GS/VS Ring Output #1

	24-27

	GS/VS Ring Output #2

	28-31

	GS/VS Ring Output #3

	32-35

	GS/VS Ring Input SRD

	36-39

	Tessellation Factor Buffer SRD

	40-43

	Off-Chip LDS Buffer SRD

	44-47

	Off-Chip Param Cache Buffer SRD

	48-51

	Sample Position Buffer SRD

	52

	vaRange::ShadowDescriptorTable High Bits

The pointer to the global internal table passed to the shader as user data
is a 32-bit pointer. The top 32 bits should be assumed to be the same as
the top 32 bits of the pipeline, so the shader may use the program
counter’s top 32 bits.

Unspecified OS

This section provides code conventions used when the target triple OS is
empty (see Target Triples).

Trap Handler ABI

For code objects generated by AMDGPU backend for non-amdhsa OS, the runtime does
not install a trap handler. The llvm.trap and llvm.debugtrap
instructions are handled as follows:

AMDGPU Trap Handler for Non-AMDHSA OS

	Usage

	Code Sequence

	Description

	llvm.trap

	s_endpgm

	Causes wavefront to be terminated.

	llvm.debugtrap

	none

	Compiler warning given that there is no
trap handler installed.

Source Languages

OpenCL

When the language is OpenCL the following differences occur:

	The OpenCL memory model is used (see Memory Model).

	The AMDGPU backend appends additional arguments to the kernel’s explicit
arguments for the AMDHSA OS (see
OpenCL kernel implicit arguments appended for AMDHSA OS).

	Additional metadata is generated
(see Code Object Metadata).

OpenCL kernel implicit arguments appended for AMDHSA OS

	Position

	Byte
Size

	Byte
Alignment

	Description

	1

	8

	8

	OpenCL Global Offset X

	2

	8

	8

	OpenCL Global Offset Y

	3

	8

	8

	OpenCL Global Offset Z

	4

	8

	8

	OpenCL address of printf buffer

	5

	8

	8

	OpenCL address of virtual queue used by
enqueue_kernel.

	6

	8

	8

	OpenCL address of AqlWrap struct used by
enqueue_kernel.

HCC

When the language is HCC the following differences occur:

	The HSA memory model is used (see Memory Model).

Assembler

AMDGPU backend has LLVM-MC based assembler which is currently in development.
It supports AMDGCN GFX6-GFX9.

This section describes general syntax for instructions and operands.

Instructions

An instruction has the following syntax:

<opcode> <operand0>, <operand1>,… <modifier0> <modifier1>…

Note that operands are normally comma-separated while modifiers are space-separated.

The order of operands and modifiers is fixed. Most modifiers are optional and may be omitted.

See detailed instruction syntax description for GFX7,
GFX8 and GFX9.

Note that features under development are not included in this description.

For more information about instructions, their semantics and supported combinations of
operands, refer to one of instruction set architecture manuals
[AMD-GCN-GFX6], [AMD-GCN-GFX7], [AMD-GCN-GFX8] and [AMD-GCN-GFX9].

Operands

The following syntax for register operands is supported:

	SGPR registers: s0, … or s[0], …

	VGPR registers: v0, … or v[0], …

	TTMP registers: ttmp0, … or ttmp[0], …

	Special registers: exec (exec_lo, exec_hi), vcc (vcc_lo, vcc_hi), flat_scratch (flat_scratch_lo, flat_scratch_hi)

	Special trap registers: tba (tba_lo, tba_hi), tma (tma_lo, tma_hi)

	Register pairs, quads, etc: s[2:3], v[10:11], ttmp[5:6], s[4:7], v[12:15], ttmp[4:7], s[8:15], …

	Register lists: [s0, s1], [ttmp0, ttmp1, ttmp2, ttmp3]

	Register index expressions: v[2*2], s[1-1:2-1]

	‘off’ indicates that an operand is not enabled

Modifiers

Detailed description of modifiers may be found here.

Instruction Examples

DS

ds_add_u32 v2, v4 offset:16
ds_write_src2_b64 v2 offset0:4 offset1:8
ds_cmpst_f32 v2, v4, v6
ds_min_rtn_f64 v[8:9], v2, v[4:5]

For full list of supported instructions, refer to “LDS/GDS instructions” in ISA Manual.

FLAT

flat_load_dword v1, v[3:4]
flat_store_dwordx3 v[3:4], v[5:7]
flat_atomic_swap v1, v[3:4], v5 glc
flat_atomic_cmpswap v1, v[3:4], v[5:6] glc slc
flat_atomic_fmax_x2 v[1:2], v[3:4], v[5:6] glc

For full list of supported instructions, refer to “FLAT instructions” in ISA Manual.

MUBUF

buffer_load_dword v1, off, s[4:7], s1
buffer_store_dwordx4 v[1:4], v2, ttmp[4:7], s1 offen offset:4 glc tfe
buffer_store_format_xy v[1:2], off, s[4:7], s1
buffer_wbinvl1
buffer_atomic_inc v1, v2, s[8:11], s4 idxen offset:4 slc

For full list of supported instructions, refer to “MUBUF Instructions” in ISA Manual.

SMRD/SMEM

s_load_dword s1, s[2:3], 0xfc
s_load_dwordx8 s[8:15], s[2:3], s4
s_load_dwordx16 s[88:103], s[2:3], s4
s_dcache_inv_vol
s_memtime s[4:5]

For full list of supported instructions, refer to “Scalar Memory Operations” in ISA Manual.

SOP1

s_mov_b32 s1, s2
s_mov_b64 s[0:1], 0x80000000
s_cmov_b32 s1, 200
s_wqm_b64 s[2:3], s[4:5]
s_bcnt0_i32_b64 s1, s[2:3]
s_swappc_b64 s[2:3], s[4:5]
s_cbranch_join s[4:5]

For full list of supported instructions, refer to “SOP1 Instructions” in ISA Manual.

SOP2

s_add_u32 s1, s2, s3
s_and_b64 s[2:3], s[4:5], s[6:7]
s_cselect_b32 s1, s2, s3
s_andn2_b32 s2, s4, s6
s_lshr_b64 s[2:3], s[4:5], s6
s_ashr_i32 s2, s4, s6
s_bfm_b64 s[2:3], s4, s6
s_bfe_i64 s[2:3], s[4:5], s6
s_cbranch_g_fork s[4:5], s[6:7]

For full list of supported instructions, refer to “SOP2 Instructions” in ISA Manual.

SOPC

s_cmp_eq_i32 s1, s2
s_bitcmp1_b32 s1, s2
s_bitcmp0_b64 s[2:3], s4
s_setvskip s3, s5

For full list of supported instructions, refer to “SOPC Instructions” in ISA Manual.

SOPP

s_barrier
s_nop 2
s_endpgm
s_waitcnt 0 ; Wait for all counters to be 0
s_waitcnt vmcnt(0) & expcnt(0) & lgkmcnt(0) ; Equivalent to above
s_waitcnt vmcnt(1) ; Wait for vmcnt counter to be 1.
s_sethalt 9
s_sleep 10
s_sendmsg 0x1
s_sendmsg sendmsg(MSG_INTERRUPT)
s_trap 1

For full list of supported instructions, refer to “SOPP Instructions” in ISA Manual.

Unless otherwise mentioned, little verification is performed on the operands
of SOPP Instructions, so it is up to the programmer to be familiar with the
range or acceptable values.

VALU

For vector ALU instruction opcodes (VOP1, VOP2, VOP3, VOPC, VOP_DPP, VOP_SDWA),
the assembler will automatically use optimal encoding based on its operands.
To force specific encoding, one can add a suffix to the opcode of the instruction:

	_e32 for 32-bit VOP1/VOP2/VOPC

	_e64 for 64-bit VOP3

	_dpp for VOP_DPP

	_sdwa for VOP_SDWA

VOP1/VOP2/VOP3/VOPC examples:

v_mov_b32 v1, v2
v_mov_b32_e32 v1, v2
v_nop
v_cvt_f64_i32_e32 v[1:2], v2
v_floor_f32_e32 v1, v2
v_bfrev_b32_e32 v1, v2
v_add_f32_e32 v1, v2, v3
v_mul_i32_i24_e64 v1, v2, 3
v_mul_i32_i24_e32 v1, -3, v3
v_mul_i32_i24_e32 v1, -100, v3
v_addc_u32 v1, s[0:1], v2, v3, s[2:3]
v_max_f16_e32 v1, v2, v3

VOP_DPP examples:

v_mov_b32 v0, v0 quad_perm:[0,2,1,1]
v_sin_f32 v0, v0 row_shl:1 row_mask:0xa bank_mask:0x1 bound_ctrl:0
v_mov_b32 v0, v0 wave_shl:1
v_mov_b32 v0, v0 row_mirror
v_mov_b32 v0, v0 row_bcast:31
v_mov_b32 v0, v0 quad_perm:[1,3,0,1] row_mask:0xa bank_mask:0x1 bound_ctrl:0
v_add_f32 v0, v0, |v0| row_shl:1 row_mask:0xa bank_mask:0x1 bound_ctrl:0
v_max_f16 v1, v2, v3 row_shl:1 row_mask:0xa bank_mask:0x1 bound_ctrl:0

VOP_SDWA examples:

v_mov_b32 v1, v2 dst_sel:BYTE_0 dst_unused:UNUSED_PRESERVE src0_sel:DWORD
v_min_u32 v200, v200, v1 dst_sel:WORD_1 dst_unused:UNUSED_PAD src0_sel:BYTE_1 src1_sel:DWORD
v_sin_f32 v0, v0 dst_unused:UNUSED_PAD src0_sel:WORD_1
v_fract_f32 v0, |v0| dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:WORD_1
v_cmpx_le_u32 vcc, v1, v2 src0_sel:BYTE_2 src1_sel:WORD_0

For full list of supported instructions, refer to “Vector ALU instructions”.

HSA Code Object Directives

AMDGPU ABI defines auxiliary data in output code object. In assembly source,
one can specify them with assembler directives.

.hsa_code_object_version major, minor

major and minor are integers that specify the version of the HSA code
object that will be generated by the assembler.

.hsa_code_object_isa [major, minor, stepping, vendor, arch]

major, minor, and stepping are all integers that describe the instruction
set architecture (ISA) version of the assembly program.

vendor and arch are quoted strings. vendor should always be equal to
“AMD” and arch should always be equal to “AMDGPU”.

By default, the assembler will derive the ISA version, vendor, and arch
from the value of the -mcpu option that is passed to the assembler.

.amdgpu_hsa_kernel (name)

This directives specifies that the symbol with given name is a kernel entry point
(label) and the object should contain corresponding symbol of type STT_AMDGPU_HSA_KERNEL.

.amd_kernel_code_t

This directive marks the beginning of a list of key / value pairs that are used
to specify the amd_kernel_code_t object that will be emitted by the assembler.
The list must be terminated by the .end_amd_kernel_code_t directive. For
any amd_kernel_code_t values that are unspecified a default value will be
used. The default value for all keys is 0, with the following exceptions:

	kernel_code_version_major defaults to 1.

	machine_kind defaults to 1.

	machine_version_major, machine_version_minor, and
machine_version_stepping are derived from the value of the -mcpu option
that is passed to the assembler.

	kernel_code_entry_byte_offset defaults to 256.

	wavefront_size defaults to 6.

	kernarg_segment_alignment, group_segment_alignment, and
private_segment_alignment default to 4. Note that alignments are specified
as a power of two, so a value of n means an alignment of 2^ n.

The .amd_kernel_code_t directive must be placed immediately after the
function label and before any instructions.

For a full list of amd_kernel_code_t keys, refer to AMDGPU ABI document,
comments in lib/Target/AMDGPU/AmdKernelCodeT.h and test/CodeGen/AMDGPU/hsa.s.

Here is an example of a minimal amd_kernel_code_t specification:

.hsa_code_object_version 1,0
.hsa_code_object_isa

.hsatext
.globl hello_world
.p2align 8
.amdgpu_hsa_kernel hello_world

hello_world:

 .amd_kernel_code_t
 enable_sgpr_kernarg_segment_ptr = 1
 is_ptr64 = 1
 compute_pgm_rsrc1_vgprs = 0
 compute_pgm_rsrc1_sgprs = 0
 compute_pgm_rsrc2_user_sgpr = 2
 kernarg_segment_byte_size = 8
 wavefront_sgpr_count = 2
 workitem_vgpr_count = 3
 .end_amd_kernel_code_t

 s_load_dwordx2 s[0:1], s[0:1] 0x0
 v_mov_b32 v0, 3.14159
 s_waitcnt lgkmcnt(0)
 v_mov_b32 v1, s0
 v_mov_b32 v2, s1
 flat_store_dword v[1:2], v0
 s_endpgm
.Lfunc_end0:
 .size hello_world, .Lfunc_end0-hello_world

Predefined Symbols (-mattr=+code-object-v3)

The AMDGPU assembler defines and updates some symbols automatically. These
symbols do not affect code generation.

.amdgcn.gfx_generation_number

Set to the GFX generation number of the target being assembled for. For
example, when assembling for a “GFX9” target this will be set to the integer
value “9”. The possible GFX generation numbers are presented in
Processors.

.amdgcn.next_free_vgpr

Set to zero before assembly begins. At each instruction, if the current value
of this symbol is less than or equal to the maximum VGPR number explicitly
referenced within that instruction then the symbol value is updated to equal
that VGPR number plus one.

May be used to set the .amdhsa_next_free_vpgr directive in
AMDHSA Kernel Assembler Directives.

May be set at any time, e.g. manually set to zero at the start of each kernel.

.amdgcn.next_free_sgpr

Set to zero before assembly begins. At each instruction, if the current value
of this symbol is less than or equal the maximum SGPR number explicitly
referenced within that instruction then the symbol value is updated to equal
that SGPR number plus one.

May be used to set the .amdhsa_next_free_spgr directive in
AMDHSA Kernel Assembler Directives.

May be set at any time, e.g. manually set to zero at the start of each kernel.

Code Object Directives (-mattr=+code-object-v3)

Directives which begin with .amdgcn are valid for all amdgcn
architecture processors, and are not OS-specific. Directives which begin with
.amdhsa are specific to amdgcn architecture processors when the
amdhsa OS is specified. See Target Triples and
Processors.

.amdgcn_target <target>

Optional directive which declares the target supported by the containing
assembler source file. Valid values are described in
Code Object Target Identification. Used by the assembler
to validate command-line options such as -triple, -mcpu, and those
which specify target features.

.amdhsa_kernel <name>

Creates a correctly aligned AMDHSA kernel descriptor and a symbol,
<name>.kd, in the current location of the current section. Only valid when
the OS is amdhsa. <name> must be a symbol that labels the first
instruction to execute, and does not need to be previously defined.

Marks the beginning of a list of directives used to generate the bytes of a
kernel descriptor, as described in Kernel Descriptor.
Directives which may appear in this list are described in
AMDHSA Kernel Assembler Directives. Directives may appear in any order, must
be valid for the target being assembled for, and cannot be repeated. Directives
support the range of values specified by the field they reference in
Kernel Descriptor. If a directive is not specified, it is
assumed to have its default value, unless it is marked as “Required”, in which
case it is an error to omit the directive. This list of directives is
terminated by an .end_amdhsa_kernel directive.

AMDHSA Kernel Assembler Directives

	Directive

	Default

	Supported On

	Description

	.amdhsa_group_segment_fixed_size

	0

	GFX6-GFX9

	Controls GROUP_SEGMENT_FIXED_SIZE in
Kernel Descriptor for GFX6-GFX9.

	.amdhsa_private_segment_fixed_size

	0

	GFX6-GFX9

	Controls PRIVATE_SEGMENT_FIXED_SIZE in
Kernel Descriptor for GFX6-GFX9.

	.amdhsa_user_sgpr_private_segment_buffer

	0

	GFX6-GFX9

	Controls ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER in
Kernel Descriptor for GFX6-GFX9.

	.amdhsa_user_sgpr_dispatch_ptr

	0

	GFX6-GFX9

	Controls ENABLE_SGPR_DISPATCH_PTR in
Kernel Descriptor for GFX6-GFX9.

	.amdhsa_user_sgpr_queue_ptr

	0

	GFX6-GFX9

	Controls ENABLE_SGPR_QUEUE_PTR in
Kernel Descriptor for GFX6-GFX9.

	.amdhsa_user_sgpr_kernarg_segment_ptr

	0

	GFX6-GFX9

	Controls ENABLE_SGPR_KERNARG_SEGMENT_PTR in
Kernel Descriptor for GFX6-GFX9.

	.amdhsa_user_sgpr_dispatch_id

	0

	GFX6-GFX9

	Controls ENABLE_SGPR_DISPATCH_ID in
Kernel Descriptor for GFX6-GFX9.

	.amdhsa_user_sgpr_flat_scratch_init

	0

	GFX6-GFX9

	Controls ENABLE_SGPR_FLAT_SCRATCH_INIT in
Kernel Descriptor for GFX6-GFX9.

	.amdhsa_user_sgpr_private_segment_size

	0

	GFX6-GFX9

	Controls ENABLE_SGPR_PRIVATE_SEGMENT_SIZE in
Kernel Descriptor for GFX6-GFX9.

	.amdhsa_system_sgpr_private_segment_wavefront_offset

	0

	GFX6-GFX9

	Controls ENABLE_SGPR_PRIVATE_SEGMENT_WAVEFRONT_OFFSET in
compute_pgm_rsrc2 for GFX6-GFX9.

	.amdhsa_system_sgpr_workgroup_id_x

	1

	GFX6-GFX9

	Controls ENABLE_SGPR_WORKGROUP_ID_X in
compute_pgm_rsrc2 for GFX6-GFX9.

	.amdhsa_system_sgpr_workgroup_id_y

	0

	GFX6-GFX9

	Controls ENABLE_SGPR_WORKGROUP_ID_Y in
compute_pgm_rsrc2 for GFX6-GFX9.

	.amdhsa_system_sgpr_workgroup_id_z

	0

	GFX6-GFX9

	Controls ENABLE_SGPR_WORKGROUP_ID_Z in
compute_pgm_rsrc2 for GFX6-GFX9.

	.amdhsa_system_sgpr_workgroup_info

	0

	GFX6-GFX9

	Controls ENABLE_SGPR_WORKGROUP_INFO in
compute_pgm_rsrc2 for GFX6-GFX9.

	.amdhsa_system_vgpr_workitem_id

	0

	GFX6-GFX9

	Controls ENABLE_VGPR_WORKITEM_ID in
compute_pgm_rsrc2 for GFX6-GFX9.
Possible values are defined in
System VGPR Work-Item ID Enumeration Values.

	.amdhsa_next_free_vgpr

	Required

	GFX6-GFX9

	Maximum VGPR number explicitly referenced, plus one.
Used to calculate GRANULATED_WORKITEM_VGPR_COUNT in
compute_pgm_rsrc1 for GFX6-GFX9.

	.amdhsa_next_free_sgpr

	Required

	GFX6-GFX9

	Maximum SGPR number explicitly referenced, plus one.
Used to calculate GRANULATED_WAVEFRONT_SGPR_COUNT in
compute_pgm_rsrc1 for GFX6-GFX9.

	.amdhsa_reserve_vcc

	1

	GFX6-GFX9

	Whether the kernel may use the special VCC SGPR.
Used to calculate GRANULATED_WAVEFRONT_SGPR_COUNT in
compute_pgm_rsrc1 for GFX6-GFX9.

	.amdhsa_reserve_flat_scratch

	1

	GFX7-GFX9

	Whether the kernel may use flat instructions to access
scratch memory. Used to calculate
GRANULATED_WAVEFRONT_SGPR_COUNT in
compute_pgm_rsrc1 for GFX6-GFX9.

	.amdhsa_reserve_xnack_mask

	Target
Feature
Specific
(+xnack)

	GFX8-GFX9

	Whether the kernel may trigger XNACK replay.
Used to calculate GRANULATED_WAVEFRONT_SGPR_COUNT in
compute_pgm_rsrc1 for GFX6-GFX9.

	.amdhsa_float_round_mode_32

	0

	GFX6-GFX9

	Controls FLOAT_ROUND_MODE_32 in
compute_pgm_rsrc1 for GFX6-GFX9.
Possible values are defined in
Floating Point Rounding Mode Enumeration Values.

	.amdhsa_float_round_mode_16_64

	0

	GFX6-GFX9

	Controls FLOAT_ROUND_MODE_16_64 in
compute_pgm_rsrc1 for GFX6-GFX9.
Possible values are defined in
Floating Point Rounding Mode Enumeration Values.

	.amdhsa_float_denorm_mode_32

	0

	GFX6-GFX9

	Controls FLOAT_DENORM_MODE_32 in
compute_pgm_rsrc1 for GFX6-GFX9.
Possible values are defined in
Floating Point Denorm Mode Enumeration Values.

	.amdhsa_float_denorm_mode_16_64

	3

	GFX6-GFX9

	Controls FLOAT_DENORM_MODE_16_64 in
compute_pgm_rsrc1 for GFX6-GFX9.
Possible values are defined in
Floating Point Denorm Mode Enumeration Values.

	.amdhsa_dx10_clamp

	1

	GFX6-GFX9

	Controls ENABLE_DX10_CLAMP in
compute_pgm_rsrc1 for GFX6-GFX9.

	.amdhsa_ieee_mode

	1

	GFX6-GFX9

	Controls ENABLE_IEEE_MODE in
compute_pgm_rsrc1 for GFX6-GFX9.

	.amdhsa_fp16_overflow

	0

	GFX9

	Controls FP16_OVFL in
compute_pgm_rsrc1 for GFX6-GFX9.

	.amdhsa_exception_fp_ieee_invalid_op

	0

	GFX6-GFX9

	Controls ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION in
compute_pgm_rsrc2 for GFX6-GFX9.

	.amdhsa_exception_fp_denorm_src

	0

	GFX6-GFX9

	Controls ENABLE_EXCEPTION_FP_DENORMAL_SOURCE in
compute_pgm_rsrc2 for GFX6-GFX9.

	.amdhsa_exception_fp_ieee_div_zero

	0

	GFX6-GFX9

	Controls ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO in
compute_pgm_rsrc2 for GFX6-GFX9.

	.amdhsa_exception_fp_ieee_overflow

	0

	GFX6-GFX9

	Controls ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW in
compute_pgm_rsrc2 for GFX6-GFX9.

	.amdhsa_exception_fp_ieee_underflow

	0

	GFX6-GFX9

	Controls ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW in
compute_pgm_rsrc2 for GFX6-GFX9.

	.amdhsa_exception_fp_ieee_inexact

	0

	GFX6-GFX9

	Controls ENABLE_EXCEPTION_IEEE_754_FP_INEXACT in
compute_pgm_rsrc2 for GFX6-GFX9.

	.amdhsa_exception_int_div_zero

	0

	GFX6-GFX9

	Controls ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO in
compute_pgm_rsrc2 for GFX6-GFX9.

Example HSA Source Code (-mattr=+code-object-v3)

Here is an example of a minimal assembly source file, defining one HSA kernel:

.amdgcn_target "amdgcn-amd-amdhsa--gfx900+xnack" // optional

.text
.globl hello_world
.p2align 8
.type hello_world,@function
hello_world:
 s_load_dwordx2 s[0:1], s[0:1] 0x0
 v_mov_b32 v0, 3.14159
 s_waitcnt lgkmcnt(0)
 v_mov_b32 v1, s0
 v_mov_b32 v2, s1
 flat_store_dword v[1:2], v0
 s_endpgm
.Lfunc_end0:
 .size hello_world, .Lfunc_end0-hello_world

.rodata
.p2align 6
.amdhsa_kernel hello_world
 .amdhsa_user_sgpr_kernarg_segment_ptr 1
 .amdhsa_next_free_vgpr .amdgcn.next_free_vgpr
 .amdhsa_next_free_sgpr .amdgcn.next_free_sgpr
.end_amdhsa_kernel

Additional Documentation

	AMD-RADEON-HD-2000-3000

	AMD R6xx shader ISA [http://developer.amd.com/wordpress/media/2012/10/R600_Instruction_Set_Architecture.pdf]

	AMD-RADEON-HD-4000

	AMD R7xx shader ISA [http://developer.amd.com/wordpress/media/2012/10/R700-Family_Instruction_Set_Architecture.pdf]

	AMD-RADEON-HD-5000

	AMD Evergreen shader ISA [http://developer.amd.com/wordpress/media/2012/10/AMD_Evergreen-Family_Instruction_Set_Architecture.pdf]

	AMD-RADEON-HD-6000

	AMD Cayman/Trinity shader ISA [http://developer.amd.com/wordpress/media/2012/10/AMD_HD_6900_Series_Instruction_Set_Architecture.pdf]

	AMD-GCN-GFX6(1,2)

	AMD Southern Islands Series ISA [http://developer.amd.com/wordpress/media/2012/12/AMD_Southern_Islands_Instruction_Set_Architecture.pdf]

	AMD-GCN-GFX7(1,2)

	AMD Sea Islands Series ISA [http://developer.amd.com/wordpress/media/2013/07/AMD_Sea_Islands_Instruction_Set_Architecture.pdf]

	AMD-GCN-GFX8(1,2)

	AMD GCN3 Instruction Set Architecture [http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_GCN3_Instruction_Set_Architecture_rev1.1.pdf]

	AMD-GCN-GFX9(1,2)

	AMD “Vega” Instruction Set Architecture [http://developer.amd.com/wordpress/media/2013/12/Vega_Shader_ISA_28July2017.pdf]

	AMD-ROCm(1,2,3,4)

	ROCm: Open Platform for Development, Discovery and Education Around GPU Computing [http://gpuopen.com/compute-product/rocm/]

	AMD-ROCm-github(1,2)

	ROCm github [http://github.com/RadeonOpenCompute]

	HSA(1,2,3,4,5,6,7,8,9)

	Heterogeneous System Architecture (HSA) Foundation [http://www.hsafoundation.com/]

	ELF(1,2)

	Executable and Linkable Format (ELF) [http://www.sco.com/developers/gabi/]

	DWARF

	DWARF Debugging Information Format [http://dwarfstd.org/]

	YAML

	YAML Ain’t Markup Language (YAML™) Version 1.2 [http://www.yaml.org/spec/1.2/spec.html]

	OpenCL(1,2)

	The OpenCL Specification Version 2.0 [http://www.khronos.org/registry/cl/specs/opencl-2.0.pdf]

	HRF

	Heterogeneous-race-free Memory Models [http://benedictgaster.org/wp-content/uploads/2014/01/asplos269-FINAL.pdf]

	CLANG-ATTR(1,2,3,4)

	Attributes in Clang [http://clang.llvm.org/docs/AttributeReference.html]

 Syntax of GFX7 Instructions

Syntax of GFX7 Instructions

	DS

	EXP

	FLAT

	MIMG

	MUBUF

	SMRD

	SOP1

	SOP2

	SOPC

	SOPK

	SOPP

	VINTRP

	VOP1

	VOP2

	VOP3

	VOPC

DS

ds_add_rtn_u32 dst, src0, src1 ds_offset16 gds
ds_add_rtn_u64 dst, src0, src1 ds_offset16 gds
ds_add_src2_u32 src0 ds_offset16 gds
ds_add_src2_u64 src0 ds_offset16 gds
ds_add_u32 src0, src1 ds_offset16 gds
ds_add_u64 src0, src1 ds_offset16 gds
ds_and_b32 src0, src1 ds_offset16 gds
ds_and_b64 src0, src1 ds_offset16 gds
ds_and_rtn_b32 dst, src0, src1 ds_offset16 gds
ds_and_rtn_b64 dst, src0, src1 ds_offset16 gds
ds_and_src2_b32 src0 ds_offset16 gds
ds_and_src2_b64 src0 ds_offset16 gds
ds_append dst ds_offset16 gds
ds_cmpst_b32 src0, src1, src2 ds_offset16 gds
ds_cmpst_b64 src0, src1, src2 ds_offset16 gds
ds_cmpst_f32 src0, src1, src2 ds_offset16 gds
ds_cmpst_f64 src0, src1, src2 ds_offset16 gds
ds_cmpst_rtn_b32 dst, src0, src1, src2 ds_offset16 gds
ds_cmpst_rtn_b64 dst, src0, src1, src2 ds_offset16 gds
ds_cmpst_rtn_f32 dst, src0, src1, src2 ds_offset16 gds
ds_cmpst_rtn_f64 dst, src0, src1, src2 ds_offset16 gds
ds_condxchg32_rtn_b64 dst, src0, src1 ds_offset16 gds
ds_consume dst ds_offset16 gds
ds_dec_rtn_u32 dst, src0, src1 ds_offset16 gds
ds_dec_rtn_u64 dst, src0, src1 ds_offset16 gds
ds_dec_src2_u32 src0 ds_offset16 gds
ds_dec_src2_u64 src0 ds_offset16 gds
ds_dec_u32 src0, src1 ds_offset16 gds
ds_dec_u64 src0, src1 ds_offset16 gds
ds_gws_barrier src0 ds_offset16 gds
ds_gws_init src0 ds_offset16 gds
ds_gws_sema_br src0 ds_offset16 gds
ds_gws_sema_p src0 ds_offset16 gds
ds_gws_sema_release_all src0 ds_offset16 gds
ds_gws_sema_v src0 ds_offset16 gds
ds_inc_rtn_u32 dst, src0, src1 ds_offset16 gds
ds_inc_rtn_u64 dst, src0, src1 ds_offset16 gds
ds_inc_src2_u32 src0 ds_offset16 gds
ds_inc_src2_u64 src0 ds_offset16 gds
ds_inc_u32 src0, src1 ds_offset16 gds
ds_inc_u64 src0, src1 ds_offset16 gds
ds_max_f32 src0, src1 ds_offset16 gds
ds_max_f64 src0, src1 ds_offset16 gds
ds_max_i32 src0, src1 ds_offset16 gds
ds_max_i64 src0, src1 ds_offset16 gds
ds_max_rtn_f32 dst, src0, src1 ds_offset16 gds
ds_max_rtn_f64 dst, src0, src1 ds_offset16 gds
ds_max_rtn_i32 dst, src0, src1 ds_offset16 gds
ds_max_rtn_i64 dst, src0, src1 ds_offset16 gds
ds_max_rtn_u32 dst, src0, src1 ds_offset16 gds
ds_max_rtn_u64 dst, src0, src1 ds_offset16 gds
ds_max_src2_f32 src0 ds_offset16 gds
ds_max_src2_f64 src0 ds_offset16 gds
ds_max_src2_i32 src0 ds_offset16 gds
ds_max_src2_i64 src0 ds_offset16 gds
ds_max_src2_u32 src0 ds_offset16 gds
ds_max_src2_u64 src0 ds_offset16 gds
ds_max_u32 src0, src1 ds_offset16 gds
ds_max_u64 src0, src1 ds_offset16 gds
ds_min_f32 src0, src1 ds_offset16 gds
ds_min_f64 src0, src1 ds_offset16 gds
ds_min_i32 src0, src1 ds_offset16 gds
ds_min_i64 src0, src1 ds_offset16 gds
ds_min_rtn_f32 dst, src0, src1 ds_offset16 gds
ds_min_rtn_f64 dst, src0, src1 ds_offset16 gds
ds_min_rtn_i32 dst, src0, src1 ds_offset16 gds
ds_min_rtn_i64 dst, src0, src1 ds_offset16 gds
ds_min_rtn_u32 dst, src0, src1 ds_offset16 gds
ds_min_rtn_u64 dst, src0, src1 ds_offset16 gds
ds_min_src2_f32 src0 ds_offset16 gds
ds_min_src2_f64 src0 ds_offset16 gds
ds_min_src2_i32 src0 ds_offset16 gds
ds_min_src2_i64 src0 ds_offset16 gds
ds_min_src2_u32 src0 ds_offset16 gds
ds_min_src2_u64 src0 ds_offset16 gds
ds_min_u32 src0, src1 ds_offset16 gds
ds_min_u64 src0, src1 ds_offset16 gds
ds_mskor_b32 src0, src1, src2 ds_offset16 gds
ds_mskor_b64 src0, src1, src2 ds_offset16 gds
ds_mskor_rtn_b32 dst, src0, src1, src2 ds_offset16 gds
ds_mskor_rtn_b64 dst, src0, src1, src2 ds_offset16 gds
ds_nop src0
ds_or_b32 src0, src1 ds_offset16 gds
ds_or_b64 src0, src1 ds_offset16 gds
ds_or_rtn_b32 dst, src0, src1 ds_offset16 gds
ds_or_rtn_b64 dst, src0, src1 ds_offset16 gds
ds_or_src2_b32 src0 ds_offset16 gds
ds_or_src2_b64 src0 ds_offset16 gds
ds_ordered_count dst, src0 ds_offset16 gds
ds_read2_b32 dst, src0 ds_offset8 ds_offset8 gds
ds_read2_b64 dst, src0 ds_offset8 ds_offset8 gds
ds_read2st64_b32 dst, src0 ds_offset8 ds_offset8 gds
ds_read2st64_b64 dst, src0 ds_offset8 ds_offset8 gds
ds_read_b128 dst, src0 ds_offset16 gds
ds_read_b32 dst, src0 ds_offset16 gds
ds_read_b64 dst, src0 ds_offset16 gds
ds_read_b96 dst, src0 ds_offset16 gds
ds_read_i16 dst, src0 ds_offset16 gds
ds_read_i8 dst, src0 ds_offset16 gds
ds_read_u16 dst, src0 ds_offset16 gds
ds_read_u8 dst, src0 ds_offset16 gds
ds_rsub_rtn_u32 dst, src0, src1 ds_offset16 gds
ds_rsub_rtn_u64 dst, src0, src1 ds_offset16 gds
ds_rsub_src2_u32 src0 ds_offset16 gds
ds_rsub_src2_u64 src0 ds_offset16 gds
ds_rsub_u32 src0, src1 ds_offset16 gds
ds_rsub_u64 src0, src1 ds_offset16 gds
ds_sub_rtn_u32 dst, src0, src1 ds_offset16 gds
ds_sub_rtn_u64 dst, src0, src1 ds_offset16 gds
ds_sub_src2_u32 src0 ds_offset16 gds
ds_sub_src2_u64 src0 ds_offset16 gds
ds_sub_u32 src0, src1 ds_offset16 gds
ds_sub_u64 src0, src1 ds_offset16 gds
ds_swizzle_b32 dst, src0 sw_offset16 gds
ds_wrap_rtn_b32 dst, src0, src1, src2 ds_offset16 gds
ds_write2_b32 src0, src1, src2 ds_offset8 ds_offset8 gds
ds_write2_b64 src0, src1, src2 ds_offset8 ds_offset8 gds
ds_write2st64_b32 src0, src1, src2 ds_offset8 ds_offset8 gds
ds_write2st64_b64 src0, src1, src2 ds_offset8 ds_offset8 gds
ds_write_b128 src0, src1 ds_offset16 gds
ds_write_b16 src0, src1 ds_offset16 gds
ds_write_b32 src0, src1 ds_offset16 gds
ds_write_b64 src0, src1 ds_offset16 gds
ds_write_b8 src0, src1 ds_offset16 gds
ds_write_b96 src0, src1 ds_offset16 gds
ds_write_src2_b32 src0 ds_offset16 gds
ds_write_src2_b64 src0 ds_offset16 gds
ds_wrxchg2_rtn_b32 dst, src0, src1, src2 ds_offset8 ds_offset8 gds
ds_wrxchg2_rtn_b64 dst, src0, src1, src2 ds_offset8 ds_offset8 gds
ds_wrxchg2st64_rtn_b32 dst, src0, src1, src2 ds_offset8 ds_offset8 gds
ds_wrxchg2st64_rtn_b64 dst, src0, src1, src2 ds_offset8 ds_offset8 gds
ds_wrxchg_rtn_b32 dst, src0, src1 ds_offset16 gds
ds_wrxchg_rtn_b64 dst, src0, src1 ds_offset16 gds
ds_xor_b32 src0, src1 ds_offset16 gds
ds_xor_b64 src0, src1 ds_offset16 gds
ds_xor_rtn_b32 dst, src0, src1 ds_offset16 gds
ds_xor_rtn_b64 dst, src0, src1 ds_offset16 gds
ds_xor_src2_b32 src0 ds_offset16 gds
ds_xor_src2_b64 src0 ds_offset16 gds

EXP

exp dst, src0, src1, src2, src3 done compr vm

FLAT

flat_atomic_add dst, src0, src1 glc slc
flat_atomic_add_x2 dst, src0, src1 glc slc
flat_atomic_and dst, src0, src1 glc slc
flat_atomic_and_x2 dst, src0, src1 glc slc
flat_atomic_cmpswap dst, src0, src1 glc slc
flat_atomic_cmpswap_x2 dst, src0, src1 glc slc
flat_atomic_dec dst, src0, src1 glc slc
flat_atomic_dec_x2 dst, src0, src1 glc slc
flat_atomic_fcmpswap dst, src0, src1 glc slc
flat_atomic_fcmpswap_x2 dst, src0, src1 glc slc
flat_atomic_fmax dst, src0, src1 glc slc
flat_atomic_fmax_x2 dst, src0, src1 glc slc
flat_atomic_fmin dst, src0, src1 glc slc
flat_atomic_fmin_x2 dst, src0, src1 glc slc
flat_atomic_inc dst, src0, src1 glc slc
flat_atomic_inc_x2 dst, src0, src1 glc slc
flat_atomic_or dst, src0, src1 glc slc
flat_atomic_or_x2 dst, src0, src1 glc slc
flat_atomic_smax dst, src0, src1 glc slc
flat_atomic_smax_x2 dst, src0, src1 glc slc
flat_atomic_smin dst, src0, src1 glc slc
flat_atomic_smin_x2 dst, src0, src1 glc slc
flat_atomic_sub dst, src0, src1 glc slc
flat_atomic_sub_x2 dst, src0, src1 glc slc
flat_atomic_swap dst, src0, src1 glc slc
flat_atomic_swap_x2 dst, src0, src1 glc slc
flat_atomic_umax dst, src0, src1 glc slc
flat_atomic_umax_x2 dst, src0, src1 glc slc
flat_atomic_umin dst, src0, src1 glc slc
flat_atomic_umin_x2 dst, src0, src1 glc slc
flat_atomic_xor dst, src0, src1 glc slc
flat_atomic_xor_x2 dst, src0, src1 glc slc
flat_load_dword dst, src0 glc slc
flat_load_dwordx2 dst, src0 glc slc
flat_load_dwordx3 dst, src0 glc slc
flat_load_dwordx4 dst, src0 glc slc
flat_load_sbyte dst, src0 glc slc
flat_load_sshort dst, src0 glc slc
flat_load_ubyte dst, src0 glc slc
flat_load_ushort dst, src0 glc slc
flat_store_byte src0, src1 glc slc
flat_store_dword src0, src1 glc slc
flat_store_dwordx2 src0, src1 glc slc
flat_store_dwordx3 src0, src1 glc slc
flat_store_dwordx4 src0, src1 glc slc
flat_store_short src0, src1 glc slc

MIMG

image_atomic_add src0, src1, src2 dmask unorm glc slc lwe da
image_atomic_and src0, src1, src2 dmask unorm glc slc lwe da
image_atomic_cmpswap src0, src1, src2 dmask unorm glc slc lwe da
image_atomic_dec src0, src1, src2 dmask unorm glc slc lwe da
image_atomic_inc src0, src1, src2 dmask unorm glc slc lwe da
image_atomic_or src0, src1, src2 dmask unorm glc slc lwe da
image_atomic_smax src0, src1, src2 dmask unorm glc slc lwe da
image_atomic_smin src0, src1, src2 dmask unorm glc slc lwe da
image_atomic_sub src0, src1, src2 dmask unorm glc slc lwe da
image_atomic_swap src0, src1, src2 dmask unorm glc slc lwe da
image_atomic_umax src0, src1, src2 dmask unorm glc slc lwe da
image_atomic_umin src0, src1, src2 dmask unorm glc slc lwe da
image_atomic_xor src0, src1, src2 dmask unorm glc slc lwe da
image_gather4 dst, src0, src1, src2 dmask unorm glc slc lwe da
image_gather4_b dst, src0, src1, src2 dmask unorm glc slc lwe da
image_gather4_b_cl dst, src0, src1, src2 dmask unorm glc slc lwe da
image_gather4_b_cl_o dst, src0, src1, src2 dmask unorm glc slc lwe da
image_gather4_b_o dst, src0, src1, src2 dmask unorm glc slc lwe da
image_gather4_c dst, src0, src1, src2 dmask unorm glc slc lwe da
image_gather4_c_b dst, src0, src1, src2 dmask unorm glc slc lwe da
image_gather4_c_b_cl dst, src0, src1, src2 dmask unorm glc slc lwe da
image_gather4_c_b_cl_o dst, src0, src1, src2 dmask unorm glc slc lwe da
image_gather4_c_b_o dst, src0, src1, src2 dmask unorm glc slc lwe da
image_gather4_c_cl dst, src0, src1, src2 dmask unorm glc slc lwe da
image_gather4_c_cl_o dst, src0, src1, src2 dmask unorm glc slc lwe da
image_gather4_c_l dst, src0, src1, src2 dmask unorm glc slc lwe da
image_gather4_c_l_o dst, src0, src1, src2 dmask unorm glc slc lwe da
image_gather4_c_lz dst, src0, src1, src2 dmask unorm glc slc lwe da
image_gather4_c_lz_o dst, src0, src1, src2 dmask unorm glc slc lwe da
image_gather4_c_o dst, src0, src1, src2 dmask unorm glc slc lwe da
image_gather4_cl dst, src0, src1, src2 dmask unorm glc slc lwe da
image_gather4_cl_o dst, src0, src1, src2 dmask unorm glc slc lwe da
image_gather4_l dst, src0, src1, src2 dmask unorm glc slc lwe da
image_gather4_l_o dst, src0, src1, src2 dmask unorm glc slc lwe da
image_gather4_lz dst, src0, src1, src2 dmask unorm glc slc lwe da
image_gather4_lz_o dst, src0, src1, src2 dmask unorm glc slc lwe da
image_gather4_o dst, src0, src1, src2 dmask unorm glc slc lwe da
image_get_lod dst, src0, src1, src2 dmask unorm glc slc tfe lwe da
image_get_resinfo dst, src0, src1 dmask unorm glc slc tfe lwe da
image_load dst, src0, src1 dmask unorm glc slc tfe lwe da
image_load_mip dst, src0, src1 dmask unorm glc slc tfe lwe da
image_load_mip_pck dst, src0, src1 dmask unorm glc slc tfe lwe da
image_load_mip_pck_sgn dst, src0, src1 dmask unorm glc slc tfe lwe da
image_load_pck dst, src0, src1 dmask unorm glc slc tfe lwe da
image_load_pck_sgn dst, src0, src1 dmask unorm glc slc tfe lwe da
image_sample dst, src0, src1, src2 dmask unorm glc slc tfe lwe da
image_sample_b dst, src0, src1, src2 dmask unorm glc slc tfe lwe da
image_sample_b_cl dst, src0, src1, src2 dmask unorm glc slc tfe lwe da
image_sample_c dst, src0, src1, src2 dmask unorm glc slc tfe lwe da
image_sample_c_b dst, src0, src1, src2 dmask unorm glc slc tfe lwe da
image_sample_c_b_cl dst, src0, src1, src2 dmask unorm glc slc tfe lwe da
image_sample_c_cd dst, src0, src1, src2 dmask unorm glc slc tfe lwe da
image_sample_c_cl dst, src0, src1, src2 dmask unorm glc slc tfe lwe da
image_sample_c_d dst, src0, src1, src2 dmask unorm glc slc tfe lwe da
image_sample_c_l dst, src0, src1, src2 dmask unorm glc slc tfe lwe da
image_sample_c_lz dst, src0, src1, src2 dmask unorm glc slc tfe lwe da
image_sample_cl dst, src0, src1, src2 dmask unorm glc slc tfe lwe da
image_sample_l dst, src0, src1, src2 dmask unorm glc slc tfe lwe da
image_sample_lz dst, src0, src1, src2 dmask unorm glc slc tfe lwe da
image_store src0, src1, src2 dmask unorm glc slc lwe da
image_store_mip src0, src1, src2 dmask unorm glc slc lwe da
image_store_mip_pck src0, src1, src2 dmask unorm glc slc lwe da
image_store_pck src0, src1, src2 dmask unorm glc slc lwe da

MUBUF

buffer_atomic_add src0, src1, src2, src3 idxen offen addr64 buf_offset12 glc slc
buffer_atomic_add_x2 src0, src1, src2, src3 idxen offen addr64 buf_offset12 glc slc
buffer_atomic_and src0, src1, src2, src3 idxen offen addr64 buf_offset12 glc slc
buffer_atomic_and_x2 src0, src1, src2, src3 idxen offen addr64 buf_offset12 glc slc
buffer_atomic_cmpswap src0, src1, src2, src3 idxen offen addr64 buf_offset12 glc slc
buffer_atomic_cmpswap_x2 src0, src1, src2, src3 idxen offen addr64 buf_offset12 glc slc
buffer_atomic_dec src0, src1, src2, src3 idxen offen addr64 buf_offset12 glc slc
buffer_atomic_dec_x2 src0, src1, src2, src3 idxen offen addr64 buf_offset12 glc slc
buffer_atomic_inc src0, src1, src2, src3 idxen offen addr64 buf_offset12 glc slc
buffer_atomic_inc_x2 src0, src1, src2, src3 idxen offen addr64 buf_offset12 glc slc
buffer_atomic_or src0, src1, src2, src3 idxen offen addr64 buf_offset12 glc slc
buffer_atomic_or_x2 src0, src1, src2, src3 idxen offen addr64 buf_offset12 glc slc
buffer_atomic_smax src0, src1, src2, src3 idxen offen addr64 buf_offset12 glc slc
buffer_atomic_smax_x2 src0, src1, src2, src3 idxen offen addr64 buf_offset12 glc slc
buffer_atomic_smin src0, src1, src2, src3 idxen offen addr64 buf_offset12 glc slc
buffer_atomic_smin_x2 src0, src1, src2, src3 idxen offen addr64 buf_offset12 glc slc
buffer_atomic_sub src0, src1, src2, src3 idxen offen addr64 buf_offset12 glc slc
buffer_atomic_sub_x2 src0, src1, src2, src3 idxen offen addr64 buf_offset12 glc slc
buffer_atomic_swap src0, src1, src2, src3 idxen offen addr64 buf_offset12 glc slc
buffer_atomic_swap_x2 src0, src1, src2, src3 idxen offen addr64 buf_offset12 glc slc
buffer_atomic_umax src0, src1, src2, src3 idxen offen addr64 buf_offset12 glc slc
buffer_atomic_umax_x2 src0, src1, src2, src3 idxen offen addr64 buf_offset12 glc slc
buffer_atomic_umin src0, src1, src2, src3 idxen offen addr64 buf_offset12 glc slc
buffer_atomic_umin_x2 src0, src1, src2, src3 idxen offen addr64 buf_offset12 glc slc
buffer_atomic_xor src0, src1, src2, src3 idxen offen addr64 buf_offset12 glc slc
buffer_atomic_xor_x2 src0, src1, src2, src3 idxen offen addr64 buf_offset12 glc slc
buffer_load_dword dst, src0, src1, src2 idxen offen addr64 buf_offset12 glc slc lds
buffer_load_dwordx2 dst, src0, src1, src2 idxen offen addr64 buf_offset12 glc slc
buffer_load_dwordx3 dst, src0, src1, src2 idxen offen addr64 buf_offset12 glc slc
buffer_load_dwordx4 dst, src0, src1, src2 idxen offen addr64 buf_offset12 glc slc
buffer_load_format_x dst, src0, src1, src2 idxen offen addr64 buf_offset12 glc slc lds
buffer_load_format_xy dst, src0, src1, src2 idxen offen addr64 buf_offset12 glc slc
buffer_load_format_xyz dst, src0, src1, src2 idxen offen addr64 buf_offset12 glc slc
buffer_load_format_xyzw dst, src0, src1, src2 idxen offen addr64 buf_offset12 glc slc
buffer_load_sbyte dst, src0, src1, src2 idxen offen addr64 buf_offset12 glc slc lds
buffer_load_sshort dst, src0, src1, src2 idxen offen addr64 buf_offset12 glc slc lds
buffer_load_ubyte dst, src0, src1, src2 idxen offen addr64 buf_offset12 glc slc lds
buffer_load_ushort dst, src0, src1, src2 idxen offen addr64 buf_offset12 glc slc lds
buffer_store_byte src0, src1, src2, src3 idxen offen addr64 buf_offset12 glc slc
buffer_store_dword src0, src1, src2, src3 idxen offen addr64 buf_offset12 glc slc
buffer_store_dwordx2 src0, src1, src2, src3 idxen offen addr64 buf_offset12 glc slc
buffer_store_dwordx3 src0, src1, src2, src3 idxen offen addr64 buf_offset12 glc slc
buffer_store_dwordx4 src0, src1, src2, src3 idxen offen addr64 buf_offset12 glc slc
buffer_store_format_x src0, src1, src2, src3 idxen offen addr64 buf_offset12 glc slc
buffer_store_format_xy src0, src1, src2, src3 idxen offen addr64 buf_offset12 glc slc
buffer_store_format_xyz src0, src1, src2, src3 idxen offen addr64 buf_offset12 glc slc
buffer_store_format_xyzw src0, src1, src2, src3 idxen offen addr64 buf_offset12 glc slc
buffer_store_short src0, src1, src2, src3 idxen offen addr64 buf_offset12 glc slc
buffer_wbinvl1
buffer_wbinvl1_vol

SMRD

s_buffer_load_dword dst, src0, src1
s_buffer_load_dwordx16 dst, src0, src1
s_buffer_load_dwordx2 dst, src0, src1
s_buffer_load_dwordx4 dst, src0, src1
s_buffer_load_dwordx8 dst, src0, src1
s_dcache_inv
s_dcache_inv_vol
s_load_dword dst, src0, src1
s_load_dwordx16 dst, src0, src1
s_load_dwordx2 dst, src0, src1
s_load_dwordx4 dst, src0, src1
s_load_dwordx8 dst, src0, src1
s_memtime dst

SOP1

s_abs_i32 dst, src0
s_and_saveexec_b64 dst, src0
s_andn2_saveexec_b64 dst, src0
s_bcnt0_i32_b32 dst, src0
s_bcnt0_i32_b64 dst, src0
s_bcnt1_i32_b32 dst, src0
s_bcnt1_i32_b64 dst, src0
s_bitset0_b32 dst, src0
s_bitset0_b64 dst, src0
s_bitset1_b32 dst, src0
s_bitset1_b64 dst, src0
s_brev_b32 dst, src0
s_brev_b64 dst, src0
s_cbranch_join src0
s_cmov_b32 dst, src0
s_cmov_b64 dst, src0
s_ff0_i32_b32 dst, src0
s_ff0_i32_b64 dst, src0
s_ff1_i32_b32 dst, src0
s_ff1_i32_b64 dst, src0
s_flbit_i32 dst, src0
s_flbit_i32_b32 dst, src0
s_flbit_i32_b64 dst, src0
s_flbit_i32_i64 dst, src0
s_getpc_b64 dst
s_mov_b32 dst, src0
s_mov_b64 dst, src0
s_mov_fed_b32 dst, src0
s_movreld_b32 dst, src0
s_movreld_b64 dst, src0
s_movrels_b32 dst, src0
s_movrels_b64 dst, src0
s_nand_saveexec_b64 dst, src0
s_nor_saveexec_b64 dst, src0
s_not_b32 dst, src0
s_not_b64 dst, src0
s_or_saveexec_b64 dst, src0
s_orn2_saveexec_b64 dst, src0
s_quadmask_b32 dst, src0
s_quadmask_b64 dst, src0
s_rfe_b64 src0
s_setpc_b64 src0
s_sext_i32_i16 dst, src0
s_sext_i32_i8 dst, src0
s_swappc_b64 dst, src0
s_wqm_b32 dst, src0
s_wqm_b64 dst, src0
s_xnor_saveexec_b64 dst, src0
s_xor_saveexec_b64 dst, src0

SOP2

s_absdiff_i32 dst, src0, src1
s_add_i32 dst, src0, src1
s_add_u32 dst, src0, src1
s_addc_u32 dst, src0, src1
s_and_b32 dst, src0, src1
s_and_b64 dst, src0, src1
s_andn2_b32 dst, src0, src1
s_andn2_b64 dst, src0, src1
s_ashr_i32 dst, src0, src1
s_ashr_i64 dst, src0, src1
s_bfe_i32 dst, src0, src1
s_bfe_i64 dst, src0, src1
s_bfe_u32 dst, src0, src1
s_bfe_u64 dst, src0, src1
s_bfm_b32 dst, src0, src1
s_bfm_b64 dst, src0, src1
s_cbranch_g_fork src0, src1
s_cselect_b32 dst, src0, src1
s_cselect_b64 dst, src0, src1
s_lshl_b32 dst, src0, src1
s_lshl_b64 dst, src0, src1
s_lshr_b32 dst, src0, src1
s_lshr_b64 dst, src0, src1
s_max_i32 dst, src0, src1
s_max_u32 dst, src0, src1
s_min_i32 dst, src0, src1
s_min_u32 dst, src0, src1
s_mul_i32 dst, src0, src1
s_nand_b32 dst, src0, src1
s_nand_b64 dst, src0, src1
s_nor_b32 dst, src0, src1
s_nor_b64 dst, src0, src1
s_or_b32 dst, src0, src1
s_or_b64 dst, src0, src1
s_orn2_b32 dst, src0, src1
s_orn2_b64 dst, src0, src1
s_sub_i32 dst, src0, src1
s_sub_u32 dst, src0, src1
s_subb_u32 dst, src0, src1
s_xnor_b32 dst, src0, src1
s_xnor_b64 dst, src0, src1
s_xor_b32 dst, src0, src1
s_xor_b64 dst, src0, src1

SOPC

s_bitcmp0_b32 src0, src1
s_bitcmp0_b64 src0, src1
s_bitcmp1_b32 src0, src1
s_bitcmp1_b64 src0, src1
s_cmp_eq_i32 src0, src1
s_cmp_eq_u32 src0, src1
s_cmp_ge_i32 src0, src1
s_cmp_ge_u32 src0, src1
s_cmp_gt_i32 src0, src1
s_cmp_gt_u32 src0, src1
s_cmp_le_i32 src0, src1
s_cmp_le_u32 src0, src1
s_cmp_lg_i32 src0, src1
s_cmp_lg_u32 src0, src1
s_cmp_lt_i32 src0, src1
s_cmp_lt_u32 src0, src1
s_setvskip src0, src1

SOPK

s_addk_i32 dst, src0
s_cbranch_i_fork src0, src1
s_cmovk_i32 dst, src0
s_cmpk_eq_i32 src0, src1
s_cmpk_eq_u32 src0, src1
s_cmpk_ge_i32 src0, src1
s_cmpk_ge_u32 src0, src1
s_cmpk_gt_i32 src0, src1
s_cmpk_gt_u32 src0, src1
s_cmpk_le_i32 src0, src1
s_cmpk_le_u32 src0, src1
s_cmpk_lg_i32 src0, src1
s_cmpk_lg_u32 src0, src1
s_cmpk_lt_i32 src0, src1
s_cmpk_lt_u32 src0, src1
s_getreg_b32 dst, src0
s_movk_i32 dst, src0
s_mulk_i32 dst, src0
s_setreg_b32 dst, src0
s_setreg_imm32_b32 dst, src0

SOPP

s_barrier
s_branch src0
s_cbranch_cdbgsys src0
s_cbranch_cdbgsys_and_user src0
s_cbranch_cdbgsys_or_user src0
s_cbranch_cdbguser src0
s_cbranch_execnz src0
s_cbranch_execz src0
s_cbranch_scc0 src0
s_cbranch_scc1 src0
s_cbranch_vccnz src0
s_cbranch_vccz src0
s_decperflevel src0
s_endpgm
s_icache_inv
s_incperflevel src0
s_nop src0
s_sendmsg src0
s_sendmsghalt src0
s_sethalt src0
s_setkill src0
s_setprio src0
s_sleep src0
s_trap src0
s_ttracedata
s_waitcnt src0

VINTRP

v_interp_mov_f32 dst, src0, src1
v_interp_p1_f32 dst, src0, src1
v_interp_p2_f32 dst, src0, src1

VOP1

v_bfrev_b32 dst, src0
v_ceil_f32 dst, src0
v_ceil_f64 dst, src0
v_clrexcp
v_cos_f32 dst, src0
v_cvt_f16_f32 dst, src0
v_cvt_f32_f16 dst, src0
v_cvt_f32_f64 dst, src0
v_cvt_f32_i32 dst, src0
v_cvt_f32_u32 dst, src0
v_cvt_f32_ubyte0 dst, src0
v_cvt_f32_ubyte1 dst, src0
v_cvt_f32_ubyte2 dst, src0
v_cvt_f32_ubyte3 dst, src0
v_cvt_f64_f32 dst, src0
v_cvt_f64_i32 dst, src0
v_cvt_f64_u32 dst, src0
v_cvt_flr_i32_f32 dst, src0
v_cvt_i32_f32 dst, src0
v_cvt_i32_f64 dst, src0
v_cvt_off_f32_i4 dst, src0
v_cvt_rpi_i32_f32 dst, src0
v_cvt_u32_f32 dst, src0
v_cvt_u32_f64 dst, src0
v_exp_f32 dst, src0
v_exp_legacy_f32 dst, src0
v_ffbh_i32 dst, src0
v_ffbh_u32 dst, src0
v_ffbl_b32 dst, src0
v_floor_f32 dst, src0
v_floor_f64 dst, src0
v_fract_f32 dst, src0
v_fract_f64 dst, src0
v_frexp_exp_i32_f32 dst, src0
v_frexp_exp_i32_f64 dst, src0
v_frexp_mant_f32 dst, src0
v_frexp_mant_f64 dst, src0
v_log_clamp_f32 dst, src0
v_log_f32 dst, src0
v_log_legacy_f32 dst, src0
v_mov_b32 dst, src0
v_mov_fed_b32 dst, src0
v_movreld_b32 dst, src0
v_movrels_b32 dst, src0
v_movrelsd_b32 dst, src0
v_nop
v_not_b32 dst, src0
v_rcp_clamp_f32 dst, src0
v_rcp_clamp_f64 dst, src0
v_rcp_f32 dst, src0
v_rcp_f64 dst, src0
v_rcp_iflag_f32 dst, src0
v_rcp_legacy_f32 dst, src0
v_readfirstlane_b32 dst, src0
v_rndne_f32 dst, src0
v_rndne_f64 dst, src0
v_rsq_clamp_f32 dst, src0
v_rsq_clamp_f64 dst, src0
v_rsq_f32 dst, src0
v_rsq_f64 dst, src0
v_rsq_legacy_f32 dst, src0
v_sin_f32 dst, src0
v_sqrt_f32 dst, src0
v_sqrt_f64 dst, src0
v_trunc_f32 dst, src0
v_trunc_f64 dst, src0

VOP2

v_add_f32 dst, src0, src1
v_add_i32 dst0, dst1, src0, src1
v_addc_u32 dst0, dst1, src0, src1, src2
v_and_b32 dst, src0, src1
v_ashr_i32 dst, src0, src1
v_ashrrev_i32 dst, src0, src1
v_bcnt_u32_b32 dst, src0, src1
v_bfm_b32 dst, src0, src1
v_cndmask_b32 dst, src0, src1, src2
v_cvt_pk_i16_i32 dst, src0, src1
v_cvt_pk_u16_u32 dst, src0, src1
v_cvt_pkaccum_u8_f32 dst, src0, src1
v_cvt_pknorm_i16_f32 dst, src0, src1
v_cvt_pknorm_u16_f32 dst, src0, src1
v_cvt_pkrtz_f16_f32 dst, src0, src1
v_ldexp_f32 dst, src0, src1
v_lshl_b32 dst, src0, src1
v_lshlrev_b32 dst, src0, src1
v_lshr_b32 dst, src0, src1
v_lshrrev_b32 dst, src0, src1
v_mac_f32 dst, src0, src1
v_mac_legacy_f32 dst, src0, src1
v_madak_f32 dst, src0, src1, src2
v_madmk_f32 dst, src0, src1, src2
v_max_f32 dst, src0, src1
v_max_i32 dst, src0, src1
v_max_legacy_f32 dst, src0, src1
v_max_u32 dst, src0, src1
v_mbcnt_hi_u32_b32 dst, src0, src1
v_mbcnt_lo_u32_b32 dst, src0, src1
v_min_f32 dst, src0, src1
v_min_i32 dst, src0, src1
v_min_legacy_f32 dst, src0, src1
v_min_u32 dst, src0, src1
v_mul_f32 dst, src0, src1
v_mul_hi_i32_i24 dst, src0, src1
v_mul_hi_u32_u24 dst, src0, src1
v_mul_i32_i24 dst, src0, src1
v_mul_legacy_f32 dst, src0, src1
v_mul_u32_u24 dst, src0, src1
v_or_b32 dst, src0, src1
v_readlane_b32 dst, src0, src1
v_sub_f32 dst, src0, src1
v_sub_i32 dst0, dst1, src0, src1
v_subb_u32 dst0, dst1, src0, src1, src2
v_subbrev_u32 dst0, dst1, src0, src1, src2
v_subrev_f32 dst, src0, src1
v_subrev_i32 dst0, dst1, src0, src1
v_writelane_b32 dst, src0, src1
v_xor_b32 dst, src0, src1

VOP3

v_add_f32_e64 dst, src0, src1 clamp omod
v_add_f64 dst, src0, src1 clamp omod
v_add_i32_e64 dst0, dst1, src0, src1 omod
v_addc_u32_e64 dst0, dst1, src0, src1, src2 omod
v_alignbit_b32 dst, src0, src1, src2 omod
v_alignbyte_b32 dst, src0, src1, src2 omod
v_and_b32_e64 dst, src0, src1 omod
v_ashr_i32_e64 dst, src0, src1 omod
v_ashr_i64 dst, src0, src1 omod
v_ashrrev_i32_e64 dst, src0, src1 omod
v_bcnt_u32_b32_e64 dst, src0, src1 omod
v_bfe_i32 dst, src0, src1, src2 omod
v_bfe_u32 dst, src0, src1, src2 omod
v_bfi_b32 dst, src0, src1, src2 omod
v_bfm_b32_e64 dst, src0, src1 omod
v_bfrev_b32_e64 dst, src0 omod
v_ceil_f32_e64 dst, src0 clamp omod
v_ceil_f64_e64 dst, src0 clamp omod
v_clrexcp_e64 omod
v_cmp_class_f32_e64 dst, src0, src1 omod
v_cmp_class_f64_e64 dst, src0, src1 omod
v_cmp_eq_f32_e64 dst, src0, src1 omod
v_cmp_eq_f64_e64 dst, src0, src1 omod
v_cmp_eq_i32_e64 dst, src0, src1 omod
v_cmp_eq_i64_e64 dst, src0, src1 omod
v_cmp_eq_u32_e64 dst, src0, src1 omod
v_cmp_eq_u64_e64 dst, src0, src1 omod
v_cmp_f_f32_e64 dst, src0, src1 omod
v_cmp_f_f64_e64 dst, src0, src1 omod
v_cmp_f_i32_e64 dst, src0, src1 omod
v_cmp_f_i64_e64 dst, src0, src1 omod
v_cmp_f_u32_e64 dst, src0, src1 omod
v_cmp_f_u64_e64 dst, src0, src1 omod
v_cmp_ge_f32_e64 dst, src0, src1 omod
v_cmp_ge_f64_e64 dst, src0, src1 omod
v_cmp_ge_i32_e64 dst, src0, src1 omod
v_cmp_ge_i64_e64 dst, src0, src1 omod
v_cmp_ge_u32_e64 dst, src0, src1 omod
v_cmp_ge_u64_e64 dst, src0, src1 omod
v_cmp_gt_f32_e64 dst, src0, src1 omod
v_cmp_gt_f64_e64 dst, src0, src1 omod
v_cmp_gt_i32_e64 dst, src0, src1 omod
v_cmp_gt_i64_e64 dst, src0, src1 omod
v_cmp_gt_u32_e64 dst, src0, src1 omod
v_cmp_gt_u64_e64 dst, src0, src1 omod
v_cmp_le_f32_e64 dst, src0, src1 omod
v_cmp_le_f64_e64 dst, src0, src1 omod
v_cmp_le_i32_e64 dst, src0, src1 omod
v_cmp_le_i64_e64 dst, src0, src1 omod
v_cmp_le_u32_e64 dst, src0, src1 omod
v_cmp_le_u64_e64 dst, src0, src1 omod
v_cmp_lg_f32_e64 dst, src0, src1 omod
v_cmp_lg_f64_e64 dst, src0, src1 omod
v_cmp_lt_f32_e64 dst, src0, src1 omod
v_cmp_lt_f64_e64 dst, src0, src1 omod
v_cmp_lt_i32_e64 dst, src0, src1 omod
v_cmp_lt_i64_e64 dst, src0, src1 omod
v_cmp_lt_u32_e64 dst, src0, src1 omod
v_cmp_lt_u64_e64 dst, src0, src1 omod
v_cmp_ne_i32_e64 dst, src0, src1 omod
v_cmp_ne_i64_e64 dst, src0, src1 omod
v_cmp_ne_u32_e64 dst, src0, src1 omod
v_cmp_ne_u64_e64 dst, src0, src1 omod
v_cmp_neq_f32_e64 dst, src0, src1 omod
v_cmp_neq_f64_e64 dst, src0, src1 omod
v_cmp_nge_f32_e64 dst, src0, src1 omod
v_cmp_nge_f64_e64 dst, src0, src1 omod
v_cmp_ngt_f32_e64 dst, src0, src1 omod
v_cmp_ngt_f64_e64 dst, src0, src1 omod
v_cmp_nle_f32_e64 dst, src0, src1 omod
v_cmp_nle_f64_e64 dst, src0, src1 omod
v_cmp_nlg_f32_e64 dst, src0, src1 omod
v_cmp_nlg_f64_e64 dst, src0, src1 omod
v_cmp_nlt_f32_e64 dst, src0, src1 omod
v_cmp_nlt_f64_e64 dst, src0, src1 omod
v_cmp_o_f32_e64 dst, src0, src1 omod
v_cmp_o_f64_e64 dst, src0, src1 omod
v_cmp_t_i32_e64 dst, src0, src1 omod
v_cmp_t_i64_e64 dst, src0, src1 omod
v_cmp_t_u32_e64 dst, src0, src1 omod
v_cmp_t_u64_e64 dst, src0, src1 omod
v_cmp_tru_f32_e64 dst, src0, src1 omod
v_cmp_tru_f64_e64 dst, src0, src1 omod
v_cmp_u_f32_e64 dst, src0, src1 omod
v_cmp_u_f64_e64 dst, src0, src1 omod
v_cmps_eq_f32_e64 dst, src0, src1 omod
v_cmps_eq_f64_e64 dst, src0, src1 omod
v_cmps_f_f32_e64 dst, src0, src1 omod
v_cmps_f_f64_e64 dst, src0, src1 omod
v_cmps_ge_f32_e64 dst, src0, src1 omod
v_cmps_ge_f64_e64 dst, src0, src1 omod
v_cmps_gt_f32_e64 dst, src0, src1 omod
v_cmps_gt_f64_e64 dst, src0, src1 omod
v_cmps_le_f32_e64 dst, src0, src1 omod
v_cmps_le_f64_e64 dst, src0, src1 omod
v_cmps_lg_f32_e64 dst, src0, src1 omod
v_cmps_lg_f64_e64 dst, src0, src1 omod
v_cmps_lt_f32_e64 dst, src0, src1 omod
v_cmps_lt_f64_e64 dst, src0, src1 omod
v_cmps_neq_f32_e64 dst, src0, src1 omod
v_cmps_neq_f64_e64 dst, src0, src1 omod
v_cmps_nge_f32_e64 dst, src0, src1 omod
v_cmps_nge_f64_e64 dst, src0, src1 omod
v_cmps_ngt_f32_e64 dst, src0, src1 omod
v_cmps_ngt_f64_e64 dst, src0, src1 omod
v_cmps_nle_f32_e64 dst, src0, src1 omod
v_cmps_nle_f64_e64 dst, src0, src1 omod
v_cmps_nlg_f32_e64 dst, src0, src1 omod
v_cmps_nlg_f64_e64 dst, src0, src1 omod
v_cmps_nlt_f32_e64 dst, src0, src1 omod
v_cmps_nlt_f64_e64 dst, src0, src1 omod
v_cmps_o_f32_e64 dst, src0, src1 omod
v_cmps_o_f64_e64 dst, src0, src1 omod
v_cmps_tru_f32_e64 dst, src0, src1 omod
v_cmps_tru_f64_e64 dst, src0, src1 omod
v_cmps_u_f32_e64 dst, src0, src1 omod
v_cmps_u_f64_e64 dst, src0, src1 omod
v_cmpsx_eq_f32_e64 dst, src0, src1 omod
v_cmpsx_eq_f64_e64 dst, src0, src1 omod
v_cmpsx_f_f32_e64 dst, src0, src1 omod
v_cmpsx_f_f64_e64 dst, src0, src1 omod
v_cmpsx_ge_f32_e64 dst, src0, src1 omod
v_cmpsx_ge_f64_e64 dst, src0, src1 omod
v_cmpsx_gt_f32_e64 dst, src0, src1 omod
v_cmpsx_gt_f64_e64 dst, src0, src1 omod
v_cmpsx_le_f32_e64 dst, src0, src1 omod
v_cmpsx_le_f64_e64 dst, src0, src1 omod
v_cmpsx_lg_f32_e64 dst, src0, src1 omod
v_cmpsx_lg_f64_e64 dst, src0, src1 omod
v_cmpsx_lt_f32_e64 dst, src0, src1 omod
v_cmpsx_lt_f64_e64 dst, src0, src1 omod
v_cmpsx_neq_f32_e64 dst, src0, src1 omod
v_cmpsx_neq_f64_e64 dst, src0, src1 omod
v_cmpsx_nge_f32_e64 dst, src0, src1 omod
v_cmpsx_nge_f64_e64 dst, src0, src1 omod
v_cmpsx_ngt_f32_e64 dst, src0, src1 omod
v_cmpsx_ngt_f64_e64 dst, src0, src1 omod
v_cmpsx_nle_f32_e64 dst, src0, src1 omod
v_cmpsx_nle_f64_e64 dst, src0, src1 omod
v_cmpsx_nlg_f32_e64 dst, src0, src1 omod
v_cmpsx_nlg_f64_e64 dst, src0, src1 omod
v_cmpsx_nlt_f32_e64 dst, src0, src1 omod
v_cmpsx_nlt_f64_e64 dst, src0, src1 omod
v_cmpsx_o_f32_e64 dst, src0, src1 omod
v_cmpsx_o_f64_e64 dst, src0, src1 omod
v_cmpsx_tru_f32_e64 dst, src0, src1 omod
v_cmpsx_tru_f64_e64 dst, src0, src1 omod
v_cmpsx_u_f32_e64 dst, src0, src1 omod
v_cmpsx_u_f64_e64 dst, src0, src1 omod
v_cmpx_class_f32_e64 dst, src0, src1 omod
v_cmpx_class_f64_e64 dst, src0, src1 omod
v_cmpx_eq_f32_e64 dst, src0, src1 omod
v_cmpx_eq_f64_e64 dst, src0, src1 omod
v_cmpx_eq_i32_e64 dst, src0, src1 omod
v_cmpx_eq_i64_e64 dst, src0, src1 omod
v_cmpx_eq_u32_e64 dst, src0, src1 omod
v_cmpx_eq_u64_e64 dst, src0, src1 omod
v_cmpx_f_f32_e64 dst, src0, src1 omod
v_cmpx_f_f64_e64 dst, src0, src1 omod
v_cmpx_f_i32_e64 dst, src0, src1 omod
v_cmpx_f_i64_e64 dst, src0, src1 omod
v_cmpx_f_u32_e64 dst, src0, src1 omod
v_cmpx_f_u64_e64 dst, src0, src1 omod
v_cmpx_ge_f32_e64 dst, src0, src1 omod
v_cmpx_ge_f64_e64 dst, src0, src1 omod
v_cmpx_ge_i32_e64 dst, src0, src1 omod
v_cmpx_ge_i64_e64 dst, src0, src1 omod
v_cmpx_ge_u32_e64 dst, src0, src1 omod
v_cmpx_ge_u64_e64 dst, src0, src1 omod
v_cmpx_gt_f32_e64 dst, src0, src1 omod
v_cmpx_gt_f64_e64 dst, src0, src1 omod
v_cmpx_gt_i32_e64 dst, src0, src1 omod
v_cmpx_gt_i64_e64 dst, src0, src1 omod
v_cmpx_gt_u32_e64 dst, src0, src1 omod
v_cmpx_gt_u64_e64 dst, src0, src1 omod
v_cmpx_le_f32_e64 dst, src0, src1 omod
v_cmpx_le_f64_e64 dst, src0, src1 omod
v_cmpx_le_i32_e64 dst, src0, src1 omod
v_cmpx_le_i64_e64 dst, src0, src1 omod
v_cmpx_le_u32_e64 dst, src0, src1 omod
v_cmpx_le_u64_e64 dst, src0, src1 omod
v_cmpx_lg_f32_e64 dst, src0, src1 omod
v_cmpx_lg_f64_e64 dst, src0, src1 omod
v_cmpx_lt_f32_e64 dst, src0, src1 omod
v_cmpx_lt_f64_e64 dst, src0, src1 omod
v_cmpx_lt_i32_e64 dst, src0, src1 omod
v_cmpx_lt_i64_e64 dst, src0, src1 omod
v_cmpx_lt_u32_e64 dst, src0, src1 omod
v_cmpx_lt_u64_e64 dst, src0, src1 omod
v_cmpx_ne_i32_e64 dst, src0, src1 omod
v_cmpx_ne_i64_e64 dst, src0, src1 omod
v_cmpx_ne_u32_e64 dst, src0, src1 omod
v_cmpx_ne_u64_e64 dst, src0, src1 omod
v_cmpx_neq_f32_e64 dst, src0, src1 omod
v_cmpx_neq_f64_e64 dst, src0, src1 omod
v_cmpx_nge_f32_e64 dst, src0, src1 omod
v_cmpx_nge_f64_e64 dst, src0, src1 omod
v_cmpx_ngt_f32_e64 dst, src0, src1 omod
v_cmpx_ngt_f64_e64 dst, src0, src1 omod
v_cmpx_nle_f32_e64 dst, src0, src1 omod
v_cmpx_nle_f64_e64 dst, src0, src1 omod
v_cmpx_nlg_f32_e64 dst, src0, src1 omod
v_cmpx_nlg_f64_e64 dst, src0, src1 omod
v_cmpx_nlt_f32_e64 dst, src0, src1 omod
v_cmpx_nlt_f64_e64 dst, src0, src1 omod
v_cmpx_o_f32_e64 dst, src0, src1 omod
v_cmpx_o_f64_e64 dst, src0, src1 omod
v_cmpx_t_i32_e64 dst, src0, src1 omod
v_cmpx_t_i64_e64 dst, src0, src1 omod
v_cmpx_t_u32_e64 dst, src0, src1 omod
v_cmpx_t_u64_e64 dst, src0, src1 omod
v_cmpx_tru_f32_e64 dst, src0, src1 omod
v_cmpx_tru_f64_e64 dst, src0, src1 omod
v_cmpx_u_f32_e64 dst, src0, src1 omod
v_cmpx_u_f64_e64 dst, src0, src1 omod
v_cndmask_b32_e64 dst, src0, src1, src2 omod
v_cos_f32_e64 dst, src0 clamp omod
v_cubeid_f32 dst, src0, src1, src2 clamp omod
v_cubema_f32 dst, src0, src1, src2 clamp omod
v_cubesc_f32 dst, src0, src1, src2 clamp omod
v_cubetc_f32 dst, src0, src1, src2 clamp omod
v_cvt_f16_f32_e64 dst, src0 omod
v_cvt_f32_f16_e64 dst, src0 clamp omod
v_cvt_f32_f64_e64 dst, src0 clamp omod
v_cvt_f32_i32_e64 dst, src0 clamp omod
v_cvt_f32_u32_e64 dst, src0 clamp omod
v_cvt_f32_ubyte0_e64 dst, src0 omod
v_cvt_f32_ubyte1_e64 dst, src0 omod
v_cvt_f32_ubyte2_e64 dst, src0 omod
v_cvt_f32_ubyte3_e64 dst, src0 omod
v_cvt_f64_f32_e64 dst, src0 clamp omod
v_cvt_f64_i32_e64 dst, src0 clamp omod
v_cvt_f64_u32_e64 dst, src0 clamp omod
v_cvt_flr_i32_f32_e64 dst, src0 omod
v_cvt_i32_f32_e64 dst, src0 omod
v_cvt_i32_f64_e64 dst, src0 omod
v_cvt_off_f32_i4_e64 dst, src0 clamp omod
v_cvt_pk_i16_i32_e64 dst, src0, src1 omod
v_cvt_pk_u16_u32_e64 dst, src0, src1 omod
v_cvt_pk_u8_f32 dst, src0, src1, src2 omod
v_cvt_pkaccum_u8_f32_e64 dst, src0, src1 omod
v_cvt_pknorm_i16_f32_e64 dst, src0, src1 omod
v_cvt_pknorm_u16_f32_e64 dst, src0, src1 omod
v_cvt_pkrtz_f16_f32_e64 dst, src0, src1 omod
v_cvt_rpi_i32_f32_e64 dst, src0 omod
v_cvt_u32_f32_e64 dst, src0 omod
v_cvt_u32_f64_e64 dst, src0 omod
v_div_fixup_f32 dst, src0, src1, src2 clamp omod
v_div_fixup_f64 dst, src0, src1, src2 clamp omod
v_div_fmas_f32 dst, src0, src1, src2 clamp omod
v_div_fmas_f64 dst, src0, src1, src2 clamp omod
v_div_scale_f32 dst0, dst1, src0, src1, src2 omod
v_div_scale_f64 dst0, dst1, src0, src1, src2 omod
v_exp_f32_e64 dst, src0 omod
v_exp_legacy_f32_e64 dst, src0 clamp omod
v_ffbh_i32_e64 dst, src0 omod
v_ffbh_u32_e64 dst, src0 omod
v_ffbl_b32_e64 dst, src0 omod
v_floor_f32_e64 dst, src0 clamp omod
v_floor_f64_e64 dst, src0 clamp omod
v_fma_f32 dst, src0, src1, src2 clamp omod
v_fma_f64 dst, src0, src1, src2 clamp omod
v_fract_f32_e64 dst, src0 clamp omod
v_fract_f64_e64 dst, src0 clamp omod
v_frexp_exp_i32_f32_e64 dst, src0 omod
v_frexp_exp_i32_f64_e64 dst, src0 omod
v_frexp_mant_f32_e64 dst, src0 omod
v_frexp_mant_f64_e64 dst, src0 clamp omod
v_ldexp_f32_e64 dst, src0, src1 omod
v_ldexp_f64 dst, src0, src1 clamp omod
v_lerp_u8 dst, src0, src1, src2 omod
v_log_clamp_f32_e64 dst, src0 omod
v_log_f32_e64 dst, src0 omod
v_log_legacy_f32_e64 dst, src0 clamp omod
v_lshl_b32_e64 dst, src0, src1 omod
v_lshl_b64 dst, src0, src1 omod
v_lshlrev_b32_e64 dst, src0, src1 omod
v_lshr_b32_e64 dst, src0, src1 omod
v_lshr_b64 dst, src0, src1 omod
v_lshrrev_b32_e64 dst, src0, src1 omod
v_mac_f32_e64 dst, src0, src1 clamp omod
v_mac_legacy_f32_e64 dst, src0, src1 clamp omod
v_mad_f32 dst, src0, src1, src2 clamp omod
v_mad_i32_i24 dst, src0, src1, src2 omod
v_mad_i64_i32 dst0, dst1, src0, src1, src2 omod
v_mad_legacy_f32 dst, src0, src1, src2 clamp omod
v_mad_u32_u24 dst, src0, src1, src2 omod
v_mad_u64_u32 dst0, dst1, src0, src1, src2 omod
v_max3_f32 dst, src0, src1, src2 clamp omod
v_max3_i32 dst, src0, src1, src2 omod
v_max3_u32 dst, src0, src1, src2 omod
v_max_f32_e64 dst, src0, src1 clamp omod
v_max_f64 dst, src0, src1 clamp omod
v_max_i32_e64 dst, src0, src1 omod
v_max_legacy_f32_e64 dst, src0, src1 clamp omod
v_max_u32_e64 dst, src0, src1 omod
v_mbcnt_hi_u32_b32_e64 dst, src0, src1 omod
v_mbcnt_lo_u32_b32_e64 dst, src0, src1 omod
v_med3_f32 dst, src0, src1, src2 clamp omod
v_med3_i32 dst, src0, src1, src2 omod
v_med3_u32 dst, src0, src1, src2 omod
v_min3_f32 dst, src0, src1, src2 clamp omod
v_min3_i32 dst, src0, src1, src2 omod
v_min3_u32 dst, src0, src1, src2 omod
v_min_f32_e64 dst, src0, src1 clamp omod
v_min_f64 dst, src0, src1 clamp omod
v_min_i32_e64 dst, src0, src1 omod
v_min_legacy_f32_e64 dst, src0, src1 clamp omod
v_min_u32_e64 dst, src0, src1 omod
v_mov_b32_e64 dst, src0 omod
v_mov_fed_b32_e64 dst, src0 omod
v_movreld_b32_e64 dst, src0 omod
v_movrels_b32_e64 dst, src0 omod
v_movrelsd_b32_e64 dst, src0 omod
v_mqsad_pk_u16_u8 dst, src0, src1, src2 omod
v_mqsad_u32_u8 dst, src0, src1, src2 omod
v_msad_u8 dst, src0, src1, src2 omod
v_mul_f32_e64 dst, src0, src1 clamp omod
v_mul_f64 dst, src0, src1 clamp omod
v_mul_hi_i32 dst, src0, src1 omod
v_mul_hi_i32_i24_e64 dst, src0, src1 omod
v_mul_hi_u32 dst, src0, src1 omod
v_mul_hi_u32_u24_e64 dst, src0, src1 omod
v_mul_i32_i24_e64 dst, src0, src1 omod
v_mul_legacy_f32_e64 dst, src0, src1 clamp omod
v_mul_lo_i32 dst, src0, src1 omod
v_mul_lo_u32 dst, src0, src1 omod
v_mul_u32_u24_e64 dst, src0, src1 omod
v_mullit_f32 dst, src0, src1, src2 clamp omod
v_nop_e64 omod
v_not_b32_e64 dst, src0 omod
v_or_b32_e64 dst, src0, src1 omod
v_qsad_pk_u16_u8 dst, src0, src1, src2 omod
v_rcp_clamp_f32_e64 dst, src0 omod
v_rcp_clamp_f64_e64 dst, src0 clamp omod
v_rcp_f32_e64 dst, src0 omod
v_rcp_f64_e64 dst, src0 clamp omod
v_rcp_iflag_f32_e64 dst, src0 clamp omod
v_rcp_legacy_f32_e64 dst, src0 omod
v_rndne_f32_e64 dst, src0 clamp omod
v_rndne_f64_e64 dst, src0 clamp omod
v_rsq_clamp_f32_e64 dst, src0 clamp omod
v_rsq_clamp_f64_e64 dst, src0 clamp omod
v_rsq_f32_e64 dst, src0 clamp omod
v_rsq_f64_e64 dst, src0 clamp omod
v_rsq_legacy_f32_e64 dst, src0 clamp omod
v_sad_hi_u8 dst, src0, src1, src2 omod
v_sad_u16 dst, src0, src1, src2 omod
v_sad_u32 dst, src0, src1, src2 omod
v_sad_u8 dst, src0, src1, src2 omod
v_sin_f32_e64 dst, src0 clamp omod
v_sqrt_f32_e64 dst, src0 clamp omod
v_sqrt_f64_e64 dst, src0 clamp omod
v_sub_f32_e64 dst, src0, src1 clamp omod
v_sub_i32_e64 dst0, dst1, src0, src1 omod
v_subb_u32_e64 dst0, dst1, src0, src1, src2 omod
v_subbrev_u32_e64 dst0, dst1, src0, src1, src2 omod
v_subrev_f32_e64 dst, src0, src1 clamp omod
v_subrev_i32_e64 dst0, dst1, src0, src1 omod
v_trig_preop_f64 dst, src0, src1 clamp omod
v_trunc_f32_e64 dst, src0 clamp omod
v_trunc_f64_e64 dst, src0 clamp omod
v_xor_b32_e64 dst, src0, src1 omod

VOPC

v_cmp_class_f32 dst, src0, src1
v_cmp_class_f64 dst, src0, src1
v_cmp_eq_f32 dst, src0, src1
v_cmp_eq_f64 dst, src0, src1
v_cmp_eq_i32 dst, src0, src1
v_cmp_eq_i64 dst, src0, src1
v_cmp_eq_u32 dst, src0, src1
v_cmp_eq_u64 dst, src0, src1
v_cmp_f_f32 dst, src0, src1
v_cmp_f_f64 dst, src0, src1
v_cmp_f_i32 dst, src0, src1
v_cmp_f_i64 dst, src0, src1
v_cmp_f_u32 dst, src0, src1
v_cmp_f_u64 dst, src0, src1
v_cmp_ge_f32 dst, src0, src1
v_cmp_ge_f64 dst, src0, src1
v_cmp_ge_i32 dst, src0, src1
v_cmp_ge_i64 dst, src0, src1
v_cmp_ge_u32 dst, src0, src1
v_cmp_ge_u64 dst, src0, src1
v_cmp_gt_f32 dst, src0, src1
v_cmp_gt_f64 dst, src0, src1
v_cmp_gt_i32 dst, src0, src1
v_cmp_gt_i64 dst, src0, src1
v_cmp_gt_u32 dst, src0, src1
v_cmp_gt_u64 dst, src0, src1
v_cmp_le_f32 dst, src0, src1
v_cmp_le_f64 dst, src0, src1
v_cmp_le_i32 dst, src0, src1
v_cmp_le_i64 dst, src0, src1
v_cmp_le_u32 dst, src0, src1
v_cmp_le_u64 dst, src0, src1
v_cmp_lg_f32 dst, src0, src1
v_cmp_lg_f64 dst, src0, src1
v_cmp_lt_f32 dst, src0, src1
v_cmp_lt_f64 dst, src0, src1
v_cmp_lt_i32 dst, src0, src1
v_cmp_lt_i64 dst, src0, src1
v_cmp_lt_u32 dst, src0, src1
v_cmp_lt_u64 dst, src0, src1
v_cmp_ne_i32 dst, src0, src1
v_cmp_ne_i64 dst, src0, src1
v_cmp_ne_u32 dst, src0, src1
v_cmp_ne_u64 dst, src0, src1
v_cmp_neq_f32 dst, src0, src1
v_cmp_neq_f64 dst, src0, src1
v_cmp_nge_f32 dst, src0, src1
v_cmp_nge_f64 dst, src0, src1
v_cmp_ngt_f32 dst, src0, src1
v_cmp_ngt_f64 dst, src0, src1
v_cmp_nle_f32 dst, src0, src1
v_cmp_nle_f64 dst, src0, src1
v_cmp_nlg_f32 dst, src0, src1
v_cmp_nlg_f64 dst, src0, src1
v_cmp_nlt_f32 dst, src0, src1
v_cmp_nlt_f64 dst, src0, src1
v_cmp_o_f32 dst, src0, src1
v_cmp_o_f64 dst, src0, src1
v_cmp_t_i32 dst, src0, src1
v_cmp_t_i64 dst, src0, src1
v_cmp_t_u32 dst, src0, src1
v_cmp_t_u64 dst, src0, src1
v_cmp_tru_f32 dst, src0, src1
v_cmp_tru_f64 dst, src0, src1
v_cmp_u_f32 dst, src0, src1
v_cmp_u_f64 dst, src0, src1
v_cmps_eq_f32 dst, src0, src1
v_cmps_eq_f64 dst, src0, src1
v_cmps_f_f32 dst, src0, src1
v_cmps_f_f64 dst, src0, src1
v_cmps_ge_f32 dst, src0, src1
v_cmps_ge_f64 dst, src0, src1
v_cmps_gt_f32 dst, src0, src1
v_cmps_gt_f64 dst, src0, src1
v_cmps_le_f32 dst, src0, src1
v_cmps_le_f64 dst, src0, src1
v_cmps_lg_f32 dst, src0, src1
v_cmps_lg_f64 dst, src0, src1
v_cmps_lt_f32 dst, src0, src1
v_cmps_lt_f64 dst, src0, src1
v_cmps_neq_f32 dst, src0, src1
v_cmps_neq_f64 dst, src0, src1
v_cmps_nge_f32 dst, src0, src1
v_cmps_nge_f64 dst, src0, src1
v_cmps_ngt_f32 dst, src0, src1
v_cmps_ngt_f64 dst, src0, src1
v_cmps_nle_f32 dst, src0, src1
v_cmps_nle_f64 dst, src0, src1
v_cmps_nlg_f32 dst, src0, src1
v_cmps_nlg_f64 dst, src0, src1
v_cmps_nlt_f32 dst, src0, src1
v_cmps_nlt_f64 dst, src0, src1
v_cmps_o_f32 dst, src0, src1
v_cmps_o_f64 dst, src0, src1
v_cmps_tru_f32 dst, src0, src1
v_cmps_tru_f64 dst, src0, src1
v_cmps_u_f32 dst, src0, src1
v_cmps_u_f64 dst, src0, src1
v_cmpsx_eq_f32 dst, src0, src1
v_cmpsx_eq_f64 dst, src0, src1
v_cmpsx_f_f32 dst, src0, src1
v_cmpsx_f_f64 dst, src0, src1
v_cmpsx_ge_f32 dst, src0, src1
v_cmpsx_ge_f64 dst, src0, src1
v_cmpsx_gt_f32 dst, src0, src1
v_cmpsx_gt_f64 dst, src0, src1
v_cmpsx_le_f32 dst, src0, src1
v_cmpsx_le_f64 dst, src0, src1
v_cmpsx_lg_f32 dst, src0, src1
v_cmpsx_lg_f64 dst, src0, src1
v_cmpsx_lt_f32 dst, src0, src1
v_cmpsx_lt_f64 dst, src0, src1
v_cmpsx_neq_f32 dst, src0, src1
v_cmpsx_neq_f64 dst, src0, src1
v_cmpsx_nge_f32 dst, src0, src1
v_cmpsx_nge_f64 dst, src0, src1
v_cmpsx_ngt_f32 dst, src0, src1
v_cmpsx_ngt_f64 dst, src0, src1
v_cmpsx_nle_f32 dst, src0, src1
v_cmpsx_nle_f64 dst, src0, src1
v_cmpsx_nlg_f32 dst, src0, src1
v_cmpsx_nlg_f64 dst, src0, src1
v_cmpsx_nlt_f32 dst, src0, src1
v_cmpsx_nlt_f64 dst, src0, src1
v_cmpsx_o_f32 dst, src0, src1
v_cmpsx_o_f64 dst, src0, src1
v_cmpsx_tru_f32 dst, src0, src1
v_cmpsx_tru_f64 dst, src0, src1
v_cmpsx_u_f32 dst, src0, src1
v_cmpsx_u_f64 dst, src0, src1
v_cmpx_class_f32 dst, src0, src1
v_cmpx_class_f64 dst, src0, src1
v_cmpx_eq_f32 dst, src0, src1
v_cmpx_eq_f64 dst, src0, src1
v_cmpx_eq_i32 dst, src0, src1
v_cmpx_eq_i64 dst, src0, src1
v_cmpx_eq_u32 dst, src0, src1
v_cmpx_eq_u64 dst, src0, src1
v_cmpx_f_f32 dst, src0, src1
v_cmpx_f_f64 dst, src0, src1
v_cmpx_f_i32 dst, src0, src1
v_cmpx_f_i64 dst, src0, src1
v_cmpx_f_u32 dst, src0, src1
v_cmpx_f_u64 dst, src0, src1
v_cmpx_ge_f32 dst, src0, src1
v_cmpx_ge_f64 dst, src0, src1
v_cmpx_ge_i32 dst, src0, src1
v_cmpx_ge_i64 dst, src0, src1
v_cmpx_ge_u32 dst, src0, src1
v_cmpx_ge_u64 dst, src0, src1
v_cmpx_gt_f32 dst, src0, src1
v_cmpx_gt_f64 dst, src0, src1
v_cmpx_gt_i32 dst, src0, src1
v_cmpx_gt_i64 dst, src0, src1
v_cmpx_gt_u32 dst, src0, src1
v_cmpx_gt_u64 dst, src0, src1
v_cmpx_le_f32 dst, src0, src1
v_cmpx_le_f64 dst, src0, src1
v_cmpx_le_i32 dst, src0, src1
v_cmpx_le_i64 dst, src0, src1
v_cmpx_le_u32 dst, src0, src1
v_cmpx_le_u64 dst, src0, src1
v_cmpx_lg_f32 dst, src0, src1
v_cmpx_lg_f64 dst, src0, src1
v_cmpx_lt_f32 dst, src0, src1
v_cmpx_lt_f64 dst, src0, src1
v_cmpx_lt_i32 dst, src0, src1
v_cmpx_lt_i64 dst, src0, src1
v_cmpx_lt_u32 dst, src0, src1
v_cmpx_lt_u64 dst, src0, src1
v_cmpx_ne_i32 dst, src0, src1
v_cmpx_ne_i64 dst, src0, src1
v_cmpx_ne_u32 dst, src0, src1
v_cmpx_ne_u64 dst, src0, src1
v_cmpx_neq_f32 dst, src0, src1
v_cmpx_neq_f64 dst, src0, src1
v_cmpx_nge_f32 dst, src0, src1
v_cmpx_nge_f64 dst, src0, src1
v_cmpx_ngt_f32 dst, src0, src1
v_cmpx_ngt_f64 dst, src0, src1
v_cmpx_nle_f32 dst, src0, src1
v_cmpx_nle_f64 dst, src0, src1
v_cmpx_nlg_f32 dst, src0, src1
v_cmpx_nlg_f64 dst, src0, src1
v_cmpx_nlt_f32 dst, src0, src1
v_cmpx_nlt_f64 dst, src0, src1
v_cmpx_o_f32 dst, src0, src1
v_cmpx_o_f64 dst, src0, src1
v_cmpx_t_i32 dst, src0, src1
v_cmpx_t_i64 dst, src0, src1
v_cmpx_t_u32 dst, src0, src1
v_cmpx_t_u64 dst, src0, src1
v_cmpx_tru_f32 dst, src0, src1
v_cmpx_tru_f64 dst, src0, src1
v_cmpx_u_f32 dst, src0, src1
v_cmpx_u_f64 dst, src0, src1

 Syntax of GFX8 Instructions

Syntax of GFX8 Instructions

	DS

	EXP

	FLAT

	MIMG

	MUBUF

	SMEM

	SOP1

	SOP2

	SOPC

	SOPK

	SOPP

	VINTRP

	VOP1

	VOP2

	VOP3

	VOPC

DS

ds_add_f32 src0, src1 ds_offset16 gds
ds_add_rtn_f32 dst, src0, src1 ds_offset16 gds
ds_add_rtn_u32 dst, src0, src1 ds_offset16 gds
ds_add_rtn_u64 dst, src0, src1 ds_offset16 gds
ds_add_src2_f32 src0 ds_offset16 gds
ds_add_src2_u32 src0 ds_offset16 gds
ds_add_src2_u64 src0 ds_offset16 gds
ds_add_u32 src0, src1 ds_offset16 gds
ds_add_u64 src0, src1 ds_offset16 gds
ds_and_b32 src0, src1 ds_offset16 gds
ds_and_b64 src0, src1 ds_offset16 gds
ds_and_rtn_b32 dst, src0, src1 ds_offset16 gds
ds_and_rtn_b64 dst, src0, src1 ds_offset16 gds
ds_and_src2_b32 src0 ds_offset16 gds
ds_and_src2_b64 src0 ds_offset16 gds
ds_append dst ds_offset16 gds
ds_bpermute_b32 dst, src0, src1 ds_offset16
ds_cmpst_b32 src0, src1, src2 ds_offset16 gds
ds_cmpst_b64 src0, src1, src2 ds_offset16 gds
ds_cmpst_f32 src0, src1, src2 ds_offset16 gds
ds_cmpst_f64 src0, src1, src2 ds_offset16 gds
ds_cmpst_rtn_b32 dst, src0, src1, src2 ds_offset16 gds
ds_cmpst_rtn_b64 dst, src0, src1, src2 ds_offset16 gds
ds_cmpst_rtn_f32 dst, src0, src1, src2 ds_offset16 gds
ds_cmpst_rtn_f64 dst, src0, src1, src2 ds_offset16 gds
ds_condxchg32_rtn_b64 dst, src0, src1 ds_offset16 gds
ds_consume dst ds_offset16 gds
ds_dec_rtn_u32 dst, src0, src1 ds_offset16 gds
ds_dec_rtn_u64 dst, src0, src1 ds_offset16 gds
ds_dec_src2_u32 src0 ds_offset16 gds
ds_dec_src2_u64 src0 ds_offset16 gds
ds_dec_u32 src0, src1 ds_offset16 gds
ds_dec_u64 src0, src1 ds_offset16 gds
ds_gws_barrier src0 ds_offset16 gds
ds_gws_init src0 ds_offset16 gds
ds_gws_sema_br src0 ds_offset16 gds
ds_gws_sema_p ds_offset16 gds
ds_gws_sema_release_all ds_offset16 gds
ds_gws_sema_v ds_offset16 gds
ds_inc_rtn_u32 dst, src0, src1 ds_offset16 gds
ds_inc_rtn_u64 dst, src0, src1 ds_offset16 gds
ds_inc_src2_u32 src0 ds_offset16 gds
ds_inc_src2_u64 src0 ds_offset16 gds
ds_inc_u32 src0, src1 ds_offset16 gds
ds_inc_u64 src0, src1 ds_offset16 gds
ds_max_f32 src0, src1 ds_offset16 gds
ds_max_f64 src0, src1 ds_offset16 gds
ds_max_i32 src0, src1 ds_offset16 gds
ds_max_i64 src0, src1 ds_offset16 gds
ds_max_rtn_f32 dst, src0, src1 ds_offset16 gds
ds_max_rtn_f64 dst, src0, src1 ds_offset16 gds
ds_max_rtn_i32 dst, src0, src1 ds_offset16 gds
ds_max_rtn_i64 dst, src0, src1 ds_offset16 gds
ds_max_rtn_u32 dst, src0, src1 ds_offset16 gds
ds_max_rtn_u64 dst, src0, src1 ds_offset16 gds
ds_max_src2_f32 src0 ds_offset16 gds
ds_max_src2_f64 src0 ds_offset16 gds
ds_max_src2_i32 src0 ds_offset16 gds
ds_max_src2_i64 src0 ds_offset16 gds
ds_max_src2_u32 src0 ds_offset16 gds
ds_max_src2_u64 src0 ds_offset16 gds
ds_max_u32 src0, src1 ds_offset16 gds
ds_max_u64 src0, src1 ds_offset16 gds
ds_min_f32 src0, src1 ds_offset16 gds
ds_min_f64 src0, src1 ds_offset16 gds
ds_min_i32 src0, src1 ds_offset16 gds
ds_min_i64 src0, src1 ds_offset16 gds
ds_min_rtn_f32 dst, src0, src1 ds_offset16 gds
ds_min_rtn_f64 dst, src0, src1 ds_offset16 gds
ds_min_rtn_i32 dst, src0, src1 ds_offset16 gds
ds_min_rtn_i64 dst, src0, src1 ds_offset16 gds
ds_min_rtn_u32 dst, src0, src1 ds_offset16 gds
ds_min_rtn_u64 dst, src0, src1 ds_offset16 gds
ds_min_src2_f32 src0 ds_offset16 gds
ds_min_src2_f64 src0 ds_offset16 gds
ds_min_src2_i32 src0 ds_offset16 gds
ds_min_src2_i64 src0 ds_offset16 gds
ds_min_src2_u32 src0 ds_offset16 gds
ds_min_src2_u64 src0 ds_offset16 gds
ds_min_u32 src0, src1 ds_offset16 gds
ds_min_u64 src0, src1 ds_offset16 gds
ds_mskor_b32 src0, src1, src2 ds_offset16 gds
ds_mskor_b64 src0, src1, src2 ds_offset16 gds
ds_mskor_rtn_b32 dst, src0, src1, src2 ds_offset16 gds
ds_mskor_rtn_b64 dst, src0, src1, src2 ds_offset16 gds
ds_nop
ds_or_b32 src0, src1 ds_offset16 gds
ds_or_b64 src0, src1 ds_offset16 gds
ds_or_rtn_b32 dst, src0, src1 ds_offset16 gds
ds_or_rtn_b64 dst, src0, src1 ds_offset16 gds
ds_or_src2_b32 src0 ds_offset16 gds
ds_or_src2_b64 src0 ds_offset16 gds
ds_ordered_count dst, src0 ds_offset16 gds
ds_permute_b32 dst, src0, src1 ds_offset16
ds_read2_b32 dst, src0 ds_offset8 ds_offset8 gds
ds_read2_b64 dst, src0 ds_offset8 ds_offset8 gds
ds_read2st64_b32 dst, src0 ds_offset8 ds_offset8 gds
ds_read2st64_b64 dst, src0 ds_offset8 ds_offset8 gds
ds_read_b128 dst, src0 ds_offset16 gds
ds_read_b32 dst, src0 ds_offset16 gds
ds_read_b64 dst, src0 ds_offset16 gds
ds_read_b96 dst, src0 ds_offset16 gds
ds_read_i16 dst, src0 ds_offset16 gds
ds_read_i8 dst, src0 ds_offset16 gds
ds_read_u16 dst, src0 ds_offset16 gds
ds_read_u8 dst, src0 ds_offset16 gds
ds_rsub_rtn_u32 dst, src0, src1 ds_offset16 gds
ds_rsub_rtn_u64 dst, src0, src1 ds_offset16 gds
ds_rsub_src2_u32 src0 ds_offset16 gds
ds_rsub_src2_u64 src0 ds_offset16 gds
ds_rsub_u32 src0, src1 ds_offset16 gds
ds_rsub_u64 src0, src1 ds_offset16 gds
ds_sub_rtn_u32 dst, src0, src1 ds_offset16 gds
ds_sub_rtn_u64 dst, src0, src1 ds_offset16 gds
ds_sub_src2_u32 src0 ds_offset16 gds
ds_sub_src2_u64 src0 ds_offset16 gds
ds_sub_u32 src0, src1 ds_offset16 gds
ds_sub_u64 src0, src1 ds_offset16 gds
ds_swizzle_b32 dst, src0 sw_offset16 gds
ds_wrap_rtn_b32 dst, src0, src1, src2 ds_offset16 gds
ds_write2_b32 src0, src1, src2 ds_offset8 ds_offset8 gds
ds_write2_b64 src0, src1, src2 ds_offset8 ds_offset8 gds
ds_write2st64_b32 src0, src1, src2 ds_offset8 ds_offset8 gds
ds_write2st64_b64 src0, src1, src2 ds_offset8 ds_offset8 gds
ds_write_b128 src0, src1 ds_offset16 gds
ds_write_b16 src0, src1 ds_offset16 gds
ds_write_b32 src0, src1 ds_offset16 gds
ds_write_b64 src0, src1 ds_offset16 gds
ds_write_b8 src0, src1 ds_offset16 gds
ds_write_b96 src0, src1 ds_offset16 gds
ds_write_src2_b32 src0 ds_offset16 gds
ds_write_src2_b64 src0 ds_offset16 gds
ds_wrxchg2_rtn_b32 dst, src0, src1, src2 ds_offset8 ds_offset8 gds
ds_wrxchg2_rtn_b64 dst, src0, src1, src2 ds_offset8 ds_offset8 gds
ds_wrxchg2st64_rtn_b32 dst, src0, src1, src2 ds_offset8 ds_offset8 gds
ds_wrxchg2st64_rtn_b64 dst, src0, src1, src2 ds_offset8 ds_offset8 gds
ds_wrxchg_rtn_b32 dst, src0, src1 ds_offset16 gds
ds_wrxchg_rtn_b64 dst, src0, src1 ds_offset16 gds
ds_xor_b32 src0, src1 ds_offset16 gds
ds_xor_b64 src0, src1 ds_offset16 gds
ds_xor_rtn_b32 dst, src0, src1 ds_offset16 gds
ds_xor_rtn_b64 dst, src0, src1 ds_offset16 gds
ds_xor_src2_b32 src0 ds_offset16 gds
ds_xor_src2_b64 src0 ds_offset16 gds

EXP

exp dst, src0, src1, src2, src3 done compr vm

FLAT

flat_atomic_add dst, src0, src1 glc slc
flat_atomic_add_x2 dst, src0, src1 glc slc
flat_atomic_and dst, src0, src1 glc slc
flat_atomic_and_x2 dst, src0, src1 glc slc
flat_atomic_cmpswap dst, src0, src1 glc slc
flat_atomic_cmpswap_x2 dst, src0, src1 glc slc
flat_atomic_dec dst, src0, src1 glc slc
flat_atomic_dec_x2 dst, src0, src1 glc slc
flat_atomic_inc dst, src0, src1 glc slc
flat_atomic_inc_x2 dst, src0, src1 glc slc
flat_atomic_or dst, src0, src1 glc slc
flat_atomic_or_x2 dst, src0, src1 glc slc
flat_atomic_smax dst, src0, src1 glc slc
flat_atomic_smax_x2 dst, src0, src1 glc slc
flat_atomic_smin dst, src0, src1 glc slc
flat_atomic_smin_x2 dst, src0, src1 glc slc
flat_atomic_sub dst, src0, src1 glc slc
flat_atomic_sub_x2 dst, src0, src1 glc slc
flat_atomic_swap dst, src0, src1 glc slc
flat_atomic_swap_x2 dst, src0, src1 glc slc
flat_atomic_umax dst, src0, src1 glc slc
flat_atomic_umax_x2 dst, src0, src1 glc slc
flat_atomic_umin dst, src0, src1 glc slc
flat_atomic_umin_x2 dst, src0, src1 glc slc
flat_atomic_xor dst, src0, src1 glc slc
flat_atomic_xor_x2 dst, src0, src1 glc slc
flat_load_dword dst, src0 glc slc
flat_load_dwordx2 dst, src0 glc slc
flat_load_dwordx3 dst, src0 glc slc
flat_load_dwordx4 dst, src0 glc slc
flat_load_sbyte dst, src0 glc slc
flat_load_sshort dst, src0 glc slc
flat_load_ubyte dst, src0 glc slc
flat_load_ushort dst, src0 glc slc
flat_store_byte src0, src1 glc slc
flat_store_dword src0, src1 glc slc
flat_store_dwordx2 src0, src1 glc slc
flat_store_dwordx3 src0, src1 glc slc
flat_store_dwordx4 src0, src1 glc slc
flat_store_short src0, src1 glc slc

MIMG

image_atomic_add dst, src0, src1 dmask unorm glc slc lwe da
image_atomic_and dst, src0, src1 dmask unorm glc slc lwe da
image_atomic_cmpswap dst, src0, src1 dmask unorm glc slc lwe da
image_atomic_dec dst, src0, src1 dmask unorm glc slc lwe da
image_atomic_inc dst, src0, src1 dmask unorm glc slc lwe da
image_atomic_or dst, src0, src1 dmask unorm glc slc lwe da
image_atomic_smax dst, src0, src1 dmask unorm glc slc lwe da
image_atomic_smin dst, src0, src1 dmask unorm glc slc lwe da
image_atomic_sub dst, src0, src1 dmask unorm glc slc lwe da
image_atomic_swap dst, src0, src1 dmask unorm glc slc lwe da
image_atomic_umax dst, src0, src1 dmask unorm glc slc lwe da
image_atomic_umin dst, src0, src1 dmask unorm glc slc lwe da
image_atomic_xor dst, src0, src1 dmask unorm glc slc lwe da
image_gather4 dst, src0, src1, src2 dmask unorm glc slc lwe da d16
image_gather4_b dst, src0, src1, src2 dmask unorm glc slc lwe da d16
image_gather4_b_cl dst, src0, src1, src2 dmask unorm glc slc lwe da d16
image_gather4_b_cl_o dst, src0, src1, src2 dmask unorm glc slc lwe da d16
image_gather4_b_o dst, src0, src1, src2 dmask unorm glc slc lwe da d16
image_gather4_c dst, src0, src1, src2 dmask unorm glc slc lwe da d16
image_gather4_c_b dst, src0, src1, src2 dmask unorm glc slc lwe da d16
image_gather4_c_b_cl dst, src0, src1, src2 dmask unorm glc slc lwe da d16
image_gather4_c_b_cl_o dst, src0, src1, src2 dmask unorm glc slc lwe da d16
image_gather4_c_b_o dst, src0, src1, src2 dmask unorm glc slc lwe da d16
image_gather4_c_cl dst, src0, src1, src2 dmask unorm glc slc lwe da d16
image_gather4_c_cl_o dst, src0, src1, src2 dmask unorm glc slc lwe da d16
image_gather4_c_l dst, src0, src1, src2 dmask unorm glc slc lwe da d16
image_gather4_c_l_o dst, src0, src1, src2 dmask unorm glc slc lwe da d16
image_gather4_c_lz dst, src0, src1, src2 dmask unorm glc slc lwe da d16
image_gather4_c_lz_o dst, src0, src1, src2 dmask unorm glc slc lwe da d16
image_gather4_c_o dst, src0, src1, src2 dmask unorm glc slc lwe da d16
image_gather4_cl dst, src0, src1, src2 dmask unorm glc slc lwe da d16
image_gather4_cl_o dst, src0, src1, src2 dmask unorm glc slc lwe da d16
image_gather4_l dst, src0, src1, src2 dmask unorm glc slc lwe da d16
image_gather4_l_o dst, src0, src1, src2 dmask unorm glc slc lwe da d16
image_gather4_lz dst, src0, src1, src2 dmask unorm glc slc lwe da d16
image_gather4_lz_o dst, src0, src1, src2 dmask unorm glc slc lwe da d16
image_gather4_o dst, src0, src1, src2 dmask unorm glc slc lwe da d16
image_get_lod dst, src0, src1, src2 dmask unorm glc slc tfe lwe da
image_get_resinfo dst, src0, src1 dmask unorm glc slc tfe lwe da
image_load dst, src0, src1 dmask unorm glc slc tfe lwe da d16
image_load_mip dst, src0, src1 dmask unorm glc slc tfe lwe da d16
image_load_mip_pck dst, src0, src1 dmask unorm glc slc tfe lwe da
image_load_mip_pck_sgn dst, src0, src1 dmask unorm glc slc tfe lwe da
image_load_pck dst, src0, src1 dmask unorm glc slc tfe lwe da
image_load_pck_sgn dst, src0, src1 dmask unorm glc slc tfe lwe da
image_sample dst, src0, src1, src2 dmask unorm glc slc tfe lwe da d16
image_sample_b dst, src0, src1, src2 dmask unorm glc slc tfe lwe da d16
image_sample_b_cl dst, src0, src1, src2 dmask unorm glc slc tfe lwe da d16
image_sample_c dst, src0, src1, src2 dmask unorm glc slc tfe lwe da d16
image_sample_c_b dst, src0, src1, src2 dmask unorm glc slc tfe lwe da d16
image_sample_c_b_cl dst, src0, src1, src2 dmask unorm glc slc tfe lwe da d16
image_sample_c_cl dst, src0, src1, src2 dmask unorm glc slc tfe lwe da d16
image_sample_c_l dst, src0, src1, src2 dmask unorm glc slc tfe lwe da d16
image_sample_c_lz dst, src0, src1, src2 dmask unorm glc slc tfe lwe da d16
image_sample_cl dst, src0, src1, src2 dmask unorm glc slc tfe lwe da d16
image_sample_l dst, src0, src1, src2 dmask unorm glc slc tfe lwe da d16
image_sample_lz dst, src0, src1, src2 dmask unorm glc slc tfe lwe da d16
image_store src0, src1, src2 dmask unorm glc slc lwe da d16
image_store_mip src0, src1, src2 dmask unorm glc slc lwe da d16
image_store_mip_pck src0, src1, src2 dmask unorm glc slc lwe da
image_store_pck src0, src1, src2 dmask unorm glc slc lwe da

MUBUF

buffer_atomic_add dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_add_x2 dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_and dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_and_x2 dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_cmpswap dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_cmpswap_x2 dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_dec dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_dec_x2 dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_inc dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_inc_x2 dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_or dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_or_x2 dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_smax dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_smax_x2 dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_smin dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_smin_x2 dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_sub dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_sub_x2 dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_swap dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_swap_x2 dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_umax dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_umax_x2 dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_umin dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_umin_x2 dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_xor dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_xor_x2 dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_load_dword dst, src0, src1, src2 idxen offen buf_offset12 glc slc lds
buffer_load_dwordx2 dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_load_dwordx3 dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_load_dwordx4 dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_load_format_d16_x dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_load_format_d16_xy dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_load_format_d16_xyz dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_load_format_d16_xyzw dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_load_format_x dst, src0, src1, src2 idxen offen buf_offset12 glc slc lds
buffer_load_format_xy dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_load_format_xyz dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_load_format_xyzw dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_load_sbyte dst, src0, src1, src2 idxen offen buf_offset12 glc slc lds
buffer_load_sshort dst, src0, src1, src2 idxen offen buf_offset12 glc slc lds
buffer_load_ubyte dst, src0, src1, src2 idxen offen buf_offset12 glc slc lds
buffer_load_ushort dst, src0, src1, src2 idxen offen buf_offset12 glc slc lds
buffer_store_byte src0, src1, src2, src3 idxen offen buf_offset12 glc slc
buffer_store_dword src0, src1, src2, src3 idxen offen buf_offset12 glc slc
buffer_store_dwordx2 src0, src1, src2, src3 idxen offen buf_offset12 glc slc
buffer_store_dwordx3 src0, src1, src2, src3 idxen offen buf_offset12 glc slc
buffer_store_dwordx4 src0, src1, src2, src3 idxen offen buf_offset12 glc slc
buffer_store_format_d16_x src0, src1, src2, src3 idxen offen buf_offset12 glc slc
buffer_store_format_d16_xy src0, src1, src2, src3 idxen offen buf_offset12 glc slc
buffer_store_format_d16_xyz src0, src1, src2, src3 idxen offen buf_offset12 glc slc
buffer_store_format_d16_xyzw src0, src1, src2, src3 idxen offen buf_offset12 glc slc
buffer_store_format_x src0, src1, src2, src3 idxen offen buf_offset12 glc slc
buffer_store_format_xy src0, src1, src2, src3 idxen offen buf_offset12 glc slc
buffer_store_format_xyz src0, src1, src2, src3 idxen offen buf_offset12 glc slc
buffer_store_format_xyzw src0, src1, src2, src3 idxen offen buf_offset12 glc slc
buffer_store_lds_dword src0, src1 buf_offset12 lds glc slc
buffer_store_short src0, src1, src2, src3 idxen offen buf_offset12 glc slc
buffer_wbinvl1
buffer_wbinvl1_vol

SMEM

s_atc_probe src0, src1, src2
s_atc_probe_buffer src0, src1, src2
s_buffer_load_dword dst, src0, src1 glc
s_buffer_load_dwordx16 dst, src0, src1 glc
s_buffer_load_dwordx2 dst, src0, src1 glc
s_buffer_load_dwordx4 dst, src0, src1 glc
s_buffer_load_dwordx8 dst, src0, src1 glc
s_buffer_store_dword src0, src1, src2 glc
s_buffer_store_dwordx2 src0, src1, src2 glc
s_buffer_store_dwordx4 src0, src1, src2 glc
s_dcache_inv
s_dcache_inv_vol
s_dcache_wb
s_dcache_wb_vol
s_load_dword dst, src0, src1 glc
s_load_dwordx16 dst, src0, src1 glc
s_load_dwordx2 dst, src0, src1 glc
s_load_dwordx4 dst, src0, src1 glc
s_load_dwordx8 dst, src0, src1 glc
s_memrealtime dst
s_memtime dst
s_store_dword src0, src1, src2 glc
s_store_dwordx2 src0, src1, src2 glc
s_store_dwordx4 src0, src1, src2 glc

SOP1

s_abs_i32 dst, src0
s_and_saveexec_b64 dst, src0
s_andn2_saveexec_b64 dst, src0
s_bcnt0_i32_b32 dst, src0
s_bcnt0_i32_b64 dst, src0
s_bcnt1_i32_b32 dst, src0
s_bcnt1_i32_b64 dst, src0
s_bitset0_b32 dst, src0
s_bitset0_b64 dst, src0
s_bitset1_b32 dst, src0
s_bitset1_b64 dst, src0
s_brev_b32 dst, src0
s_brev_b64 dst, src0
s_cbranch_join src0
s_cmov_b32 dst, src0
s_cmov_b64 dst, src0
s_ff0_i32_b32 dst, src0
s_ff0_i32_b64 dst, src0
s_ff1_i32_b32 dst, src0
s_ff1_i32_b64 dst, src0
s_flbit_i32 dst, src0
s_flbit_i32_b32 dst, src0
s_flbit_i32_b64 dst, src0
s_flbit_i32_i64 dst, src0
s_getpc_b64 dst
s_mov_b32 dst, src0
s_mov_b64 dst, src0
s_mov_fed_b32 dst, src0
s_movreld_b32 dst, src0
s_movreld_b64 dst, src0
s_movrels_b32 dst, src0
s_movrels_b64 dst, src0
s_nand_saveexec_b64 dst, src0
s_nor_saveexec_b64 dst, src0
s_not_b32 dst, src0
s_not_b64 dst, src0
s_or_saveexec_b64 dst, src0
s_orn2_saveexec_b64 dst, src0
s_quadmask_b32 dst, src0
s_quadmask_b64 dst, src0
s_rfe_b64 src0
s_set_gpr_idx_idx src0
s_setpc_b64 src0
s_sext_i32_i16 dst, src0
s_sext_i32_i8 dst, src0
s_swappc_b64 dst, src0
s_wqm_b32 dst, src0
s_wqm_b64 dst, src0
s_xnor_saveexec_b64 dst, src0
s_xor_saveexec_b64 dst, src0

SOP2

s_absdiff_i32 dst, src0, src1
s_add_i32 dst, src0, src1
s_add_u32 dst, src0, src1
s_addc_u32 dst, src0, src1
s_and_b32 dst, src0, src1
s_and_b64 dst, src0, src1
s_andn2_b32 dst, src0, src1
s_andn2_b64 dst, src0, src1
s_ashr_i32 dst, src0, src1
s_ashr_i64 dst, src0, src1
s_bfe_i32 dst, src0, src1
s_bfe_i64 dst, src0, src1
s_bfe_u32 dst, src0, src1
s_bfe_u64 dst, src0, src1
s_bfm_b32 dst, src0, src1
s_bfm_b64 dst, src0, src1
s_cbranch_g_fork src0, src1
s_cselect_b32 dst, src0, src1
s_cselect_b64 dst, src0, src1
s_lshl_b32 dst, src0, src1
s_lshl_b64 dst, src0, src1
s_lshr_b32 dst, src0, src1
s_lshr_b64 dst, src0, src1
s_max_i32 dst, src0, src1
s_max_u32 dst, src0, src1
s_min_i32 dst, src0, src1
s_min_u32 dst, src0, src1
s_mul_i32 dst, src0, src1
s_nand_b32 dst, src0, src1
s_nand_b64 dst, src0, src1
s_nor_b32 dst, src0, src1
s_nor_b64 dst, src0, src1
s_or_b32 dst, src0, src1
s_or_b64 dst, src0, src1
s_orn2_b32 dst, src0, src1
s_orn2_b64 dst, src0, src1
s_rfe_restore_b64 src0, src1
s_sub_i32 dst, src0, src1
s_sub_u32 dst, src0, src1
s_subb_u32 dst, src0, src1
s_xnor_b32 dst, src0, src1
s_xnor_b64 dst, src0, src1
s_xor_b32 dst, src0, src1
s_xor_b64 dst, src0, src1

SOPC

s_bitcmp0_b32 src0, src1
s_bitcmp0_b64 src0, src1
s_bitcmp1_b32 src0, src1
s_bitcmp1_b64 src0, src1
s_cmp_eq_i32 src0, src1
s_cmp_eq_u32 src0, src1
s_cmp_eq_u64 src0, src1
s_cmp_ge_i32 src0, src1
s_cmp_ge_u32 src0, src1
s_cmp_gt_i32 src0, src1
s_cmp_gt_u32 src0, src1
s_cmp_le_i32 src0, src1
s_cmp_le_u32 src0, src1
s_cmp_lg_i32 src0, src1
s_cmp_lg_u32 src0, src1
s_cmp_lg_u64 src0, src1
s_cmp_lt_i32 src0, src1
s_cmp_lt_u32 src0, src1
s_set_gpr_idx_on src0, src1
s_setvskip src0, src1

SOPK

s_addk_i32 dst, src0
s_cbranch_i_fork src0, src1
s_cmovk_i32 dst, src0
s_cmpk_eq_i32 src0, src1
s_cmpk_eq_u32 src0, src1
s_cmpk_ge_i32 src0, src1
s_cmpk_ge_u32 src0, src1
s_cmpk_gt_i32 src0, src1
s_cmpk_gt_u32 src0, src1
s_cmpk_le_i32 src0, src1
s_cmpk_le_u32 src0, src1
s_cmpk_lg_i32 src0, src1
s_cmpk_lg_u32 src0, src1
s_cmpk_lt_i32 src0, src1
s_cmpk_lt_u32 src0, src1
s_getreg_b32 dst, src0
s_movk_i32 dst, src0
s_mulk_i32 dst, src0
s_setreg_b32 dst, src0
s_setreg_imm32_b32 dst, src0

SOPP

s_barrier
s_branch src0
s_cbranch_cdbgsys src0
s_cbranch_cdbgsys_and_user src0
s_cbranch_cdbgsys_or_user src0
s_cbranch_cdbguser src0
s_cbranch_execnz src0
s_cbranch_execz src0
s_cbranch_scc0 src0
s_cbranch_scc1 src0
s_cbranch_vccnz src0
s_cbranch_vccz src0
s_decperflevel src0
s_endpgm
s_endpgm_saved
s_icache_inv
s_incperflevel src0
s_nop src0
s_sendmsg src0
s_sendmsghalt src0
s_set_gpr_idx_mode src0
s_set_gpr_idx_off
s_sethalt src0
s_setkill src0
s_setprio src0
s_sleep src0
s_trap src0
s_ttracedata
s_waitcnt src0
s_wakeup

VINTRP

v_interp_mov_f32 dst, src0, src1
v_interp_p1_f32 dst, src0, src1
v_interp_p2_f32 dst, src0, src1

VOP1

v_bfrev_b32 dst, src0
v_bfrev_b32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_bfrev_b32_sdwa dst, src0 dst_sel dst_unused src0_sel
v_ceil_f16 dst, src0
v_ceil_f16_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_ceil_f16_sdwa dst, src0 clamp dst_sel dst_unused src0_sel
v_ceil_f32 dst, src0
v_ceil_f32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_ceil_f32_sdwa dst, src0 clamp dst_sel dst_unused src0_sel
v_ceil_f64 dst, src0
v_clrexcp
v_cos_f16 dst, src0
v_cos_f16_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_cos_f16_sdwa dst, src0 clamp dst_sel dst_unused src0_sel
v_cos_f32 dst, src0
v_cos_f32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_cos_f32_sdwa dst, src0 clamp dst_sel dst_unused src0_sel
v_cvt_f16_f32 dst, src0
v_cvt_f16_f32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_cvt_f16_f32_sdwa dst, src0 clamp dst_sel dst_unused src0_sel
v_cvt_f16_i16 dst, src0
v_cvt_f16_i16_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_cvt_f16_i16_sdwa dst, src0 clamp dst_sel dst_unused src0_sel
v_cvt_f16_u16 dst, src0
v_cvt_f16_u16_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_cvt_f16_u16_sdwa dst, src0 clamp dst_sel dst_unused src0_sel
v_cvt_f32_f16 dst, src0
v_cvt_f32_f16_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_cvt_f32_f16_sdwa dst, src0 clamp dst_sel dst_unused src0_sel
v_cvt_f32_f64 dst, src0
v_cvt_f32_i32 dst, src0
v_cvt_f32_i32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_cvt_f32_i32_sdwa dst, src0 clamp dst_sel dst_unused src0_sel
v_cvt_f32_u32 dst, src0
v_cvt_f32_u32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_cvt_f32_u32_sdwa dst, src0 clamp dst_sel dst_unused src0_sel
v_cvt_f32_ubyte0 dst, src0
v_cvt_f32_ubyte0_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_cvt_f32_ubyte0_sdwa dst, src0 clamp dst_sel dst_unused src0_sel
v_cvt_f32_ubyte1 dst, src0
v_cvt_f32_ubyte1_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_cvt_f32_ubyte1_sdwa dst, src0 clamp dst_sel dst_unused src0_sel
v_cvt_f32_ubyte2 dst, src0
v_cvt_f32_ubyte2_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_cvt_f32_ubyte2_sdwa dst, src0 clamp dst_sel dst_unused src0_sel
v_cvt_f32_ubyte3 dst, src0
v_cvt_f32_ubyte3_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_cvt_f32_ubyte3_sdwa dst, src0 clamp dst_sel dst_unused src0_sel
v_cvt_f64_f32 dst, src0
v_cvt_f64_i32 dst, src0
v_cvt_f64_u32 dst, src0
v_cvt_flr_i32_f32 dst, src0
v_cvt_flr_i32_f32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_cvt_flr_i32_f32_sdwa dst, src0 dst_sel dst_unused src0_sel
v_cvt_i16_f16 dst, src0
v_cvt_i16_f16_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_cvt_i16_f16_sdwa dst, src0 dst_sel dst_unused src0_sel
v_cvt_i32_f32 dst, src0
v_cvt_i32_f32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_cvt_i32_f32_sdwa dst, src0 dst_sel dst_unused src0_sel
v_cvt_i32_f64 dst, src0
v_cvt_off_f32_i4 dst, src0
v_cvt_off_f32_i4_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_cvt_off_f32_i4_sdwa dst, src0 clamp dst_sel dst_unused src0_sel
v_cvt_rpi_i32_f32 dst, src0
v_cvt_rpi_i32_f32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_cvt_rpi_i32_f32_sdwa dst, src0 dst_sel dst_unused src0_sel
v_cvt_u16_f16 dst, src0
v_cvt_u16_f16_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_cvt_u16_f16_sdwa dst, src0 dst_sel dst_unused src0_sel
v_cvt_u32_f32 dst, src0
v_cvt_u32_f32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_cvt_u32_f32_sdwa dst, src0 dst_sel dst_unused src0_sel
v_cvt_u32_f64 dst, src0
v_exp_f16 dst, src0
v_exp_f16_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_exp_f16_sdwa dst, src0 clamp dst_sel dst_unused src0_sel
v_exp_f32 dst, src0
v_exp_f32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_exp_f32_sdwa dst, src0 clamp dst_sel dst_unused src0_sel
v_exp_legacy_f32 dst, src0
v_exp_legacy_f32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_exp_legacy_f32_sdwa dst, src0 clamp dst_sel dst_unused src0_sel
v_ffbh_i32 dst, src0
v_ffbh_i32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_ffbh_i32_sdwa dst, src0 dst_sel dst_unused src0_sel
v_ffbh_u32 dst, src0
v_ffbh_u32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_ffbh_u32_sdwa dst, src0 dst_sel dst_unused src0_sel
v_ffbl_b32 dst, src0
v_ffbl_b32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_ffbl_b32_sdwa dst, src0 dst_sel dst_unused src0_sel
v_floor_f16 dst, src0
v_floor_f16_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_floor_f16_sdwa dst, src0 clamp dst_sel dst_unused src0_sel
v_floor_f32 dst, src0
v_floor_f32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_floor_f32_sdwa dst, src0 clamp dst_sel dst_unused src0_sel
v_floor_f64 dst, src0
v_fract_f16 dst, src0
v_fract_f16_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_fract_f16_sdwa dst, src0 clamp dst_sel dst_unused src0_sel
v_fract_f32 dst, src0
v_fract_f32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_fract_f32_sdwa dst, src0 clamp dst_sel dst_unused src0_sel
v_fract_f64 dst, src0
v_frexp_exp_i16_f16 dst, src0
v_frexp_exp_i16_f16_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_frexp_exp_i16_f16_sdwa dst, src0 dst_sel dst_unused src0_sel
v_frexp_exp_i32_f32 dst, src0
v_frexp_exp_i32_f32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_frexp_exp_i32_f32_sdwa dst, src0 dst_sel dst_unused src0_sel
v_frexp_exp_i32_f64 dst, src0
v_frexp_mant_f16 dst, src0
v_frexp_mant_f16_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_frexp_mant_f16_sdwa dst, src0 clamp dst_sel dst_unused src0_sel
v_frexp_mant_f32 dst, src0
v_frexp_mant_f32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_frexp_mant_f32_sdwa dst, src0 clamp dst_sel dst_unused src0_sel
v_frexp_mant_f64 dst, src0
v_log_f16 dst, src0
v_log_f16_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_log_f16_sdwa dst, src0 clamp dst_sel dst_unused src0_sel
v_log_f32 dst, src0
v_log_f32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_log_f32_sdwa dst, src0 clamp dst_sel dst_unused src0_sel
v_log_legacy_f32 dst, src0
v_log_legacy_f32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_log_legacy_f32_sdwa dst, src0 clamp dst_sel dst_unused src0_sel
v_mov_b32 dst, src0
v_mov_b32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_mov_b32_sdwa dst, src0 dst_sel dst_unused src0_sel
v_mov_fed_b32 dst, src0
v_mov_fed_b32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_mov_fed_b32_sdwa dst, src0 dst_sel dst_unused src0_sel
v_movreld_b32 dst, src0
v_movrels_b32 dst, src0
v_movrelsd_b32 dst, src0
v_nop
v_not_b32 dst, src0
v_not_b32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_not_b32_sdwa dst, src0 dst_sel dst_unused src0_sel
v_rcp_f16 dst, src0
v_rcp_f16_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_rcp_f16_sdwa dst, src0 clamp dst_sel dst_unused src0_sel
v_rcp_f32 dst, src0
v_rcp_f32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_rcp_f32_sdwa dst, src0 clamp dst_sel dst_unused src0_sel
v_rcp_f64 dst, src0
v_rcp_iflag_f32 dst, src0
v_rcp_iflag_f32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_rcp_iflag_f32_sdwa dst, src0 clamp dst_sel dst_unused src0_sel
v_readfirstlane_b32 dst, src0
v_rndne_f16 dst, src0
v_rndne_f16_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_rndne_f16_sdwa dst, src0 clamp dst_sel dst_unused src0_sel
v_rndne_f32 dst, src0
v_rndne_f32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_rndne_f32_sdwa dst, src0 clamp dst_sel dst_unused src0_sel
v_rndne_f64 dst, src0
v_rsq_f16 dst, src0
v_rsq_f16_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_rsq_f16_sdwa dst, src0 clamp dst_sel dst_unused src0_sel
v_rsq_f32 dst, src0
v_rsq_f32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_rsq_f32_sdwa dst, src0 clamp dst_sel dst_unused src0_sel
v_rsq_f64 dst, src0
v_sin_f16 dst, src0
v_sin_f16_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_sin_f16_sdwa dst, src0 clamp dst_sel dst_unused src0_sel
v_sin_f32 dst, src0
v_sin_f32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_sin_f32_sdwa dst, src0 clamp dst_sel dst_unused src0_sel
v_sqrt_f16 dst, src0
v_sqrt_f16_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_sqrt_f16_sdwa dst, src0 clamp dst_sel dst_unused src0_sel
v_sqrt_f32 dst, src0
v_sqrt_f32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_sqrt_f32_sdwa dst, src0 clamp dst_sel dst_unused src0_sel
v_sqrt_f64 dst, src0
v_trunc_f16 dst, src0
v_trunc_f16_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_trunc_f16_sdwa dst, src0 clamp dst_sel dst_unused src0_sel
v_trunc_f32 dst, src0
v_trunc_f32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_trunc_f32_sdwa dst, src0 clamp dst_sel dst_unused src0_sel
v_trunc_f64 dst, src0

VOP2

v_add_f16 dst, src0, src1
v_add_f16_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_add_f16_sdwa dst, src0, src1 clamp dst_sel dst_unused src0_sel src1_sel
v_add_f32 dst, src0, src1
v_add_f32_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_add_f32_sdwa dst, src0, src1 clamp dst_sel dst_unused src0_sel src1_sel
v_add_u16 dst, src0, src1
v_add_u16_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_add_u16_sdwa dst, src0, src1 clamp dst_sel dst_unused src0_sel src1_sel
v_add_u32 dst0, dst1, src0, src1
v_add_u32_dpp dst0, dst1, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_add_u32_sdwa dst0, dst1, src0, src1 clamp dst_sel dst_unused src0_sel src1_sel
v_addc_u32 dst0, dst1, src0, src1, src2
v_addc_u32_dpp dst0, dst1, src0, src1, src2 dpp_ctrl row_mask bank_mask bound_ctrl
v_addc_u32_sdwa dst0, dst1, src0, src1, src2 clamp dst_sel dst_unused src0_sel src1_sel
v_and_b32 dst, src0, src1
v_and_b32_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_and_b32_sdwa dst, src0, src1 dst_sel dst_unused src0_sel src1_sel
v_ashrrev_i16 dst, src0, src1
v_ashrrev_i16_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_ashrrev_i16_sdwa dst, src0, src1 dst_sel dst_unused src0_sel src1_sel
v_ashrrev_i32 dst, src0, src1
v_ashrrev_i32_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_ashrrev_i32_sdwa dst, src0, src1 dst_sel dst_unused src0_sel src1_sel
v_cndmask_b32 dst, src0, src1, src2
v_cndmask_b32_dpp dst, src0, src1, src2 dpp_ctrl row_mask bank_mask bound_ctrl
v_cndmask_b32_sdwa dst, src0, src1, src2 dst_sel dst_unused src0_sel src1_sel
v_ldexp_f16 dst, src0, src1
v_ldexp_f16_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_ldexp_f16_sdwa dst, src0, src1 clamp dst_sel dst_unused src0_sel src1_sel
v_lshlrev_b16 dst, src0, src1
v_lshlrev_b16_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_lshlrev_b16_sdwa dst, src0, src1 dst_sel dst_unused src0_sel src1_sel
v_lshlrev_b32 dst, src0, src1
v_lshlrev_b32_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_lshlrev_b32_sdwa dst, src0, src1 dst_sel dst_unused src0_sel src1_sel
v_lshrrev_b16 dst, src0, src1
v_lshrrev_b16_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_lshrrev_b16_sdwa dst, src0, src1 dst_sel dst_unused src0_sel src1_sel
v_lshrrev_b32 dst, src0, src1
v_lshrrev_b32_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_lshrrev_b32_sdwa dst, src0, src1 dst_sel dst_unused src0_sel src1_sel
v_mac_f16 dst, src0, src1
v_mac_f16_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_mac_f16_sdwa dst, src0, src1 clamp dst_sel dst_unused src0_sel src1_sel
v_mac_f32 dst, src0, src1
v_mac_f32_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_mac_f32_sdwa dst, src0, src1 clamp dst_sel dst_unused src0_sel src1_sel
v_madak_f16 dst, src0, src1, src2
v_madak_f32 dst, src0, src1, src2
v_madmk_f16 dst, src0, src1, src2
v_madmk_f32 dst, src0, src1, src2
v_max_f16 dst, src0, src1
v_max_f16_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_max_f16_sdwa dst, src0, src1 clamp dst_sel dst_unused src0_sel src1_sel
v_max_f32 dst, src0, src1
v_max_f32_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_max_f32_sdwa dst, src0, src1 clamp dst_sel dst_unused src0_sel src1_sel
v_max_i16 dst, src0, src1
v_max_i16_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_max_i16_sdwa dst, src0, src1 dst_sel dst_unused src0_sel src1_sel
v_max_i32 dst, src0, src1
v_max_i32_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_max_i32_sdwa dst, src0, src1 dst_sel dst_unused src0_sel src1_sel
v_max_u16 dst, src0, src1
v_max_u16_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_max_u16_sdwa dst, src0, src1 dst_sel dst_unused src0_sel src1_sel
v_max_u32 dst, src0, src1
v_max_u32_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_max_u32_sdwa dst, src0, src1 dst_sel dst_unused src0_sel src1_sel
v_min_f16 dst, src0, src1
v_min_f16_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_min_f16_sdwa dst, src0, src1 clamp dst_sel dst_unused src0_sel src1_sel
v_min_f32 dst, src0, src1
v_min_f32_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_min_f32_sdwa dst, src0, src1 clamp dst_sel dst_unused src0_sel src1_sel
v_min_i16 dst, src0, src1
v_min_i16_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_min_i16_sdwa dst, src0, src1 dst_sel dst_unused src0_sel src1_sel
v_min_i32 dst, src0, src1
v_min_i32_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_min_i32_sdwa dst, src0, src1 dst_sel dst_unused src0_sel src1_sel
v_min_u16 dst, src0, src1
v_min_u16_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_min_u16_sdwa dst, src0, src1 dst_sel dst_unused src0_sel src1_sel
v_min_u32 dst, src0, src1
v_min_u32_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_min_u32_sdwa dst, src0, src1 dst_sel dst_unused src0_sel src1_sel
v_mul_f16 dst, src0, src1
v_mul_f16_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_mul_f16_sdwa dst, src0, src1 clamp dst_sel dst_unused src0_sel src1_sel
v_mul_f32 dst, src0, src1
v_mul_f32_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_mul_f32_sdwa dst, src0, src1 clamp dst_sel dst_unused src0_sel src1_sel
v_mul_hi_i32_i24 dst, src0, src1
v_mul_hi_i32_i24_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_mul_hi_i32_i24_sdwa dst, src0, src1 dst_sel dst_unused src0_sel src1_sel
v_mul_hi_u32_u24 dst, src0, src1
v_mul_hi_u32_u24_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_mul_hi_u32_u24_sdwa dst, src0, src1 dst_sel dst_unused src0_sel src1_sel
v_mul_i32_i24 dst, src0, src1
v_mul_i32_i24_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_mul_i32_i24_sdwa dst, src0, src1 clamp dst_sel dst_unused src0_sel src1_sel
v_mul_legacy_f32 dst, src0, src1
v_mul_legacy_f32_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_mul_legacy_f32_sdwa dst, src0, src1 clamp dst_sel dst_unused src0_sel src1_sel
v_mul_lo_u16 dst, src0, src1
v_mul_lo_u16_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_mul_lo_u16_sdwa dst, src0, src1 dst_sel dst_unused src0_sel src1_sel
v_mul_u32_u24 dst, src0, src1
v_mul_u32_u24_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_mul_u32_u24_sdwa dst, src0, src1 clamp dst_sel dst_unused src0_sel src1_sel
v_or_b32 dst, src0, src1
v_or_b32_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_or_b32_sdwa dst, src0, src1 dst_sel dst_unused src0_sel src1_sel
v_sub_f16 dst, src0, src1
v_sub_f16_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_sub_f16_sdwa dst, src0, src1 clamp dst_sel dst_unused src0_sel src1_sel
v_sub_f32 dst, src0, src1
v_sub_f32_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_sub_f32_sdwa dst, src0, src1 clamp dst_sel dst_unused src0_sel src1_sel
v_sub_u16 dst, src0, src1
v_sub_u16_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_sub_u16_sdwa dst, src0, src1 clamp dst_sel dst_unused src0_sel src1_sel
v_sub_u32 dst0, dst1, src0, src1
v_sub_u32_dpp dst0, dst1, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_sub_u32_sdwa dst0, dst1, src0, src1 clamp dst_sel dst_unused src0_sel src1_sel
v_subb_u32 dst0, dst1, src0, src1, src2
v_subb_u32_dpp dst0, dst1, src0, src1, src2 dpp_ctrl row_mask bank_mask bound_ctrl
v_subb_u32_sdwa dst0, dst1, src0, src1, src2 clamp dst_sel dst_unused src0_sel src1_sel
v_subbrev_u32 dst0, dst1, src0, src1, src2
v_subbrev_u32_dpp dst0, dst1, src0, src1, src2 dpp_ctrl row_mask bank_mask bound_ctrl
v_subbrev_u32_sdwa dst0, dst1, src0, src1, src2 clamp dst_sel dst_unused src0_sel src1_sel
v_subrev_f16 dst, src0, src1
v_subrev_f16_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_subrev_f16_sdwa dst, src0, src1 clamp dst_sel dst_unused src0_sel src1_sel
v_subrev_f32 dst, src0, src1
v_subrev_f32_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_subrev_f32_sdwa dst, src0, src1 clamp dst_sel dst_unused src0_sel src1_sel
v_subrev_u16 dst, src0, src1
v_subrev_u16_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_subrev_u16_sdwa dst, src0, src1 clamp dst_sel dst_unused src0_sel src1_sel
v_subrev_u32 dst0, dst1, src0, src1
v_subrev_u32_dpp dst0, dst1, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_subrev_u32_sdwa dst0, dst1, src0, src1 clamp dst_sel dst_unused src0_sel src1_sel
v_xor_b32 dst, src0, src1
v_xor_b32_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_xor_b32_sdwa dst, src0, src1 dst_sel dst_unused src0_sel src1_sel

VOP3

v_add_f16_e64 dst, src0, src1 clamp omod
v_add_f32_e64 dst, src0, src1 clamp omod
v_add_f64 dst, src0, src1 clamp omod
v_add_u16_e64 dst, src0, src1 omod
v_add_u32_e64 dst0, dst1, src0, src1 omod
v_addc_u32_e64 dst0, dst1, src0, src1, src2 omod
v_alignbit_b32 dst, src0, src1, src2 omod
v_alignbyte_b32 dst, src0, src1, src2 omod
v_and_b32_e64 dst, src0, src1 omod
v_ashrrev_i16_e64 dst, src0, src1 omod
v_ashrrev_i32_e64 dst, src0, src1 omod
v_ashrrev_i64 dst, src0, src1 omod
v_bcnt_u32_b32 dst, src0, src1 omod
v_bfe_i32 dst, src0, src1, src2 omod
v_bfe_u32 dst, src0, src1, src2 omod
v_bfi_b32 dst, src0, src1, src2 omod
v_bfm_b32 dst, src0, src1 omod
v_bfrev_b32_e64 dst, src0 omod
v_ceil_f16_e64 dst, src0 clamp omod
v_ceil_f32_e64 dst, src0 clamp omod
v_ceil_f64_e64 dst, src0 clamp omod
v_clrexcp_e64 omod
v_cmp_class_f16_e64 dst, src0, src1 omod
v_cmp_class_f32_e64 dst, src0, src1 omod
v_cmp_class_f64_e64 dst, src0, src1 omod
v_cmp_eq_f16_e64 dst, src0, src1 clamp omod
v_cmp_eq_f32_e64 dst, src0, src1 clamp omod
v_cmp_eq_f64_e64 dst, src0, src1 clamp omod
v_cmp_eq_i16_e64 dst, src0, src1 omod
v_cmp_eq_i32_e64 dst, src0, src1 omod
v_cmp_eq_i64_e64 dst, src0, src1 omod
v_cmp_eq_u16_e64 dst, src0, src1 omod
v_cmp_eq_u32_e64 dst, src0, src1 omod
v_cmp_eq_u64_e64 dst, src0, src1 omod
v_cmp_f_f16_e64 dst, src0, src1 clamp omod
v_cmp_f_f32_e64 dst, src0, src1 clamp omod
v_cmp_f_f64_e64 dst, src0, src1 clamp omod
v_cmp_f_i16_e64 dst, src0, src1 omod
v_cmp_f_i32_e64 dst, src0, src1 omod
v_cmp_f_i64_e64 dst, src0, src1 omod
v_cmp_f_u16_e64 dst, src0, src1 omod
v_cmp_f_u32_e64 dst, src0, src1 omod
v_cmp_f_u64_e64 dst, src0, src1 omod
v_cmp_ge_f16_e64 dst, src0, src1 clamp omod
v_cmp_ge_f32_e64 dst, src0, src1 clamp omod
v_cmp_ge_f64_e64 dst, src0, src1 clamp omod
v_cmp_ge_i16_e64 dst, src0, src1 omod
v_cmp_ge_i32_e64 dst, src0, src1 omod
v_cmp_ge_i64_e64 dst, src0, src1 omod
v_cmp_ge_u16_e64 dst, src0, src1 omod
v_cmp_ge_u32_e64 dst, src0, src1 omod
v_cmp_ge_u64_e64 dst, src0, src1 omod
v_cmp_gt_f16_e64 dst, src0, src1 clamp omod
v_cmp_gt_f32_e64 dst, src0, src1 clamp omod
v_cmp_gt_f64_e64 dst, src0, src1 clamp omod
v_cmp_gt_i16_e64 dst, src0, src1 omod
v_cmp_gt_i32_e64 dst, src0, src1 omod
v_cmp_gt_i64_e64 dst, src0, src1 omod
v_cmp_gt_u16_e64 dst, src0, src1 omod
v_cmp_gt_u32_e64 dst, src0, src1 omod
v_cmp_gt_u64_e64 dst, src0, src1 omod
v_cmp_le_f16_e64 dst, src0, src1 clamp omod
v_cmp_le_f32_e64 dst, src0, src1 clamp omod
v_cmp_le_f64_e64 dst, src0, src1 clamp omod
v_cmp_le_i16_e64 dst, src0, src1 omod
v_cmp_le_i32_e64 dst, src0, src1 omod
v_cmp_le_i64_e64 dst, src0, src1 omod
v_cmp_le_u16_e64 dst, src0, src1 omod
v_cmp_le_u32_e64 dst, src0, src1 omod
v_cmp_le_u64_e64 dst, src0, src1 omod
v_cmp_lg_f16_e64 dst, src0, src1 clamp omod
v_cmp_lg_f32_e64 dst, src0, src1 clamp omod
v_cmp_lg_f64_e64 dst, src0, src1 clamp omod
v_cmp_lt_f16_e64 dst, src0, src1 clamp omod
v_cmp_lt_f32_e64 dst, src0, src1 clamp omod
v_cmp_lt_f64_e64 dst, src0, src1 clamp omod
v_cmp_lt_i16_e64 dst, src0, src1 omod
v_cmp_lt_i32_e64 dst, src0, src1 omod
v_cmp_lt_i64_e64 dst, src0, src1 omod
v_cmp_lt_u16_e64 dst, src0, src1 omod
v_cmp_lt_u32_e64 dst, src0, src1 omod
v_cmp_lt_u64_e64 dst, src0, src1 omod
v_cmp_ne_i16_e64 dst, src0, src1 omod
v_cmp_ne_i32_e64 dst, src0, src1 omod
v_cmp_ne_i64_e64 dst, src0, src1 omod
v_cmp_ne_u16_e64 dst, src0, src1 omod
v_cmp_ne_u32_e64 dst, src0, src1 omod
v_cmp_ne_u64_e64 dst, src0, src1 omod
v_cmp_neq_f16_e64 dst, src0, src1 clamp omod
v_cmp_neq_f32_e64 dst, src0, src1 clamp omod
v_cmp_neq_f64_e64 dst, src0, src1 clamp omod
v_cmp_nge_f16_e64 dst, src0, src1 clamp omod
v_cmp_nge_f32_e64 dst, src0, src1 clamp omod
v_cmp_nge_f64_e64 dst, src0, src1 clamp omod
v_cmp_ngt_f16_e64 dst, src0, src1 clamp omod
v_cmp_ngt_f32_e64 dst, src0, src1 clamp omod
v_cmp_ngt_f64_e64 dst, src0, src1 clamp omod
v_cmp_nle_f16_e64 dst, src0, src1 clamp omod
v_cmp_nle_f32_e64 dst, src0, src1 clamp omod
v_cmp_nle_f64_e64 dst, src0, src1 clamp omod
v_cmp_nlg_f16_e64 dst, src0, src1 clamp omod
v_cmp_nlg_f32_e64 dst, src0, src1 clamp omod
v_cmp_nlg_f64_e64 dst, src0, src1 clamp omod
v_cmp_nlt_f16_e64 dst, src0, src1 clamp omod
v_cmp_nlt_f32_e64 dst, src0, src1 clamp omod
v_cmp_nlt_f64_e64 dst, src0, src1 clamp omod
v_cmp_o_f16_e64 dst, src0, src1 clamp omod
v_cmp_o_f32_e64 dst, src0, src1 clamp omod
v_cmp_o_f64_e64 dst, src0, src1 clamp omod
v_cmp_t_i16_e64 dst, src0, src1 omod
v_cmp_t_i32_e64 dst, src0, src1 omod
v_cmp_t_i64_e64 dst, src0, src1 omod
v_cmp_t_u16_e64 dst, src0, src1 omod
v_cmp_t_u32_e64 dst, src0, src1 omod
v_cmp_t_u64_e64 dst, src0, src1 omod
v_cmp_tru_f16_e64 dst, src0, src1 clamp omod
v_cmp_tru_f32_e64 dst, src0, src1 clamp omod
v_cmp_tru_f64_e64 dst, src0, src1 clamp omod
v_cmp_u_f16_e64 dst, src0, src1 clamp omod
v_cmp_u_f32_e64 dst, src0, src1 clamp omod
v_cmp_u_f64_e64 dst, src0, src1 clamp omod
v_cmpx_class_f16_e64 dst, src0, src1 omod
v_cmpx_class_f32_e64 dst, src0, src1 omod
v_cmpx_class_f64_e64 dst, src0, src1 omod
v_cmpx_eq_f16_e64 dst, src0, src1 clamp omod
v_cmpx_eq_f32_e64 dst, src0, src1 clamp omod
v_cmpx_eq_f64_e64 dst, src0, src1 clamp omod
v_cmpx_eq_i16_e64 dst, src0, src1 omod
v_cmpx_eq_i32_e64 dst, src0, src1 omod
v_cmpx_eq_i64_e64 dst, src0, src1 omod
v_cmpx_eq_u16_e64 dst, src0, src1 omod
v_cmpx_eq_u32_e64 dst, src0, src1 omod
v_cmpx_eq_u64_e64 dst, src0, src1 omod
v_cmpx_f_f16_e64 dst, src0, src1 clamp omod
v_cmpx_f_f32_e64 dst, src0, src1 clamp omod
v_cmpx_f_f64_e64 dst, src0, src1 clamp omod
v_cmpx_f_i16_e64 dst, src0, src1 omod
v_cmpx_f_i32_e64 dst, src0, src1 omod
v_cmpx_f_i64_e64 dst, src0, src1 omod
v_cmpx_f_u16_e64 dst, src0, src1 omod
v_cmpx_f_u32_e64 dst, src0, src1 omod
v_cmpx_f_u64_e64 dst, src0, src1 omod
v_cmpx_ge_f16_e64 dst, src0, src1 clamp omod
v_cmpx_ge_f32_e64 dst, src0, src1 clamp omod
v_cmpx_ge_f64_e64 dst, src0, src1 clamp omod
v_cmpx_ge_i16_e64 dst, src0, src1 omod
v_cmpx_ge_i32_e64 dst, src0, src1 omod
v_cmpx_ge_i64_e64 dst, src0, src1 omod
v_cmpx_ge_u16_e64 dst, src0, src1 omod
v_cmpx_ge_u32_e64 dst, src0, src1 omod
v_cmpx_ge_u64_e64 dst, src0, src1 omod
v_cmpx_gt_f16_e64 dst, src0, src1 clamp omod
v_cmpx_gt_f32_e64 dst, src0, src1 clamp omod
v_cmpx_gt_f64_e64 dst, src0, src1 clamp omod
v_cmpx_gt_i16_e64 dst, src0, src1 omod
v_cmpx_gt_i32_e64 dst, src0, src1 omod
v_cmpx_gt_i64_e64 dst, src0, src1 omod
v_cmpx_gt_u16_e64 dst, src0, src1 omod
v_cmpx_gt_u32_e64 dst, src0, src1 omod
v_cmpx_gt_u64_e64 dst, src0, src1 omod
v_cmpx_le_f16_e64 dst, src0, src1 clamp omod
v_cmpx_le_f32_e64 dst, src0, src1 clamp omod
v_cmpx_le_f64_e64 dst, src0, src1 clamp omod
v_cmpx_le_i16_e64 dst, src0, src1 omod
v_cmpx_le_i32_e64 dst, src0, src1 omod
v_cmpx_le_i64_e64 dst, src0, src1 omod
v_cmpx_le_u16_e64 dst, src0, src1 omod
v_cmpx_le_u32_e64 dst, src0, src1 omod
v_cmpx_le_u64_e64 dst, src0, src1 omod
v_cmpx_lg_f16_e64 dst, src0, src1 clamp omod
v_cmpx_lg_f32_e64 dst, src0, src1 clamp omod
v_cmpx_lg_f64_e64 dst, src0, src1 clamp omod
v_cmpx_lt_f16_e64 dst, src0, src1 clamp omod
v_cmpx_lt_f32_e64 dst, src0, src1 clamp omod
v_cmpx_lt_f64_e64 dst, src0, src1 clamp omod
v_cmpx_lt_i16_e64 dst, src0, src1 omod
v_cmpx_lt_i32_e64 dst, src0, src1 omod
v_cmpx_lt_i64_e64 dst, src0, src1 omod
v_cmpx_lt_u16_e64 dst, src0, src1 omod
v_cmpx_lt_u32_e64 dst, src0, src1 omod
v_cmpx_lt_u64_e64 dst, src0, src1 omod
v_cmpx_ne_i16_e64 dst, src0, src1 omod
v_cmpx_ne_i32_e64 dst, src0, src1 omod
v_cmpx_ne_i64_e64 dst, src0, src1 omod
v_cmpx_ne_u16_e64 dst, src0, src1 omod
v_cmpx_ne_u32_e64 dst, src0, src1 omod
v_cmpx_ne_u64_e64 dst, src0, src1 omod
v_cmpx_neq_f16_e64 dst, src0, src1 clamp omod
v_cmpx_neq_f32_e64 dst, src0, src1 clamp omod
v_cmpx_neq_f64_e64 dst, src0, src1 clamp omod
v_cmpx_nge_f16_e64 dst, src0, src1 clamp omod
v_cmpx_nge_f32_e64 dst, src0, src1 clamp omod
v_cmpx_nge_f64_e64 dst, src0, src1 clamp omod
v_cmpx_ngt_f16_e64 dst, src0, src1 clamp omod
v_cmpx_ngt_f32_e64 dst, src0, src1 clamp omod
v_cmpx_ngt_f64_e64 dst, src0, src1 clamp omod
v_cmpx_nle_f16_e64 dst, src0, src1 clamp omod
v_cmpx_nle_f32_e64 dst, src0, src1 clamp omod
v_cmpx_nle_f64_e64 dst, src0, src1 clamp omod
v_cmpx_nlg_f16_e64 dst, src0, src1 clamp omod
v_cmpx_nlg_f32_e64 dst, src0, src1 clamp omod
v_cmpx_nlg_f64_e64 dst, src0, src1 clamp omod
v_cmpx_nlt_f16_e64 dst, src0, src1 clamp omod
v_cmpx_nlt_f32_e64 dst, src0, src1 clamp omod
v_cmpx_nlt_f64_e64 dst, src0, src1 clamp omod
v_cmpx_o_f16_e64 dst, src0, src1 clamp omod
v_cmpx_o_f32_e64 dst, src0, src1 clamp omod
v_cmpx_o_f64_e64 dst, src0, src1 clamp omod
v_cmpx_t_i16_e64 dst, src0, src1 omod
v_cmpx_t_i32_e64 dst, src0, src1 omod
v_cmpx_t_i64_e64 dst, src0, src1 omod
v_cmpx_t_u16_e64 dst, src0, src1 omod
v_cmpx_t_u32_e64 dst, src0, src1 omod
v_cmpx_t_u64_e64 dst, src0, src1 omod
v_cmpx_tru_f16_e64 dst, src0, src1 clamp omod
v_cmpx_tru_f32_e64 dst, src0, src1 clamp omod
v_cmpx_tru_f64_e64 dst, src0, src1 clamp omod
v_cmpx_u_f16_e64 dst, src0, src1 clamp omod
v_cmpx_u_f32_e64 dst, src0, src1 clamp omod
v_cmpx_u_f64_e64 dst, src0, src1 clamp omod
v_cndmask_b32_e64 dst, src0, src1, src2 omod
v_cos_f16_e64 dst, src0 clamp omod
v_cos_f32_e64 dst, src0 clamp omod
v_cubeid_f32 dst, src0, src1, src2 clamp omod
v_cubema_f32 dst, src0, src1, src2 clamp omod
v_cubesc_f32 dst, src0, src1, src2 clamp omod
v_cubetc_f32 dst, src0, src1, src2 clamp omod
v_cvt_f16_f32_e64 dst, src0 clamp omod
v_cvt_f16_i16_e64 dst, src0 clamp omod
v_cvt_f16_u16_e64 dst, src0 clamp omod
v_cvt_f32_f16_e64 dst, src0 clamp omod
v_cvt_f32_f64_e64 dst, src0 clamp omod
v_cvt_f32_i32_e64 dst, src0 clamp omod
v_cvt_f32_u32_e64 dst, src0 clamp omod
v_cvt_f32_ubyte0_e64 dst, src0 clamp omod
v_cvt_f32_ubyte1_e64 dst, src0 clamp omod
v_cvt_f32_ubyte2_e64 dst, src0 clamp omod
v_cvt_f32_ubyte3_e64 dst, src0 clamp omod
v_cvt_f64_f32_e64 dst, src0 clamp omod
v_cvt_f64_i32_e64 dst, src0 clamp omod
v_cvt_f64_u32_e64 dst, src0 clamp omod
v_cvt_flr_i32_f32_e64 dst, src0 omod
v_cvt_i16_f16_e64 dst, src0 omod
v_cvt_i32_f32_e64 dst, src0 omod
v_cvt_i32_f64_e64 dst, src0 omod
v_cvt_off_f32_i4_e64 dst, src0 clamp omod
v_cvt_pk_i16_i32 dst, src0, src1 omod
v_cvt_pk_u16_u32 dst, src0, src1 omod
v_cvt_pk_u8_f32 dst, src0, src1, src2 omod
v_cvt_pkaccum_u8_f32 dst, src0, src1 omod
v_cvt_pknorm_i16_f32 dst, src0, src1 omod
v_cvt_pknorm_u16_f32 dst, src0, src1 omod
v_cvt_pkrtz_f16_f32 dst, src0, src1 omod
v_cvt_rpi_i32_f32_e64 dst, src0 omod
v_cvt_u16_f16_e64 dst, src0 omod
v_cvt_u32_f32_e64 dst, src0 omod
v_cvt_u32_f64_e64 dst, src0 omod
v_div_fixup_f16 dst, src0, src1, src2 clamp omod
v_div_fixup_f32 dst, src0, src1, src2 clamp omod
v_div_fixup_f64 dst, src0, src1, src2 clamp omod
v_div_fmas_f32 dst, src0, src1, src2 clamp omod
v_div_fmas_f64 dst, src0, src1, src2 clamp omod
v_div_scale_f32 dst0, dst1, src0, src1, src2 omod
v_div_scale_f64 dst0, dst1, src0, src1, src2 omod
v_exp_f16_e64 dst, src0 clamp omod
v_exp_f32_e64 dst, src0 clamp omod
v_exp_legacy_f32_e64 dst, src0 clamp omod
v_ffbh_i32_e64 dst, src0 omod
v_ffbh_u32_e64 dst, src0 omod
v_ffbl_b32_e64 dst, src0 omod
v_floor_f16_e64 dst, src0 clamp omod
v_floor_f32_e64 dst, src0 clamp omod
v_floor_f64_e64 dst, src0 clamp omod
v_fma_f16 dst, src0, src1, src2 clamp omod
v_fma_f32 dst, src0, src1, src2 clamp omod
v_fma_f64 dst, src0, src1, src2 clamp omod
v_fract_f16_e64 dst, src0 clamp omod
v_fract_f32_e64 dst, src0 clamp omod
v_fract_f64_e64 dst, src0 clamp omod
v_frexp_exp_i16_f16_e64 dst, src0 omod
v_frexp_exp_i32_f32_e64 dst, src0 omod
v_frexp_exp_i32_f64_e64 dst, src0 omod
v_frexp_mant_f16_e64 dst, src0 clamp omod
v_frexp_mant_f32_e64 dst, src0 clamp omod
v_frexp_mant_f64_e64 dst, src0 clamp omod
v_interp_mov_f32_e64 dst, src0, src1 clamp omod
v_interp_p1_f32_e64 dst, src0, src1 clamp omod
v_interp_p1ll_f16 dst, src0, src1 high clamp omod
v_interp_p1lv_f16 dst, src0, src1, src2 high clamp omod
v_interp_p2_f16 dst, src0, src1, src2 high clamp omod
v_interp_p2_f32_e64 dst, src0, src1 clamp omod
v_ldexp_f16_e64 dst, src0, src1 clamp omod
v_ldexp_f32 dst, src0, src1 clamp omod
v_ldexp_f64 dst, src0, src1 clamp omod
v_lerp_u8 dst, src0, src1, src2 omod
v_log_f16_e64 dst, src0 clamp omod
v_log_f32_e64 dst, src0 clamp omod
v_log_legacy_f32_e64 dst, src0 clamp omod
v_lshlrev_b16_e64 dst, src0, src1 omod
v_lshlrev_b32_e64 dst, src0, src1 omod
v_lshlrev_b64 dst, src0, src1 omod
v_lshrrev_b16_e64 dst, src0, src1 omod
v_lshrrev_b32_e64 dst, src0, src1 omod
v_lshrrev_b64 dst, src0, src1 omod
v_mac_f16_e64 dst, src0, src1 clamp omod
v_mac_f32_e64 dst, src0, src1 clamp omod
v_mad_f16 dst, src0, src1, src2 clamp omod
v_mad_f32 dst, src0, src1, src2 clamp omod
v_mad_i16 dst, src0, src1, src2 clamp omod
v_mad_i32_i24 dst, src0, src1, src2 clamp omod
v_mad_i64_i32 dst0, dst1, src0, src1, src2 clamp omod
v_mad_legacy_f32 dst, src0, src1, src2 clamp omod
v_mad_u16 dst, src0, src1, src2 clamp omod
v_mad_u32_u24 dst, src0, src1, src2 clamp omod
v_mad_u64_u32 dst0, dst1, src0, src1, src2 clamp omod
v_max3_f32 dst, src0, src1, src2 clamp omod
v_max3_i32 dst, src0, src1, src2 omod
v_max3_u32 dst, src0, src1, src2 omod
v_max_f16_e64 dst, src0, src1 clamp omod
v_max_f32_e64 dst, src0, src1 clamp omod
v_max_f64 dst, src0, src1 clamp omod
v_max_i16_e64 dst, src0, src1 omod
v_max_i32_e64 dst, src0, src1 omod
v_max_u16_e64 dst, src0, src1 omod
v_max_u32_e64 dst, src0, src1 omod
v_mbcnt_hi_u32_b32 dst, src0, src1 omod
v_mbcnt_lo_u32_b32 dst, src0, src1 omod
v_med3_f32 dst, src0, src1, src2 clamp omod
v_med3_i32 dst, src0, src1, src2 omod
v_med3_u32 dst, src0, src1, src2 omod
v_min3_f32 dst, src0, src1, src2 clamp omod
v_min3_i32 dst, src0, src1, src2 omod
v_min3_u32 dst, src0, src1, src2 omod
v_min_f16_e64 dst, src0, src1 clamp omod
v_min_f32_e64 dst, src0, src1 clamp omod
v_min_f64 dst, src0, src1 clamp omod
v_min_i16_e64 dst, src0, src1 omod
v_min_i32_e64 dst, src0, src1 omod
v_min_u16_e64 dst, src0, src1 omod
v_min_u32_e64 dst, src0, src1 omod
v_mov_b32_e64 dst, src0 omod
v_mov_fed_b32_e64 dst, src0 omod
v_movreld_b32_e64 dst, src0 omod
v_movrels_b32_e64 dst, src0 omod
v_movrelsd_b32_e64 dst, src0 omod
v_mqsad_pk_u16_u8 dst, src0, src1, src2 clamp omod
v_mqsad_u32_u8 dst, src0, src1, src2 clamp omod
v_msad_u8 dst, src0, src1, src2 clamp omod
v_mul_f16_e64 dst, src0, src1 clamp omod
v_mul_f32_e64 dst, src0, src1 clamp omod
v_mul_f64 dst, src0, src1 clamp omod
v_mul_hi_i32 dst, src0, src1 omod
v_mul_hi_i32_i24_e64 dst, src0, src1 omod
v_mul_hi_u32 dst, src0, src1 omod
v_mul_hi_u32_u24_e64 dst, src0, src1 omod
v_mul_i32_i24_e64 dst, src0, src1 omod
v_mul_legacy_f32_e64 dst, src0, src1 clamp omod
v_mul_lo_u16_e64 dst, src0, src1 omod
v_mul_lo_u32 dst, src0, src1 omod
v_mul_u32_u24_e64 dst, src0, src1 omod
v_nop_e64 omod
v_not_b32_e64 dst, src0 omod
v_or_b32_e64 dst, src0, src1 omod
v_perm_b32 dst, src0, src1, src2 omod
v_qsad_pk_u16_u8 dst, src0, src1, src2 clamp omod
v_rcp_f16_e64 dst, src0 clamp omod
v_rcp_f32_e64 dst, src0 clamp omod
v_rcp_f64_e64 dst, src0 clamp omod
v_rcp_iflag_f32_e64 dst, src0 clamp omod
v_readlane_b32 dst, src0, src1 omod
v_rndne_f16_e64 dst, src0 clamp omod
v_rndne_f32_e64 dst, src0 clamp omod
v_rndne_f64_e64 dst, src0 clamp omod
v_rsq_f16_e64 dst, src0 clamp omod
v_rsq_f32_e64 dst, src0 clamp omod
v_rsq_f64_e64 dst, src0 clamp omod
v_sad_hi_u8 dst, src0, src1, src2 clamp omod
v_sad_u16 dst, src0, src1, src2 clamp omod
v_sad_u32 dst, src0, src1, src2 clamp omod
v_sad_u8 dst, src0, src1, src2 clamp omod
v_sin_f16_e64 dst, src0 clamp omod
v_sin_f32_e64 dst, src0 clamp omod
v_sqrt_f16_e64 dst, src0 clamp omod
v_sqrt_f32_e64 dst, src0 clamp omod
v_sqrt_f64_e64 dst, src0 clamp omod
v_sub_f16_e64 dst, src0, src1 clamp omod
v_sub_f32_e64 dst, src0, src1 clamp omod
v_sub_u16_e64 dst, src0, src1 omod
v_sub_u32_e64 dst0, dst1, src0, src1 omod
v_subb_u32_e64 dst0, dst1, src0, src1, src2 omod
v_subbrev_u32_e64 dst0, dst1, src0, src1, src2 omod
v_subrev_f16_e64 dst, src0, src1 clamp omod
v_subrev_f32_e64 dst, src0, src1 clamp omod
v_subrev_u16_e64 dst, src0, src1 omod
v_subrev_u32_e64 dst0, dst1, src0, src1 omod
v_trig_preop_f64 dst, src0, src1 clamp omod
v_trunc_f16_e64 dst, src0 clamp omod
v_trunc_f32_e64 dst, src0 clamp omod
v_trunc_f64_e64 dst, src0 clamp omod
v_writelane_b32 dst, src0, src1 omod
v_xor_b32_e64 dst, src0, src1 omod

VOPC

v_cmp_class_f16 dst, src0, src1
v_cmp_class_f16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_class_f32 dst, src0, src1
v_cmp_class_f32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_class_f64 dst, src0, src1
v_cmp_eq_f16 dst, src0, src1
v_cmp_eq_f16_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmp_eq_f32 dst, src0, src1
v_cmp_eq_f32_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmp_eq_f64 dst, src0, src1
v_cmp_eq_i16 dst, src0, src1
v_cmp_eq_i16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_eq_i32 dst, src0, src1
v_cmp_eq_i32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_eq_i64 dst, src0, src1
v_cmp_eq_u16 dst, src0, src1
v_cmp_eq_u16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_eq_u32 dst, src0, src1
v_cmp_eq_u32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_eq_u64 dst, src0, src1
v_cmp_f_f16 dst, src0, src1
v_cmp_f_f16_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmp_f_f32 dst, src0, src1
v_cmp_f_f32_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmp_f_f64 dst, src0, src1
v_cmp_f_i16 dst, src0, src1
v_cmp_f_i16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_f_i32 dst, src0, src1
v_cmp_f_i32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_f_i64 dst, src0, src1
v_cmp_f_u16 dst, src0, src1
v_cmp_f_u16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_f_u32 dst, src0, src1
v_cmp_f_u32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_f_u64 dst, src0, src1
v_cmp_ge_f16 dst, src0, src1
v_cmp_ge_f16_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmp_ge_f32 dst, src0, src1
v_cmp_ge_f32_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmp_ge_f64 dst, src0, src1
v_cmp_ge_i16 dst, src0, src1
v_cmp_ge_i16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_ge_i32 dst, src0, src1
v_cmp_ge_i32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_ge_i64 dst, src0, src1
v_cmp_ge_u16 dst, src0, src1
v_cmp_ge_u16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_ge_u32 dst, src0, src1
v_cmp_ge_u32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_ge_u64 dst, src0, src1
v_cmp_gt_f16 dst, src0, src1
v_cmp_gt_f16_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmp_gt_f32 dst, src0, src1
v_cmp_gt_f32_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmp_gt_f64 dst, src0, src1
v_cmp_gt_i16 dst, src0, src1
v_cmp_gt_i16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_gt_i32 dst, src0, src1
v_cmp_gt_i32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_gt_i64 dst, src0, src1
v_cmp_gt_u16 dst, src0, src1
v_cmp_gt_u16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_gt_u32 dst, src0, src1
v_cmp_gt_u32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_gt_u64 dst, src0, src1
v_cmp_le_f16 dst, src0, src1
v_cmp_le_f16_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmp_le_f32 dst, src0, src1
v_cmp_le_f32_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmp_le_f64 dst, src0, src1
v_cmp_le_i16 dst, src0, src1
v_cmp_le_i16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_le_i32 dst, src0, src1
v_cmp_le_i32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_le_i64 dst, src0, src1
v_cmp_le_u16 dst, src0, src1
v_cmp_le_u16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_le_u32 dst, src0, src1
v_cmp_le_u32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_le_u64 dst, src0, src1
v_cmp_lg_f16 dst, src0, src1
v_cmp_lg_f16_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmp_lg_f32 dst, src0, src1
v_cmp_lg_f32_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmp_lg_f64 dst, src0, src1
v_cmp_lt_f16 dst, src0, src1
v_cmp_lt_f16_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmp_lt_f32 dst, src0, src1
v_cmp_lt_f32_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmp_lt_f64 dst, src0, src1
v_cmp_lt_i16 dst, src0, src1
v_cmp_lt_i16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_lt_i32 dst, src0, src1
v_cmp_lt_i32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_lt_i64 dst, src0, src1
v_cmp_lt_u16 dst, src0, src1
v_cmp_lt_u16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_lt_u32 dst, src0, src1
v_cmp_lt_u32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_lt_u64 dst, src0, src1
v_cmp_ne_i16 dst, src0, src1
v_cmp_ne_i16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_ne_i32 dst, src0, src1
v_cmp_ne_i32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_ne_i64 dst, src0, src1
v_cmp_ne_u16 dst, src0, src1
v_cmp_ne_u16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_ne_u32 dst, src0, src1
v_cmp_ne_u32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_ne_u64 dst, src0, src1
v_cmp_neq_f16 dst, src0, src1
v_cmp_neq_f16_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmp_neq_f32 dst, src0, src1
v_cmp_neq_f32_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmp_neq_f64 dst, src0, src1
v_cmp_nge_f16 dst, src0, src1
v_cmp_nge_f16_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmp_nge_f32 dst, src0, src1
v_cmp_nge_f32_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmp_nge_f64 dst, src0, src1
v_cmp_ngt_f16 dst, src0, src1
v_cmp_ngt_f16_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmp_ngt_f32 dst, src0, src1
v_cmp_ngt_f32_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmp_ngt_f64 dst, src0, src1
v_cmp_nle_f16 dst, src0, src1
v_cmp_nle_f16_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmp_nle_f32 dst, src0, src1
v_cmp_nle_f32_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmp_nle_f64 dst, src0, src1
v_cmp_nlg_f16 dst, src0, src1
v_cmp_nlg_f16_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmp_nlg_f32 dst, src0, src1
v_cmp_nlg_f32_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmp_nlg_f64 dst, src0, src1
v_cmp_nlt_f16 dst, src0, src1
v_cmp_nlt_f16_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmp_nlt_f32 dst, src0, src1
v_cmp_nlt_f32_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmp_nlt_f64 dst, src0, src1
v_cmp_o_f16 dst, src0, src1
v_cmp_o_f16_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmp_o_f32 dst, src0, src1
v_cmp_o_f32_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmp_o_f64 dst, src0, src1
v_cmp_t_i16 dst, src0, src1
v_cmp_t_i16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_t_i32 dst, src0, src1
v_cmp_t_i32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_t_i64 dst, src0, src1
v_cmp_t_u16 dst, src0, src1
v_cmp_t_u16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_t_u32 dst, src0, src1
v_cmp_t_u32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_t_u64 dst, src0, src1
v_cmp_tru_f16 dst, src0, src1
v_cmp_tru_f16_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmp_tru_f32 dst, src0, src1
v_cmp_tru_f32_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmp_tru_f64 dst, src0, src1
v_cmp_u_f16 dst, src0, src1
v_cmp_u_f16_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmp_u_f32 dst, src0, src1
v_cmp_u_f32_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmp_u_f64 dst, src0, src1
v_cmpx_class_f16 dst, src0, src1
v_cmpx_class_f16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_class_f32 dst, src0, src1
v_cmpx_class_f32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_class_f64 dst, src0, src1
v_cmpx_eq_f16 dst, src0, src1
v_cmpx_eq_f16_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmpx_eq_f32 dst, src0, src1
v_cmpx_eq_f32_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmpx_eq_f64 dst, src0, src1
v_cmpx_eq_i16 dst, src0, src1
v_cmpx_eq_i16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_eq_i32 dst, src0, src1
v_cmpx_eq_i32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_eq_i64 dst, src0, src1
v_cmpx_eq_u16 dst, src0, src1
v_cmpx_eq_u16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_eq_u32 dst, src0, src1
v_cmpx_eq_u32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_eq_u64 dst, src0, src1
v_cmpx_f_f16 dst, src0, src1
v_cmpx_f_f16_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmpx_f_f32 dst, src0, src1
v_cmpx_f_f32_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmpx_f_f64 dst, src0, src1
v_cmpx_f_i16 dst, src0, src1
v_cmpx_f_i16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_f_i32 dst, src0, src1
v_cmpx_f_i32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_f_i64 dst, src0, src1
v_cmpx_f_u16 dst, src0, src1
v_cmpx_f_u16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_f_u32 dst, src0, src1
v_cmpx_f_u32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_f_u64 dst, src0, src1
v_cmpx_ge_f16 dst, src0, src1
v_cmpx_ge_f16_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmpx_ge_f32 dst, src0, src1
v_cmpx_ge_f32_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmpx_ge_f64 dst, src0, src1
v_cmpx_ge_i16 dst, src0, src1
v_cmpx_ge_i16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_ge_i32 dst, src0, src1
v_cmpx_ge_i32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_ge_i64 dst, src0, src1
v_cmpx_ge_u16 dst, src0, src1
v_cmpx_ge_u16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_ge_u32 dst, src0, src1
v_cmpx_ge_u32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_ge_u64 dst, src0, src1
v_cmpx_gt_f16 dst, src0, src1
v_cmpx_gt_f16_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmpx_gt_f32 dst, src0, src1
v_cmpx_gt_f32_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmpx_gt_f64 dst, src0, src1
v_cmpx_gt_i16 dst, src0, src1
v_cmpx_gt_i16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_gt_i32 dst, src0, src1
v_cmpx_gt_i32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_gt_i64 dst, src0, src1
v_cmpx_gt_u16 dst, src0, src1
v_cmpx_gt_u16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_gt_u32 dst, src0, src1
v_cmpx_gt_u32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_gt_u64 dst, src0, src1
v_cmpx_le_f16 dst, src0, src1
v_cmpx_le_f16_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmpx_le_f32 dst, src0, src1
v_cmpx_le_f32_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmpx_le_f64 dst, src0, src1
v_cmpx_le_i16 dst, src0, src1
v_cmpx_le_i16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_le_i32 dst, src0, src1
v_cmpx_le_i32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_le_i64 dst, src0, src1
v_cmpx_le_u16 dst, src0, src1
v_cmpx_le_u16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_le_u32 dst, src0, src1
v_cmpx_le_u32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_le_u64 dst, src0, src1
v_cmpx_lg_f16 dst, src0, src1
v_cmpx_lg_f16_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmpx_lg_f32 dst, src0, src1
v_cmpx_lg_f32_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmpx_lg_f64 dst, src0, src1
v_cmpx_lt_f16 dst, src0, src1
v_cmpx_lt_f16_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmpx_lt_f32 dst, src0, src1
v_cmpx_lt_f32_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmpx_lt_f64 dst, src0, src1
v_cmpx_lt_i16 dst, src0, src1
v_cmpx_lt_i16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_lt_i32 dst, src0, src1
v_cmpx_lt_i32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_lt_i64 dst, src0, src1
v_cmpx_lt_u16 dst, src0, src1
v_cmpx_lt_u16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_lt_u32 dst, src0, src1
v_cmpx_lt_u32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_lt_u64 dst, src0, src1
v_cmpx_ne_i16 dst, src0, src1
v_cmpx_ne_i16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_ne_i32 dst, src0, src1
v_cmpx_ne_i32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_ne_i64 dst, src0, src1
v_cmpx_ne_u16 dst, src0, src1
v_cmpx_ne_u16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_ne_u32 dst, src0, src1
v_cmpx_ne_u32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_ne_u64 dst, src0, src1
v_cmpx_neq_f16 dst, src0, src1
v_cmpx_neq_f16_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmpx_neq_f32 dst, src0, src1
v_cmpx_neq_f32_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmpx_neq_f64 dst, src0, src1
v_cmpx_nge_f16 dst, src0, src1
v_cmpx_nge_f16_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmpx_nge_f32 dst, src0, src1
v_cmpx_nge_f32_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmpx_nge_f64 dst, src0, src1
v_cmpx_ngt_f16 dst, src0, src1
v_cmpx_ngt_f16_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmpx_ngt_f32 dst, src0, src1
v_cmpx_ngt_f32_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmpx_ngt_f64 dst, src0, src1
v_cmpx_nle_f16 dst, src0, src1
v_cmpx_nle_f16_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmpx_nle_f32 dst, src0, src1
v_cmpx_nle_f32_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmpx_nle_f64 dst, src0, src1
v_cmpx_nlg_f16 dst, src0, src1
v_cmpx_nlg_f16_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmpx_nlg_f32 dst, src0, src1
v_cmpx_nlg_f32_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmpx_nlg_f64 dst, src0, src1
v_cmpx_nlt_f16 dst, src0, src1
v_cmpx_nlt_f16_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmpx_nlt_f32 dst, src0, src1
v_cmpx_nlt_f32_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmpx_nlt_f64 dst, src0, src1
v_cmpx_o_f16 dst, src0, src1
v_cmpx_o_f16_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmpx_o_f32 dst, src0, src1
v_cmpx_o_f32_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmpx_o_f64 dst, src0, src1
v_cmpx_t_i16 dst, src0, src1
v_cmpx_t_i16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_t_i32 dst, src0, src1
v_cmpx_t_i32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_t_i64 dst, src0, src1
v_cmpx_t_u16 dst, src0, src1
v_cmpx_t_u16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_t_u32 dst, src0, src1
v_cmpx_t_u32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_t_u64 dst, src0, src1
v_cmpx_tru_f16 dst, src0, src1
v_cmpx_tru_f16_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmpx_tru_f32 dst, src0, src1
v_cmpx_tru_f32_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmpx_tru_f64 dst, src0, src1
v_cmpx_u_f16 dst, src0, src1
v_cmpx_u_f16_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmpx_u_f32 dst, src0, src1
v_cmpx_u_f32_sdwa dst, src0, src1 clamp src0_sel src1_sel
v_cmpx_u_f64 dst, src0, src1

 Syntax of GFX9 Instructions

Syntax of GFX9 Instructions

	DS

	EXP

	FLAT

	MIMG

	MUBUF

	SMEM

	SOP1

	SOP2

	SOPC

	SOPK

	SOPP

	VINTRP

	VOP1

	VOP2

	VOP3

	VOP3P

	VOPC

DS

ds_add_f32 src0, src1 ds_offset16 gds
ds_add_rtn_f32 dst, src0, src1 ds_offset16 gds
ds_add_rtn_u32 dst, src0, src1 ds_offset16 gds
ds_add_rtn_u64 dst, src0, src1 ds_offset16 gds
ds_add_src2_f32 src0 ds_offset16 gds
ds_add_src2_u32 src0 ds_offset16 gds
ds_add_src2_u64 src0 ds_offset16 gds
ds_add_u32 src0, src1 ds_offset16 gds
ds_add_u64 src0, src1 ds_offset16 gds
ds_and_b32 src0, src1 ds_offset16 gds
ds_and_b64 src0, src1 ds_offset16 gds
ds_and_rtn_b32 dst, src0, src1 ds_offset16 gds
ds_and_rtn_b64 dst, src0, src1 ds_offset16 gds
ds_and_src2_b32 src0 ds_offset16 gds
ds_and_src2_b64 src0 ds_offset16 gds
ds_append dst ds_offset16 gds
ds_bpermute_b32 dst, src0, src1 ds_offset16
ds_cmpst_b32 src0, src1, src2 ds_offset16 gds
ds_cmpst_b64 src0, src1, src2 ds_offset16 gds
ds_cmpst_f32 src0, src1, src2 ds_offset16 gds
ds_cmpst_f64 src0, src1, src2 ds_offset16 gds
ds_cmpst_rtn_b32 dst, src0, src1, src2 ds_offset16 gds
ds_cmpst_rtn_b64 dst, src0, src1, src2 ds_offset16 gds
ds_cmpst_rtn_f32 dst, src0, src1, src2 ds_offset16 gds
ds_cmpst_rtn_f64 dst, src0, src1, src2 ds_offset16 gds
ds_condxchg32_rtn_b64 dst, src0, src1 ds_offset16 gds
ds_consume dst ds_offset16 gds
ds_dec_rtn_u32 dst, src0, src1 ds_offset16 gds
ds_dec_rtn_u64 dst, src0, src1 ds_offset16 gds
ds_dec_src2_u32 src0 ds_offset16 gds
ds_dec_src2_u64 src0 ds_offset16 gds
ds_dec_u32 src0, src1 ds_offset16 gds
ds_dec_u64 src0, src1 ds_offset16 gds
ds_gws_barrier src0 ds_offset16 gds
ds_gws_init src0 ds_offset16 gds
ds_gws_sema_br src0 ds_offset16 gds
ds_gws_sema_p ds_offset16 gds
ds_gws_sema_release_all ds_offset16 gds
ds_gws_sema_v ds_offset16 gds
ds_inc_rtn_u32 dst, src0, src1 ds_offset16 gds
ds_inc_rtn_u64 dst, src0, src1 ds_offset16 gds
ds_inc_src2_u32 src0 ds_offset16 gds
ds_inc_src2_u64 src0 ds_offset16 gds
ds_inc_u32 src0, src1 ds_offset16 gds
ds_inc_u64 src0, src1 ds_offset16 gds
ds_max_f32 src0, src1 ds_offset16 gds
ds_max_f64 src0, src1 ds_offset16 gds
ds_max_i32 src0, src1 ds_offset16 gds
ds_max_i64 src0, src1 ds_offset16 gds
ds_max_rtn_f32 dst, src0, src1 ds_offset16 gds
ds_max_rtn_f64 dst, src0, src1 ds_offset16 gds
ds_max_rtn_i32 dst, src0, src1 ds_offset16 gds
ds_max_rtn_i64 dst, src0, src1 ds_offset16 gds
ds_max_rtn_u32 dst, src0, src1 ds_offset16 gds
ds_max_rtn_u64 dst, src0, src1 ds_offset16 gds
ds_max_src2_f32 src0 ds_offset16 gds
ds_max_src2_f64 src0 ds_offset16 gds
ds_max_src2_i32 src0 ds_offset16 gds
ds_max_src2_i64 src0 ds_offset16 gds
ds_max_src2_u32 src0 ds_offset16 gds
ds_max_src2_u64 src0 ds_offset16 gds
ds_max_u32 src0, src1 ds_offset16 gds
ds_max_u64 src0, src1 ds_offset16 gds
ds_min_f32 src0, src1 ds_offset16 gds
ds_min_f64 src0, src1 ds_offset16 gds
ds_min_i32 src0, src1 ds_offset16 gds
ds_min_i64 src0, src1 ds_offset16 gds
ds_min_rtn_f32 dst, src0, src1 ds_offset16 gds
ds_min_rtn_f64 dst, src0, src1 ds_offset16 gds
ds_min_rtn_i32 dst, src0, src1 ds_offset16 gds
ds_min_rtn_i64 dst, src0, src1 ds_offset16 gds
ds_min_rtn_u32 dst, src0, src1 ds_offset16 gds
ds_min_rtn_u64 dst, src0, src1 ds_offset16 gds
ds_min_src2_f32 src0 ds_offset16 gds
ds_min_src2_f64 src0 ds_offset16 gds
ds_min_src2_i32 src0 ds_offset16 gds
ds_min_src2_i64 src0 ds_offset16 gds
ds_min_src2_u32 src0 ds_offset16 gds
ds_min_src2_u64 src0 ds_offset16 gds
ds_min_u32 src0, src1 ds_offset16 gds
ds_min_u64 src0, src1 ds_offset16 gds
ds_mskor_b32 src0, src1, src2 ds_offset16 gds
ds_mskor_b64 src0, src1, src2 ds_offset16 gds
ds_mskor_rtn_b32 dst, src0, src1, src2 ds_offset16 gds
ds_mskor_rtn_b64 dst, src0, src1, src2 ds_offset16 gds
ds_nop
ds_or_b32 src0, src1 ds_offset16 gds
ds_or_b64 src0, src1 ds_offset16 gds
ds_or_rtn_b32 dst, src0, src1 ds_offset16 gds
ds_or_rtn_b64 dst, src0, src1 ds_offset16 gds
ds_or_src2_b32 src0 ds_offset16 gds
ds_or_src2_b64 src0 ds_offset16 gds
ds_ordered_count dst, src0 ds_offset16 gds
ds_permute_b32 dst, src0, src1 ds_offset16
ds_read2_b32 dst, src0 ds_offset8 ds_offset8 gds
ds_read2_b64 dst, src0 ds_offset8 ds_offset8 gds
ds_read2st64_b32 dst, src0 ds_offset8 ds_offset8 gds
ds_read2st64_b64 dst, src0 ds_offset8 ds_offset8 gds
ds_read_b128 dst, src0 ds_offset16 gds
ds_read_b32 dst, src0 ds_offset16 gds
ds_read_b64 dst, src0 ds_offset16 gds
ds_read_b96 dst, src0 ds_offset16 gds
ds_read_i16 dst, src0 ds_offset16 gds
ds_read_i8 dst, src0 ds_offset16 gds
ds_read_i8_d16 dst, src0 ds_offset16 gds
ds_read_i8_d16_hi dst, src0 ds_offset16 gds
ds_read_u16 dst, src0 ds_offset16 gds
ds_read_u16_d16 dst, src0 ds_offset16 gds
ds_read_u16_d16_hi dst, src0 ds_offset16 gds
ds_read_u8 dst, src0 ds_offset16 gds
ds_read_u8_d16 dst, src0 ds_offset16 gds
ds_read_u8_d16_hi dst, src0 ds_offset16 gds
ds_rsub_rtn_u32 dst, src0, src1 ds_offset16 gds
ds_rsub_rtn_u64 dst, src0, src1 ds_offset16 gds
ds_rsub_src2_u32 src0 ds_offset16 gds
ds_rsub_src2_u64 src0 ds_offset16 gds
ds_rsub_u32 src0, src1 ds_offset16 gds
ds_rsub_u64 src0, src1 ds_offset16 gds
ds_sub_rtn_u32 dst, src0, src1 ds_offset16 gds
ds_sub_rtn_u64 dst, src0, src1 ds_offset16 gds
ds_sub_src2_u32 src0 ds_offset16 gds
ds_sub_src2_u64 src0 ds_offset16 gds
ds_sub_u32 src0, src1 ds_offset16 gds
ds_sub_u64 src0, src1 ds_offset16 gds
ds_swizzle_b32 dst, src0 sw_offset16 gds
ds_wrap_rtn_b32 dst, src0, src1, src2 ds_offset16 gds
ds_write2_b32 src0, src1, src2 ds_offset8 ds_offset8 gds
ds_write2_b64 src0, src1, src2 ds_offset8 ds_offset8 gds
ds_write2st64_b32 src0, src1, src2 ds_offset8 ds_offset8 gds
ds_write2st64_b64 src0, src1, src2 ds_offset8 ds_offset8 gds
ds_write_b128 src0, src1 ds_offset16 gds
ds_write_b16 src0, src1 ds_offset16 gds
ds_write_b16_d16_hi src0, src1 ds_offset16 gds
ds_write_b32 src0, src1 ds_offset16 gds
ds_write_b64 src0, src1 ds_offset16 gds
ds_write_b8 src0, src1 ds_offset16 gds
ds_write_b8_d16_hi src0, src1 ds_offset16 gds
ds_write_b96 src0, src1 ds_offset16 gds
ds_write_src2_b32 src0 ds_offset16 gds
ds_write_src2_b64 src0 ds_offset16 gds
ds_wrxchg2_rtn_b32 dst, src0, src1, src2 ds_offset8 ds_offset8 gds
ds_wrxchg2_rtn_b64 dst, src0, src1, src2 ds_offset8 ds_offset8 gds
ds_wrxchg2st64_rtn_b32 dst, src0, src1, src2 ds_offset8 ds_offset8 gds
ds_wrxchg2st64_rtn_b64 dst, src0, src1, src2 ds_offset8 ds_offset8 gds
ds_wrxchg_rtn_b32 dst, src0, src1 ds_offset16 gds
ds_wrxchg_rtn_b64 dst, src0, src1 ds_offset16 gds
ds_xor_b32 src0, src1 ds_offset16 gds
ds_xor_b64 src0, src1 ds_offset16 gds
ds_xor_rtn_b32 dst, src0, src1 ds_offset16 gds
ds_xor_rtn_b64 dst, src0, src1 ds_offset16 gds
ds_xor_src2_b32 src0 ds_offset16 gds
ds_xor_src2_b64 src0 ds_offset16 gds

EXP

exp dst, src0, src1, src2, src3 done compr vm

FLAT

flat_atomic_add dst, src0, src1 flat_offset12 glc slc
flat_atomic_add_x2 dst, src0, src1 flat_offset12 glc slc
flat_atomic_and dst, src0, src1 flat_offset12 glc slc
flat_atomic_and_x2 dst, src0, src1 flat_offset12 glc slc
flat_atomic_cmpswap dst, src0, src1 flat_offset12 glc slc
flat_atomic_cmpswap_x2 dst, src0, src1 flat_offset12 glc slc
flat_atomic_dec dst, src0, src1 flat_offset12 glc slc
flat_atomic_dec_x2 dst, src0, src1 flat_offset12 glc slc
flat_atomic_inc dst, src0, src1 flat_offset12 glc slc
flat_atomic_inc_x2 dst, src0, src1 flat_offset12 glc slc
flat_atomic_or dst, src0, src1 flat_offset12 glc slc
flat_atomic_or_x2 dst, src0, src1 flat_offset12 glc slc
flat_atomic_smax dst, src0, src1 flat_offset12 glc slc
flat_atomic_smax_x2 dst, src0, src1 flat_offset12 glc slc
flat_atomic_smin dst, src0, src1 flat_offset12 glc slc
flat_atomic_smin_x2 dst, src0, src1 flat_offset12 glc slc
flat_atomic_sub dst, src0, src1 flat_offset12 glc slc
flat_atomic_sub_x2 dst, src0, src1 flat_offset12 glc slc
flat_atomic_swap dst, src0, src1 flat_offset12 glc slc
flat_atomic_swap_x2 dst, src0, src1 flat_offset12 glc slc
flat_atomic_umax dst, src0, src1 flat_offset12 glc slc
flat_atomic_umax_x2 dst, src0, src1 flat_offset12 glc slc
flat_atomic_umin dst, src0, src1 flat_offset12 glc slc
flat_atomic_umin_x2 dst, src0, src1 flat_offset12 glc slc
flat_atomic_xor dst, src0, src1 flat_offset12 glc slc
flat_atomic_xor_x2 dst, src0, src1 flat_offset12 glc slc
flat_load_dword dst, src0 flat_offset12 glc slc
flat_load_dwordx2 dst, src0 flat_offset12 glc slc
flat_load_dwordx3 dst, src0 flat_offset12 glc slc
flat_load_dwordx4 dst, src0 flat_offset12 glc slc
flat_load_sbyte dst, src0 flat_offset12 glc slc
flat_load_sbyte_d16 dst, src0 flat_offset12 glc slc
flat_load_sbyte_d16_hi dst, src0 flat_offset12 glc slc
flat_load_short_d16 dst, src0 flat_offset12 glc slc
flat_load_short_d16_hi dst, src0 flat_offset12 glc slc
flat_load_sshort dst, src0 flat_offset12 glc slc
flat_load_ubyte dst, src0 flat_offset12 glc slc
flat_load_ubyte_d16 dst, src0 flat_offset12 glc slc
flat_load_ubyte_d16_hi dst, src0 flat_offset12 glc slc
flat_load_ushort dst, src0 flat_offset12 glc slc
flat_store_byte src0, src1 flat_offset12 glc slc
flat_store_byte_d16_hi src0, src1 flat_offset12 glc slc
flat_store_dword src0, src1 flat_offset12 glc slc
flat_store_dwordx2 src0, src1 flat_offset12 glc slc
flat_store_dwordx3 src0, src1 flat_offset12 glc slc
flat_store_dwordx4 src0, src1 flat_offset12 glc slc
flat_store_short src0, src1 flat_offset12 glc slc
flat_store_short_d16_hi src0, src1 flat_offset12 glc slc
global_atomic_add dst, src0, src1, src2 flat_offset13
global_atomic_add_x2 dst, src0, src1, src2 flat_offset13
global_atomic_and dst, src0, src1, src2 flat_offset13
global_atomic_and_x2 dst, src0, src1, src2 flat_offset13
global_atomic_cmpswap dst, src0, src1, src2 flat_offset13
global_atomic_cmpswap_x2 dst, src0, src1, src2 flat_offset13
global_atomic_dec dst, src0, src1, src2 flat_offset13
global_atomic_dec_x2 dst, src0, src1, src2 flat_offset13
global_atomic_inc dst, src0, src1, src2 flat_offset13
global_atomic_inc_x2 dst, src0, src1, src2 flat_offset13
global_atomic_or dst, src0, src1, src2 flat_offset13
global_atomic_or_x2 dst, src0, src1, src2 flat_offset13
global_atomic_smax dst, src0, src1, src2 flat_offset13
global_atomic_smax_x2 dst, src0, src1, src2 flat_offset13
global_atomic_smin dst, src0, src1, src2 flat_offset13
global_atomic_smin_x2 dst, src0, src1, src2 flat_offset13
global_atomic_sub dst, src0, src1, src2 flat_offset13
global_atomic_sub_x2 dst, src0, src1, src2 flat_offset13
global_atomic_swap dst, src0, src1, src2 flat_offset13
global_atomic_swap_x2 dst, src0, src1, src2 flat_offset13
global_atomic_umax dst, src0, src1, src2 flat_offset13
global_atomic_umax_x2 dst, src0, src1, src2 flat_offset13
global_atomic_umin dst, src0, src1, src2 flat_offset13
global_atomic_umin_x2 dst, src0, src1, src2 flat_offset13
global_atomic_xor dst, src0, src1, src2 flat_offset13
global_atomic_xor_x2 dst, src0, src1, src2 flat_offset13
global_load_dword dst, src0, src1 flat_offset13
global_load_dwordx2 dst, src0, src1 flat_offset13
global_load_dwordx3 dst, src0, src1 flat_offset13
global_load_dwordx4 dst, src0, src1 flat_offset13
global_load_sbyte dst, src0, src1 flat_offset13
global_load_sbyte_d16 dst, src0, src1 flat_offset13
global_load_sbyte_d16_hi dst, src0, src1 flat_offset13
global_load_short_d16 dst, src0, src1 flat_offset13
global_load_short_d16_hi dst, src0, src1 flat_offset13
global_load_sshort dst, src0, src1 flat_offset13
global_load_ubyte dst, src0, src1 flat_offset13
global_load_ubyte_d16 dst, src0, src1 flat_offset13
global_load_ubyte_d16_hi dst, src0, src1 flat_offset13
global_load_ushort dst, src0, src1 flat_offset13
global_store_byte src0, src1, src2 flat_offset13
global_store_byte_d16_hi src0, src1, src2 flat_offset13
global_store_dword src0, src1, src2 flat_offset13
global_store_dwordx2 src0, src1, src2 flat_offset13
global_store_dwordx3 src0, src1, src2 flat_offset13
global_store_dwordx4 src0, src1, src2 flat_offset13
global_store_short src0, src1, src2 flat_offset13
global_store_short_d16_hi src0, src1, src2 flat_offset13
scratch_load_dword dst, src0, src1 flat_offset13 glc slc
scratch_load_dwordx2 dst, src0, src1 flat_offset13 glc slc
scratch_load_dwordx3 dst, src0, src1 flat_offset13 glc slc
scratch_load_dwordx4 dst, src0, src1 flat_offset13 glc slc
scratch_load_sbyte dst, src0, src1 flat_offset13 glc slc
scratch_load_sbyte_d16 dst, src0, src1 flat_offset13 glc slc
scratch_load_sbyte_d16_hi dst, src0, src1 flat_offset13 glc slc
scratch_load_short_d16 dst, src0, src1 flat_offset13 glc slc
scratch_load_short_d16_hi dst, src0, src1 flat_offset13 glc slc
scratch_load_sshort dst, src0, src1 flat_offset13 glc slc
scratch_load_ubyte dst, src0, src1 flat_offset13 glc slc
scratch_load_ubyte_d16 dst, src0, src1 flat_offset13 glc slc
scratch_load_ubyte_d16_hi dst, src0, src1 flat_offset13 glc slc
scratch_load_ushort dst, src0, src1 flat_offset13 glc slc
scratch_store_byte src0, src1, src2 flat_offset13 glc slc
scratch_store_byte_d16_hi src0, src1, src2 flat_offset13 glc slc
scratch_store_dword src0, src1, src2 flat_offset13 glc slc
scratch_store_dwordx2 src0, src1, src2 flat_offset13 glc slc
scratch_store_dwordx3 src0, src1, src2 flat_offset13 glc slc
scratch_store_dwordx4 src0, src1, src2 flat_offset13 glc slc
scratch_store_short src0, src1, src2 flat_offset13 glc slc
scratch_store_short_d16_hi src0, src1, src2 flat_offset13 glc slc

MIMG

image_atomic_add dst, src0, src1 dmask unorm glc slc lwe da
image_atomic_and dst, src0, src1 dmask unorm glc slc lwe da
image_atomic_cmpswap dst, src0, src1 dmask unorm glc slc lwe da
image_atomic_dec dst, src0, src1 dmask unorm glc slc lwe da
image_atomic_inc dst, src0, src1 dmask unorm glc slc lwe da
image_atomic_or dst, src0, src1 dmask unorm glc slc lwe da
image_atomic_smax dst, src0, src1 dmask unorm glc slc lwe da
image_atomic_smin dst, src0, src1 dmask unorm glc slc lwe da
image_atomic_sub dst, src0, src1 dmask unorm glc slc lwe da
image_atomic_swap dst, src0, src1 dmask unorm glc slc lwe da
image_atomic_umax dst, src0, src1 dmask unorm glc slc lwe da
image_atomic_umin dst, src0, src1 dmask unorm glc slc lwe da
image_atomic_xor dst, src0, src1 dmask unorm glc slc lwe da
image_gather4 dst, src0, src1, src2 dmask unorm glc slc lwe da d16
image_gather4_b dst, src0, src1, src2 dmask unorm glc slc lwe da d16
image_gather4_c dst, src0, src1, src2 dmask unorm glc slc lwe da d16
image_gather4_c_lz dst, src0, src1, src2 dmask unorm glc slc lwe da d16
image_gather4_cl dst, src0, src1, src2 dmask unorm glc slc lwe da d16
image_gather4_l dst, src0, src1, src2 dmask unorm glc slc lwe da d16
image_gather4_lz dst, src0, src1, src2 dmask unorm glc slc lwe da d16
image_gather4_lz_o dst, src0, src1, src2 dmask unorm glc slc lwe da d16
image_gather4_o dst, src0, src1, src2 dmask unorm glc slc lwe da d16
image_get_lod dst, src0, src1, src2 dmask unorm glc slc tfe lwe da
image_get_resinfo dst, src0, src1 dmask unorm glc slc tfe lwe da
image_load dst, src0, src1 dmask unorm glc slc tfe lwe da d16
image_load_mip dst, src0, src1 dmask unorm glc slc tfe lwe da d16
image_load_mip_pck dst, src0, src1 dmask unorm glc slc tfe lwe da
image_load_mip_pck_sgn dst, src0, src1 dmask unorm glc slc tfe lwe da
image_load_pck dst, src0, src1 dmask unorm glc slc tfe lwe da
image_load_pck_sgn dst, src0, src1 dmask unorm glc slc tfe lwe da
image_sample dst, src0, src1, src2 dmask unorm glc slc tfe lwe da d16
image_sample_b dst, src0, src1, src2 dmask unorm glc slc tfe lwe da d16
image_sample_c dst, src0, src1, src2 dmask unorm glc slc tfe lwe da d16
image_sample_c_lz dst, src0, src1, src2 dmask unorm glc slc tfe lwe da d16
image_sample_cl dst, src0, src1, src2 dmask unorm glc slc tfe lwe da d16
image_sample_l dst, src0, src1, src2 dmask unorm glc slc tfe lwe da d16
image_sample_lz dst, src0, src1, src2 dmask unorm glc slc tfe lwe da d16
image_sample_lz_o dst, src0, src1, src2 dmask unorm glc slc tfe lwe da d16
image_sample_o dst, src0, src1, src2 dmask unorm glc slc tfe lwe da d16
image_store src0, src1, src2 dmask unorm glc slc lwe da d16
image_store_mip src0, src1, src2 dmask unorm glc slc lwe da d16
image_store_mip_pck src0, src1, src2 dmask unorm glc slc lwe da
image_store_pck src0, src1, src2 dmask unorm glc slc lwe da

MUBUF

buffer_atomic_add dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_add_x2 dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_and dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_and_x2 dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_cmpswap dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_cmpswap_x2 dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_dec dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_dec_x2 dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_inc dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_inc_x2 dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_or dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_or_x2 dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_smax dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_smax_x2 dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_smin dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_smin_x2 dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_sub dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_sub_x2 dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_swap dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_swap_x2 dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_umax dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_umax_x2 dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_umin dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_umin_x2 dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_xor dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_atomic_xor_x2 dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_load_dword dst, src0, src1, src2 idxen offen buf_offset12 glc slc lds
buffer_load_dwordx2 dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_load_dwordx3 dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_load_dwordx4 dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_load_format_d16_hi_x dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_load_format_d16_x dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_load_format_d16_xy dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_load_format_d16_xyz dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_load_format_d16_xyzw dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_load_format_x dst, src0, src1, src2 idxen offen buf_offset12 glc slc lds
buffer_load_format_xy dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_load_format_xyz dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_load_format_xyzw dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_load_sbyte dst, src0, src1, src2 idxen offen buf_offset12 glc slc lds
buffer_load_sbyte_d16 dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_load_sbyte_d16_hi dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_load_short_d16 dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_load_short_d16_hi dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_load_sshort dst, src0, src1, src2 idxen offen buf_offset12 glc slc lds
buffer_load_ubyte dst, src0, src1, src2 idxen offen buf_offset12 glc slc lds
buffer_load_ubyte_d16 dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_load_ubyte_d16_hi dst, src0, src1, src2 idxen offen buf_offset12 glc slc
buffer_load_ushort dst, src0, src1, src2 idxen offen buf_offset12 glc slc lds
buffer_store_byte src0, src1, src2, src3 idxen offen buf_offset12 glc slc
buffer_store_byte_d16_hi src0, src1, src2, src3 idxen offen buf_offset12 glc slc
buffer_store_dword src0, src1, src2, src3 idxen offen buf_offset12 glc slc
buffer_store_dwordx2 src0, src1, src2, src3 idxen offen buf_offset12 glc slc
buffer_store_dwordx3 src0, src1, src2, src3 idxen offen buf_offset12 glc slc
buffer_store_dwordx4 src0, src1, src2, src3 idxen offen buf_offset12 glc slc
buffer_store_format_d16_hi_x src0, src1, src2, src3 idxen offen buf_offset12 glc slc
buffer_store_format_d16_x src0, src1, src2, src3 idxen offen buf_offset12 glc slc
buffer_store_format_d16_xy src0, src1, src2, src3 idxen offen buf_offset12 glc slc
buffer_store_format_d16_xyz src0, src1, src2, src3 idxen offen buf_offset12 glc slc
buffer_store_format_d16_xyzw src0, src1, src2, src3 idxen offen buf_offset12 glc slc
buffer_store_format_x src0, src1, src2, src3 idxen offen buf_offset12 glc slc
buffer_store_format_xy src0, src1, src2, src3 idxen offen buf_offset12 glc slc
buffer_store_format_xyz src0, src1, src2, src3 idxen offen buf_offset12 glc slc
buffer_store_format_xyzw src0, src1, src2, src3 idxen offen buf_offset12 glc slc
buffer_store_lds_dword src0, src1 buf_offset12 lds
buffer_store_short src0, src1, src2, src3 idxen offen buf_offset12 glc slc
buffer_store_short_d16_hi src0, src1, src2, src3 idxen offen buf_offset12 glc slc
buffer_wbinvl1
buffer_wbinvl1_vol

SMEM

s_atc_probe src0, src1, src2
s_atc_probe_buffer src0, src1, src2
s_atomic_add dst, src0, src1 glc
s_atomic_add_x2 dst, src0, src1 glc
s_atomic_and dst, src0, src1 glc
s_atomic_and_x2 dst, src0, src1 glc
s_atomic_cmpswap dst, src0, src1 glc
s_atomic_cmpswap_x2 dst, src0, src1 glc
s_atomic_dec dst, src0, src1 glc
s_atomic_dec_x2 dst, src0, src1 glc
s_atomic_inc dst, src0, src1 glc
s_atomic_inc_x2 dst, src0, src1 glc
s_atomic_or dst, src0, src1 glc
s_atomic_or_x2 dst, src0, src1 glc
s_atomic_smax dst, src0, src1 glc
s_atomic_smax_x2 dst, src0, src1 glc
s_atomic_smin dst, src0, src1 glc
s_atomic_smin_x2 dst, src0, src1 glc
s_atomic_sub dst, src0, src1 glc
s_atomic_sub_x2 dst, src0, src1 glc
s_atomic_swap dst, src0, src1 glc
s_atomic_swap_x2 dst, src0, src1 glc
s_atomic_umax dst, src0, src1 glc
s_atomic_umax_x2 dst, src0, src1 glc
s_atomic_umin dst, src0, src1 glc
s_atomic_umin_x2 dst, src0, src1 glc
s_atomic_xor dst, src0, src1 glc
s_atomic_xor_x2 dst, src0, src1 glc
s_buffer_atomic_add dst, src0, src1 glc
s_buffer_atomic_add_x2 dst, src0, src1 glc
s_buffer_atomic_and dst, src0, src1 glc
s_buffer_atomic_and_x2 dst, src0, src1 glc
s_buffer_atomic_cmpswap dst, src0, src1 glc
s_buffer_atomic_cmpswap_x2 dst, src0, src1 glc
s_buffer_atomic_dec dst, src0, src1 glc
s_buffer_atomic_dec_x2 dst, src0, src1 glc
s_buffer_atomic_inc dst, src0, src1 glc
s_buffer_atomic_inc_x2 dst, src0, src1 glc
s_buffer_atomic_or dst, src0, src1 glc
s_buffer_atomic_or_x2 dst, src0, src1 glc
s_buffer_atomic_smax dst, src0, src1 glc
s_buffer_atomic_smax_x2 dst, src0, src1 glc
s_buffer_atomic_smin dst, src0, src1 glc
s_buffer_atomic_smin_x2 dst, src0, src1 glc
s_buffer_atomic_sub dst, src0, src1 glc
s_buffer_atomic_sub_x2 dst, src0, src1 glc
s_buffer_atomic_swap dst, src0, src1 glc
s_buffer_atomic_swap_x2 dst, src0, src1 glc
s_buffer_atomic_umax dst, src0, src1 glc
s_buffer_atomic_umax_x2 dst, src0, src1 glc
s_buffer_atomic_umin dst, src0, src1 glc
s_buffer_atomic_umin_x2 dst, src0, src1 glc
s_buffer_atomic_xor dst, src0, src1 glc
s_buffer_atomic_xor_x2 dst, src0, src1 glc
s_buffer_load_dword dst, src0, src1 glc
s_buffer_load_dwordx16 dst, src0, src1 glc
s_buffer_load_dwordx2 dst, src0, src1 glc
s_buffer_load_dwordx4 dst, src0, src1 glc
s_buffer_load_dwordx8 dst, src0, src1 glc
s_buffer_store_dword src0, src1, src2 glc
s_buffer_store_dwordx2 src0, src1, src2 glc
s_buffer_store_dwordx4 src0, src1, src2 glc
s_dcache_discard src0, src1
s_dcache_discard_x2 src0, src1
s_dcache_inv
s_dcache_inv_vol
s_dcache_wb
s_dcache_wb_vol
s_load_dword dst, src0, src1 glc
s_load_dwordx16 dst, src0, src1 glc
s_load_dwordx2 dst, src0, src1 glc
s_load_dwordx4 dst, src0, src1 glc
s_load_dwordx8 dst, src0, src1 glc
s_memrealtime dst
s_memtime dst
s_scratch_load_dword dst, src0, src1 glc
s_scratch_load_dwordx2 dst, src0, src1 glc
s_scratch_load_dwordx4 dst, src0, src1 glc
s_scratch_store_dword src0, src1, src2 glc
s_scratch_store_dwordx2 src0, src1, src2 glc
s_scratch_store_dwordx4 src0, src1, src2 glc
s_store_dword src0, src1, src2 glc
s_store_dwordx2 src0, src1, src2 glc
s_store_dwordx4 src0, src1, src2 glc

SOP1

s_abs_i32 dst, src0
s_and_saveexec_b64 dst, src0
s_andn1_saveexec_b64 dst, src0
s_andn1_wrexec_b64 dst, src0
s_andn2_saveexec_b64 dst, src0
s_andn2_wrexec_b64 dst, src0
s_bcnt0_i32_b32 dst, src0
s_bcnt0_i32_b64 dst, src0
s_bcnt1_i32_b32 dst, src0
s_bcnt1_i32_b64 dst, src0
s_bitreplicate_b64_b32 dst, src0
s_bitset0_b32 dst, src0
s_bitset0_b64 dst, src0
s_bitset1_b32 dst, src0
s_bitset1_b64 dst, src0
s_brev_b32 dst, src0
s_brev_b64 dst, src0
s_cbranch_join src0
s_cmov_b32 dst, src0
s_cmov_b64 dst, src0
s_ff0_i32_b32 dst, src0
s_ff0_i32_b64 dst, src0
s_ff1_i32_b32 dst, src0
s_ff1_i32_b64 dst, src0
s_flbit_i32 dst, src0
s_flbit_i32_b32 dst, src0
s_flbit_i32_b64 dst, src0
s_flbit_i32_i64 dst, src0
s_getpc_b64 dst
s_mov_b32 dst, src0
s_mov_b64 dst, src0
s_mov_fed_b32 dst, src0
s_movreld_b32 dst, src0
s_movreld_b64 dst, src0
s_movrels_b32 dst, src0
s_movrels_b64 dst, src0
s_nand_saveexec_b64 dst, src0
s_nor_saveexec_b64 dst, src0
s_not_b32 dst, src0
s_not_b64 dst, src0
s_or_saveexec_b64 dst, src0
s_orn1_saveexec_b64 dst, src0
s_orn2_saveexec_b64 dst, src0
s_quadmask_b32 dst, src0
s_quadmask_b64 dst, src0
s_rfe_b64 src0
s_set_gpr_idx_idx src0
s_setpc_b64 src0
s_sext_i32_i16 dst, src0
s_sext_i32_i8 dst, src0
s_swappc_b64 dst, src0
s_wqm_b32 dst, src0
s_wqm_b64 dst, src0
s_xnor_saveexec_b64 dst, src0
s_xor_saveexec_b64 dst, src0

SOP2

s_absdiff_i32 dst, src0, src1
s_add_i32 dst, src0, src1
s_add_u32 dst, src0, src1
s_addc_u32 dst, src0, src1
s_and_b32 dst, src0, src1
s_and_b64 dst, src0, src1
s_andn2_b32 dst, src0, src1
s_andn2_b64 dst, src0, src1
s_ashr_i32 dst, src0, src1
s_ashr_i64 dst, src0, src1
s_bfe_i32 dst, src0, src1
s_bfe_i64 dst, src0, src1
s_bfe_u32 dst, src0, src1
s_bfe_u64 dst, src0, src1
s_bfm_b32 dst, src0, src1
s_bfm_b64 dst, src0, src1
s_cbranch_g_fork src0, src1
s_cselect_b32 dst, src0, src1
s_cselect_b64 dst, src0, src1
s_lshl1_add_u32 dst, src0, src1
s_lshl2_add_u32 dst, src0, src1
s_lshl3_add_u32 dst, src0, src1
s_lshl4_add_u32 dst, src0, src1
s_lshl_b32 dst, src0, src1
s_lshl_b64 dst, src0, src1
s_lshr_b32 dst, src0, src1
s_lshr_b64 dst, src0, src1
s_max_i32 dst, src0, src1
s_max_u32 dst, src0, src1
s_min_i32 dst, src0, src1
s_min_u32 dst, src0, src1
s_mul_hi_i32 dst, src0, src1
s_mul_hi_u32 dst, src0, src1
s_mul_i32 dst, src0, src1
s_nand_b32 dst, src0, src1
s_nand_b64 dst, src0, src1
s_nor_b32 dst, src0, src1
s_nor_b64 dst, src0, src1
s_or_b32 dst, src0, src1
s_or_b64 dst, src0, src1
s_orn2_b32 dst, src0, src1
s_orn2_b64 dst, src0, src1
s_pack_hh_b32_b16 dst, src0, src1
s_pack_lh_b32_b16 dst, src0, src1
s_pack_ll_b32_b16 dst, src0, src1
s_rfe_restore_b64 src0, src1
s_sub_i32 dst, src0, src1
s_sub_u32 dst, src0, src1
s_subb_u32 dst, src0, src1
s_xnor_b32 dst, src0, src1
s_xnor_b64 dst, src0, src1
s_xor_b32 dst, src0, src1
s_xor_b64 dst, src0, src1

SOPC

s_bitcmp0_b32 src0, src1
s_bitcmp0_b64 src0, src1
s_bitcmp1_b32 src0, src1
s_bitcmp1_b64 src0, src1
s_cmp_eq_i32 src0, src1
s_cmp_eq_u32 src0, src1
s_cmp_eq_u64 src0, src1
s_cmp_ge_i32 src0, src1
s_cmp_ge_u32 src0, src1
s_cmp_gt_i32 src0, src1
s_cmp_gt_u32 src0, src1
s_cmp_le_i32 src0, src1
s_cmp_le_u32 src0, src1
s_cmp_lg_i32 src0, src1
s_cmp_lg_u32 src0, src1
s_cmp_lg_u64 src0, src1
s_cmp_lt_i32 src0, src1
s_cmp_lt_u32 src0, src1
s_set_gpr_idx_on src0, src1
s_setvskip src0, src1

SOPK

s_addk_i32 dst, src0
s_call_b64 dst, src0
s_cbranch_i_fork src0, src1
s_cmovk_i32 dst, src0
s_cmpk_eq_i32 src0, src1
s_cmpk_eq_u32 src0, src1
s_cmpk_ge_i32 src0, src1
s_cmpk_ge_u32 src0, src1
s_cmpk_gt_i32 src0, src1
s_cmpk_gt_u32 src0, src1
s_cmpk_le_i32 src0, src1
s_cmpk_le_u32 src0, src1
s_cmpk_lg_i32 src0, src1
s_cmpk_lg_u32 src0, src1
s_cmpk_lt_i32 src0, src1
s_cmpk_lt_u32 src0, src1
s_getreg_b32 dst, src0
s_movk_i32 dst, src0
s_mulk_i32 dst, src0
s_setreg_b32 dst, src0
s_setreg_imm32_b32 dst, src0

SOPP

s_barrier
s_branch src0
s_cbranch_cdbgsys src0
s_cbranch_cdbgsys_and_user src0
s_cbranch_cdbgsys_or_user src0
s_cbranch_cdbguser src0
s_cbranch_execnz src0
s_cbranch_execz src0
s_cbranch_scc0 src0
s_cbranch_scc1 src0
s_cbranch_vccnz src0
s_cbranch_vccz src0
s_decperflevel src0
s_endpgm
s_endpgm_ordered_ps_done
s_endpgm_saved
s_icache_inv
s_incperflevel src0
s_nop src0
s_sendmsg src0
s_sendmsghalt src0
s_set_gpr_idx_mode src0
s_set_gpr_idx_off
s_sethalt src0
s_setkill src0
s_setprio src0
s_sleep src0
s_trap src0
s_ttracedata
s_waitcnt src0
s_wakeup

VINTRP

v_interp_mov_f32 dst, src0, src1
v_interp_p1_f32 dst, src0, src1
v_interp_p2_f32 dst, src0, src1

VOP1

v_bfrev_b32 dst, src0
v_bfrev_b32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_bfrev_b32_sdwa dst, src0 omod dst_sel dst_unused src0_sel
v_ceil_f16 dst, src0
v_ceil_f16_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_ceil_f16_sdwa dst, src0 clamp omod dst_sel dst_unused src0_sel
v_ceil_f32 dst, src0
v_ceil_f32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_ceil_f32_sdwa dst, src0 clamp omod dst_sel dst_unused src0_sel
v_ceil_f64 dst, src0
v_clrexcp
v_cos_f16 dst, src0
v_cos_f16_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_cos_f16_sdwa dst, src0 clamp omod dst_sel dst_unused src0_sel
v_cos_f32 dst, src0
v_cos_f32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_cos_f32_sdwa dst, src0 clamp omod dst_sel dst_unused src0_sel
v_cvt_f16_f32 dst, src0
v_cvt_f16_f32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_cvt_f16_f32_sdwa dst, src0 clamp omod dst_sel dst_unused src0_sel
v_cvt_f16_i16 dst, src0
v_cvt_f16_i16_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_cvt_f16_i16_sdwa dst, src0 clamp omod dst_sel dst_unused src0_sel
v_cvt_f16_u16 dst, src0
v_cvt_f16_u16_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_cvt_f16_u16_sdwa dst, src0 clamp omod dst_sel dst_unused src0_sel
v_cvt_f32_f16 dst, src0
v_cvt_f32_f16_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_cvt_f32_f16_sdwa dst, src0 clamp omod dst_sel dst_unused src0_sel
v_cvt_f32_f64 dst, src0
v_cvt_f32_i32 dst, src0
v_cvt_f32_i32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_cvt_f32_i32_sdwa dst, src0 clamp omod dst_sel dst_unused src0_sel
v_cvt_f32_u32 dst, src0
v_cvt_f32_u32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_cvt_f32_u32_sdwa dst, src0 clamp omod dst_sel dst_unused src0_sel
v_cvt_f32_ubyte0 dst, src0
v_cvt_f32_ubyte0_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_cvt_f32_ubyte0_sdwa dst, src0 clamp omod dst_sel dst_unused src0_sel
v_cvt_f32_ubyte1 dst, src0
v_cvt_f32_ubyte1_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_cvt_f32_ubyte1_sdwa dst, src0 clamp omod dst_sel dst_unused src0_sel
v_cvt_f32_ubyte2 dst, src0
v_cvt_f32_ubyte2_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_cvt_f32_ubyte2_sdwa dst, src0 clamp omod dst_sel dst_unused src0_sel
v_cvt_f32_ubyte3 dst, src0
v_cvt_f32_ubyte3_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_cvt_f32_ubyte3_sdwa dst, src0 clamp omod dst_sel dst_unused src0_sel
v_cvt_f64_f32 dst, src0
v_cvt_f64_i32 dst, src0
v_cvt_f64_u32 dst, src0
v_cvt_flr_i32_f32 dst, src0
v_cvt_flr_i32_f32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_cvt_flr_i32_f32_sdwa dst, src0 omod dst_sel dst_unused src0_sel
v_cvt_i16_f16 dst, src0
v_cvt_i16_f16_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_cvt_i16_f16_sdwa dst, src0 clamp omod dst_sel dst_unused src0_sel
v_cvt_i32_f32 dst, src0
v_cvt_i32_f32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_cvt_i32_f32_sdwa dst, src0 clamp omod dst_sel dst_unused src0_sel
v_cvt_i32_f64 dst, src0
v_cvt_norm_i16_f16 dst, src0
v_cvt_norm_i16_f16_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_cvt_norm_i16_f16_sdwa dst, src0 omod dst_sel dst_unused src0_sel
v_cvt_norm_u16_f16 dst, src0
v_cvt_norm_u16_f16_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_cvt_norm_u16_f16_sdwa dst, src0 omod dst_sel dst_unused src0_sel
v_cvt_off_f32_i4 dst, src0
v_cvt_off_f32_i4_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_cvt_off_f32_i4_sdwa dst, src0 clamp omod dst_sel dst_unused src0_sel
v_cvt_rpi_i32_f32 dst, src0
v_cvt_rpi_i32_f32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_cvt_rpi_i32_f32_sdwa dst, src0 omod dst_sel dst_unused src0_sel
v_cvt_u16_f16 dst, src0
v_cvt_u16_f16_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_cvt_u16_f16_sdwa dst, src0 clamp omod dst_sel dst_unused src0_sel
v_cvt_u32_f32 dst, src0
v_cvt_u32_f32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_cvt_u32_f32_sdwa dst, src0 clamp omod dst_sel dst_unused src0_sel
v_cvt_u32_f64 dst, src0
v_exp_f16 dst, src0
v_exp_f16_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_exp_f16_sdwa dst, src0 clamp omod dst_sel dst_unused src0_sel
v_exp_f32 dst, src0
v_exp_f32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_exp_f32_sdwa dst, src0 clamp omod dst_sel dst_unused src0_sel
v_exp_legacy_f32 dst, src0
v_exp_legacy_f32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_exp_legacy_f32_sdwa dst, src0 clamp omod dst_sel dst_unused src0_sel
v_ffbh_i32 dst, src0
v_ffbh_i32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_ffbh_i32_sdwa dst, src0 omod dst_sel dst_unused src0_sel
v_ffbh_u32 dst, src0
v_ffbh_u32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_ffbh_u32_sdwa dst, src0 omod dst_sel dst_unused src0_sel
v_ffbl_b32 dst, src0
v_ffbl_b32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_ffbl_b32_sdwa dst, src0 omod dst_sel dst_unused src0_sel
v_floor_f16 dst, src0
v_floor_f16_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_floor_f16_sdwa dst, src0 clamp omod dst_sel dst_unused src0_sel
v_floor_f32 dst, src0
v_floor_f32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_floor_f32_sdwa dst, src0 clamp omod dst_sel dst_unused src0_sel
v_floor_f64 dst, src0
v_fract_f16 dst, src0
v_fract_f16_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_fract_f16_sdwa dst, src0 clamp omod dst_sel dst_unused src0_sel
v_fract_f32 dst, src0
v_fract_f32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_fract_f32_sdwa dst, src0 clamp omod dst_sel dst_unused src0_sel
v_fract_f64 dst, src0
v_frexp_exp_i16_f16 dst, src0
v_frexp_exp_i16_f16_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_frexp_exp_i16_f16_sdwa dst, src0 omod dst_sel dst_unused src0_sel
v_frexp_exp_i32_f32 dst, src0
v_frexp_exp_i32_f32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_frexp_exp_i32_f32_sdwa dst, src0 omod dst_sel dst_unused src0_sel
v_frexp_exp_i32_f64 dst, src0
v_frexp_mant_f16 dst, src0
v_frexp_mant_f16_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_frexp_mant_f16_sdwa dst, src0 clamp omod dst_sel dst_unused src0_sel
v_frexp_mant_f32 dst, src0
v_frexp_mant_f32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_frexp_mant_f32_sdwa dst, src0 clamp omod dst_sel dst_unused src0_sel
v_frexp_mant_f64 dst, src0
v_log_f16 dst, src0
v_log_f16_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_log_f16_sdwa dst, src0 clamp omod dst_sel dst_unused src0_sel
v_log_f32 dst, src0
v_log_f32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_log_f32_sdwa dst, src0 clamp omod dst_sel dst_unused src0_sel
v_log_legacy_f32 dst, src0
v_log_legacy_f32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_log_legacy_f32_sdwa dst, src0 clamp omod dst_sel dst_unused src0_sel
v_mov_b32 dst, src0
v_mov_b32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_mov_b32_sdwa dst, src0 omod dst_sel dst_unused src0_sel
v_mov_fed_b32 dst, src0
v_mov_fed_b32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_mov_fed_b32_sdwa dst, src0 omod dst_sel dst_unused src0_sel
v_nop
v_not_b32 dst, src0
v_not_b32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_not_b32_sdwa dst, src0 omod dst_sel dst_unused src0_sel
v_rcp_f16 dst, src0
v_rcp_f16_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_rcp_f16_sdwa dst, src0 clamp omod dst_sel dst_unused src0_sel
v_rcp_f32 dst, src0
v_rcp_f32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_rcp_f32_sdwa dst, src0 clamp omod dst_sel dst_unused src0_sel
v_rcp_f64 dst, src0
v_rcp_iflag_f32 dst, src0
v_rcp_iflag_f32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_rcp_iflag_f32_sdwa dst, src0 clamp omod dst_sel dst_unused src0_sel
v_readfirstlane_b32 dst, src0
v_rndne_f16 dst, src0
v_rndne_f16_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_rndne_f16_sdwa dst, src0 clamp omod dst_sel dst_unused src0_sel
v_rndne_f32 dst, src0
v_rndne_f32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_rndne_f32_sdwa dst, src0 clamp omod dst_sel dst_unused src0_sel
v_rndne_f64 dst, src0
v_rsq_f16 dst, src0
v_rsq_f16_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_rsq_f16_sdwa dst, src0 clamp omod dst_sel dst_unused src0_sel
v_rsq_f32 dst, src0
v_rsq_f32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_rsq_f32_sdwa dst, src0 clamp omod dst_sel dst_unused src0_sel
v_rsq_f64 dst, src0
v_sat_pk_u8_i16 dst, src0
v_sat_pk_u8_i16_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_sat_pk_u8_i16_sdwa dst, src0 omod dst_sel dst_unused src0_sel
v_screen_partition_4se_b32 dst, src0
v_screen_partition_4se_b32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_screen_partition_4se_b32_sdwa dst, src0 omod dst_sel dst_unused src0_sel
v_sin_f16 dst, src0
v_sin_f16_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_sin_f16_sdwa dst, src0 clamp omod dst_sel dst_unused src0_sel
v_sin_f32 dst, src0
v_sin_f32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_sin_f32_sdwa dst, src0 clamp omod dst_sel dst_unused src0_sel
v_sqrt_f16 dst, src0
v_sqrt_f16_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_sqrt_f16_sdwa dst, src0 clamp omod dst_sel dst_unused src0_sel
v_sqrt_f32 dst, src0
v_sqrt_f32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_sqrt_f32_sdwa dst, src0 clamp omod dst_sel dst_unused src0_sel
v_sqrt_f64 dst, src0
v_swap_b32 dst, src0
v_trunc_f16 dst, src0
v_trunc_f16_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_trunc_f16_sdwa dst, src0 clamp omod dst_sel dst_unused src0_sel
v_trunc_f32 dst, src0
v_trunc_f32_dpp dst, src0 dpp_ctrl row_mask bank_mask bound_ctrl
v_trunc_f32_sdwa dst, src0 clamp omod dst_sel dst_unused src0_sel
v_trunc_f64 dst, src0

VOP2

v_add_co_u32 dst0, dst1, src0, src1
v_add_co_u32_dpp dst0, dst1, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_add_co_u32_sdwa dst0, dst1, src0, src1 clamp omod dst_sel dst_unused src0_sel src1_sel
v_add_f16 dst, src0, src1
v_add_f16_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_add_f16_sdwa dst, src0, src1 clamp omod dst_sel dst_unused src0_sel src1_sel
v_add_f32 dst, src0, src1
v_add_f32_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_add_f32_sdwa dst, src0, src1 clamp omod dst_sel dst_unused src0_sel src1_sel
v_add_u16 dst, src0, src1
v_add_u16_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_add_u16_sdwa dst, src0, src1 clamp omod dst_sel dst_unused src0_sel src1_sel
v_add_u32 dst, src0, src1
v_add_u32_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_add_u32_sdwa dst, src0, src1 clamp omod dst_sel dst_unused src0_sel src1_sel
v_addc_co_u32 dst0, dst1, src0, src1, src2
v_addc_co_u32_dpp dst0, dst1, src0, src1, src2 dpp_ctrl row_mask bank_mask bound_ctrl
v_addc_co_u32_sdwa dst0, dst1, src0, src1, src2 clamp omod dst_sel dst_unused src0_sel src1_sel
v_and_b32 dst, src0, src1
v_and_b32_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_and_b32_sdwa dst, src0, src1 omod dst_sel dst_unused src0_sel src1_sel
v_ashrrev_i16 dst, src0, src1
v_ashrrev_i16_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_ashrrev_i16_sdwa dst, src0, src1 omod dst_sel dst_unused src0_sel src1_sel
v_ashrrev_i32 dst, src0, src1
v_ashrrev_i32_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_ashrrev_i32_sdwa dst, src0, src1 omod dst_sel dst_unused src0_sel src1_sel
v_cndmask_b32 dst, src0, src1, src2
v_cndmask_b32_dpp dst, src0, src1, src2 dpp_ctrl row_mask bank_mask bound_ctrl
v_cndmask_b32_sdwa dst, src0, src1, src2 omod dst_sel dst_unused src0_sel src1_sel
v_ldexp_f16 dst, src0, src1
v_ldexp_f16_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_ldexp_f16_sdwa dst, src0, src1 clamp omod dst_sel dst_unused src0_sel src1_sel
v_lshlrev_b16 dst, src0, src1
v_lshlrev_b16_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_lshlrev_b16_sdwa dst, src0, src1 omod dst_sel dst_unused src0_sel src1_sel
v_lshlrev_b32 dst, src0, src1
v_lshlrev_b32_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_lshlrev_b32_sdwa dst, src0, src1 omod dst_sel dst_unused src0_sel src1_sel
v_lshrrev_b16 dst, src0, src1
v_lshrrev_b16_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_lshrrev_b16_sdwa dst, src0, src1 omod dst_sel dst_unused src0_sel src1_sel
v_lshrrev_b32 dst, src0, src1
v_lshrrev_b32_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_lshrrev_b32_sdwa dst, src0, src1 omod dst_sel dst_unused src0_sel src1_sel
v_mac_f16 dst, src0, src1
v_mac_f16_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_mac_f32 dst, src0, src1
v_mac_f32_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_madak_f16 dst, src0, src1, src2
v_madak_f32 dst, src0, src1, src2
v_madmk_f16 dst, src0, src1, src2
v_madmk_f32 dst, src0, src1, src2
v_max_f16 dst, src0, src1
v_max_f16_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_max_f16_sdwa dst, src0, src1 clamp omod dst_sel dst_unused src0_sel src1_sel
v_max_f32 dst, src0, src1
v_max_f32_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_max_f32_sdwa dst, src0, src1 clamp omod dst_sel dst_unused src0_sel src1_sel
v_max_i16 dst, src0, src1
v_max_i16_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_max_i16_sdwa dst, src0, src1 omod dst_sel dst_unused src0_sel src1_sel
v_max_i32 dst, src0, src1
v_max_i32_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_max_i32_sdwa dst, src0, src1 omod dst_sel dst_unused src0_sel src1_sel
v_max_u16 dst, src0, src1
v_max_u16_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_max_u16_sdwa dst, src0, src1 omod dst_sel dst_unused src0_sel src1_sel
v_max_u32 dst, src0, src1
v_max_u32_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_max_u32_sdwa dst, src0, src1 omod dst_sel dst_unused src0_sel src1_sel
v_min_f16 dst, src0, src1
v_min_f16_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_min_f16_sdwa dst, src0, src1 clamp omod dst_sel dst_unused src0_sel src1_sel
v_min_f32 dst, src0, src1
v_min_f32_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_min_f32_sdwa dst, src0, src1 clamp omod dst_sel dst_unused src0_sel src1_sel
v_min_i16 dst, src0, src1
v_min_i16_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_min_i16_sdwa dst, src0, src1 omod dst_sel dst_unused src0_sel src1_sel
v_min_i32 dst, src0, src1
v_min_i32_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_min_i32_sdwa dst, src0, src1 omod dst_sel dst_unused src0_sel src1_sel
v_min_u16 dst, src0, src1
v_min_u16_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_min_u16_sdwa dst, src0, src1 omod dst_sel dst_unused src0_sel src1_sel
v_min_u32 dst, src0, src1
v_min_u32_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_min_u32_sdwa dst, src0, src1 omod dst_sel dst_unused src0_sel src1_sel
v_mul_f16 dst, src0, src1
v_mul_f16_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_mul_f16_sdwa dst, src0, src1 clamp omod dst_sel dst_unused src0_sel src1_sel
v_mul_f32 dst, src0, src1
v_mul_f32_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_mul_f32_sdwa dst, src0, src1 clamp omod dst_sel dst_unused src0_sel src1_sel
v_mul_hi_i32_i24 dst, src0, src1
v_mul_hi_i32_i24_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_mul_hi_i32_i24_sdwa dst, src0, src1 omod dst_sel dst_unused src0_sel src1_sel
v_mul_hi_u32_u24 dst, src0, src1
v_mul_hi_u32_u24_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_mul_hi_u32_u24_sdwa dst, src0, src1 omod dst_sel dst_unused src0_sel src1_sel
v_mul_i32_i24 dst, src0, src1
v_mul_i32_i24_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_mul_i32_i24_sdwa dst, src0, src1 clamp omod dst_sel dst_unused src0_sel src1_sel
v_mul_legacy_f32 dst, src0, src1
v_mul_legacy_f32_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_mul_legacy_f32_sdwa dst, src0, src1 clamp omod dst_sel dst_unused src0_sel src1_sel
v_mul_lo_u16 dst, src0, src1
v_mul_lo_u16_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_mul_lo_u16_sdwa dst, src0, src1 omod dst_sel dst_unused src0_sel src1_sel
v_mul_u32_u24 dst, src0, src1
v_mul_u32_u24_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_mul_u32_u24_sdwa dst, src0, src1 clamp omod dst_sel dst_unused src0_sel src1_sel
v_or_b32 dst, src0, src1
v_or_b32_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_or_b32_sdwa dst, src0, src1 omod dst_sel dst_unused src0_sel src1_sel
v_sub_co_u32 dst0, dst1, src0, src1
v_sub_co_u32_dpp dst0, dst1, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_sub_co_u32_sdwa dst0, dst1, src0, src1 clamp omod dst_sel dst_unused src0_sel src1_sel
v_sub_f16 dst, src0, src1
v_sub_f16_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_sub_f16_sdwa dst, src0, src1 clamp omod dst_sel dst_unused src0_sel src1_sel
v_sub_f32 dst, src0, src1
v_sub_f32_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_sub_f32_sdwa dst, src0, src1 clamp omod dst_sel dst_unused src0_sel src1_sel
v_sub_u16 dst, src0, src1
v_sub_u16_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_sub_u16_sdwa dst, src0, src1 clamp omod dst_sel dst_unused src0_sel src1_sel
v_sub_u32 dst, src0, src1
v_sub_u32_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_sub_u32_sdwa dst, src0, src1 clamp omod dst_sel dst_unused src0_sel src1_sel
v_subb_co_u32 dst0, dst1, src0, src1, src2
v_subb_co_u32_dpp dst0, dst1, src0, src1, src2 dpp_ctrl row_mask bank_mask bound_ctrl
v_subb_co_u32_sdwa dst0, dst1, src0, src1, src2 clamp omod dst_sel dst_unused src0_sel src1_sel
v_subbrev_co_u32 dst0, dst1, src0, src1, src2
v_subbrev_co_u32_dpp dst0, dst1, src0, src1, src2 dpp_ctrl row_mask bank_mask bound_ctrl
v_subbrev_co_u32_sdwa dst0, dst1, src0, src1, src2 clamp omod dst_sel dst_unused src0_sel src1_sel
v_subrev_co_u32 dst0, dst1, src0, src1
v_subrev_co_u32_dpp dst0, dst1, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_subrev_co_u32_sdwa dst0, dst1, src0, src1 clamp omod dst_sel dst_unused src0_sel src1_sel
v_subrev_f16 dst, src0, src1
v_subrev_f16_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_subrev_f16_sdwa dst, src0, src1 clamp omod dst_sel dst_unused src0_sel src1_sel
v_subrev_f32 dst, src0, src1
v_subrev_f32_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_subrev_f32_sdwa dst, src0, src1 clamp omod dst_sel dst_unused src0_sel src1_sel
v_subrev_u16 dst, src0, src1
v_subrev_u16_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_subrev_u16_sdwa dst, src0, src1 clamp omod dst_sel dst_unused src0_sel src1_sel
v_subrev_u32 dst, src0, src1
v_subrev_u32_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_subrev_u32_sdwa dst, src0, src1 clamp omod dst_sel dst_unused src0_sel src1_sel
v_xor_b32 dst, src0, src1
v_xor_b32_dpp dst, src0, src1 dpp_ctrl row_mask bank_mask bound_ctrl
v_xor_b32_sdwa dst, src0, src1 omod dst_sel dst_unused src0_sel src1_sel

VOP3

v_add3_u32 dst, src0, src1, src2 omod
v_add_co_u32_e64 dst0, dst1, src0, src1 omod
v_add_f16_e64 dst, src0, src1 clamp omod
v_add_f32_e64 dst, src0, src1 clamp omod
v_add_f64 dst, src0, src1 clamp omod
v_add_i16 dst, src0, src1 vop3_op_sel clamp omod
v_add_i32 dst, src0, src1 omod
v_add_lshl_u32 dst, src0, src1, src2 omod
v_add_u16_e64 dst, src0, src1 omod
v_add_u32_e64 dst, src0, src1 omod
v_addc_co_u32_e64 dst0, dst1, src0, src1, src2 omod
v_alignbit_b32 dst, src0, src1, src2 vop3_op_sel omod
v_alignbyte_b32 dst, src0, src1, src2 vop3_op_sel omod
v_and_b32_e64 dst, src0, src1 omod
v_and_or_b32 dst, src0, src1, src2 omod
v_ashrrev_i16_e64 dst, src0, src1 omod
v_ashrrev_i32_e64 dst, src0, src1 omod
v_ashrrev_i64 dst, src0, src1 omod
v_bcnt_u32_b32 dst, src0, src1 omod
v_bfe_i32 dst, src0, src1, src2 omod
v_bfe_u32 dst, src0, src1, src2 omod
v_bfi_b32 dst, src0, src1, src2 omod
v_bfm_b32 dst, src0, src1 omod
v_bfrev_b32_e64 dst, src0 omod
v_ceil_f16_e64 dst, src0 clamp omod
v_ceil_f32_e64 dst, src0 clamp omod
v_ceil_f64_e64 dst, src0 clamp omod
v_clrexcp_e64 omod
v_cmp_class_f16_e64 dst, src0, src1 omod
v_cmp_class_f32_e64 dst, src0, src1 omod
v_cmp_class_f64_e64 dst, src0, src1 omod
v_cmp_eq_f16_e64 dst, src0, src1 clamp omod
v_cmp_eq_f32_e64 dst, src0, src1 clamp omod
v_cmp_eq_f64_e64 dst, src0, src1 clamp omod
v_cmp_eq_i16_e64 dst, src0, src1 omod
v_cmp_eq_i32_e64 dst, src0, src1 omod
v_cmp_eq_i64_e64 dst, src0, src1 omod
v_cmp_eq_u16_e64 dst, src0, src1 omod
v_cmp_eq_u32_e64 dst, src0, src1 omod
v_cmp_eq_u64_e64 dst, src0, src1 omod
v_cmp_f_f16_e64 dst, src0, src1 clamp omod
v_cmp_f_f32_e64 dst, src0, src1 clamp omod
v_cmp_f_f64_e64 dst, src0, src1 clamp omod
v_cmp_f_i16_e64 dst, src0, src1 omod
v_cmp_f_i32_e64 dst, src0, src1 omod
v_cmp_f_i64_e64 dst, src0, src1 omod
v_cmp_f_u16_e64 dst, src0, src1 omod
v_cmp_f_u32_e64 dst, src0, src1 omod
v_cmp_f_u64_e64 dst, src0, src1 omod
v_cmp_ge_f16_e64 dst, src0, src1 clamp omod
v_cmp_ge_f32_e64 dst, src0, src1 clamp omod
v_cmp_ge_f64_e64 dst, src0, src1 clamp omod
v_cmp_ge_i16_e64 dst, src0, src1 omod
v_cmp_ge_i32_e64 dst, src0, src1 omod
v_cmp_ge_i64_e64 dst, src0, src1 omod
v_cmp_ge_u16_e64 dst, src0, src1 omod
v_cmp_ge_u32_e64 dst, src0, src1 omod
v_cmp_ge_u64_e64 dst, src0, src1 omod
v_cmp_gt_f16_e64 dst, src0, src1 clamp omod
v_cmp_gt_f32_e64 dst, src0, src1 clamp omod
v_cmp_gt_f64_e64 dst, src0, src1 clamp omod
v_cmp_gt_i16_e64 dst, src0, src1 omod
v_cmp_gt_i32_e64 dst, src0, src1 omod
v_cmp_gt_i64_e64 dst, src0, src1 omod
v_cmp_gt_u16_e64 dst, src0, src1 omod
v_cmp_gt_u32_e64 dst, src0, src1 omod
v_cmp_gt_u64_e64 dst, src0, src1 omod
v_cmp_le_f16_e64 dst, src0, src1 clamp omod
v_cmp_le_f32_e64 dst, src0, src1 clamp omod
v_cmp_le_f64_e64 dst, src0, src1 clamp omod
v_cmp_le_i16_e64 dst, src0, src1 omod
v_cmp_le_i32_e64 dst, src0, src1 omod
v_cmp_le_i64_e64 dst, src0, src1 omod
v_cmp_le_u16_e64 dst, src0, src1 omod
v_cmp_le_u32_e64 dst, src0, src1 omod
v_cmp_le_u64_e64 dst, src0, src1 omod
v_cmp_lg_f16_e64 dst, src0, src1 clamp omod
v_cmp_lg_f32_e64 dst, src0, src1 clamp omod
v_cmp_lg_f64_e64 dst, src0, src1 clamp omod
v_cmp_lt_f16_e64 dst, src0, src1 clamp omod
v_cmp_lt_f32_e64 dst, src0, src1 clamp omod
v_cmp_lt_f64_e64 dst, src0, src1 clamp omod
v_cmp_lt_i16_e64 dst, src0, src1 omod
v_cmp_lt_i32_e64 dst, src0, src1 omod
v_cmp_lt_i64_e64 dst, src0, src1 omod
v_cmp_lt_u16_e64 dst, src0, src1 omod
v_cmp_lt_u32_e64 dst, src0, src1 omod
v_cmp_lt_u64_e64 dst, src0, src1 omod
v_cmp_ne_i16_e64 dst, src0, src1 omod
v_cmp_ne_i32_e64 dst, src0, src1 omod
v_cmp_ne_i64_e64 dst, src0, src1 omod
v_cmp_ne_u16_e64 dst, src0, src1 omod
v_cmp_ne_u32_e64 dst, src0, src1 omod
v_cmp_ne_u64_e64 dst, src0, src1 omod
v_cmp_neq_f16_e64 dst, src0, src1 clamp omod
v_cmp_neq_f32_e64 dst, src0, src1 clamp omod
v_cmp_neq_f64_e64 dst, src0, src1 clamp omod
v_cmp_nge_f16_e64 dst, src0, src1 clamp omod
v_cmp_nge_f32_e64 dst, src0, src1 clamp omod
v_cmp_nge_f64_e64 dst, src0, src1 clamp omod
v_cmp_ngt_f16_e64 dst, src0, src1 clamp omod
v_cmp_ngt_f32_e64 dst, src0, src1 clamp omod
v_cmp_ngt_f64_e64 dst, src0, src1 clamp omod
v_cmp_nle_f16_e64 dst, src0, src1 clamp omod
v_cmp_nle_f32_e64 dst, src0, src1 clamp omod
v_cmp_nle_f64_e64 dst, src0, src1 clamp omod
v_cmp_nlg_f16_e64 dst, src0, src1 clamp omod
v_cmp_nlg_f32_e64 dst, src0, src1 clamp omod
v_cmp_nlg_f64_e64 dst, src0, src1 clamp omod
v_cmp_nlt_f16_e64 dst, src0, src1 clamp omod
v_cmp_nlt_f32_e64 dst, src0, src1 clamp omod
v_cmp_nlt_f64_e64 dst, src0, src1 clamp omod
v_cmp_o_f16_e64 dst, src0, src1 clamp omod
v_cmp_o_f32_e64 dst, src0, src1 clamp omod
v_cmp_o_f64_e64 dst, src0, src1 clamp omod
v_cmp_t_i16_e64 dst, src0, src1 omod
v_cmp_t_i32_e64 dst, src0, src1 omod
v_cmp_t_i64_e64 dst, src0, src1 omod
v_cmp_t_u16_e64 dst, src0, src1 omod
v_cmp_t_u32_e64 dst, src0, src1 omod
v_cmp_t_u64_e64 dst, src0, src1 omod
v_cmp_tru_f16_e64 dst, src0, src1 clamp omod
v_cmp_tru_f32_e64 dst, src0, src1 clamp omod
v_cmp_tru_f64_e64 dst, src0, src1 clamp omod
v_cmp_u_f16_e64 dst, src0, src1 clamp omod
v_cmp_u_f32_e64 dst, src0, src1 clamp omod
v_cmp_u_f64_e64 dst, src0, src1 clamp omod
v_cmpx_class_f16_e64 dst, src0, src1 omod
v_cmpx_class_f32_e64 dst, src0, src1 omod
v_cmpx_class_f64_e64 dst, src0, src1 omod
v_cmpx_eq_f16_e64 dst, src0, src1 clamp omod
v_cmpx_eq_f32_e64 dst, src0, src1 clamp omod
v_cmpx_eq_f64_e64 dst, src0, src1 clamp omod
v_cmpx_eq_i16_e64 dst, src0, src1 omod
v_cmpx_eq_i32_e64 dst, src0, src1 omod
v_cmpx_eq_i64_e64 dst, src0, src1 omod
v_cmpx_eq_u16_e64 dst, src0, src1 omod
v_cmpx_eq_u32_e64 dst, src0, src1 omod
v_cmpx_eq_u64_e64 dst, src0, src1 omod
v_cmpx_f_f16_e64 dst, src0, src1 clamp omod
v_cmpx_f_f32_e64 dst, src0, src1 clamp omod
v_cmpx_f_f64_e64 dst, src0, src1 clamp omod
v_cmpx_f_i16_e64 dst, src0, src1 omod
v_cmpx_f_i32_e64 dst, src0, src1 omod
v_cmpx_f_i64_e64 dst, src0, src1 omod
v_cmpx_f_u16_e64 dst, src0, src1 omod
v_cmpx_f_u32_e64 dst, src0, src1 omod
v_cmpx_f_u64_e64 dst, src0, src1 omod
v_cmpx_ge_f16_e64 dst, src0, src1 clamp omod
v_cmpx_ge_f32_e64 dst, src0, src1 clamp omod
v_cmpx_ge_f64_e64 dst, src0, src1 clamp omod
v_cmpx_ge_i16_e64 dst, src0, src1 omod
v_cmpx_ge_i32_e64 dst, src0, src1 omod
v_cmpx_ge_i64_e64 dst, src0, src1 omod
v_cmpx_ge_u16_e64 dst, src0, src1 omod
v_cmpx_ge_u32_e64 dst, src0, src1 omod
v_cmpx_ge_u64_e64 dst, src0, src1 omod
v_cmpx_gt_f16_e64 dst, src0, src1 clamp omod
v_cmpx_gt_f32_e64 dst, src0, src1 clamp omod
v_cmpx_gt_f64_e64 dst, src0, src1 clamp omod
v_cmpx_gt_i16_e64 dst, src0, src1 omod
v_cmpx_gt_i32_e64 dst, src0, src1 omod
v_cmpx_gt_i64_e64 dst, src0, src1 omod
v_cmpx_gt_u16_e64 dst, src0, src1 omod
v_cmpx_gt_u32_e64 dst, src0, src1 omod
v_cmpx_gt_u64_e64 dst, src0, src1 omod
v_cmpx_le_f16_e64 dst, src0, src1 clamp omod
v_cmpx_le_f32_e64 dst, src0, src1 clamp omod
v_cmpx_le_f64_e64 dst, src0, src1 clamp omod
v_cmpx_le_i16_e64 dst, src0, src1 omod
v_cmpx_le_i32_e64 dst, src0, src1 omod
v_cmpx_le_i64_e64 dst, src0, src1 omod
v_cmpx_le_u16_e64 dst, src0, src1 omod
v_cmpx_le_u32_e64 dst, src0, src1 omod
v_cmpx_le_u64_e64 dst, src0, src1 omod
v_cmpx_lg_f16_e64 dst, src0, src1 clamp omod
v_cmpx_lg_f32_e64 dst, src0, src1 clamp omod
v_cmpx_lg_f64_e64 dst, src0, src1 clamp omod
v_cmpx_lt_f16_e64 dst, src0, src1 clamp omod
v_cmpx_lt_f32_e64 dst, src0, src1 clamp omod
v_cmpx_lt_f64_e64 dst, src0, src1 clamp omod
v_cmpx_lt_i16_e64 dst, src0, src1 omod
v_cmpx_lt_i32_e64 dst, src0, src1 omod
v_cmpx_lt_i64_e64 dst, src0, src1 omod
v_cmpx_lt_u16_e64 dst, src0, src1 omod
v_cmpx_lt_u32_e64 dst, src0, src1 omod
v_cmpx_lt_u64_e64 dst, src0, src1 omod
v_cmpx_ne_i16_e64 dst, src0, src1 omod
v_cmpx_ne_i32_e64 dst, src0, src1 omod
v_cmpx_ne_i64_e64 dst, src0, src1 omod
v_cmpx_ne_u16_e64 dst, src0, src1 omod
v_cmpx_ne_u32_e64 dst, src0, src1 omod
v_cmpx_ne_u64_e64 dst, src0, src1 omod
v_cmpx_neq_f16_e64 dst, src0, src1 clamp omod
v_cmpx_neq_f32_e64 dst, src0, src1 clamp omod
v_cmpx_neq_f64_e64 dst, src0, src1 clamp omod
v_cmpx_nge_f16_e64 dst, src0, src1 clamp omod
v_cmpx_nge_f32_e64 dst, src0, src1 clamp omod
v_cmpx_nge_f64_e64 dst, src0, src1 clamp omod
v_cmpx_ngt_f16_e64 dst, src0, src1 clamp omod
v_cmpx_ngt_f32_e64 dst, src0, src1 clamp omod
v_cmpx_ngt_f64_e64 dst, src0, src1 clamp omod
v_cmpx_nle_f16_e64 dst, src0, src1 clamp omod
v_cmpx_nle_f32_e64 dst, src0, src1 clamp omod
v_cmpx_nle_f64_e64 dst, src0, src1 clamp omod
v_cmpx_nlg_f16_e64 dst, src0, src1 clamp omod
v_cmpx_nlg_f32_e64 dst, src0, src1 clamp omod
v_cmpx_nlg_f64_e64 dst, src0, src1 clamp omod
v_cmpx_nlt_f16_e64 dst, src0, src1 clamp omod
v_cmpx_nlt_f32_e64 dst, src0, src1 clamp omod
v_cmpx_nlt_f64_e64 dst, src0, src1 clamp omod
v_cmpx_o_f16_e64 dst, src0, src1 clamp omod
v_cmpx_o_f32_e64 dst, src0, src1 clamp omod
v_cmpx_o_f64_e64 dst, src0, src1 clamp omod
v_cmpx_t_i16_e64 dst, src0, src1 omod
v_cmpx_t_i32_e64 dst, src0, src1 omod
v_cmpx_t_i64_e64 dst, src0, src1 omod
v_cmpx_t_u16_e64 dst, src0, src1 omod
v_cmpx_t_u32_e64 dst, src0, src1 omod
v_cmpx_t_u64_e64 dst, src0, src1 omod
v_cmpx_tru_f16_e64 dst, src0, src1 clamp omod
v_cmpx_tru_f32_e64 dst, src0, src1 clamp omod
v_cmpx_tru_f64_e64 dst, src0, src1 clamp omod
v_cmpx_u_f16_e64 dst, src0, src1 clamp omod
v_cmpx_u_f32_e64 dst, src0, src1 clamp omod
v_cmpx_u_f64_e64 dst, src0, src1 clamp omod
v_cndmask_b32_e64 dst, src0, src1, src2 omod
v_cos_f16_e64 dst, src0 clamp omod
v_cos_f32_e64 dst, src0 clamp omod
v_cubeid_f32 dst, src0, src1, src2 clamp omod
v_cubema_f32 dst, src0, src1, src2 clamp omod
v_cubesc_f32 dst, src0, src1, src2 clamp omod
v_cubetc_f32 dst, src0, src1, src2 clamp omod
v_cvt_f16_f32_e64 dst, src0 clamp omod
v_cvt_f16_i16_e64 dst, src0 clamp omod
v_cvt_f16_u16_e64 dst, src0 clamp omod
v_cvt_f32_f16_e64 dst, src0 clamp omod
v_cvt_f32_f64_e64 dst, src0 clamp omod
v_cvt_f32_i32_e64 dst, src0 clamp omod
v_cvt_f32_u32_e64 dst, src0 clamp omod
v_cvt_f32_ubyte0_e64 dst, src0 clamp omod
v_cvt_f32_ubyte1_e64 dst, src0 clamp omod
v_cvt_f32_ubyte2_e64 dst, src0 clamp omod
v_cvt_f32_ubyte3_e64 dst, src0 clamp omod
v_cvt_f64_f32_e64 dst, src0 clamp omod
v_cvt_f64_i32_e64 dst, src0 clamp omod
v_cvt_f64_u32_e64 dst, src0 clamp omod
v_cvt_flr_i32_f32_e64 dst, src0 omod
v_cvt_i16_f16_e64 dst, src0 clamp omod
v_cvt_i32_f32_e64 dst, src0 clamp omod
v_cvt_i32_f64_e64 dst, src0 clamp omod
v_cvt_norm_i16_f16_e64 dst, src0 omod
v_cvt_norm_u16_f16_e64 dst, src0 omod
v_cvt_off_f32_i4_e64 dst, src0 clamp omod
v_cvt_pk_i16_i32 dst, src0, src1 omod
v_cvt_pk_u16_u32 dst, src0, src1 omod
v_cvt_pk_u8_f32 dst, src0, src1, src2 omod
v_cvt_pkaccum_u8_f32 dst, src0, src1 omod
v_cvt_pknorm_i16_f16 dst, src0, src1 vop3_op_sel omod
v_cvt_pknorm_i16_f32 dst, src0, src1 omod
v_cvt_pknorm_u16_f16 dst, src0, src1 vop3_op_sel omod
v_cvt_pknorm_u16_f32 dst, src0, src1 omod
v_cvt_pkrtz_f16_f32 dst, src0, src1 omod
v_cvt_rpi_i32_f32_e64 dst, src0 omod
v_cvt_u16_f16_e64 dst, src0 clamp omod
v_cvt_u32_f32_e64 dst, src0 clamp omod
v_cvt_u32_f64_e64 dst, src0 clamp omod
v_div_fixup_f16 dst, src0, src1, src2 vop3_op_sel clamp omod
v_div_fixup_f32 dst, src0, src1, src2 clamp omod
v_div_fixup_f64 dst, src0, src1, src2 clamp omod
v_div_fixup_legacy_f16 dst, src0, src1, src2 vop3_op_sel clamp omod
v_div_fmas_f32 dst, src0, src1, src2 clamp omod
v_div_fmas_f64 dst, src0, src1, src2 clamp omod
v_div_scale_f32 dst0, dst1, src0, src1, src2 omod
v_div_scale_f64 dst0, dst1, src0, src1, src2 omod
v_exp_f16_e64 dst, src0 clamp omod
v_exp_f32_e64 dst, src0 clamp omod
v_exp_legacy_f32_e64 dst, src0 clamp omod
v_ffbh_i32_e64 dst, src0 omod
v_ffbh_u32_e64 dst, src0 omod
v_ffbl_b32_e64 dst, src0 omod
v_floor_f16_e64 dst, src0 clamp omod
v_floor_f32_e64 dst, src0 clamp omod
v_floor_f64_e64 dst, src0 clamp omod
v_fma_f16 dst, src0, src1, src2 vop3_op_sel clamp omod
v_fma_f32 dst, src0, src1, src2 clamp omod
v_fma_f64 dst, src0, src1, src2 clamp omod
v_fma_legacy_f16 dst, src0, src1, src2 vop3_op_sel clamp omod
v_fract_f16_e64 dst, src0 clamp omod
v_fract_f32_e64 dst, src0 clamp omod
v_fract_f64_e64 dst, src0 clamp omod
v_frexp_exp_i16_f16_e64 dst, src0 omod
v_frexp_exp_i32_f32_e64 dst, src0 omod
v_frexp_exp_i32_f64_e64 dst, src0 omod
v_frexp_mant_f16_e64 dst, src0 clamp omod
v_frexp_mant_f32_e64 dst, src0 clamp omod
v_frexp_mant_f64_e64 dst, src0 clamp omod
v_interp_mov_f32_e64 dst, src0, src1 clamp omod
v_interp_p1_f32_e64 dst, src0, src1 clamp omod
v_interp_p1ll_f16 dst, src0, src1 high clamp omod
v_interp_p1lv_f16 dst, src0, src1, src2 high clamp omod
v_interp_p2_f16 dst, src0, src1, src2 vop3_op_sel high clamp omod
v_interp_p2_f32_e64 dst, src0, src1 clamp omod
v_interp_p2_legacy_f16 dst, src0, src1, src2 vop3_op_sel high clamp omod
v_ldexp_f16_e64 dst, src0, src1 clamp omod
v_ldexp_f32 dst, src0, src1 clamp omod
v_ldexp_f64 dst, src0, src1 clamp omod
v_lerp_u8 dst, src0, src1, src2 omod
v_log_f16_e64 dst, src0 clamp omod
v_log_f32_e64 dst, src0 clamp omod
v_log_legacy_f32_e64 dst, src0 clamp omod
v_lshl_add_u32 dst, src0, src1, src2 omod
v_lshl_or_b32 dst, src0, src1, src2 omod
v_lshlrev_b16_e64 dst, src0, src1 omod
v_lshlrev_b32_e64 dst, src0, src1 omod
v_lshlrev_b64 dst, src0, src1 omod
v_lshrrev_b16_e64 dst, src0, src1 omod
v_lshrrev_b32_e64 dst, src0, src1 omod
v_lshrrev_b64 dst, src0, src1 omod
v_mac_f16_e64 dst, src0, src1 clamp omod
v_mac_f32_e64 dst, src0, src1 clamp omod
v_mad_f16 dst, src0, src1, src2 vop3_op_sel clamp omod
v_mad_f32 dst, src0, src1, src2 clamp omod
v_mad_i16 dst, src0, src1, src2 vop3_op_sel clamp omod
v_mad_i32_i16 dst, src0, src1, src2 vop3_op_sel clamp omod
v_mad_i32_i24 dst, src0, src1, src2 clamp omod
v_mad_i64_i32 dst0, dst1, src0, src1, src2 clamp omod
v_mad_legacy_f16 dst, src0, src1, src2 vop3_op_sel clamp omod
v_mad_legacy_f32 dst, src0, src1, src2 clamp omod
v_mad_legacy_i16 dst, src0, src1, src2 vop3_op_sel clamp omod
v_mad_legacy_u16 dst, src0, src1, src2 vop3_op_sel clamp omod
v_mad_u16 dst, src0, src1, src2 vop3_op_sel clamp omod
v_mad_u32_u16 dst, src0, src1, src2 vop3_op_sel clamp omod
v_mad_u32_u24 dst, src0, src1, src2 clamp omod
v_mad_u64_u32 dst0, dst1, src0, src1, src2 clamp omod
v_max3_f16 dst, src0, src1, src2 vop3_op_sel clamp omod
v_max3_f32 dst, src0, src1, src2 clamp omod
v_max3_i16 dst, src0, src1, src2 vop3_op_sel omod
v_max3_i32 dst, src0, src1, src2 omod
v_max3_u16 dst, src0, src1, src2 vop3_op_sel omod
v_max3_u32 dst, src0, src1, src2 omod
v_max_f16_e64 dst, src0, src1 clamp omod
v_max_f32_e64 dst, src0, src1 clamp omod
v_max_f64 dst, src0, src1 clamp omod
v_max_i16_e64 dst, src0, src1 omod
v_max_i32_e64 dst, src0, src1 omod
v_max_u16_e64 dst, src0, src1 omod
v_max_u32_e64 dst, src0, src1 omod
v_mbcnt_hi_u32_b32 dst, src0, src1 omod
v_mbcnt_lo_u32_b32 dst, src0, src1 omod
v_med3_f16 dst, src0, src1, src2 vop3_op_sel clamp omod
v_med3_f32 dst, src0, src1, src2 clamp omod
v_med3_i16 dst, src0, src1, src2 vop3_op_sel omod
v_med3_i32 dst, src0, src1, src2 omod
v_med3_u16 dst, src0, src1, src2 vop3_op_sel omod
v_med3_u32 dst, src0, src1, src2 omod
v_min3_f16 dst, src0, src1, src2 vop3_op_sel clamp omod
v_min3_f32 dst, src0, src1, src2 clamp omod
v_min3_i16 dst, src0, src1, src2 vop3_op_sel omod
v_min3_i32 dst, src0, src1, src2 omod
v_min3_u16 dst, src0, src1, src2 vop3_op_sel omod
v_min3_u32 dst, src0, src1, src2 omod
v_min_f16_e64 dst, src0, src1 clamp omod
v_min_f32_e64 dst, src0, src1 clamp omod
v_min_f64 dst, src0, src1 clamp omod
v_min_i16_e64 dst, src0, src1 omod
v_min_i32_e64 dst, src0, src1 omod
v_min_u16_e64 dst, src0, src1 omod
v_min_u32_e64 dst, src0, src1 omod
v_mov_b32_e64 dst, src0 omod
v_mov_fed_b32_e64 dst, src0 omod
v_mqsad_pk_u16_u8 dst, src0, src1, src2 clamp omod
v_mqsad_u32_u8 dst, src0, src1, src2 clamp omod
v_msad_u8 dst, src0, src1, src2 clamp omod
v_mul_f16_e64 dst, src0, src1 clamp omod
v_mul_f32_e64 dst, src0, src1 clamp omod
v_mul_f64 dst, src0, src1 clamp omod
v_mul_hi_i32 dst, src0, src1 omod
v_mul_hi_i32_i24_e64 dst, src0, src1 omod
v_mul_hi_u32 dst, src0, src1 omod
v_mul_hi_u32_u24_e64 dst, src0, src1 omod
v_mul_i32_i24_e64 dst, src0, src1 omod
v_mul_legacy_f32_e64 dst, src0, src1 clamp omod
v_mul_lo_u16_e64 dst, src0, src1 omod
v_mul_lo_u32 dst, src0, src1 omod
v_mul_u32_u24_e64 dst, src0, src1 omod
v_nop_e64 omod
v_not_b32_e64 dst, src0 omod
v_or3_b32 dst, src0, src1, src2 omod
v_or_b32_e64 dst, src0, src1 omod
v_pack_b32_f16 dst, src0, src1 vop3_op_sel omod
v_perm_b32 dst, src0, src1, src2 omod
v_qsad_pk_u16_u8 dst, src0, src1, src2 clamp omod
v_rcp_f16_e64 dst, src0 clamp omod
v_rcp_f32_e64 dst, src0 clamp omod
v_rcp_f64_e64 dst, src0 clamp omod
v_rcp_iflag_f32_e64 dst, src0 clamp omod
v_readlane_b32 dst, src0, src1 omod
v_rndne_f16_e64 dst, src0 clamp omod
v_rndne_f32_e64 dst, src0 clamp omod
v_rndne_f64_e64 dst, src0 clamp omod
v_rsq_f16_e64 dst, src0 clamp omod
v_rsq_f32_e64 dst, src0 clamp omod
v_rsq_f64_e64 dst, src0 clamp omod
v_sad_hi_u8 dst, src0, src1, src2 clamp omod
v_sad_u16 dst, src0, src1, src2 clamp omod
v_sad_u32 dst, src0, src1, src2 clamp omod
v_sad_u8 dst, src0, src1, src2 clamp omod
v_sat_pk_u8_i16_e64 dst, src0 omod
v_screen_partition_4se_b32_e64 dst, src0 omod
v_sin_f16_e64 dst, src0 clamp omod
v_sin_f32_e64 dst, src0 clamp omod
v_sqrt_f16_e64 dst, src0 clamp omod
v_sqrt_f32_e64 dst, src0 clamp omod
v_sqrt_f64_e64 dst, src0 clamp omod
v_sub_co_u32_e64 dst0, dst1, src0, src1 omod
v_sub_f16_e64 dst, src0, src1 clamp omod
v_sub_f32_e64 dst, src0, src1 clamp omod
v_sub_i16 dst, src0, src1 vop3_op_sel clamp omod
v_sub_i32 dst, src0, src1 omod
v_sub_u16_e64 dst, src0, src1 omod
v_sub_u32_e64 dst, src0, src1 omod
v_subb_co_u32_e64 dst0, dst1, src0, src1, src2 omod
v_subbrev_co_u32_e64 dst0, dst1, src0, src1, src2 omod
v_subrev_co_u32_e64 dst0, dst1, src0, src1 omod
v_subrev_f16_e64 dst, src0, src1 clamp omod
v_subrev_f32_e64 dst, src0, src1 clamp omod
v_subrev_u16_e64 dst, src0, src1 omod
v_subrev_u32_e64 dst, src0, src1 omod
v_trig_preop_f64 dst, src0, src1 clamp omod
v_trunc_f16_e64 dst, src0 clamp omod
v_trunc_f32_e64 dst, src0 clamp omod
v_trunc_f64_e64 dst, src0 clamp omod
v_writelane_b32 dst, src0, src1 omod
v_xad_u32 dst, src0, src1, src2 omod
v_xor_b32_e64 dst, src0, src1 omod

VOP3P

v_mad_mix_f32 dst, src0, src1, src2 mad_mix_op_sel mad_mix_op_sel_hi clamp
v_mad_mixhi_f16 dst, src0, src1, src2 mad_mix_op_sel mad_mix_op_sel_hi clamp
v_mad_mixlo_f16 dst, src0, src1, src2 mad_mix_op_sel mad_mix_op_sel_hi clamp
v_pk_add_f16 dst, src0, src1 op_sel op_sel_hi neg_lo neg_hi clamp
v_pk_add_i16 dst, src0, src1 op_sel op_sel_hi clamp
v_pk_add_u16 dst, src0, src1 op_sel op_sel_hi clamp
v_pk_ashrrev_i16 dst, src0, src1 op_sel op_sel_hi
v_pk_fma_f16 dst, src0, src1, src2 op_sel op_sel_hi neg_lo neg_hi clamp
v_pk_lshlrev_b16 dst, src0, src1 op_sel op_sel_hi
v_pk_lshrrev_b16 dst, src0, src1 op_sel op_sel_hi
v_pk_mad_i16 dst, src0, src1, src2 op_sel op_sel_hi clamp
v_pk_mad_u16 dst, src0, src1, src2 op_sel op_sel_hi clamp
v_pk_max_f16 dst, src0, src1 op_sel op_sel_hi neg_lo neg_hi clamp
v_pk_max_i16 dst, src0, src1 op_sel op_sel_hi
v_pk_max_u16 dst, src0, src1 op_sel op_sel_hi
v_pk_min_f16 dst, src0, src1 op_sel op_sel_hi neg_lo neg_hi clamp
v_pk_min_i16 dst, src0, src1 op_sel op_sel_hi
v_pk_min_u16 dst, src0, src1 op_sel op_sel_hi
v_pk_mul_f16 dst, src0, src1 op_sel op_sel_hi neg_lo neg_hi clamp
v_pk_mul_lo_u16 dst, src0, src1 op_sel op_sel_hi
v_pk_sub_i16 dst, src0, src1 op_sel op_sel_hi clamp
v_pk_sub_u16 dst, src0, src1 op_sel op_sel_hi clamp

VOPC

v_cmp_class_f16 dst, src0, src1
v_cmp_class_f16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_class_f32 dst, src0, src1
v_cmp_class_f32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_class_f64 dst, src0, src1
v_cmp_eq_f16 dst, src0, src1
v_cmp_eq_f16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_eq_f32 dst, src0, src1
v_cmp_eq_f32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_eq_f64 dst, src0, src1
v_cmp_eq_i16 dst, src0, src1
v_cmp_eq_i16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_eq_i32 dst, src0, src1
v_cmp_eq_i32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_eq_i64 dst, src0, src1
v_cmp_eq_u16 dst, src0, src1
v_cmp_eq_u16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_eq_u32 dst, src0, src1
v_cmp_eq_u32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_eq_u64 dst, src0, src1
v_cmp_f_f16 dst, src0, src1
v_cmp_f_f16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_f_f32 dst, src0, src1
v_cmp_f_f32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_f_f64 dst, src0, src1
v_cmp_f_i16 dst, src0, src1
v_cmp_f_i16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_f_i32 dst, src0, src1
v_cmp_f_i32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_f_i64 dst, src0, src1
v_cmp_f_u16 dst, src0, src1
v_cmp_f_u16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_f_u32 dst, src0, src1
v_cmp_f_u32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_f_u64 dst, src0, src1
v_cmp_ge_f16 dst, src0, src1
v_cmp_ge_f16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_ge_f32 dst, src0, src1
v_cmp_ge_f32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_ge_f64 dst, src0, src1
v_cmp_ge_i16 dst, src0, src1
v_cmp_ge_i16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_ge_i32 dst, src0, src1
v_cmp_ge_i32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_ge_i64 dst, src0, src1
v_cmp_ge_u16 dst, src0, src1
v_cmp_ge_u16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_ge_u32 dst, src0, src1
v_cmp_ge_u32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_ge_u64 dst, src0, src1
v_cmp_gt_f16 dst, src0, src1
v_cmp_gt_f16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_gt_f32 dst, src0, src1
v_cmp_gt_f32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_gt_f64 dst, src0, src1
v_cmp_gt_i16 dst, src0, src1
v_cmp_gt_i16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_gt_i32 dst, src0, src1
v_cmp_gt_i32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_gt_i64 dst, src0, src1
v_cmp_gt_u16 dst, src0, src1
v_cmp_gt_u16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_gt_u32 dst, src0, src1
v_cmp_gt_u32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_gt_u64 dst, src0, src1
v_cmp_le_f16 dst, src0, src1
v_cmp_le_f16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_le_f32 dst, src0, src1
v_cmp_le_f32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_le_f64 dst, src0, src1
v_cmp_le_i16 dst, src0, src1
v_cmp_le_i16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_le_i32 dst, src0, src1
v_cmp_le_i32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_le_i64 dst, src0, src1
v_cmp_le_u16 dst, src0, src1
v_cmp_le_u16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_le_u32 dst, src0, src1
v_cmp_le_u32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_le_u64 dst, src0, src1
v_cmp_lg_f16 dst, src0, src1
v_cmp_lg_f16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_lg_f32 dst, src0, src1
v_cmp_lg_f32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_lg_f64 dst, src0, src1
v_cmp_lt_f16 dst, src0, src1
v_cmp_lt_f16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_lt_f32 dst, src0, src1
v_cmp_lt_f32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_lt_f64 dst, src0, src1
v_cmp_lt_i16 dst, src0, src1
v_cmp_lt_i16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_lt_i32 dst, src0, src1
v_cmp_lt_i32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_lt_i64 dst, src0, src1
v_cmp_lt_u16 dst, src0, src1
v_cmp_lt_u16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_lt_u32 dst, src0, src1
v_cmp_lt_u32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_lt_u64 dst, src0, src1
v_cmp_ne_i16 dst, src0, src1
v_cmp_ne_i16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_ne_i32 dst, src0, src1
v_cmp_ne_i32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_ne_i64 dst, src0, src1
v_cmp_ne_u16 dst, src0, src1
v_cmp_ne_u16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_ne_u32 dst, src0, src1
v_cmp_ne_u32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_ne_u64 dst, src0, src1
v_cmp_neq_f16 dst, src0, src1
v_cmp_neq_f16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_neq_f32 dst, src0, src1
v_cmp_neq_f32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_neq_f64 dst, src0, src1
v_cmp_nge_f16 dst, src0, src1
v_cmp_nge_f16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_nge_f32 dst, src0, src1
v_cmp_nge_f32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_nge_f64 dst, src0, src1
v_cmp_ngt_f16 dst, src0, src1
v_cmp_ngt_f16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_ngt_f32 dst, src0, src1
v_cmp_ngt_f32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_ngt_f64 dst, src0, src1
v_cmp_nle_f16 dst, src0, src1
v_cmp_nle_f16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_nle_f32 dst, src0, src1
v_cmp_nle_f32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_nle_f64 dst, src0, src1
v_cmp_nlg_f16 dst, src0, src1
v_cmp_nlg_f16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_nlg_f32 dst, src0, src1
v_cmp_nlg_f32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_nlg_f64 dst, src0, src1
v_cmp_nlt_f16 dst, src0, src1
v_cmp_nlt_f16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_nlt_f32 dst, src0, src1
v_cmp_nlt_f32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_nlt_f64 dst, src0, src1
v_cmp_o_f16 dst, src0, src1
v_cmp_o_f16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_o_f32 dst, src0, src1
v_cmp_o_f32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_o_f64 dst, src0, src1
v_cmp_t_i16 dst, src0, src1
v_cmp_t_i16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_t_i32 dst, src0, src1
v_cmp_t_i32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_t_i64 dst, src0, src1
v_cmp_t_u16 dst, src0, src1
v_cmp_t_u16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_t_u32 dst, src0, src1
v_cmp_t_u32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_t_u64 dst, src0, src1
v_cmp_tru_f16 dst, src0, src1
v_cmp_tru_f16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_tru_f32 dst, src0, src1
v_cmp_tru_f32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_tru_f64 dst, src0, src1
v_cmp_u_f16 dst, src0, src1
v_cmp_u_f16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_u_f32 dst, src0, src1
v_cmp_u_f32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmp_u_f64 dst, src0, src1
v_cmpx_class_f16 dst, src0, src1
v_cmpx_class_f16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_class_f32 dst, src0, src1
v_cmpx_class_f32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_class_f64 dst, src0, src1
v_cmpx_eq_f16 dst, src0, src1
v_cmpx_eq_f16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_eq_f32 dst, src0, src1
v_cmpx_eq_f32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_eq_f64 dst, src0, src1
v_cmpx_eq_i16 dst, src0, src1
v_cmpx_eq_i16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_eq_i32 dst, src0, src1
v_cmpx_eq_i32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_eq_i64 dst, src0, src1
v_cmpx_eq_u16 dst, src0, src1
v_cmpx_eq_u16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_eq_u32 dst, src0, src1
v_cmpx_eq_u32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_eq_u64 dst, src0, src1
v_cmpx_f_f16 dst, src0, src1
v_cmpx_f_f16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_f_f32 dst, src0, src1
v_cmpx_f_f32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_f_f64 dst, src0, src1
v_cmpx_f_i16 dst, src0, src1
v_cmpx_f_i16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_f_i32 dst, src0, src1
v_cmpx_f_i32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_f_i64 dst, src0, src1
v_cmpx_f_u16 dst, src0, src1
v_cmpx_f_u16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_f_u32 dst, src0, src1
v_cmpx_f_u32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_f_u64 dst, src0, src1
v_cmpx_ge_f16 dst, src0, src1
v_cmpx_ge_f16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_ge_f32 dst, src0, src1
v_cmpx_ge_f32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_ge_f64 dst, src0, src1
v_cmpx_ge_i16 dst, src0, src1
v_cmpx_ge_i16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_ge_i32 dst, src0, src1
v_cmpx_ge_i32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_ge_i64 dst, src0, src1
v_cmpx_ge_u16 dst, src0, src1
v_cmpx_ge_u16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_ge_u32 dst, src0, src1
v_cmpx_ge_u32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_ge_u64 dst, src0, src1
v_cmpx_gt_f16 dst, src0, src1
v_cmpx_gt_f16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_gt_f32 dst, src0, src1
v_cmpx_gt_f32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_gt_f64 dst, src0, src1
v_cmpx_gt_i16 dst, src0, src1
v_cmpx_gt_i16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_gt_i32 dst, src0, src1
v_cmpx_gt_i32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_gt_i64 dst, src0, src1
v_cmpx_gt_u16 dst, src0, src1
v_cmpx_gt_u16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_gt_u32 dst, src0, src1
v_cmpx_gt_u32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_gt_u64 dst, src0, src1
v_cmpx_le_f16 dst, src0, src1
v_cmpx_le_f16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_le_f32 dst, src0, src1
v_cmpx_le_f32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_le_f64 dst, src0, src1
v_cmpx_le_i16 dst, src0, src1
v_cmpx_le_i16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_le_i32 dst, src0, src1
v_cmpx_le_i32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_le_i64 dst, src0, src1
v_cmpx_le_u16 dst, src0, src1
v_cmpx_le_u16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_le_u32 dst, src0, src1
v_cmpx_le_u32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_le_u64 dst, src0, src1
v_cmpx_lg_f16 dst, src0, src1
v_cmpx_lg_f16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_lg_f32 dst, src0, src1
v_cmpx_lg_f32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_lg_f64 dst, src0, src1
v_cmpx_lt_f16 dst, src0, src1
v_cmpx_lt_f16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_lt_f32 dst, src0, src1
v_cmpx_lt_f32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_lt_f64 dst, src0, src1
v_cmpx_lt_i16 dst, src0, src1
v_cmpx_lt_i16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_lt_i32 dst, src0, src1
v_cmpx_lt_i32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_lt_i64 dst, src0, src1
v_cmpx_lt_u16 dst, src0, src1
v_cmpx_lt_u16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_lt_u32 dst, src0, src1
v_cmpx_lt_u32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_lt_u64 dst, src0, src1
v_cmpx_ne_i16 dst, src0, src1
v_cmpx_ne_i16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_ne_i32 dst, src0, src1
v_cmpx_ne_i32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_ne_i64 dst, src0, src1
v_cmpx_ne_u16 dst, src0, src1
v_cmpx_ne_u16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_ne_u32 dst, src0, src1
v_cmpx_ne_u32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_ne_u64 dst, src0, src1
v_cmpx_neq_f16 dst, src0, src1
v_cmpx_neq_f16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_neq_f32 dst, src0, src1
v_cmpx_neq_f32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_neq_f64 dst, src0, src1
v_cmpx_nge_f16 dst, src0, src1
v_cmpx_nge_f16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_nge_f32 dst, src0, src1
v_cmpx_nge_f32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_nge_f64 dst, src0, src1
v_cmpx_ngt_f16 dst, src0, src1
v_cmpx_ngt_f16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_ngt_f32 dst, src0, src1
v_cmpx_ngt_f32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_ngt_f64 dst, src0, src1
v_cmpx_nle_f16 dst, src0, src1
v_cmpx_nle_f16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_nle_f32 dst, src0, src1
v_cmpx_nle_f32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_nle_f64 dst, src0, src1
v_cmpx_nlg_f16 dst, src0, src1
v_cmpx_nlg_f16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_nlg_f32 dst, src0, src1
v_cmpx_nlg_f32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_nlg_f64 dst, src0, src1
v_cmpx_nlt_f16 dst, src0, src1
v_cmpx_nlt_f16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_nlt_f32 dst, src0, src1
v_cmpx_nlt_f32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_nlt_f64 dst, src0, src1
v_cmpx_o_f16 dst, src0, src1
v_cmpx_o_f16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_o_f32 dst, src0, src1
v_cmpx_o_f32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_o_f64 dst, src0, src1
v_cmpx_t_i16 dst, src0, src1
v_cmpx_t_i16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_t_i32 dst, src0, src1
v_cmpx_t_i32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_t_i64 dst, src0, src1
v_cmpx_t_u16 dst, src0, src1
v_cmpx_t_u16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_t_u32 dst, src0, src1
v_cmpx_t_u32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_t_u64 dst, src0, src1
v_cmpx_tru_f16 dst, src0, src1
v_cmpx_tru_f16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_tru_f32 dst, src0, src1
v_cmpx_tru_f32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_tru_f64 dst, src0, src1
v_cmpx_u_f16 dst, src0, src1
v_cmpx_u_f16_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_u_f32 dst, src0, src1
v_cmpx_u_f32_sdwa dst, src0, src1 src0_sel src1_sel
v_cmpx_u_f64 dst, src0, src1

 Syntax of AMDGPU Assembler Operands and Modifiers

Syntax of AMDGPU Assembler Operands and Modifiers

	Conventions

	Operands

	Modifiers

	DS Modifiers

	ds_offset8

	ds_offset16

	sw_offset16

	gds

	EXP Modifiers

	done

	compr

	vm

	FLAT Modifiers

	flat_offset12

	flat_offset13

	glc

	slc

	tfe

	nv

	MIMG Modifiers

	dmask

	unorm

	glc

	slc

	r128

	tfe

	lwe

	da

	d16

	a16

	Miscellaneous Modifiers

	glc

	slc

	tfe

	nv

	MUBUF/MTBUF Modifiers

	idxen

	offen

	addr64

	buf_offset12

	glc

	slc

	lds

	tfe

	dfmt

	nfmt

	SMRD/SMEM Modifiers

	glc

	nv

	VINTRP Modifiers

	high

	VOP1/VOP2 DPP Modifiers

	dpp_ctrl

	row_mask

	bank_mask

	bound_ctrl

	VOP1/VOP2/VOPC SDWA Modifiers

	clamp

	omod

	dst_sel

	dst_unused

	src0_sel

	src1_sel

	VOP1/VOP2/VOPC SDWA Operand Modifiers

	abs

	neg

	sext

	VOP3 Modifiers

	vop3_op_sel

	clamp

	omod

	VOP3 Operand Modifiers

	abs

	neg

	VOP3P Modifiers

	op_sel

	op_sel_hi

	neg_lo

	neg_hi

	clamp

	VOP3P V_MAD_MIX Modifiers

	mad_mix_op_sel

	mad_mix_op_sel_hi

	abs

	neg

	clamp

Conventions

The following conventions are used in syntax description:

	Notation

	Description

	{0..N}

	Any integer value in the range from 0 to N (inclusive).
Unless stated otherwise, this value may be specified as
either a literal or an llvm expression.

	<x>

	Syntax and meaning of <x> is explained elsewhere.

Operands

TBD

Modifiers

DS Modifiers

ds_offset8

Specifies an immediate unsigned 8-bit offset, in bytes. The default value is 0.

Used with DS instructions which have 2 addresses.

	Syntax

	Description

	offset:{0..0xFF}

	Specifies a 8-bit offset.

ds_offset16

Specifies an immediate unsigned 16-bit offset, in bytes. The default value is 0.

Used with DS instructions which have 1 address.

	Syntax

	Description

	offset:{0..0xFFFF}

	Specifies a 16-bit offset.

sw_offset16

This is a special modifier which may be used with ds_swizzle_b32 instruction only.
Specifies a sizzle pattern in numeric or symbolic form. The default value is 0.

See AMD documentation for more information.

	Syntax

	Description

	offset:{0..0xFFFF}

	Specifies a 16-bit swizzle pattern
in a numeric form.

	offset:swizzle(QUAD_PERM,{0..3},{0..3},{0..3},{0..3})

	Specifies a quad permute mode pattern; each
number is a lane id.

	offset:swizzle(BITMASK_PERM, “<mask>”)

	Specifies a bitmask permute mode pattern
which converts a 5-bit lane id to another
lane id with which the lane interacts.

<mask> is a 5 character sequence which
specifies how to transform the bits of the
lane id. The following characters are allowed:

	“0” - set bit to 0.

	“1” - set bit to 1.

	“p” - preserve bit.

	“i” - inverse bit.

	offset:swizzle(BROADCAST,{2..32},{0..N})

	Specifies a broadcast mode.
Broadcasts the value of any particular lane to
all lanes in its group.

The first numeric parameter is a group
size and must be equal to 2, 4, 8, 16 or 32.

The second numeric parameter is an index of the
lane being broadcasted. The index must not exceed
group size.

	offset:swizzle(SWAP,{1..16})

	Specifies a swap mode.
Swaps the neighboring groups of
1, 2, 4, 8 or 16 lanes.

	offset:swizzle(REVERSE,{2..32})

	Specifies a reverse mode. Reverses
the lanes for groups of 2, 4, 8, 16 or 32 lanes.

gds

Specifies whether to use GDS or LDS memory (LDS is the default).

	Syntax

	Description

	gds

	Use GDS memory.

EXP Modifiers

done

Specifies if this is the last export from the shader to the target. By default, current
instruction does not finish an export sequence.

	Syntax

	Description

	done

	Indicates the last export operation.

compr

Indicates if the data are compressed (not compressed by default).

	Syntax

	Description

	compr

	Data are compressed.

vm

Specifies valid mask flag state (off by default).

	Syntax

	Description

	vm

	Set valid mask flag.

FLAT Modifiers

flat_offset12

Specifies an immediate unsigned 12-bit offset, in bytes. The default value is 0.

Cannot be used with global/scratch opcodes. GFX9 only.

	Syntax

	Description

	offset:{0..4095}

	Specifies a 12-bit unsigned offset.

flat_offset13

Specifies an immediate signed 13-bit offset, in bytes. The default value is 0.

Can be used with global/scratch opcodes only. GFX9 only.

	Syntax

	Description

	offset:{-4096..+4095}

	Specifies a 13-bit signed offset.

glc

See a description here.

slc

See a description here.

tfe

See a description here.

nv

See a description here.

MIMG Modifiers

dmask

Specifies which channels (image components) are used by the operation. By default, no channels
are used.

	Syntax

	Description

	dmask:{0..15}

	Each bit corresponds to one of 4 image
components (RGBA). If the specified bit value
is 0, the component is not used, value 1 means
that the component is used.

This modifier has some limitations depending on instruction kind:

	Instruction Kind

	Valid dmask Values

	32-bit atomic cmpswap

	0x3

	other 32-bit atomic instructions

	0x1

	64-bit atomic cmpswap

	0xF

	other 64-bit atomic instructions

	0x3

	GATHER4

	0x1, 0x2, 0x4, 0x8

	Other instructions

	any value

unorm

Specifies whether address is normalized or not (normalized by default).

	Syntax

	Description

	unorm

	Force address to be un-normalized.

glc

See a description here.

slc

See a description here.

r128

Specifies texture resource size. The default size is 256 bits.

GFX7 and GFX8 only.

	Syntax

	Description

	r128

	Specifies 128 bits texture resource size.

tfe

See a description here.

lwe

Specifies LOD warning status (LOD warning is disabled by default).

	Syntax

	Description

	lwe

	Enables LOD warning.

da

Specifies if an array index must be sent to TA. By default, array index is not sent.

	Syntax

	Description

	da

	Send an array-index to TA.

d16

Specifies data size: 16 or 32 bits (32 bits by default). Not supported by GFX7.

	Syntax

	Description

	d16

	Enables 16-bits data mode.

On loads, convert data in memory to 16-bit
format before storing it in VGPRs.

For stores, convert 16-bit data in VGPRs to
32 bits before going to memory.

Note that 16-bit data are stored in VGPRs
unpacked in GFX8.0. In GFX8.1 and GFX9 16-bit
data are packed.

a16

Specifies size of image address components: 16 or 32 bits (32 bits by default). GFX9 only.

	Syntax

	Description

	a16

	Enables 16-bits image address components.

Miscellaneous Modifiers

glc

This modifier has different meaning for loads, stores, and atomic operations.
The default value is off (0).

See AMD documentation for details.

	Syntax

	Description

	glc

	Set glc bit to 1.

slc

Specifies cache policy. The default value is off (0).

See AMD documentation for details.

	Syntax

	Description

	slc

	Set slc bit to 1.

tfe

Controls access to partially resident textures. The default value is off (0).

See AMD documentation for details.

	Syntax

	Description

	tfe

	Set tfe bit to 1.

nv

Specifies if instruction is operating on non-volatile memory. By default, memory is volatile.

GFX9 only.

	Syntax

	Description

	nv

	Indicates that instruction operates on
non-volatile memory.

MUBUF/MTBUF Modifiers

idxen

Specifies whether address components include an index. By default, no components are used.

Can be used together with offen.

Cannot be used with addr64.

	Syntax

	Description

	idxen

	Address components include an index.

offen

Specifies whether address components include an offset. By default, no components are used.

Can be used together with idxen.

Cannot be used with addr64.

	Syntax

	Description

	offen

	Address components include an offset.

addr64

Specifies whether a 64-bit address is used. By default, no address is used.

GFX7 only. Cannot be used with offen and
idxen modifiers.

	Syntax

	Description

	addr64

	A 64-bit address is used.

buf_offset12

Specifies an immediate unsigned 12-bit offset, in bytes. The default value is 0.

	Syntax

	Description

	offset:{0..0xFFF}

	Specifies a 12-bit unsigned offset.

glc

See a description here.

slc

See a description here.

lds

Specifies where to store the result: VGPRs or LDS (VGPRs by default).

	Syntax

	Description

	lds

	Store result in LDS.

tfe

See a description here.

dfmt

TBD

nfmt

TBD

SMRD/SMEM Modifiers

glc

See a description here.

nv

See a description here.

VINTRP Modifiers

high

Specifies which half of the LDS word to use. Low half of LDS word is used by default.
GFX9 only.

	Syntax

	Description

	high

	Use high half of LDS word.

VOP1/VOP2 DPP Modifiers

GFX8 and GFX9 only.

dpp_ctrl

Specifies how data are shared between threads. This is a mandatory modifier.
There is no default value.

Note. The lanes of a wavefront are organized in four banks and four rows.

	Syntax

	Description

	quad_perm:[{0..3},{0..3},{0..3},{0..3}]

	Full permute of 4 threads.

	row_mirror

	Mirror threads within row.

	row_half_mirror

	Mirror threads within 1/2 row (8 threads).

	row_bcast:15

	Broadcast 15th thread of each row to next row.

	row_bcast:31

	Broadcast thread 31 to rows 2 and 3.

	wave_shl:1

	Wavefront left shift by 1 thread.

	wave_rol:1

	Wavefront left rotate by 1 thread.

	wave_shr:1

	Wavefront right shift by 1 thread.

	wave_ror:1

	Wavefront right rotate by 1 thread.

	row_shl:{1..15}

	Row shift left by 1-15 threads.

	row_shr:{1..15}

	Row shift right by 1-15 threads.

	row_ror:{1..15}

	Row rotate right by 1-15 threads.

row_mask

Controls which rows are enabled for data sharing. By default, all rows are enabled.

Note. The lanes of a wavefront are organized in four banks and four rows.

	Syntax

	Description

	row_mask:{0..15}

	Each of 4 bits in the mask controls one
row (0 - disabled, 1 - enabled).

bank_mask

Controls which banks are enabled for data sharing. By default, all banks are enabled.

Note. The lanes of a wavefront are organized in four banks and four rows.

	Syntax

	Description

	bank_mask:{0..15}

	Each of 4 bits in the mask controls one
bank (0 - disabled, 1 - enabled).

bound_ctrl

Controls data sharing when accessing an invalid lane. By default, data sharing with
invalid lanes is disabled.

	Syntax

	Description

	bound_ctrl:0

	Enables data sharing with invalid lanes.
Accessing data from an invalid lane will
return zero.

VOP1/VOP2/VOPC SDWA Modifiers

GFX8 and GFX9 only.

clamp

See a description here.

omod

See a description here.

GFX9 only.

dst_sel

Selects which bits in the destination are affected. By default, all bits are affected.

	Syntax

	Description

	dst_sel:DWORD

	Use bits 31:0.

	dst_sel:BYTE_0

	Use bits 7:0.

	dst_sel:BYTE_1

	Use bits 15:8.

	dst_sel:BYTE_2

	Use bits 23:16.

	dst_sel:BYTE_3

	Use bits 31:24.

	dst_sel:WORD_0

	Use bits 15:0.

	dst_sel:WORD_1

	Use bits 31:16.

dst_unused

Controls what to do with the bits in the destination which are not selected
by dst_sel.
By default, unused bits are preserved.

	Syntax

	Description

	dst_unused:UNUSED_PAD

	Pad with zeros.

	dst_unused:UNUSED_SEXT

	Sign-extend upper bits, zero lower bits.

	dst_unused:UNUSED_PRESERVE

	Preserve bits.

src0_sel

Controls which bits in the src0 are used. By default, all bits are used.

	Syntax

	Description

	src0_sel:DWORD

	Use bits 31:0.

	src0_sel:BYTE_0

	Use bits 7:0.

	src0_sel:BYTE_1

	Use bits 15:8.

	src0_sel:BYTE_2

	Use bits 23:16.

	src0_sel:BYTE_3

	Use bits 31:24.

	src0_sel:WORD_0

	Use bits 15:0.

	src0_sel:WORD_1

	Use bits 31:16.

src1_sel

Controls which bits in the src1 are used. By default, all bits are used.

	Syntax

	Description

	src1_sel:DWORD

	Use bits 31:0.

	src1_sel:BYTE_0

	Use bits 7:0.

	src1_sel:BYTE_1

	Use bits 15:8.

	src1_sel:BYTE_2

	Use bits 23:16.

	src1_sel:BYTE_3

	Use bits 31:24.

	src1_sel:WORD_0

	Use bits 15:0.

	src1_sel:WORD_1

	Use bits 31:16.

VOP1/VOP2/VOPC SDWA Operand Modifiers

Operand modifiers are not used separately. They are applied to source operands.

GFX8 and GFX9 only.

abs

See a description here.

neg

See a description here.

sext

Sign-extends value of a (sub-dword) operand to fill all 32 bits.
Has no effect for 32-bit operands.

Valid for integer operands only.

	Syntax

	Description

	sext(<operand>)

	Sign-extend operand value.

VOP3 Modifiers

vop3_op_sel

Selects the low [15:0] or high [31:16] operand bits for source and destination operands.
By default, low bits are used for all operands.

The number of values specified with the op_sel modifier must match the number of instruction
operands (both source and destination). First value controls src0, second value controls src1
and so on, except that the last value controls destination.
The value 0 selects the low bits, while 1 selects the high bits.

Note. op_sel modifier affects 16-bit operands only. For 32-bit operands the value specified
by op_sel must be 0.

GFX9 only.

	Syntax

	Description

	op_sel:[{0..1},{0..1}]

	Select operand bits for instructions with 1 source operand.

	op_sel:[{0..1},{0..1},{0..1}]

	Select operand bits for instructions with 2 source operands.

	op_sel:[{0..1},{0..1},{0..1},{0..1}]

	Select operand bits for instructions with 3 source operands.

clamp

Clamp meaning depends on instruction.

For v_cmp instructions, clamp modifier indicates that the compare signals
if a floating point exception occurs. By default, signaling is disabled.
Not supported by GFX7.

For integer operations, clamp modifier indicates that the result must be clamped
to the largest and smallest representable value. By default, there is no clamping.
Integer clamping is not supported by GFX7.

For floating point operations, clamp modifier indicates that the result must be clamped
to the range [0.0, 1.0]. By default, there is no clamping.

Note. Clamp modifier is applied after output modifiers (if any).

	Syntax

	Description

	clamp

	Enables clamping (or signaling).

omod

Specifies if an output modifier must be applied to the result.
By default, no output modifiers are applied.

Note. Output modifiers are applied before clamping (if any).

Output modifiers are valid for f32 and f64 floating point results only.
They must not be used with f16.

Note. v_cvt_f16_f32 is an exception. This instruction produces f16 result
but accepts output modifiers.

	Syntax

	Description

	mul:2

	Multiply the result by 2.

	mul:4

	Multiply the result by 4.

	div:2

	Multiply the result by 0.5.

VOP3 Operand Modifiers

Operand modifiers are not used separately. They are applied to source operands.

abs

Computes absolute value of its operand. Applied before neg (if any).
Valid for floating point operands only.

	Syntax

	Description

	abs(<operand>)

	Get absolute value of operand.

	|<operand>|

	The same as above.

neg

Computes negative value of its operand. Applied after abs (if any).
Valid for floating point operands only.

	Syntax

	Description

	neg(<operand>)

	Get negative value of operand.

	-<operand>

	The same as above.

VOP3P Modifiers

This section describes modifiers of regular VOP3P instructions.
v_mad_mix modifiers are described in a separate section.

GFX9 only.

op_sel

Selects the low [15:0] or high [31:16] operand bits as input to the operation
which results in the lower-half of the destination.
By default, low bits are used for all operands.

The number of values specified with the op_sel modifier must match the number of source
operands. First value controls src0, second value controls src1 and so on.
The value 0 selects the low bits, while 1 selects the high bits.

	Syntax

	Description

	op_sel:[{0..1}]

	Select operand bits for instructions with 1 source operand.

	op_sel:[{0..1},{0..1}]

	Select operand bits for instructions with 2 source operands.

	op_sel:[{0..1},{0..1},{0..1}]

	Select operand bits for instructions with 3 source operands.

op_sel_hi

Selects the low [15:0] or high [31:16] operand bits as input to the operation
which results in the upper-half of the destination.
By default, high bits are used for all operands.

The number of values specified with the op_sel_hi modifier must match the number of source
operands. First value controls src0, second value controls src1 and so on.
The value 0 selects the low bits, while 1 selects the high bits.

	Syntax

	Description

	op_sel_hi:[{0..1}]

	Select operand bits for instructions with 1 source operand.

	op_sel_hi:[{0..1},{0..1}]

	Select operand bits for instructions with 2 source operands.

	op_sel_hi:[{0..1},{0..1},{0..1}]

	Select operand bits for instructions with 3 source operands.

neg_lo

Specifies whether to change sign of operand values selected by
op_sel. These values are then used
as input to the operation which results in the upper-half of the destination.

The number of values specified with this modifier must match the number of source
operands. First value controls src0, second value controls src1 and so on.

The value 0 indicates that the corresponding operand value is used unmodified,
the value 1 indicates that negative value of the operand must be used.

By default, operand values are used unmodified.

This modifier is valid for floating point operands only.

	Syntax

	Description

	neg_lo:[{0..1}]

	Select affected operands for instructions with 1 source operand.

	neg_lo:[{0..1},{0..1}]

	Select affected operands for instructions with 2 source operands.

	neg_lo:[{0..1},{0..1},{0..1}]

	Select affected operands for instructions with 3 source operands.

neg_hi

Specifies whether to change sign of operand values selected by
op_sel_hi. These values are then used
as input to the operation which results in the upper-half of the destination.

The number of values specified with this modifier must match the number of source
operands. First value controls src0, second value controls src1 and so on.

The value 0 indicates that the corresponding operand value is used unmodified,
the value 1 indicates that negative value of the operand must be used.

By default, operand values are used unmodified.

This modifier is valid for floating point operands only.

	Syntax

	Description

	neg_hi:[{0..1}]

	Select affected operands for instructions with 1 source operand.

	neg_hi:[{0..1},{0..1}]

	Select affected operands for instructions with 2 source operands.

	neg_hi:[{0..1},{0..1},{0..1}]

	Select affected operands for instructions with 3 source operands.

clamp

See a description here.

VOP3P V_MAD_MIX Modifiers

These instructions use VOP3P format but have different modifiers.

GFX9 only.

mad_mix_op_sel

This operand has meaning only for 16-bit source operands as indicated by
mad_mix_op_sel_hi.
It specifies to select either the low [15:0] or high [31:16] operand bits
as input to the operation.

The value 0 indicates the low bits, the value 1 indicates the high 16 bits.
By default, low bits are used for all operands.

	Syntax

	Description

	op_sel:[{0..1},{0..1},{0..1}]

	Select location of each 16-bit source operand.

mad_mix_op_sel_hi

Selects the size of source operands: either 32 bits or 16 bits.
By default, 32 bits are used for all source operands.

The value 0 indicates 32 bits, the value 1 indicates 16 bits.
The location of 16 bits in the operand may be specified by
mad_mix_op_sel.

	Syntax

	Description

	op_sel_hi:[{0..1},{0..1},{0..1}]

	Select size of each source operand.

abs

See a description here.

neg

See a description here.

clamp

See a description here.

 Stack maps and patch points in LLVM

Stack maps and patch points in LLVM

	Definitions

	Motivation

	Intrinsics

	‘llvm.experimental.stackmap’ Intrinsic

	‘llvm.experimental.patchpoint.*’ Intrinsic

	Stack Map Format

	Stack Map Section

	Stack Map Usage

	Direct Stack Map Entries

	Supported Architectures

Definitions

In this document we refer to the “runtime” collectively as all
components that serve as the LLVM client, including the LLVM IR
generator, object code consumer, and code patcher.

A stack map records the location of live values at a particular
instruction address. These live values do not refer to all the
LLVM values live across the stack map. Instead, they are only the
values that the runtime requires to be live at this point. For
example, they may be the values the runtime will need to resume
program execution at that point independent of the compiled function
containing the stack map.

LLVM emits stack map data into the object code within a designated
Stack Map Section. This stack map data contains a record for
each stack map. The record stores the stack map’s instruction address
and contains a entry for each mapped value. Each entry encodes a
value’s location as a register, stack offset, or constant.

A patch point is an instruction address at which space is reserved for
patching a new instruction sequence at run time. Patch points look
much like calls to LLVM. They take arguments that follow a calling
convention and may return a value. They also imply stack map
generation, which allows the runtime to locate the patchpoint and
find the location of live values at that point.

Motivation

This functionality is currently experimental but is potentially useful
in a variety of settings, the most obvious being a runtime (JIT)
compiler. Example applications of the patchpoint intrinsics are
implementing an inline call cache for polymorphic method dispatch or
optimizing the retrieval of properties in dynamically typed languages
such as JavaScript.

The intrinsics documented here are currently used by the JavaScript
compiler within the open source WebKit project, see the FTL JIT [https://trac.webkit.org/wiki/FTLJIT], but they are designed to be
used whenever stack maps or code patching are needed. Because the
intrinsics have experimental status, compatibility across LLVM
releases is not guaranteed.

The stack map functionality described in this document is separate
from the functionality described in
Computing stack maps. GCFunctionMetadata provides the location of
pointers into a collected heap captured by the GCRoot intrinsic,
which can also be considered a “stack map”. Unlike the stack maps
defined above, the GCFunctionMetadata stack map interface does not
provide a way to associate live register values of arbitrary type with
an instruction address, nor does it specify a format for the resulting
stack map. The stack maps described here could potentially provide
richer information to a garbage collecting runtime, but that usage
will not be discussed in this document.

Intrinsics

The following two kinds of intrinsics can be used to implement stack
maps and patch points: llvm.experimental.stackmap and
llvm.experimental.patchpoint. Both kinds of intrinsics generate a
stack map record, and they both allow some form of code patching. They
can be used independently (i.e. llvm.experimental.patchpoint
implicitly generates a stack map without the need for an additional
call to llvm.experimental.stackmap). The choice of which to use
depends on whether it is necessary to reserve space for code patching
and whether any of the intrinsic arguments should be lowered according
to calling conventions. llvm.experimental.stackmap does not
reserve any space, nor does it expect any call arguments. If the
runtime patches code at the stack map’s address, it will destructively
overwrite the program text. This is unlike
llvm.experimental.patchpoint, which reserves space for in-place
patching without overwriting surrounding code. The
llvm.experimental.patchpoint intrinsic also lowers a specified
number of arguments according to its calling convention. This allows
patched code to make in-place function calls without marshaling.

Each instance of one of these intrinsics generates a stack map record
in the Stack Map Section. The record includes an ID, allowing
the runtime to uniquely identify the stack map, and the offset within
the code from the beginning of the enclosing function.

‘llvm.experimental.stackmap’ Intrinsic

Syntax:

declare void
 @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, ...)

Overview:

The ‘llvm.experimental.stackmap’ intrinsic records the location of
specified values in the stack map without generating any code.

Operands:

The first operand is an ID to be encoded within the stack map. The
second operand is the number of shadow bytes following the
intrinsic. The variable number of operands that follow are the live
values for which locations will be recorded in the stack map.

To use this intrinsic as a bare-bones stack map, with no code patching
support, the number of shadow bytes can be set to zero.

Semantics:

The stack map intrinsic generates no code in place, unless nops are
needed to cover its shadow (see below). However, its offset from
function entry is stored in the stack map. This is the relative
instruction address immediately following the instructions that
precede the stack map.

The stack map ID allows a runtime to locate the desired stack map
record. LLVM passes this ID through directly to the stack map
record without checking uniqueness.

LLVM guarantees a shadow of instructions following the stack map’s
instruction offset during which neither the end of the basic block nor
another call to llvm.experimental.stackmap or
llvm.experimental.patchpoint may occur. This allows the runtime to
patch the code at this point in response to an event triggered from
outside the code. The code for instructions following the stack map
may be emitted in the stack map’s shadow, and these instructions may
be overwritten by destructive patching. Without shadow bytes, this
destructive patching could overwrite program text or data outside the
current function. We disallow overlapping stack map shadows so that
the runtime does not need to consider this corner case.

For example, a stack map with 8 byte shadow:

call void @runtime()
call void (i64, i32, ...)* @llvm.experimental.stackmap(i64 77, i32 8,
 i64* %ptr)
%val = load i64* %ptr
%add = add i64 %val, 3
ret i64 %add

May require one byte of nop-padding:

0x00 callq _runtime
0x05 nop <--- stack map address
0x06 movq (%rdi), %rax
0x07 addq $3, %rax
0x0a popq %rdx
0x0b ret <---- end of 8-byte shadow

Now, if the runtime needs to invalidate the compiled code, it may
patch 8 bytes of code at the stack map’s address at follows:

0x00 callq _runtime
0x05 movl $0xffff, %rax <--- patched code at stack map address
0x0a callq *%rax <---- end of 8-byte shadow

This way, after the normal call to the runtime returns, the code will
execute a patched call to a special entry point that can rebuild a
stack frame from the values located by the stack map.

‘llvm.experimental.patchpoint.*’ Intrinsic

Syntax:

declare void
 @llvm.experimental.patchpoint.void(i64 <id>, i32 <numBytes>,
 i8* <target>, i32 <numArgs>, ...)
declare i64
 @llvm.experimental.patchpoint.i64(i64 <id>, i32 <numBytes>,
 i8* <target>, i32 <numArgs>, ...)

Overview:

The ‘llvm.experimental.patchpoint.*’ intrinsics creates a function
call to the specified <target> and records the location of specified
values in the stack map.

Operands:

The first operand is an ID, the second operand is the number of bytes
reserved for the patchable region, the third operand is the target
address of a function (optionally null), and the fourth operand
specifies how many of the following variable operands are considered
function call arguments. The remaining variable number of operands are
the live values for which locations will be recorded in the stack
map.

Semantics:

The patch point intrinsic generates a stack map. It also emits a
function call to the address specified by <target> if the address
is not a constant null. The function call and its arguments are
lowered according to the calling convention specified at the
intrinsic’s callsite. Variants of the intrinsic with non-void return
type also return a value according to calling convention.

On PowerPC, note that <target> must be the ABI function pointer for the
intended target of the indirect call. Specifically, when compiling for the
ELF V1 ABI, <target> is the function-descriptor address normally used as
the C/C++ function-pointer representation.

Requesting zero patch point arguments is valid. In this case, all
variable operands are handled just like
llvm.experimental.stackmap.*. The difference is that space will
still be reserved for patching, a call will be emitted, and a return
value is allowed.

The location of the arguments are not normally recorded in the stack
map because they are already fixed by the calling convention. The
remaining live values will have their location recorded, which
could be a register, stack location, or constant. A special calling
convention has been introduced for use with stack maps, anyregcc,
which forces the arguments to be loaded into registers but allows
those register to be dynamically allocated. These argument registers
will have their register locations recorded in the stack map in
addition to the remaining live values.

The patch point also emits nops to cover at least <numBytes> of
instruction encoding space. Hence, the client must ensure that
<numBytes> is enough to encode a call to the target address on the
supported targets. If the call target is constant null, then there is
no minimum requirement. A zero-byte null target patchpoint is
valid.

The runtime may patch the code emitted for the patch point, including
the call sequence and nops. However, the runtime may not assume
anything about the code LLVM emits within the reserved space. Partial
patching is not allowed. The runtime must patch all reserved bytes,
padding with nops if necessary.

This example shows a patch point reserving 15 bytes, with one argument
in $rdi, and a return value in $rax per native calling convention:

%target = inttoptr i64 -281474976710654 to i8*
%val = call i64 (i64, i32, ...)*
 @llvm.experimental.patchpoint.i64(i64 78, i32 15,
 i8* %target, i32 1, i64* %ptr)
%add = add i64 %val, 3
ret i64 %add

May generate:

0x00 movabsq $0xffff000000000002, %r11 <--- patch point address
0x0a callq *%r11
0x0d nop
0x0e nop <--- end of reserved 15-bytes
0x0f addq $0x3, %rax
0x10 movl %rax, 8(%rsp)

Note that no stack map locations will be recorded. If the patched code
sequence does not need arguments fixed to specific calling convention
registers, then the anyregcc convention may be used:

%val = call anyregcc @llvm.experimental.patchpoint(i64 78, i32 15,
 i8* %target, i32 1,
 i64* %ptr)

The stack map now indicates the location of the %ptr argument and
return value:

Stack Map: ID=78, Loc0=%r9 Loc1=%r8

The patch code sequence may now use the argument that happened to be
allocated in %r8 and return a value allocated in %r9:

0x00 movslq 4(%r8) %r9 <--- patched code at patch point address
0x03 nop
...
0x0e nop <--- end of reserved 15-bytes
0x0f addq $0x3, %r9
0x10 movl %r9, 8(%rsp)

Stack Map Format

The existence of a stack map or patch point intrinsic within an LLVM
Module forces code emission to create a Stack Map Section. The
format of this section follows:

Header {
 uint8 : Stack Map Version (current version is 3)
 uint8 : Reserved (expected to be 0)
 uint16 : Reserved (expected to be 0)
}
uint32 : NumFunctions
uint32 : NumConstants
uint32 : NumRecords
StkSizeRecord[NumFunctions] {
 uint64 : Function Address
 uint64 : Stack Size
 uint64 : Record Count
}
Constants[NumConstants] {
 uint64 : LargeConstant
}
StkMapRecord[NumRecords] {
 uint64 : PatchPoint ID
 uint32 : Instruction Offset
 uint16 : Reserved (record flags)
 uint16 : NumLocations
 Location[NumLocations] {
 uint8 : Register | Direct | Indirect | Constant | ConstantIndex
 uint8 : Reserved (expected to be 0)
 uint16 : Location Size
 uint16 : Dwarf RegNum
 uint16 : Reserved (expected to be 0)
 int32 : Offset or SmallConstant
 }
 uint32 : Padding (only if required to align to 8 byte)
 uint16 : Padding
 uint16 : NumLiveOuts
 LiveOuts[NumLiveOuts]
 uint16 : Dwarf RegNum
 uint8 : Reserved
 uint8 : Size in Bytes
 }
 uint32 : Padding (only if required to align to 8 byte)
}

The first byte of each location encodes a type that indicates how to
interpret the RegNum and Offset fields as follows:

	Encoding

	Type

	Value

	Description

	0x1

	Register

	Reg

	Value in a register

	0x2

	Direct

	Reg + Offset

	Frame index value

	0x3

	Indirect

	[Reg + Offset]

	Spilled value

	0x4

	Constant

	Offset

	Small constant

	0x5

	ConstIndex

	Constants[Offset]

	Large constant

In the common case, a value is available in a register, and the
Offset field will be zero. Values spilled to the stack are encoded
as Indirect locations. The runtime must load those values from a
stack address, typically in the form [BP + Offset]. If an
alloca value is passed directly to a stack map intrinsic, then
LLVM may fold the frame index into the stack map as an optimization to
avoid allocating a register or stack slot. These frame indices will be
encoded as Direct locations in the form BP + Offset. LLVM may
also optimize constants by emitting them directly in the stack map,
either in the Offset of a Constant location or in the constant
pool, referred to by ConstantIndex locations.

At each callsite, a “liveout” register list is also recorded. These
are the registers that are live across the stackmap and therefore must
be saved by the runtime. This is an important optimization when the
patchpoint intrinsic is used with a calling convention that by default
preserves most registers as callee-save.

Each entry in the liveout register list contains a DWARF register
number and size in bytes. The stackmap format deliberately omits
specific subregister information. Instead the runtime must interpret
this information conservatively. For example, if the stackmap reports
one byte at %rax, then the value may be in either %al or
%ah. It doesn’t matter in practice, because the runtime will
simply save %rax. However, if the stackmap reports 16 bytes at
%ymm0, then the runtime can safely optimize by saving only
%xmm0.

The stack map format is a contract between an LLVM SVN revision and
the runtime. It is currently experimental and may change in the short
term, but minimizing the need to update the runtime is
important. Consequently, the stack map design is motivated by
simplicity and extensibility. Compactness of the representation is
secondary because the runtime is expected to parse the data
immediately after compiling a module and encode the information in its
own format. Since the runtime controls the allocation of sections, it
can reuse the same stack map space for multiple modules.

Stackmap support is currently only implemented for 64-bit
platforms. However, a 32-bit implementation should be able to use the
same format with an insignificant amount of wasted space.

Stack Map Section

A JIT compiler can easily access this section by providing its own
memory manager via the LLVM C API
LLVMCreateSimpleMCJITMemoryManager(). When creating the memory
manager, the JIT provides a callback:
LLVMMemoryManagerAllocateDataSectionCallback(). When LLVM creates
this section, it invokes the callback and passes the section name. The
JIT can record the in-memory address of the section at this time and
later parse it to recover the stack map data.

On Darwin, the stack map section name is “__llvm_stackmaps”. The
segment name is “__LLVM_STACKMAPS”.

Stack Map Usage

The stack map support described in this document can be used to
precisely determine the location of values at a specific position in
the code. LLVM does not maintain any mapping between those values and
any higher-level entity. The runtime must be able to interpret the
stack map record given only the ID, offset, and the order of the
locations, records, and functions, which LLVM preserves.

Note that this is quite different from the goal of debug information,
which is a best-effort attempt to track the location of named
variables at every instruction.

An important motivation for this design is to allow a runtime to
commandeer a stack frame when execution reaches an instruction address
associated with a stack map. The runtime must be able to rebuild a
stack frame and resume program execution using the information
provided by the stack map. For example, execution may resume in an
interpreter or a recompiled version of the same function.

This usage restricts LLVM optimization. Clearly, LLVM must not move
stores across a stack map. However, loads must also be handled
conservatively. If the load may trigger an exception, hoisting it
above a stack map could be invalid. For example, the runtime may
determine that a load is safe to execute without a type check given
the current state of the type system. If the type system changes while
some activation of the load’s function exists on the stack, the load
becomes unsafe. The runtime can prevent subsequent execution of that
load by immediately patching any stack map location that lies between
the current call site and the load (typically, the runtime would
simply patch all stack map locations to invalidate the function). If
the compiler had hoisted the load above the stack map, then the
program could crash before the runtime could take back control.

To enforce these semantics, stackmap and patchpoint intrinsics are
considered to potentially read and write all memory. This may limit
optimization more than some clients desire. This limitation may be
avoided by marking the call site as “readonly”. In the future we may
also allow meta-data to be added to the intrinsic call to express
aliasing, thereby allowing optimizations to hoist certain loads above
stack maps.

Direct Stack Map Entries

As shown in Stack Map Section, a Direct stack map location
records the address of frame index. This address is itself the value
that the runtime requested. This differs from Indirect locations,
which refer to a stack locations from which the requested values must
be loaded. Direct locations can communicate the address if an alloca,
while Indirect locations handle register spills.

For example:

entry:
 %a = alloca i64...
 llvm.experimental.stackmap(i64 <ID>, i32 <shadowBytes>, i64* %a)

The runtime can determine this alloca’s relative location on the
stack immediately after compilation, or at any time thereafter. This
differs from Register and Indirect locations, because the runtime can
only read the values in those locations when execution reaches the
instruction address of the stack map.

This functionality requires LLVM to treat entry-block allocas
specially when they are directly consumed by an intrinsics. (This is
the same requirement imposed by the llvm.gcroot intrinsic.) LLVM
transformations must not substitute the alloca with any intervening
value. This can be verified by the runtime simply by checking that the
stack map’s location is a Direct location type.

Supported Architectures

Support for StackMap generation and the related intrinsics requires
some code for each backend. Today, only a subset of LLVM’s backends
are supported. The currently supported architectures are X86_64,
PowerPC, and Aarch64.

 Design and Usage of the InAlloca Attribute

Design and Usage of the InAlloca Attribute

Introduction

The inalloca attribute is designed to allow
taking the address of an aggregate argument that is being passed by
value through memory. Primarily, this feature is required for
compatibility with the Microsoft C++ ABI. Under that ABI, class
instances that are passed by value are constructed directly into
argument stack memory. Prior to the addition of inalloca, calls in LLVM
were indivisible instructions. There was no way to perform intermediate
work, such as object construction, between the first stack adjustment
and the final control transfer. With inalloca, all arguments passed in
memory are modelled as a single alloca, which can be stored to prior to
the call. Unfortunately, this complicated feature comes with a large
set of restrictions designed to bound the lifetime of the argument
memory around the call.

For now, it is recommended that frontends and optimizers avoid producing
this construct, primarily because it forces the use of a base pointer.
This feature may grow in the future to allow general mid-level
optimization, but for now, it should be regarded as less efficient than
passing by value with a copy.

Intended Usage

The example below is the intended LLVM IR lowering for some C++ code
that passes two default-constructed Foo objects to g in the
32-bit Microsoft C++ ABI.

// Foo is non-trivial.
struct Foo { int a, b; Foo(); ~Foo(); Foo(const Foo &); };
void g(Foo a, Foo b);
void f() {
 g(Foo(), Foo());
}

%struct.Foo = type { i32, i32 }
declare void @Foo_ctor(%struct.Foo* %this)
declare void @Foo_dtor(%struct.Foo* %this)
declare void @g(<{ %struct.Foo, %struct.Foo }>* inalloca %memargs)

define void @f() {
entry:
 %base = call i8* @llvm.stacksave()
 %memargs = alloca <{ %struct.Foo, %struct.Foo }>
 %b = getelementptr <{ %struct.Foo, %struct.Foo }>* %memargs, i32 1
 call void @Foo_ctor(%struct.Foo* %b)

 ; If a's ctor throws, we must destruct b.
 %a = getelementptr <{ %struct.Foo, %struct.Foo }>* %memargs, i32 0
 invoke void @Foo_ctor(%struct.Foo* %a)
 to label %invoke.cont unwind %invoke.unwind

invoke.cont:
 call void @g(<{ %struct.Foo, %struct.Foo }>* inalloca %memargs)
 call void @llvm.stackrestore(i8* %base)
 ...

invoke.unwind:
 call void @Foo_dtor(%struct.Foo* %b)
 call void @llvm.stackrestore(i8* %base)
 ...
}

To avoid stack leaks, the frontend saves the current stack pointer with
a call to llvm.stacksave. Then, it allocates the
argument stack space with alloca and calls the default constructor. The
default constructor could throw an exception, so the frontend has to
create a landing pad. The frontend has to destroy the already
constructed argument b before restoring the stack pointer. If the
constructor does not unwind, g is called. In the Microsoft C++ ABI,
g will destroy its arguments, and then the stack is restored in
f.

Design Considerations

Lifetime

The biggest design consideration for this feature is object lifetime.
We cannot model the arguments as static allocas in the entry block,
because all calls need to use the memory at the top of the stack to pass
arguments. We cannot vend pointers to that memory at function entry
because after code generation they will alias.

The rule against allocas between argument allocations and the call site
avoids this problem, but it creates a cleanup problem. Cleanup and
lifetime is handled explicitly with stack save and restore calls. In
the future, we may want to introduce a new construct such as freea
or afree to make it clear that this stack adjusting cleanup is less
powerful than a full stack save and restore.

Nested Calls and Copy Elision

We also want to be able to support copy elision into these argument
slots. This means we have to support multiple live argument
allocations.

Consider the evaluation of:

// Foo is non-trivial.
struct Foo { int a; Foo(); Foo(const &Foo); ~Foo(); };
Foo bar(Foo b);
int main() {
 bar(bar(Foo()));
}

In this case, we want to be able to elide copies into bar’s argument
slots. That means we need to have more than one set of argument frames
active at the same time. First, we need to allocate the frame for the
outer call so we can pass it in as the hidden struct return pointer to
the middle call. Then we do the same for the middle call, allocating a
frame and passing its address to Foo’s default constructor. By
wrapping the evaluation of the inner bar with stack save and
restore, we can have multiple overlapping active call frames.

Callee-cleanup Calling Conventions

Another wrinkle is the existence of callee-cleanup conventions. On
Windows, all methods and many other functions adjust the stack to clear
the memory used to pass their arguments. In some sense, this means that
the allocas are automatically cleared by the call. However, LLVM
instead models this as a write of undef to all of the inalloca values
passed to the call instead of a stack adjustment. Frontends should
still restore the stack pointer to avoid a stack leak.

Exceptions

There is also the possibility of an exception. If argument evaluation
or copy construction throws an exception, the landing pad must do
cleanup, which includes adjusting the stack pointer to avoid a stack
leak. This means the cleanup of the stack memory cannot be tied to the
call itself. There needs to be a separate IR-level instruction that can
perform independent cleanup of arguments.

Efficiency

Eventually, it should be possible to generate efficient code for this
construct. In particular, using inalloca should not require a base
pointer. If the backend can prove that all points in the CFG only have
one possible stack level, then it can address the stack directly from
the stack pointer. While this is not yet implemented, the plan is that
the inalloca attribute should not change much, but the frontend IR
generation recommendations may change.

 Using ARM NEON instructions in big endian mode

Using ARM NEON instructions in big endian mode

	Introduction

	Example: C-level intrinsics -> assembly

	Problem

	LDR and LD1

	Considerations

	LLVM IR Lane ordering

	AAPCS

	Alignment

	Summary

	Implementation

	Bitconverts

Introduction

Generating code for big endian ARM processors is for the most part straightforward. NEON loads and stores however have some interesting properties that make code generation decisions less obvious in big endian mode.

The aim of this document is to explain the problem with NEON loads and stores, and the solution that has been implemented in LLVM.

In this document the term “vector” refers to what the ARM ABI calls a “short vector”, which is a sequence of items that can fit in a NEON register. This sequence can be 64 or 128 bits in length, and can constitute 8, 16, 32 or 64 bit items. This document refers to A64 instructions throughout, but is almost applicable to the A32/ARMv7 instruction sets also. The ABI format for passing vectors in A32 is sligtly different to A64. Apart from that, the same concepts apply.

Example: C-level intrinsics -> assembly

It may be helpful first to illustrate how C-level ARM NEON intrinsics are lowered to instructions.

This trivial C function takes a vector of four ints and sets the zero’th lane to the value “42”:

#include <arm_neon.h>
int32x4_t f(int32x4_t p) {
 return vsetq_lane_s32(42, p, 0);
}

arm_neon.h intrinsics generate “generic” IR where possible (that is, normal IR instructions not llvm.arm.neon.* intrinsic calls). The above generates:

define <4 x i32> @f(<4 x i32> %p) {
 %vset_lane = insertelement <4 x i32> %p, i32 42, i32 0
 ret <4 x i32> %vset_lane
}

Which then becomes the following trivial assembly:

f: // @f
 movz w8, #0x2a
 ins v0.s[0], w8
 ret

Problem

The main problem is how vectors are represented in memory and in registers.

First, a recap. The “endianness” of an item affects its representation in memory only. In a register, a number is just a sequence of bits - 64 bits in the case of AArch64 general purpose registers. Memory, however, is a sequence of addressable units of 8 bits in size. Any number greater than 8 bits must therefore be split up into 8-bit chunks, and endianness describes the order in which these chunks are laid out in memory.

A “little endian” layout has the least significant byte first (lowest in memory address). A “big endian” layout has the most significant byte first. This means that when loading an item from big endian memory, the lowest 8-bits in memory must go in the most significant 8-bits, and so forth.

LDR and LD1

[image: _images/ARM-BE-ldr.png]
Big endian vector load using LDR.

A vector is a consecutive sequence of items that are operated on simultaneously. To load a 64-bit vector, 64 bits need to be read from memory. In little endian mode, we can do this by just performing a 64-bit load - LDR q0, [foo]. However if we try this in big endian mode, because of the byte swapping the lane indices end up being swapped! The zero’th item as laid out in memory becomes the n’th lane in the vector.

[image: _images/ARM-BE-ld1.png]
Big endian vector load using LD1. Note that the lanes retain the correct ordering.

Because of this, the instruction LD1 performs a vector load but performs byte swapping not on the entire 64 bits, but on the individual items within the vector. This means that the register content is the same as it would have been on a little endian system.

It may seem that LD1 should suffice to peform vector loads on a big endian machine. However there are pros and cons to the two approaches that make it less than simple which register format to pick.

There are two options:

	The content of a vector register is the same as if it had been loaded with an LDR instruction.

	The content of a vector register is the same as if it had been loaded with an LD1 instruction.

Because LD1 == LDR + REV and similarly LDR == LD1 + REV (on a big endian system), we can simulate either type of load with the other type of load plus a REV instruction. So we’re not deciding which instructions to use, but which format to use (which will then influence which instruction is best to use).

Note that throughout this section we only mention loads. Stores have exactly the same problems as their associated loads, so have been skipped for brevity.

Considerations

LLVM IR Lane ordering

LLVM IR has first class vector types. In LLVM IR, the zero’th element of a vector resides at the lowest memory address. The optimizer relies on this property in certain areas, for example when concatenating vectors together. The intention is for arrays and vectors to have identical memory layouts - [4 x i8] and <4 x i8> should be represented the same in memory. Without this property there would be many special cases that the optimizer would have to cleverly handle.

Use of LDR would break this lane ordering property. This doesn’t preclude the use of LDR, but we would have to do one of two things:

	Insert a REV instruction to reverse the lane order after every LDR.

	Disable all optimizations that rely on lane layout, and for every access to an individual lane (insertelement/extractelement/shufflevector) reverse the lane index.

AAPCS

The ARM procedure call standard (AAPCS) defines the ABI for passing vectors between functions in registers. It states:

When a short vector is transferred between registers and memory it is treated as an opaque object. That is a short vector is stored in memory as if it were stored with a single STR of the entire register; a short vector is loaded from memory using the corresponding LDR instruction. On a little-endian system this means that element 0 will always contain the lowest addressed element of a short vector; on a big-endian system element 0 will contain the highest-addressed element of a short vector.

—Procedure Call Standard for the ARM 64-bit Architecture (AArch64), 4.1.2 Short Vectors

The use of LDR and STR as the ABI defines has at least one advantage over LD1 and ST1. LDR and STR are oblivious to the size of the individual lanes of a vector. LD1 and ST1 are not - the lane size is encoded within them. This is important across an ABI boundary, because it would become necessary to know the lane width the callee expects. Consider the following code:

<callee.c>
void callee(uint32x2_t v) {
 ...
}

<caller.c>
extern void callee(uint32x2_t);
void caller() {
 callee(...);
}

If callee changed its signature to uint16x4_t, which is equivalent in register content, if we passed as LD1 we’d break this code until caller was updated and recompiled.

There is an argument that if the signatures of the two functions are different then the behaviour should be undefined. But there may be functions that are agnostic to the lane layout of the vector, and treating the vector as an opaque value (just loading it and storing it) would be impossible without a common format across ABI boundaries.

So to preserve ABI compatibility, we need to use the LDR lane layout across function calls.

Alignment

In strict alignment mode, LDR qX requires its address to be 128-bit aligned, whereas LD1 only requires it to be as aligned as the lane size. If we canonicalised on using LDR, we’d still need to use LD1 in some places to avoid alignment faults (the result of the LD1 would then need to be reversed with REV).

Most operating systems however do not run with alignment faults enabled, so this is often not an issue.

Summary

The following table summarises the instructions that are required to be emitted for each property mentioned above for each of the two solutions.

	
	LDR layout

	LD1 layout

	Lane ordering

	LDR + REV

	LD1

	AAPCS

	LDR

	LD1 + REV

	Alignment for strict mode

	LDR / LD1 + REV

	LD1

Neither approach is perfect, and choosing one boils down to choosing the lesser of two evils. The issue with lane ordering, it was decided, would have to change target-agnostic compiler passes and would result in a strange IR in which lane indices were reversed. It was decided that this was worse than the changes that would have to be made to support LD1, so LD1 was chosen as the canonical vector load instruction (and by inference, ST1 for vector stores).

Implementation

There are 3 parts to the implementation:

	Predicate LDR and STR instructions so that they are never allowed to be selected to generate vector loads and stores. The exception is one-lane vectors 1 - these by definition cannot have lane ordering problems so are fine to use LDR/STR.

	Create code generation patterns for bitconverts that create REV instructions.

	Make sure appropriate bitconverts are created so that vector values get passed over call boundaries as 1-element vectors (which is the same as if they were loaded with LDR).

Bitconverts

[image: _images/ARM-BE-bitcastfail.png]
The main problem with the LD1 solution is dealing with bitconverts (or bitcasts, or reinterpret casts). These are pseudo instructions that only change the compiler’s interpretation of data, not the underlying data itself. A requirement is that if data is loaded and then saved again (called a “round trip”), the memory contents should be the same after the store as before the load. If a vector is loaded and is then bitconverted to a different vector type before storing, the round trip will currently be broken.

Take for example this code sequence:

%0 = load <4 x i32> %x
%1 = bitcast <4 x i32> %0 to <2 x i64>
 store <2 x i64> %1, <2 x i64>* %y

This would produce a code sequence such as that in the figure on the right. The mismatched LD1 and ST1 cause the stored data to differ from the loaded data.

When we see a bitcast from type X to type Y, what we need to do is to change the in-register representation of the data to be as if it had just been loaded by a LD1 of type Y.

[image: _images/ARM-BE-bitcastsuccess.png]
Conceptually this is simple - we can insert a REV undoing the LD1 of type X (converting the in-register representation to the same as if it had been loaded by LDR) and then insert another REV to change the representation to be as if it had been loaded by an LD1 of type Y.

For the previous example, this would be:

LD1 v0.4s, [x]

REV64 v0.4s, v0.4s // There is no REV128 instruction, so it must be synthesizedcd
EXT v0.16b, v0.16b, v0.16b, #8 // with a REV64 then an EXT to swap the two 64-bit elements.

REV64 v0.2d, v0.2d
EXT v0.16b, v0.16b, v0.16b, #8

ST1 v0.2d, [y]

It turns out that these REV pairs can, in almost all cases, be squashed together into a single REV. For the example above, a REV128 4s + REV128 2d is actually a REV64 4s, as shown in the figure on the right.

	1

	One lane vectors may seem useless as a concept but they serve to distinguish between values held in general purpose registers and values held in NEON/VFP registers. For example, an i64 would live in an x register, but <1 x i64> would live in a d register.

 LLVM Code Coverage Mapping Format

LLVM Code Coverage Mapping Format

	Introduction

	Quick Start

	High Level Overview

	Advanced Concepts

	Mapping Region

	Source Range:

	File ID:

	Counter:

	LLVM IR Representation

	Coverage Mapping Header:

	Function record:

	Encoded data:

	Dissecting the sample:

	Encoding

	Types

	LEB128

	Strings

	File ID Mapping

	Counter

	Tag:

	Data:

	Counter Expressions

	Mapping Regions

	Sub-Array of Regions

	Mapping Region

	Header

	Counter:

	Pseudo-Counter:

	Source Range

Introduction

LLVM’s code coverage mapping format is used to provide code coverage
analysis using LLVM’s and Clang’s instrumenation based profiling
(Clang’s -fprofile-instr-generate option).

This document is aimed at those who use LLVM’s code coverage mapping to provide
code coverage analysis for their own programs, and for those who would like
to know how it works under the hood. A prior knowledge of how Clang’s profile
guided optimization works is useful, but not required.

We start by showing how to use LLVM and Clang for code coverage analysis,
then we briefly describe LLVM’s code coverage mapping format and the
way that Clang and LLVM’s code coverage tool work with this format. After
the basics are down, more advanced features of the coverage mapping format
are discussed - such as the data structures, LLVM IR representation and
the binary encoding.

Quick Start

Here’s a short story that describes how to generate code coverage overview
for a sample source file called test.c.

	First, compile an instrumented version of your program using Clang’s
-fprofile-instr-generate option with the additional -fcoverage-mapping
option:

clang -o test -fprofile-instr-generate -fcoverage-mapping test.c

	Then, run the instrumented binary. The runtime will produce a file called
default.profraw containing the raw profile instrumentation data:

./test

	After that, merge the profile data using the llvm-profdata tool:

llvm-profdata merge -o test.profdata default.profraw

	Finally, run LLVM’s code coverage tool (llvm-cov) to produce the code
coverage overview for the sample source file:

llvm-cov show ./test -instr-profile=test.profdata test.c

High Level Overview

LLVM’s code coverage mapping format is designed to be a self contained
data format, that can be embedded into the LLVM IR and object files.
It’s described in this document as a mapping format because its goal is
to store the data that is required for a code coverage tool to map between
the specific source ranges in a file and the execution counts obtained
after running the instrumented version of the program.

The mapping data is used in two places in the code coverage process:

	When clang compiles a source file with -fcoverage-mapping, it
generates the mapping information that describes the mapping between the
source ranges and the profiling instrumentation counters.
This information gets embedded into the LLVM IR and conveniently
ends up in the final executable file when the program is linked.

	It is also used by llvm-cov - the mapping information is extracted from an
object file and is used to associate the execution counts (the values of the
profile instrumentation counters), and the source ranges in a file.
After that, the tool is able to generate various code coverage reports
for the program.

The coverage mapping format aims to be a “universal format” that would be
suitable for usage by any frontend, and not just by Clang. It also aims to
provide the frontend the possibility of generating the minimal coverage mapping
data in order to reduce the size of the IR and object files - for example,
instead of emitting mapping information for each statement in a function, the
frontend is allowed to group the statements with the same execution count into
regions of code, and emit the mapping information only for those regions.

Advanced Concepts

The remainder of this guide is meant to give you insight into the way the
coverage mapping format works.

The coverage mapping format operates on a per-function level as the
profile instrumentation counters are associated with a specific function.
For each function that requires code coverage, the frontend has to create
coverage mapping data that can map between the source code ranges and
the profile instrumentation counters for that function.

Mapping Region

The function’s coverage mapping data contains an array of mapping regions.
A mapping region stores the source code range that is covered by this region,
the file id, the coverage mapping counter and
the region’s kind.
There are several kinds of mapping regions:

	Code regions associate portions of source code and coverage mapping
counters. They make up the majority of the mapping regions. They are used
by the code coverage tool to compute the execution counts for lines,
highlight the regions of code that were never executed, and to obtain
the various code coverage statistics for a function.
For example:

int main(int argc, const char *argv[]) { // Code Region from 1:40 to 9:2

 if (argc > 1) { // Code Region from 3:17 to 5:4
 printf("%s\n", argv[1]);
 } else { // Code Region from 5:10 to 7:4
 printf("\n");
 }
 return 0;
}

	Skipped regions are used to represent source ranges that were skipped
by Clang’s preprocessor. They don’t associate with
coverage mapping counters, as the frontend knows that they are never
executed. They are used by the code coverage tool to mark the skipped lines
inside a function as non-code lines that don’t have execution counts.
For example:

int main() { // Code Region from 1:12 to 6:2
#ifdef DEBUG // Skipped Region from 2:1 to 4:2
 printf("Hello world");
#endif
 return 0;
}

	Expansion regions are used to represent Clang’s macro expansions. They
have an additional property - expanded file id. This property can be
used by the code coverage tool to find the mapping regions that are created
as a result of this macro expansion, by checking if their file id matches the
expanded file id. They don’t associate with coverage mapping counters,
as the code coverage tool can determine the execution count for this region
by looking up the execution count of the first region with a corresponding
file id.
For example:

int func(int x) {
 #define MAX(x,y) ((x) > (y)? (x) : (y))
 return MAX(x, 42); // Expansion Region from 3:10 to 3:13
}

Source Range:

The source range record contains the starting and ending location of a certain
mapping region. Both locations include the line and the column numbers.

File ID:

The file id an integer value that tells us
in which source file or macro expansion is this region located.
It enables Clang to produce mapping information for the code
defined inside macros, like this example demonstrates:

void func(const char *str) { // Code Region from 1:28 to 6:2 with file id 0
 #define PUT printf("%s\n", str) // 2 Code Regions from 2:15 to 2:34 with file ids 1 and 2
 if(*str)
 PUT; // Expansion Region from 4:5 to 4:8 with file id 0 that expands a macro with file id 1
 PUT; // Expansion Region from 5:3 to 5:6 with file id 0 that expands a macro with file id 2
}

Counter:

A coverage mapping counter can represents a reference to the profile
instrumentation counter. The execution count for a region with such counter
is determined by looking up the value of the corresponding profile
instrumentation counter.

It can also represent a binary arithmetical expression that operates on
coverage mapping counters or other expressions.
The execution count for a region with an expression counter is determined by
evaluating the expression’s arguments and then adding them together or
subtracting them from one another.
In the example below, a subtraction expression is used to compute the execution
count for the compound statement that follows the else keyword:

int main(int argc, const char *argv[]) { // Region's counter is a reference to the profile counter #0

 if (argc > 1) { // Region's counter is a reference to the profile counter #1
 printf("%s\n", argv[1]);
 } else { // Region's counter is an expression (reference to the profile counter #0 - reference to the profile counter #1)
 printf("\n");
 }
 return 0;
}

Finally, a coverage mapping counter can also represent an execution count of
of zero. The zero counter is used to provide coverage mapping for
unreachable statements and expressions, like in the example below:

int main() {
 return 0;
 printf("Hello world!\n"); // Unreachable region's counter is zero
}

The zero counters allow the code coverage tool to display proper line execution
counts for the unreachable lines and highlight the unreachable code.
Without them, the tool would think that those lines and regions were still
executed, as it doesn’t possess the frontend’s knowledge.

LLVM IR Representation

The coverage mapping data is stored in the LLVM IR using a single global
constant structure variable called __llvm_coverage_mapping
with the __llvm_covmap section specifier.

For example, let’s consider a C file and how it gets compiled to LLVM:

int foo() {
 return 42;
}
int bar() {
 return 13;
}

The coverage mapping variable generated by Clang has 3 fields:

	Coverage mapping header.

	An array of function records.

	Coverage mapping data which is an array of bytes. Zero paddings are added at the end to force 8 byte alignment.

@__llvm_coverage_mapping = internal constant { { i32, i32, i32, i32 }, [2 x { i64, i32, i64 }], [40 x i8] }
{
 { i32, i32, i32, i32 } ; Coverage map header
 {
 i32 2, ; The number of function records
 i32 20, ; The length of the string that contains the encoded translation unit filenames
 i32 20, ; The length of the string that contains the encoded coverage mapping data
 i32 2, ; Coverage mapping format version
 },
 [2 x { i64, i32, i64 }] [; Function records
 { i64, i32, i64 } {
 i64 0x5cf8c24cdb18bdac, ; Function's name MD5
 i32 9, ; Function's encoded coverage mapping data string length
 i64 0 ; Function's structural hash
 },
 { i64, i32, i64 } {
 i64 0xe413754a191db537, ; Function's name MD5
 i32 9, ; Function's encoded coverage mapping data string length
 i64 0 ; Function's structural hash
 }],
 [40 x i8] c"..." ; Encoded data (dissected later)
}, section "__llvm_covmap", align 8

The current version of the format is version 3. The only difference from version 2 is that a special encoding for column end locations was introduced to indicate gap regions.

The function record layout has evolved since version 1. In version 1, the function record for foo is defined as follows:

{ i8*, i32, i32, i64 } { i8* getelementptr inbounds ([3 x i8]* @__profn_foo, i32 0, i32 0), ; Function's name
 i32 3, ; Function's name length
 i32 9, ; Function's encoded coverage mapping data string length
 i64 0 ; Function's structural hash
}

Coverage Mapping Header:

The coverage mapping header has the following fields:

	The number of function records.

	The length of the string in the third field of __llvm_coverage_mapping that contains the encoded translation unit filenames.

	The length of the string in the third field of __llvm_coverage_mapping that contains the encoded coverage mapping data.

	The format version. The current version is 3 (encoded as a 2).

Function record:

A function record is a structure of the following type:

{ i64, i32, i64 }

It contains function name’s MD5, the length of the encoded mapping data for that function, and function’s
structural hash value.

Encoded data:

The encoded data is stored in a single string that contains
the encoded filenames used by this translation unit and the encoded coverage
mapping data for each function in this translation unit.

The encoded data has the following structure:

[filenames, coverageMappingDataForFunctionRecord0, coverageMappingDataForFunctionRecord1, ..., padding]

If necessary, the encoded data is padded with zeroes so that the size
of the data string is rounded up to the nearest multiple of 8 bytes.

Dissecting the sample:

Here’s an overview of the encoded data that was stored in the
IR for the coverage mapping sample that was shown earlier:

	The IR contains the following string constant that represents the encoded
coverage mapping data for the sample translation unit:

c"\01\12/Users/alex/test.c\01\00\00\01\01\01\0C\02\02\01\00\00\01\01\04\0C\02\02\00\00"

	The string contains values that are encoded in the LEB128 format, which is
used throughout for storing integers. It also contains a string value.

	The length of the substring that contains the encoded translation unit
filenames is the value of the second field in the __llvm_coverage_mapping
structure, which is 20, thus the filenames are encoded in this string:

c"\01\12/Users/alex/test.c"

This string contains the following data:

	Its first byte has a value of 0x01. It stores the number of filenames
contained in this string.

	Its second byte stores the length of the first filename in this string.

	The remaining 18 bytes are used to store the first filename.

	The length of the substring that contains the encoded coverage mapping data
for the first function is the value of the third field in the first
structure in an array of function records stored in the
third field of the __llvm_coverage_mapping structure, which is the 9.
Therefore, the coverage mapping for the first function record is encoded
in this string:

c"\01\00\00\01\01\01\0C\02\02"

This string consists of the following bytes:

	0x01

	The number of file ids used by this function. There is only one file id used by the mapping data in this function.

	0x00

	An index into the filenames array which corresponds to the file “/Users/alex/test.c”.

	0x00

	The number of counter expressions used by this function. This function doesn’t use any expressions.

	0x01

	The number of mapping regions that are stored in an array for the function’s file id #0.

	0x01

	The coverage mapping counter for the first region in this function. The value of 1 tells us that it’s a coverage
mapping counter that is a reference to the profile instrumentation counter with an index of 0.

	0x01

	The starting line of the first mapping region in this function.

	0x0C

	The starting column of the first mapping region in this function.

	0x02

	The ending line of the first mapping region in this function.

	0x02

	The ending column of the first mapping region in this function.

	The length of the substring that contains the encoded coverage mapping data
for the second function record is also 9. It’s structured like the mapping data
for the first function record.

	The two trailing bytes are zeroes and are used to pad the coverage mapping
data to give it the 8 byte alignment.

Encoding

The per-function coverage mapping data is encoded as a stream of bytes,
with a simple structure. The structure consists of the encoding
types like variable-length unsigned integers, that
are used to encode File ID Mapping, Counter Expressions and
the Mapping Regions.

The format of the structure follows:

[file id mapping, counter expressions, mapping regions]

The translation unit filenames are encoded using the same encoding
types as the per-function coverage mapping data, with the
following structure:

[numFilenames : LEB128, filename0 : string, filename1 : string, ...]

Types

This section describes the basic types that are used by the encoding format
and can appear after : in the [foo : type] description.

LEB128

LEB128 is an unsigned integer value that is encoded using DWARF’s LEB128
encoding, optimizing for the case where values are small
(1 byte for values less than 128).

Strings

[length : LEB128, characters...]

String values are encoded with a LEB value for the length
of the string and a sequence of bytes for its characters.

File ID Mapping

[numIndices : LEB128, filenameIndex0 : LEB128, filenameIndex1 : LEB128, ...]

File id mapping in a function’s coverage mapping stream
contains the indices into the translation unit’s filenames array.

Counter

[value : LEB128]

A coverage mapping counter is stored in a single LEB value.
It is composed of two things — the tag
which is stored in the lowest 2 bits, and the counter data which is stored
in the remaining bits.

Tag:

The counter’s tag encodes the counter’s kind
and, if the counter is an expression, the expression’s kind.
The possible tag values are:

	0 - The counter is zero.

	1 - The counter is a reference to the profile instrumentation counter.

	2 - The counter is a subtraction expression.

	3 - The counter is an addition expression.

Data:

The counter’s data is interpreted in the following manner:

	When the counter is a reference to the profile instrumentation counter,
then the counter’s data is the id of the profile counter.

	When the counter is an expression, then the counter’s data
is the index into the array of counter expressions.

Counter Expressions

[numExpressions : LEB128, expr0LHS : LEB128, expr0RHS : LEB128, expr1LHS : LEB128, expr1RHS : LEB128, ...]

Counter expressions consist of two counters as they
represent binary arithmetic operations.
The expression’s kind is determined from the tag of the
counter that references this expression.

Mapping Regions

[numRegionArrays : LEB128, regionsForFile0, regionsForFile1, ...]

The mapping regions are stored in an array of sub-arrays where every
region in a particular sub-array has the same file id.

The file id for a sub-array of regions is the index of that
sub-array in the main array e.g. The first sub-array will have the file id
of 0.

Sub-Array of Regions

[numRegions : LEB128, region0, region1, ...]

The mapping regions for a specific file id are stored in an array that is
sorted in an ascending order by the region’s starting location.

Mapping Region

[header, source range]

The mapping region record contains two sub-records —
the header, which stores the counter and/or the region’s kind,
and the source range that contains the starting and ending
location of this region.

Header

[counter]

or

[pseudo-counter]

The header encodes the region’s counter and the region’s kind.

The value of the counter’s tag distinguishes between the counters and
pseudo-counters — if the tag is zero, than this header contains a
pseudo-counter, otherwise this header contains an ordinary counter.

Counter:

A mapping region whose header has a counter with a non-zero tag is
a code region.

Pseudo-Counter:

[value : LEB128]

A pseudo-counter is stored in a single LEB value, just like
the ordinary counter. It has the following interpretation:

	bits 0-1: tag, which is always 0.

	bit 2: expansionRegionTag. If this bit is set, then this mapping region
is an expansion region.

	remaining bits: data. If this region is an expansion region, then the data
contains the expanded file id of that region.

Otherwise, the data contains the region’s kind. The possible region
kind values are:

	0 - This mapping region is a code region with a counter of zero.

	2 - This mapping region is a skipped region.

Source Range

[deltaLineStart : LEB128, columnStart : LEB128, numLines : LEB128, columnEnd : LEB128]

The source range record contains the following fields:

	deltaLineStart: The difference between the starting line of the
current mapping region and the starting line of the previous mapping region.

If the current mapping region is the first region in the current
sub-array, then it stores the starting line of that region.

	columnStart: The starting column of the mapping region.

	numLines: The difference between the ending line and the starting line
of the current mapping region.

	columnEnd: The ending column of the mapping region. If the high bit is set,
the current mapping region is a gap area. A count for a gap area is only used
as the line execution count if there are no other regions on a line.

 Garbage Collection Safepoints in LLVM

Garbage Collection Safepoints in LLVM

	Status

	Overview

	Base & Derived Pointers

	GC Transitions

	Intrinsics

	‘llvm.experimental.gc.statepoint’ Intrinsic

	‘llvm.experimental.gc.result’ Intrinsic

	‘llvm.experimental.gc.relocate’ Intrinsic

	Stack Map Format

	Safepoint Semantics & Verification

	Utility Passes for Safepoint Insertion

	RewriteStatepointsForGC

	PlaceSafepoints

	Supported Architectures

	Problem Areas and Active Work

	Bugs and Enhancements

Status

This document describes a set of extensions to LLVM to support garbage
collection. By now, these mechanisms are well proven with commercial java
implementation with a fully relocating collector having shipped using them.
There are a couple places where bugs might still linger; these are called out
below.

They are still listed as “experimental” to indicate that no forward or backward
compatibility guarantees are offered across versions. If your use case is such
that you need some form of forward compatibility guarantee, please raise the
issue on the llvm-dev mailing list.

LLVM still supports an alternate mechanism for conservative garbage collection
support using the gcroot intrinsic. The gcroot mechanism is mostly of
historical interest at this point with one exception - its implementation of
shadow stacks has been used successfully by a number of language frontends and
is still supported.

Overview

To collect dead objects, garbage collectors must be able to identify
any references to objects contained within executing code, and,
depending on the collector, potentially update them. The collector
does not need this information at all points in code - that would make
the problem much harder - but only at well-defined points in the
execution known as ‘safepoints’ For most collectors, it is sufficient
to track at least one copy of each unique pointer value. However, for
a collector which wishes to relocate objects directly reachable from
running code, a higher standard is required.

One additional challenge is that the compiler may compute intermediate
results (“derived pointers”) which point outside of the allocation or
even into the middle of another allocation. The eventual use of this
intermediate value must yield an address within the bounds of the
allocation, but such “exterior derived pointers” may be visible to the
collector. Given this, a garbage collector can not safely rely on the
runtime value of an address to indicate the object it is associated
with. If the garbage collector wishes to move any object, the
compiler must provide a mapping, for each pointer, to an indication of
its allocation.

To simplify the interaction between a collector and the compiled code,
most garbage collectors are organized in terms of three abstractions:
load barriers, store barriers, and safepoints.

	A load barrier is a bit of code executed immediately after the
machine load instruction, but before any use of the value loaded.
Depending on the collector, such a barrier may be needed for all
loads, merely loads of a particular type (in the original source
language), or none at all.

	Analogously, a store barrier is a code fragment that runs
immediately before the machine store instruction, but after the
computation of the value stored. The most common use of a store
barrier is to update a ‘card table’ in a generational garbage
collector.

	A safepoint is a location at which pointers visible to the compiled
code (i.e. currently in registers or on the stack) are allowed to
change. After the safepoint completes, the actual pointer value
may differ, but the ‘object’ (as seen by the source language)
pointed to will not.

Note that the term ‘safepoint’ is somewhat overloaded. It refers to
both the location at which the machine state is parsable and the
coordination protocol involved in bring application threads to a
point at which the collector can safely use that information. The
term “statepoint” as used in this document refers exclusively to the
former.

This document focuses on the last item - compiler support for
safepoints in generated code. We will assume that an outside
mechanism has decided where to place safepoints. From our
perspective, all safepoints will be function calls. To support
relocation of objects directly reachable from values in compiled code,
the collector must be able to:

	identify every copy of a pointer (including copies introduced by
the compiler itself) at the safepoint,

	identify which object each pointer relates to, and

	potentially update each of those copies.

This document describes the mechanism by which an LLVM based compiler
can provide this information to a language runtime/collector, and
ensure that all pointers can be read and updated if desired.

At a high level, LLVM has been extended to support compiling to an abstract
machine which extends the actual target with a non-integral pointer type
suitable for representing a garbage collected reference to an object. In
particular, such non-integral pointer type have no defined mapping to an
integer representation. This semantic quirk allows the runtime to pick a
integer mapping for each point in the program allowing relocations of objects
without visible effects.

Warning: Non-Integral Pointer Types are a newly added concept in LLVM IR.
It’s possible that we’ve missed disabling some of the optimizations which
assume an integral value for pointers. If you find such a case, please
file a bug or share a patch.

Warning: There is one currently known semantic hole in the definition of
non-integral pointers which has not been addressed upstream. To work around
this, you need to disable speculation of loads unless the memory type
(non-integral pointer vs anything else) is known to unchanged. That is, it is
not safe to speculate a load if doing causes a non-integral pointer value to
be loaded as any other type or vice versa. In practice, this restriction is
well isolated to isSafeToSpeculate in ValueTracking.cpp.

This high level abstract machine model is used for most of the LLVM optimizer.
Before starting code generation, we switch representations to an explicit form.
In theory, a frontend could directly generate this low level explicit form, but
doing so is likely to inhibit optimization.

The heart of the explicit approach is to construct (or rewrite) the IR in a
manner where the possible updates performed by the garbage collector are
explicitly visible in the IR. Doing so requires that we:

	create a new SSA value for each potentially relocated pointer, and
ensure that no uses of the original (non relocated) value is
reachable after the safepoint,

	specify the relocation in a way which is opaque to the compiler to
ensure that the optimizer can not introduce new uses of an
unrelocated value after a statepoint. This prevents the optimizer
from performing unsound optimizations.

	recording a mapping of live pointers (and the allocation they’re
associated with) for each statepoint.

At the most abstract level, inserting a safepoint can be thought of as
replacing a call instruction with a call to a multiple return value
function which both calls the original target of the call, returns
its result, and returns updated values for any live pointers to
garbage collected objects.

Note that the task of identifying all live pointers to garbage
collected values, transforming the IR to expose a pointer giving the
base object for every such live pointer, and inserting all the
intrinsics correctly is explicitly out of scope for this document.
The recommended approach is to use the utility passes described below.

This abstract function call is concretely represented by a sequence of
intrinsic calls known collectively as a “statepoint relocation sequence”.

Let’s consider a simple call in LLVM IR:

define i8 addrspace(1)* @test1(i8 addrspace(1)* %obj)
 gc "statepoint-example" {
 call void ()* @foo()
 ret i8 addrspace(1)* %obj
}

Depending on our language we may need to allow a safepoint during the execution
of foo. If so, we need to let the collector update local values in the
current frame. If we don’t, we’ll be accessing a potential invalid reference
once we eventually return from the call.

In this example, we need to relocate the SSA value %obj. Since we can’t
actually change the value in the SSA value %obj, we need to introduce a new
SSA value %obj.relocated which represents the potentially changed value of
%obj after the safepoint and update any following uses appropriately. The
resulting relocation sequence is:

define i8 addrspace(1)* @test1(i8 addrspace(1)* %obj)
 gc "statepoint-example" {
 %0 = call token (i64, i32, void ()*, i32, i32, ...)* @llvm.experimental.gc.statepoint.p0f_isVoidf(i64 0, i32 0, void ()* @foo, i32 0, i32 0, i32 0, i32 0, i8 addrspace(1)* %obj)
 %obj.relocated = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(token %0, i32 7, i32 7)
 ret i8 addrspace(1)* %obj.relocated
}

Ideally, this sequence would have been represented as a M argument, N
return value function (where M is the number of values being
relocated + the original call arguments and N is the original return
value + each relocated value), but LLVM does not easily support such a
representation.

Instead, the statepoint intrinsic marks the actual site of the
safepoint or statepoint. The statepoint returns a token value (which
exists only at compile time). To get back the original return value
of the call, we use the gc.result intrinsic. To get the relocation
of each pointer in turn, we use the gc.relocate intrinsic with the
appropriate index. Note that both the gc.relocate and gc.result are
tied to the statepoint. The combination forms a “statepoint relocation
sequence” and represents the entirety of a parseable call or ‘statepoint’.

When lowered, this example would generate the following x86 assembly:

 .globl test1
 .align 16, 0x90
 pushq %rax
 callq foo
.Ltmp1:
 movq (%rsp), %rax # This load is redundant (oops!)
 popq %rdx
 retq

Each of the potentially relocated values has been spilled to the
stack, and a record of that location has been recorded to the
Stack Map section. If the garbage collector
needs to update any of these pointers during the call, it knows
exactly what to change.

The relevant parts of the StackMap section for our example are:

This describes the call site
Stack Maps: callsite 2882400000
 .quad 2882400000
 .long .Ltmp1-test1
 .short 0
.. 8 entries skipped ..
This entry describes the spill slot which is directly addressable
off RSP with offset 0. Given the value was spilled with a pushq,
that makes sense.
Stack Maps: Loc 8: Direct RSP [encoding: .byte 2, .byte 8, .short 7, .int 0]
 .byte 2
 .byte 8
 .short 7
 .long 0

This example was taken from the tests for the RewriteStatepointsForGC
utility pass. As such, its full StackMap can be easily examined with the
following command.

opt -rewrite-statepoints-for-gc test/Transforms/RewriteStatepointsForGC/basics.ll -S | llc -debug-only=stackmaps

Base & Derived Pointers

A “base pointer” is one which points to the starting address of an allocation
(object). A “derived pointer” is one which is offset from a base pointer by
some amount. When relocating objects, a garbage collector needs to be able
to relocate each derived pointer associated with an allocation to the same
offset from the new address.

“Interior derived pointers” remain within the bounds of the allocation
they’re associated with. As a result, the base object can be found at
runtime provided the bounds of allocations are known to the runtime system.

“Exterior derived pointers” are outside the bounds of the associated object;
they may even fall within another allocations address range. As a result,
there is no way for a garbage collector to determine which allocation they
are associated with at runtime and compiler support is needed.

The gc.relocate intrinsic supports an explicit operand for describing the
allocation associated with a derived pointer. This operand is frequently
referred to as the base operand, but does not strictly speaking have to be
a base pointer, but it does need to lie within the bounds of the associated
allocation. Some collectors may require that the operand be an actual base
pointer rather than merely an internal derived pointer. Note that during
lowering both the base and derived pointer operands are required to be live
over the associated call safepoint even if the base is otherwise unused
afterwards.

If we extend our previous example to include a pointless derived pointer,
we get:

define i8 addrspace(1)* @test1(i8 addrspace(1)* %obj)
 gc "statepoint-example" {
 %gep = getelementptr i8, i8 addrspace(1)* %obj, i64 20000
 %token = call token (i64, i32, void ()*, i32, i32, ...)* @llvm.experimental.gc.statepoint.p0f_isVoidf(i64 0, i32 0, void ()* @foo, i32 0, i32 0, i32 0, i32 0, i8 addrspace(1)* %obj, i8 addrspace(1)* %gep)
 %obj.relocated = call i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(token %token, i32 7, i32 7)
 %gep.relocated = call i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(token %token, i32 7, i32 8)
 %p = getelementptr i8, i8 addrspace(1)* %gep, i64 -20000
 ret i8 addrspace(1)* %p
}

Note that in this example %p and %obj.relocate are the same address and we
could replace one with the other, potentially removing the derived pointer
from the live set at the safepoint entirely.

GC Transitions

As a practical consideration, many garbage-collected systems allow code that is
collector-aware (“managed code”) to call code that is not collector-aware
(“unmanaged code”). It is common that such calls must also be safepoints, since
it is desirable to allow the collector to run during the execution of
unmanaged code. Furthermore, it is common that coordinating the transition from
managed to unmanaged code requires extra code generation at the call site to
inform the collector of the transition. In order to support these needs, a
statepoint may be marked as a GC transition, and data that is necessary to
perform the transition (if any) may be provided as additional arguments to the
statepoint.

Note that although in many cases statepoints may be inferred to be GC
transitions based on the function symbols involved (e.g. a call from a
function with GC strategy “foo” to a function with GC strategy “bar”),
indirect calls that are also GC transitions must also be supported. This
requirement is the driving force behind the decision to require that GC
transitions are explicitly marked.

Let’s revisit the sample given above, this time treating the call to @foo
as a GC transition. Depending on our target, the transition code may need to
access some extra state in order to inform the collector of the transition.
Let’s assume a hypothetical GC–somewhat unimaginatively named “hypothetical-gc”
–that requires that a TLS variable must be written to before and after a call
to unmanaged code. The resulting relocation sequence is:

@flag = thread_local global i32 0, align 4

define i8 addrspace(1)* @test1(i8 addrspace(1) *%obj)
 gc "hypothetical-gc" {

 %0 = call token (i64, i32, void ()*, i32, i32, ...)* @llvm.experimental.gc.statepoint.p0f_isVoidf(i64 0, i32 0, void ()* @foo, i32 0, i32 1, i32* @Flag, i32 0, i8 addrspace(1)* %obj)
 %obj.relocated = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(token %0, i32 7, i32 7)
 ret i8 addrspace(1)* %obj.relocated
}

During lowering, this will result in a instruction selection DAG that looks
something like:

CALLSEQ_START
...
GC_TRANSITION_START (lowered i32 *@Flag), SRCVALUE i32* Flag
STATEPOINT
GC_TRANSITION_END (lowered i32 *@Flag), SRCVALUE i32 *Flag
...
CALLSEQ_END

In order to generate the necessary transition code, the backend for each target
supported by “hypothetical-gc” must be modified to lower GC_TRANSITION_START
and GC_TRANSITION_END nodes appropriately when the “hypothetical-gc”
strategy is in use for a particular function. Assuming that such lowering has
been added for X86, the generated assembly would be:

 .globl test1
 .align 16, 0x90
 pushq %rax
 movl $1, %fs:Flag@TPOFF
 callq foo
 movl $0, %fs:Flag@TPOFF
.Ltmp1:
 movq (%rsp), %rax # This load is redundant (oops!)
 popq %rdx
 retq

Note that the design as presented above is not fully implemented: in particular,
strategy-specific lowering is not present, and all GC transitions are emitted as
as single no-op before and after the call instruction. These no-ops are often
removed by the backend during dead machine instruction elimination.

Intrinsics

‘llvm.experimental.gc.statepoint’ Intrinsic

Syntax:

declare token
 @llvm.experimental.gc.statepoint(i64 <id>, i32 <num patch bytes>,
 func_type <target>,
 i64 <#call args>, i64 <flags>,
 ... (call parameters),
 i64 <# transition args>, ... (transition parameters),
 i64 <# deopt args>, ... (deopt parameters),
 ... (gc parameters))

Overview:

The statepoint intrinsic represents a call which is parse-able by the
runtime.

Operands:

The ‘id’ operand is a constant integer that is reported as the ID
field in the generated stackmap. LLVM does not interpret this
parameter in any way and its meaning is up to the statepoint user to
decide. Note that LLVM is free to duplicate code containing
statepoint calls, and this may transform IR that had a unique ‘id’ per
lexical call to statepoint to IR that does not.

If ‘num patch bytes’ is non-zero then the call instruction
corresponding to the statepoint is not emitted and LLVM emits ‘num
patch bytes’ bytes of nops in its place. LLVM will emit code to
prepare the function arguments and retrieve the function return value
in accordance to the calling convention; the former before the nop
sequence and the latter after the nop sequence. It is expected that
the user will patch over the ‘num patch bytes’ bytes of nops with a
calling sequence specific to their runtime before executing the
generated machine code. There are no guarantees with respect to the
alignment of the nop sequence. Unlike Stack maps and patch points in LLVM statepoints do
not have a concept of shadow bytes. Note that semantically the
statepoint still represents a call or invoke to ‘target’, and the nop
sequence after patching is expected to represent an operation
equivalent to a call or invoke to ‘target’.

The ‘target’ operand is the function actually being called. The
target can be specified as either a symbolic LLVM function, or as an
arbitrary Value of appropriate function type. Note that the function
type must match the signature of the callee and the types of the ‘call
parameters’ arguments.

The ‘#call args’ operand is the number of arguments to the actual
call. It must exactly match the number of arguments passed in the
‘call parameters’ variable length section.

The ‘flags’ operand is used to specify extra information about the
statepoint. This is currently only used to mark certain statepoints
as GC transitions. This operand is a 64-bit integer with the following
layout, where bit 0 is the least significant bit:

	Bit #

	Usage

	0

	Set if the statepoint is a GC transition, cleared
otherwise.

	1-63

	Reserved for future use; must be cleared.

The ‘call parameters’ arguments are simply the arguments which need to
be passed to the call target. They will be lowered according to the
specified calling convention and otherwise handled like a normal call
instruction. The number of arguments must exactly match what is
specified in ‘# call args’. The types must match the signature of
‘target’.

The ‘transition parameters’ arguments contain an arbitrary list of
Values which need to be passed to GC transition code. They will be
lowered and passed as operands to the appropriate GC_TRANSITION nodes
in the selection DAG. It is assumed that these arguments must be
available before and after (but not necessarily during) the execution
of the callee. The ‘# transition args’ field indicates how many operands
are to be interpreted as ‘transition parameters’.

The ‘deopt parameters’ arguments contain an arbitrary list of Values
which is meaningful to the runtime. The runtime may read any of these
values, but is assumed not to modify them. If the garbage collector
might need to modify one of these values, it must also be listed in
the ‘gc pointer’ argument list. The ‘# deopt args’ field indicates
how many operands are to be interpreted as ‘deopt parameters’.

The ‘gc parameters’ arguments contain every pointer to a garbage
collector object which potentially needs to be updated by the garbage
collector. Note that the argument list must explicitly contain a base
pointer for every derived pointer listed. The order of arguments is
unimportant. Unlike the other variable length parameter sets, this
list is not length prefixed.

Semantics:

A statepoint is assumed to read and write all memory. As a result,
memory operations can not be reordered past a statepoint. It is
illegal to mark a statepoint as being either ‘readonly’ or ‘readnone’.

Note that legal IR can not perform any memory operation on a ‘gc
pointer’ argument of the statepoint in a location statically reachable
from the statepoint. Instead, the explicitly relocated value (from a
gc.relocate) must be used.

‘llvm.experimental.gc.result’ Intrinsic

Syntax:

declare type*
 @llvm.experimental.gc.result(token %statepoint_token)

Overview:

gc.result extracts the result of the original call instruction
which was replaced by the gc.statepoint. The gc.result
intrinsic is actually a family of three intrinsics due to an
implementation limitation. Other than the type of the return value,
the semantics are the same.

Operands:

The first and only argument is the gc.statepoint which starts
the safepoint sequence of which this gc.result is a part.
Despite the typing of this as a generic token, only the value defined
by a gc.statepoint is legal here.

Semantics:

The gc.result represents the return value of the call target of
the statepoint. The type of the gc.result must exactly match
the type of the target. If the call target returns void, there will
be no gc.result.

A gc.result is modeled as a ‘readnone’ pure function. It has no
side effects since it is just a projection of the return value of the
previous call represented by the gc.statepoint.

‘llvm.experimental.gc.relocate’ Intrinsic

Syntax:

declare <pointer type>
 @llvm.experimental.gc.relocate(token %statepoint_token,
 i32 %base_offset,
 i32 %pointer_offset)

Overview:

A gc.relocate returns the potentially relocated value of a pointer
at the safepoint.

Operands:

The first argument is the gc.statepoint which starts the
safepoint sequence of which this gc.relocation is a part.
Despite the typing of this as a generic token, only the value defined
by a gc.statepoint is legal here.

The second argument is an index into the statepoints list of arguments
which specifies the allocation for the pointer being relocated.
This index must land within the ‘gc parameter’ section of the
statepoint’s argument list. The associated value must be within the
object with which the pointer being relocated is associated. The optimizer
is free to change which interior derived pointer is reported, provided that
it does not replace an actual base pointer with another interior derived
pointer. Collectors are allowed to rely on the base pointer operand
remaining an actual base pointer if so constructed.

The third argument is an index into the statepoint’s list of arguments
which specify the (potentially) derived pointer being relocated. It
is legal for this index to be the same as the second argument
if-and-only-if a base pointer is being relocated. This index must land
within the ‘gc parameter’ section of the statepoint’s argument list.

Semantics:

The return value of gc.relocate is the potentially relocated value
of the pointer specified by its arguments. It is unspecified how the
value of the returned pointer relates to the argument to the
gc.statepoint other than that a) it points to the same source
language object with the same offset, and b) the ‘based-on’
relationship of the newly relocated pointers is a projection of the
unrelocated pointers. In particular, the integer value of the pointer
returned is unspecified.

A gc.relocate is modeled as a readnone pure function. It has no
side effects since it is just a way to extract information about work
done during the actual call modeled by the gc.statepoint.

Stack Map Format

Locations for each pointer value which may need read and/or updated by
the runtime or collector are provided via the Stack Map format specified in the PatchPoint documentation.

Each statepoint generates the following Locations:

	Constant which describes the calling convention of the call target. This
constant is a valid calling convention identifier for
the version of LLVM used to generate the stackmap. No additional compatibility
guarantees are made for this constant over what LLVM provides elsewhere w.r.t.
these identifiers.

	Constant which describes the flags passed to the statepoint intrinsic

	Constant which describes number of following deopt Locations (not
operands)

	Variable number of Locations, one for each deopt parameter listed in
the IR statepoint (same number as described by previous Constant). At
the moment, only deopt parameters with a bitwidth of 64 bits or less
are supported. Values of a type larger than 64 bits can be specified
and reported only if a) the value is constant at the call site, and b)
the constant can be represented with less than 64 bits (assuming zero
extension to the original bitwidth).

	Variable number of relocation records, each of which consists of
exactly two Locations. Relocation records are described in detail
below.

Each relocation record provides sufficient information for a collector to
relocate one or more derived pointers. Each record consists of a pair of
Locations. The second element in the record represents the pointer (or
pointers) which need updated. The first element in the record provides a
pointer to the base of the object with which the pointer(s) being relocated is
associated. This information is required for handling generalized derived
pointers since a pointer may be outside the bounds of the original allocation,
but still needs to be relocated with the allocation. Additionally:

	It is guaranteed that the base pointer must also appear explicitly as a
relocation pair if used after the statepoint.

	There may be fewer relocation records then gc parameters in the IR
statepoint. Each unique pair will occur at least once; duplicates
are possible.

	The Locations within each record may either be of pointer size or a
multiple of pointer size. In the later case, the record must be
interpreted as describing a sequence of pointers and their corresponding
base pointers. If the Location is of size N x sizeof(pointer), then
there will be N records of one pointer each contained within the Location.
Both Locations in a pair can be assumed to be of the same size.

Note that the Locations used in each section may describe the same
physical location. e.g. A stack slot may appear as a deopt location,
a gc base pointer, and a gc derived pointer.

The LiveOut section of the StkMapRecord will be empty for a statepoint
record.

Safepoint Semantics & Verification

The fundamental correctness property for the compiled code’s
correctness w.r.t. the garbage collector is a dynamic one. It must be
the case that there is no dynamic trace such that a operation
involving a potentially relocated pointer is observably-after a
safepoint which could relocate it. ‘observably-after’ is this usage
means that an outside observer could observe this sequence of events
in a way which precludes the operation being performed before the
safepoint.

To understand why this ‘observable-after’ property is required,
consider a null comparison performed on the original copy of a
relocated pointer. Assuming that control flow follows the safepoint,
there is no way to observe externally whether the null comparison is
performed before or after the safepoint. (Remember, the original
Value is unmodified by the safepoint.) The compiler is free to make
either scheduling choice.

The actual correctness property implemented is slightly stronger than
this. We require that there be no static path on which a
potentially relocated pointer is ‘observably-after’ it may have been
relocated. This is slightly stronger than is strictly necessary (and
thus may disallow some otherwise valid programs), but greatly
simplifies reasoning about correctness of the compiled code.

By construction, this property will be upheld by the optimizer if
correctly established in the source IR. This is a key invariant of
the design.

The existing IR Verifier pass has been extended to check most of the
local restrictions on the intrinsics mentioned in their respective
documentation. The current implementation in LLVM does not check the
key relocation invariant, but this is ongoing work on developing such
a verifier. Please ask on llvm-dev if you’re interested in
experimenting with the current version.

Utility Passes for Safepoint Insertion

RewriteStatepointsForGC

The pass RewriteStatepointsForGC transforms a function’s IR to lower from the
abstract machine model described above to the explicit statepoint model of
relocations. To do this, it replaces all calls or invokes of functions which
might contain a safepoint poll with a gc.statepoint and associated full
relocation sequence, including all required gc.relocates.

Note that by default, this pass only runs for the “statepoint-example” or
“core-clr” gc strategies. You will need to add your custom strategy to this
whitelist or use one of the predefined ones.

As an example, given this code:

define i8 addrspace(1)* @test1(i8 addrspace(1)* %obj)
 gc "statepoint-example" {
 call void @foo()
 ret i8 addrspace(1)* %obj
}

The pass would produce this IR:

define i8 addrspace(1)* @test1(i8 addrspace(1)* %obj)
 gc "statepoint-example" {
 %0 = call token (i64, i32, void ()*, i32, i32, ...)* @llvm.experimental.gc.statepoint.p0f_isVoidf(i64 2882400000, i32 0, void ()* @foo, i32 0, i32 0, i32 0, i32 5, i32 0, i32 -1, i32 0, i32 0, i32 0, i8 addrspace(1)* %obj)
 %obj.relocated = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(token %0, i32 12, i32 12)
 ret i8 addrspace(1)* %obj.relocated
}

In the above examples, the addrspace(1) marker on the pointers is the mechanism
that the statepoint-example GC strategy uses to distinguish references from
non references. The pass assumes that all addrspace(1) pointers are non-integral
pointer types. Address space 1 is not globally reserved for this purpose.

This pass can be used an utility function by a language frontend that doesn’t
want to manually reason about liveness, base pointers, or relocation when
constructing IR. As currently implemented, RewriteStatepointsForGC must be
run after SSA construction (i.e. mem2ref).

RewriteStatepointsForGC will ensure that appropriate base pointers are listed
for every relocation created. It will do so by duplicating code as needed to
propagate the base pointer associated with each pointer being relocated to
the appropriate safepoints. The implementation assumes that the following
IR constructs produce base pointers: loads from the heap, addresses of global
variables, function arguments, function return values. Constant pointers (such
as null) are also assumed to be base pointers. In practice, this constraint
can be relaxed to producing interior derived pointers provided the target
collector can find the associated allocation from an arbitrary interior
derived pointer.

By default RewriteStatepointsForGC passes in 0xABCDEF00 as the statepoint
ID and 0 as the number of patchable bytes to the newly constructed
gc.statepoint. These values can be configured on a per-callsite
basis using the attributes "statepoint-id" and
"statepoint-num-patch-bytes". If a call site is marked with a
"statepoint-id" function attribute and its value is a positive
integer (represented as a string), then that value is used as the ID
of the newly constructed gc.statepoint. If a call site is marked
with a "statepoint-num-patch-bytes" function attribute and its
value is a positive integer, then that value is used as the ‘num patch
bytes’ parameter of the newly constructed gc.statepoint. The
"statepoint-id" and "statepoint-num-patch-bytes" attributes
are not propagated to the gc.statepoint call or invoke if they
could be successfully parsed.

In practice, RewriteStatepointsForGC should be run much later in the pass
pipeline, after most optimization is already done. This helps to improve
the quality of the generated code when compiled with garbage collection support.

PlaceSafepoints

The pass PlaceSafepoints inserts safepoint polls sufficient to ensure running
code checks for a safepoint request on a timely manner. This pass is expected
to be run before RewriteStatepointsForGC and thus does not produce full
relocation sequences.

As an example, given input IR of the following:

define void @test() gc "statepoint-example" {
 call void @foo()
 ret void
}

declare void @do_safepoint()
define void @gc.safepoint_poll() {
 call void @do_safepoint()
 ret void
}

This pass would produce the following IR:

define void @test() gc "statepoint-example" {
 call void @do_safepoint()
 call void @foo()
 ret void
}

In this case, we’ve added an (unconditional) entry safepoint poll. Note that
despite appearances, the entry poll is not necessarily redundant. We’d have to
know that foo and test were not mutually recursive for the poll to be
redundant. In practice, you’d probably want to your poll definition to contain
a conditional branch of some form.

At the moment, PlaceSafepoints can insert safepoint polls at method entry and
loop backedges locations. Extending this to work with return polls would be
straight forward if desired.

PlaceSafepoints includes a number of optimizations to avoid placing safepoint
polls at particular sites unless needed to ensure timely execution of a poll
under normal conditions. PlaceSafepoints does not attempt to ensure timely
execution of a poll under worst case conditions such as heavy system paging.

The implementation of a safepoint poll action is specified by looking up a
function of the name gc.safepoint_poll in the containing Module. The body
of this function is inserted at each poll site desired. While calls or invokes
inside this method are transformed to a gc.statepoints, recursive poll
insertion is not performed.

This pass is useful for any language frontend which only has to support
garbage collection semantics at safepoints. If you need other abstract
frame information at safepoints (e.g. for deoptimization or introspection),
you can insert safepoint polls in the frontend. If you have the later case,
please ask on llvm-dev for suggestions. There’s been a good amount of work
done on making such a scheme work well in practice which is not yet documented
here.

Supported Architectures

Support for statepoint generation requires some code for each backend.
Today, only X86_64 is supported.

Problem Areas and Active Work

	Support for languages which allow unmanaged pointers to garbage collected
objects (i.e. pass a pointer to an object to a C routine) via pinning.

	Support for garbage collected objects allocated on the stack. Specifically,
allocas are always assumed to be in address space 0 and we need a
cast/promotion operator to let rewriting identify them.

	The current statepoint lowering is known to be somewhat poor. In the very
long term, we’d like to integrate statepoints with the register allocator;
in the near term this is unlikely to happen. We’ve found the quality of
lowering to be relatively unimportant as hot-statepoints are almost always
inliner bugs.

	Concerns have been raised that the statepoint representation results in a
large amount of IR being produced for some examples and that this
contributes to higher than expected memory usage and compile times. There’s
no immediate plans to make changes due to this, but alternate models may be
explored in the future.

	Relocations along exceptional paths are currently broken in ToT. In
particular, there is current no way to represent a rethrow on a path which
also has relocations. See this llvm-dev discussion [https://groups.google.com/forum/#!topic/llvm-dev/AE417XjgxvI] for more
detail.

Bugs and Enhancements

Currently known bugs and enhancements under consideration can be
tracked by performing a bugzilla search [https://bugs.llvm.org/buglist.cgi?cmdtype=runnamed&namedcmd=Statepoint%20Bugs&list_id=64342]
for [Statepoint] in the summary field. When filing new bugs, please
use this tag so that interested parties see the newly filed bug. As
with most LLVM features, design discussions take place on llvm-dev [http://lists.llvm.org/mailman/listinfo/llvm-dev], and patches
should be sent to llvm-commits [http://lists.llvm.org/mailman/listinfo/llvm-commits] for review.

 MergeFunctions pass, how it works

MergeFunctions pass, how it works

	Introduction

	Why would I want to read this document?

	What should I know to be able to follow along with this document?

	What I gain by reading this document?

	Narrative structure

	Basics

	How to do it?

	Possible solutions

	Random-access

	Logarithmical search

	Present state

	MergeFunctions, main fields and runOnModule

	runOnModule

	Comparison and logarithmical search

	Functions comparison

	FunctionComparator::compare(void)

	FunctionComparator::cmpType

	cmpValues(const Value*, const Value*)

	What we assiciate in cmpValues?

	How to implement cmpValues?

	cmpConstants

	compare(const BasicBlock*, const BasicBlock*)

	cmpGEP

	cmpOperation

	O(log(N))

	Merging process, mergeTwoFunctions

	If “F” may be overridden

	HasGlobalAliases, removeUsers

	No global aliases, replaceDirectCallers

	If “F” could not be overridden, fix it!

	That’s it.

Introduction

Sometimes code contains equal functions, or functions that does exactly the same
thing even though they are non-equal on the IR level (e.g.: multiplication on 2
and ‘shl 1’). It could happen due to several reasons: mainly, the usage of
templates and automatic code generators. Though, sometimes user itself could
write the same thing twice :-)

The main purpose of this pass is to recognize such functions and merge them.

Why would I want to read this document?

Document is the extension to pass comments and describes the pass logic. It
describes algorithm that is used in order to compare functions, it also
explains how we could combine equal functions correctly, keeping module valid.

Material is brought in top-down form, so reader could start learn pass from
ideas and end up with low-level algorithm details, thus preparing him for
reading the sources.

So main goal is do describe algorithm and logic here; the concept. This document
is good for you, if you don’t want to read the source code, but want to
understand pass algorithms. Author tried not to repeat the source-code and
cover only common cases, and thus avoid cases when after minor code changes we
need to update this document.

What should I know to be able to follow along with this document?

Reader should be familiar with common compile-engineering principles and LLVM
code fundamentals. In this article we suppose reader is familiar with
Single Static Assingment [http://en.wikipedia.org/wiki/Static_single_assignment_form]
concepts. Understanding of
IR structure [http://llvm.org/docs/LangRef.html#high-level-structure] is
also important.

We will use such terms as
“module [http://llvm.org/docs/LangRef.html#high-level-structure]”,
“function [http://llvm.org/docs/ProgrammersManual.html#the-function-class]”,
“basic block [http://en.wikipedia.org/wiki/Basic_block]”,
“user [http://llvm.org/docs/ProgrammersManual.html#the-user-class]”,
“value [http://llvm.org/docs/ProgrammersManual.html#the-value-class]”,
“instruction [http://llvm.org/docs/ProgrammersManual.html#the-instruction-class]”.

As a good start point, Kaleidoscope tutorial could be used:

LLVM Tutorial: Table of Contents

Especially it’s important to understand chapter 3 of tutorial:

Kaleidoscope: Code generation to LLVM IR

Reader also should know how passes work in LLVM, they could use next article as
a reference and start point here:

Writing an LLVM Pass

What else? Well perhaps reader also should have some experience in LLVM pass
debugging and bug-fixing.

What I gain by reading this document?

Main purpose is to provide reader with comfortable form of algorithms
description, namely the human reading text. Since it could be hard to
understand algorithm straight from the source code: pass uses some principles
that have to be explained first.

Author wishes to everybody to avoid case, when you read code from top to bottom
again and again, and yet you don’t understand why we implemented it that way.

We hope that after this article reader could easily debug and improve
MergeFunctions pass and thus help LLVM project.

Narrative structure

Article consists of three parts. First part explains pass functionality on the
top-level. Second part describes the comparison procedure itself. The third
part describes the merging process.

In every part author also tried to put the contents into the top-down form.
First, the top-level methods will be described, while the terminal ones will be
at the end, in the tail of each part. If reader will see the reference to the
method that wasn’t described yet, they will find its description a bit below.

Basics

How to do it?

Do we need to merge functions? Obvious thing is: yes that’s a quite possible
case, since usually we do have duplicates. And it would be good to get rid of
them. But how to detect such a duplicates? The idea is next: we split functions
onto small bricks (parts), then we compare “bricks” amount, and if it equal,
compare “bricks” themselves, and then do our conclusions about functions
themselves.

What the difference it could be? For example, on machine with 64-bit pointers
(let’s assume we have only one address space), one function stores 64-bit
integer, while another one stores a pointer. So if the target is a machine
mentioned above, and if functions are identical, except the parameter type (we
could consider it as a part of function type), then we can treat uint64_t
and``void*`` as equal.

It was just an example; possible details are described a bit below.

As another example reader may imagine two more functions. First function
performs multiplication on 2, while the second one performs arithmetic right
shift on 1.

Possible solutions

Let’s briefly consider possible options about how and what we have to implement
in order to create full-featured functions merging, and also what it would
meant for us.

Equal functions detection, obviously supposes “detector” method to be
implemented, latter should answer the question “whether functions are equal”.
This “detector” method consists of tiny “sub-detectors”, each of them answers
exactly the same question, but for function parts.

As the second step, we should merge equal functions. So it should be a “merger”
method. “Merger” accepts two functions F1 and F2, and produces F1F2
function, the result of merging.

Having such a routines in our hands, we can process whole module, and merge all
equal functions.

In this case, we have to compare every function with every another function. As
reader could notice, this way seems to be quite expensive. Of course we could
introduce hashing and other helpers, but it is still just an optimization, and
thus the level of O(N*N) complexity.

Can we reach another level? Could we introduce logarithmical search, or random
access lookup? The answer is: “yes”.

Random-access

How it could be done? Just convert each function to number, and gather all of
them in special hash-table. Functions with equal hash are equal. Good hashing
means, that every function part must be taken into account. That means we have
to convert every function part into some number, and then add it into hash.
Lookup-up time would be small, but such approach adds some delay due to hashing
routine.

Logarithmical search

We could introduce total ordering among the functions set, once we had it we
could then implement a logarithmical search. Lookup time still depends on N,
but adds a little of delay (log(N)).

Present state

Both of approaches (random-access and logarithmical) has been implemented and
tested. And both of them gave a very good improvement. And what was most
surprising, logarithmical search was faster; sometimes up to 15%. Hashing needs
some extra CPU time, and it is the main reason why it works slower; in most of
cases total “hashing” time was greater than total “logarithmical-search” time.

So, preference has been granted to the “logarithmical search”.

Though in the case of need, logarithmical-search (read “total-ordering”) could
be used as a milestone on our way to the random-access implementation.

Every comparison is based either on the numbers or on flags comparison. In
random-access approach we could use the same comparison algorithm. During
comparison we exit once we find the difference, but here we might have to scan
whole function body every time (note, it could be slower). Like in
“total-ordering”, we will track every numbers and flags, but instead of
comparison, we should get numbers sequence and then create the hash number. So,
once again, total-ordering could be considered as a milestone for even faster
(in theory) random-access approach.

MergeFunctions, main fields and runOnModule

There are two most important fields in class:

FnTree – the set of all unique functions. It keeps items that couldn’t be
merged with each other. It is defined as:

std::set<FunctionNode> FnTree;

Here FunctionNode is a wrapper for llvm::Function class, with
implemented “<” operator among the functions set (below we explain how it works
exactly; this is a key point in fast functions comparison).

Deferred – merging process can affect bodies of functions that are in
FnTree already. Obviously such functions should be rechecked again. In this
case we remove them from FnTree, and mark them as to be rescanned, namely
put them into Deferred list.

runOnModule

The algorithm is pretty simple:

	Put all module’s functions into the worklist.

2. Scan worklist’s functions twice: first enumerate only strong functions and
then only weak ones:

2.1. Loop body: take function from worklist (call it FCur) and try to
insert it into FnTree: check whether FCur is equal to one of functions
in FnTree. If there is equal function in FnTree (call it FExists):
merge function FCur with FExists. Otherwise add function from worklist
to FnTree.

3. Once worklist scanning and merging operations is complete, check Deferred
list. If it is not empty: refill worklist contents with Deferred list and
do step 2 again, if Deferred is empty, then exit from method.

Comparison and logarithmical search

Let’s recall our task: for every function F from module M, we have to find
equal functions F` in shortest time, and merge them into the single function.

Defining total ordering among the functions set allows to organize functions
into the binary tree. The lookup procedure complexity would be estimated as
O(log(N)) in this case. But how to define total-ordering?

We have to introduce a single rule applicable to every pair of functions, and
following this rule then evaluate which of them is greater. What kind of rule
it could be? Let’s declare it as “compare” method, that returns one of 3
possible values:

-1, left is less than right,

0, left and right are equal,

1, left is greater than right.

Of course it means, that we have to maintain
strict and non-strict order relation properties:

	reflexivity (a <= a, a == a, a >= a),

	antisymmetry (if a <= b and b <= a then a == b),

	transitivity (a <= b and b <= c, then a <= c)

	asymmetry (if a < b, then a > b or a == b).

As it was mentioned before, comparison routine consists of
“sub-comparison-routines”, each of them also consists
“sub-comparison-routines”, and so on, finally it ends up with a primitives
comparison.

Below, we will use the next operations:

	cmpNumbers(number1, number2) is method that returns -1 if left is less
than right; 0, if left and right are equal; and 1 otherwise.

	cmpFlags(flag1, flag2) is hypothetical method that compares two flags.
The logic is the same as in cmpNumbers, where true is 1, and
false is 0.

The rest of article is based on MergeFunctions.cpp source code
(<llvm_dir>/lib/Transforms/IPO/MergeFunctions.cpp). We would like to ask
reader to keep this file open nearby, so we could use it as a reference for
further explanations.

Now we’re ready to proceed to the next chapter and see how it works.

Functions comparison

At first, let’s define how exactly we compare complex objects.

Complex objects comparison (function, basic-block, etc) is mostly based on its
sub-objects comparison results. So it is similar to the next “tree” objects
comparison:

	For two trees T1 and T2 we perform depth-first-traversal and have
two sequences as a product: “T1Items” and “T2Items”.

	Then compare chains “T1Items” and “T2Items” in
most-significant-item-first order. Result of items comparison would be the
result of T1 and T2 comparison itself.

FunctionComparator::compare(void)

Brief look at the source code tells us, that comparison starts in
“int FunctionComparator::compare(void)” method.

1. First parts to be compared are function’s attributes and some properties that
outsides “attributes” term, but still could make function different without
changing its body. This part of comparison is usually done within simple
cmpNumbers or cmpFlags operations (e.g.
cmpFlags(F1->hasGC(), F2->hasGC())). Below is full list of function’s
properties to be compared on this stage:

	Attributes (those are returned by Function::getAttributes()
method).

	GC, for equivalence, RHS and LHS should be both either without
GC or with the same one.

	Section, just like a GC: RHS and LHS should be defined in the
same section.

	Variable arguments. LHS and RHS should be both either with or
without var-args.

	Calling convention should be the same.

2. Function type. Checked by FunctionComparator::cmpType(Type*, Type*)
method. It checks return type and parameters type; the method itself will be
described later.

3. Associate function formal parameters with each other. Then comparing function
bodies, if we see the usage of LHS’s i-th argument in LHS’s body, then,
we want to see usage of RHS’s i-th argument at the same place in RHS’s
body, otherwise functions are different. On this stage we grant the preference
to those we met later in function body (value we met first would be less).
This is done by “FunctionComparator::cmpValues(const Value*, const Value*)”
method (will be described a bit later).

	Function body comparison. As it written in method comments:

“We do a CFG-ordered walk since the actual ordering of the blocks in the linked
list is immaterial. Our walk starts at the entry block for both functions, then
takes each block from each terminator in order. As an artifact, this also means
that unreachable blocks are ignored.”

So, using this walk we get BBs from left and right in the same order, and
compare them by “FunctionComparator::compare(const BasicBlock*, const
BasicBlock*)” method.

We also associate BBs with each other, like we did it with function formal
arguments (see cmpValues method below).

FunctionComparator::cmpType

Consider how types comparison works.

1. Coerce pointer to integer. If left type is a pointer, try to coerce it to the
integer type. It could be done if its address space is 0, or if address spaces
are ignored at all. Do the same thing for the right type.

2. If left and right types are equal, return 0. Otherwise we need to give
preference to one of them. So proceed to the next step.

3. If types are of different kind (different type IDs). Return result of type
IDs comparison, treating them as a numbers (use cmpNumbers operation).

4. If types are vectors or integers, return result of their pointers comparison,
comparing them as numbers.

	Check whether type ID belongs to the next group (call it equivalent-group):

	Void

	Float

	Double

	X86_FP80

	FP128

	PPC_FP128

	Label

	Metadata.

If ID belongs to group above, return 0. Since it’s enough to see that
types has the same TypeID. No additional information is required.

6. Left and right are pointers. Return result of address space comparison
(numbers comparison).

7. Complex types (structures, arrays, etc.). Follow complex objects comparison
technique (see the very first paragraph of this chapter). Both left and
right are to be expanded and their element types will be checked the same
way. If we get -1 or 1 on some stage, return it. Otherwise return 0.

8. Steps 1-6 describe all the possible cases, if we passed steps 1-6 and didn’t
get any conclusions, then invoke llvm_unreachable, since it’s quite
unexpectable case.

cmpValues(const Value*, const Value*)

Method that compares local values.

This method gives us an answer on a very curious quesion: whether we could treat
local values as equal, and which value is greater otherwise. It’s better to
start from example:

Consider situation when we’re looking at the same place in left function “FL”
and in right function “FR”. And every part of left place is equal to the
corresponding part of right place, and (!) both parts use Value instances,
for example:

instr0 i32 %LV ; left side, function FL
instr0 i32 %RV ; right side, function FR

So, now our conclusion depends on Value instances comparison.

Main purpose of this method is to determine relation between such values.

What we expect from equal functions? At the same place, in functions “FL” and
“FR” we expect to see equal values, or values defined at the same place
in “FL” and “FR”.

Consider small example here:

define void %f(i32 %pf0, i32 %pf1) {
 instr0 i32 %pf0 instr1 i32 %pf1 instr2 i32 123
}

define void %g(i32 %pg0, i32 %pg1) {
 instr0 i32 %pg0 instr1 i32 %pg0 instr2 i32 123
}

In this example, pf0 is associated with pg0, pf1 is associated with pg1,
and we also declare that pf0 < pf1, and thus pg0 < pf1.

Instructions with opcode “instr0” would be equal, since their types and
opcodes are equal, and values are associated.

Instruction with opcode “instr1” from f is greater than instruction with
opcode “instr1” from g; here we have equal types and opcodes, but “pf1 is
greater than “pg0”.

And instructions with opcode “instr2” are equal, because their opcodes and
types are equal, and the same constant is used as a value.

What we assiciate in cmpValues?

	Function arguments. i-th argument from left function associated with
i-th argument from right function.

	BasicBlock instances. In basic-block enumeration loop we associate i-th
BasicBlock from the left function with i-th BasicBlock from the right
function.

	Instructions.

	Instruction operands. Note, we can meet Value here we have never seen
before. In this case it is not a function argument, nor BasicBlock, nor
Instruction. It is global value. It is constant, since its the only
supposed global here. Method also compares:

	Constants that are of the same type.

	If right constant could be losslessly bit-casted to the left one, then we
also compare them.

How to implement cmpValues?

Association is a case of equality for us. We just treat such values as equal.
But, in general, we need to implement antisymmetric relation. As it was
mentioned above, to understand what is less, we can use order in which we
meet values. If both of values has the same order in function (met at the same
time), then treat values as associated. Otherwise – it depends on who was
first.

Every time we run top-level compare method, we initialize two identical maps
(one for the left side, another one for the right side):

map<Value, int> sn_mapL, sn_mapR;

The key of the map is the Value itself, the value – is its order (call it
serial number).

To add value V we need to perform the next procedure:

sn_map.insert(std::make_pair(V, sn_map.size()));

For the first Value, map will return 0, for second Value map will return
1, and so on.

Then we can check whether left and right values met at the same time with simple
comparison:

cmpNumbers(sn_mapL[Left], sn_mapR[Right]);

Of course, we can combine insertion and comparison:

std::pair<iterator, bool>
 LeftRes = sn_mapL.insert(std::make_pair(Left, sn_mapL.size())), RightRes
 = sn_mapR.insert(std::make_pair(Right, sn_mapR.size()));
return cmpNumbers(LeftRes.first->second, RightRes.first->second);

Let’s look, how whole method could be implemented.

1. we have to start from the bad news. Consider function self and
cross-referencing cases:

// self-reference unsigned fact0(unsigned n) { return n > 1 ? n
* fact0(n-1) : 1; } unsigned fact1(unsigned n) { return n > 1 ? n *
fact1(n-1) : 1; }

// cross-reference unsigned ping(unsigned n) { return n!= 0 ? pong(n-1) : 0;
} unsigned pong(unsigned n) { return n!= 0 ? ping(n-1) : 0; }

This comparison has been implemented in initial MergeFunctions pass
version. But, unfortunately, it is not transitive. And this is the only case
we can’t convert to less-equal-greater comparison. It is a seldom case, 4-5
functions of 10000 (checked on test-suite), and, we hope, reader would
forgive us for such a sacrifice in order to get the O(log(N)) pass time.

2. If left/right Value is a constant, we have to compare them. Return 0 if it
is the same constant, or use cmpConstants method otherwise.

3. If left/right is InlineAsm instance. Return result of Value pointers
comparison.

4. Explicit association of L (left value) and R (right value). We need to
find out whether values met at the same time, and thus are associated. Or we
need to put the rule: when we treat L < R. Now it is easy: just return
result of numbers comparison:

std::pair<iterator, bool>
 LeftRes = sn_mapL.insert(std::make_pair(Left, sn_mapL.size())),
 RightRes = sn_mapR.insert(std::make_pair(Right, sn_mapR.size()));
if (LeftRes.first->second == RightRes.first->second) return 0;
if (LeftRes.first->second < RightRes.first->second) return -1;
return 1;

Now when cmpValues returns 0, we can proceed comparison procedure. Otherwise,
if we get (-1 or 1), we need to pass this result to the top level, and finish
comparison procedure.

cmpConstants

Performs constants comparison as follows:

1. Compare constant types using cmpType method. If result is -1 or 1, goto
step 2, otherwise proceed to step 3.

2. If types are different, we still can check whether constants could be
losslessly bitcasted to each other. The further explanation is modification of
canLosslesslyBitCastTo method.

2.1 Check whether constants are of the first class types
(isFirstClassType check):

2.1.1. If both constants are not of the first class type: return result
of cmpType.

2.1.2. Otherwise, if left type is not of the first class, return -1. If
right type is not of the first class, return 1.

2.1.3. If both types are of the first class type, proceed to the next step
(2.1.3.1).

2.1.3.1. If types are vectors, compare their bitwidth using the
cmpNumbers. If result is not 0, return it.

2.1.3.2. Different types, but not a vectors:

	if both of them are pointers, good for us, we can proceed to step 3.

	if one of types is pointer, return result of isPointer flags
comparison (cmpFlags operation).

	otherwise we have no methods to prove bitcastability, and thus return
result of types comparison (-1 or 1).

Steps below are for the case when types are equal, or case when constants are
bitcastable:

3. One of constants is a “null” value. Return the result of
cmpFlags(L->isNullValue, R->isNullValue) comparison.

	Compare value IDs, and return result if it is not 0:

if (int Res = cmpNumbers(L->getValueID(), R->getValueID()))
 return Res;

5. Compare the contents of constants. The comparison depends on kind of
constants, but on this stage it is just a lexicographical comparison. Just see
how it was described in the beginning of “Functions comparison” paragraph.
Mathematically it is equal to the next case: we encode left constant and right
constant (with similar way bitcode-writer does). Then compare left code
sequence and right code sequence.

compare(const BasicBlock*, const BasicBlock*)

Compares two BasicBlock instances.

It enumerates instructions from left BB and right BB.

1. It assigns serial numbers to the left and right instructions, using
cmpValues method.

2. If one of left or right is GEP (GetElementPtr), then treat GEP as
greater than other instructions, if both instructions are GEPs use cmpGEP
method for comparison. If result is -1 or 1, pass it to the top-level
comparison (return it).

3.1. Compare operations. Call cmpOperation method. If result is -1 or
1, return it.

3.2. Compare number of operands, if result is -1 or 1, return it.

3.3. Compare operands themselves, use cmpValues method. Return result
if it is -1 or 1.

3.4. Compare type of operands, using cmpType method. Return result if
it is -1 or 1.

3.5. Proceed to the next instruction.

	We can finish instruction enumeration in 3 cases:

4.1. We reached the end of both left and right basic-blocks. We didn’t
exit on steps 1-3, so contents is equal, return 0.

4.2. We have reached the end of the left basic-block. Return -1.

4.3. Return 1 (the end of the right basic block).

cmpGEP

Compares two GEPs (getelementptr instructions).

It differs from regular operations comparison with the only thing: possibility
to use accumulateConstantOffset method.

So, if we get constant offset for both left and right GEPs, then compare it as
numbers, and return comparison result.

Otherwise treat it like a regular operation (see previous paragraph).

cmpOperation

Compares instruction opcodes and some important operation properties.

	Compare opcodes, if it differs return the result.

	Compare number of operands. If it differs – return the result.

3. Compare operation types, use cmpType. All the same – if types are
different, return result.

4. Compare subclassOptionalData, get it with getRawSubclassOptionalData
method, and compare it like a numbers.

	Compare operand types.

6. For some particular instructions check equivalence (relation in our case) of
some significant attributes. For example we have to compare alignment for
load instructions.

O(log(N))

Methods described above implement order relationship. And latter, could be used
for nodes comparison in a binary tree. So we can organize functions set into
the binary tree and reduce the cost of lookup procedure from
O(N*N) to O(log(N)).

Merging process, mergeTwoFunctions

Once MergeFunctions detected that current function (G) is equal to one that
were analyzed before (function F) it calls mergeTwoFunctions(Function*,
Function*).

Operation affects FnTree contents with next way: F will stay in
FnTree. G being equal to F will not be added to FnTree. Calls of
G would be replaced with something else. It changes bodies of callers. So,
functions that calls G would be put into Deferred set and removed from
FnTree, and analyzed again.

The approach is next:

1. Most wished case: when we can use alias and both of F and G are weak. We
make both of them with aliases to the third strong function H. Actually H
is F. See below how it’s made (but it’s better to look straight into the
source code). Well, this is a case when we can just replace G with F
everywhere, we use replaceAllUsesWith operation here (RAUW).

2. F could not be overridden, while G could. It would be good to do the
next: after merging the places where overridable function were used, still use
overridable stub. So try to make G alias to F, or create overridable tail
call wrapper around F and replace G with that call.

3. Neither F nor G could be overridden. We can’t use RAUW. We can just
change the callers: call F instead of G. That’s what
replaceDirectCallers does.

Below is detailed body description.

If “F” may be overridden

As follows from mayBeOverridden comments: “whether the definition of this
global may be replaced by something non-equivalent at link time”. If so, that’s
ok: we can use alias to F instead of G or change call instructions itself.

HasGlobalAliases, removeUsers

First consider the case when we have global aliases of one function name to
another. Our purpose is make both of them with aliases to the third strong
function. Though if we keep F alive and without major changes we can leave it
in FnTree. Try to combine these two goals.

Do stub replacement of F itself with an alias to F.

1. Create stub function H, with the same name and attributes like function
F. It takes maximum alignment of F and G.

2. Replace all uses of function F with uses of function H. It is the two
steps procedure instead. First of all, we must take into account, all functions
from whom F is called would be changed: since we change the call argument
(from F to H). If so we must to review these caller functions again after
this procedure. We remove callers from FnTree, method with name
removeUsers(F) does that (don’t confuse with replaceAllUsesWith):

2.1. Inside removeUsers(Value*
V) we go through the all values that use value V (or F in our context).
If value is instruction, we go to function that holds this instruction and
mark it as to-be-analyzed-again (put to Deferred set), we also remove
caller from FnTree.

2.2. Now we can do the replacement: call F->replaceAllUsesWith(H).

3. H (that now “officially” plays F’s role) is replaced with alias to F.
Do the same with G: replace it with alias to F. So finally everywhere F
was used, we use H and it is alias to F, and everywhere G was used we
also have alias to F.

	Set F linkage to private. Make it strong :-)

No global aliases, replaceDirectCallers

If global aliases are not supported. We call replaceDirectCallers then. Just
go through all calls of G and replace it with calls of F. If you look into
method you will see that it scans all uses of G too, and if use is callee (if
user is call instruction and G is used as what to be called), we replace it
with use of F.

If “F” could not be overridden, fix it!

We call writeThunkOrAlias(Function *F, Function *G). Here we try to replace
G with alias to F first. Next conditions are essential:

	target should support global aliases,

	the address itself of G should be not significant, not named and not
referenced anywhere,

	function should come with external, local or weak linkage.

Otherwise we write thunk: some wrapper that has G’s interface and calls F,
so G could be replaced with this wrapper.

writeAlias

As follows from llvm reference:

“Aliases act as second name for the aliasee value”. So we just want to create
second name for F and use it instead of G:

	create global alias itself (GA),

	adjust alignment of F so it must be maximum of current and G’s alignment;

	replace uses of G:

3.1. first mark all callers of G as to-be-analyzed-again, using
removeUsers method (see chapter above),

3.2. call G->replaceAllUsesWith(GA).

	Get rid of G.

writeThunk

As it written in method comments:

“Replace G with a simple tail call to bitcast(F). Also replace direct uses of G
with bitcast(F). Deletes G.”

In general it does the same as usual when we want to replace callee, except the
first point:

1. We generate tail call wrapper around F, but with interface that allows use
it instead of G.

	“As-usual”: removeUsers and replaceAllUsesWith then.

	Get rid of G.

That’s it.

We have described how to detect equal functions, and how to merge them, and in
first chapter we have described how it works all-together. Author hopes, reader
have some picture from now, and it helps him improve and debug ­this pass.

Reader is welcomed to send us any questions and proposals ;-)

 Type Metadata

Type Metadata

Type metadata is a mechanism that allows IR modules to co-operatively build
pointer sets corresponding to addresses within a given set of globals. LLVM’s
control flow integrity [http://clang.llvm.org/docs/ControlFlowIntegrity.html] implementation uses this metadata to efficiently
check (at each call site) that a given address corresponds to either a
valid vtable or function pointer for a given class or function type, and its
whole-program devirtualization pass uses the metadata to identify potential
callees for a given virtual call.

To use the mechanism, a client creates metadata nodes with two elements:

	a byte offset into the global (generally zero for functions)

	a metadata object representing an identifier for the type

These metadata nodes are associated with globals by using global object
metadata attachments with the !type metadata kind.

Each type identifier must exclusively identify either global variables
or functions.

Limitation

The current implementation only supports attaching metadata to functions on
the x86-32 and x86-64 architectures.

An intrinsic, llvm.type.test, is used to test whether a
given pointer is associated with a type identifier.

Representing Type Information using Type Metadata

This section describes how Clang represents C++ type information associated with
virtual tables using type metadata.

Consider the following inheritance hierarchy:

struct A {
 virtual void f();
};

struct B : A {
 virtual void f();
 virtual void g();
};

struct C {
 virtual void h();
};

struct D : A, C {
 virtual void f();
 virtual void h();
};

The virtual table objects for A, B, C and D look like this (under the Itanium ABI):

Virtual Table Layout for A, B, C, D

	Class

	0

	1

	2

	3

	4

	5

	6

	A

	A::offset-to-top

	&A::rtti

	&A::f

	
	
	
	

	B

	B::offset-to-top

	&B::rtti

	&B::f

	&B::g

	
	
	

	C

	C::offset-to-top

	&C::rtti

	&C::h

	
	
	
	

	D

	D::offset-to-top

	&D::rtti

	&D::f

	&D::h

	D::offset-to-top

	&D::rtti

	thunk for &D::h

When an object of type A is constructed, the address of &A::f in A’s
virtual table object is stored in the object’s vtable pointer. In ABI parlance
this address is known as an address point [https://itanium-cxx-abi.github.io/cxx-abi/abi.html#vtable-general]. Similarly, when an object of type
B is constructed, the address of &B::f is stored in the vtable pointer. In
this way, the vtable in B’s virtual table object is compatible with A’s vtable.

D is a little more complicated, due to the use of multiple inheritance. Its
virtual table object contains two vtables, one compatible with A’s vtable and
the other compatible with C’s vtable. Objects of type D contain two virtual
pointers, one belonging to the A subobject and containing the address of
the vtable compatible with A’s vtable, and the other belonging to the C
subobject and containing the address of the vtable compatible with C’s vtable.

The full set of compatibility information for the above class hierarchy is
shown below. The following table shows the name of a class, the offset of an
address point within that class’s vtable and the name of one of the classes
with which that address point is compatible.

Type Offsets for A, B, C, D

	VTable for

	Offset

	Compatible Class

	A

	16

	A

	B

	16

	A

	
	
	B

	C

	16

	C

	D

	16

	A

	
	
	D

	
	48

	C

The next step is to encode this compatibility information into the IR. The way
this is done is to create type metadata named after each of the compatible
classes, with which we associate each of the compatible address points in
each vtable. For example, these type metadata entries encode the compatibility
information for the above hierarchy:

@_ZTV1A = constant [...], !type !0
@_ZTV1B = constant [...], !type !0, !type !1
@_ZTV1C = constant [...], !type !2
@_ZTV1D = constant [...], !type !0, !type !3, !type !4

!0 = !{i64 16, !"_ZTS1A"}
!1 = !{i64 16, !"_ZTS1B"}
!2 = !{i64 16, !"_ZTS1C"}
!3 = !{i64 16, !"_ZTS1D"}
!4 = !{i64 48, !"_ZTS1C"}

With this type metadata, we can now use the llvm.type.test intrinsic to
test whether a given pointer is compatible with a type identifier. Working
backwards, if llvm.type.test returns true for a particular pointer,
we can also statically determine the identities of the virtual functions
that a particular virtual call may call. For example, if a program assumes
a pointer to be a member of !"_ZST1A", we know that the address can
be only be one of _ZTV1A+16, _ZTV1B+16 or _ZTV1D+16 (i.e. the
address points of the vtables of A, B and D respectively). If we then load
an address from that pointer, we know that the address can only be one of
&A::f, &B::f or &D::f.

Testing Addresses For Type Membership

If a program tests an address using llvm.type.test, this will cause
a link-time optimization pass, LowerTypeTests, to replace calls to this
intrinsic with efficient code to perform type member tests. At a high level,
the pass will lay out referenced globals in a consecutive memory region in
the object file, construct bit vectors that map onto that memory region,
and generate code at each of the llvm.type.test call sites to test
pointers against those bit vectors. Because of the layout manipulation, the
globals’ definitions must be available at LTO time. For more information,
see the control flow integrity design document [http://clang.llvm.org/docs/ControlFlowIntegrityDesign.html].

A type identifier that identifies functions is transformed into a jump table,
which is a block of code consisting of one branch instruction for each
of the functions associated with the type identifier that branches to the
target function. The pass will redirect any taken function addresses to the
corresponding jump table entry. In the object file’s symbol table, the jump
table entries take the identities of the original functions, so that addresses
taken outside the module will pass any verification done inside the module.

Jump tables may call external functions, so their definitions need not
be available at LTO time. Note that if an externally defined function is
associated with a type identifier, there is no guarantee that its identity
within the module will be the same as its identity outside of the module,
as the former will be the jump table entry if a jump table is necessary.

The GlobalLayoutBuilder [http://git.llvm.org/klaus/llvm/blob/master/include/llvm/Transforms/IPO/LowerTypeTests.h] class is responsible for laying out the globals
efficiently to minimize the sizes of the underlying bitsets.

	Example

	

target datalayout = "e-p:32:32"

@a = internal global i32 0, !type !0
@b = internal global i32 0, !type !0, !type !1
@c = internal global i32 0, !type !1
@d = internal global [2 x i32] [i32 0, i32 0], !type !2

define void @e() !type !3 {
 ret void
}

define void @f() {
 ret void
}

declare void @g() !type !3

!0 = !{i32 0, !"typeid1"}
!1 = !{i32 0, !"typeid2"}
!2 = !{i32 4, !"typeid2"}
!3 = !{i32 0, !"typeid3"}

declare i1 @llvm.type.test(i8* %ptr, metadata %typeid) nounwind readnone

define i1 @foo(i32* %p) {
 %pi8 = bitcast i32* %p to i8*
 %x = call i1 @llvm.type.test(i8* %pi8, metadata !"typeid1")
 ret i1 %x
}

define i1 @bar(i32* %p) {
 %pi8 = bitcast i32* %p to i8*
 %x = call i1 @llvm.type.test(i8* %pi8, metadata !"typeid2")
 ret i1 %x
}

define i1 @baz(void ()* %p) {
 %pi8 = bitcast void ()* %p to i8*
 %x = call i1 @llvm.type.test(i8* %pi8, metadata !"typeid3")
 ret i1 %x
}

define void @main() {
 %a1 = call i1 @foo(i32* @a) ; returns 1
 %b1 = call i1 @foo(i32* @b) ; returns 1
 %c1 = call i1 @foo(i32* @c) ; returns 0
 %a2 = call i1 @bar(i32* @a) ; returns 0
 %b2 = call i1 @bar(i32* @b) ; returns 1
 %c2 = call i1 @bar(i32* @c) ; returns 1
 %d02 = call i1 @bar(i32* getelementptr ([2 x i32]* @d, i32 0, i32 0)) ; returns 0
 %d12 = call i1 @bar(i32* getelementptr ([2 x i32]* @d, i32 0, i32 1)) ; returns 1
 %e = call i1 @baz(void ()* @e) ; returns 1
 %f = call i1 @baz(void ()* @f) ; returns 0
 %g = call i1 @baz(void ()* @g) ; returns 1
 ret void
}

 FaultMaps and implicit checks

FaultMaps and implicit checks

	Motivation

	The Fault Map Section

	The ImplicitNullChecks pass

	make.implicit metadata

Motivation

Code generated by managed language runtimes tend to have checks that
are required for safety but never fail in practice. In such cases, it
is profitable to make the non-failing case cheaper even if it makes
the failing case significantly more expensive. This asymmetry can be
exploited by folding such safety checks into operations that can be
made to fault reliably if the check would have failed, and recovering
from such a fault by using a signal handler.

For example, Java requires null checks on objects before they are read
from or written to. If the object is null then a
NullPointerException has to be thrown, interrupting normal
execution. In practice, however, dereferencing a null pointer is
extremely rare in well-behaved Java programs, and typically the null
check can be folded into a nearby memory operation that operates on
the same memory location.

The Fault Map Section

Information about implicit checks generated by LLVM are put in a
special “fault map” section. On Darwin this section is named
__llvm_faultmaps.

The format of this section is

Header {
 uint8 : Fault Map Version (current version is 1)
 uint8 : Reserved (expected to be 0)
 uint16 : Reserved (expected to be 0)
}
uint32 : NumFunctions
FunctionInfo[NumFunctions] {
 uint64 : FunctionAddress
 uint32 : NumFaultingPCs
 uint32 : Reserved (expected to be 0)
 FunctionFaultInfo[NumFaultingPCs] {
 uint32 : FaultKind
 uint32 : FaultingPCOffset
 uint32 : HandlerPCOffset
 }
}

FailtKind describes the reason of expected fault. Currently three kind
of faults are supported:

	FaultMaps::FaultingLoad - fault due to load from memory.

	FaultMaps::FaultingLoadStore - fault due to instruction load and store.

	FaultMaps::FaultingStore - fault due to store to memory.

The ImplicitNullChecks pass

The ImplicitNullChecks pass transforms explicit control flow for
checking if a pointer is null, like:

 %ptr = call i32* @get_ptr()
 %ptr_is_null = icmp i32* %ptr, null
 br i1 %ptr_is_null, label %is_null, label %not_null, !make.implicit !0

not_null:
 %t = load i32, i32* %ptr
 br label %do_something_with_t

is_null:
 call void @HFC()
 unreachable

!0 = !{}

to control flow implicit in the instruction loading or storing through
the pointer being null checked:

 %ptr = call i32* @get_ptr()
 %t = load i32, i32* %ptr ;; handler-pc = label %is_null
 br label %do_something_with_t

is_null:
 call void @HFC()
 unreachable

This transform happens at the MachineInstr level, not the LLVM IR
level (so the above example is only representative, not literal). The
ImplicitNullChecks pass runs during codegen, if
-enable-implicit-null-checks is passed to llc.

The ImplicitNullChecks pass adds entries to the
__llvm_faultmaps section described above as needed.

make.implicit metadata

Making null checks implicit is an aggressive optimization, and it can
be a net performance pessimization if too many memory operations end
up faulting because of it. A language runtime typically needs to
ensure that only a negligible number of implicit null checks actually
fault once the application has reached a steady state. A standard way
of doing this is by healing failed implicit null checks into explicit
null checks via code patching or recompilation. It follows that there
are two requirements an explicit null check needs to satisfy for it to
be profitable to convert it to an implicit null check:

	The case where the pointer is actually null (i.e. the “failing”
case) is extremely rare.

	The failing path heals the implicit null check into an explicit
null check so that the application does not repeatedly page
fault.

The frontend is expected to mark branches that satisfy (1) and (2)
using a !make.implicit metadata node (the actual content of the
metadata node is ignored). Only branches that are marked with
!make.implicit metadata are considered as candidates for
conversion into implicit null checks.

(Note that while we could deal with (1) using profiling data, dealing
with (2) requires some information not present in branch profiles.)

 Machine IR (MIR) Format Reference Manual

Machine IR (MIR) Format Reference Manual

	Introduction

	Overview

	MIR Testing Guide

	Testing Individual Code Generation Passes

	Simplifying MIR files

	Limitations

	High Level Structure

	Embedded Module

	Machine Functions

	Machine Instructions Format Reference

	Machine Basic Blocks

	Block References

	Successors

	Live In Registers

	Miscellaneous Attributes

	Machine Instructions

	Instruction Flags

	Bundled Instructions

	Registers

	Machine Operands

	Immediate Operands

	Register Operands

	Register Flags

	Subregister Indices

	Constant Pool Indices

	Global Value Operands

	Target-dependent Index Operands

	Jump-table Index Operands

	External Symbol Operands

	MCSymbol Operands

	CFIIndex Operands

	IntrinsicID Operands

	Predicate Operands

Warning

This is a work in progress.

Introduction

This document is a reference manual for the Machine IR (MIR) serialization
format. MIR is a human readable serialization format that is used to represent
LLVM’s machine specific intermediate representation.

The MIR serialization format is designed to be used for testing the code
generation passes in LLVM.

Overview

The MIR serialization format uses a YAML container. YAML is a standard
data serialization language, and the full YAML language spec can be read at
yaml.org [http://www.yaml.org/spec/1.2/spec.html#Introduction].

A MIR file is split up into a series of YAML documents [http://www.yaml.org/spec/1.2/spec.html#id2800132]. The first document
can contain an optional embedded LLVM IR module, and the rest of the documents
contain the serialized machine functions.

MIR Testing Guide

You can use the MIR format for testing in two different ways:

	You can write MIR tests that invoke a single code generation pass using the
-run-pass option in llc.

	You can use llc’s -stop-after option with existing or new LLVM assembly
tests and check the MIR output of a specific code generation pass.

Testing Individual Code Generation Passes

The -run-pass option in llc allows you to create MIR tests that invoke just
a single code generation pass. When this option is used, llc will parse an
input MIR file, run the specified code generation pass(es), and output the
resulting MIR code.

You can generate an input MIR file for the test by using the -stop-after or
-stop-before option in llc. For example, if you would like to write a test
for the post register allocation pseudo instruction expansion pass, you can
specify the machine copy propagation pass in the -stop-after option, as it
runs just before the pass that we are trying to test:

llc -stop-after=machine-cp bug-trigger.ll > test.mir

After generating the input MIR file, you’ll have to add a run line that uses
the -run-pass option to it. In order to test the post register allocation
pseudo instruction expansion pass on X86-64, a run line like the one shown
below can be used:

RUN: llc -o - %s -mtriple=x86_64-- -run-pass=postrapseudos | FileCheck %s

The MIR files are target dependent, so they have to be placed in the target
specific test directories (lib/CodeGen/TARGETNAME). They also need to
specify a target triple or a target architecture either in the run line or in
the embedded LLVM IR module.

Simplifying MIR files

The MIR code coming out of -stop-after/-stop-before is very verbose;
Tests are more accessible and future proof when simplified:

	Use the -simplify-mir option with llc.

	Machine function attributes often have default values or the test works just
as well with default values. Typical candidates for this are: alignment:,
exposesReturnsTwice, legalized, regBankSelected, selected.
The whole frameInfo section is often unnecessary if there is no special
frame usage in the function. tracksRegLiveness on the other hand is often
necessary for some passes that care about block livein lists.

	The (global) liveins: list is typically only interesting for early
instruction selection passes and can be removed when testing later passes.
The per-block liveins: on the other hand are necessary if
tracksRegLiveness is true.

	Branch probability data in block successors: lists can be dropped if the
test doesn’t depend on it. Example:
successors: %bb.1(0x40000000), %bb.2(0x40000000) can be replaced with
successors: %bb.1, %bb.2.

	MIR code contains a whole IR module. This is necessary because there are
no equivalents in MIR for global variables, references to external functions,
function attributes, metadata, debug info. Instead some MIR data references
the IR constructs. You can often remove them if the test doesn’t depend on
them.

	Alias Analysis is performed on IR values. These are referenced by memory
operands in MIR. Example: :: (load 8 from %ir.foobar, !alias.scope !9).
If the test doesn’t depend on (good) alias analysis the references can be
dropped: :: (load 8)

	MIR blocks can reference IR blocks for debug printing, profile information
or debug locations. Example: bb.42.myblock in MIR references the IR block
myblock. It is usually possible to drop the .myblock reference and simply
use bb.42.

	If there are no memory operands or blocks referencing the IR then the
IR function can be replaced by a parameterless dummy function like
define @func() { ret void }.

	It is possible to drop the whole IR section of the MIR file if it only
contains dummy functions (see above). The .mir loader will create the
IR functions automatically in this case.

Limitations

Currently the MIR format has several limitations in terms of which state it
can serialize:

	The target-specific state in the target-specific MachineFunctionInfo
subclasses isn’t serialized at the moment.

	The target-specific MachineConstantPoolValue subclasses (in the ARM and
SystemZ backends) aren’t serialized at the moment.

	The MCSymbol machine operands are only printed, they can’t be parsed.

	A lot of the state in MachineModuleInfo isn’t serialized - only the CFI
instructions and the variable debug information from MMI is serialized right
now.

These limitations impose restrictions on what you can test with the MIR format.
For now, tests that would like to test some behaviour that depends on the state
of certain MCSymbol operands or the exception handling state in MMI, can’t
use the MIR format. As well as that, tests that test some behaviour that
depends on the state of the target specific MachineFunctionInfo or
MachineConstantPoolValue subclasses can’t use the MIR format at the moment.

High Level Structure

Embedded Module

When the first YAML document contains a YAML block literal string [http://www.yaml.org/spec/1.2/spec.html#id2795688], the MIR
parser will treat this string as an LLVM assembly language string that
represents an embedded LLVM IR module.
Here is an example of a YAML document that contains an LLVM module:

define i32 @inc(i32* %x) {
entry:
 %0 = load i32, i32* %x
 %1 = add i32 %0, 1
 store i32 %1, i32* %x
 ret i32 %1
}

Machine Functions

The remaining YAML documents contain the machine functions. This is an example
of such YAML document:

name: inc
tracksRegLiveness: true
liveins:
 - { reg: '$rdi' }
body: |
 bb.0.entry:
 liveins: $rdi

 $eax = MOV32rm $rdi, 1, _, 0, _
 $eax = INC32r killed $eax, implicit-def dead $eflags
 MOV32mr killed $rdi, 1, _, 0, _, $eax
 RETQ $eax
...

The document above consists of attributes that represent the various
properties and data structures in a machine function.

The attribute name is required, and its value should be identical to the
name of a function that this machine function is based on.

The attribute body is a YAML block literal string [http://www.yaml.org/spec/1.2/spec.html#id2795688]. Its value represents
the function’s machine basic blocks and their machine instructions.

Machine Instructions Format Reference

The machine basic blocks and their instructions are represented using a custom,
human readable serialization language. This language is used in the
YAML block literal string [http://www.yaml.org/spec/1.2/spec.html#id2795688] that corresponds to the machine function’s body.

A source string that uses this language contains a list of machine basic
blocks, which are described in the section below.

Machine Basic Blocks

A machine basic block is defined in a single block definition source construct
that contains the block’s ID.
The example below defines two blocks that have an ID of zero and one:

bb.0:
 <instructions>
bb.1:
 <instructions>

A machine basic block can also have a name. It should be specified after the ID
in the block’s definition:

bb.0.entry: ; This block's name is "entry"
 <instructions>

The block’s name should be identical to the name of the IR block that this
machine block is based on.

Block References

The machine basic blocks are identified by their ID numbers. Individual
blocks are referenced using the following syntax:

%bb.<id>

Example:

%bb.0

The following syntax is also supported, but the former syntax is preferred for
block references:

%bb.<id>[.<name>]

Example:

%bb.1.then

Successors

The machine basic block’s successors have to be specified before any of the
instructions:

bb.0.entry:
 successors: %bb.1.then, %bb.2.else
 <instructions>
bb.1.then:
 <instructions>
bb.2.else:
 <instructions>

The branch weights can be specified in brackets after the successor blocks.
The example below defines a block that has two successors with branch weights
of 32 and 16:

bb.0.entry:
 successors: %bb.1.then(32), %bb.2.else(16)

Live In Registers

The machine basic block’s live in registers have to be specified before any of
the instructions:

bb.0.entry:
 liveins: $edi, $esi

The list of live in registers and successors can be empty. The language also
allows multiple live in register and successor lists - they are combined into
one list by the parser.

Miscellaneous Attributes

The attributes IsAddressTaken, IsLandingPad and Alignment can be
specified in brackets after the block’s definition:

bb.0.entry (address-taken):
 <instructions>
bb.2.else (align 4):
 <instructions>
bb.3(landing-pad, align 4):
 <instructions>

Machine Instructions

A machine instruction is composed of a name,
machine operands,
instruction flags, and machine memory operands.

The instruction’s name is usually specified before the operands. The example
below shows an instance of the X86 RETQ instruction with a single machine
operand:

RETQ $eax

However, if the machine instruction has one or more explicitly defined register
operands, the instruction’s name has to be specified after them. The example
below shows an instance of the AArch64 LDPXpost instruction with three
defined register operands:

$sp, $fp, $lr = LDPXpost $sp, 2

The instruction names are serialized using the exact definitions from the
target’s *InstrInfo.td files, and they are case sensitive. This means that
similar instruction names like TSTri and tSTRi represent different
machine instructions.

Instruction Flags

The flag frame-setup or frame-destroy can be specified before the
instruction’s name:

$fp = frame-setup ADDXri $sp, 0, 0

$x21, $x20 = frame-destroy LDPXi $sp

Bundled Instructions

The syntax for bundled instructions is the following:

BUNDLE implicit-def $r0, implicit-def $r1, implicit $r2 {
 $r0 = SOME_OP $r2
 $r1 = ANOTHER_OP internal $r0
}

The first instruction is often a bundle header. The instructions between {
and } are bundled with the first instruction.

Registers

Registers are one of the key primitives in the machine instructions
serialization language. They are primarily used in the
register machine operands,
but they can also be used in a number of other places, like the
basic block’s live in list.

The physical registers are identified by their name and by the ‘$’ prefix sigil.
They use the following syntax:

$<name>

The example below shows three X86 physical registers:

$eax
$r15
$eflags

The virtual registers are identified by their ID number and by the ‘%’ sigil.
They use the following syntax:

%<id>

Example:

%0

The null registers are represented using an underscore (‘_’). They can also be
represented using a ‘$noreg’ named register, although the former syntax
is preferred.

Machine Operands

There are seventeen different kinds of machine operands, and all of them, except
the MCSymbol operand, can be serialized. The MCSymbol operands are
just printed out - they can’t be parsed back yet.

Immediate Operands

The immediate machine operands are untyped, 64-bit signed integers. The
example below shows an instance of the X86 MOV32ri instruction that has an
immediate machine operand -42:

$eax = MOV32ri -42

An immediate operand is also used to represent a subregister index when the
machine instruction has one of the following opcodes:

	EXTRACT_SUBREG

	INSERT_SUBREG

	REG_SEQUENCE

	SUBREG_TO_REG

In case this is true, the Machine Operand is printed according to the target.

For example:

In AArch64RegisterInfo.td:

def sub_32 : SubRegIndex<32>;

If the third operand is an immediate with the value 15 (target-dependent
value), based on the instruction’s opcode and the operand’s index the operand
will be printed as %subreg.sub_32:

%1:gpr64 = SUBREG_TO_REG 0, %0, %subreg.sub_32

For integers > 64bit, we use a special machine operand, MO_CImmediate,
which stores the immediate in a ConstantInt using an APInt (LLVM’s
arbitrary precision integers).

Register Operands

The register primitive is used to represent the register
machine operands. The register operands can also have optional
register flags,
a subregister index,
and a reference to the tied register operand.
The full syntax of a register operand is shown below:

[<flags>] <register> [:<subregister-idx-name>] [(tied-def <tied-op>)]

This example shows an instance of the X86 XOR32rr instruction that has
5 register operands with different register flags:

dead $eax = XOR32rr undef $eax, undef $eax, implicit-def dead $eflags, implicit-def $al

Register Flags

The table below shows all of the possible register flags along with the
corresponding internal llvm::RegState representation:

	Flag

	Internal Value

	implicit

	RegState::Implicit

	implicit-def

	RegState::ImplicitDefine

	def

	RegState::Define

	dead

	RegState::Dead

	killed

	RegState::Kill

	undef

	RegState::Undef

	internal

	RegState::InternalRead

	early-clobber

	RegState::EarlyClobber

	debug-use

	RegState::Debug

	renamable

	RegState::Renamable

Subregister Indices

The register machine operands can reference a portion of a register by using
the subregister indices. The example below shows an instance of the COPY
pseudo instruction that uses the X86 sub_8bit subregister index to copy 8
lower bits from the 32-bit virtual register 0 to the 8-bit virtual register 1:

%1 = COPY %0:sub_8bit

The names of the subregister indices are target specific, and are typically
defined in the target’s *RegisterInfo.td file.

Constant Pool Indices

A constant pool index (CPI) operand is printed using its index in the
function’s MachineConstantPool and an offset.

For example, a CPI with the index 1 and offset 8:

%1:gr64 = MOV64ri %const.1 + 8

For a CPI with the index 0 and offset -12:

%1:gr64 = MOV64ri %const.0 - 12

A constant pool entry is bound to a LLVM IR Constant or a target-specific
MachineConstantPoolValue. When serializing all the function’s constants the
following format is used:

constants:
 - id: <index>
 value: <value>
 alignment: <alignment>
 isTargetSpecific: <target-specific>

where <index> is a 32-bit unsigned integer, <value> is a LLVM IR Constant [https://www.llvm.org/docs/LangRef.html#constants], alignment is a 32-bit
unsigned integer, and <target-specific> is either true or false.

Example:

constants:
 - id: 0
 value: 'double 3.250000e+00'
 alignment: 8
 - id: 1
 value: 'g-(LPC0+8)'
 alignment: 4
 isTargetSpecific: true

Global Value Operands

The global value machine operands reference the global values from the
embedded LLVM IR module.
The example below shows an instance of the X86 MOV64rm instruction that has
a global value operand named G:

$rax = MOV64rm $rip, 1, _, @G, _

The named global values are represented using an identifier with the ‘@’ prefix.
If the identifier doesn’t match the regular expression
[-a-zA-Z$._][-a-zA-Z$._0-9]*, then this identifier must be quoted.

The unnamed global values are represented using an unsigned numeric value with
the ‘@’ prefix, like in the following examples: @0, @989.

Target-dependent Index Operands

A target index operand is a target-specific index and an offset. The
target-specific index is printed using target-specific names and a positive or
negative offset.

For example, the amdgpu-constdata-start is associated with the index 0
in the AMDGPU backend. So if we have a target index operand with the index 0
and the offset 8:

$sgpr2 = S_ADD_U32 _, target-index(amdgpu-constdata-start) + 8, implicit-def _, implicit-def _

Jump-table Index Operands

A jump-table index operand with the index 0 is printed as following:

tBR_JTr killed $r0, %jump-table.0

A machine jump-table entry contains a list of MachineBasicBlocks. When serializing all the function’s jump-table entries, the following format is used:

jumpTable:
 kind: <kind>
 entries:
 - id: <index>
 blocks: [<bbreference>, <bbreference>, ...]

where <kind> is describing how the jump table is represented and emitted (plain address, relocations, PIC, etc.), and each <index> is a 32-bit unsigned integer and blocks contains a list of machine basic block references.

Example:

jumpTable:
 kind: inline
 entries:
 - id: 0
 blocks: ['%bb.3', '%bb.9', '%bb.4.d3']
 - id: 1
 blocks: ['%bb.7', '%bb.7', '%bb.4.d3', '%bb.5']

External Symbol Operands

An external symbol operand is represented using an identifier with the &
prefix. The identifier is surrounded with ““‘s and escaped if it has any
special non-printable characters in it.

Example:

CALL64pcrel32 &__stack_chk_fail, csr_64, implicit $rsp, implicit-def $rsp

MCSymbol Operands

A MCSymbol operand is holding a pointer to a MCSymbol. For the limitations
of this operand in MIR, see limitations.

The syntax is:

EH_LABEL <mcsymbol Ltmp1>

CFIIndex Operands

A CFI Index operand is holding an index into a per-function side-table,
MachineFunction::getFrameInstructions(), which references all the frame
instructions in a MachineFunction. A CFI_INSTRUCTION may look like it
contains multiple operands, but the only operand it contains is the CFI Index.
The other operands are tracked by the MCCFIInstruction object.

The syntax is:

CFI_INSTRUCTION offset $w30, -16

which may be emitted later in the MC layer as:

.cfi_offset w30, -16

IntrinsicID Operands

An Intrinsic ID operand contains a generic intrinsic ID or a target-specific ID.

The syntax for the returnaddress intrinsic is:

$x0 = COPY intrinsic(@llvm.returnaddress)

Predicate Operands

A Predicate operand contains an IR predicate from CmpInst::Predicate, like
ICMP_EQ, etc.

For an int eq predicate ICMP_EQ, the syntax is:

%2:gpr(s32) = G_ICMP intpred(eq), %0, %1

 Coroutines in LLVM

Coroutines in LLVM

	Introduction

	Coroutines by Example

	Coroutine Representation

	Coroutine Transformation

	Avoiding Heap Allocations

	Multiple Suspend Points

	Distinct Save and Suspend

	Coroutine Promise

	Final Suspend

	Intrinsics

	Coroutine Manipulation Intrinsics

	‘llvm.coro.destroy’ Intrinsic

	‘llvm.coro.resume’ Intrinsic

	‘llvm.coro.done’ Intrinsic

	‘llvm.coro.promise’ Intrinsic

	Coroutine Structure Intrinsics

	‘llvm.coro.size’ Intrinsic

	‘llvm.coro.begin’ Intrinsic

	‘llvm.coro.free’ Intrinsic

	‘llvm.coro.alloc’ Intrinsic

	‘llvm.coro.noop’ Intrinsic

	‘llvm.coro.frame’ Intrinsic

	‘llvm.coro.id’ Intrinsic

	‘llvm.coro.end’ Intrinsic

	‘llvm.coro.suspend’ Intrinsic

	‘llvm.coro.save’ Intrinsic

	‘llvm.coro.param’ Intrinsic

	Coroutine Transformation Passes

	CoroEarly

	CoroSplit

	CoroElide

	CoroCleanup

	Areas Requiring Attention

Warning

This is a work in progress. Compatibility across LLVM releases is not
guaranteed.

Introduction

LLVM coroutines are functions that have one or more suspend points.
When a suspend point is reached, the execution of a coroutine is suspended and
control is returned back to its caller. A suspended coroutine can be resumed
to continue execution from the last suspend point or it can be destroyed.

In the following example, we call function f (which may or may not be a
coroutine itself) that returns a handle to a suspended coroutine
(coroutine handle) that is used by main to resume the coroutine twice and
then destroy it:

define i32 @main() {
entry:
 %hdl = call i8* @f(i32 4)
 call void @llvm.coro.resume(i8* %hdl)
 call void @llvm.coro.resume(i8* %hdl)
 call void @llvm.coro.destroy(i8* %hdl)
 ret i32 0
}

In addition to the function stack frame which exists when a coroutine is
executing, there is an additional region of storage that contains objects that
keep the coroutine state when a coroutine is suspended. This region of storage
is called coroutine frame. It is created when a coroutine is called and
destroyed when a coroutine runs to completion or destroyed by a call to
the coro.destroy intrinsic.

An LLVM coroutine is represented as an LLVM function that has calls to
coroutine intrinsics defining the structure of the coroutine.
After lowering, a coroutine is split into several
functions that represent three different ways of how control can enter the
coroutine:

	a ramp function, which represents an initial invocation of the coroutine that
creates the coroutine frame and executes the coroutine code until it
encounters a suspend point or reaches the end of the function;

	a coroutine resume function that is invoked when the coroutine is resumed;

	a coroutine destroy function that is invoked when the coroutine is destroyed.

Note

Splitting out resume and destroy functions are just one of the
possible ways of lowering the coroutine. We chose it for initial
implementation as it matches closely the mental model and results in
reasonably nice code.

Coroutines by Example

Coroutine Representation

Let’s look at an example of an LLVM coroutine with the behavior sketched
by the following pseudo-code.

void *f(int n) {
 for(;;) {
 print(n++);
 <suspend> // returns a coroutine handle on first suspend
 }
}

This coroutine calls some function print with value n as an argument and
suspends execution. Every time this coroutine resumes, it calls print again with an argument one bigger than the last time. This coroutine never completes by itself and must be destroyed explicitly. If we use this coroutine with
a main shown in the previous section. It will call print with values 4, 5
and 6 after which the coroutine will be destroyed.

The LLVM IR for this coroutine looks like this:

define i8* @f(i32 %n) {
entry:
 %id = call token @llvm.coro.id(i32 0, i8* null, i8* null, i8* null)
 %size = call i32 @llvm.coro.size.i32()
 %alloc = call i8* @malloc(i32 %size)
 %hdl = call noalias i8* @llvm.coro.begin(token %id, i8* %alloc)
 br label %loop
loop:
 %n.val = phi i32 [%n, %entry], [%inc, %loop]
 %inc = add nsw i32 %n.val, 1
 call void @print(i32 %n.val)
 %0 = call i8 @llvm.coro.suspend(token none, i1 false)
 switch i8 %0, label %suspend [i8 0, label %loop
 i8 1, label %cleanup]
cleanup:
 %mem = call i8* @llvm.coro.free(token %id, i8* %hdl)
 call void @free(i8* %mem)
 br label %suspend
suspend:
 %unused = call i1 @llvm.coro.end(i8* %hdl, i1 false)
 ret i8* %hdl
}

The entry block establishes the coroutine frame. The coro.size intrinsic is
lowered to a constant representing the size required for the coroutine frame.
The coro.begin intrinsic initializes the coroutine frame and returns the
coroutine handle. The second parameter of coro.begin is given a block of memory
to be used if the coroutine frame needs to be allocated dynamically.
The coro.id intrinsic serves as coroutine identity useful in cases when the
coro.begin intrinsic get duplicated by optimization passes such as
jump-threading.

The cleanup block destroys the coroutine frame. The coro.free intrinsic,
given the coroutine handle, returns a pointer of the memory block to be freed or
null if the coroutine frame was not allocated dynamically. The cleanup
block is entered when coroutine runs to completion by itself or destroyed via
call to the coro.destroy intrinsic.

The suspend block contains code to be executed when coroutine runs to
completion or suspended. The coro.end intrinsic marks the point where
a coroutine needs to return control back to the caller if it is not an initial
invocation of the coroutine.

The loop blocks represents the body of the coroutine. The coro.suspend
intrinsic in combination with the following switch indicates what happens to
control flow when a coroutine is suspended (default case), resumed (case 0) or
destroyed (case 1).

Coroutine Transformation

One of the steps of coroutine lowering is building the coroutine frame. The
def-use chains are analyzed to determine which objects need be kept alive across
suspend points. In the coroutine shown in the previous section, use of virtual register
%n.val is separated from the definition by a suspend point, therefore, it
cannot reside on the stack frame since the latter goes away once the coroutine
is suspended and control is returned back to the caller. An i32 slot is
allocated in the coroutine frame and %n.val is spilled and reloaded from that
slot as needed.

We also store addresses of the resume and destroy functions so that the
coro.resume and coro.destroy intrinsics can resume and destroy the coroutine
when its identity cannot be determined statically at compile time. For our
example, the coroutine frame will be:

%f.frame = type { void (%f.frame*)*, void (%f.frame*)*, i32 }

After resume and destroy parts are outlined, function f will contain only the
code responsible for creation and initialization of the coroutine frame and
execution of the coroutine until a suspend point is reached:

define i8* @f(i32 %n) {
entry:
 %id = call token @llvm.coro.id(i32 0, i8* null, i8* null, i8* null)
 %alloc = call noalias i8* @malloc(i32 24)
 %0 = call noalias i8* @llvm.coro.begin(token %id, i8* %alloc)
 %frame = bitcast i8* %0 to %f.frame*
 %1 = getelementptr %f.frame, %f.frame* %frame, i32 0, i32 0
 store void (%f.frame*)* @f.resume, void (%f.frame*)** %1
 %2 = getelementptr %f.frame, %f.frame* %frame, i32 0, i32 1
 store void (%f.frame*)* @f.destroy, void (%f.frame*)** %2

 %inc = add nsw i32 %n, 1
 %inc.spill.addr = getelementptr inbounds %f.Frame, %f.Frame* %FramePtr, i32 0, i32 2
 store i32 %inc, i32* %inc.spill.addr
 call void @print(i32 %n)

 ret i8* %frame
}

Outlined resume part of the coroutine will reside in function f.resume:

define internal fastcc void @f.resume(%f.frame* %frame.ptr.resume) {
entry:
 %inc.spill.addr = getelementptr %f.frame, %f.frame* %frame.ptr.resume, i64 0, i32 2
 %inc.spill = load i32, i32* %inc.spill.addr, align 4
 %inc = add i32 %n.val, 1
 store i32 %inc, i32* %inc.spill.addr, align 4
 tail call void @print(i32 %inc)
 ret void
}

Whereas function f.destroy will contain the cleanup code for the coroutine:

define internal fastcc void @f.destroy(%f.frame* %frame.ptr.destroy) {
entry:
 %0 = bitcast %f.frame* %frame.ptr.destroy to i8*
 tail call void @free(i8* %0)
 ret void
}

Avoiding Heap Allocations

A particular coroutine usage pattern, which is illustrated by the main
function in the overview section, where a coroutine is created, manipulated and
destroyed by the same calling function, is common for coroutines implementing
RAII idiom and is suitable for allocation elision optimization which avoid
dynamic allocation by storing the coroutine frame as a static alloca in its
caller.

In the entry block, we will call coro.alloc intrinsic that will return true
when dynamic allocation is required, and false if dynamic allocation is
elided.

entry:
 %id = call token @llvm.coro.id(i32 0, i8* null, i8* null, i8* null)
 %need.dyn.alloc = call i1 @llvm.coro.alloc(token %id)
 br i1 %need.dyn.alloc, label %dyn.alloc, label %coro.begin
dyn.alloc:
 %size = call i32 @llvm.coro.size.i32()
 %alloc = call i8* @CustomAlloc(i32 %size)
 br label %coro.begin
coro.begin:
 %phi = phi i8* [null, %entry], [%alloc, %dyn.alloc]
 %hdl = call noalias i8* @llvm.coro.begin(token %id, i8* %phi)

In the cleanup block, we will make freeing the coroutine frame conditional on
coro.free intrinsic. If allocation is elided, coro.free returns null
thus skipping the deallocation code:

cleanup:
 %mem = call i8* @llvm.coro.free(token %id, i8* %hdl)
 %need.dyn.free = icmp ne i8* %mem, null
 br i1 %need.dyn.free, label %dyn.free, label %if.end
dyn.free:
 call void @CustomFree(i8* %mem)
 br label %if.end
if.end:
 ...

With allocations and deallocations represented as described as above, after
coroutine heap allocation elision optimization, the resulting main will be:

define i32 @main() {
entry:
 call void @print(i32 4)
 call void @print(i32 5)
 call void @print(i32 6)
 ret i32 0
}

Multiple Suspend Points

Let’s consider the coroutine that has more than one suspend point:

void *f(int n) {
 for(;;) {
 print(n++);
 <suspend>
 print(-n);
 <suspend>
 }
}

Matching LLVM code would look like (with the rest of the code remaining the same
as the code in the previous section):

loop:
 %n.addr = phi i32 [%n, %entry], [%inc, %loop.resume]
 call void @print(i32 %n.addr) #4
 %2 = call i8 @llvm.coro.suspend(token none, i1 false)
 switch i8 %2, label %suspend [i8 0, label %loop.resume
 i8 1, label %cleanup]
loop.resume:
 %inc = add nsw i32 %n.addr, 1
 %sub = xor i32 %n.addr, -1
 call void @print(i32 %sub)
 %3 = call i8 @llvm.coro.suspend(token none, i1 false)
 switch i8 %3, label %suspend [i8 0, label %loop
 i8 1, label %cleanup]

In this case, the coroutine frame would include a suspend index that will
indicate at which suspend point the coroutine needs to resume. The resume
function will use an index to jump to an appropriate basic block and will look
as follows:

define internal fastcc void @f.Resume(%f.Frame* %FramePtr) {
entry.Resume:
 %index.addr = getelementptr inbounds %f.Frame, %f.Frame* %FramePtr, i64 0, i32 2
 %index = load i8, i8* %index.addr, align 1
 %switch = icmp eq i8 %index, 0
 %n.addr = getelementptr inbounds %f.Frame, %f.Frame* %FramePtr, i64 0, i32 3
 %n = load i32, i32* %n.addr, align 4
 br i1 %switch, label %loop.resume, label %loop

loop.resume:
 %sub = xor i32 %n, -1
 call void @print(i32 %sub)
 br label %suspend
loop:
 %inc = add nsw i32 %n, 1
 store i32 %inc, i32* %n.addr, align 4
 tail call void @print(i32 %inc)
 br label %suspend

suspend:
 %storemerge = phi i8 [0, %loop], [1, %loop.resume]
 store i8 %storemerge, i8* %index.addr, align 1
 ret void
}

If different cleanup code needs to get executed for different suspend points,
a similar switch will be in the f.destroy function.

Note

Using suspend index in a coroutine state and having a switch in f.resume and
f.destroy is one of the possible implementation strategies. We explored
another option where a distinct f.resume1, f.resume2, etc. are created for
every suspend point, and instead of storing an index, the resume and destroy
function pointers are updated at every suspend. Early testing showed that the
current approach is easier on the optimizer than the latter so it is a
lowering strategy implemented at the moment.

Distinct Save and Suspend

In the previous example, setting a resume index (or some other state change that
needs to happen to prepare a coroutine for resumption) happens at the same time as
a suspension of a coroutine. However, in certain cases, it is necessary to control
when coroutine is prepared for resumption and when it is suspended.

In the following example, a coroutine represents some activity that is driven
by completions of asynchronous operations async_op1 and async_op2 which get
a coroutine handle as a parameter and resume the coroutine once async
operation is finished.

void g() {
 for (;;)
 if (cond()) {
 async_op1(<coroutine-handle>); // will resume once async_op1 completes
 <suspend>
 do_one();
 }
 else {
 async_op2(<coroutine-handle>); // will resume once async_op2 completes
 <suspend>
 do_two();
 }
 }
}

In this case, coroutine should be ready for resumption prior to a call to
async_op1 and async_op2. The coro.save intrinsic is used to indicate a
point when coroutine should be ready for resumption (namely, when a resume index
should be stored in the coroutine frame, so that it can be resumed at the
correct resume point):

if.true:
 %save1 = call token @llvm.coro.save(i8* %hdl)
 call void @async_op1(i8* %hdl)
 %suspend1 = call i1 @llvm.coro.suspend(token %save1, i1 false)
 switch i8 %suspend1, label %suspend [i8 0, label %resume1
 i8 1, label %cleanup]
if.false:
 %save2 = call token @llvm.coro.save(i8* %hdl)
 call void @async_op2(i8* %hdl)
 %suspend2 = call i1 @llvm.coro.suspend(token %save2, i1 false)
 switch i8 %suspend1, label %suspend [i8 0, label %resume2
 i8 1, label %cleanup]

Coroutine Promise

A coroutine author or a frontend may designate a distinguished alloca that can
be used to communicate with the coroutine. This distinguished alloca is called
coroutine promise and is provided as the second parameter to the
coro.id intrinsic.

The following coroutine designates a 32 bit integer promise and uses it to
store the current value produced by a coroutine.

define i8* @f(i32 %n) {
entry:
 %promise = alloca i32
 %pv = bitcast i32* %promise to i8*
 %id = call token @llvm.coro.id(i32 0, i8* %pv, i8* null, i8* null)
 %need.dyn.alloc = call i1 @llvm.coro.alloc(token %id)
 br i1 %need.dyn.alloc, label %dyn.alloc, label %coro.begin
dyn.alloc:
 %size = call i32 @llvm.coro.size.i32()
 %alloc = call i8* @malloc(i32 %size)
 br label %coro.begin
coro.begin:
 %phi = phi i8* [null, %entry], [%alloc, %dyn.alloc]
 %hdl = call noalias i8* @llvm.coro.begin(token %id, i8* %phi)
 br label %loop
loop:
 %n.val = phi i32 [%n, %coro.begin], [%inc, %loop]
 %inc = add nsw i32 %n.val, 1
 store i32 %n.val, i32* %promise
 %0 = call i8 @llvm.coro.suspend(token none, i1 false)
 switch i8 %0, label %suspend [i8 0, label %loop
 i8 1, label %cleanup]
cleanup:
 %mem = call i8* @llvm.coro.free(token %id, i8* %hdl)
 call void @free(i8* %mem)
 br label %suspend
suspend:
 %unused = call i1 @llvm.coro.end(i8* %hdl, i1 false)
 ret i8* %hdl
}

A coroutine consumer can rely on the coro.promise intrinsic to access the
coroutine promise.

define i32 @main() {
entry:
 %hdl = call i8* @f(i32 4)
 %promise.addr.raw = call i8* @llvm.coro.promise(i8* %hdl, i32 4, i1 false)
 %promise.addr = bitcast i8* %promise.addr.raw to i32*
 %val0 = load i32, i32* %promise.addr
 call void @print(i32 %val0)
 call void @llvm.coro.resume(i8* %hdl)
 %val1 = load i32, i32* %promise.addr
 call void @print(i32 %val1)
 call void @llvm.coro.resume(i8* %hdl)
 %val2 = load i32, i32* %promise.addr
 call void @print(i32 %val2)
 call void @llvm.coro.destroy(i8* %hdl)
 ret i32 0
}

After example in this section is compiled, result of the compilation will be:

define i32 @main() {
entry:
 tail call void @print(i32 4)
 tail call void @print(i32 5)
 tail call void @print(i32 6)
 ret i32 0
}

Final Suspend

A coroutine author or a frontend may designate a particular suspend to be final,
by setting the second argument of the coro.suspend intrinsic to true.
Such a suspend point has two properties:

	it is possible to check whether a suspended coroutine is at the final suspend
point via coro.done intrinsic;

	a resumption of a coroutine stopped at the final suspend point leads to
undefined behavior. The only possible action for a coroutine at a final
suspend point is destroying it via coro.destroy intrinsic.

From the user perspective, the final suspend point represents an idea of a
coroutine reaching the end. From the compiler perspective, it is an optimization
opportunity for reducing number of resume points (and therefore switch cases) in
the resume function.

The following is an example of a function that keeps resuming the coroutine
until the final suspend point is reached after which point the coroutine is
destroyed:

define i32 @main() {
entry:
 %hdl = call i8* @f(i32 4)
 br label %while
while:
 call void @llvm.coro.resume(i8* %hdl)
 %done = call i1 @llvm.coro.done(i8* %hdl)
 br i1 %done, label %end, label %while
end:
 call void @llvm.coro.destroy(i8* %hdl)
 ret i32 0
}

Usually, final suspend point is a frontend injected suspend point that does not
correspond to any explicitly authored suspend point of the high level language.
For example, for a Python generator that has only one suspend point:

def coroutine(n):
 for i in range(n):
 yield i

Python frontend would inject two more suspend points, so that the actual code
looks like this:

void* coroutine(int n) {
 int current_value;
 <designate current_value to be coroutine promise>
 <SUSPEND> // injected suspend point, so that the coroutine starts suspended
 for (int i = 0; i < n; ++i) {
 current_value = i; <SUSPEND>; // corresponds to "yield i"
 }
 <SUSPEND final=true> // injected final suspend point
}

and python iterator __next__ would look like:

int __next__(void* hdl) {
 coro.resume(hdl);
 if (coro.done(hdl)) throw StopIteration();
 return *(int*)coro.promise(hdl, 4, false);
}

Intrinsics

Coroutine Manipulation Intrinsics

Intrinsics described in this section are used to manipulate an existing
coroutine. They can be used in any function which happen to have a pointer
to a coroutine frame or a pointer to a coroutine promise.

‘llvm.coro.destroy’ Intrinsic

Syntax:

declare void @llvm.coro.destroy(i8* <handle>)

Overview:

The ‘llvm.coro.destroy’ intrinsic destroys a suspended
coroutine.

Arguments:

The argument is a coroutine handle to a suspended coroutine.

Semantics:

When possible, the coro.destroy intrinsic is replaced with a direct call to
the coroutine destroy function. Otherwise it is replaced with an indirect call
based on the function pointer for the destroy function stored in the coroutine
frame. Destroying a coroutine that is not suspended leads to undefined behavior.

‘llvm.coro.resume’ Intrinsic

declare void @llvm.coro.resume(i8* <handle>)

Overview:

The ‘llvm.coro.resume’ intrinsic resumes a suspended coroutine.

Arguments:

The argument is a handle to a suspended coroutine.

Semantics:

When possible, the coro.resume intrinsic is replaced with a direct call to the
coroutine resume function. Otherwise it is replaced with an indirect call based
on the function pointer for the resume function stored in the coroutine frame.
Resuming a coroutine that is not suspended leads to undefined behavior.

‘llvm.coro.done’ Intrinsic

declare i1 @llvm.coro.done(i8* <handle>)

Overview:

The ‘llvm.coro.done’ intrinsic checks whether a suspended coroutine is at
the final suspend point or not.

Arguments:

The argument is a handle to a suspended coroutine.

Semantics:

Using this intrinsic on a coroutine that does not have a final suspend point
or on a coroutine that is not suspended leads to undefined behavior.

‘llvm.coro.promise’ Intrinsic

declare i8* @llvm.coro.promise(i8* <ptr>, i32 <alignment>, i1 <from>)

Overview:

The ‘llvm.coro.promise’ intrinsic obtains a pointer to a
coroutine promise given a coroutine handle and vice versa.

Arguments:

The first argument is a handle to a coroutine if from is false. Otherwise,
it is a pointer to a coroutine promise.

The second argument is an alignment requirements of the promise.
If a frontend designated %promise = alloca i32 as a promise, the alignment
argument to coro.promise should be the alignment of i32 on the target
platform. If a frontend designated %promise = alloca i32, align 16 as a
promise, the alignment argument should be 16.
This argument only accepts constants.

The third argument is a boolean indicating a direction of the transformation.
If from is true, the intrinsic returns a coroutine handle given a pointer
to a promise. If from is false, the intrinsics return a pointer to a promise
from a coroutine handle. This argument only accepts constants.

Semantics:

Using this intrinsic on a coroutine that does not have a coroutine promise
leads to undefined behavior. It is possible to read and modify coroutine
promise of the coroutine which is currently executing. The coroutine author and
a coroutine user are responsible to makes sure there is no data races.

Example:

define i8* @f(i32 %n) {
entry:
 %promise = alloca i32
 %pv = bitcast i32* %promise to i8*
 ; the second argument to coro.id points to the coroutine promise.
 %id = call token @llvm.coro.id(i32 0, i8* %pv, i8* null, i8* null)
 ...
 %hdl = call noalias i8* @llvm.coro.begin(token %id, i8* %alloc)
 ...
 store i32 42, i32* %promise ; store something into the promise
 ...
 ret i8* %hdl
}

define i32 @main() {
entry:
 %hdl = call i8* @f(i32 4) ; starts the coroutine and returns its handle
 %promise.addr.raw = call i8* @llvm.coro.promise(i8* %hdl, i32 4, i1 false)
 %promise.addr = bitcast i8* %promise.addr.raw to i32*
 %val = load i32, i32* %promise.addr ; load a value from the promise
 call void @print(i32 %val)
 call void @llvm.coro.destroy(i8* %hdl)
 ret i32 0
}

Coroutine Structure Intrinsics

Intrinsics described in this section are used within a coroutine to describe
the coroutine structure. They should not be used outside of a coroutine.

‘llvm.coro.size’ Intrinsic

declare i32 @llvm.coro.size.i32()
declare i64 @llvm.coro.size.i64()

Overview:

The ‘llvm.coro.size’ intrinsic returns the number of bytes
required to store a coroutine frame.

Arguments:

None

Semantics:

The coro.size intrinsic is lowered to a constant representing the size of
the coroutine frame.

‘llvm.coro.begin’ Intrinsic

declare i8* @llvm.coro.begin(token <id>, i8* <mem>)

Overview:

The ‘llvm.coro.begin’ intrinsic returns an address of the coroutine frame.

Arguments:

The first argument is a token returned by a call to ‘llvm.coro.id’
identifying the coroutine.

The second argument is a pointer to a block of memory where coroutine frame
will be stored if it is allocated dynamically.

Semantics:

Depending on the alignment requirements of the objects in the coroutine frame
and/or on the codegen compactness reasons the pointer returned from coro.begin
may be at offset to the %mem argument. (This could be beneficial if
instructions that express relative access to data can be more compactly encoded
with small positive and negative offsets).

A frontend should emit exactly one coro.begin intrinsic per coroutine.

‘llvm.coro.free’ Intrinsic

declare i8* @llvm.coro.free(token %id, i8* <frame>)

Overview:

The ‘llvm.coro.free’ intrinsic returns a pointer to a block of memory where
coroutine frame is stored or null if this instance of a coroutine did not use
dynamically allocated memory for its coroutine frame.

Arguments:

The first argument is a token returned by a call to ‘llvm.coro.id’
identifying the coroutine.

The second argument is a pointer to the coroutine frame. This should be the same
pointer that was returned by prior coro.begin call.

Example (custom deallocation function):

cleanup:
 %mem = call i8* @llvm.coro.free(token %id, i8* %frame)
 %mem_not_null = icmp ne i8* %mem, null
 br i1 %mem_not_null, label %if.then, label %if.end
if.then:
 call void @CustomFree(i8* %mem)
 br label %if.end
if.end:
 ret void

Example (standard deallocation functions):

cleanup:
 %mem = call i8* @llvm.coro.free(token %id, i8* %frame)
 call void @free(i8* %mem)
 ret void

‘llvm.coro.alloc’ Intrinsic

declare i1 @llvm.coro.alloc(token <id>)

Overview:

The ‘llvm.coro.alloc’ intrinsic returns true if dynamic allocation is
required to obtain a memory for the coroutine frame and false otherwise.

Arguments:

The first argument is a token returned by a call to ‘llvm.coro.id’
identifying the coroutine.

Semantics:

A frontend should emit at most one coro.alloc intrinsic per coroutine.
The intrinsic is used to suppress dynamic allocation of the coroutine frame
when possible.

Example:

entry:
 %id = call token @llvm.coro.id(i32 0, i8* null, i8* null, i8* null)
 %dyn.alloc.required = call i1 @llvm.coro.alloc(token %id)
 br i1 %dyn.alloc.required, label %coro.alloc, label %coro.begin

coro.alloc:
 %frame.size = call i32 @llvm.coro.size()
 %alloc = call i8* @MyAlloc(i32 %frame.size)
 br label %coro.begin

coro.begin:
 %phi = phi i8* [null, %entry], [%alloc, %coro.alloc]
 %frame = call i8* @llvm.coro.begin(token %id, i8* %phi)

‘llvm.coro.noop’ Intrinsic

declare i8* @llvm.coro.noop()

Overview:

The ‘llvm.coro.noop’ intrinsic returns an address of the coroutine frame of
a coroutine that does nothing when resumed or destroyed.

Arguments:

None

Semantics:

This intrinsic is lowered to refer to a private constant coroutine frame. The
resume and destroy handlers for this frame are empty functions that do nothing.
Note that in different translation units llvm.coro.noop may return different pointers.

‘llvm.coro.frame’ Intrinsic

declare i8* @llvm.coro.frame()

Overview:

The ‘llvm.coro.frame’ intrinsic returns an address of the coroutine frame of
the enclosing coroutine.

Arguments:

None

Semantics:

This intrinsic is lowered to refer to the coro.begin instruction. This is
a frontend convenience intrinsic that makes it easier to refer to the
coroutine frame.

‘llvm.coro.id’ Intrinsic

declare token @llvm.coro.id(i32 <align>, i8* <promise>, i8* <coroaddr>,
 i8* <fnaddrs>)

Overview:

The ‘llvm.coro.id’ intrinsic returns a token identifying a coroutine.

Arguments:

The first argument provides information on the alignment of the memory returned
by the allocation function and given to coro.begin by the first argument. If
this argument is 0, the memory is assumed to be aligned to 2 * sizeof(i8*).
This argument only accepts constants.

The second argument, if not null, designates a particular alloca instruction
to be a coroutine promise.

The third argument is null coming out of the frontend. The CoroEarly pass sets
this argument to point to the function this coro.id belongs to.

The fourth argument is null before coroutine is split, and later is replaced
to point to a private global constant array containing function pointers to
outlined resume and destroy parts of the coroutine.

Semantics:

The purpose of this intrinsic is to tie together coro.id, coro.alloc and
coro.begin belonging to the same coroutine to prevent optimization passes from
duplicating any of these instructions unless entire body of the coroutine is
duplicated.

A frontend should emit exactly one coro.id intrinsic per coroutine.

‘llvm.coro.end’ Intrinsic

declare i1 @llvm.coro.end(i8* <handle>, i1 <unwind>)

Overview:

The ‘llvm.coro.end’ marks the point where execution of the resume part of
the coroutine should end and control should return to the caller.

Arguments:

The first argument should refer to the coroutine handle of the enclosing
coroutine. A frontend is allowed to supply null as the first parameter, in this
case coro-early pass will replace the null with an appropriate coroutine
handle value.

The second argument should be true if this coro.end is in the block that is
part of the unwind sequence leaving the coroutine body due to an exception and
false otherwise.

Semantics:

The purpose of this intrinsic is to allow frontends to mark the cleanup and
other code that is only relevant during the initial invocation of the coroutine
and should not be present in resume and destroy parts.

This intrinsic is lowered when a coroutine is split into
the start, resume and destroy parts. In the start part, it is a no-op,
in resume and destroy parts, it is replaced with ret void instruction and
the rest of the block containing coro.end instruction is discarded.
In landing pads it is replaced with an appropriate instruction to unwind to
caller. The handling of coro.end differs depending on whether the target is
using landingpad or WinEH exception model.

For landingpad based exception model, it is expected that frontend uses the
coro.end intrinsic as follows:

ehcleanup:
 %InResumePart = call i1 @llvm.coro.end(i8* null, i1 true)
 br i1 %InResumePart, label %eh.resume, label %cleanup.cont

cleanup.cont:
 ; rest of the cleanup

eh.resume:
 %exn = load i8*, i8** %exn.slot, align 8
 %sel = load i32, i32* %ehselector.slot, align 4
 %lpad.val = insertvalue { i8*, i32 } undef, i8* %exn, 0
 %lpad.val29 = insertvalue { i8*, i32 } %lpad.val, i32 %sel, 1
 resume { i8*, i32 } %lpad.val29

The CoroSpit pass replaces coro.end with True in the resume functions,
thus leading to immediate unwind to the caller, whereas in start function it
is replaced with False, thus allowing to proceed to the rest of the cleanup
code that is only needed during initial invocation of the coroutine.

For Windows Exception handling model, a frontend should attach a funclet bundle
referring to an enclosing cleanuppad as follows:

ehcleanup:
 %tok = cleanuppad within none []
 %unused = call i1 @llvm.coro.end(i8* null, i1 true) ["funclet"(token %tok)]
 cleanupret from %tok unwind label %RestOfTheCleanup

The CoroSplit pass, if the funclet bundle is present, will insert
cleanupret from %tok unwind to caller before
the coro.end intrinsic and will remove the rest of the block.

The following table summarizes the handling of coro.end intrinsic.

	
	In Start Function

	In Resume/Destroy Functions

	unwind=false

	nothing

	ret void

	unwind=true

	WinEH

	nothing

	cleanupret unwind to caller

	Landingpad

	nothing

	nothing

‘llvm.coro.suspend’ Intrinsic

declare i8 @llvm.coro.suspend(token <save>, i1 <final>)

Overview:

The ‘llvm.coro.suspend’ marks the point where execution of the coroutine
need to get suspended and control returned back to the caller.
Conditional branches consuming the result of this intrinsic lead to basic blocks
where coroutine should proceed when suspended (-1), resumed (0) or destroyed
(1).

Arguments:

The first argument refers to a token of coro.save intrinsic that marks the
point when coroutine state is prepared for suspension. If none token is passed,
the intrinsic behaves as if there were a coro.save immediately preceding
the coro.suspend intrinsic.

The second argument indicates whether this suspension point is final.
The second argument only accepts constants. If more than one suspend point is
designated as final, the resume and destroy branches should lead to the same
basic blocks.

Example (normal suspend point):

%0 = call i8 @llvm.coro.suspend(token none, i1 false)
switch i8 %0, label %suspend [i8 0, label %resume
 i8 1, label %cleanup]

Example (final suspend point):

while.end:
 %s.final = call i8 @llvm.coro.suspend(token none, i1 true)
 switch i8 %s.final, label %suspend [i8 0, label %trap
 i8 1, label %cleanup]
trap:
 call void @llvm.trap()
 unreachable

Semantics:

If a coroutine that was suspended at the suspend point marked by this intrinsic
is resumed via coro.resume the control will transfer to the basic block
of the 0-case. If it is resumed via coro.destroy, it will proceed to the
basic block indicated by the 1-case. To suspend, coroutine proceed to the
default label.

If suspend intrinsic is marked as final, it can consider the true branch
unreachable and can perform optimizations that can take advantage of that fact.

‘llvm.coro.save’ Intrinsic

declare token @llvm.coro.save(i8* <handle>)

Overview:

The ‘llvm.coro.save’ marks the point where a coroutine need to update its
state to prepare for resumption to be considered suspended (and thus eligible
for resumption).

Arguments:

The first argument points to a coroutine handle of the enclosing coroutine.

Semantics:

Whatever coroutine state changes are required to enable resumption of
the coroutine from the corresponding suspend point should be done at the point
of coro.save intrinsic.

Example:

Separate save and suspend points are necessary when a coroutine is used to
represent an asynchronous control flow driven by callbacks representing
completions of asynchronous operations.

In such a case, a coroutine should be ready for resumption prior to a call to
async_op function that may trigger resumption of a coroutine from the same or
a different thread possibly prior to async_op call returning control back
to the coroutine:

%save1 = call token @llvm.coro.save(i8* %hdl)
call void @async_op1(i8* %hdl)
%suspend1 = call i1 @llvm.coro.suspend(token %save1, i1 false)
switch i8 %suspend1, label %suspend [i8 0, label %resume1
 i8 1, label %cleanup]

‘llvm.coro.param’ Intrinsic

declare i1 @llvm.coro.param(i8* <original>, i8* <copy>)

Overview:

The ‘llvm.coro.param’ is used by a frontend to mark up the code used to
construct and destruct copies of the parameters. If the optimizer discovers that
a particular parameter copy is not used after any suspends, it can remove the
construction and destruction of the copy by replacing corresponding coro.param
with i1 false and replacing any use of the copy with the original.

Arguments:

The first argument points to an alloca storing the value of a parameter to a
coroutine.

The second argument points to an alloca storing the value of the copy of that
parameter.

Semantics:

The optimizer is free to always replace this intrinsic with i1 true.

The optimizer is also allowed to replace it with i1 false provided that the
parameter copy is only used prior to control flow reaching any of the suspend
points. The code that would be DCE’d if the coro.param is replaced with
i1 false is not considered to be a use of the parameter copy.

The frontend can emit this intrinsic if its language rules allow for this
optimization.

Example:

Consider the following example. A coroutine takes two parameters a and b
that has a destructor and a move constructor.

struct A { ~A(); A(A&&); bool foo(); void bar(); };

task<int> f(A a, A b) {
 if (a.foo())
 return 42;

 a.bar();
 co_await read_async(); // introduces suspend point
 b.bar();
}

Note that, uses of b is used after a suspend point and thus must be copied
into a coroutine frame, whereas a does not have to, since it never used
after suspend.

A frontend can create parameter copies for a and b as follows:

task<int> f(A a', A b') {
 a = alloca A;
 b = alloca A;
 // move parameters to its copies
 if (coro.param(a', a)) A::A(a, A&& a');
 if (coro.param(b', b)) A::A(b, A&& b');
 ...
 // destroy parameters copies
 if (coro.param(a', a)) A::~A(a);
 if (coro.param(b', b)) A::~A(b);
}

The optimizer can replace coro.param(a’,a) with i1 false and replace all uses
of a with a’, since it is not used after suspend.

The optimizer must replace coro.param(b’, b) with i1 true, since b is used
after suspend and therefore, it has to reside in the coroutine frame.

Coroutine Transformation Passes

CoroEarly

The pass CoroEarly lowers coroutine intrinsics that hide the details of the
structure of the coroutine frame, but, otherwise not needed to be preserved to
help later coroutine passes. This pass lowers coro.frame, coro.done,
and coro.promise intrinsics.

CoroSplit

The pass CoroSplit buides coroutine frame and outlines resume and destroy parts
into separate functions.

CoroElide

The pass CoroElide examines if the inlined coroutine is eligible for heap
allocation elision optimization. If so, it replaces
coro.begin intrinsic with an address of a coroutine frame placed on its caller
and replaces coro.alloc and coro.free intrinsics with false and null
respectively to remove the deallocation code.
This pass also replaces coro.resume and coro.destroy intrinsics with direct
calls to resume and destroy functions for a particular coroutine where possible.

CoroCleanup

This pass runs late to lower all coroutine related intrinsics not replaced by
earlier passes.

Areas Requiring Attention

	A coroutine frame is bigger than it could be. Adding stack packing and stack
coloring like optimization on the coroutine frame will result in tighter
coroutine frames.

	Take advantage of the lifetime intrinsics for the data that goes into the
coroutine frame. Leave lifetime intrinsics as is for the data that stays in
allocas.

	The CoroElide optimization pass relies on coroutine ramp function to be
inlined. It would be beneficial to split the ramp function further to
increase the chance that it will get inlined into its caller.

	Design a convention that would make it possible to apply coroutine heap
elision optimization across ABI boundaries.

	Cannot handle coroutines with inalloca parameters (used in x86 on Windows).

	Alignment is ignored by coro.begin and coro.free intrinsics.

	Make required changes to make sure that coroutine optimizations work with
LTO.

	More tests, more tests, more tests

 Global Instruction Selection

Global Instruction Selection

	Introduction

	Generic Machine IR

	Core Pipeline

	Maintainability

	Progress and Future Work

	Porting GlobalISel to A New Target

	Resources

Warning

This document is a work in progress. It reflects the current state of the
implementation, as well as open design and implementation issues.

Introduction

GlobalISel is a framework that provides a set of reusable passes and utilities
for instruction selection — translation from LLVM IR to target-specific
Machine IR (MIR).

GlobalISel is intended to be a replacement for SelectionDAG and FastISel, to
solve three major problems:

	Performance — SelectionDAG introduces a dedicated intermediate
representation, which has a compile-time cost.

GlobalISel directly operates on the post-isel representation used by the
rest of the code generator, MIR.
It does require extensions to that representation to support arbitrary
incoming IR: Generic Machine IR.

	Granularity — SelectionDAG and FastISel operate on individual basic
blocks, losing some global optimization opportunities.

GlobalISel operates on the whole function.

	Modularity — SelectionDAG and FastISel are radically different and share
very little code.

GlobalISel is built in a way that enables code reuse. For instance, both the
optimized and fast selectors share the Core Pipeline, and targets can
configure that pipeline to better suit their needs.

Generic Machine IR

Machine IR operates on physical registers, register classes, and (mostly)
target-specific instructions.

To bridge the gap with LLVM IR, GlobalISel introduces “generic” extensions to
Machine IR:

	Generic Instructions

	Generic Virtual Registers

	Register Bank

	Low Level Type

NOTE:
The generic MIR (GMIR) representation still contains references to IR
constructs (such as GlobalValue). Removing those should let us write more
accurate tests, or delete IR after building the initial MIR. However, it is
not part of the GlobalISel effort.

Generic Instructions

The main addition is support for pre-isel generic machine instructions (e.g.,
G_ADD). Like other target-independent instructions (e.g., COPY or
PHI), these are available on all targets.

TODO:
While we’re progressively adding instructions, one kind in particular exposes
interesting problems: compares and how to represent condition codes.
Some targets (x86, ARM) have generic comparisons setting multiple flags,
which are then used by predicated variants.
Others (IR) specify the predicate in the comparison and users just get a single
bit. SelectionDAG uses SETCC/CONDBR vs BR_CC (and similar for select) to
represent this.

The MachineIRBuilder class wraps the MachineInstrBuilder and provides
a convenient way to create these generic instructions.

Generic Virtual Registers

Generic instructions operate on a new kind of register: “generic” virtual
registers. As opposed to non-generic vregs, they are not assigned a Register
Class. Instead, generic vregs have a Low Level Type, and can be assigned
a Register Bank.

MachineRegisterInfo tracks the same information that it does for
non-generic vregs (e.g., use-def chains). Additionally, it also tracks the
Low Level Type of the register, and, instead of the TargetRegisterClass,
its Register Bank, if any.

For simplicity, most generic instructions only accept generic vregs:

	instead of immediates, they use a gvreg defined by an instruction
materializing the immediate value (see Constant Lowering).

	instead of physical register, they use a gvreg defined by a COPY.

NOTE:
We started with an alternative representation, where MRI tracks a size for
each gvreg, and instructions have lists of types.
That had two flaws: the type and size are redundant, and there was no generic
way of getting a given operand’s type (as there was no 1:1 mapping between
instruction types and operands).
We considered putting the type in some variant of MCInstrDesc instead:
See PR26576 [http://llvm.org/PR26576]: [GlobalISel] Generic MachineInstrs
need a type but this increases the memory footprint of the related objects

Register Bank

A Register Bank is a set of register classes defined by the target.
A bank has a size, which is the maximum store size of all covered classes.

In general, cross-class copies inside a bank are expected to be cheaper than
copies across banks. They are also coalesceable by the register coalescer,
whereas cross-bank copies are not.

Also, equivalent operations can be performed on different banks using different
instructions.

For example, X86 can be seen as having 3 main banks: general-purpose, x87, and
vector (which could be further split into a bank per domain for single vs
double precision instructions).

Register banks are described by a target-provided API,
RegisterBankInfo.

Low Level Type

Additionally, every generic virtual register has a type, represented by an
instance of the LLT class.

Like EVT/MVT/Type, it has no distinction between unsigned and signed
integer types. Furthermore, it also has no distinction between integer and
floating-point types: it mainly conveys absolutely necessary information, such
as size and number of vector lanes:

	sN for scalars

	pN for pointers

	<N x sM> for vectors

	unsized for labels, etc..

LLT is intended to replace the usage of EVT in SelectionDAG.

Here are some LLT examples and their EVT and Type equivalents:

	LLT

	EVT

	IR Type

	s1

	i1

	i1

	s8

	i8

	i8

	s32

	i32

	i32

	s32

	f32

	float

	s17

	i17

	i17

	s16

	N/A

	{i8, i8}

	s32

	N/A

	[4 x i8]

	p0

	iPTR

	i8*, i32*, %opaque*

	p2

	iPTR

	i8 addrspace(2)*

	<4 x s32>

	v4f32

	<4 x float>

	s64

	v1f64

	<1 x double>

	<3 x s32>

	v3i32

	<3 x i32>

	unsized

	Other

	label

Rationale: instructions already encode a specific interpretation of types
(e.g., add vs. fadd, or sdiv vs. udiv). Also encoding that
information in the type system requires introducing bitcast with no real
advantage for the selector.

Pointer types are distinguished by address space. This matches IR, as opposed
to SelectionDAG where address space is an attribute on operations.
This representation better supports pointers having different sizes depending
on their addressspace.

NOTE:
Currently, LLT requires at least 2 elements in vectors, but some targets have
the concept of a ‘1-element vector’. Representing them as their underlying
scalar type is a nice simplification.

TODO:
Currently, non-generic virtual registers, defined by non-pre-isel-generic
instructions, cannot have a type, and thus cannot be used by a pre-isel generic
instruction. Instead, they are given a type using a COPY. We could relax that
and allow types on all vregs: this would reduce the number of MI required when
emitting target-specific MIR early in the pipeline. This should purely be
a compile-time optimization.

Core Pipeline

There are four required passes, regardless of the optimization mode:

	IRTranslator

	API: CallLowering

	Aggregates

	Constant Lowering

	Legalizer

	API: LegalizerInfo

	Non-power of 2 types

	Vector types

	RegBankSelect

	API: RegisterBankInfo

	RegBankSelect Modes

	InstructionSelect

	API: InstructionSelector

	SelectionDAG Rule Imports

	PatLeaf Predicates

	Custom SDNodes

	ComplexPatterns

Additional passes can then be inserted at higher optimization levels or for
specific targets. For example, to match the current SelectionDAG set of
transformations: MachineCSE and a better MachineCombiner between every pass.

NOTE:
In theory, not all passes are always necessary.
As an additional compile-time optimization, we could skip some of the passes by
setting the relevant MachineFunction properties. For instance, if the
IRTranslator did not encounter any illegal instruction, it would set the
legalized property to avoid running the Legalizer.
Similarly, we considered specializing the IRTranslator per-target to directly
emit target-specific MI.
However, we instead decided to keep the core pipeline simple, and focus on
minimizing the overhead of the passes in the no-op cases.

IRTranslator

This pass translates the input LLVM IR Function to a GMIR
MachineFunction.

TODO:
This currently doesn’t support the more complex instructions, in particular
those involving control flow (switch, invoke, …).
For switch in particular, we can initially use the LowerSwitch pass.

API: CallLowering

The IRTranslator (using the CallLowering target-provided utility) also
implements the ABI’s calling convention by lowering calls, returns, and
arguments to the appropriate physical register usage and instruction sequences.

Aggregates

Aggregates are lowered to a single scalar vreg.
This differs from SelectionDAG’s multiple vregs via GetValueVTs.

TODO:
As some of the bits are undef (padding), we should consider augmenting the
representation with additional metadata (in effect, caching computeKnownBits
information on vregs).
See PR26161 [http://llvm.org/PR26161]: [GlobalISel] Value to vreg during
IR to MachineInstr translation for aggregate type

Constant Lowering

The IRTranslator lowers Constant operands into uses of gvregs defined
by G_CONSTANT or G_FCONSTANT instructions.
Currently, these instructions are always emitted in the entry basic block.
In a MachineFunction, each Constant is materialized by a single gvreg.

This is beneficial as it allows us to fold constants into immediate operands
during InstructionSelect, while still avoiding redundant materializations
for expensive non-foldable constants.
However, this can lead to unnecessary spills and reloads in an -O0 pipeline, as
these vregs can have long live ranges.

TODO:
We’re investigating better placement of these instructions, in fast and
optimized modes.

Legalizer

This pass transforms the generic machine instructions such that they are legal.

A legal instruction is defined as:

	selectable — the target will later be able to select it to a
target-specific (non-generic) instruction.

	operating on vregs that can be loaded and stored – if necessary, the
target can select a G_LOAD/G_STORE of each gvreg operand.

As opposed to SelectionDAG, there are no legalization phases. In particular,
‘type’ and ‘operation’ legalization are not separate.

Legalization is iterative, and all state is contained in GMIR. To maintain the
validity of the intermediate code, instructions are introduced:

	G_MERGE_VALUES — concatenate multiple registers of the same
size into a single wider register.

	G_UNMERGE_VALUES — extract multiple registers of the same size
from a single wider register.

	G_EXTRACT — extract a simple register (as contiguous sequences of bits)
from a single wider register.

As they are expected to be temporary byproducts of the legalization process,
they are combined at the end of the Legalizer pass.
If any remain, they are expected to always be selectable, using loads and stores
if necessary.

API: LegalizerInfo

Currently the API is broadly similar to SelectionDAG/TargetLowering, but
extended in two ways:

	The set of available actions is wider, avoiding the currently very
overloaded Expand (which can cover everything from libcalls to
scalarization depending on the node’s opcode).

	Since there’s no separate type legalization, independently varying
types on an instruction can have independent actions. For example a
G_ICMP has 2 independent types: the result and the inputs; we need
to be able to say that comparing 2 s32s is OK, but the s1 result
must be dealt with in another way.

As such, the primary key when deciding what to do is the InstrAspect,
essentially a tuple consisting of (Opcode, TypeIdx, Type) and mapping to a
suggested course of action.

An example use might be:

// The CPU can't deal with an s1 result, do something about it.
setAction({G_ICMP, 0, s1}, WidenScalar);
// An s32 input (the second type) is fine though.
setAction({G_ICMP, 1, s32}, Legal);

TODO:
An alternative worth investigating is to generalize the API to represent
actions using std::function that implements the action, instead of explicit
enum tokens (Legal, WidenScalar, …).

TODO:
Moreover, we could use TableGen to initially infer legality of operation from
existing patterns (as any pattern we can select is by definition legal).
Expanding that to describe legalization actions is a much larger but
potentially useful project.

Non-power of 2 types

TODO:
Types which have a size that isn’t a power of 2 aren’t currently supported.
The setAction API will probably require changes to support them.
Even notionally explicitly specified operations only make suggestions
like “Widen” or “Narrow”. The eventual type is still unspecified and a
search is performed by repeated doubling/halving of the type’s
size.
This is incorrect for types that aren’t a power of 2. It’s reasonable to
expect we could construct an efficient set of side-tables for more general
lookups though, encoding a map from the integers (i.e. the size of the current
type) to types (the legal size).

Vector types

Vectors first get their element type legalized: <A x sB> becomes
<A x sC> such that at least one operation is legal with sC.

This is currently specified by the function setScalarInVectorAction, called
for example as:

setScalarInVectorAction(G_ICMP, s1, WidenScalar);

Next the number of elements is chosen so that the entire operation is
legal. This aspect is not controllable at the moment, but probably
should be (you could imagine disagreements on whether a <2 x s8>
operation should be scalarized or extended to <8 x s8>).

RegBankSelect

This pass constrains the Generic Virtual Registers operands of generic
instructions to some Register Bank.

It iteratively maps instructions to a set of per-operand bank assignment.
The possible mappings are determined by the target-provided
RegisterBankInfo.
The mapping is then applied, possibly introducing COPY instructions if
necessary.

It traverses the MachineFunction top down so that all operands are already
mapped when analyzing an instruction.

This pass could also remap target-specific instructions when beneficial.
In the future, this could replace the ExeDepsFix pass, as we can directly
select the best variant for an instruction that’s available on multiple banks.

API: RegisterBankInfo

The RegisterBankInfo class describes multiple aspects of register banks.

	Banks: addRegBankCoverage — which register bank covers each
register class.

	Cross-Bank Copies: copyCost — the cost of a COPY from one bank
to another.

	Default Mapping: getInstrMapping — the default bank assignments for
a given instruction.

	Alternative Mapping: getInstrAlternativeMapping — the other
possible bank assignments for a given instruction.

TODO:
All this information should eventually be static and generated by TableGen,
mostly using existing information augmented by bank descriptions.

TODO:
getInstrMapping is currently separate from getInstrAlternativeMapping
because the latter is more expensive: as we move to static mapping info,
both methods should be free, and we should merge them.

RegBankSelect Modes

RegBankSelect currently has two modes:

	Fast — For each instruction, pick a target-provided “default” bank
assignment. This is the default at -O0.

	Greedy — For each instruction, pick the cheapest of several
target-provided bank assignment alternatives.

We intend to eventually introduce an additional optimizing mode:

	Global — Across multiple instructions, pick the cheapest combination of
bank assignments.

NOTE:
On AArch64, we are considering using the Greedy mode even at -O0 (or perhaps at
backend -O1): because Low Level Type doesn’t distinguish floating point from
integer scalars, the default assignment for loads and stores is the integer
bank, introducing cross-bank copies on most floating point operations.

InstructionSelect

This pass transforms generic machine instructions into equivalent
target-specific instructions. It traverses the MachineFunction bottom-up,
selecting uses before definitions, enabling trivial dead code elimination.

API: InstructionSelector

The target implements the InstructionSelector class, containing the
target-specific selection logic proper.

The instance is provided by the subtarget, so that it can specialize the
selector by subtarget feature (with, e.g., a vector selector overriding parts
of a general-purpose common selector).
We might also want to parameterize it by MachineFunction, to enable selector
variants based on function attributes like optsize.

The simple API consists of:

virtual bool select(MachineInstr &MI)

This target-provided method is responsible for mutating (or replacing) a
possibly-generic MI into a fully target-specific equivalent.
It is also responsible for doing the necessary constraining of gvregs into the
appropriate register classes as well as passing through COPY instructions to
the register allocator.

The InstructionSelector can fold other instructions into the selected MI,
by walking the use-def chain of the vreg operands.
As GlobalISel is Global, this folding can occur across basic blocks.

SelectionDAG Rule Imports

TableGen will import SelectionDAG rules and provide the following function to
execute them:

bool selectImpl(MachineInstr &MI)

The --stats option can be used to determine what proportion of rules were
successfully imported. The easiest way to use this is to copy the
-gen-globalisel tablegen command from ninja -v and modify it.

Similarly, the --warn-on-skipped-patterns option can be used to obtain the
reasons that rules weren’t imported. This can be used to focus on the most
important rejection reasons.

PatLeaf Predicates

PatLeafs cannot be imported because their C++ is implemented in terms of
SDNode objects. PatLeafs that handle immediate predicates should be
replaced by ImmLeaf, IntImmLeaf, or FPImmLeaf as appropriate.

There’s no standard answer for other PatLeafs. Some standard predicates have
been baked into TableGen but this should not generally be done.

Custom SDNodes

Custom SDNodes should be mapped to Target Pseudos using GINodeEquiv. This
will cause the instruction selector to import them but you will also need to
ensure the target pseudo is introduced to the MIR before the instruction
selector. Any preceeding pass is suitable but the legalizer will be a
particularly common choice.

ComplexPatterns

ComplexPatterns cannot be imported because their C++ is implemented in terms of
SDNode objects. GlobalISel versions should be defined with
GIComplexOperandMatcher and mapped to ComplexPattern with
GIComplexPatternEquiv.

The following predicates are useful for porting ComplexPattern:

	isBaseWithConstantOffset() - Check for base+offset structures

	isOperandImmEqual() - Check for a particular constant

	isObviouslySafeToFold() - Check for reasons an instruction can’t be sunk and folded into another.

There are some important points for the C++ implementation:

	Don’t modify MIR in the predicate

	Renderer lambdas should capture by value to avoid use-after-free. They will be used after the predicate returns.

	Only create instructions in a renderer lambda. GlobalISel won’t clean up things you create but don’t use.

Maintainability

Iterative Transformations

Passes are split into small, iterative transformations, with all state
represented in the MIR.

This differs from SelectionDAG (in particular, the legalizer) using various
in-memory side-tables.

MIR Serialization

Generic Machine IR is serializable (see Machine IR (MIR) Format Reference Manual).
Combined with Iterative Transformations, this enables much finer-grained
testing, rather than requiring large and fragile IR-to-assembly tests.

The current “stage” in the Core Pipeline is represented by a set of
MachineFunctionProperties:

	legalized

	regBankSelected

	selected

MachineVerifier

The pass approach lets us use the MachineVerifier to enforce invariants.
For instance, a regBankSelected function may not have gvregs without
a bank.

TODO:
The MachineVerifier being monolithic, some of the checks we want to do
can’t be integrated to it: GlobalISel is a separate library, so we can’t
directly reference it from CodeGen. For instance, legality checks are
currently done in RegBankSelect/InstructionSelect proper. We could #ifdef out
the checks, or we could add some sort of verifier API.

Progress and Future Work

The initial goal is to replace FastISel on AArch64. The next step will be to
replace SelectionDAG as the optimized ISel.

NOTE:
While we iterate on GlobalISel, we strive to avoid affecting the performance of
SelectionDAG, FastISel, or the other MIR passes. For instance, the types of
Generic Virtual Registers are stored in a separate table in MachineRegisterInfo,
that is destroyed after InstructionSelect.

FastISel Replacement

For the initial FastISel replacement, we intend to fallback to SelectionDAG on
selection failures.

Currently, compile-time of the fast pipeline is within 1.5x of FastISel.
We’re optimistic we can get to within 1.1/1.2x, but beating FastISel will be
challenging given the multi-pass approach.
Still, supporting all IR (via a complete legalizer) and avoiding the fallback
to SelectionDAG in the worst case should enable better amortized performance
than SelectionDAG+FastISel.

NOTE:
We considered never having a fallback to SelectionDAG, instead deciding early
whether a given function is supported by GlobalISel or not. The decision would
be based on Legalizer queries.
We abandoned that for two reasons:
a) on IR inputs, we’d need to basically simulate the IRTranslator;
b) to be robust against unforeseen failures and to enable iterative
improvements.

Support For Other Targets

In parallel, we’re investigating adding support for other - ideally quite
different - targets. For instance, there is some initial AMDGPU support.

Porting GlobalISel to A New Target

There are four major classes to implement by the target:

	CallLowering — lower calls, returns, and arguments
according to the ABI.

	RegisterBankInfo — describe
Register Bank coverage, cross-bank copy cost, and the mapping of
operands onto banks for each instruction.

	LegalizerInfo — describe what is legal, and how
to legalize what isn’t.

	InstructionSelector — select generic MIR
to target-specific MIR.

Additionally:

	TargetPassConfig — create the passes constituting the pipeline,
including additional passes not included in the Core Pipeline.

Resources

	Global Instruction Selection - A Proposal by Quentin Colombet @LLVMDevMeeting 2015 [https://www.youtube.com/watch?v=F6GGbYtae3g]

	Global Instruction Selection - Status by Quentin Colombet, Ahmed Bougacha, and Tim Northover @LLVMDevMeeting 2016 [https://www.youtube.com/watch?v=6tfb344A7w8]

	GlobalISel - LLVM’s Latest Instruction Selection Framework by Diana Picus @FOSDEM17 [https://www.youtube.com/watch?v=d6dF6E4BPeU]

	GlobalISel: Past, Present, and Future by Quentin Colombet and Ahmed Bougacha @LLVMDevMeeting 2017

	Head First into GlobalISel by Daniel Sanders, Aditya Nandakumar, and Justin Bogner @LLVMDevMeeting 2017

 XRay Instrumentation

XRay Instrumentation

	Version

	1 as of 2016-11-08

	Introduction

	XRay in LLVM

	Using XRay

	Instrumenting your C/C++/Objective-C Application

	LLVM Function Attribute

	Special Case File

	XRay Runtime Library

	Basic Mode

	Flight Data Recorder Mode

	Trace Analysis Tools

	Future Work

	Trace Analysis Tools

	More Platforms

Introduction

XRay is a function call tracing system which combines compiler-inserted
instrumentation points and a runtime library that can dynamically enable and
disable the instrumentation.

More high level information about XRay can be found in the XRay whitepaper [http://research.google.com/pubs/pub45287.html].

This document describes how to use XRay as implemented in LLVM.

XRay in LLVM

XRay consists of three main parts:

	Compiler-inserted instrumentation points.

	A runtime library for enabling/disabling tracing at runtime.

	A suite of tools for analysing the traces.

NOTE: As of July 25, 2018 , XRay is only available for the following
architectures running Linux: x86_64, arm7 (no thumb), aarch64, powerpc64le,
mips, mipsel, mips64, mips64el, NetBSD: x86_64, FreeBSD: x86_64 and
OpenBSD: x86_64.

The compiler-inserted instrumentation points come in the form of nop-sleds in
the final generated binary, and an ELF section named xray_instr_map which
contains entries pointing to these instrumentation points. The runtime library
relies on being able to access the entries of the xray_instr_map, and
overwrite the instrumentation points at runtime.

Using XRay

You can use XRay in a couple of ways:

	Instrumenting your C/C++/Objective-C/Objective-C++ application.

	Generating LLVM IR with the correct function attributes.

The rest of this section covers these main ways and later on how to customise
what XRay does in an XRay-instrumented binary.

Instrumenting your C/C++/Objective-C Application

The easiest way of getting XRay instrumentation for your application is by
enabling the -fxray-instrument flag in your clang invocation.

For example:

clang -fxray-instrument ...

By default, functions that have at least 200 instructions will get XRay
instrumentation points. You can tweak that number through the
-fxray-instruction-threshold= flag:

clang -fxray-instrument -fxray-instruction-threshold=1 ...

You can also specifically instrument functions in your binary to either always
or never be instrumented using source-level attributes. You can do it using the
GCC-style attributes or C++11-style attributes.

[[clang::xray_always_instrument]] void always_instrumented();

[[clang::xray_never_instrument]] void never_instrumented();

void alt_always_instrumented() __attribute__((xray_always_instrument));

void alt_never_instrumented() __attribute__((xray_never_instrument));

When linking a binary, you can either manually link in the XRay Runtime
Library or use clang to link it in automatically with the
-fxray-instrument flag. Alternatively, you can statically link-in the XRay
runtime library from compiler-rt – those archive files will take the name of
libclang_rt.xray-{arch} where {arch} is the mnemonic supported by clang
(x86_64, arm7, etc.).

LLVM Function Attribute

If you’re using LLVM IR directly, you can add the function-instrument
string attribute to your functions, to get the similar effect that the
C/C++/Objective-C source-level attributes would get:

define i32 @always_instrument() uwtable "function-instrument"="xray-always" {
 ; ...
}

define i32 @never_instrument() uwtable "function-instrument"="xray-never" {
 ; ...
}

You can also set the xray-instruction-threshold attribute and provide a
numeric string value for how many instructions should be in the function before
it gets instrumented.

define i32 @maybe_instrument() uwtable "xray-instruction-threshold"="2" {
 ; ...
}

Special Case File

Attributes can be imbued through the use of special case files instead of
adding them to the original source files. You can use this to mark certain
functions and classes to be never, always, or instrumented with first-argument
logging from a file. The file’s format is described below:

Comments are supported
[always]
fun:always_instrument
fun:log_arg1=arg1 # Log the first argument for the function

[never]
fun:never_instrument

These files can be provided through the -fxray-attr-list= flag to clang.
You may have multiple files loaded through multiple instances of the flag.

XRay Runtime Library

The XRay Runtime Library is part of the compiler-rt project, which implements
the runtime components that perform the patching and unpatching of inserted
instrumentation points. When you use clang to link your binaries and the
-fxray-instrument flag, it will automatically link in the XRay runtime.

The default implementation of the XRay runtime will enable XRay instrumentation
before main starts, which works for applications that have a short
lifetime. This implementation also records all function entry and exit events
which may result in a lot of records in the resulting trace.

Also by default the filename of the XRay trace is xray-log.XXXXXX where the
XXXXXX part is randomly generated.

These options can be controlled through the XRAY_OPTIONS environment
variable, where we list down the options and their defaults below.

	Option

	Type

	Default

	Description

	patch_premain

	bool

	false

	Whether to patch
instrumentation points
before main.

	xray_mode

	const char*

	""

	Default mode to
install and initialize
before main.

	xray_logfile_base

	const char*

	xray-log.

	Filename base for the
XRay logfile.

	verbosity

	int

	0

	Runtime verbosity
level.

If you choose to not use the default logging implementation that comes with the
XRay runtime and/or control when/how the XRay instrumentation runs, you may use
the XRay APIs directly for doing so. To do this, you’ll need to include the
xray_log_interface.h from the compiler-rt xray directory. The important API
functions we list below:

	__xray_log_register_mode(...): Register a logging implementation against
a string Mode identifier. The implementation is an instance of
XRayLogImpl defined in xray/xray_log_interface.h.

	__xray_log_select_mode(...): Select the mode to install, associated with
a string Mode identifier. Only implementations registered with
__xray_log_register_mode(...) can be chosen with this function.

	__xray_log_init_mode(...): This function allows for initializing and
re-initializing an installed logging implementation. See
xray/xray_log_interface.h for details, part of the XRay compiler-rt
installation.

Once a logging implementation has been initialized, it can be “stopped” by
finalizing the implementation through the __xray_log_finalize() function.
The finalization routine is the opposite of the initialization. When finalized,
an implementation’s data can be cleared out through the
__xray_log_flushLog() function. For implementations that support in-memory
processing, these should register an iterator function to provide access to the
data via the __xray_log_set_buffer_iterator(...) which allows code calling
the __xray_log_process_buffers(...) function to deal with the data in
memory.

All of this is better explained in the xray/xray_log_interface.h header.

Basic Mode

XRay supports a basic logging mode which will trace the application’s
execution, and periodically append to a single log. This mode can be
installed/enabled by setting xray_mode=xray-basic in the XRAY_OPTIONS
environment variable. Combined with patch_premain=true this can allow for
tracing applications from start to end.

Like all the other modes installed through __xray_log_select_mode(...), the
implementation can be configured through the __xray_log_init_mode(...)
function, providing the mode string and the flag options. Basic-mode specific
defaults can be provided in the XRAY_BASIC_OPTIONS environment variable.

Flight Data Recorder Mode

XRay supports a logging mode which allows the application to only capture a
fixed amount of memory’s worth of events. Flight Data Recorder (FDR) mode works
very much like a plane’s “black box” which keeps recording data to memory in a
fixed-size circular queue of buffers, and have the data available
programmatically until the buffers are finalized and flushed. To use FDR mode
on your application, you may set the xray_mode variable to xray-fdr in
the XRAY_OPTIONS environment variable. Additional options to the FDR mode
implementation can be provided in the XRAY_FDR_OPTIONS environment
variable. Programmatic configuration can be done by calling
__xray_log_init_mode("xray-fdr", <configuration string>) once it has been
selected/installed.

When the buffers are flushed to disk, the result is a binary trace format
described by XRay FDR format

When FDR mode is on, it will keep writing and recycling memory buffers until
the logging implementation is finalized – at which point it can be flushed and
re-initialised later. To do this programmatically, we follow the workflow
provided below:

// Patch the sleds, if we haven't yet.
auto patch_status = __xray_patch();

// Maybe handle the patch_status errors.

// When we want to flush the log, we need to finalize it first, to give
// threads a chance to return buffers to the queue.
auto finalize_status = __xray_log_finalize();
if (finalize_status != XRAY_LOG_FINALIZED) {
 // maybe retry, or bail out.
}

// At this point, we are sure that the log is finalized, so we may try
// flushing the log.
auto flush_status = __xray_log_flushLog();
if (flush_status != XRAY_LOG_FLUSHED) {
 // maybe retry, or bail out.
}

The default settings for the FDR mode implementation will create logs named
similarly to the basic log implementation, but will have a different log
format. All the trace analysis tools (and the trace reading library) will
support all versions of the FDR mode format as we add more functionality and
record types in the future.

NOTE: We do not promise perpetual support for when we update the log
versions we support going forward. Deprecation of the formats will be
announced and discussed on the developers mailing list.

Trace Analysis Tools

We currently have the beginnings of a trace analysis tool in LLVM, which can be
found in the tools/llvm-xray directory. The llvm-xray tool currently
supports the following subcommands:

	extract: Extract the instrumentation map from a binary, and return it as
YAML.

	account: Performs basic function call accounting statistics with various
options for sorting, and output formats (supports CSV, YAML, and
console-friendly TEXT).

	convert: Converts an XRay log file from one format to another. We can
convert from binary XRay traces (both basic and FDR mode) to YAML,
flame-graph [https://github.com/brendangregg/FlameGraph] friendly text
formats, as well as Chrome Trace Viewer (catapult)
<https://github.com/catapult-project/catapult> formats.

	graph: Generates a DOT graph of the function call relationships between
functions found in an XRay trace.

	stack: Reconstructs function call stacks from a timeline of function
calls in an XRay trace.

These subcommands use various library components found as part of the XRay
libraries, distributed with the LLVM distribution. These are:

	llvm/XRay/Trace.h : A trace reading library for conveniently loading
an XRay trace of supported forms, into a convenient in-memory representation.
All the analysis tools that deal with traces use this implementation.

	llvm/XRay/Graph.h : A semi-generic graph type used by the graph
subcommand to conveniently represent a function call graph with statistics
associated with edges and vertices.

	llvm/XRay/InstrumentationMap.h: A convenient tool for analyzing the
instrumentation map in XRay-instrumented object files and binaries. The
extract and stack subcommands uses this particular library.

Future Work

There are a number of ongoing efforts for expanding the toolset building around
the XRay instrumentation system.

Trace Analysis Tools

	Work is in progress to integrate with or develop tools to visualize findings
from an XRay trace. Particularly, the stack tool is being expanded to
output formats that allow graphing and exploring the duration of time in each
call stack.

	With a large instrumented binary, the size of generated XRay traces can
quickly become unwieldy. We are working on integrating pruning techniques and
heuristics for the analysis tools to sift through the traces and surface only
relevant information.

More Platforms

We’re looking forward to contributions to port XRay to more architectures and
operating systems.

 Debugging with XRay

Debugging with XRay

This document shows an example of how you would go about analyzing applications
built with XRay instrumentation. Here we will attempt to debug llc
compiling some sample LLVM IR generated by Clang.

	Building with XRay

	Getting Traces

	The llvm-xray Tool

	Controlling Fidelity

	Instruction Threshold

	Instrumentation Attributes

	The XRay stack tool

	Flame Graph Generation

	Further Exploration

	Next Steps

Building with XRay

To debug an application with XRay instrumentation, we need to build it with a
Clang that supports the -fxray-instrument option. See XRay
for more technical details of how XRay works for background information.

In our example, we need to add -fxray-instrument to the list of flags
passed to Clang when building a binary. Note that we need to link with Clang as
well to get the XRay runtime linked in appropriately. For building llc with
XRay, we do something similar below for our LLVM build:

$ mkdir -p llvm-build && cd llvm-build
Assume that the LLVM sources are at ../llvm
$ cmake -GNinja ../llvm -DCMAKE_BUILD_TYPE=Release \
 -DCMAKE_C_FLAGS_RELEASE="-fxray-instrument" -DCMAKE_CXX_FLAGS="-fxray-instrument" \
Once this finishes, we should build llc
$ ninja llc

To verify that we have an XRay instrumented binary, we can use objdump to
look for the xray_instr_map section.

$ objdump -h -j xray_instr_map ./bin/llc
./bin/llc: file format elf64-x86-64

Sections:
Idx Name Size VMA LMA File off Algn
 14 xray_instr_map 00002fc0 00000000041516c6 00000000041516c6 03d516c6 2**0
 CONTENTS, ALLOC, LOAD, READONLY, DATA

Getting Traces

By default, XRay does not write out the trace files or patch the application
before main starts. If we run llc it should work like a normally built
binary. If we want to get a full trace of the application’s operations (of the
functions we do end up instrumenting with XRay) then we need to enable XRay
at application start. To do this, XRay checks the XRAY_OPTIONS environment
variable.

The following doesn't create an XRay trace by default.
$./bin/llc input.ll

We need to set the XRAY_OPTIONS to enable some features.
$ XRAY_OPTIONS="patch_premain=true xray_mode=xray-basic verbosity=1" ./bin/llc input.ll
==69819==XRay: Log file in 'xray-log.llc.m35qPB'

At this point we now have an XRay trace we can start analysing.

The llvm-xray Tool

Having a trace then allows us to do basic accounting of the functions that were
instrumented, and how much time we’re spending in parts of the code. To make
sense of this data, we use the llvm-xray tool which has a few subcommands
to help us understand our trace.

One of the things we can do is to get an accounting of the functions that have
been instrumented. We can see an example accounting with llvm-xray account:

$ llvm-xray account xray-log.llc.m35qPB -top=10 -sort=sum -sortorder=dsc -instr_map ./bin/llc
Functions with latencies: 29
 funcid count [min, med, 90p, 99p, max] sum function
 187 360 [0.000000, 0.000001, 0.000014, 0.000032, 0.000075] 0.001596 LLLexer.cpp:446:0: llvm::LLLexer::LexIdentifier()
 85 130 [0.000000, 0.000000, 0.000018, 0.000023, 0.000156] 0.000799 X86ISelDAGToDAG.cpp:1984:0: (anonymous namespace)::X86DAGToDAGISel::Select(llvm::SDNode*)
 138 130 [0.000000, 0.000000, 0.000017, 0.000155, 0.000155] 0.000774 SelectionDAGISel.cpp:2963:0: llvm::SelectionDAGISel::SelectCodeCommon(llvm::SDNode*, unsigned char const*, unsigned int)
 188 103 [0.000000, 0.000000, 0.000003, 0.000123, 0.000214] 0.000737 LLParser.cpp:2692:0: llvm::LLParser::ParseValID(llvm::ValID&, llvm::LLParser::PerFunctionState*)
 88 1 [0.000562, 0.000562, 0.000562, 0.000562, 0.000562] 0.000562 X86ISelLowering.cpp:83:0: llvm::X86TargetLowering::X86TargetLowering(llvm::X86TargetMachine const&, llvm::X86Subtarget const&)
 125 102 [0.000001, 0.000003, 0.000010, 0.000017, 0.000049] 0.000471 Verifier.cpp:3714:0: (anonymous namespace)::Verifier::visitInstruction(llvm::Instruction&)
 90 8 [0.000023, 0.000035, 0.000106, 0.000106, 0.000106] 0.000342 X86ISelLowering.cpp:3363:0: llvm::X86TargetLowering::LowerCall(llvm::TargetLowering::CallLoweringInfo&, llvm::SmallVectorImpl<llvm::SDValue>&) const
 124 32 [0.000003, 0.000007, 0.000016, 0.000041, 0.000041] 0.000310 Verifier.cpp:1967:0: (anonymous namespace)::Verifier::visitFunction(llvm::Function const&)
 123 1 [0.000302, 0.000302, 0.000302, 0.000302, 0.000302] 0.000302 LLVMContextImpl.cpp:54:0: llvm::LLVMContextImpl::~LLVMContextImpl()
 139 46 [0.000000, 0.000002, 0.000006, 0.000008, 0.000019] 0.000138 TargetLowering.cpp:506:0: llvm::TargetLowering::SimplifyDemandedBits(llvm::SDValue, llvm::APInt const&, llvm::APInt&, llvm::APInt&, llvm::TargetLowering::TargetLoweringOpt&, unsigned int, bool) const

This shows us that for our input file, llc spent the most cumulative time
in the lexer (a total of 1 millisecond). If we wanted for example to work with
this data in a spreadsheet, we can output the results as CSV using the
-format=csv option to the command for further analysis.

If we want to get a textual representation of the raw trace we can use the
llvm-xray convert tool to get YAML output. The first few lines of that
output for an example trace would look like the following:

$ llvm-xray convert -f yaml -symbolize -instr_map=./bin/llc xray-log.llc.m35qPB

header:
 version: 1
 type: 0
 constant-tsc: true
 nonstop-tsc: true
 cycle-frequency: 2601000000
records:
 - { type: 0, func-id: 110, function: __cxx_global_var_init.8, cpu: 37, thread: 69819, kind: function-enter, tsc: 5434426023268520 }
 - { type: 0, func-id: 110, function: __cxx_global_var_init.8, cpu: 37, thread: 69819, kind: function-exit, tsc: 5434426023523052 }
 - { type: 0, func-id: 164, function: __cxx_global_var_init, cpu: 37, thread: 69819, kind: function-enter, tsc: 5434426029925386 }
 - { type: 0, func-id: 164, function: __cxx_global_var_init, cpu: 37, thread: 69819, kind: function-exit, tsc: 5434426030031128 }
 - { type: 0, func-id: 142, function: '(anonymous namespace)::CommandLineParser::ParseCommandLineOptions(int, char const* const*, llvm::StringRef, llvm::raw_ostream*)', cpu: 37, thread: 69819, kind: function-enter, tsc: 5434426046951388 }
 - { type: 0, func-id: 142, function: '(anonymous namespace)::CommandLineParser::ParseCommandLineOptions(int, char const* const*, llvm::StringRef, llvm::raw_ostream*)', cpu: 37, thread: 69819, kind: function-exit, tsc: 5434426047282020 }
 - { type: 0, func-id: 187, function: 'llvm::LLLexer::LexIdentifier()', cpu: 37, thread: 69819, kind: function-enter, tsc: 5434426047857332 }
 - { type: 0, func-id: 187, function: 'llvm::LLLexer::LexIdentifier()', cpu: 37, thread: 69819, kind: function-exit, tsc: 5434426047984152 }
 - { type: 0, func-id: 187, function: 'llvm::LLLexer::LexIdentifier()', cpu: 37, thread: 69819, kind: function-enter, tsc: 5434426048036584 }
 - { type: 0, func-id: 187, function: 'llvm::LLLexer::LexIdentifier()', cpu: 37, thread: 69819, kind: function-exit, tsc: 5434426048042292 }
 - { type: 0, func-id: 187, function: 'llvm::LLLexer::LexIdentifier()', cpu: 37, thread: 69819, kind: function-enter, tsc: 5434426048055056 }
 - { type: 0, func-id: 187, function: 'llvm::LLLexer::LexIdentifier()', cpu: 37, thread: 69819, kind: function-exit, tsc: 5434426048067316 }

Controlling Fidelity

So far in our examples, we haven’t been getting full coverage of the functions
we have in the binary. To get that, we need to modify the compiler flags so
that we can instrument more (if not all) the functions we have in the binary.
We have two options for doing that, and we explore both of these below.

Instruction Threshold

The first “blunt” way of doing this is by setting the minimum threshold for
function bodies to 1. We can do that with the
-fxray-instruction-threshold=N flag when building our binary. We rebuild
llc with this option and observe the results:

$ rm CMakeCache.txt
$ cmake -GNinja ../llvm -DCMAKE_BUILD_TYPE=Release \
 -DCMAKE_C_FLAGS_RELEASE="-fxray-instrument -fxray-instruction-threshold=1" \
 -DCMAKE_CXX_FLAGS="-fxray-instrument -fxray-instruction-threshold=1"
$ ninja llc
$ XRAY_OPTIONS="patch_premain=true" ./bin/llc input.ll
==69819==XRay: Log file in 'xray-log.llc.5rqxkU'

$ llvm-xray account xray-log.llc.5rqxkU -top=10 -sort=sum -sortorder=dsc -instr_map ./bin/llc
Functions with latencies: 36652
 funcid count [min, med, 90p, 99p, max] sum function
 75 1 [0.672368, 0.672368, 0.672368, 0.672368, 0.672368] 0.672368 llc.cpp:271:0: main
 78 1 [0.626455, 0.626455, 0.626455, 0.626455, 0.626455] 0.626455 llc.cpp:381:0: compileModule(char**, llvm::LLVMContext&)
 139617 1 [0.472618, 0.472618, 0.472618, 0.472618, 0.472618] 0.472618 LegacyPassManager.cpp:1723:0: llvm::legacy::PassManager::run(llvm::Module&)
 139610 1 [0.472618, 0.472618, 0.472618, 0.472618, 0.472618] 0.472618 LegacyPassManager.cpp:1681:0: llvm::legacy::PassManagerImpl::run(llvm::Module&)
 139612 1 [0.470948, 0.470948, 0.470948, 0.470948, 0.470948] 0.470948 LegacyPassManager.cpp:1564:0: (anonymous namespace)::MPPassManager::runOnModule(llvm::Module&)
 139607 2 [0.147345, 0.315994, 0.315994, 0.315994, 0.315994] 0.463340 LegacyPassManager.cpp:1530:0: llvm::FPPassManager::runOnModule(llvm::Module&)
 139605 21 [0.000002, 0.000002, 0.102593, 0.213336, 0.213336] 0.463331 LegacyPassManager.cpp:1491:0: llvm::FPPassManager::runOnFunction(llvm::Function&)
 139563 26096 [0.000002, 0.000002, 0.000037, 0.000063, 0.000215] 0.225708 LegacyPassManager.cpp:1083:0: llvm::PMDataManager::findAnalysisPass(void const*, bool)
 108055 188 [0.000002, 0.000120, 0.001375, 0.004523, 0.062624] 0.159279 MachineFunctionPass.cpp:38:0: llvm::MachineFunctionPass::runOnFunction(llvm::Function&)
 62635 22 [0.000041, 0.000046, 0.000050, 0.126744, 0.126744] 0.127715 X86TargetMachine.cpp:242:0: llvm::X86TargetMachine::getSubtargetImpl(llvm::Function const&) const

Instrumentation Attributes

The other way is to use configuration files for selecting which functions
should always be instrumented by the compiler. This gives us a way of ensuring
that certain functions are either always or never instrumented by not having to
add the attribute to the source.

To use this feature, you can define one file for the functions to always
instrument, and another for functions to never instrument. The format of these
files are exactly the same as the SanitizerLists files that control similar
things for the sanitizer implementations. For example:

xray-attr-list.txt
always instrument functions that match the following filters:
[always]
fun:main

never instrument functions that match the following filters:
[never]
fun:__cxx_*

Given the file above we can re-build by providing it to the
-fxray-attr-list= flag to clang. You can have multiple files, each defining
different sets of attribute sets, to be combined into a single list by clang.

The XRay stack tool

Given a trace, and optionally an instrumentation map, the llvm-xray stack
command can be used to analyze a call stack graph constructed from the function
call timeline.

The way to use the command is to output the top stacks by call count and time spent.

$ llvm-xray stack xray-log.llc.5rqxkU -instr_map ./bin/llc

Unique Stacks: 3069
Top 10 Stacks by leaf sum:

Sum: 9633790
lvl function count sum
#0 main 1 58421550
#1 compileModule(char**, llvm::LLVMContext&) 1 51440360
#2 llvm::legacy::PassManagerImpl::run(llvm::Module&) 1 40535375
#3 llvm::FPPassManager::runOnModule(llvm::Module&) 2 39337525
#4 llvm::FPPassManager::runOnFunction(llvm::Function&) 6 39331465
#5 llvm::PMDataManager::verifyPreservedAnalysis(llvm::Pass*) 399 16628590
#6 llvm::PMTopLevelManager::findAnalysisPass(void const*) 4584 15155600
#7 llvm::PMDataManager::findAnalysisPass(void const*, bool) 32088 9633790

..etc..

In the default mode, identical stacks on different threads are independently
aggregated. In a multithreaded program, you may end up having identical call
stacks fill your list of top calls.

To address this, you may specify the -aggregate-threads or
-per-thread-stacks flags. -per-thread-stacks treats the thread id as an
implicit root in each call stack tree, while -aggregate-threads combines
identical stacks from all threads.

Flame Graph Generation

The llvm-xray stack tool may also be used to generate flamegraphs for
visualizing your instrumented invocations. The tool does not generate the graphs
themselves, but instead generates a format that can be used with Brendan Gregg’s
FlameGraph tool, currently available on github [https://github.com/brendangregg/FlameGraph].

To generate output for a flamegraph, a few more options are necessary.

	-all-stacks - Emits all of the stacks.

	-stack-format - Choose the flamegraph output format ‘flame’.

	-aggregation-type - Choose the metric to graph.

You may pipe the command output directly to the flamegraph tool to obtain an
svg file.

$llvm-xray stack xray-log.llc.5rqxkU -instr_map ./bin/llc -stack-format=flame -aggregation-type=time -all-stacks | \
/path/to/FlameGraph/flamegraph.pl > flamegraph.svg

If you open the svg in a browser, mouse events allow exploring the call stacks.

Further Exploration

The llvm-xray tool has a few other subcommands that are in various stages
of being developed. One interesting subcommand that can highlight a few
interesting things is the graph subcommand. Given for example the following
toy program that we build with XRay instrumentation, we can see how the
generated graph may be a helpful indicator of where time is being spent for the
application.

// sample.cc
#include <iostream>
#include <thread>

[[clang::xray_always_instrument]] void f() {
 std::cerr << '.';
}

[[clang::xray_always_instrument]] void g() {
 for (int i = 0; i < 1 << 10; ++i) {
 std::cerr << '-';
 }
}

int main(int argc, char* argv[]) {
 std::thread t1([] {
 for (int i = 0; i < 1 << 10; ++i)
 f();
 });
 std::thread t2([] {
 g();
 });
 t1.join();
 t2.join();
 std::cerr << '\n';
}

We then build the above with XRay instrumentation:

$ clang++ -o sample -O3 sample.cc -std=c++11 -fxray-instrument -fxray-instruction-threshold=1
$ XRAY_OPTIONS="patch_premain=true" ./sample

We can then explore the graph rendering of the trace generated by this sample
application. We assume you have the graphviz toosl available in your system,
including both unflatten and dot. If you prefer rendering or exploring
the graph using another tool, then that should be feasible as well. llvm-xray
graph will create DOT format graphs which should be usable in most graph
rendering applications. One example invocation of the llvm-xray graph
command should yield some interesting insights to the workings of C++
applications:

$ llvm-xray graph xray-log.sample.* -m sample -color-edges=sum -edge-label=sum \
 | unflatten -f -l10 | dot -Tsvg -o sample.svg

Next Steps

If you have some interesting analyses you’d like to implement as part of the
llvm-xray tool, please feel free to propose them on the llvm-dev@ mailing list.
The following are some ideas to inspire you in getting involved and potentially
making things better.

	Implement a query/filtering library that allows for finding patterns in the
XRay traces.

	A conversion from the XRay trace onto something that can be visualised
better by other tools (like the Chrome trace viewer for example).

	Collecting function call stacks and how often they’re encountered in the
XRay trace.

 XRay Flight Data Recorder Trace Format

XRay Flight Data Recorder Trace Format

	Version

	1 as of 2017-07-20

	Introduction

	General

	Header Section

	Data Section

	Function Records

	Metadata Records

	NewBuffer Records

	WallClockTime Records

	NewCpuId Records

	TSCWrap Records

	CallArgument Records

	CustomEventMarker Records

	EndOfBuffer Records

	Format Grammar and Invariants

	Function Record Order

Introduction

When gathering XRay traces in Flight Data Recorder mode, each thread of an
application will claim buffers to fill with trace data, which at some point
is finalized and flushed.

A goal of the profiler is to minimize overhead, the flushed data directly
corresponds to the buffer.

This document describes the format of a trace file.

General

Each trace file corresponds to a sequence of events in a particular thread.

The file has a header followed by a sequence of discriminated record types.

The endianness of byte fields matches the endianess of the platform which
produced the trace file.

Header Section

A trace file begins with a 32 byte header.

	Field

	Size (bytes)

	Description

	version

	2

	Anticipates versioned readers. This
document describes the format when
version == 1

	type

	2

	An enumeration encoding the type of
trace. Flight Data Recorder mode
traces have type == 1

	bitfield

	4

	Holds parameters that are not aligned
to bytes. Further described below.

	cycle_frequency

	8

	The frequency in hertz of the CPU
oscillator used to measure duration of
events in ticks.

	buffer_size

	8

	The size in bytes of the data portion
of the trace following the header.

	reserved

	8

	Reserved for future use.

The bitfield parameter of the file header is composed of the following fields.

	Field

	Size (bits)

	Description

	constant_tsc

	1

	Whether the platform’s timestamp
counter used to record ticks between
events ticks at a constant frequency
despite CPU frequency changes.
0 == non-constant. 1 == constant.

	nonstop_tsc

	1

	Whether the tsc continues to count
despite whether the CPU is in a low
power state. 0 == stop. 1 == non-stop.

	reserved

	30

	Not meaningful.

Data Section

Following the header in a trace is a data section with size matching the
buffer_size field in the header.

The data section is a stream of elements of different types.

There are a few categories of data in the sequence.

	Function Records: Function Records contain the timing of entry into and
exit from function execution. Function Records have 8 bytes each.

	Metadata Records: Metadata records serve many purposes. Mostly, they
capture information that may be too costly to record for each function, but
that is required to contextualize the fine-grained timings. They also are used
as markers for user-defined Event Data payloads. Metadata records have 16
bytes each.

	Event Data: Free form data may be associated with events that are traced
by the binary and encode data defined by a handler function. Event data is
always preceded with a marker record which indicates how large it is.

	Function Arguments: The arguments to some functions are included in the
trace. These are either pointer addresses or primitives that are read and
logged independently of their types in a high level language. To the tracer,
they are all numbers. Function Records that have attached arguments will
indicate their presence on the function entry record. We only support logging
contiguous function argument sequences starting with argument zero, which will
be the “this” pointer for member function invocations. For example, we don’t
support logging the first and third argument.

A reader of the memory format must maintain a state machine. The format makes no
attempt to pad for alignment, and it is not seekable.

Function Records

Function Records have an 8 byte layout. This layout encodes information to
reconstruct a call stack of instrumented function and their durations.

	Field

	Size (bits)

	Description

	discriminant

	1

	Indicates whether a reader should read a
Function or Metadata record. Set to 0 for
Function records.

	action

	3

	Specifies whether the function is being
entered, exited, or is a non-standard entry
or exit produced by optimizations.

	function_id

	28

	A numeric ID for the function. Resolved to a
name via the xray instrumentation map. The
instrumentation map is built by xray at
compile time into an object file and pairs
the function ids to addresses. It is used for
patching and as a lookup into the binary’s
symbols to obtain names.

	tsc_delta

	32

	The number of ticks of the timestamp counter
since a previous record recorded a delta or
other TSC resetting event.

On little-endian machines, the bitfields are ordered from least significant bit
bit to most significant bit. A reader can read an 8 bit value and apply the mask
0x01 for the discriminant. Similarly, they can read 32 bits and unsigned
shift right by 0x04 to obtain the function_id field.

On big-endian machine, the bitfields are written in order from most significant
bit to least significant bit. A reader would read an 8 bit value and unsigned
shift right by 7 bits for the discriminant. The function_id field could be
obtained by reading a 32 bit value and applying the mask 0x0FFFFFFF.

Function action types are as follows.

	Type

	Number

	Description

	Entry

	0

	Typical function entry.

	Exit

	1

	Typical function exit.

	Tail_Exit

	2

	An exit from a function due to tail call
optimization.

	Entry_Args

	3

	A function entry that records arguments.

Entry_Args records do not contain the arguments themselves. Instead, metadata
records for each of the logged args follow the function record in the stream.

Metadata Records

Interspersed throughout the buffer are 16 byte Metadata records. For typically
instrumented binaries, they will be sparser than Function records, and they
provide a fuller picture of the binary execution state.

Metadata record layout is partially record dependent, but they share a common
structure.

The same bit field rules described for function records apply to the first byte
of MetadataRecords. Within this byte, little endian machines use lsb to msb
ordering and big endian machines use msb to lsb ordering.

	Field

	Size

	Description

	discriminant

	1 bit

	Indicates whether a reader should read a
Function or Metadata record. Set to 1 for
Metadata records.

	record_kind

	7 bits

	The type of Metadata record.

	data

	15 bytes

	A data field used differently for each record
type.

Here is a table of the enumerated record kinds.

	Number

	Type

	0

	NewBuffer

	1

	EndOfBuffer

	2

	NewCPUId

	3

	TSCWrap

	4

	WallTimeMarker

	5

	CustomEventMarker

	6

	CallArgument

NewBuffer Records

Each buffer begins with a NewBuffer record immediately after the header.
It records the thread ID of the thread that the trace belongs to.

Its data segment is as follows.

	Field

	Size (bytes)

	Description

	thread_Id

	2

	Thread ID for buffer.

	reserved

	13

	Unused.

WallClockTime Records

Following the NewBuffer record, each buffer records an absolute time as a frame
of reference for the durations recorded by timestamp counter deltas.

Its data segment is as follows.

	Field

	Size (bytes)

	Description

	seconds

	8

	Seconds on absolute timescale. The starting
point is unspecified and depends on the
implementation and platform configured by the
tracer.

	microseconds

	4

	The microsecond component of the time.

	reserved

	3

	Unused.

NewCpuId Records

Each function entry invokes a routine to determine what CPU is executing.
Typically, this is done with readtscp, which reads the timestamp counter at the
same time.

If the tracing detects that the execution has switched CPUs or if this is the
first instrumented entry point, the tracer will output a NewCpuId record.

Its data segment is as follows.

	Field

	Size (bytes)

	Description

	cpu_id

	2

	CPU Id.

	absolute_tsc

	8

	The absolute value of the timestamp counter.

	reserved

	5

	Unused.

TSCWrap Records

Since each function record uses a 32 bit value to represent the number of ticks
of the timestamp counter since the last reference, it is possible for this value
to overflow, particularly for sparsely instrumented binaries.

When this delta would not fit into a 32 bit representation, a reference absolute
timestamp counter record is written in the form of a TSCWrap record.

Its data segment is as follows.

	Field

	Size (bytes)

	Description

	absolute_tsc

	8

	Timestamp counter value.

	reserved

	7

	Unused.

CallArgument Records

Immediately following an Entry_Args type function record, there may be one or
more CallArgument records that contain the traced function’s parameter values.

The order of the CallArgument Record sequency corresponds one to one with the
order of the function parameters.

CallArgument data segment:

	Field

	Size (bytes)

	Description

	argument

	8

	Numeric argument (may be pointer address).

	reserved

	7

	Unused.

CustomEventMarker Records

XRay provides the feature of logging custom events. This may be leveraged to
record tracing info for RPCs or similarly trace data that is application
specific.

Custom Events themselves are an unstructured (application defined) segment of
memory with arbitrary size within the buffer. They are preceded by
CustomEventMarkers to indicate their presence and size.

CustomEventMarker data segment:

	Field

	Size (bytes)

	Description

	event_size

	4

	Size of preceded event.

	absolute_tsc

	8

	A timestamp counter of the event.

	reserved

	3

	Unused.

EndOfBuffer Records

An EndOfBuffer record type indicates that there is no more trace data in this
buffer. The reader is expected to seek past the remaining buffer_size expressed
before the start of buffer and look for either another header or EOF.

Format Grammar and Invariants

Not all sequences of Metadata records and Function records are valid data. A
sequence should be parsed as a state machine. The expectations for a valid
format can be expressed as a context free grammar.

This is an attempt to explain the format with statements in EBNF format.

	Format := Header ThreadBuffer* EOF

	ThreadBuffer := NewBuffer WallClockTime NewCPUId BodySequence* End

	BodySequence := NewCPUId | TSCWrap | Function | CustomEvent

	Function := (Function_Entry_Args CallArgument*) | Function_Other_Type

	CustomEvent := CustomEventMarker CustomEventUnstructuredMemory

	End := EndOfBuffer RemainingBufferSizeToSkip

Function Record Order

There are a few clarifications that may help understand what is expected of
Function records.

	Functions with an Exit are expected to have a corresponding Entry or
Entry_Args function record precede them in the trace.

	Tail_Exit Function records record the Function ID of the function whose return
address the program counter will take. In other words, the final function that
would be popped off of the call stack if tail call optimization was not used.

	Not all functions marked for instrumentation are necessarily in the trace. The
tracer uses heuristics to preserve the trace for non-trivial functions.

	Not every entry must have a traced Exit or Tail Exit. The buffer may run out
of space or the program may request for the tracer to finalize toreturn the
buffer before an instrumented function exits.

 The PDB File Format

The PDB File Format

	Introduction

	File Layout

	The MSF Container

	Streams

	CodeView

Introduction

PDB (Program Database) is a file format invented by Microsoft and which contains
debug information that can be consumed by debuggers and other tools. Since
officially supported APIs exist on Windows for querying debug information from
PDBs even without the user understanding the internals of the file format, a
large ecosystem of tools has been built for Windows to consume this format. In
order for Clang to be able to generate programs that can interoperate with these
tools, it is necessary for us to generate PDB files ourselves.

At the same time, LLVM has a long history of being able to cross-compile from
any platform to any platform, and we wish for the same to be true here. So it
is necessary for us to understand the PDB file format at the byte-level so that
we can generate PDB files entirely on our own.

This manual describes what we know about the PDB file format today. The layout
of the file, the various streams contained within, the format of individual
records within, and more.

We would like to extend our heartfelt gratitude to Microsoft, without whom we
would not be where we are today. Much of the knowledge contained within this
manual was learned through reading code published by Microsoft on their GitHub
repo [https://github.com/Microsoft/microsoft-pdb].

File Layout

Important

Unless otherwise specified, all numeric values are encoded in little endian.
If you see a type such as uint16_t or uint64_t going forward, always
assume it is little endian!

The MSF Container

A PDB file is really just a special case of an MSF (Multi-Stream Format) file.
An MSF file is actually a miniature “file system within a file”. It contains
multiple streams (aka files) which can represent arbitrary data, and these
streams are divided into blocks which may not necessarily be contiguously
laid out within the file (aka fragmented). Additionally, the MSF contains a
stream directory (aka MFT) which describes how the streams (files) are laid
out within the MSF.

For more information about the MSF container format, stream directory, and
block layout, see The MSF File Format.

Streams

The PDB format contains a number of streams which describe various information
such as the types, symbols, source files, and compilands (e.g. object files)
of a program, as well as some additional streams containing hash tables that are
used by debuggers and other tools to provide fast lookup of records and types
by name, and various other information about how the program was compiled such
as the specific toolchain used, and more. A summary of streams contained in a
PDB file is as follows:

	Name

	Stream Index

	Contents

	Old Directory

	
	Fixed Stream Index 0

	
	Previous MSF Stream Directory

	PDB Stream

	
	Fixed Stream Index 1

	
	Basic File Information

	Fields to match EXE to this PDB

	Map of named streams to stream indices

	TPI Stream

	
	Fixed Stream Index 2

	
	CodeView Type Records

	Index of TPI Hash Stream

	DBI Stream

	
	Fixed Stream Index 3

	
	Module/Compiland Information

	Indices of individual module streams

	Indices of public / global streams

	Section Contribution Information

	Source File Information

	FPO / PGO Data

	IPI Stream

	
	Fixed Stream Index 4

	
	CodeView Type Records

	Index of IPI Hash Stream

	/LinkInfo

	
	Contained in PDB Stream
Named Stream map

	
	Unknown

	/src/headerblock

	
	Contained in PDB Stream
Named Stream map

	
	Unknown

	/names

	
	Contained in PDB Stream
Named Stream map

	
	PDB-wide global string table used for
string de-duplication

	Module Info Stream

	
	Contained in DBI Stream

	One for each compiland

	
	CodeView Symbol Records for this module

	Line Number Information

	Public Stream

	
	Contained in DBI Stream

	
	Public (Exported) Symbol Records

	Index of Public Hash Stream

	Global Stream

	
	Contained in DBI Stream

	
	Global Symbol Records

	Index of Global Hash Stream

	TPI Hash Stream

	
	Contained in TPI Stream

	
	Hash table for looking up TPI records
by name

	IPI Hash Stream

	
	Contained in IPI Stream

	
	Hash table for looking up IPI records
by name

More information about the structure of each of these can be found on the
following pages:

	The PDB Info Stream (aka the PDB Stream)

	Information about the PDB Info Stream and how it is used to match PDBs to EXEs.

	The PDB TPI Stream

	Information about the TPI stream and the CodeView records contained within.

	The PDB DBI (Debug Info) Stream

	Information about the DBI stream and relevant substreams including the Module Substreams,
source file information, and CodeView symbol records contained within.

	The Module Information Stream

	Information about the Module Information Stream, of which there is one for each compilation
unit and the format of symbols contained within.

	The PDB Public Symbol Stream

	Information about the Public Symbol Stream.

	The PDB Global Symbol Stream

	Information about the Global Symbol Stream.

	The TPI & IPI Hash Streams

	Information about the Hash Table stream, and how it can be used to quickly look up records
by name.

CodeView

CodeView is another format which comes into the picture. While MSF defines
the structure of the overall file, and PDB defines the set of streams that
appear within the MSF file and the format of those streams, CodeView defines
the format of symbol and type records that appear within specific streams.
Refer to the pages on CodeView Symbol Records and CodeView Type Records for
more information about the CodeView format.

 The MSF File Format

The MSF File Format

	File Layout

	The Superblock

	The Free Block Map

	The Stream Directory

	Alignment and Block Boundaries

File Layout

The MSF file format consists of the following components:

	The Superblock

	The Free Block Map (also know as Free Page Map, or FPM)

	Data

Each component is stored as an indexed block, the length of which is specified
in SuperBlock::BlockSize. The file consists of 1 or more iterations of the
following pattern (sometimes referred to as an “interval”):

	1 block of data

	Free Block Map 1 (corresponds to SuperBlock::FreeBlockMapBlock 1)

	Free Block Map 2 (corresponds to SuperBlock::FreeBlockMapBlock 2)

	SuperBlock::BlockSize - 3 blocks of data

In the first interval, the first data block is used to store
The Superblock.

The following diagram demonstrates the general layout of the file (| denotes
the end of an interval, and is for visualization purposes only):

	Block Index

	0

	1

	2

	3 - 4095

	|

	4096

	4097

	4098

	4099 - 8191

	|

	…

	Meaning

	The Superblock

	Free Block Map 1

	Free Block Map 2

	Data

	|

	Data

	FPM1

	FPM2

	Data

	|

	…

The file may end after any block, including immediately after a FPM1.

Note

LLVM only supports 4096 byte blocks (sometimes referred to as the “BigMsf”
variant), so the rest of this document will assume a block size of 4096.

The Superblock

At file offset 0 in an MSF file is the MSF SuperBlock, which is laid out as
follows:

struct SuperBlock {
 char FileMagic[sizeof(Magic)];
 ulittle32_t BlockSize;
 ulittle32_t FreeBlockMapBlock;
 ulittle32_t NumBlocks;
 ulittle32_t NumDirectoryBytes;
 ulittle32_t Unknown;
 ulittle32_t BlockMapAddr;
};

	FileMagic - Must be equal to "Microsoft C / C++ MSF 7.00\\r\\n"
followed by the bytes 1A 44 53 00 00 00.

	BlockSize - The block size of the internal file system. Valid values are
512, 1024, 2048, and 4096 bytes. Certain aspects of the MSF file layout vary
depending on the block sizes. For the purposes of LLVM, we handle only block
sizes of 4KiB, and all further discussion assumes a block size of 4KiB.

	FreeBlockMapBlock - The index of a block within the file, at which begins
a bitfield representing the set of all blocks within the file which are “free”
(i.e. the data within that block is not used). See The Free Block Map for
more information.
Important: FreeBlockMapBlock can only be 1 or 2!

	NumBlocks - The total number of blocks in the file. NumBlocks * BlockSize
should equal the size of the file on disk.

	NumDirectoryBytes - The size of the stream directory, in bytes. The stream
directory contains information about each stream’s size and the set of blocks
that it occupies. It will be described in more detail later.

	BlockMapAddr - The index of a block within the MSF file. At this block is
an array of ulittle32_t’s listing the blocks that the stream directory
resides on. For large MSF files, the stream directory (which describes the
block layout of each stream) may not fit entirely on a single block. As a
result, this extra layer of indirection is introduced, whereby this block
contains the list of blocks that the stream directory occupies, and the stream
directory itself can be stitched together accordingly. The number of
ulittle32_t’s in this array is given by ceil(NumDirectoryBytes / BlockSize).

The Free Block Map

The Free Block Map (sometimes referred to as the Free Page Map, or FPM) is a
series of blocks which contains a bit flag for every block in the file. The
flag will be set to 0 if the block is in use, and 1 if the block is unused.

Each file contains two FPMs, one of which is active at any given time. This
feature is designed to support incremental and atomic updates of the underlying
MSF file. While writing to an MSF file, if the active FPM is FPM1, you can
write your new modified bitfield to FPM2, and vice versa. Only when you commit
the file to disk do you need to swap the value in the SuperBlock to point to
the new FreeBlockMapBlock.

The Free Block Maps are stored as a series of single blocks thoughout the file
at intervals of BlockSize. Because each FPM block is of size BlockSize
bytes, it contains 8 times as many bits as an interval has blocks. This means
that the first block of each FPM refers to the first 8 intervals of the file
(the first 32768 blocks), the second block of each FPM refers to the next 8
blocks, and so on. This results in far more FPM blocks being present than are
required, but in order to maintain backwards compatibility the format must stay
this way.

The Stream Directory

The Stream Directory is the root of all access to the other streams in an MSF
file. Beginning at byte 0 of the stream directory is the following structure:

struct StreamDirectory {
 ulittle32_t NumStreams;
 ulittle32_t StreamSizes[NumStreams];
 ulittle32_t StreamBlocks[NumStreams][];
};

And this structure occupies exactly SuperBlock->NumDirectoryBytes bytes.
Note that each of the last two arrays is of variable length, and in particular
that the second array is jagged.

Example: Suppose a hypothetical PDB file with a 4KiB block size, and 4
streams of lengths {1000 bytes, 8000 bytes, 16000 bytes, 9000 bytes}.

Stream 0: ceil(1000 / 4096) = 1 block

Stream 1: ceil(8000 / 4096) = 2 blocks

Stream 2: ceil(16000 / 4096) = 4 blocks

Stream 3: ceil(9000 / 4096) = 3 blocks

In total, 10 blocks are used. Let’s see what the stream directory might look
like:

struct StreamDirectory {
 ulittle32_t NumStreams = 4;
 ulittle32_t StreamSizes[] = {1000, 8000, 16000, 9000};
 ulittle32_t StreamBlocks[][] = {
 {4},
 {5, 6},
 {11, 9, 7, 8},
 {10, 15, 12}
 };
};

In total, this occupies 15 * 4 = 60 bytes, so SuperBlock->NumDirectoryBytes
would equal 60, and SuperBlock->BlockMapAddr would be an array of one
ulittle32_t, since 60 <= SuperBlock->BlockSize.

Note also that the streams are discontiguous, and that part of stream 3 is in the
middle of part of stream 2. You cannot assume anything about the layout of the
blocks!

Alignment and Block Boundaries

As may be clear by now, it is possible for a single field (whether it be a high
level record, a long string field, or even a single uint16) to begin and
end in separate blocks. For example, if the block size is 4096 bytes, and a
uint16 field begins at the last byte of the current block, then it would
need to end on the first byte of the next block. Since blocks are not
necessarily contiguously laid out in the file, this means that both the consumer
and the producer of an MSF file must be prepared to split data apart
accordingly. In the aforementioned example, the high byte of the uint16
would be written to the last byte of block N, and the low byte would be written
to the first byte of block N+1, which could be tens of thousands of bytes later
(or even earlier!) in the file, depending on what the stream directory says.

 The PDB Info Stream (aka the PDB Stream)

The PDB Info Stream (aka the PDB Stream)

	Stream Header

	Matching a PDB to its executable

Stream Header

At offset 0 of the PDB Stream is a header with the following layout:

struct PdbStreamHeader {
 ulittle32_t Version;
 ulittle32_t Signature;
 ulittle32_t Age;
 Guid UniqueId;
};

	Version - A Value from the following enum:

enum class PdbStreamVersion : uint32_t {
 VC2 = 19941610,
 VC4 = 19950623,
 VC41 = 19950814,
 VC50 = 19960307,
 VC98 = 19970604,
 VC70Dep = 19990604,
 VC70 = 20000404,
 VC80 = 20030901,
 VC110 = 20091201,
 VC140 = 20140508,
};

While the meaning of this field appears to be obvious, in practice we have
never observed a value other than VC70, even with modern versions of
the toolchain, and it is unclear why the other values exist. It is assumed
that certain aspects of the PDB stream’s layout, and perhaps even that of
the other streams, will change if the value is something other than VC70.

	Signature - A 32-bit time-stamp generated with a call to time() at
the time the PDB file is written. Note that due to the inherent uniqueness
problems of using a timestamp with 1-second granularity, this field does not
really serve its intended purpose, and as such is typically ignored in favor
of the Guid field, described below.

	Age - The number of times the PDB file has been written. This can be used
along with Guid to match the PDB to its corresponding executable.

	Guid - A 128-bit identifier guaranteed to be unique across space and time.
In general, this can be thought of as the result of calling the Win32 API
UuidCreate [https://msdn.microsoft.com/en-us/library/windows/desktop/aa379205(v=vs.85).aspx],
although LLVM cannot rely on that, as it must work on non-Windows platforms.

Matching a PDB to its executable

The linker is responsible for writing both the PDB and the final executable, and
as a result is the only entity capable of writing the information necessary to
match the PDB to the executable.

In order to accomplish this, the linker generates a guid for the PDB (or
re-uses the existing guid if it is linking incrementally) and increments the Age
field.

The executable is a PE/COFF file, and part of a PE/COFF file is the presence of
number of “directories”. For our purposes here, we are interested in the “debug
directory”. The exact format of a debug directory is described by the
IMAGE_DEBUG_DIRECTORY structure [https://msdn.microsoft.com/en-us/library/windows/desktop/ms680307(v=vs.85).aspx].
For this particular case, the linker emits a debug directory of type
IMAGE_DEBUG_TYPE_CODEVIEW. The format of this record is defined in
llvm/DebugInfo/CodeView/CVDebugRecord.h, but it suffices to say here only
that it includes the same Guid and Age fields. At runtime, a
debugger or tool can scan the COFF executable image for the presence of
a debug directory of the correct type and verify that the Guid and Age match.

 The PDB TPI Stream

The PDB TPI Stream

 The PDB DBI (Debug Info) Stream

The PDB DBI (Debug Info) Stream

	Introduction

	Stream Header

	Substreams

	Module Info Substream

	Section Contribution Substream

	Section Map Substream

	File Info Substream

	Type Server Substream

	EC Substream

	Optional Debug Header Stream

Introduction

The PDB DBI Stream (Index 3) is one of the largest and most important streams
in a PDB file. It contains information about how the program was compiled,
(e.g. compilation flags, etc), the compilands (e.g. object files) that
were used to link together the program, the source files which were used
to build the program, as well as references to other streams that contain more
detailed information about each compiland, such as the CodeView symbol records
contained within each compiland and the source and line information for
functions and other symbols within each compiland.

Stream Header

At offset 0 of the DBI Stream is a header with the following layout:

struct DbiStreamHeader {
 int32_t VersionSignature;
 uint32_t VersionHeader;
 uint32_t Age;
 uint16_t GlobalStreamIndex;
 uint16_t BuildNumber;
 uint16_t PublicStreamIndex;
 uint16_t PdbDllVersion;
 uint16_t SymRecordStream;
 uint16_t PdbDllRbld;
 int32_t ModInfoSize;
 int32_t SectionContributionSize;
 int32_t SectionMapSize;
 int32_t SourceInfoSize;
 int32_t TypeServerSize;
 uint32_t MFCTypeServerIndex;
 int32_t OptionalDbgHeaderSize;
 int32_t ECSubstreamSize;
 uint16_t Flags;
 uint16_t Machine;
 uint32_t Padding;
};

	VersionSignature - Unknown meaning. Appears to always be -1.

	VersionHeader - A value from the following enum.

enum class DbiStreamVersion : uint32_t {
 VC41 = 930803,
 V50 = 19960307,
 V60 = 19970606,
 V70 = 19990903,
 V110 = 20091201
};

Similar to the PDB Stream, this value always appears to be
V70, and it is not clear what the other values are for.

	Age - The number of times the PDB has been written. Equal to the same
field from the PDB Stream header.

	GlobalStreamIndex - The index of the Global Symbol Stream,
which contains CodeView symbol records for all global symbols. Actual records
are stored in the symbol record stream, and are referenced from this stream.

	BuildNumber - A bitfield containing values representing the major and minor
version number of the toolchain (e.g. 12.0 for MSVC 2013) used to build the
program, with the following layout:

uint16_t MinorVersion : 8;
uint16_t MajorVersion : 7;
uint16_t NewVersionFormat : 1;

For the purposes of LLVM, we assume NewVersionFormat to be always true.
If it is false, the layout above does not apply and the reader should consult
the Microsoft Source Code [https://github.com/Microsoft/microsoft-pdb] for
further guidance.

	PublicStreamIndex - The index of the Public Symbol Stream,
which contains CodeView symbol records for all public symbols. Actual records
are stored in the symbol record stream, and are referenced from this stream.

	PdbDllVersion - The version number of mspdbXXXX.dll used to produce this
PDB. Note this obviously does not apply for LLVM as LLVM does not use mspdb.dll.

	SymRecordStream - The stream containing all CodeView symbol records used
by the program. This is used for deduplication, so that many different
compilands can refer to the same symbols without having to include the full record
content inside of each module stream.

	PdbDllRbld - Unknown

	MFCTypeServerIndex - The length of the :ref:dbi_mfc_type_server_substream

	Flags - A bitfield with the following layout, containing various
information about how the program was built:

uint16_t WasIncrementallyLinked : 1;
uint16_t ArePrivateSymbolsStripped : 1;
uint16_t HasConflictingTypes : 1;
uint16_t Reserved : 13;

The only one of these that is not self-explanatory is HasConflictingTypes.
Although undocumented, link.exe contains a hidden flag /DEBUG:CTYPES.
If it is passed to link.exe, this field will be set. Otherwise it will
not be set. It is unclear what this flag does, although it seems to have
subtle implications on the algorithm used to look up type records.

	Machine - A value from the CV_CPU_TYPE_e [https://msdn.microsoft.com/en-us/library/b2fc64ek.aspx]
enumeration. Common values are 0x8664 (x86-64) and 0x14C (x86).

Immediately after the fixed-size DBI Stream header are 7 variable-length
substreams. The following 7 fields of the DBI Stream header specify the
number of bytes of the corresponding substream. Each substream’s contents will
be described in detail below. The length of the entire
DBI Stream should equal 64 (the length of the header above) plus the value
of each of the following 7 fields.

	ModInfoSize - The length of the Module Info Substream.

	SectionContributionSize - The length of the Section Contribution Substream.

	SectionMapSize - The length of the Section Map Substream.

	SourceInfoSize - The length of the File Info Substream.

	TypeServerSize - The length of the Type Server Substream.

	OptionalDbgHeaderSize - The length of the Optional Debug Header Stream.

	ECSubstreamSize - The length of the EC Substream.

Substreams

Module Info Substream

Begins at offset 0 immediately after the header. The
module info substream is an array of variable-length records, each one
describing a single module (e.g. object file) linked into the program. Each
record in the array has the format:

struct SectionContribEntry {
 uint16_t Section;
 char Padding1[2];
 int32_t Offset;
 int32_t Size;
 uint32_t Characteristics;
 uint16_t ModuleIndex;
 char Padding2[2];
 uint32_t DataCrc;
 uint32_t RelocCrc;
};

While most of these are self-explanatory, the Characteristics field
warrants some elaboration. It corresponds to the Characteristics
field of the IMAGE_SECTION_HEADER [https://msdn.microsoft.com/en-us/library/windows/desktop/ms680341(v=vs.85).aspx]
structure.

struct ModInfo {
 uint32_t Unused1;
 SectionContribEntry SectionContr;
 uint16_t Flags;
 uint16_t ModuleSymStream;
 uint32_t SymByteSize;
 uint32_t C11ByteSize;
 uint32_t C13ByteSize;
 uint16_t SourceFileCount;
 char Padding[2];
 uint32_t Unused2;
 uint32_t SourceFileNameIndex;
 uint32_t PdbFilePathNameIndex;
 char ModuleName[];
 char ObjFileName[];
};

	SectionContr - Describes the properties of the section in the final binary
which contain the code and data from this module.

	Flags - A bitfield with the following format:

uint16_t Dirty : 1; // ``true`` if this ModInfo has been written since reading the PDB.
uint16_t EC : 1; // ``true`` if EC information is present for this module. It is unknown what EC actually is.
uint16_t Unused : 6;
uint16_t TSM : 8; // Type Server Index for this module. It is unknown what this is used for, but it is not used by LLVM.

	ModuleSymStream - The index of the stream that contains symbol information
for this module. This includes CodeView symbol information as well as source
and line information.

	SymByteSize - The number of bytes of data from the stream identified by
ModuleSymStream that represent CodeView symbol records.

	C11ByteSize - The number of bytes of data from the stream identified by
ModuleSymStream that represent C11-style CodeView line information.

	C13ByteSize - The number of bytes of data from the stream identified by
ModuleSymStream that represent C13-style CodeView line information. At
most one of C11ByteSize and C13ByteSize will be non-zero.

	SourceFileCount - The number of source files that contributed to this
module during compilation.

	SourceFileNameIndex - The offset in the names buffer of the primary
translation unit used to build this module. All PDB files observed to date
always have this value equal to 0.

	PdbFilePathNameIndex - The offset in the names buffer of the PDB file
containing this module’s symbol information. This has only been observed
to be non-zero for the special * Linker * module.

	ModuleName - The module name. This is usually either a full path to an
object file (either directly passed to link.exe or from an archive) or
a string of the form Import:<dll name>.

	ObjFileName - The object file name. In the case of an module that is
linked directly passed to link.exe, this is the same as ModuleName.
In the case of a module that comes from an archive, this is usually the full
path to the archive.

Section Contribution Substream

Begins at offset 0 immediately after the Module Info Substream ends,
and consumes Header->SectionContributionSize bytes. This substream begins
with a single uint32_t which will be one of the following values:

enum class SectionContrSubstreamVersion : uint32_t {
 Ver60 = 0xeffe0000 + 19970605,
 V2 = 0xeffe0000 + 20140516
};

Ver60 is the only value which has been observed in a PDB so far. Following
this 4 byte field is an array of fixed-length structures. If the version
is Ver60, it is an array of SectionContribEntry structures. If the
version is V2, it is an array of SectionContribEntry2 structures,
defined as follows:

struct SectionContribEntry2 {
 SectionContribEntry SC;
 uint32_t ISectCoff;
};

The purpose of the second field is not well understood.

Section Map Substream

Begins at offset 0 immediately after the Section Contribution Substream ends,
and consumes Header->SectionMapSize bytes. This substream begins with an 8
byte header followed by an array of fixed-length records. The header and records
have the following layout:

struct SectionMapHeader {
 uint16_t Count; // Number of segment descriptors
 uint16_t LogCount; // Number of logical segment descriptors
};

struct SectionMapEntry {
 uint16_t Flags; // See the SectionMapEntryFlags enum below.
 uint16_t Ovl; // Logical overlay number
 uint16_t Group; // Group index into descriptor array.
 uint16_t Frame;
 uint16_t SectionName; // Byte index of segment / group name in string table, or 0xFFFF.
 uint16_t ClassName; // Byte index of class in string table, or 0xFFFF.
 uint32_t Offset; // Byte offset of the logical segment within physical segment. If group is set in flags, this is the offset of the group.
 uint32_t SectionLength; // Byte count of the segment or group.
};

enum class SectionMapEntryFlags : uint16_t {
 Read = 1 << 0, // Segment is readable.
 Write = 1 << 1, // Segment is writable.
 Execute = 1 << 2, // Segment is executable.
 AddressIs32Bit = 1 << 3, // Descriptor describes a 32-bit linear address.
 IsSelector = 1 << 8, // Frame represents a selector.
 IsAbsoluteAddress = 1 << 9, // Frame represents an absolute address.
 IsGroup = 1 << 10 // If set, descriptor represents a group.
};

Many of these fields are not well understood, so will not be discussed further.

File Info Substream

Begins at offset 0 immediately after the Section Map Substream ends,
and consumes Header->SourceInfoSize bytes. This substream defines the mapping
from module to the source files that contribute to that module. Since multiple
modules can use the same source file (for example, a header file), this substream
uses a string table to store each unique file name only once, and then have each
module use offsets into the string table rather than embedding the string’s value
directly. The format of this substream is as follows:

struct FileInfoSubstream {
 uint16_t NumModules;
 uint16_t NumSourceFiles;

 uint16_t ModIndices[NumModules];
 uint16_t ModFileCounts[NumModules];
 uint32_t FileNameOffsets[NumSourceFiles];
 char NamesBuffer[][NumSourceFiles];
};

NumModules - The number of modules for which source file information is
contained within this substream. Should match the corresponding value from the
ref:dbi_header.

NumSourceFiles: In theory this is supposed to contain the number of source
files for which this substream contains information. But that would present a
problem in that the width of this field being 16-bits would prevent one from
having more than 64K source files in a program. In early versions of the file
format, this seems to have been the case. In order to support more than this, this
field of the is simply ignored, and computed dynamically by summing up the values of
the ModFileCounts array (discussed below). In short, this value should be
ignored.

ModIndices - This array is present, but does not appear to be useful.

ModFileCountArray - An array of NumModules integers, each one containing
the number of source files which contribute to the module at the specified index.
While each individual module is limited to 64K contributing source files, the
union of all modules’ source files may be greater than 64K. The real number of
source files is thus computed by summing this array. Note that summing this array
does not give the number of unique source files, only the total number of source
file contributions to modules.

FileNameOffsets - An array of NumSourceFiles integers (where NumSourceFiles
here refers to the 32-bit value obtained from summing ModFileCountArray), where
each integer is an offset into NamesBuffer pointing to a null terminated string.

NamesBuffer - An array of null terminated strings containing the actual source
file names.

Type Server Substream

Begins at offset 0 immediately after the File Info Substream ends,
and consumes Header->TypeServerSize bytes. Neither the purpose nor the layout
of this substream is understood, although it is assumed to related somehow to the
usage of /Zi and mspdbsrv.exe. This substream will not be discussed further.

EC Substream

Begins at offset 0 immediately after the Type Server Substream ends,
and consumes Header->ECSubstreamSize bytes. Neither the purpose nor the layout
of this substream is understood, and it will not be discussed further.

Optional Debug Header Stream

Begins at offset 0 immediately after the EC Substream ends, and
consumes Header->OptionalDbgHeaderSize bytes. This field is an array of
stream indices (e.g. uint16_t’s), each of which identifies a stream
index in the larger MSF file which contains some additional debug information.
Each position of this array has a special meaning, allowing one to determine
what kind of debug information is at the referenced stream. 11 indices
are currently understood, although it’s possible there may be more. The
layout of each stream generally corresponds exactly to a particular type
of debug data directory from the PE/COFF file. The format of these fields
can be found in the Microsoft PE/COFF Specification [https://www.microsoft.com/en-us/download/details.aspx?id=19509].

FPO Data - DbgStreamArray[0]. The data in the referenced stream is a
debug data directory of type IMAGE_DEBUG_TYPE_FPO

Exception Data - DbgStreamArray[1]. The data in the referenced stream
is a debug data directory of type IMAGE_DEBUG_TYPE_EXCEPTION.

Fixup Data - DbgStreamArray[2]. The data in the referenced stream is a
debug data directory of type IMAGE_DEBUG_TYPE_FIXUP.

Omap To Src Data - DbgStreamArray[3]. The data in the referenced stream
is a debug data directory of type IMAGE_DEBUG_TYPE_OMAP_TO_SRC. This
is used for mapping addresses between instrumented and uninstrumented code.

Omap From Src Data - DbgStreamArray[4]. The data in the referenced stream
is a debug data directory of type IMAGE_DEBUG_TYPE_OMAP_FROM_SRC. This
is used for mapping addresses between instrumented and uninstrumented code.

Section Header Data - DbgStreamArray[5]. A dump of all section headers from
the original executable.

Token / RID Map - DbgStreamArray[6]. The layout of this stream is not
understood, but it is assumed to be a mapping from CLR Token to
CLR Record ID. Refer to ECMA 335 [http://www.ecma-international.org/publications/standards/Ecma-335.htm]
for more information.

Xdata - DbgStreamArray[7]. A copy of the .xdata section from the
executable.

Pdata - DbgStreamArray[8]. This is assumed to be a copy of the .pdata
section from the executable, but that would make it identical to
DbgStreamArray[1]. The difference between these two indices is not well
understood.

New FPO Data - DbgStreamArray[9]. The data in the referenced stream is a
debug data directory of type IMAGE_DEBUG_TYPE_FPO. It is not clear how this
differs from DbgStreamArray[0], but in practice all observed PDB files have
used the “new” format rather than the “old” format.

Original Section Header Data - DbgStreamArray[10]. Assumed to be similar
to DbgStreamArray[5], but has not been observed in practice.

 The Module Information Stream

The Module Information Stream

	Introduction

	Stream Layout

	The CodeView Symbol Substream

Introduction

The Module Info Stream (henceforth referred to as the Modi stream) contains
information about a single module (object file, import library, etc that
contributes to the binary this PDB contains debug information about. There
is one modi stream for each module, and the mapping between modi stream index
and module is contained in the DBI Stream. The modi stream
for a single module contains line information for the compiland, as well as
all CodeView information for the symbols defined in the compiland. Finally,
there is a “global refs” substream which is not well understood.

Stream Layout

A modi stream is laid out as follows:

struct ModiStream {
 uint32_t Signature;
 uint8_t Symbols[SymbolSize-4];
 uint8_t C11LineInfo[C11Size];
 uint8_t C13LineInfo[C13Size];

 uint32_t GlobalRefsSize;
 uint8_t GlobalRefs[GlobalRefsSize];
};

	Signature - Unknown. In practice only the value of 4 has been
observed. It is hypothesized that this value corresponds to the set of
CV_SIGNATURE_xx defines in cvinfo.h, with the value of 4
meaning that this module has C13 line information (as opposed to C11 line
information). A corollary of this is that we expect to only ever see
C13 line info, and that we do not understand the format of C11 line info.

	Symbols - The CodeView Symbol Substream.
SymbolSize is equal to the value of SymByteSize for the
corresponding module’s entry in the Module Info Substream
of the DBI Stream.

	C11LineInfo - A block containing CodeView line information in C11
format. C11Size is equal to the value of C11ByteSize from the
Module Info Substream of the
DBI Stream. If this value is 0, then C11 line
information is not present. As mentioned previously, the format of
C11 line info is not understood and we assume all line in modern PDBs
to be in C13 format.

	C13LineInfo - A block containing CodeView line information in C13
format. C13Size is equal to the value of C13ByteSize from the
Module Info Substream of the
DBI Stream. If this value is 0, then C13 line
information is not present.

	GlobalRefs - The meaning of this substream is not understood.

The CodeView Symbol Substream

The CodeView Symbol Substream. This is an array of variable length
records describing the functions, variables, inlining information,
and other symbols defined in the compiland. The entire array consumes
SymbolSize-4 bytes. The format of a CodeView Symbol Record (and
thusly, an array of CodeView Symbol Records) is described in
CodeView Symbol Records.

 The PDB Public Symbol Stream

The PDB Public Symbol Stream

 The PDB Global Symbol Stream

The PDB Global Symbol Stream

 The TPI & IPI Hash Streams

The TPI & IPI Hash Streams

 CodeView Symbol Records

CodeView Symbol Records

 CodeView Type Records

CodeView Type Records

 Control Flow Verification Tool Design Document

Control Flow Verification Tool Design Document

	Objective

	Location

	Background

	Design Ideas

	Other Design Notes

Objective

This document provides an overview of an external tool to verify the protection
mechanisms implemented by Clang’s Control Flow Integrity (CFI) schemes
(-fsanitize=cfi). This tool, provided a binary or DSO, should infer whether
indirect control flow operations are protected by CFI, and should output these
results in a human-readable form.

This tool should also be added as part of Clang’s continuous integration testing
framework, where modifications to the compiler ensure that CFI protection
schemes are still present in the final binary.

Location

This tool will be present as a part of the LLVM toolchain, and will reside in
the “/llvm/tools/llvm-cfi-verify” directory, relative to the LLVM trunk. It will
be tested in two methods:

	Unit tests to validate code sections, present in
“/llvm/unittests/tools/llvm-cfi-verify”.

	Integration tests, present in “/llvm/tools/clang/test/LLVMCFIVerify”. These
integration tests are part of clang as part of a continuous integration
framework, ensuring updates to the compiler that reduce CFI coverage on
indirect control flow instructions are identified.

Background

This tool will continuously validate that CFI directives are properly
implemented around all indirect control flows by analysing the output machine
code. The analysis of machine code is important as it ensures that any bugs
present in linker or compiler do not subvert CFI protections in the final
shipped binary.

Unprotected indirect control flow instructions will be flagged for manual
review. These unexpected control flows may simply have not been accounted for in
the compiler implementation of CFI (e.g. indirect jumps to facilitate switch
statements may not be fully protected).

It may be possible in the future to extend this tool to flag unnecessary CFI
directives (e.g. CFI directives around a static call to a non-polymorphic base
type). This type of directive has no security implications, but may present
performance impacts.

Design Ideas

This tool will disassemble binaries and DSO’s from their machine code format and
analyse the disassembled machine code. The tool will inspect virtual calls and
indirect function calls. This tool will also inspect indirect jumps, as inlined
functions and jump tables should also be subject to CFI protections. Non-virtual
calls (-fsanitize=cfi-nvcall) and cast checks (-fsanitize=cfi-*cast*)
are not implemented due to a lack of information provided by the bytecode.

The tool would operate by searching for indirect control flow instructions in
the disassembly. A control flow graph would be generated from a small buffer of
the instructions surrounding the ‘target’ control flow instruction. If the
target instruction is branched-to, the fallthrough of the branch should be the
CFI trap (on x86, this is a ud2 instruction). If the target instruction is
the fallthrough (i.e. immediately succeeds) of a conditional jump, the
conditional jump target should be the CFI trap. If an indirect control flow
instruction does not conform to one of these formats, the target will be noted
as being CFI-unprotected.

Note that in the second case outlined above (where the target instruction is the
fallthrough of a conditional jump), if the target represents a vcall that takes
arguments, these arguments may be pushed to the stack after the branch but
before the target instruction. In these cases, a secondary ‘spill graph’ in
constructed, to ensure the register argument used by the indirect jump/call is
not spilled from the stack at any point in the interim period. If there are no
spills that affect the target register, the target is marked as CFI-protected.

Other Design Notes

Only machine code sections that are marked as executable will be subject to this
analysis. Non-executable sections do not require analysis as any execution
present in these sections has already violated the control flow integrity.

Suitable extensions may be made at a later date to include analysis for indirect
control flow operations across DSO boundaries. Currently, these CFI features are
only experimental with an unstable ABI, making them unsuitable for analysis.

The tool currently only supports the x86, x86_64, and AArch64 architectures.

 Speculative Load Hardening

Speculative Load Hardening

A Spectre Variant #1 Mitigation Technique

Author: Chandler Carruth - chandlerc@google.com

Problem Statement

Recently, Google Project Zero and other researchers have found information leak
vulnerabilities by exploiting speculative execution in modern CPUs. These
exploits are currently broken down into three variants:

	GPZ Variant #1 (a.k.a. Spectre Variant #1): Bounds check (or predicate) bypass

	GPZ Variant #2 (a.k.a. Spectre Variant #2): Branch target injection

	GPZ Variant #3 (a.k.a. Meltdown): Rogue data cache load

For more details, see the Google Project Zero blog post and the Spectre research
paper:

	https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html

	https://spectreattack.com/spectre.pdf

The core problem of GPZ Variant #1 is that speculative execution uses branch
prediction to select the path of instructions speculatively executed. This path
is speculatively executed with the available data, and may load from memory and
leak the loaded values through various side channels that survive even when the
speculative execution is unwound due to being incorrect. Mispredicted paths can
cause code to be executed with data inputs that never occur in correct
executions, making checks against malicious inputs ineffective and allowing
attackers to use malicious data inputs to leak secret data. Here is an example,
extracted and simplified from the Project Zero paper:

struct array {
 unsigned long length;
 unsigned char data[];
};
struct array *arr1 = ...; // small array
struct array *arr2 = ...; // array of size 0x400
unsigned long untrusted_offset_from_caller = ...;
if (untrusted_offset_from_caller < arr1->length) {
 unsigned char value = arr1->data[untrusted_offset_from_caller];
 unsigned long index2 = ((value&1)*0x100)+0x200;
 unsigned char value2 = arr2->data[index2];
}

The key of the attack is to call this with untrusted_offset_from_caller that
is far outside of the bounds when the branch predictor will predict that it
will be in-bounds. In that case, the body of the if will be executed
speculatively, and may read secret data into value and leak it via a
cache-timing side channel when a dependent access is made to populate value2.

High Level Mitigation Approach

While several approaches are being actively pursued to mitigate specific
branches and/or loads inside especially risky software (most notably various OS
kernels), these approaches require manual and/or static analysis aided auditing
of code and explicit source changes to apply the mitigation. They are unlikely
to scale well to large applications. We are proposing a comprehensive
mitigation approach that would apply automatically across an entire program
rather than through manual changes to the code. While this is likely to have a
high performance cost, some applications may be in a good position to take this
performance / security tradeoff.

The specific technique we propose is to cause loads to be checked using
branchless code to ensure that they are executing along a valid control flow
path. Consider the following C-pseudo-code representing the core idea of a
predicate guarding potentially invalid loads:

void leak(int data);
void example(int* pointer1, int* pointer2) {
 if (condition) {
 // ... lots of code ...
 leak(*pointer1);
 } else {
 // ... more code ...
 leak(*pointer2);
 }
}

This would get transformed into something resembling the following:

uintptr_t all_ones_mask = std::numerical_limits<uintptr_t>::max();
uintptr_t all_zeros_mask = 0;
void leak(int data);
void example(int* pointer1, int* pointer2) {
 uintptr_t predicate_state = all_ones_mask;
 if (condition) {
 // Assuming ?: is implemented using branchless logic...
 predicate_state = !condition ? all_zeros_mask : predicate_state;
 // ... lots of code ...
 //
 // Harden the pointer so it can't be loaded
 pointer1 &= predicate_state;
 leak(*pointer1);
 } else {
 predicate_state = condition ? all_zeros_mask : predicate_state;
 // ... more code ...
 //
 // Alternative: Harden the loaded value
 int value2 = *pointer2 & predicate_state;
 leak(value2);
 }
}

The result should be that if the if (condition) { branch is mis-predicted,
there is a data dependency on the condition used to zero out any pointers
prior to loading through them or to zero out all of the loaded bits. Even
though this code pattern may still execute speculatively, invalid speculative
executions are prevented from leaking secret data from memory (but note that
this data might still be loaded in safe ways, and some regions of memory are
required to not hold secrets, see below for detailed limitations). This
approach only requires the underlying hardware have a way to implement a
branchless and unpredicted conditional update of a register’s value. All modern
architectures have support for this, and in fact such support is necessary to
correctly implement constant time cryptographic primitives.

Crucial properties of this approach:

	It is not preventing any particular side-channel from working. This is
important as there are an unknown number of potential side channels and we
expect to continue discovering more. Instead, it prevents the observation of
secret data in the first place.

	It accumulates the predicate state, protecting even in the face of nested
correctly predicted control flows.

	It passes this predicate state across function boundaries to provide
interprocedural protection.

	When hardening the address of a load, it uses a destructive or
non-reversible modification of the address to prevent an attacker from
reversing the check using attacker-controlled inputs.

	It does not completely block speculative execution, and merely prevents
mis-speculated paths from leaking secrets from memory (and stalls
speculation until this can be determined).

	It is completely general and makes no fundamental assumptions about the
underlying architecture other than the ability to do branchless conditional
data updates and a lack of value prediction.

	It does not require programmers to identify all possible secret data using
static source code annotations or code vulnerable to a variant #1 style
attack.

Limitations of this approach:

	It requires re-compiling source code to insert hardening instruction
sequences. Only software compiled in this mode is protected.

	The performance is heavily dependent on a particular architecture’s
implementation strategy. We outline a potential x86 implementation below and
characterize its performance.

	It does not defend against secret data already loaded from memory and
residing in registers or leaked through other side-channels in
non-speculative execution. Code dealing with this, e.g cryptographic
routines, already uses constant-time algorithms and code to prevent
side-channels. Such code should also scrub registers of secret data following
these
guidelines [https://github.com/HACS-workshop/spectre-mitigations/blob/master/crypto_guidelines.md].

	To achieve reasonable performance, many loads may not be checked, such as
those with compile-time fixed addresses. This primarily consists of accesses
at compile-time constant offsets of global and local variables. Code which
needs this protection and intentionally stores secret data must ensure the
memory regions used for secret data are necessarily dynamic mappings or heap
allocations. This is an area which can be tuned to provide more comprehensive
protection at the cost of performance.

	Hardened loads may still load data from
valid addresses if not attacker-controlled addresses. To prevent these
from reading secret data, the low 2gb of the address space and 2gb above and
below any executable pages should be protected.

Credit:

	The core idea of tracing misspeculation through data and marking pointers to
block misspeculated loads was developed as part of a HACS 2018 discussion
between Chandler Carruth, Paul Kocher, Thomas Pornin, and several other
individuals.

	Core idea of masking out loaded bits was part of the original mitigation
suggested by Jann Horn when these attacks were reported.

Indirect Branches, Calls, and Returns

It is possible to attack control flow other than conditional branches with
variant #1 style mispredictions.

	A prediction towards a hot call target of a virtual method can lead to it
being speculatively executed when an expected type is used (often called
“type confusion”).

	A hot case may be speculatively executed due to prediction instead of the
correct case for a switch statement implemented as a jump table.

	A hot common return address may be predicted incorrectly when returning from
a function.

These code patterns are also vulnerable to Spectre variant #2, and as such are
best mitigated with a
retpoline [https://support.google.com/faqs/answer/7625886] on x86 platforms.
When a mitigation technique like retpoline is used, speculation simply cannot
proceed through an indirect control flow edge (or it cannot be mispredicted in
the case of a filled RSB) and so it is also protected from variant #1 style
attacks. However, some architectures, micro-architectures, or vendors do not
employ the retpoline mitigation, and on future x86 hardware (both Intel and
AMD) it is expected to become unnecessary due to hardware-based mitigation.

When not using a retpoline, these edges will need independent protection from
variant #1 style attacks. The analogous approach to that used for conditional
control flow should work:

uintptr_t all_ones_mask = std::numerical_limits<uintptr_t>::max();
uintptr_t all_zeros_mask = 0;
void leak(int data);
void example(int* pointer1, int* pointer2) {
 uintptr_t predicate_state = all_ones_mask;
 switch (condition) {
 case 0:
 // Assuming ?: is implemented using branchless logic...
 predicate_state = (condition != 0) ? all_zeros_mask : predicate_state;
 // ... lots of code ...
 //
 // Harden the pointer so it can't be loaded
 pointer1 &= predicate_state;
 leak(*pointer1);
 break;

 case 1:
 predicate_state = (condition != 1) ? all_zeros_mask : predicate_state;
 // ... more code ...
 //
 // Alternative: Harden the loaded value
 int value2 = *pointer2 & predicate_state;
 leak(value2);
 break;

 // ...
 }
}

The core idea remains the same: validate the control flow using data-flow and
use that validation to check that loads cannot leak information along
misspeculated paths. Typically this involves passing the desired target of such
control flow across the edge and checking that it is correct afterwards. Note
that while it is tempting to think that this mitigates variant #2 attacks, it
does not. Those attacks go to arbitrary gadgets that don’t include the checks.

Variant #1.1 and #1.2 attacks: “Bounds Check Bypass Store”

Beyond the core variant #1 attack, there are techniques to extend this attack.
The primary technique is known as “Bounds Check Bypass Store” and is discussed
in this research paper: https://people.csail.mit.edu/vlk/spectre11.pdf

We will analyze these two variants independently. First, variant #1.1 works by
speculatively storing over the return address after a bounds check bypass. This
speculative store then ends up being used by the CPU during speculative
execution of the return, potentially directing speculative execution to
arbitrary gadgets in the binary. Let’s look at an example.

unsigned char local_buffer[4];
unsigned char *untrusted_data_from_caller = ...;
unsigned long untrusted_size_from_caller = ...;
if (untrusted_size_from_caller < sizeof(local_buffer)) {
 // Speculative execution enters here with a too-large size.
 memcpy(local_buffer, untrusted_data_from_caller,
 untrusted_size_from_caller);
 // The stack has now been smashed, writing an attacker-controlled
 // address over the return adress.
 minor_processing(local_buffer);
 return;
 // Control will speculate to the attacker-written address.
}

However, this can be mitigated by hardening the load of the return address just
like any other load. This is sometimes complicated because x86 for example
implicitly loads the return address off the stack. However, the
implementation technique below is specifically designed to mitigate this
implicit load by using the stack pointer to communicate misspeculation between
functions. This additionally causes a misspeculation to have an invalid stack
pointer and never be able to read the speculatively stored return address. See
the detailed discussion below.

For variant #1.2, the attacker speculatively stores into the vtable or jump
table used to implement an indirect call or indirect jump. Because this is
speculative, this will often be possible even when these are stored in
read-only pages. For example:

class FancyObject : public BaseObject {
public:
 void DoSomething() override;
};
void f(unsigned long attacker_offset, unsigned long attacker_data) {
 FancyObject object = getMyObject();
 unsigned long *arr[4] = getFourDataPointers();
 if (attacker_offset < 4) {
 // We have bypassed the bounds check speculatively.
 unsigned long *data = arr[attacker_offset];
 // Now we have computed a pointer inside of `object`, the vptr.
 *data = attacker_data;
 // The vptr points to the virtual table and we speculatively clobber that.
 g(object); // Hand the object to some other routine.
 }
}
// In another file, we call a method on the object.
void g(BaseObject &object) {
 object.DoSomething();
 // This speculatively calls the address stored over the vtable.
}

Mitigating this requires hardening loads from these locations, or mitigating
the indirect call or indirect jump. Any of these are sufficient to block the
call or jump from using a speculatively stored value that has been read back.

For both of these, using retpolines would be equally sufficient. One possible
hybrid approach is to use retpolines for indirect call and jump, while relying
on SLH to mitigate returns.

Another approach that is sufficient for both of these is to harden all of the
speculative stores. However, as most stores aren’t interesting and don’t
inherently leak data, this is expected to be prohibitively expensive given the
attack it is defending against.

Implementation Details

There are a number of complex details impacting the implementation of this
technique, both on a particular architecture and within a particular compiler.
We discuss proposed implementation techniques for the x86 architecture and the
LLVM compiler. These are primarily to serve as an example, as other
implementation techniques are very possible.

x86 Implementation Details

On the x86 platform we break down the implementation into three core
components: accumulating the predicate state through the control flow graph,
checking the loads, and checking control transfers between procedures.

Accumulating Predicate State

Consider baseline x86 instructions like the following, which test three
conditions and if all pass, loads data from memory and potentially leaks it
through some side channel:

%bb.0: # %entry
 pushq %rax
 testl %edi, %edi
 jne .LBB0_4
%bb.1: # %then1
 testl %esi, %esi
 jne .LBB0_4
%bb.2: # %then2
 testl %edx, %edx
 je .LBB0_3
.LBB0_4: # %exit
 popq %rax
 retq
.LBB0_3: # %danger
 movl (%rcx), %edi
 callq leak
 popq %rax
 retq

When we go to speculatively execute the load, we want to know whether any of
the dynamically executed predicates have been misspeculated. To track that,
along each conditional edge, we need to track the data which would allow that
edge to be taken. On x86, this data is stored in the flags register used by the
conditional jump instruction. Along both edges after this fork in control flow,
the flags register remains alive and contains data that we can use to build up
our accumulated predicate state. We accumulate it using the x86 conditional
move instruction which also reads the flag registers where the state resides.
These conditional move instructions are known to not be predicted on any x86
processors, making them immune to misprediction that could reintroduce the
vulnerability. When we insert the conditional moves, the code ends up looking
like the following:

%bb.0: # %entry
 pushq %rax
 xorl %eax, %eax # Zero out initial predicate state.
 movq $-1, %r8 # Put all-ones mask into a register.
 testl %edi, %edi
 jne .LBB0_1
%bb.2: # %then1
 cmovneq %r8, %rax # Conditionally update predicate state.
 testl %esi, %esi
 jne .LBB0_1
%bb.3: # %then2
 cmovneq %r8, %rax # Conditionally update predicate state.
 testl %edx, %edx
 je .LBB0_4
.LBB0_1:
 cmoveq %r8, %rax # Conditionally update predicate state.
 popq %rax
 retq
.LBB0_4: # %danger
 cmovneq %r8, %rax # Conditionally update predicate state.
 ...

Here we create the “empty” or “correct execution” predicate state by zeroing
%rax, and we create a constant “incorrect execution” predicate value by
putting -1 into %r8. Then, along each edge coming out of a conditional
branch we do a conditional move that in a correct execution will be a no-op,
but if misspeculated, will replace the %rax with the value of %r8.
Misspeculating any one of the three predicates will cause %rax to hold the
“incorrect execution” value from %r8 as we preserve incoming values when
execution is correct rather than overwriting it.

We now have a value in %rax in each basic block that indicates if at some
point previously a predicate was mispredicted. And we have arranged for that
value to be particularly effective when used below to harden loads.

Indirect Call, Branch, and Return Predicates

(Not yet implemented.)

There is no analogous flag to use when tracing indirect calls, branches, and
returns. The predicate state must be accumulated through some other means.
Fundamentally, this is the reverse of the problem posed in CFI: we need to
check where we came from rather than where we are going. For function-local
jump tables, this is easily arranged by testing the input to the jump table
within each destination:

 pushq %rax
 xorl %eax, %eax # Zero out initial predicate state.
 movq $-1, %r8 # Put all-ones mask into a register.
 jmpq *.LJTI0_0(,%rdi,8) # Indirect jump through table.
.LBB0_2: # %sw.bb
 testq $0, %rdi # Validate index used for jump table.
 cmovneq %r8, %rax # Conditionally update predicate state.
 ...
 jmp _Z4leaki # TAILCALL

.LBB0_3: # %sw.bb1
 testq $1, %rdi # Validate index used for jump table.
 cmovneq %r8, %rax # Conditionally update predicate state.
 ...
 jmp _Z4leaki # TAILCALL

.LBB0_5: # %sw.bb10
 testq $2, %rdi # Validate index used for jump table.
 cmovneq %r8, %rax # Conditionally update predicate state.
 ...
 jmp _Z4leaki # TAILCALL
 ...

 .section .rodata,"a",@progbits
 .p2align 3
.LJTI0_0:
 .quad .LBB0_2
 .quad .LBB0_3
 .quad .LBB0_5
 ...

Returns have a simple mitigation technique on x86-64 (or other ABIs which have
what is called a “red zone” region beyond the end of the stack). This region is
guaranteed to be preserved across interrupts and context switches, making the
return address used in returning to the current code remain on the stack and
valid to read. We can emit code in the caller to verify that a return edge was
not mispredicted:

 callq other_function
return_addr:
 testq -8(%rsp), return_addr # Validate return address.
 cmovneq %r8, %rax # Update predicate state.

For an ABI without a “red zone” (and thus unable to read the return address
from the stack), mitigating returns face similar problems to calls below.

Indirect calls (and returns in the absence of a red zone ABI) pose the most
significant challenge to propagate. The simplest technique would be to define a
new ABI such that the intended call target is passed into the called function
and checked in the entry. Unfortunately, new ABIs are quite expensive to deploy
in C and C++. While the target function could be passed in TLS, we would still
require complex logic to handle a mixture of functions compiled with and
without this extra logic (essentially, making the ABI backwards compatible).
Currently, we suggest using retpolines here and will continue to investigate
ways of mitigating this.

Optimizations, Alternatives, and Tradeoffs

Merely accumulating predicate state involves significant cost. There are
several key optimizations we employ to minimize this and various alternatives
that present different tradeoffs in the generated code.

First, we work to reduce the number of instructions used to track the state:

	Rather than inserting a cmovCC instruction along every conditional edge in
the original program, we track each set of condition flags we need to capture
prior to entering each basic block and reuse a common cmovCC sequence for
those.

	We could further reuse suffixes when there are multiple cmovCC
instructions required to capture the set of flags. Currently this is
believed to not be worth the cost as paired flags are relatively rare and
suffixes of them are exceedingly rare.

	A common pattern in x86 is to have multiple conditional jump instructions
that use the same flags but handle different conditions. Naively, we could
consider each fallthrough between them an “edge” but this causes a much more
complex control flow graph. Instead, we accumulate the set of conditions
necessary for fallthrough and use a sequence of cmovCC instructions in a
single fallthrough edge to track it.

Second, we trade register pressure for simpler cmovCC instructions by
allocating a register for the “bad” state. We could read that value from memory
as part of the conditional move instruction, however, this creates more
micro-ops and requires the load-store unit to be involved. Currently, we place
the value into a virtual register and allow the register allocator to decide
when the register pressure is sufficient to make it worth spilling to memory
and reloading.

Hardening Loads

Once we have the predicate accumulated into a special value for correct vs.
misspeculated, we need to apply this to loads in a way that ensures they do not
leak secret data. There are two primary techniques for this: we can either
harden the loaded value to prevent observation, or we can harden the address
itself to prevent the load from occuring. These have significantly different
performance tradeoffs.

Hardening loaded values

The most appealing way to harden loads is to mask out all of the bits loaded.
The key requirement is that for each bit loaded, along the misspeculated path
that bit is always fixed at either 0 or 1 regardless of the value of the bit
loaded. The most obvious implementation uses either an and instruction with
an all-zero mask along misspeculated paths and an all-one mask along correct
paths, or an or instruction with an all-one mask along misspeculated paths
and an all-zero mask along correct paths. Other options become less appealing
such as multiplying by zero, or multiple shift instructions. For reasons we
elaborate on below, we end up suggesting you use or with an all-ones mask,
making the x86 instruction sequence look like the following:

 ...

.LBB0_4: # %danger
 cmovneq %r8, %rax # Conditionally update predicate state.
 movl (%rsi), %edi # Load potentially secret data from %rsi.
 orl %eax, %edi

Other useful patterns may be to fold the load into the or instruction itself
at the cost of a register-to-register copy.

There are some challenges with deploying this approach:

	Many loads on x86 are folded into other instructions. Separating them would
add very significant and costly register pressure with prohibitive
performance cost.

	Loads may not target a general purpose register requiring extra instructions
to map the state value into the correct register class, and potentially more
expensive instructions to mask the value in some way.

	The flags registers on x86 are very likely to be live, and challenging to
preserve cheaply.

	There are many more values loaded than pointers & indices used for loads. As
a consequence, hardening the result of a load requires substantially more
instructions than hardening the address of the load (see below).

Despite these challenges, hardening the result of the load critically allows
the load to proceed and thus has dramatically less impact on the total
speculative / out-of-order potential of the execution. There are also several
interesting techniques to try and mitigate these challenges and make hardening
the results of loads viable in at least some cases. However, we generally
expect to fall back when unprofitable from hardening the loaded value to the
next approach of hardening the address itself.

Loads folded into data-invariant operations can be hardened after the operation

The first key to making this feasible is to recognize that many operations on
x86 are “data-invariant”. That is, they have no (known) observable behavior
differences due to the particular input data. These instructions are often used
when implementing cryptographic primitives dealing with private key data
because they are not believed to provide any side-channels. Similarly, we can
defer hardening until after them as they will not in-and-of-themselves
introduce a speculative execution side-channel. This results in code sequences
that look like:

 ...

.LBB0_4: # %danger
 cmovneq %r8, %rax # Conditionally update predicate state.
 addl (%rsi), %edi # Load and accumulate without leaking.
 orl %eax, %edi

While an addition happens to the loaded (potentially secret) value, that
doesn’t leak any data and we then immediately harden it.

Hardening of loaded values deferred down the data-invariant expression graph

We can generalize the previous idea and sink the hardening down the expression
graph across as many data-invariant operations as desirable. This can use very
conservative rules for whether something is data-invariant. The primary goal
should be to handle multiple loads with a single hardening instruction:

 ...

.LBB0_4: # %danger
 cmovneq %r8, %rax # Conditionally update predicate state.
 addl (%rsi), %edi # Load and accumulate without leaking.
 addl 4(%rsi), %edi # Continue without leaking.
 addl 8(%rsi), %edi
 orl %eax, %edi # Mask out bits from all three loads.

Preserving the flags while hardening loaded values on Haswell, Zen, and newer processors

Sadly, there are no useful instructions on x86 that apply a mask to all 64 bits
without touching the flag registers. However, we can harden loaded values that
are narrower than a word (fewer than 32-bits on 32-bit systems and fewer than
64-bits on 64-bit systems) by zero-extending the value to the full word size
and then shifting right by at least the number of original bits using the BMI2
shrx instruction:

 ...

.LBB0_4: # %danger
 cmovneq %r8, %rax # Conditionally update predicate state.
 addl (%rsi), %edi # Load and accumulate 32 bits of data.
 shrxq %rax, %rdi, %rdi # Shift out all 32 bits loaded.

Because on x86 the zero-extend is free, this can efficiently harden the loaded
value.

Hardening the address of the load

When hardening the loaded value is inapplicable, most often because the
instruction directly leaks information (like cmp or jmpq), we switch to
hardening the address of the load instead of the loaded value. This avoids
increasing register pressure by unfolding the load or paying some other high
cost.

To understand how this works in practice, we need to examine the exact
semantics of the x86 addressing modes which, in its fully general form, looks
like (%base,%index,scale)offset. Here %base and %index are 64-bit
registers that can potentially be any value, and may be attacker controlled,
and scale and offset are fixed immediate values. scale must be 1, 2,
4, or 8, and offset can be any 32-bit sign extended value. The exact
computation performed to find the address is then: %base + (scale * %index) + offset under 64-bit 2’s complement modular arithmetic.

One issue with this approach is that, after hardening, the %base + (scale * %index) subexpression will compute a value near zero (-1 + (scale * -1)) and
then a large, positive offset will index into memory within the first two
gigabytes of address space. While these offsets are not attacker controlled,
the attacker could chose to attack a load which happens to have the desired
offset and then successfully read memory in that region. This significantly
raises the burden on the attacker and limits the scope of attack but does not
eliminate it. To fully close the attack we must work with the operating system
to preclude mapping memory in the low two gigabytes of address space.

64-bit load checking instructions

We can use the following instruction sequences to check loads. We set up %r8
in these examples to hold the special value of -1 which will be cmoved over
%rax in misspeculated paths.

Single register addressing mode:

 ...

.LBB0_4: # %danger
 cmovneq %r8, %rax # Conditionally update predicate state.
 orq %rax, %rsi # Mask the pointer if misspeculating.
 movl (%rsi), %edi

Two register addressing mode:

 ...

.LBB0_4: # %danger
 cmovneq %r8, %rax # Conditionally update predicate state.
 orq %rax, %rsi # Mask the pointer if misspeculating.
 orq %rax, %rcx # Mask the index if misspeculating.
 movl (%rsi,%rcx), %edi

This will result in a negative address near zero or in offset wrapping the
address space back to a small positive address. Small, negative addresses will
fault in user-mode for most operating systems, but targets which need the high
address space to be user accessible may need to adjust the exact sequence used
above. Additionally, the low addresses will need to be marked unreadable by the
OS to fully harden the load.

RIP-relative addressing is even easier to break

There is a common addressing mode idiom that is substantially harder to check:
addressing relative to the instruction pointer. We cannot change the value of
the instruction pointer register and so we have the harder problem of forcing
%base + scale * %index + offset to be an invalid address, by only changing
%index. The only advantage we have is that the attacker also cannot modify
%base. If we use the fast instruction sequence above, but only apply it to
the index, we will always access %rip + (scale * -1) + offset. If the
attacker can find a load which with this address happens to point to secret
data, then they can reach it. However, the loader and base libraries can also
simply refuse to map the heap, data segments, or stack within 2gb of any of the
text in the program, much like it can reserve the low 2gb of address space.

The flag registers again make everything hard

Unfortunately, the technique of using orq-instructions has a serious flaw on
x86. The very thing that makes it easy to accumulate state, the flag registers
containing predicates, causes serious problems here because they may be alive
and used by the loading instruction or subsequent instructions. On x86, the
orq instruction sets the flags and will override anything already there.
This makes inserting them into the instruction stream very hazardous.
Unfortunately, unlike when hardening the loaded value, we have no fallback here
and so we must have a fully general approach available.

The first thing we must do when generating these sequences is try to analyze
the surrounding code to prove that the flags are not in fact alive or being
used. Typically, it has been set by some other instruction which just happens
to set the flags register (much like ours!) with no actual dependency. In those
cases, it is safe to directly insert these instructions. Alternatively we may
be able to move them earlier to avoid clobbering the used value.

However, this may ultimately be impossible. In that case, we need to preserve
the flags around these instructions:

 ...

.LBB0_4: # %danger
 cmovneq %r8, %rax # Conditionally update predicate state.
 pushfq
 orq %rax, %rcx # Mask the pointer if misspeculating.
 orq %rax, %rdx # Mask the index if misspeculating.
 popfq
 movl (%rcx,%rdx), %edi

Using the pushf and popf instructions saves the flags register around our
inserted code, but comes at a high cost. First, we must store the flags to the
stack and reload them. Second, this causes the stack pointer to be adjusted
dynamically, requiring a frame pointer be used for referring to temporaries
spilled to the stack, etc.

On newer x86 processors we can use the lahf and sahf instructions to save
all of the flags besides the overflow flag in a register rather than on the
stack. We can then use seto and add to save and restore the overflow flag
in a register. Combined, this will save and restore flags in the same manner as
above but using two registers rather than the stack. That is still very
expensive if slightly less expensive than pushf and popf in most cases.

A flag-less alternative on Haswell, Zen and newer processors

Starting with the BMI2 x86 instruction set extensions available on Haswell and
Zen processors, there is an instruction for shifting that does not set any
flags: shrx. We can use this and the lea instruction to implement analogous
code sequences to the above ones. However, these are still very marginally
slower, as there are fewer ports able to dispatch shift instructions in most
modern x86 processors than there are for or instructions.

Fast, single register addressing mode:

 ...

.LBB0_4: # %danger
 cmovneq %r8, %rax # Conditionally update predicate state.
 shrxq %rax, %rsi, %rsi # Shift away bits if misspeculating.
 movl (%rsi), %edi

This will collapse the register to zero or one, and everything but the offset
in the addressing mode to be less than or equal to 9. This means the full
address can only be guaranteed to be less than (1 << 31) + 9. The OS may wish
to protect an extra page of the low address space to account for this

Optimizations

A very large portion of the cost for this approach comes from checking loads in
this way, so it is important to work to optimize this. However, beyond making
the instruction sequences to apply the checks efficient (for example by
avoiding pushfq and popfq sequences), the only significant optimization is
to check fewer loads without introducing a vulnerability. We apply several
techniques to accomplish that.

Don’t check loads from compile-time constant stack offsets

We implement this optimization on x86 by skipping the checking of loads which
use a fixed frame pointer offset.

The result of this optimization is that patterns like reloading a spilled
register or accessing a global field don’t get checked. This is a very
significant performance win.

Don’t check dependent loads

A core part of why this mitigation strategy works is that it establishes a
data-flow check on the loaded address. However, this means that if the address
itself was already loaded using a checked load, there is no need to check a
dependent load provided it is within the same basic block as the checked load,
and therefore has no additional predicates guarding it. Consider code like the
following:

 ...

.LBB0_4: # %danger
 movq (%rcx), %rdi
 movl (%rdi), %edx

This will get transformed into:

 ...

.LBB0_4: # %danger
 cmovneq %r8, %rax # Conditionally update predicate state.
 orq %rax, %rcx # Mask the pointer if misspeculating.
 movq (%rcx), %rdi # Hardened load.
 movl (%rdi), %edx # Unhardened load due to dependent addr.

This doesn’t check the load through %rdi as that pointer is dependent on a
checked load already.

Protect large, load-heavy blocks with a single lfence

It may be worth using a single lfence instruction at the start of a block
which begins with a (very) large number of loads that require independent
protection and which require hardening the address of the load. However, this
is unlikely to be profitable in practice. The latency hit of the hardening
would need to exceed that of an lfence when correctly speculatively
executed. But in that case, the lfence cost is a complete loss of speculative
execution (at a minimum). So far, the evidence we have of the performance cost
of using lfence indicates few if any hot code patterns where this trade off
would make sense.

Tempting optimizations that break the security model

Several optimizations were considered which didn’t pan out due to failure to
uphold the security model. One in particular is worth discussing as many others
will reduce to it.

We wondered whether only the first load in a basic block could be checked. If
the check works as intended, it forms an invalid pointer that doesn’t even
virtual-address translate in the hardware. It should fault very early on in its
processing. Maybe that would stop things in time for the misspeculated path to
fail to leak any secrets. This doesn’t end up working because the processor is
fundamentally out-of-order, even in its speculative domain. As a consequence,
the attacker could cause the initial address computation itself to stall and
allow an arbitrary number of unrelated loads (including attacked loads of
secret data) to pass through.

Interprocedural Checking

Modern x86 processors may speculate into called functions and out of functions
to their return address. As a consequence, we need a way to check loads that
occur after a misspeculated predicate but where the load and the misspeculated
predicate are in different functions. In essence, we need some interprocedural
generalization of the predicate state tracking. A primary challenge to passing
the predicate state between functions is that we would like to not require a
change to the ABI or calling convention in order to make this mitigation more
deployable, and further would like code mitigated in this way to be easily
mixed with code not mitigated in this way and without completely losing the
value of the mitigation.

Embed the predicate state into the high bit(s) of the stack pointer

We can use the same technique that allows hardening pointers to pass the
predicate state into and out of functions. The stack pointer is trivially
passed between functions and we can test for it having the high bits set to
detect when it has been marked due to misspeculation. The callsite instruction
sequence looks like (assuming a misspeculated state value of -1):

 ...

.LBB0_4: # %danger
 cmovneq %r8, %rax # Conditionally update predicate state.
 shlq $47, %rax
 orq %rax, %rsp
 callq other_function
 movq %rsp, %rax
 sarq 63, %rax # Sign extend the high bit to all bits.

This first puts the predicate state into the high bits of %rsp before calling
the function and then reads it back out of high bits of %rsp afterward. When
correctly executing (speculatively or not), these are all no-ops. When
misspeculating, the stack pointer will end up negative. We arrange for it to
remain a canonical address, but otherwise leave the low bits alone to allow
stack adjustments to proceed normally without disrupting this. Within the
called function, we can extract this predicate state and then reset it on
return:

other_function:
 # prolog
 callq other_function
 movq %rsp, %rax
 sarq 63, %rax # Sign extend the high bit to all bits.
 # ...

.LBB0_N:
 cmovneq %r8, %rax # Conditionally update predicate state.
 shlq $47, %rax
 orq %rax, %rsp
 retq

This approach is effective when all code is mitigated in this fashion, and can
even survive very limited reaches into unmitigated code (the state will
round-trip in and back out of an unmitigated function, it just won’t be
updated). But it does have some limitations. There is a cost to merging the
state into %rsp and it doesn’t insulate mitigated code from misspeculation in
an unmitigated caller.

There is also an advantage to using this form of interprocedural mitigation: by
forming these invalid stack pointer addresses we can prevent speculative
returns from successfully reading speculatively written values to the actual
stack. This works first by forming a data-dependency between computing the
address of the return address on the stack and our predicate state. And even
when satisfied, if a misprediction causes the state to be poisoned the
resulting stack pointer will be invalid.

Rewrite API of internal functions to directly propagate predicate state

(Not yet implemented.)

We have the option with internal functions to directly adjust their API to
accept the predicate as an argument and return it. This is likely to be
marginally cheaper than embedding into %rsp for entering functions.

Use lfence to guard function transitions

An lfence instruction can be used to prevent subsequent loads from
speculatively executing until all prior mispredicted predicates have resolved.
We can use this broader barrier to speculative loads executing between
functions. We emit it in the entry block to handle calls, and prior to each
return. This approach also has the advantage of providing the strongest degree
of mitigation when mixed with unmitigated code by halting all misspeculation
entering a function which is mitigated, regardless of what occured in the
caller. However, such a mixture is inherently more risky. Whether this kind of
mixture is a sufficient mitigation requires careful analysis.

Unfortunately, experimental results indicate that the performance overhead of
this approach is very high for certain patterns of code. A classic example is
any form of recursive evaluation engine. The hot, rapid call and return
sequences exhibit dramatic performance loss when mitigated with lfence. This
component alone can regress performance by 2x or more, making it an unpleasant
tradeoff even when only used in a mixture of code.

Use an internal TLS location to pass predicate state

We can define a special thread-local value to hold the predicate state between
functions. This avoids direct ABI implications by using a side channel between
callers and callees to communicate the predicate state. It also allows implicit
zero-initialization of the state, which allows non-checked code to be the first
code executed.

However, this requires a load from TLS in the entry block, a store to TLS
before every call and every ret, and a load from TLS after every call. As a
consequence it is expected to be substantially more expensive even than using
%rsp and potentially lfence within the function entry block.

Define a new ABI and/or calling convention

We could define a new ABI and/or calling convention to explicitly pass the
predicate state in and out of functions. This may be interesting if none of the
alternatives have adequate performance, but it makes deployment and adoption
dramatically more complex, and potentially infeasible.

High-Level Alternative Mitigation Strategies

There are completely different alternative approaches to mitigating variant 1
attacks. Most [https://lwn.net/Articles/743265/]
discussion [https://lwn.net/Articles/744287/] so far focuses on mitigating
specific known attackable components in the Linux kernel (or other kernels) by
manually rewriting the code to contain an instruction sequence that is not
vulnerable. For x86 systems this is done by either injecting an lfence
instruction along the code path which would leak data if executed speculatively
or by rewriting memory accesses to have branch-less masking to a known safe
region. On Intel systems, lfence will prevent the speculative load of secret
data [https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf].
On AMD systems lfence is currently a no-op, but can be made
dispatch-serializing by setting an MSR, and thus preclude misspeculation of the
code path (mitigation G-2 +
V1-1 [https://developer.amd.com/wp-content/resources/Managing-Speculation-on-AMD-Processors.pdf]).

However, this relies on finding and enumerating all possible points in code
which could be attacked to leak information. While in some cases static
analysis is effective at doing this at scale, in many cases it still relies on
human judgement to evaluate whether code might be vulnerable. Especially for
software systems which receive less detailed scrutiny but remain sensitive to
these attacks, this seems like an impractical security model. We need an
automatic and systematic mitigation strategy.

Automatic lfence on Conditional Edges

A natural way to scale up the existing hand-coded mitigations is simply to
inject an lfence instruction into both the target and fallthrough
destinations of every conditional branch. This ensures that no predicate or
bounds check can be bypassed speculatively. However, the performance overhead
of this approach is, simply put, catastrophic. Yet it remains the only truly
“secure by default” approach known prior to this effort and serves as the
baseline for performance.

One attempt to address the performance overhead of this and make it more
realistic to deploy is MSVC’s /Qspectre
switch [https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-mitigations-in-msvc/].
Their technique is to use static analysis within the compiler to only insert
lfence instructions into conditional edges at risk of attack. However,
initial [https://arstechnica.com/gadgets/2018/02/microsofts-compiler-level-spectre-fix-shows-how-hard-this-problem-will-be-to-solve/]
analysis [https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html]
has shown that this approach is incomplete and only catches a small and limited
subset of attackable patterns which happen to resemble very closely the initial
proofs of concept. As such, while its performance is acceptable, it does not
appear to be an adequate systematic mitigation.

Performance Overhead

The performance overhead of this style of comprehensive mitigation is very
high. However, it compares very favorably with previously recommended
approaches such as the lfence instruction. Just as users can restrict the
scope of lfence to control its performance impact, this mitigation technique
could be restricted in scope as well.

However, it is important to understand what it would cost to get a fully
mitigated baseline. Here we assume targeting a Haswell (or newer) processor and
using all of the tricks to improve performance (so leaves the low 2gb
unprotected and +/- 2gb surrounding any PC in the program). We ran both
Google’s microbenchmark suite and a large highly-tuned server built using
ThinLTO and PGO. All were built with -march=haswell to give access to BMI2
instructions, and benchmarks were run on large Haswell servers. We collected
data both with an lfence-based mitigation and load hardening as presented
here. The summary is that mitigating with load hardening is 1.77x faster than
mitigating with lfence, and the overhead of load hardening compared to a
normal program is likely between a 10% overhead and a 50% overhead with most
large applications seeing a 30% overhead or less.

Benchmark	lfence	Load Hardening	Mitigated Speedup
————————————–	——-:	————-:	—————-:
Google microbenchmark suite	-74.8%	-36.4%	2.5x
Large server QPS (using ThinLTO & PGO)	-62%	-29%	1.8x

Below is a visualization of the microbenchmark suite results which helps show
the distribution of results that is somewhat lost in the summary. The y-axis is
a log-scale speedup ratio of load hardening relative to lfence (up -> faster
-> better). Each box-and-whiskers represents one microbenchmark which may have
many different metrics measured. The red line marks the median, the box marks
the first and third quartiles, and the whiskers mark the min and max.

[image: Microbenchmark result visualization]

We don’t yet have benchmark data on SPEC or the LLVM test suite, but we can
work on getting that. Still, the above should give a pretty clear
characterization of the performance, and specific benchmarks are unlikely to
reveal especially interesting properties.

Future Work: Fine Grained Control and API-Integration

The performance overhead of this technique is likely to be very significant and
something users wish to control or reduce. There are interesting options here
that impact the implementation strategy used.

One particularly appealing option is to allow both opt-in and opt-out of this
mitigation at reasonably fine granularity such as on a per-function basis,
including intelligent handling of inlining decisions – protected code can be
prevented from inlining into unprotected code, and unprotected code will become
protected when inlined into protected code. For systems where only a limited
set of code is reachable by externally controlled inputs, it may be possible to
limit the scope of mitigation through such mechanisms without compromising the
application’s overall security. The performance impact may also be focused in a
few key functions that can be hand-mitigated in ways that have lower
performance overhead while the remainder of the application receives automatic
protection.

For both limiting the scope of mitigation or manually mitigating hot functions,
there needs to be some support for mixing mitigated and unmitigated code
without completely defeating the mitigation. For the first use case, it would
be particularly desirable that mitigated code remains safe when being called
during misspeculation from unmitigated code.

For the second use case, it may be important to connect the automatic
mitigation technique to explicit mitigation APIs such as what is described in
http://wg21.link/p0928 (or any other eventual API) so that there is a clean way
to switch from automatic to manual mitigation without immediately exposing a
hole. However, the design for how to do this is hard to come up with until the
APIs are better established. We will revisit this as those APIs mature.

 Contributing to LLVM

Contributing to LLVM

Thank you for your interest in contributing to LLVM! There are multiple ways to
contribute, and we appreciate all contributions. In case you
have questions, you can either use the Developer’s List (llvm-dev) [http://lists.llvm.org/mailman/listinfo/llvm-dev]
or the #llvm channel on irc.oftc.net.

If you want to contribute code, please familiarize yourself with the LLVM Developer Policy.

	Ways to Contribute

	Bug Reports

	Bug Fixes

	Bigger Pieces of Work

	How to Submit a Patch

	Helpful Information About LLVM

Ways to Contribute

Bug Reports

If you are working with LLVM and run into a bug, we definitely want to know
about it. Please let us know and follow the instructions in
How to submit an LLVM bug report to create a bug report.

Bug Fixes

If you are interested in contributing code to LLVM, bugs labeled with the
beginner keyword [https://bugs.llvm.org/buglist.cgi?bug_status=NEW&bug_status=REOPENED&keywords=beginner%2C%20&keywords_type=allwords&list_id=130748&query_format=advanced&resolution=---] in the bug tracker [https://bugs.llvm.org] are a good way to get familiar with
the code base. If you are interested in fixing a bug, please create an account
for the bug tracker and assign it to yourself, to let people know you are working on
it.

Then try to reproduce and fix the bug with upstream LLVM. Start by building
LLVM from source as described in Getting Started with the LLVM System and
and use the built binaries to reproduce the failure described in the bug. Use
a debug build (-DCMAKE_BUILD_TYPE=Debug) or a build with assertions
(-DLLVM_ENABLE_ASSERTIONS=On, enabled for Debug builds).

Bigger Pieces of Work

In case you are interested in taking on a bigger piece of work, a list of
interesting projects is maintained at the LLVM’s Open Projects page [https://llvm.org/OpenProjects.html#what]. In case
you are interested in working on any of these projects, please send a mail to
the LLVM Developer’s mailing list [http://lists.llvm.org/mailman/listinfo/llvm-dev], so that we know the project is being
worked on.

How to Submit a Patch

Once you have a patch ready, it is time to submit it. The patch should:

	include a small unit test

	conform to the LLVM Coding Standards. You can use the clang-format-diff.py [https://reviews.llvm.org/source/clang/browse/cfe/trunk/tools/clang-format/clang-format-diff.py] or git-clang-format [https://reviews.llvm.org/source/clang/browse/cfe/trunk/tools/clang-format/git-clang-format] tools to automatically format your patch properly.

	not contain any unrelated changes

	be an isolated change. Independent changes should be submitted as separate patches as this makes reviewing easier.

To get a patch accepted, it has to be reviewed by the LLVM community. This can
be done using LLVM’s Phabricator [https://reviews.llvm.org/] or the llvm-commits mailing list.
Please follow Phabricator#requesting-a-review-via-the-web-interface
to request a review using Phabricator.

To make sure the right people see your patch, please select suitable reviewers
and add them to your patch when requesting a review. Suitable reviewers are the
code owner (see CODE_OWNERS.txt) and other people doing work in the area your
patch touches. If you are using Phabricator, add them to the Reviewers field
when creating a review and if you are using llvm-commits, add them to the CC of
your email.

A reviewer may request changes or ask questions during the review. If you are
uncertain on how to provide test cases, documentation, etc., feel free to ask
for guidance during the review. Please address the feedback and re-post an
updated version of your patch. This cycle continues until all requests and comments
have been addressed and a reviewer accepts the patch with a Looks good to me or LGTM.
Once that is done the change can be committed. If you do not have commit
access, please let people know during the review and someone should commit it
on your behalf.

If you have received no comments on your patch for a week, you can request a
review by ‘ping’ing a patch by responding to the email thread containing the
patch, or the Phabricator review with “Ping.” The common courtesy ‘ping’ rate
is once a week. Please remember that you are asking for valuable time from other
professional developers.

Helpful Information About LLVM

LLVM’s documentation provides a wealth of information about LLVM’s internals as
well as various user guides. The pages listed below should provide a good overview
of LLVM’s high-level design, as well as its internals:

	Getting Started with the LLVM System

	Discusses how to get up and running quickly with the LLVM infrastructure.
Everything from unpacking and compilation of the distribution to execution
of some tools.

	LLVM Language Reference Manual

	Defines the LLVM intermediate representation.

	LLVM Programmer’s Manual

	Introduction to the general layout of the LLVM sourcebase, important classes
and APIs, and some tips & tricks.

	Subsystem Documentation

	A collection of pages documenting various subsystems of LLVM.

	LLVM for Grad Students [http://www.cs.cornell.edu/~asampson/blog/llvm.html]

	This is an introduction to the LLVM infrastructure by Adrian Sampson. While it
has been written for grad students, it provides a good, compact overview of
LLVM’s architecture, LLVM’s IR and how to write a new pass.

	Intro to LLVM [http://www.aosabook.org/en/llvm.html]

	Book chapter providing a compiler hacker’s introduction to LLVM.

 LLVM Developer Policy

LLVM Developer Policy

	Introduction

	Developer Policies

	Stay Informed

	Making and Submitting a Patch

	Code Reviews

	Code Owners

	Test Cases

	Quality

	Commit messages

	Obtaining Commit Access

	Making a Major Change

	Incremental Development

	Attribution of Changes

	IR Backwards Compatibility

	C API Changes

	New Targets

	Copyright, License, and Patents

	Copyright

	License

	Patents

Introduction

This document contains the LLVM Developer Policy which defines the project’s
policy towards developers and their contributions. The intent of this policy is
to eliminate miscommunication, rework, and confusion that might arise from the
distributed nature of LLVM’s development. By stating the policy in clear terms,
we hope each developer can know ahead of time what to expect when making LLVM
contributions. This policy covers all llvm.org subprojects, including Clang,
LLDB, libc++, etc.

This policy is also designed to accomplish the following objectives:

	Attract both users and developers to the LLVM project.

	Make life as simple and easy for contributors as possible.

	Keep the top of Subversion trees as stable as possible.

	Establish awareness of the project’s copyright, license, and patent
policies with contributors to the project.

This policy is aimed at frequent contributors to LLVM. People interested in
contributing one-off patches can do so in an informal way by sending them to the
llvm-commits mailing list [http://lists.llvm.org/mailman/listinfo/llvm-commits] and engaging another
developer to see it through the process.

Developer Policies

This section contains policies that pertain to frequent LLVM developers. We
always welcome one-off patches from people who do not routinely contribute to
LLVM, but we expect more from frequent contributors to keep the system as
efficient as possible for everyone. Frequent LLVM contributors are expected to
meet the following requirements in order for LLVM to maintain a high standard of
quality.

Stay Informed

Developers should stay informed by reading at least the “dev” mailing list for
the projects you are interested in, such as llvm-dev [http://lists.llvm.org/mailman/listinfo/llvm-dev] for LLVM, cfe-dev [http://lists.llvm.org/mailman/listinfo/cfe-dev] for Clang, or lldb-dev [http://lists.llvm.org/mailman/listinfo/lldb-dev] for LLDB. If you are
doing anything more than just casual work on LLVM, it is suggested that you also
subscribe to the “commits” mailing list for the subproject you’re interested in,
such as llvm-commits [http://lists.llvm.org/mailman/listinfo/llvm-commits], cfe-commits [http://lists.llvm.org/mailman/listinfo/cfe-commits], or lldb-commits [http://lists.llvm.org/mailman/listinfo/lldb-commits]. Reading the
“commits” list and paying attention to changes being made by others is a good
way to see what other people are interested in and watching the flow of the
project as a whole.

We recommend that active developers register an email account with LLVM
Bugzilla [https://bugs.llvm.org/] and preferably subscribe to the llvm-bugs [http://lists.llvm.org/mailman/listinfo/llvm-bugs] email list to keep track
of bugs and enhancements occurring in LLVM. We really appreciate people who are
proactive at catching incoming bugs in their components and dealing with them
promptly.

Please be aware that all public LLVM mailing lists are public and archived, and
that notices of confidentiality or non-disclosure cannot be respected.

Making and Submitting a Patch

When making a patch for review, the goal is to make it as easy for the reviewer
to read it as possible. As such, we recommend that you:

	Make your patch against the Subversion trunk, not a branch, and not an old
version of LLVM. This makes it easy to apply the patch. For information on
how to check out SVN trunk, please see the Getting Started
Guide.

	Similarly, patches should be submitted soon after they are generated. Old
patches may not apply correctly if the underlying code changes between the
time the patch was created and the time it is applied.

	Patches should be made with svn diff, or similar. If you use a
different tool, make sure it uses the diff -u format and that it
doesn’t contain clutter which makes it hard to read.

	If you are modifying generated files, such as the top-level configure
script, please separate out those changes into a separate patch from the rest
of your changes.

Once your patch is ready, submit it by emailing it to the appropriate project’s
commit mailing list (or commit it directly if applicable). Alternatively, some
patches get sent to the project’s development list or component of the LLVM bug
tracker, but the commit list is the primary place for reviews and should
generally be preferred.

When sending a patch to a mailing list, it is a good idea to send it as an
attachment to the message, not embedded into the text of the message. This
ensures that your mailer will not mangle the patch when it sends it (e.g. by
making whitespace changes or by wrapping lines).

For Thunderbird users: Before submitting a patch, please open Preferences >
Advanced > General > Config Editor, find the key
mail.content_disposition_type, and set its value to 1. Without this
setting, Thunderbird sends your attachment using Content-Disposition: inline
rather than Content-Disposition: attachment. Apple Mail gamely displays such
a file inline, making it difficult to work with for reviewers using that
program.

When submitting patches, please do not add confidentiality or non-disclosure
notices to the patches themselves. These notices conflict with the LLVM
License and may result in your contribution being excluded.

Code Reviews

LLVM has a code review policy. Code review is one way to increase the quality of
software. We generally follow these policies:

	All developers are required to have significant changes reviewed before they
are committed to the repository.

	Code reviews are conducted by email on the relevant project’s commit mailing
list, or alternatively on the project’s development list or bug tracker.

	Code can be reviewed either before it is committed or after. We expect major
changes to be reviewed before being committed, but smaller changes (or
changes where the developer owns the component) can be reviewed after commit.

	The developer responsible for a code change is also responsible for making
all necessary review-related changes.

	Code review can be an iterative process, which continues until the patch is
ready to be committed. Specifically, once a patch is sent out for review, it
needs an explicit “looks good” before it is submitted. Do not assume silent
approval, or request active objections to the patch with a deadline.

Sometimes code reviews will take longer than you would hope for, especially for
larger features. Accepted ways to speed up review times for your patches are:

	Review other people’s patches. If you help out, everybody will be more
willing to do the same for you; goodwill is our currency.

	Ping the patch. If it is urgent, provide reasons why it is important to you to
get this patch landed and ping it every couple of days. If it is
not urgent, the common courtesy ping rate is one week. Remember that you’re
asking for valuable time from other professional developers.

	Ask for help on IRC. Developers on IRC will be able to either help you
directly, or tell you who might be a good reviewer.

	Split your patch into multiple smaller patches that build on each other. The
smaller your patch, the higher the probability that somebody will take a quick
look at it.

Developers should participate in code reviews as both reviewers and
reviewees. If someone is kind enough to review your code, you should return the
favor for someone else. Note that anyone is welcome to review and give feedback
on a patch, but only people with Subversion write access can approve it.

There is a web based code review tool that can optionally be used
for code reviews. See Code Reviews with Phabricator.

Code Owners

The LLVM Project relies on two features of its process to maintain rapid
development in addition to the high quality of its source base: the combination
of code review plus post-commit review for trusted maintainers. Having both is
a great way for the project to take advantage of the fact that most people do
the right thing most of the time, and only commit patches without pre-commit
review when they are confident they are right.

The trick to this is that the project has to guarantee that all patches that are
committed are reviewed after they go in: you don’t want everyone to assume
someone else will review it, allowing the patch to go unreviewed. To solve this
problem, we have a notion of an ‘owner’ for a piece of the code. The sole
responsibility of a code owner is to ensure that a commit to their area of the
code is appropriately reviewed, either by themself or by someone else. The list
of current code owners can be found in the file
CODE_OWNERS.TXT [http://git.llvm.org/klaus/llvm/blob/master/CODE_OWNERS.TXT]
in the root of the LLVM source tree.

Note that code ownership is completely different than reviewers: anyone can
review a piece of code, and we welcome code review from anyone who is
interested. Code owners are the “last line of defense” to guarantee that all
patches that are committed are actually reviewed.

Being a code owner is a somewhat unglamorous position, but it is incredibly
important for the ongoing success of the project. Because people get busy,
interests change, and unexpected things happen, code ownership is purely opt-in,
and anyone can choose to resign their “title” at any time. For now, we do not
have an official policy on how one gets elected to be a code owner.

Test Cases

Developers are required to create test cases for any bugs fixed and any new
features added. Some tips for getting your testcase approved:

	All feature and regression test cases are added to the llvm/test
directory. The appropriate sub-directory should be selected (see the
Testing Guide for details).

	Test cases should be written in LLVM assembly language.

	Test cases, especially for regressions, should be reduced as much as possible,
by bugpoint or manually. It is unacceptable to place an
entire failing program into llvm/test as this creates a time-to-test
burden on all developers. Please keep them short.

Note that llvm/test and clang/test are designed for regression and small feature
tests only. More extensive test cases (e.g., entire applications, benchmarks,
etc) should be added to the llvm-test test suite. The llvm-test suite is
for coverage (correctness, performance, etc) testing, not feature or regression
testing.

Quality

The minimum quality standards that any change must satisfy before being
committed to the main development branch are:

	Code must adhere to the LLVM Coding Standards.

	Code must compile cleanly (no errors, no warnings) on at least one platform.

	Bug fixes and new features should include a testcase so we know if the
fix/feature ever regresses in the future.

	Code must pass the llvm/test test suite.

	The code must not cause regressions on a reasonable subset of llvm-test,
where “reasonable” depends on the contributor’s judgement and the scope of
the change (more invasive changes require more testing). A reasonable subset
might be something like “llvm-test/MultiSource/Benchmarks”.

Additionally, the committer is responsible for addressing any problems found in
the future that the change is responsible for. For example:

	The code should compile cleanly on all supported platforms.

	The changes should not cause any correctness regressions in the llvm-test
suite and must not cause any major performance regressions.

	The change set should not cause performance or correctness regressions for the
LLVM tools.

	The changes should not cause performance or correctness regressions in code
compiled by LLVM on all applicable targets.

	You are expected to address any Bugzilla bugs [https://bugs.llvm.org/] that
result from your change.

We prefer for this to be handled before submission but understand that it isn’t
possible to test all of this for every submission. Our build bots and nightly
testing infrastructure normally finds these problems. A good rule of thumb is
to check the nightly testers for regressions the day after your change. Build
bots will directly email you if a group of commits that included yours caused a
failure. You are expected to check the build bot messages to see if they are
your fault and, if so, fix the breakage.

Commits that violate these quality standards (e.g. are very broken) may be
reverted. This is necessary when the change blocks other developers from making
progress. The developer is welcome to re-commit the change after the problem has
been fixed.

Commit messages

Although we don’t enforce the format of commit messages, we prefer that
you follow these guidelines to help review, search in logs, email formatting
and so on. These guidelines are very similar to rules used by other open source
projects.

Most importantly, the contents of the message should be carefully written to
convey the rationale of the change (without delving too much in detail). It
also should avoid being vague or overly specific. For example, “bits were not
set right” will leave the reviewer wondering about which bits, and why they
weren’t right, while “Correctly set overflow bits in TargetInfo” conveys almost
all there is to the change.

Below are some guidelines about the format of the message itself:

	Separate the commit message into title, body and, if you’re not the original
author, a “Patch by” attribution line (see below).

	The title should be concise. Because all commits are emailed to the list with
the first line as the subject, long titles are frowned upon. Short titles
also look better in git log.

	When the changes are restricted to a specific part of the code (e.g. a
back-end or optimization pass), it is customary to add a tag to the
beginning of the line in square brackets. For example, “[SCEV] …”
or “[OpenMP] …”. This helps email filters and searches for post-commit
reviews.

	The body, if it exists, should be separated from the title by an empty line.

	The body should be concise, but explanatory, including a complete
reasoning. Unless it is required to understand the change, examples,
code snippets and gory details should be left to bug comments, web
review or the mailing list.

	If the patch fixes a bug in bugzilla, please include the PR# in the message.

	Attribution of Changes should be in a separate line, after the end of
the body, as simple as “Patch by John Doe.”. This is how we officially
handle attribution, and there are automated processes that rely on this
format.

	Text formatting and spelling should follow the same rules as documentation
and in-code comments, ex. capitalization, full stop, etc.

	If the commit is a bug fix on top of another recently committed patch, or a
revert or reapply of a patch, include the svn revision number of the prior
related commit. This could be as simple as “Revert rNNNN because it caused
PR#”.

For minor violations of these recommendations, the community normally favors
reminding the contributor of this policy over reverting. Minor corrections and
omissions can be handled by sending a reply to the commits mailing list.

Obtaining Commit Access

We grant commit access to contributors with a track record of submitting high
quality patches. If you would like commit access, please send an email to
Chris with the following information:

	The user name you want to commit with, e.g. “hacker”.

	The full name and email address you want message to llvm-commits to come
from, e.g. “J. Random Hacker <hacker@yoyodyne.com>”.

	A “password hash” of the password you want to use, e.g. “2ACR96qjUqsyM”.
Note that you don’t ever tell us what your password is; you just give it to
us in an encrypted form. To get this, run “htpasswd” (a utility that
comes with apache) in crypt mode (often enabled with “-d”), or find a web
page that will do it for you. Note that our system does not work with MD5
hashes. These are significantly longer than a crypt hash - e.g.
“$apr1$vea6bBV2$Z8IFx.AfeD8LhqlZFqJer0”, we only accept the shorter crypt hash.

Once you’ve been granted commit access, you should be able to check out an LLVM
tree with an SVN URL of “https://username@llvm.org/…” instead of the normal
anonymous URL of “http://llvm.org/…”. The first time you commit you’ll have
to type in your password. Note that you may get a warning from SVN about an
untrusted key; you can ignore this. To verify that your commit access works,
please do a test commit (e.g. change a comment or add a blank line). Your first
commit to a repository may require the autogenerated email to be approved by a
mailing list. This is normal and will be done when the mailing list owner has
time.

If you have recently been granted commit access, these policies apply:

	You are granted commit-after-approval to all parts of LLVM. To get
approval, submit a patch to llvm-commits [http://lists.llvm.org/mailman/listinfo/llvm-commits]. When approved,
you may commit it yourself.

	You are allowed to commit patches without approval which you think are
obvious. This is clearly a subjective decision — we simply expect you to
use good judgement. Examples include: fixing build breakage, reverting
obviously broken patches, documentation/comment changes, any other minor
changes.

	You are allowed to commit patches without approval to those portions of LLVM
that you have contributed or maintain (i.e., have been assigned
responsibility for), with the proviso that such commits must not break the
build. This is a “trust but verify” policy, and commits of this nature are
reviewed after they are committed.

	Multiple violations of these policies or a single egregious violation may
cause commit access to be revoked.

In any case, your changes are still subject to code review (either before or
after they are committed, depending on the nature of the change). You are
encouraged to review other peoples’ patches as well, but you aren’t required
to do so.

Making a Major Change

When a developer begins a major new project with the aim of contributing it back
to LLVM, they should inform the community with an email to the llvm-dev [http://lists.llvm.org/mailman/listinfo/llvm-dev] email list, to the extent
possible. The reason for this is to:

	keep the community informed about future changes to LLVM,

	avoid duplication of effort by preventing multiple parties working on the
same thing and not knowing about it, and

	ensure that any technical issues around the proposed work are discussed and
resolved before any significant work is done.

The design of LLVM is carefully controlled to ensure that all the pieces fit
together well and are as consistent as possible. If you plan to make a major
change to the way LLVM works or want to add a major new extension, it is a good
idea to get consensus with the development community before you start working on
it.

Once the design of the new feature is finalized, the work itself should be done
as a series of incremental changes, not as a long-term development branch.

Incremental Development

In the LLVM project, we do all significant changes as a series of incremental
patches. We have a strong dislike for huge changes or long-term development
branches. Long-term development branches have a number of drawbacks:

	Branches must have mainline merged into them periodically. If the branch
development and mainline development occur in the same pieces of code,
resolving merge conflicts can take a lot of time.

	Other people in the community tend to ignore work on branches.

	Huge changes (produced when a branch is merged back onto mainline) are
extremely difficult to code review.

	Branches are not routinely tested by our nightly tester infrastructure.

	Changes developed as monolithic large changes often don’t work until the
entire set of changes is done. Breaking it down into a set of smaller
changes increases the odds that any of the work will be committed to the main
repository.

To address these problems, LLVM uses an incremental development style and we
require contributors to follow this practice when making a large/invasive
change. Some tips:

	Large/invasive changes usually have a number of secondary changes that are
required before the big change can be made (e.g. API cleanup, etc). These
sorts of changes can often be done before the major change is done,
independently of that work.

	The remaining inter-related work should be decomposed into unrelated sets of
changes if possible. Once this is done, define the first increment and get
consensus on what the end goal of the change is.

	Each change in the set can be stand alone (e.g. to fix a bug), or part of a
planned series of changes that works towards the development goal.

	Each change should be kept as small as possible. This simplifies your work
(into a logical progression), simplifies code review and reduces the chance
that you will get negative feedback on the change. Small increments also
facilitate the maintenance of a high quality code base.

	Often, an independent precursor to a big change is to add a new API and slowly
migrate clients to use the new API. Each change to use the new API is often
“obvious” and can be committed without review. Once the new API is in place
and used, it is much easier to replace the underlying implementation of the
API. This implementation change is logically separate from the API
change.

If you are interested in making a large change, and this scares you, please make
sure to first discuss the change/gather consensus then ask about the best way
to go about making the change.

Attribution of Changes

When contributors submit a patch to an LLVM project, other developers with
commit access may commit it for the author once appropriate (based on the
progression of code review, etc.). When doing so, it is important to retain
correct attribution of contributions to their contributors. However, we do not
want the source code to be littered with random attributions “this code written
by J. Random Hacker” (this is noisy and distracting). In practice, the revision
control system keeps a perfect history of who changed what, and the CREDITS.txt
file describes higher-level contributions. If you commit a patch for someone
else, please follow the attribution of changes in the simple manner as outlined
by the commit messages section. Overall, please do not add contributor names
to the source code.

Also, don’t commit patches authored by others unless they have submitted the
patch to the project or you have been authorized to submit them on their behalf
(you work together and your company authorized you to contribute the patches,
etc.). The author should first submit them to the relevant project’s commit
list, development list, or LLVM bug tracker component. If someone sends you
a patch privately, encourage them to submit it to the appropriate list first.

IR Backwards Compatibility

When the IR format has to be changed, keep in mind that we try to maintain some
backwards compatibility. The rules are intended as a balance between convenience
for llvm users and not imposing a big burden on llvm developers:

	The textual format is not backwards compatible. We don’t change it too often,
but there are no specific promises.

	Additions and changes to the IR should be reflected in
test/Bitcode/compatibility.ll.

	The current LLVM version supports loading any bitcode since version 3.0.

	After each X.Y release, compatibility.ll must be copied to
compatibility-X.Y.ll. The corresponding bitcode file should be assembled
using the X.Y build and committed as compatibility-X.Y.ll.bc.

	Newer releases can ignore features from older releases, but they cannot
miscompile them. For example, if nsw is ever replaced with something else,
dropping it would be a valid way to upgrade the IR.

	Debug metadata is special in that it is currently dropped during upgrades.

	Non-debug metadata is defined to be safe to drop, so a valid way to upgrade
it is to drop it. That is not very user friendly and a bit more effort is
expected, but no promises are made.

C API Changes

	Stability Guarantees: The C API is, in general, a “best effort” for stability.
This means that we make every attempt to keep the C API stable, but that
stability will be limited by the abstractness of the interface and the
stability of the C++ API that it wraps. In practice, this means that things
like “create debug info” or “create this type of instruction” are likely to be
less stable than “take this IR file and JIT it for my current machine”.

	Release stability: We won’t break the C API on the release branch with patches
that go on that branch, with the exception that we will fix an unintentional
C API break that will keep the release consistent with both the previous and
next release.

	Testing: Patches to the C API are expected to come with tests just like any
other patch.

	Including new things into the API: If an LLVM subcomponent has a C API already
included, then expanding that C API is acceptable. Adding C API for
subcomponents that don’t currently have one needs to be discussed on the
mailing list for design and maintainability feedback prior to implementation.

	Documentation: Any changes to the C API are required to be documented in the
release notes so that it’s clear to external users who do not follow the
project how the C API is changing and evolving.

New Targets

LLVM is very receptive to new targets, even experimental ones, but a number of
problems can appear when adding new large portions of code, and back-ends are
normally added in bulk. We have found that landing large pieces of new code
and then trying to fix emergent problems in-tree is problematic for a variety
of reasons.

For these reasons, new targets are always added as experimental until
they can be proven stable, and later moved to non-experimental. The difference
between both classes is that experimental targets are not built by default
(need to be added to -DLLVM_TARGETS_TO_BUILD at CMake time).

The basic rules for a back-end to be upstreamed in experimental mode are:

	Every target must have a code owner. The CODE_OWNERS.TXT
file has to be updated as part of the first merge. The code owner makes sure
that changes to the target get reviewed and steers the overall effort.

	There must be an active community behind the target. This community
will help maintain the target by providing buildbots, fixing
bugs, answering the LLVM community’s questions and making sure the new
target doesn’t break any of the other targets, or generic code. This
behavior is expected to continue throughout the lifetime of the
target’s code.

	The code must be free of contentious issues, for example, large
changes in how the IR behaves or should be formed by the front-ends,
unless agreed by the majority of the community via refactoring of the
(IR standard) before the merge of the new target changes,
following the IR Backwards Compatibility.

	The code conforms to all of the policies laid out in this developer policy
document, including license, patent, and coding standards.

	The target should have either reasonable documentation on how it
works (ISA, ABI, etc.) or a publicly available simulator/hardware
(either free or cheap enough) - preferably both. This allows
developers to validate assumptions, understand constraints and review code
that can affect the target.

In addition, the rules for a back-end to be promoted to official are:

	The target must have addressed every other minimum requirement and
have been stable in tree for at least 3 months. This cool down
period is to make sure that the back-end and the target community can
endure continuous upstream development for the foreseeable future.

	The target’s code must have been completely adapted to this policy
as well as the coding standards. Any exceptions that
were made to move into experimental mode must have been fixed before
becoming official.

	The test coverage needs to be broad and well written (small tests,
well documented). The build target check-all must pass with the
new target built, and where applicable, the test-suite must also
pass without errors, in at least one configuration (publicly
demonstrated, for example, via buildbots).

	Public buildbots need to be created and actively maintained, unless
the target requires no additional buildbots (ex. check-all covers
all tests). The more relevant and public the new target’s CI infrastructure
is, the more the LLVM community will embrace it.

To continue as a supported and official target:

	The maintainer(s) must continue following these rules throughout the lifetime
of the target. Continuous violations of aforementioned rules and policies
could lead to complete removal of the target from the code base.

	Degradation in support, documentation or test coverage will make the target as
nuisance to other targets and be considered a candidate for deprecation and
ultimately removed.

In essences, these rules are necessary for targets to gain and retain their
status, but also markers to define bit-rot, and will be used to clean up the
tree from unmaintained targets.

Copyright, License, and Patents

Note

This section deals with legal matters but does not provide legal advice. We
are not lawyers — please seek legal counsel from an attorney.

This section addresses the issues of copyright, license and patents for the LLVM
project. The copyright for the code is held by the individual contributors of
the code and the terms of its license to LLVM users and developers is the
University of Illinois/NCSA Open Source License [http://www.opensource.org/licenses/UoI-NCSA.php] (with portions dual licensed
under the MIT License [http://www.opensource.org/licenses/mit-license.php],
see below). As contributor to the LLVM project, you agree to allow any
contributions to the project to licensed under these terms.

Copyright

The LLVM project does not require copyright assignments, which means that the
copyright for the code in the project is held by its respective contributors who
have each agreed to release their contributed code under the terms of the LLVM
License.

An implication of this is that the LLVM license is unlikely to ever change:
changing it would require tracking down all the contributors to LLVM and getting
them to agree that a license change is acceptable for their contribution. Since
there are no plans to change the license, this is not a cause for concern.

As a contributor to the project, this means that you (or your company) retain
ownership of the code you contribute, that it cannot be used in a way that
contradicts the license (which is a liberal BSD-style license), and that the
license for your contributions won’t change without your approval in the
future.

License

We intend to keep LLVM perpetually open source and to use a liberal open source
license. As a contributor to the project, you agree that any contributions be
licensed under the terms of the corresponding subproject. All of the code in
LLVM is available under the University of Illinois/NCSA Open Source License [http://www.opensource.org/licenses/UoI-NCSA.php], which boils down to
this:

	You can freely distribute LLVM.

	You must retain the copyright notice if you redistribute LLVM.

	Binaries derived from LLVM must reproduce the copyright notice (e.g. in an
included readme file).

	You can’t use our names to promote your LLVM derived products.

	There’s no warranty on LLVM at all.

We believe this fosters the widest adoption of LLVM because it allows
commercial products to be derived from LLVM with few restrictions and without
a requirement for making any derived works also open source (i.e. LLVM’s
license is not a “copyleft” license like the GPL). We suggest that you read the
License [http://www.opensource.org/licenses/UoI-NCSA.php] if further
clarification is needed.

In addition to the UIUC license, the runtime library components of LLVM
(compiler_rt, libc++, and libclc) are also licensed under the MIT License [http://www.opensource.org/licenses/mit-license.php], which does not contain
the binary redistribution clause. As a user of these runtime libraries, it
means that you can choose to use the code under either license (and thus don’t
need the binary redistribution clause), and as a contributor to the code that
you agree that any contributions to these libraries be licensed under both
licenses. We feel that this is important for runtime libraries, because they
are implicitly linked into applications and therefore should not subject those
applications to the binary redistribution clause. This also means that it is ok
to move code from (e.g.) libc++ to the LLVM core without concern, but that code
cannot be moved from the LLVM core to libc++ without the copyright owner’s
permission.

Note that the LLVM Project does distribute dragonegg, which is
GPL. This means that anything “linked” into dragonegg must itself be compatible
with the GPL, and must be releasable under the terms of the GPL. This implies
that any code linked into dragonegg and distributed to others may be subject to
the viral aspects of the GPL (for example, a proprietary code generator linked
into dragonegg must be made available under the GPL). This is not a problem for
code already distributed under a more liberal license (like the UIUC license),
and GPL-containing subprojects are kept in separate SVN repositories whose
LICENSE.txt files specifically indicate that they contain GPL code.

We have no plans to change the license of LLVM. If you have questions or
comments about the license, please contact the LLVM Developer’s Mailing
List.

Patents

To the best of our knowledge, LLVM does not infringe on any patents (we have
actually removed code from LLVM in the past that was found to infringe). Having
code in LLVM that infringes on patents would violate an important goal of the
project by making it hard or impossible to reuse the code for arbitrary purposes
(including commercial use).

When contributing code, we expect contributors to notify us of any potential for
patent-related trouble with their changes (including from third parties). If
you or your employer own the rights to a patent and would like to contribute
code to LLVM that relies on it, we require that the copyright owner sign an
agreement that allows any other user of LLVM to freely use your patent. Please
contact the LLVM Foundation Board of Directors for more
details.

 Creating an LLVM Project

Creating an LLVM Project

	Overview

	Source Tree Layout

	Writing LLVM Style Makefiles

	Required Variables

	Variables for Building Subdirectories

	Variables for Building Libraries

	Variables for Building Programs

	Miscellaneous Variables

	Placement of Object Code

	Further Help

Overview

The LLVM build system is designed to facilitate the building of third party
projects that use LLVM header files, libraries, and tools. In order to use
these facilities, a Makefile from a project must do the following things:

	Set make variables. There are several variables that a Makefile needs
to set to use the LLVM build system:

	PROJECT_NAME - The name by which your project is known.

	LLVM_SRC_ROOT - The root of the LLVM source tree.

	LLVM_OBJ_ROOT - The root of the LLVM object tree.

	PROJ_SRC_ROOT - The root of the project’s source tree.

	PROJ_OBJ_ROOT - The root of the project’s object tree.

	PROJ_INSTALL_ROOT - The root installation directory.

	LEVEL - The relative path from the current directory to the
project’s root ($PROJ_OBJ_ROOT).

	Include Makefile.config from $(LLVM_OBJ_ROOT).

	Include Makefile.rules from $(LLVM_SRC_ROOT).

There are two ways that you can set all of these variables:

	You can write your own Makefiles which hard-code these values.

	You can use the pre-made LLVM sample project. This sample project includes
Makefiles, a configure script that can be used to configure the location
of LLVM, and the ability to support multiple object directories from a single
source directory.

If you want to devise your own build system, studying other projects and LLVM
Makefiles will probably provide enough information on how to write your own
Makefiles.

Source Tree Layout

In order to use the LLVM build system, you will want to organize your source
code so that it can benefit from the build system’s features. Mainly, you want
your source tree layout to look similar to the LLVM source tree layout.

Underneath your top level directory, you should have the following directories:

lib

This subdirectory should contain all of your library source code. For each
library that you build, you will have one directory in lib that will
contain that library’s source code.

Libraries can be object files, archives, or dynamic libraries. The lib
directory is just a convenient place for libraries as it places them all in
a directory from which they can be linked later.

include

This subdirectory should contain any header files that are global to your
project. By global, we mean that they are used by more than one library or
executable of your project.

By placing your header files in include, they will be found
automatically by the LLVM build system. For example, if you have a file
include/jazz/note.h, then your source files can include it simply with
#include “jazz/note.h”.

tools

This subdirectory should contain all of your source code for executables.
For each program that you build, you will have one directory in tools
that will contain that program’s source code.

test

This subdirectory should contain tests that verify that your code works
correctly. Automated tests are especially useful.

Currently, the LLVM build system provides basic support for tests. The LLVM
system provides the following:

	LLVM contains regression tests in llvm/test. These tests are run by the
Lit testing tool. This test procedure uses RUN
lines in the actual test case to determine how to run the test. See the
LLVM Testing Infrastructure Guide for more details.

	LLVM contains an optional package called llvm-test, which provides
benchmarks and programs that are known to compile with the Clang front
end. You can use these programs to test your code, gather statistical
information, and compare it to the current LLVM performance statistics.

Currently, there is no way to hook your tests directly into the llvm/test
testing harness. You will simply need to find a way to use the source
provided within that directory on your own.

Typically, you will want to build your lib directory first followed by your
tools directory.

Writing LLVM Style Makefiles

The LLVM build system provides a convenient way to build libraries and
executables. Most of your project Makefiles will only need to define a few
variables. Below is a list of the variables one can set and what they can
do:

Required Variables

LEVEL

This variable is the relative path from this Makefile to the top
directory of your project’s source code. For example, if your source code
is in /tmp/src, then the Makefile in /tmp/src/jump/high
would set LEVEL to "../..".

Variables for Building Subdirectories

DIRS

This is a space separated list of subdirectories that should be built. They
will be built, one at a time, in the order specified.

PARALLEL_DIRS

This is a list of directories that can be built in parallel. These will be
built after the directories in DIRS have been built.

OPTIONAL_DIRS

This is a list of directories that can be built if they exist, but will not
cause an error if they do not exist. They are built serially in the order
in which they are listed.

Variables for Building Libraries

LIBRARYNAME

This variable contains the base name of the library that will be built. For
example, to build a library named libsample.a, LIBRARYNAME should
be set to sample.

BUILD_ARCHIVE

By default, a library is a .o file that is linked directly into a
program. To build an archive (also known as a static library), set the
BUILD_ARCHIVE variable.

SHARED_LIBRARY

If SHARED_LIBRARY is defined in your Makefile, a shared (or dynamic)
library will be built.

Variables for Building Programs

TOOLNAME

This variable contains the name of the program that will be built. For
example, to build an executable named sample, TOOLNAME should be set
to sample.

USEDLIBS

This variable holds a space separated list of libraries that should be
linked into the program. These libraries must be libraries that come from
your lib directory. The libraries must be specified without their
lib prefix. For example, to link libsample.a, you would set
USEDLIBS to sample.a.

Note that this works only for statically linked libraries.

LLVMLIBS

This variable holds a space separated list of libraries that should be
linked into the program. These libraries must be LLVM libraries. The
libraries must be specified without their lib prefix. For example, to
link with a driver that performs an IR transformation you might set
LLVMLIBS to this minimal set of libraries LLVMSupport.a LLVMCore.a
LLVMBitReader.a LLVMAsmParser.a LLVMAnalysis.a LLVMTransformUtils.a
LLVMScalarOpts.a LLVMTarget.a.

Note that this works only for statically linked libraries. LLVM is split
into a large number of static libraries, and the list of libraries you
require may be much longer than the list above. To see a full list of
libraries use: llvm-config --libs all. Using LINK_COMPONENTS as
described below, obviates the need to set LLVMLIBS.

LINK_COMPONENTS

This variable holds a space separated list of components that the LLVM
Makefiles pass to the llvm-config tool to generate a link line for
the program. For example, to link with all LLVM libraries use
LINK_COMPONENTS = all.

LIBS

To link dynamic libraries, add -l<library base name> to the LIBS
variable. The LLVM build system will look in the same places for dynamic
libraries as it does for static libraries.

For example, to link libsample.so, you would have the following line in
your Makefile:

LIBS += -lsample

Note that LIBS must occur in the Makefile after the inclusion of
Makefile.common.

Miscellaneous Variables

CFLAGS & CPPFLAGS

This variable can be used to add options to the C and C++ compiler,
respectively. It is typically used to add options that tell the compiler
the location of additional directories to search for header files.

It is highly suggested that you append to CFLAGS and CPPFLAGS as
opposed to overwriting them. The master Makefiles may already have
useful options in them that you may not want to overwrite.

Placement of Object Code

The final location of built libraries and executables will depend upon whether
you do a Debug, Release, or Profile build.

Libraries

All libraries (static and dynamic) will be stored in
PROJ_OBJ_ROOT/<type>/lib, where type is Debug, Release, or
Profile for a debug, optimized, or profiled build, respectively.

Executables

All executables will be stored in PROJ_OBJ_ROOT/<type>/bin, where type
is Debug, Release, or Profile for a debug, optimized, or
profiled build, respectively.

Further Help

If you have any questions or need any help creating an LLVM project, the LLVM
team would be more than happy to help. You can always post your questions to
the LLVM Developers Mailing List [http://lists.llvm.org/pipermail/llvm-dev/].

 LLVMBuild Guide

LLVMBuild Guide

	Introduction

	Project Organization

	Build Integration

	Component Overview

	LLVMBuild Format Reference

Introduction

This document describes the LLVMBuild organization and files which
we use to describe parts of the LLVM ecosystem. For description of
specific LLVMBuild related tools, please see the command guide.

LLVM is designed to be a modular set of libraries which can be flexibly
mixed together in order to build a variety of tools, like compilers,
JITs, custom code generators, optimization passes, interpreters, and so
on. Related projects in the LLVM system like Clang and LLDB also tend to
follow this philosophy.

In order to support this usage style, LLVM has a fairly strict structure
as to how the source code and various components are organized. The
LLVMBuild.txt files are the explicit specification of that
structure, and are used by the build systems and other tools in order to
develop the LLVM project.

Project Organization

The source code for LLVM projects using the LLVMBuild system (LLVM,
Clang, and LLDB) is organized into components, which define the
separate pieces of functionality that make up the project. These
projects may consist of many libraries, associated tools, build tools,
or other utility tools (for example, testing tools).

For the most part, the project contents are organized around defining
one main component per each subdirectory. Each such directory contains
an LLVMBuild.txt which contains the component definitions.

The component descriptions for the project as a whole are automatically
gathered by the LLVMBuild tools. The tools automatically traverse the
source directory structure to find all of the component description
files. NOTE: For performance/sanity reasons, we only traverse into
subdirectories when the parent itself contains an LLVMBuild.txt
description file.

Build Integration

The LLVMBuild files themselves are just a declarative way to describe
the project structure. The actual building of the LLVM project is
handled by another build system (See: CMake).

The build system implementation will load the relevant contents of the
LLVMBuild files and use that to drive the actual project build.
Typically, the build system will only need to load this information at
“configure” time, and use it to generate native information. Build
systems will also handle automatically reconfiguring their information
when the contents of the LLVMBuild.txt files change.

Developers generally are not expected to need to be aware of the details
of how the LLVMBuild system is integrated into their build. Ideally,
LLVM developers who are not working on the build system would only ever
need to modify the contents of the LLVMBuild.txt description files
(although we have not reached this goal yet).

For more information on the utility tool we provide to help interfacing
with the build system, please see the llvm-build documentation.

Component Overview

As mentioned earlier, LLVM projects are organized into logical
components. Every component is typically grouped into its own
subdirectory. Generally, a component is organized around a coherent
group of sources which have some kind of clear API separation from other
parts of the code.

LLVM primarily uses the following types of components:

	Libraries - Library components define a distinct API which can be
independently linked into LLVM client applications. Libraries typically
have private and public header files, and may specify a link of required
libraries that they build on top of.

	Build Tools - Build tools are applications which are designed to be run
as part of the build process (typically to generate other source files).
Currently, LLVM uses one main build tool called TableGen
to generate a variety of source files.

	Tools - Command line applications which are built using the LLVM
component libraries. Most LLVM tools are small and are primarily
frontends to the library interfaces.

Components are described using LLVMBuild.txt files in the directories
that define the component. See the LLVMBuild Format Reference section
for information on the exact format of these files.

LLVMBuild Format Reference

LLVMBuild files are written in a simple variant of the INI or configuration
file format (Wikipedia entry [http://en.wikipedia.org/wiki/INI_file]). The format defines a list of sections
each of which may contain some number of properties. A simple example of
the file format is below:

; Comments start with a semi-colon.

; Sections are declared using square brackets.
[component_0]

; Properties are declared using '=' and are contained in the previous section.
;
; We support simple string and boolean scalar values and list values, where
; items are separated by spaces. There is no support for quoting, and so
; property values may not contain spaces.
property_name = property_value
list_property_name = value_1 value_2 ... value_n
boolean_property_name = 1 (or 0)

LLVMBuild files are expected to define a strict set of sections and
properties. A typical component description file for a library
component would look like the following example:

[component_0]
type = Library
name = Linker
parent = Libraries
required_libraries = Archive BitReader Core Support TransformUtils

A full description of the exact sections and properties which are
allowed follows.

Each file may define exactly one common component, named common. The
common component may define the following properties:

	subdirectories [optional]

If given, a list of the names of the subdirectories from the current
subpath to search for additional LLVMBuild files.

Each file may define multiple components. Each component is described by a
section who name starts with component. The remainder of the section
name is ignored, but each section name must be unique. Typically components
are just number in order for files with multiple components
(component_0, component_1, and so on).

Warning

Section names not matching this format (or the common section) are
currently unused and are disallowed.

Every component is defined by the properties in the section. The exact
list of properties that are allowed depends on the component type.
Components may not define any properties other than those expected
by the component type.

Every component must define the following properties:

	type [required]

The type of the component. Supported component types are detailed
below. Most components will define additional properties which may be
required or optional.

	name [required]

The name of the component. Names are required to be unique across the
entire project.

	parent [required]

The name of the logical parent of the component. Components are
organized into a logical tree to make it easier to navigate and
organize groups of components. The parents have no semantics as far
as the project build is concerned, however. Typically, the parent
will be the main component of the parent directory.

Components may reference the root pseudo component using $ROOT to
indicate they should logically be grouped at the top-level.

Components may define the following properties:

	dependencies [optional]

If specified, a list of names of components which must be built
prior to this one. This should only be exactly those components which
produce some tool or source code required for building the component.

Note

Group and LibraryGroup components have no semantics for the
actual build, and are not allowed to specify dependencies.

The following section lists the available component types, as well as
the properties which are associated with that component.

	type = Group

Group components exist purely to allow additional arbitrary structuring
of the logical components tree. For example, one might define a
Libraries group to hold all of the root library components.

Group components have no additionally properties.

	type = Library

Library components define an individual library which should be built
from the source code in the component directory.

Components with this type use the following properties:

	library_name [optional]

If given, the name to use for the actual library file on disk. If
not given, the name is derived from the component name itself.

	required_libraries [optional]

If given, a list of the names of Library or LibraryGroup
components which must also be linked in whenever this library is
used. That is, the link time dependencies for this component. When
tools are built, the build system will include the transitive closure
of all required_libraries for the components the tool needs.

	add_to_library_groups [optional]

If given, a list of the names of LibraryGroup components which
this component is also part of. This allows nesting groups of
components. For example, the X86 target might define a library
group for all of the X86 components. That library group might
then be included in the all-targets library group.

	installed [optional] [boolean]

Whether this library is installed. Libraries that are not installed
are only reported by llvm-config when it is run as part of a
development directory.

	type = LibraryGroup

LibraryGroup components are a mechanism to allow easy definition of
useful sets of related components. In particular, we use them to easily
specify things like “all targets”, or “all assembly printers”.

Components with this type use the following properties:

	required_libraries [optional]

See the Library type for a description of this property.

	add_to_library_groups [optional]

See the Library type for a description of this property.

	type = TargetGroup

TargetGroup components are an extension of LibraryGroups,
specifically for defining LLVM targets (which are handled specially in a
few places).

The name of the component should always be the name of the target.

Components with this type use the LibraryGroup properties in
addition to:

	has_asmparser [optional] [boolean]

Whether this target defines an assembly parser.

	has_asmprinter [optional] [boolean]

Whether this target defines an assembly printer.

	has_disassembler [optional] [boolean]

Whether this target defines a disassembler.

	has_jit [optional] [boolean]

Whether this target supports JIT compilation.

	type = Tool

Tool components define standalone command line tools which should be
built from the source code in the component directory and linked.

Components with this type use the following properties:

	required_libraries [optional]

If given, a list of the names of Library or LibraryGroup
components which this tool is required to be linked with.

Note

The values should be the component names, which may not always
match up with the actual library names on disk.

Build systems are expected to properly include all of the libraries
required by the linked components (i.e., the transitive closure of
required_libraries).

Build systems are also expected to understand that those library
components must be built prior to linking – they do not also need
to be listed under dependencies.

	type = BuildTool

BuildTool components are like Tool components, except that the
tool is supposed to be built for the platform where the build is running
(instead of that platform being targeted). Build systems are expected
to handle the fact that required libraries may need to be built for
multiple platforms in order to be able to link this tool.

BuildTool components currently use the exact same properties as
Tool components, the type distinction is only used to differentiate
what the tool is built for.

 How To Release LLVM To The Public

How To Release LLVM To The Public

Introduction

This document contains information about successfully releasing LLVM —
including sub-projects: e.g., clang and compiler-rt — to the public.
It is the Release Manager’s responsibility to ensure that a high quality build
of LLVM is released.

If you’re looking for the document on how to test the release candidates and
create the binary packages, please refer to the How To Validate a New Release instead.

Release Timeline

LLVM is released on a time based schedule — with major releases roughly
every 6 months. In between major releases there may be dot releases.
The release manager will determine if and when to make a dot release based
on feedback from the community. Typically, dot releases should be made if
there are large number of bug-fixes in the stable branch or a critical bug
has been discovered that affects a large number of users.

Unless otherwise stated, dot releases will follow the same procedure as
major releases.

The release process is roughly as follows:

	Set code freeze and branch creation date for 6 months after last code freeze
date. Announce release schedule to the LLVM community and update the website.

	Create release branch and begin release process.

	Send out release candidate sources for first round of testing. Testing lasts
7-10 days. During the first round of testing, any regressions found should be
fixed. Patches are merged from mainline into the release branch. Also, all
features need to be completed during this time. Any features not completed at
the end of the first round of testing will be removed or disabled for the
release.

	Generate and send out the second release candidate sources. Only critical
bugs found during this testing phase will be fixed. Any bugs introduced by
merged patches will be fixed. If so a third round of testing is needed.

	The release notes are updated.

	Finally, release!

The release process will be accelerated for dot releases. If the first round
of testing finds no critical bugs and no regressions since the last major release,
then additional rounds of testing will not be required.

Release Process

	Release Administrative Tasks

	Create Release Branch

	Update LLVM Version

	Tagging the LLVM Release Candidates

	Build Clang Binary Distribution

	Release Qualification Criteria

	Official Testing

	Community Testing

	Reporting Regressions

	Merge Requests

	Release Patch Rules

	Merging Patches

	Release Final Tasks

	Update Documentation

	Tag the LLVM Final Release

	Update the LLVM Demo Page

	Update the LLVM Website

	Announce the Release

Release Administrative Tasks

This section describes a few administrative tasks that need to be done for the
release process to begin. Specifically, it involves:

	Creating the release branch,

	Setting version numbers, and

	Tagging release candidates for the release team to begin testing.

Create Release Branch

Branch the Subversion trunk using the following procedure:

	Remind developers that the release branching is imminent and to refrain from
committing patches that might break the build. E.g., new features, large
patches for works in progress, an overhaul of the type system, an exciting
new TableGen feature, etc.

	Verify that the current Subversion trunk is in decent shape by
examining nightly tester and buildbot results.

	Create the release branch for llvm, clang, and other sub-projects,
from the last known good revision. The branch’s name is
release_XY, where X is the major and Y the minor release
numbers. Use utils/release/tag.sh to tag the release.

	Advise developers that they may now check their patches into the Subversion
tree again.

	The Release Manager should switch to the release branch, because all changes
to the release will now be done in the branch. The easiest way to do this is
to grab a working copy using the following commands:

$ svn co https://llvm.org/svn/llvm-project/llvm/branches/release_XY llvm-X.Y

$ svn co https://llvm.org/svn/llvm-project/cfe/branches/release_XY clang-X.Y

$ svn co https://llvm.org/svn/llvm-project/test-suite/branches/release_XY test-suite-X.Y

Update LLVM Version

After creating the LLVM release branch, update the release branches’
autoconf and configure.ac versions from ‘X.Ysvn’ to ‘X.Y’.
Update it on mainline as well to be the next version (‘X.Y+1svn’).
Regenerate the configure scripts for both llvm and the test-suite.

In addition, the version numbers of all the Bugzilla components must be updated
for the next release.

Tagging the LLVM Release Candidates

Tag release candidates using the tag.sh script in utils/release.

$./tag.sh -release X.Y.Z -rc $RC

The Release Manager may supply pre-packaged source tarballs for users. This can
be done with the export.sh script in utils/release.

$./export.sh -release X.Y.Z -rc $RC

This will generate source tarballs for each LLVM project being validated, which
can be uploaded to the website for further testing.

Build Clang Binary Distribution

Creating the clang binary distribution requires following the instructions
here.

That process will perform both Release+Asserts and Release builds but only
pack the Release build for upload. You should use the Release+Asserts sysroot,
normally under final/Phase3/Release+Asserts/llvmCore-3.8.1-RCn.install/,
for test-suite and run-time benchmarks, to make sure nothing serious has
passed through the net. For compile-time benchmarks, use the Release version.

The minimum required version of the tools you’ll need are here

Release Qualification Criteria

A release is qualified when it has no regressions from the previous release (or
baseline). Regressions are related to correctness first and performance second.
(We may tolerate some minor performance regressions if they are deemed
necessary for the general quality of the compiler.)

More specifically, Clang/LLVM is qualified when it has a clean test with all
supported sub-projects included (make check-all), per target, and it has no
regressions with the test-suite in relation to the previous release.

Regressions are new failures in the set of tests that are used to qualify
each product and only include things on the list. Every release will have
some bugs in it. It is the reality of developing a complex piece of
software. We need a very concrete and definitive release criteria that
ensures we have monotonically improving quality on some metric. The metric we
use is described below. This doesn’t mean that we don’t care about other
criteria, but these are the criteria which we found to be most important and
which must be satisfied before a release can go out.

Official Testing

A few developers in the community have dedicated time to validate the release
candidates and volunteered to be the official release testers for each
architecture.

These will be the ones testing, generating and uploading the official binaries
to the server, and will be the minimum tests necessary for the release to
proceed.

This will obviously not cover all OSs and distributions, so additional community
validation is important. However, if community input is not reached before the
release is out, all bugs reported will have to go on the next stable release.

The official release managers are:

	Major releases (X.0): Hans Wennborg

	Stable releases (X.n): Tom Stellard

The official release testers are volunteered from the community and have
consistently validated and released binaries for their targets/OSs. To contact
them, you should email the release-testers@lists.llvm.org mailing list.

The official testers list is in the file RELEASE_TESTERS.TXT, in the LLVM
repository.

Community Testing

Once all testing has been completed and appropriate bugs filed, the release
candidate tarballs are put on the website and the LLVM community is notified.

We ask that all LLVM developers test the release in any the following ways:

	Download llvm-X.Y, llvm-test-X.Y, and the appropriate clang
binary. Build LLVM. Run make check and the full LLVM test suite (make
TEST=nightly report).

	Download llvm-X.Y, llvm-test-X.Y, and the clang sources. Compile
everything. Run make check and the full LLVM test suite (make
TEST=nightly report).

	Download llvm-X.Y, llvm-test-X.Y, and the appropriate clang
binary. Build whole programs with it (ex. Chromium, Firefox, Apache) for
your platform.

	Download llvm-X.Y, llvm-test-X.Y, and the appropriate clang
binary. Build your programs with it and check for conformance and
performance regressions.

	Run the release process, if your platform is
different than that which is officially supported, and report back errors
only if they were not reported by the official release tester for that
architecture.

We also ask that the OS distribution release managers test their packages with
the first candidate of every release, and report any new errors in Bugzilla.
If the bug can be reproduced with an unpatched upstream version of the release
candidate (as opposed to the distribution’s own build), the priority should be
release blocker.

During the first round of testing, all regressions must be fixed before the
second release candidate is tagged.

In the subsequent stages, the testing is only to ensure that bug
fixes previously merged in have not created new major problems. This is not
the time to solve additional and unrelated bugs! If no patches are merged in,
the release is determined to be ready and the release manager may move onto the
next stage.

Reporting Regressions

Every regression that is found during the tests (as per the criteria above),
should be filled in a bug in Bugzilla with the priority release blocker and
blocking a specific release.

To help manage all the bugs reported and which ones are blockers or not, a new
“[meta]” bug should be created and all regressions blocking that Meta. Once
all blockers are done, the Meta can be closed.

If a bug can’t be reproduced, or stops being a blocker, it should be removed
from the Meta and its priority decreased to normal. Debugging can continue,
but on trunk.

Merge Requests

You can use any of the following methods to request that a revision from trunk
be merged into a release branch:

	Use the utils/release/merge-request.sh script which will automatically
file a bug [https://bugs.llvm.org/] requesting that the patch be merged. e.g. To request revision
12345 be merged into the branch for the 5.0.1 release:
llvm.src/utils/release/merge-request.sh -stable-version 5.0 -r 12345 -user bugzilla@example.com

	Manually file a bug [https://bugs.llvm.org/] with the subject: “Merge r12345 into the X.Y branch”,
enter the commit(s) that you want merged in the “Fixed by Commit(s)” and mark
it as a blocker of the current release bug. Release bugs are given aliases
in the form of release-x.y.z, so to mark a bug as a blocker for the 5.0.1
release, just enter release-5.0.1 in the “Blocks” field.

	Reply to the commit email on llvm-commits for the revision to merge and cc
the release manager.

Release Patch Rules

Below are the rules regarding patching the release branch:

	Patches applied to the release branch may only be applied by the release
manager, the official release testers or the code owners with approval from
the release manager.

	During the first round of testing, patches that fix regressions or that are
small and relatively risk free (verified by the appropriate code owner) are
applied to the branch. Code owners are asked to be very conservative in
approving patches for the branch. We reserve the right to reject any patch
that does not fix a regression as previously defined.

	During the remaining rounds of testing, only patches that fix critical
regressions may be applied.

	For dot releases all patches must maintain both API and ABI compatibility with
the previous major release. Only bug-fixes will be accepted.

Merging Patches

The utils/release/merge.sh script can be used to merge individual revisions
into any one of the llvm projects. To merge revision $N into project
$PROJ, do:

	svn co https://llvm.org/svn/llvm-project/$PROJ/branches/release_XX
$PROJ.src

	$PROJ.src/utils/release/merge.sh --proj $PROJ --rev $N

	Run regression tests.

	cd $PROJ.src. Run the svn commit command printed out by merge.sh
in step 2.

Release Final Tasks

The final stages of the release process involves tagging the “final” release
branch, updating documentation that refers to the release, and updating the
demo page.

Update Documentation

Review the documentation and ensure that it is up to date. The “Release Notes”
must be updated to reflect new features, bug fixes, new known issues, and
changes in the list of supported platforms. The “Getting Started Guide” should
be updated to reflect the new release version number tag available from
Subversion and changes in basic system requirements. Merge both changes from
mainline into the release branch.

Tag the LLVM Final Release

Tag the final release sources using the tag.sh script in utils/release.

$./tag.sh -release X.Y.Z -final

Update the LLVM Demo Page

The LLVM demo page must be updated to use the new release. This consists of
using the new clang binary and building LLVM.

Update the LLVM Website

The website must be updated before the release announcement is sent out. Here
is what to do:

	Check out the www module from Subversion.

	Create a new sub-directory X.Y in the releases directory.

	Commit the llvm, test-suite, clang source and binaries in this
new directory.

	Copy and commit the llvm/docs and LICENSE.txt files into this new
directory. The docs should be built with BUILD_FOR_WEBSITE=1.

	Commit the index.html to the release/X.Y directory to redirect (use
from previous release).

	Update the releases/download.html file with the new release.

	Update the releases/index.html with the new release and link to release
documentation.

	Finally, update the main page (index.html and sidebar) to point to the
new release and release announcement. Make sure this all gets committed back
into Subversion.

Announce the Release

Send an email to the list announcing the release, pointing people to all the
relevant documentation, download pages and bugs fixed.

 Advice on Packaging LLVM

Advice on Packaging LLVM

	Overview

	Compile Flags

	C++ Features

	Shared Library

	Dependencies

Overview

LLVM sets certain default configure options to make sure our developers don’t
break things for constrained platforms. These settings are not optimal for most
desktop systems, and we hope that packagers (e.g., Redhat, Debian, MacPorts,
etc.) will tweak them. This document lists settings we suggest you tweak.

LLVM’s API changes with each release, so users are likely to want, for example,
both LLVM-2.6 and LLVM-2.7 installed at the same time to support apps developed
against each.

Compile Flags

LLVM runs much more quickly when it’s optimized and assertions are removed.
However, such a build is currently incompatible with users who build without
defining NDEBUG, and the lack of assertions makes it hard to debug problems
in user code. We recommend allowing users to install both optimized and debug
versions of LLVM in parallel. The following configure flags are relevant:

	--disable-assertions

	Builds LLVM with NDEBUG defined. Changes the LLVM ABI. Also available
by setting DISABLE_ASSERTIONS=0|1 in make’s environment. This
defaults to enabled regardless of the optimization setting, but it slows
things down.

	--enable-debug-symbols

	Builds LLVM with -g. Also available by setting DEBUG_SYMBOLS=0|1 in
make’s environment. This defaults to disabled when optimizing, so you
should turn it back on to let users debug their programs.

	--enable-optimized

	(For svn checkouts) Builds LLVM with -O2 and, by default, turns off
debug symbols. Also available by setting ENABLE_OPTIMIZED=0|1 in
make’s environment. This defaults to enabled when not in a
checkout.

C++ Features

	RTTI

	LLVM disables RTTI by default. Add REQUIRES_RTTI=1 to your environment
while running make to re-enable it. This will allow users to build with
RTTI enabled and still inherit from LLVM classes.

Shared Library

Configure with --enable-shared to build
libLLVM-<major>.<minor>.(so|dylib) and link the tools against it. This
saves lots of binary size at the cost of some startup time.

Dependencies

	--enable-libffi

	Depend on libffi [http://sources.redhat.com/libffi/] to allow the LLVM
interpreter to call external functions.

--with-oprofile

Depend on libopagent [http://oprofile.sourceforge.net/doc/devel/index.html] (>=version 0.9.4)
to let the LLVM JIT tell oprofile about function addresses and line
numbers.

 How To Validate a New Release

How To Validate a New Release

	Introduction

	Scripts

	Test Suite

	Pre-Release Process

	Release Process

	Bug Reporting Process

Introduction

This document contains information about testing the release candidates that
will ultimately be the next LLVM release. For more information on how to
manage the actual release, please refer to How To Release LLVM To The Public.

Overview of the Release Process

Once the release process starts, the Release Manager will ask for volunteers,
and it’ll be the role of each volunteer to:

	Test and benchmark the previous release

	Test and benchmark each release candidate, comparing to the previous release
and candidates

	Identify, reduce and report every regression found during tests and benchmarks

	Make sure the critical bugs get fixed and merged to the next release candidate

Not all bugs or regressions are show-stoppers and it’s a bit of a grey area what
should be fixed before the next candidate and what can wait until the next
release.

It’ll depend on:

	The severity of the bug, how many people it affects and if it’s a regression
or a known bug. Known bugs are “unsupported features” and some bugs can be
disabled if they have been implemented recently.

	The stage in the release. Less critical bugs should be considered to be
fixed between RC1 and RC2, but not so much at the end of it.

	If it’s a correctness or a performance regression. Performance regression
tends to be taken more lightly than correctness.

Scripts

The scripts are in the utils/release directory.

test-release.sh

This script will check-out, configure and compile LLVM+Clang (+ most add-ons,
like compiler-rt, libcxx, libomp and clang-extra-tools) in
three stages, and will test the final stage.
It’ll have installed the final binaries on the Phase3/Releasei(+Asserts)
directory, and that’s the one you should use for the test-suite and other
external tests.

To run the script on a specific release candidate run:

./test-release.sh \
 -release 3.3 \
 -rc 1 \
 -no-64bit \
 -test-asserts \
 -no-compare-files

Each system will require different options. For instance, x86_64 will
obviously not need -no-64bit while 32-bit systems will, or the script will
fail.

The important flags to get right are:

	On the pre-release, you should change -rc 1 to -final. On RC2,
change it to -rc 2 and so on.

	On non-release testing, you can use -final in conjunction with
-no-checkout, but you’ll have to create the final directory by hand
and link the correct source dir to final/llvm.src.

	For release candidates, you need -test-asserts, or it won’t create a
“Release+Asserts” directory, which is needed for release testing and
benchmarking. This will take twice as long.

	On the final candidate you just need Release builds, and that’s the binary
directory you’ll have to pack.

This script builds three phases of Clang+LLVM twice each (Release and
Release+Asserts), so use screen or nohup to avoid headaches, since it’ll take
a long time.

Use the --help option to see all the options and chose it according to
your needs.

findRegressions-nightly.py

TODO

Test Suite

Follow the LNT Quick Start Guide [http://llvm.org/docs/lnt/quickstart.html] link on how to set-up the
test-suite

The binary location you’ll have to use for testing is inside the
rcN/Phase3/Release+Asserts/llvmCore-REL-RC.install.
Link that directory to an easier location and run the test-suite.

An example on the run command line, assuming you created a link from the correct
install directory to ~/devel/llvm/install:

./sandbox/bin/python sandbox/bin/lnt runtest \
 nt \
 -j4 \
 --sandbox sandbox \
 --test-suite ~/devel/llvm/test/test-suite \
 --cc ~/devel/llvm/install/bin/clang \
 --cxx ~/devel/llvm/install/bin/clang++

It should have no new regressions, compared to the previous release or release
candidate. You don’t need to fix all the bugs in the test-suite, since they’re
not necessarily meant to pass on all architectures all the time. This is
due to the nature of the result checking, which relies on direct comparison,
and most of the time, the failures are related to bad output checking, rather
than bad code generation.

If the errors are in LLVM itself, please report every single regression found
as blocker, and all the other bugs as important, but not necessarily blocking
the release to proceed. They can be set as “known failures” and to be
fix on a future date.

Pre-Release Process

When the release process is announced on the mailing list, you should prepare
for the testing, by applying the same testing you’ll do on the release
candidates, on the previous release.

You should:

	Download the previous release sources from
http://llvm.org/releases/download.html.

	Run the test-release.sh script on final mode (change -rc 1 to
-final).

	Once all three stages are done, it’ll test the final stage.

	Using the Phase3/Release+Asserts/llvmCore-MAJ.MIN-final.install base,
run the test-suite.

If the final phase’s make check-all failed, it’s a good idea to also test
the intermediate stages by going on the obj directory and running
make check-all to find if there’s at least one stage that passes (helps
when reducing the error for bug report purposes).

Release Process

When the Release Manager sends you the release candidate, download all sources,
unzip on the same directory (there will be sym-links from the appropriate places
to them), and run the release test as above.

You should:

	Download the current candidate sources from where the release manager points
you (ex. http://llvm.org/pre-releases/3.3/rc1/).

	Repeat the steps above with -rc 1, -rc 2 etc modes and run the
test-suite the same way.

	Compare the results, report all errors on Bugzilla and publish the binary blob
where the release manager can grab it.

Once the release manages announces that the latest candidate is the good one,
you have to pack the Release (no Asserts) install directory on Phase3
and that will be the official binary.

	Rename (or link) clang+llvm-REL-ARCH-ENV to the .install directory

	Tar that into the same name with .tar.gz extensioan from outside the
directory

	Make it available for the release manager to download

Bug Reporting Process

If you found regressions or failures when comparing a release candidate with the
previous release, follow the rules below:

	Critical bugs on compilation should be fixed as soon as possible, possibly
before releasing the binary blobs.

	Check-all tests should be fixed before the next release candidate, but can
wait until the test-suite run is finished.

	Bugs in the test suite or unimportant check-all tests can be fixed in between
release candidates.

	New features or recent big changes, when close to the release, should have
done in a way that it’s easy to disable. If they misbehave, prefer disabling
them than releasing an unstable (but untested) binary package.

 Code Reviews with Phabricator

Code Reviews with Phabricator

	Sign up

	Requesting a review via the command line

	Requesting a review via the web interface

	Reviewing code with Phabricator

	Committing a change

	Subversion and Arcanist

	git-svn and Arcanist

	Abandoning a change

	Status

If you prefer to use a web user interface for code reviews, you can now submit
your patches for Clang and LLVM at LLVM’s Phabricator [http://reviews.llvm.org] instance.

While Phabricator is a useful tool for some, the relevant -commits mailing list
is the system of record for all LLVM code review. The mailing list should be
added as a subscriber on all reviews, and Phabricator users should be prepared
to respond to free-form comments in mail sent to the commits list.

Sign up

To get started with Phabricator, navigate to http://reviews.llvm.org and
click the power icon in the top right. You can register with a GitHub account,
a Google account, or you can create your own profile.

Make sure that the email address registered with Phabricator is subscribed
to the relevant -commits mailing list. If you are not subscribed to the commit
list, all mail sent by Phabricator on your behalf will be held for moderation.

Note that if you use your Subversion user name as Phabricator user name,
Phabricator will automatically connect your submits to your Phabricator user in
the Code Repository Browser [http://reviews.llvm.org/diffusion/].

Requesting a review via the command line

Phabricator has a tool called Arcanist to upload patches from
the command line. To get you set up, follow the
Arcanist Quick Start [https://secure.phabricator.com/book/phabricator/article/arcanist_quick_start/] instructions.

You can learn more about how to use arc to interact with
Phabricator in the Arcanist User Guide [https://secure.phabricator.com/book/phabricator/article/arcanist/].

Requesting a review via the web interface

The tool to create and review patches in Phabricator is called
Differential.

Note that you can upload patches created through various diff tools,
including git and svn. To make reviews easier, please always include
as much context as possible with your diff! Don’t worry, Phabricator
will automatically send a diff with a smaller context in the review
email, but having the full file in the web interface will help the
reviewer understand your code.

To get a full diff, use one of the following commands (or just use Arcanist
to upload your patch):

	git show HEAD -U999999 > mypatch.patch

	git format-patch -U999999 @{u}

	svn diff --diff-cmd=diff -x -U999999

To upload a new patch:

	Click Differential.

	Click + Create Diff.

	Paste the text diff or browse to the patch file. Click Create Diff.

	Leave this first Repository field blank. (We’ll fill in the Repository
later, when sending the review.)

	Leave the drop down on Create a new Revision… and click Continue.

	Enter a descriptive title and summary. The title and summary are usually
in the form of a commit message.

	Add reviewers (see below for advice). (If you set the Repository field
correctly, llvm-commits or cfe-commits will be subscribed automatically;
otherwise, you will have to manually subscribe them.)

	In the Repository field, enter the name of the project (LLVM, Clang,
etc.) to which the review should be sent.

	Click Save.

To submit an updated patch:

	Click Differential.

	Click + Create Diff.

	Paste the updated diff or browse to the updated patch file. Click Create Diff.

	Select the review you want to from the Attach To dropdown and click
Continue.

	Leave the Repository field blank. (We previously filled out the Repository
for the review request.)

	Add comments about the changes in the new diff. Click Save.

Choosing reviewers: You typically pick one or two people as initial reviewers.
This choice is not crucial, because you are merely suggesting and not requiring
them to participate. Many people will see the email notification on cfe-commits
or llvm-commits, and if the subject line suggests the patch is something they
should look at, they will.

Here are a couple of ways to pick the initial reviewer(s):

	Use svn blame and the commit log to find names of people who have
recently modified the same area of code that you are modifying.

	Look in CODE_OWNERS.TXT to see who might be responsible for that area.

	If you’ve discussed the change on a dev list, the people who participated
might be appropriate reviewers.

Even if you think the code owner is the busiest person in the world, it’s still
okay to put them as a reviewer. Being the code owner means they have accepted
responsibility for making sure the review happens.

Reviewing code with Phabricator

Phabricator allows you to add inline comments as well as overall comments
to a revision. To add an inline comment, select the lines of code you want
to comment on by clicking and dragging the line numbers in the diff pane.
When you have added all your comments, scroll to the bottom of the page and
click the Submit button.

You can add overall comments in the text box at the bottom of the page.
When you’re done, click the Submit button.

Phabricator has many useful features, for example allowing you to select
diffs between different versions of the patch as it was reviewed in the
Revision Update History. Most features are self descriptive - explore, and
if you have a question, drop by on #llvm in IRC to get help.

Note that as e-mail is the system of reference for code reviews, and some
people prefer it over a web interface, we do not generate automated mail
when a review changes state, for example by clicking “Accept Revision” in
the web interface. Thus, please type LGTM into the comment box to accept
a change from Phabricator.

Committing a change

Once a patch has been reviewed and approved on Phabricator it can then be
committed to trunk. If you do not have commit access, someone has to
commit the change for you (with attribution). It is sufficient to add
a comment to the approved review indicating you cannot commit the patch
yourself. If you have commit access, there are multiple workflows to commit the
change. Whichever method you follow it is recommended that your commit message
ends with the line:

Differential Revision: <URL>

where <URL> is the URL for the code review, starting with
http://reviews.llvm.org/.

This allows people reading the version history to see the review for
context. This also allows Phabricator to detect the commit, close the
review, and add a link from the review to the commit.

Note that if you use the Arcanist tool the Differential Revision line will
be added automatically. If you don’t want to use Arcanist, you can add the
Differential Revision line (as the last line) to the commit message
yourself.

Using the Arcanist tool can simplify the process of committing reviewed code
as it will retrieve reviewers, the Differential Revision, etc from the review
and place it in the commit message. Several methods of using Arcanist to commit
code are given below. If you do not wish to use Arcanist then simply commit
the reviewed patch as you would normally.

Note that if you commit the change without using Arcanist and forget to add the
Differential Revision line to your commit message then it is recommended
that you close the review manually. In the web UI, under “Leap Into Action” put
the SVN revision number in the Comment, set the Action to “Close Revision” and
click Submit. Note the review must have been Accepted first.

Subversion and Arcanist

On a clean Subversion working copy run the following (where <Revision> is
the Phabricator review number):

arc patch D<Revision>
arc commit --revision D<Revision>

The first command will take the latest version of the reviewed patch and apply it to the working
copy. The second command will commit this revision to trunk.

git-svn and Arcanist

This presumes that the git repository has been configured as described in For developers to work with git-svn.

On a clean Git repository on an up to date master branch run the
following (where <Revision> is the Phabricator review number):

arc patch D<Revision>

This will create a new branch called arcpatch-D<Revision> based on the
current master and will create a commit corresponding to D<Revision> with a
commit message derived from information in the Phabricator review.

Check you are happy with the commit message and amend it if necessary. Now switch to
the master branch and add the new commit to it and commit it to trunk. This
can be done by running the following:

git checkout master
git merge --ff-only arcpatch-D<Revision>
git svn dcommit

Abandoning a change

If you decide you should not commit the patch, you should explicitly abandon
the review so that reviewers don’t think it is still open. In the web UI,
scroll to the bottom of the page where normally you would enter an overall
comment. In the drop-down Action list, which defaults to “Comment,” you should
select “Abandon Revision” and then enter a comment explaining why. Click the
Submit button to finish closing the review.

Status

Please let us know whether you like it and what could be improved! We’re still
working on setting up a bug tracker, but you can email klimek-at-google-dot-com
and chandlerc-at-gmail-dot-com and CC the llvm-dev mailing list with questions
until then. We also could use help implementing improvements. This sadly is
really painful and hard because the Phabricator codebase is in PHP and not as
testable as you might like. However, we’ve put exactly what we’re deploying up
on an llvm-reviews GitHub project [https://github.com/r4nt/llvm-reviews/] where folks can hack on it and post pull
requests. We’re looking into what the right long-term hosting for this is, but
note that it is a derivative of an existing open source project, and so not
trivially a good fit for an official LLVM project.

 LLVM Community Code of Conduct

LLVM Community Code of Conduct

Note

This document is currently a DRAFT document while it is being discussed
by the community.

The LLVM community has always worked to be a welcoming and respectful
community, and we want to ensure that doesn’t change as we grow and evolve. To
that end, we have a few ground rules that we ask people to adhere to:

	be friendly and patient,

	be welcoming,

	be considerate,

	be respectful,

	be careful in the words that you choose and be kind to others, and

	when we disagree, try to understand why.

This isn’t an exhaustive list of things that you can’t do. Rather, take it in
the spirit in which it’s intended - a guide to make it easier to communicate
and participate in the community.

This code of conduct applies to all spaces managed by the LLVM project or The
LLVM Foundation. This includes IRC channels, mailing lists, bug trackers, LLVM
events such as the developer meetings and socials, and any other forums created
by the project that the community uses for communication. It applies to all of
your communication and conduct in these spaces, including emails, chats, things
you say, slides, videos, posters, signs, or even t-shirts you display in these
spaces. In addition, violations of this code outside these spaces may, in rare
cases, affect a person’s ability to participate within them, when the conduct
amounts to an egregious violation of this code.

If you believe someone is violating the code of conduct, we ask that you report
it by emailing conduct@llvm.org. For more details please see our
Reporting Guide.

	Be friendly and patient.

	Be welcoming. We strive to be a community that welcomes and supports
people of all backgrounds and identities. This includes, but is not limited
to members of any race, ethnicity, culture, national origin, colour,
immigration status, social and economic class, educational level, sex, sexual
orientation, gender identity and expression, age, size, family status,
political belief, religion or lack thereof, and mental and physical ability.

	Be considerate. Your work will be used by other people, and you in turn
will depend on the work of others. Any decision you take will affect users
and colleagues, and you should take those consequences into account. Remember
that we’re a world-wide community, so you might not be communicating in
someone else’s primary language.

	Be respectful. Not all of us will agree all the time, but disagreement is
no excuse for poor behavior and poor manners. We might all experience some
frustration now and then, but we cannot allow that frustration to turn into
a personal attack. It’s important to remember that a community where people
feel uncomfortable or threatened is not a productive one. Members of the LLVM
community should be respectful when dealing with other members as well as
with people outside the LLVM community.

	Be careful in the words that you choose and be kind to others. Do not
insult or put down other participants. Harassment and other exclusionary
behavior aren’t acceptable. This includes, but is not limited to:

	Violent threats or language directed against another person.

	Discriminatory jokes and language.

	Posting sexually explicit or violent material.

	Posting (or threatening to post) other people’s personally identifying
information (“doxing”).

	Personal insults, especially those using racist or sexist terms.

	Unwelcome sexual attention.

	Advocating for, or encouraging, any of the above behavior.

In general, if someone asks you to stop, then stop. Persisting in such
behavior after being asked to stop is considered harassment.

	When we disagree, try to understand why. Disagreements, both social and
technical, happen all the time and LLVM is no exception. It is important that
we resolve disagreements and differing views constructively. Remember that
we’re different. The strength of LLVM comes from its varied community, people
from a wide range of backgrounds. Different people have different
perspectives on issues. Being unable to understand why someone holds
a viewpoint doesn’t mean that they’re wrong. Don’t forget that it is human to
err and blaming each other doesn’t get us anywhere. Instead, focus on helping
to resolve issues and learning from mistakes.

Questions?

If you have questions, please feel free to contact the LLVM Foundation Code of
Conduct Advisory Committee by emailing conduct@llvm.org.

(This text is based on the Django Project [https://www.djangoproject.com/conduct/] Code of Conduct, which is in turn
based on wording from the Speak Up! project [http://speakup.io/coc.html].)

 Moving LLVM Projects to GitHub

Moving LLVM Projects to GitHub

Table of Contents

	Introduction

	What This Proposal is Not About

	Why Git, and Why GitHub?

	Why Move At All?

	Why Git?

	Why GitHub?

	On Managing Revision Numbers with Git

	What About Branches and Merges?

	What About Commit Emails?

	Straw Man Migration Plan

	Step #1 : Before The Move

	Step #2 : Git Move

	Step #3: Write Access Move

	Step #4 : Post Move

	One or Multiple Repositories?

	Multirepo Variant

	Umbrella Repository

	Living Downstream

	Multirepo Preview

	Concerns

	Workflows

	Monorepo Variant

	Building a single sub-project

	Read/write sub-project mirrors

	Living Downstream

	Monorepo Preview

	Concerns

	Workflows

	Multi/Mono Hybrid Variant

	Concerns

	Workflow Before/After

	Checkout/Clone a Single Project, without Commit Access

	Checkout/Clone a Single Project, with Commit Access

	Currently

	Multirepo Variant

	Monorepo Variant

	Checkout/Clone Multiple Projects, with Commit Access

	Currently

	Multirepo Variant

	Monorepo Variant

	Commit an API Change in LLVM and Update the Sub-projects

	Branching/Stashing/Updating for Local Development or Experiments

	Currently

	Multirepo Variant

	Monorepo Variant

	Bisecting

	Currently

	Multirepo Variant

	Monorepo Variant

	References

Introduction

This is a proposal to move our current revision control system from our own
hosted Subversion to GitHub. Below are the financial and technical arguments as
to why we are proposing such a move and how people (and validation
infrastructure) will continue to work with a Git-based LLVM.

There will be a survey pointing at this document which we’ll use to gauge the
community’s reaction and, if we collectively decide to move, the time-frame. Be
sure to make your view count.

Additionally, we will discuss this during a BoF at the next US LLVM Developer
meeting (http://llvm.org/devmtg/2016-11/).

What This Proposal is Not About

Changing the development policy.

This proposal relates only to moving the hosting of our source-code repository
from SVN hosted on our own servers to Git hosted on GitHub. We are not proposing
using GitHub’s issue tracker, pull-requests, or code-review.

Contributors will continue to earn commit access on demand under the Developer
Policy, except that that a GitHub account will be required instead of SVN
username/password-hash.

Why Git, and Why GitHub?

Why Move At All?

This discussion began because we currently host our own Subversion server
and Git mirror on a voluntary basis. The LLVM Foundation sponsors the server and
provides limited support, but there is only so much it can do.

Volunteers are not sysadmins themselves, but compiler engineers that happen
to know a thing or two about hosting servers. We also don’t have 24/7 support,
and we sometimes wake up to see that continuous integration is broken because
the SVN server is either down or unresponsive.

We should take advantage of one of the services out there (GitHub, GitLab,
and BitBucket, among others) that offer better service (24/7 stability, disk
space, Git server, code browsing, forking facilities, etc) for free.

Why Git?

Many new coders nowadays start with Git, and a lot of people have never used
SVN, CVS, or anything else. Websites like GitHub have changed the landscape
of open source contributions, reducing the cost of first contribution and
fostering collaboration.

Git is also the version control many LLVM developers use. Despite the
sources being stored in a SVN server, these developers are already using Git
through the Git-SVN integration.

Git allows you to:

	Commit, squash, merge, and fork locally without touching the remote server.

	Maintain local branches, enabling multiple threads of development.

	Collaborate on these branches (e.g. through your own fork of llvm on GitHub).

	Inspect the repository history (blame, log, bisect) without Internet access.

	Maintain remote forks and branches on Git hosting services and
integrate back to the main repository.

In addition, because Git seems to be replacing many OSS projects’ version
control systems, there are many tools that are built over Git.
Future tooling may support Git first (if not only).

Why GitHub?

GitHub, like GitLab and BitBucket, provides free code hosting for open source
projects. Any of these could replace the code-hosting infrastructure that we
have today.

These services also have a dedicated team to monitor, migrate, improve and
distribute the contents of the repositories depending on region and load.

GitHub has one important advantage over GitLab and
BitBucket: it offers read-write SVN access to the repository
(https://github.com/blog/626-announcing-svn-support).
This would enable people to continue working post-migration as though our code
were still canonically in an SVN repository.

In addition, there are already multiple LLVM mirrors on GitHub, indicating that
part of our community has already settled there.

On Managing Revision Numbers with Git

The current SVN repository hosts all the LLVM sub-projects alongside each other.
A single revision number (e.g. r123456) thus identifies a consistent version of
all LLVM sub-projects.

Git does not use sequential integer revision number but instead uses a hash to
identify each commit. (Linus mentioned that the lack of such revision number
is “the only real design mistake” in Git [TorvaldRevNum].)

The loss of a sequential integer revision number has been a sticking point in
past discussions about Git:

	“The ‘branch’ I most care about is mainline, and losing the ability to say
‘fixed in r1234’ (with some sort of monotonically increasing number) would
be a tragic loss.” [LattnerRevNum]

	“I like those results sorted by time and the chronology should be obvious, but
timestamps are incredibly cumbersome and make it difficult to verify that a
given checkout matches a given set of results.” [TrickRevNum]

	“There is still the major regression with unreadable version numbers.
Given the amount of Bugzilla traffic with ‘Fixed in…’, that’s a
non-trivial issue.” [JSonnRevNum]

	“Sequential IDs are important for LNT and llvmlab bisection tool.” [MatthewsRevNum].

However, Git can emulate this increasing revision number:
git rev-list --count <commit-hash>. This identifier is unique only
within a single branch, but this means the tuple (num, branch-name) uniquely
identifies a commit.

We can thus use this revision number to ensure that e.g. clang -v reports a
user-friendly revision number (e.g. master-12345 or 4.0-5321), addressing
the objections raised above with respect to this aspect of Git.

What About Branches and Merges?

In contrast to SVN, Git makes branching easy. Git’s commit history is
represented as a DAG, a departure from SVN’s linear history. However, we propose
to mandate making merge commits illegal in our canonical Git repository.

Unfortunately, GitHub does not support server side hooks to enforce such a
policy. We must rely on the community to avoid pushing merge commits.

GitHub offers a feature called Status Checks: a branch protected by
status checks requires commits to be whitelisted before the push can happen.
We could supply a pre-push hook on the client side that would run and check the
history, before whitelisting the commit being pushed [statuschecks].
However this solution would be somewhat fragile (how do you update a script
installed on every developer machine?) and prevents SVN access to the
repository.

What About Commit Emails?

We will need a new bot to send emails for each commit. This proposal leaves the
email format unchanged besides the commit URL.

Straw Man Migration Plan

Step #1 : Before The Move

	Update docs to mention the move, so people are aware of what is going on.

	Set up a read-only version of the GitHub project, mirroring our current SVN
repository.

	Add the required bots to implement the commit emails, as well as the
umbrella repository update (if the multirepo is selected) or the read-only
Git views for the sub-projects (if the monorepo is selected).

Step #2 : Git Move

	Update the buildbots to pick up updates and commits from the GitHub
repository. Not all bots have to migrate at this point, but it’ll help
provide infrastructure testing.

	Update Phabricator to pick up commits from the GitHub repository.

	LNT and llvmlab have to be updated: they rely on unique monotonically
increasing integer across branch [MatthewsRevNum].

	Instruct downstream integrators to pick up commits from the GitHub
repository.

	Review and prepare an update for the LLVM documentation.

Until this point nothing has changed for developers, it will just
boil down to a lot of work for buildbot and other infrastructure
owners.

The migration will pause here until all dependencies have cleared, and all
problems have been solved.

Step #3: Write Access Move

	Collect developers’ GitHub account information, and add them to the project.

	Switch the SVN repository to read-only and allow pushes to the GitHub repository.

	Update the documentation.

	Mirror Git to SVN.

Step #4 : Post Move

	Archive the SVN repository.

	Update links on the LLVM website pointing to viewvc/klaus/phab etc. to
point to GitHub instead.

One or Multiple Repositories?

There are two major variants for how to structure our Git repository: The
“multirepo” and the “monorepo”.

Multirepo Variant

This variant recommends moving each LLVM sub-project to a separate Git
repository. This mimics the existing official read-only Git repositories
(e.g., http://llvm.org/git/compiler-rt.git), and creates new canonical
repositories for each sub-project.

This will allow the individual sub-projects to remain distinct: a
developer interested only in compiler-rt can checkout only this repository,
build it, and work in isolation of the other sub-projects.

A key need is to be able to check out multiple projects (i.e. lldb+clang+llvm or
clang+llvm+libcxx for example) at a specific revision.

A tuple of revisions (one entry per repository) accurately describes the state
across the sub-projects.
For example, a given version of clang would be
<LLVM-12345, clang-5432, libcxx-123, etc.>.

Umbrella Repository

To make this more convenient, a separate umbrella repository will be
provided. This repository will be used for the sole purpose of understanding
the sequence in which commits were pushed to the different repositories and to
provide a single revision number.

This umbrella repository will be read-only and continuously updated
to record the above tuple. The proposed form to record this is to use Git
[submodules], possibly along with a set of scripts to help check out a
specific revision of the LLVM distribution.

A regular LLVM developer does not need to interact with the umbrella repository
– the individual repositories can be checked out independently – but you would
need to use the umbrella repository to bisect multiple sub-projects at the same
time, or to check-out old revisions of LLVM with another sub-project at a
consistent state.

This umbrella repository will be updated automatically by a bot (running on
notice from a webhook on every push, and periodically) on a per commit basis: a
single commit in the umbrella repository would match a single commit in a
sub-project.

Living Downstream

Downstream SVN users can use the read/write SVN bridges with the following
caveats:

	Be prepared for a one-time change to the upstream revision numbers.

	The upstream sub-project revision numbers will no longer be in sync.

Downstream Git users can continue without any major changes, with the minor
change of upstreaming using git push instead of git svn dcommit.

Git users also have the option of adopting an umbrella repository downstream.
The tooling for the upstream umbrella can easily be reused for downstream needs,
incorporating extra sub-projects and branching in parallel with sub-project
branches.

Multirepo Preview

As a preview (disclaimer: this rough prototype, not polished and not
representative of the final solution), you can look at the following:

	Repository: https://github.com/llvm-beanz/llvm-submodules

	Update bot: http://beanz-bot.com:8180/jenkins/job/submodule-update/

Concerns

	Because GitHub does not allow server-side hooks, and because there is no
“push timestamp” in Git, the umbrella repository sequence isn’t totally
exact: commits from different repositories pushed around the same time can
appear in different orders. However, we don’t expect it to be the common case
or to cause serious issues in practice.

	You can’t have a single cross-projects commit that would update both LLVM and
other sub-projects (something that can be achieved now). It would be possible
to establish a protocol whereby users add a special token to their commit
messages that causes the umbrella repo’s updater bot to group all of them
into a single revision.

	Another option is to group commits that were pushed closely enough together
in the umbrella repository. This has the advantage of allowing cross-project
commits, and is less sensitive to mis-ordering commits. However, this has the
potential to group unrelated commits together, especially if the bot goes
down and needs to catch up.

	This variant relies on heavier tooling. But the current prototype shows that
it is not out-of-reach.

	Submodules don’t have a good reputation / are complicating the command line.
However, in the proposed setup, a regular developer will seldom interact with
submodules directly, and certainly never update them.

	Refactoring across projects is not friendly: taking some functions from clang
to make it part of a utility in libSupport wouldn’t carry the history of the
code in the llvm repo, preventing recursively applying git blame for
instance. However, this is not very different than how most people are
Interacting with the repository today, by splitting such change in multiple
commits.

Workflows

	Checkout/Clone a Single Project, without Commit Access.

	Checkout/Clone a Single Project, with Commit Access.

	Checkout/Clone Multiple Projects, with Commit Access.

	Commit an API Change in LLVM and Update the Sub-projects.

	Branching/Stashing/Updating for Local Development or Experiments.

	Bisecting.

Monorepo Variant

This variant recommends moving all LLVM sub-projects to a single Git repository,
similar to https://github.com/llvm-project/llvm-project.
This would mimic an export of the current SVN repository, with each sub-project
having its own top-level directory.
Not all sub-projects are used for building toolchains. In practice, www/
and test-suite/ will probably stay out of the monorepo.

Putting all sub-projects in a single checkout makes cross-project refactoring
naturally simple:

	New sub-projects can be trivially split out for better reuse and/or layering
(e.g., to allow libSupport and/or LIT to be used by runtimes without adding a
dependency on LLVM).

	Changing an API in LLVM and upgrading the sub-projects will always be done in
a single commit, designing away a common source of temporary build breakage.

	Moving code across sub-project (during refactoring for instance) in a single
commit enables accurate git blame when tracking code change history.

	Tooling based on git grep works natively across sub-projects, allowing to
easier find refactoring opportunities across projects (for example reusing a
datastructure initially in LLDB by moving it into libSupport).

	Having all the sources present encourages maintaining the other sub-projects
when changing API.

Finally, the monorepo maintains the property of the existing SVN repository that
the sub-projects move synchronously, and a single revision number (or commit
hash) identifies the state of the development across all projects.

Building a single sub-project

Nobody will be forced to build unnecessary projects. The exact structure
is TBD, but making it trivial to configure builds for a single sub-project
(or a subset of sub-projects) is a hard requirement.

As an example, it could look like the following:

mkdir build && cd build
Configure only LLVM (default)
cmake path/to/monorepo
Configure LLVM and lld
cmake path/to/monorepo -DLLVM_ENABLE_PROJECTS=lld
Configure LLVM and clang
cmake path/to/monorepo -DLLVM_ENABLE_PROJECTS=clang

Read/write sub-project mirrors

With the Monorepo, the existing single-subproject mirrors (e.g.
http://llvm.org/git/compiler-rt.git) with git-svn read-write access would
continue to be maintained: developers would continue to be able to use the
existing single-subproject git repositories as they do today, with no changes
to workflow. Everything (git fetch, git svn dcommit, etc.) could continue to
work identically to how it works today. The monorepo can be set-up such that the
SVN revision number matches the SVN revision in the GitHub SVN-bridge.

Living Downstream

Downstream SVN users can use the read/write SVN bridge. The SVN revision
number can be preserved in the monorepo, minimizing the impact.

Downstream Git users can continue without any major changes, by using the
git-svn mirrors on top of the SVN bridge.

Git users can also work upstream with monorepo even if their downstream
fork has split repositories. They can apply patches in the appropriate
subdirectories of the monorepo using, e.g., git am –directory=…, or
plain diff and patch.

Alternatively, Git users can migrate their own fork to the monorepo. As a
demonstration, we’ve migrated the “CHERI” fork to the monorepo in two ways:

	Using a script that rewrites history (including merges) so that it looks
like the fork always lived in the monorepo [LebarCHERI]. The upside of
this is when you check out an old revision, you get a copy of all llvm
sub-projects at a consistent revision. (For instance, if it’s a clang
fork, when you check out an old revision you’ll get a consistent version
of llvm proper.) The downside is that this changes the fork’s commit
hashes.

	Merging the fork into the monorepo [AminiCHERI]. This preserves the
fork’s commit hashes, but when you check out an old commit you only get
the one sub-project.

Monorepo Preview

As a preview (disclaimer: this rough prototype, not polished and not
representative of the final solution), you can look at the following:

	Full Repository: https://github.com/joker-eph/llvm-project

	Single sub-project view with SVN write access to the full repo:
https://github.com/joker-eph/compiler-rt

Concerns

	Using the monolithic repository may add overhead for those contributing to a
standalone sub-project, particularly on runtimes like libcxx and compiler-rt
that don’t rely on LLVM; currently, a fresh clone of libcxx is only 15MB (vs.
1GB for the monorepo), and the commit rate of LLVM may cause more frequent
git push collisions when upstreaming. Affected contributors can continue to
use the SVN bridge or the single-subproject Git mirrors with git-svn for
read-write.

	Using the monolithic repository may add overhead for those integrating a
standalone sub-project, even if they aren’t contributing to it, due to the
same disk space concern as the point above. The availability of the
sub-project Git mirror addresses this, even without SVN access.

	Preservation of the existing read/write SVN-based workflows relies on the
GitHub SVN bridge, which is an extra dependency. Maintaining this locks us
into GitHub and could restrict future workflow changes.

Workflows

	Checkout/Clone a Single Project, without Commit Access.

	Checkout/Clone a Single Project, with Commit Access.

	Checkout/Clone Multiple Projects, with Commit Access.

	Commit an API Change in LLVM and Update the Sub-projects.

	Branching/Stashing/Updating for Local Development or Experiments.

	Bisecting.

Multi/Mono Hybrid Variant

This variant recommends moving only the LLVM sub-projects that are rev-locked
to LLVM into a monorepo (clang, lld, lldb, …), following the multirepo
proposal for the rest. While neither variant recommends combining sub-projects
like www/ and test-suite/ (which are completely standalone), this goes further
and keeps sub-projects like libcxx and compiler-rt in their own distinct
repositories.

Concerns

	This has most disadvantages of multirepo and monorepo, without bringing many
of the advantages.

	Downstream have to upgrade to the monorepo structure, but only partially. So
they will keep the infrastructure to integrate the other separate
sub-projects.

	All projects that use LIT for testing are effectively rev-locked to LLVM.
Furthermore, some runtimes (like compiler-rt) are rev-locked with Clang.
It’s not clear where to draw the lines.

Workflow Before/After

This section goes through a few examples of workflows, intended to illustrate
how end-users or developers would interact with the repository for
various use-cases.

Checkout/Clone a Single Project, without Commit Access

Except the URL, nothing changes. The possibilities today are:

svn co http://llvm.org/svn/llvm-project/llvm/trunk llvm
or with Git
git clone http://llvm.org/git/llvm.git

After the move to GitHub, you would do either:

git clone https://github.com/llvm-project/llvm.git
or using the GitHub svn native bridge
svn co https://github.com/llvm-project/llvm/trunk

The above works for both the monorepo and the multirepo, as we’ll maintain the
existing read-only views of the individual sub-projects.

Checkout/Clone a Single Project, with Commit Access

Currently

direct SVN checkout
svn co https://user@llvm.org/svn/llvm-project/llvm/trunk llvm
or using the read-only Git view, with git-svn
git clone http://llvm.org/git/llvm.git
cd llvm
git svn init https://llvm.org/svn/llvm-project/llvm/trunk --username=<username>
git config svn-remote.svn.fetch :refs/remotes/origin/master
git svn rebase -l # -l avoids fetching ahead of the git mirror.

Commits are performed using svn commit or with the sequence git commit and
git svn dcommit.

Multirepo Variant

With the multirepo variant, nothing changes but the URL, and commits can be
performed using svn commit or git commit and git push:

git clone https://github.com/llvm/llvm.git llvm
or using the GitHub svn native bridge
svn co https://github.com/llvm/llvm/trunk/ llvm

Monorepo Variant

With the monorepo variant, there are a few options, depending on your
constraints. First, you could just clone the full repository:

git clone https://github.com/llvm/llvm-projects.git llvm
or using the GitHub svn native bridge
svn co https://github.com/llvm/llvm-projects/trunk/ llvm

At this point you have every sub-project (llvm, clang, lld, lldb, …), which
doesn’t imply you have to build all of them. You
can still build only compiler-rt for instance. In this way it’s not different
from someone who would check out all the projects with SVN today.

You can commit as normal using git commit and git push or svn commit, and
read the history for a single project (git log libcxx for example).

Secondly, there are a few options to avoid checking out all the sources.

Using the GitHub SVN bridge

The GitHub SVN native bridge allows to checkout a subdirectory directly:

svn co https://github.com/llvm/llvm-projects/trunk/compiler-rt compiler-rt —username=…

This checks out only compiler-rt and provides commit access using “svn commit”,
in the same way as it would do today.

Using a Subproject Git Nirror

You can use git-svn and one of the sub-project mirrors:

Clone from the single read-only Git repo
git clone http://llvm.org/git/llvm.git
cd llvm
Configure the SVN remote and initialize the svn metadata
$ git svn init https://github.com/joker-eph/llvm-project/trunk/llvm —username=...
git config svn-remote.svn.fetch :refs/remotes/origin/master
git svn rebase -l

In this case the repository contains only a single sub-project, and commits can
be made using git svn dcommit, again exactly as we do today.

Using a Sparse Checkouts

You can hide the other directories using a Git sparse checkout:

git config core.sparseCheckout true
echo /compiler-rt > .git/info/sparse-checkout
git read-tree -mu HEAD

The data for all sub-projects is still in your .git directory, but in your
checkout, you only see compiler-rt.
Before you push, you’ll need to fetch and rebase (git pull –rebase) as
usual.

Note that when you fetch you’ll likely pull in changes to sub-projects you don’t
care about. If you are using spasre checkout, the files from other projects
won’t appear on your disk. The only effect is that your commit hash changes.

You can check whether the changes in the last fetch are relevant to your commit
by running:

git log origin/master@{1}..origin/master -- libcxx

This command can be hidden in a script so that git llvmpush would perform all
these steps, fail only if such a dependent change exists, and show immediately
the change that prevented the push. An immediate repeat of the command would
(almost) certainly result in a successful push.
Note that today with SVN or git-svn, this step is not possible since the
“rebase” implicitly happens while committing (unless a conflict occurs).

Checkout/Clone Multiple Projects, with Commit Access

Let’s look how to assemble llvm+clang+libcxx at a given revision.

Currently

svn co http://llvm.org/svn/llvm-project/llvm/trunk llvm -r $REVISION
cd llvm/tools
svn co http://llvm.org/svn/llvm-project/clang/trunk clang -r $REVISION
cd ../projects
svn co http://llvm.org/svn/llvm-project/libcxx/trunk libcxx -r $REVISION

Or using git-svn:

git clone http://llvm.org/git/llvm.git
cd llvm/
git svn init https://llvm.org/svn/llvm-project/llvm/trunk --username=<username>
git config svn-remote.svn.fetch :refs/remotes/origin/master
git svn rebase -l
git checkout `git svn find-rev -B r258109`
cd tools
git clone http://llvm.org/git/clang.git
cd clang/
git svn init https://llvm.org/svn/llvm-project/clang/trunk --username=<username>
git config svn-remote.svn.fetch :refs/remotes/origin/master
git svn rebase -l
git checkout `git svn find-rev -B r258109`
cd ../../projects/
git clone http://llvm.org/git/libcxx.git
cd libcxx
git svn init https://llvm.org/svn/llvm-project/libcxx/trunk --username=<username>
git config svn-remote.svn.fetch :refs/remotes/origin/master
git svn rebase -l
git checkout `git svn find-rev -B r258109`

Note that the list would be longer with more sub-projects.

Multirepo Variant

With the multirepo variant, the umbrella repository will be used. This is
where the mapping from a single revision number to the individual repositories
revisions is stored.:

git clone https://github.com/llvm-beanz/llvm-submodules
cd llvm-submodules
git checkout $REVISION
git submodule init
git submodule update clang llvm libcxx
the list of sub-project is optional, `git submodule update` would get them all.

At this point the clang, llvm, and libcxx individual repositories are cloned
and stored alongside each other. There are CMake flags to describe the directory
structure; alternatively, you can just symlink clang to llvm/tools/clang,
etc.

Another option is to checkout repositories based on the commit timestamp:

git checkout `git rev-list -n 1 --before="2009-07-27 13:37" master`

Monorepo Variant

The repository contains natively the source for every sub-projects at the right
revision, which makes this straightforward:

git clone https://github.com/llvm/llvm-projects.git llvm-projects
cd llvm-projects
git checkout $REVISION

As before, at this point clang, llvm, and libcxx are stored in directories
alongside each other.

Commit an API Change in LLVM and Update the Sub-projects

Today this is possible, even though not common (at least not documented) for
subversion users and for git-svn users. For example, few Git users try to update
LLD or Clang in the same commit as they change an LLVM API.

The multirepo variant does not address this: one would have to commit and push
separately in every individual repository. It would be possible to establish a
protocol whereby users add a special token to their commit messages that causes
the umbrella repo’s updater bot to group all of them into a single revision.

The monorepo variant handles this natively.

Branching/Stashing/Updating for Local Development or Experiments

Currently

SVN does not allow this use case, but developers that are currently using
git-svn can do it. Let’s look in practice what it means when dealing with
multiple sub-projects.

To update the repository to tip of trunk:

git pull
cd tools/clang
git pull
cd ../../projects/libcxx
git pull

To create a new branch:

git checkout -b MyBranch
cd tools/clang
git checkout -b MyBranch
cd ../../projects/libcxx
git checkout -b MyBranch

To switch branches:

git checkout AnotherBranch
cd tools/clang
git checkout AnotherBranch
cd ../../projects/libcxx
git checkout AnotherBranch

Multirepo Variant

The multirepo works the same as the current Git workflow: every command needs
to be applied to each of the individual repositories.
However, the umbrella repository makes this easy using git submodule foreach
to replicate a command on all the individual repositories (or submodules
in this case):

To create a new branch:

git submodule foreach git checkout -b MyBranch

To switch branches:

git submodule foreach git checkout AnotherBranch

Monorepo Variant

Regular Git commands are sufficient, because everything is in a single
repository:

To update the repository to tip of trunk:

git pull

To create a new branch:

git checkout -b MyBranch

To switch branches:

git checkout AnotherBranch

Bisecting

Assuming a developer is looking for a bug in clang (or lld, or lldb, …).

Currently

SVN does not have builtin bisection support, but the single revision across
sub-projects makes it possible to script around.

Using the existing Git read-only view of the repositories, it is possible to use
the native Git bisection script over the llvm repository, and use some scripting
to synchronize the clang repository to match the llvm revision.

Multirepo Variant

With the multi-repositories variant, the cross-repository synchronization is
achieved using the umbrella repository. This repository contains only
submodules for the other sub-projects. The native Git bisection can be used on
the umbrella repository directly. A subtlety is that the bisect script itself
needs to make sure the submodules are updated accordingly.

For example, to find which commit introduces a regression where clang-3.9
crashes but not clang-3.8 passes, one should be able to simply do:

git bisect start release_39 release_38
git bisect run ./bisect_script.sh

With the bisect_script.sh script being:

#!/bin/sh
cd $UMBRELLA_DIRECTORY
git submodule update llvm clang libcxx #....
cd $BUILD_DIR

ninja clang || exit 125 # an exit code of 125 asks "git bisect"
 # to "skip" the current commit

./bin/clang some_crash_test.cpp

When the git bisect run command returns, the umbrella repository is set to
the state where the regression is introduced. The commit diff in the umbrella
indicate which submodule was updated, and the last commit in this sub-projects
is the one that the bisect found.

Monorepo Variant

Bisecting on the monorepo is straightforward, and very similar to the above,
except that the bisection script does not need to include the
git submodule update step.

The same example, finding which commit introduces a regression where clang-3.9
crashes but not clang-3.8 passes, will look like:

git bisect start release_39 release_38
git bisect run ./bisect_script.sh

With the bisect_script.sh script being:

#!/bin/sh
cd $BUILD_DIR

ninja clang || exit 125 # an exit code of 125 asks "git bisect"
 # to "skip" the current commit

./bin/clang some_crash_test.cpp

Also, since the monorepo handles commits update across multiple projects, you’re
less like to encounter a build failure where a commit change an API in LLVM and
another later one “fixes” the build in clang.

References

	LattnerRevNum

	Chris Lattner, http://lists.llvm.org/pipermail/llvm-dev/2011-July/041739.html

	TrickRevNum

	Andrew Trick, http://lists.llvm.org/pipermail/llvm-dev/2011-July/041721.html

	JSonnRevNum

	Joerg Sonnenberg, http://lists.llvm.org/pipermail/llvm-dev/2011-July/041688.html

	TorvaldRevNum

	Linus Torvald, http://git.661346.n2.nabble.com/Git-commit-generation-numbers-td6584414.html

	MatthewsRevNum(1,2)

	Chris Matthews, http://lists.llvm.org/pipermail/cfe-dev/2016-July/049886.html

	submodules

	Git submodules, https://git-scm.com/book/en/v2/Git-Tools-Submodules)

	statuschecks

	GitHub status-checks, https://help.github.com/articles/about-required-status-checks/

	LebarCHERI

	Port CHERI to a single repository rewriting history, http://lists.llvm.org/pipermail/llvm-dev/2016-July/102787.html

	AminiCHERI

	Port CHERI to a single repository preserving history, http://lists.llvm.org/pipermail/llvm-dev/2016-July/102804.html

 Vectorization Plan

Vectorization Plan

	Abstract

	High-level Design

	Vectorization Workflow

	Design Guidelines

	Definitions

	The Planning Process and VPlan Roadmap

	Related LLVM components

	References

Abstract

The vectorization transformation can be rather complicated, involving several
potential alternatives, especially for outer-loops 1 but also possibly for
innermost loops. These alternatives may have significant performance impact,
both positive and negative. A cost model is therefore employed to identify the
best alternative, including the alternative of avoiding any transformation
altogether.

The Vectorization Plan is an explicit model for describing vectorization
candidates. It serves for both optimizing candidates including estimating their
cost reliably, and for performing their final translation into IR. This
facilitates dealing with multiple vectorization candidates.

High-level Design

Vectorization Workflow

VPlan-based vectorization involves three major steps, taking a “scenario-based
approach” to vectorization planning:

	Legal Step: check if a loop can be legally vectorized; encode constraints and
artifacts if so.

	Plan Step:

	Build initial VPlans following the constraints and decisions taken by
Legal Step 1, and compute their cost.

	Apply optimizations to the VPlans, possibly forking additional VPlans.
Prune sub-optimal VPlans having relatively high cost.

	Execute Step: materialize the best VPlan. Note that this is the only step
that modifies the IR.

Design Guidelines

In what follows, the term “input IR” refers to code that is fed into the
vectorizer whereas the term “output IR” refers to code that is generated by the
vectorizer. The output IR contains code that has been vectorized or “widened”
according to a loop Vectorization Factor (VF), and/or loop unroll-and-jammed
according to an Unroll Factor (UF).
The design of VPlan follows several high-level guidelines:

	Analysis-like: building and manipulating VPlans must not modify the input IR.
In particular, if the best option is not to vectorize at all, the
vectorization process terminates before reaching Step 3, and compilation
should proceed as if VPlans had not been built.

	Align Cost & Execute: each VPlan must support both estimating the cost and
generating the output IR code, such that the cost estimation evaluates the
to-be-generated code reliably.

	Support vectorizing additional constructs:

	Outer-loop vectorization. In particular, VPlan must be able to model the
control-flow of the output IR which may include multiple basic-blocks and
nested loops.

	SLP vectorization.

	Combinations of the above, including nested vectorization: vectorizing
both an inner loop and an outer-loop at the same time (each with its own
VF and UF), mixed vectorization: vectorizing a loop with SLP patterns
inside 4, (re)vectorizing input IR containing vector code.

	Function vectorization 2.

	Support multiple candidates efficiently. In particular, similar candidates
related to a range of possible VF’s and UF’s must be represented efficiently.
Potential versioning needs to be supported efficiently.

	Support vectorizing idioms, such as interleaved groups of strided loads or
stores. This is achieved by modeling a sequence of output instructions using
a “Recipe”, which is responsible for computing its cost and generating its
code.

	Encapsulate Single-Entry Single-Exit regions (SESE). During vectorization
such regions may need to be, for example, predicated and linearized, or
replicated VF*UF times to handle scalarized and predicated instructions.
Innerloops are also modelled as SESE regions.

	Support instruction-level analysis and transformation, as part of Planning
Step 2.b: During vectorization instructions may need to be traversed, moved,
replaced by other instructions or be created. For example, vector idiom
detection and formation involves searching for and optimizing instruction
patterns.

Definitions

The low-level design of VPlan comprises of the following classes.

	LoopVectorizationPlanner

	A LoopVectorizationPlanner is designed to handle the vectorization of a loop
or a loop nest. It can construct, optimize and discard one or more VPlans,
each VPlan modelling a distinct way to vectorize the loop or the loop nest.
Once the best VPlan is determined, including the best VF and UF, this VPlan
drives the generation of output IR.

	VPlan

	A model of a vectorized candidate for a given input IR loop or loop nest. This
candidate is represented using a Hierarchical CFG. VPlan supports estimating
the cost and driving the generation of the output IR code it represents.

	Hierarchical CFG

	A control-flow graph whose nodes are basic-blocks or Hierarchical CFG’s. The
Hierarchical CFG data structure is similar to the Tile Tree 5, where
cross-Tile edges are lifted to connect Tiles instead of the original
basic-blocks as in Sharir 6, promoting the Tile encapsulation. The terms
Region and Block are used rather than Tile 5 to avoid confusion with loop
tiling.

	VPBlockBase

	The building block of the Hierarchical CFG. A pure-virtual base-class of
VPBasicBlock and VPRegionBlock, see below. VPBlockBase models the hierarchical
control-flow relations with other VPBlocks. Note that in contrast to the IR
BasicBlock, a VPBlockBase models its control-flow successors and predecessors
directly, rather than through a Terminator branch or through predecessor
branches that “use” the VPBlockBase.

	VPBasicBlock

	VPBasicBlock is a subclass of VPBlockBase, and serves as the leaves of the
Hierarchical CFG. It represents a sequence of output IR instructions that will
appear consecutively in an output IR basic-block. The instructions of this
basic-block originate from one or more VPBasicBlocks. VPBasicBlock holds a
sequence of zero or more VPRecipes that model the cost and generation of the
output IR instructions.

	VPRegionBlock

	VPRegionBlock is a subclass of VPBlockBase. It models a collection of
VPBasicBlocks and VPRegionBlocks which form a SESE subgraph of the output IR
CFG. A VPRegionBlock may indicate that its contents are to be replicated a
constant number of times when output IR is generated, effectively representing
a loop with constant trip-count that will be completely unrolled. This is used
to support scalarized and predicated instructions with a single model for
multiple candidate VF’s and UF’s.

	VPRecipeBase

	A pure-virtual base class modeling a sequence of one or more output IR
instructions, possibly based on one or more input IR instructions. These
input IR instructions are referred to as “Ingredients” of the Recipe. A Recipe
may specify how its ingredients are to be transformed to produce the output IR
instructions; e.g., cloned once, replicated multiple times or widened
according to selected VF.

	VPValue

	The base of VPlan’s def-use relations class hierarchy. When instantiated, it
models a constant or a live-in Value in VPlan. It has users, which are of type
VPUser, but no operands.

	VPUser

	A VPValue representing a general vertex in the def-use graph of VPlan. It has
operands which are of type VPValue. When instantiated, it represents a
live-out Instruction that exists outside VPlan. VPUser is similar in some
aspects to LLVM’s User class.

	VPInstruction

	A VPInstruction is both a VPRecipe and a VPUser. It models a single
VPlan-level instruction to be generated if the VPlan is executed, including
its opcode and possibly additional characteristics. It is the basis for
writing instruction-level analyses and optimizations in VPlan as creating,
replacing or moving VPInstructions record both def-use and scheduling
decisions. VPInstructions also extend LLVM IR’s opcodes with idiomatic
operations that enrich the Vectorizer’s semantics.

	VPTransformState

	Stores information used for generating output IR, passed from
LoopVectorizationPlanner to its selected VPlan for execution, and used to pass
additional information down to VPBlocks and VPRecipes.

The Planning Process and VPlan Roadmap

Transforming the Loop Vectorizer to use VPlan follows a staged approach. First,
VPlan is used to record the final vectorization decisions, and to execute them:
the Hierarchical CFG models the planned control-flow, and Recipes capture
decisions taken inside basic-blocks. Next, VPlan will be used also as the basis
for taking these decisions, effectively turning them into a series of
VPlan-to-VPlan algorithms. Finally, VPlan will support the planning process
itself including cost-based analyses for making these decisions, to fully
support compositional and iterative decision making.

Some decisions are local to an instruction in the loop, such as whether to widen
it into a vector instruction or replicate it, keeping the generated instructions
in place. Other decisions, however, involve moving instructions, replacing them
with other instructions, and/or introducing new instructions. For example, a
cast may sink past a later instruction and be widened to handle first-order
recurrence; an interleave group of strided gathers or scatters may effectively
move to one place where they are replaced with shuffles and a common wide vector
load or store; new instructions may be introduced to compute masks, shuffle the
elements of vectors, and pack scalar values into vectors or vice-versa.

In order for VPlan to support making instruction-level decisions and analyses,
it needs to model the relevant instructions along with their def/use relations.
This too follows a staged approach: first, the new instructions that compute
masks are modeled as VPInstructions, along with their induced def/use subgraph.
This effectively models masks in VPlan, facilitating VPlan-based predication.
Next, the logic embedded within each Recipe for generating its instructions at
VPlan execution time, will instead take part in the planning process by modeling
them as VPInstructions. Finally, only logic that applies to instructions as a
group will remain in Recipes, such as interleave groups and potentially other
idiom groups having synergistic cost.

Related LLVM components

	SLP Vectorizer: one can compare the VPlan model with LLVM’s existing SLP
tree, where TSLP 3 adds Plan Step 2.b.

	RegionInfo: one can compare VPlan’s H-CFG with the Region Analysis as used by
Polly 7.

	Loop Vectorizer: the Vectorization Plan aims to upgrade the infrastructure of
the Loop Vectorizer and extend it to handle outer loops 8, 9.

References

	1

	“Outer-loop vectorization: revisited for short SIMD architectures”, Dorit
Nuzman and Ayal Zaks, PACT 2008.

	2

	“Proposal for function vectorization and loop vectorization with function
calls”, Xinmin Tian, [cfe-dev [http://lists.llvm.org/pipermail/cfe-dev/2016-March/047732.html]].,
March 2, 2016.
See also review [https://reviews.llvm.org/D22792].

	3

	“Throttling Automatic Vectorization: When Less is More”, Vasileios
Porpodas and Tim Jones, PACT 2015 and LLVM Developers’ Meeting 2015.

	4

	“Exploiting mixed SIMD parallelism by reducing data reorganization
overhead”, Hao Zhou and Jingling Xue, CGO 2016.

	5(1,2)

	“Register Allocation via Hierarchical Graph Coloring”, David Callahan and
Brian Koblenz, PLDI 1991

	6

	“Structural analysis: A new approach to flow analysis in optimizing
compilers”, M. Sharir, Journal of Computer Languages, Jan. 1980

	7

	“Enabling Polyhedral Optimizations in LLVM”, Tobias Grosser, Diploma
thesis, 2011.

	8

	“Introducing VPlan to the Loop Vectorizer”, Gil Rapaport and Ayal Zaks,
European LLVM Developers’ Meeting 2017.

	9

	“Extending LoopVectorizer: OpenMP4.5 SIMD and Outer Loop
Auto-Vectorization”, Intel Vectorizer Team, LLVM Developers’ Meeting 2016.

 Index

Index

 Symbols
 | C
 | L
 | T

Symbols

 	
 	
 --allow-deprecated-dag-overlap

 	command line option

 	
 --arch=<arch>

 	command line option, [1]

 	
 --check-prefix prefix

 	command line option

 	
 --check-prefixes prefix1,prefix2,...

 	command line option

 	
 --config-prefix=NAME

 	command line option

 	
 --debug

 	command line option

 	
 --debug-abbrev, --debug-aranges, --debug-cu-index, --debug-frame [=<offset>], --debug-gnu-pubnames, --debug-gnu-pubtypes, --debug-info [=<offset>], --debug-line [=<offset>], --debug-loc [=<offset>], --debug-macro, --debug-pubnames, --debug-pubtypes, --debug-ranges, --debug-str, --debug-str-offsets, --debug-tu-index, --debug-types, --eh-frame, --gdb-index, --apple-names, --apple-types, --apple-namespaces, --apple-objc

 	command line option

 	
 --debug-syms, -a

 	llvm-nm command line option

 	
 --defined-only

 	llvm-nm command line option

 	
 --diff

 	command line option

 	
 --disable-excess-fp-precision

 	command line option

 	
 --disable-fp-elim

 	command line option

 	
 --dump-debug-map

 	command line option

 	
 --dump-input-on-failure

 	command line option

 	
 --dynamic, -D

 	llvm-nm command line option

 	
 --enable-no-infs-fp-math

 	command line option

 	
 --enable-no-nans-fp-math

 	command line option

 	
 --enable-unsafe-fp-math

 	command line option

 	
 --enable-var-scope

 	command line option

 	
 --extern-only, -g

 	llvm-nm command line option

 	
 --filter=REGEXP

 	command line option

 	
 --format=format, -f format

 	llvm-nm command line option

 	
 --help

 	llvm-cov-gcov command line option

 	
 --implicit-check-not check-pattern

 	command line option

 	
 --input-file filename

 	command line option

 	
 --load=<dso_path>

 	command line option

 	
 --lookup=<address>

 	command line option

 	
 --match-full-lines

 	command line option

 	
 --max-tests=N

 	command line option

 	
 --max-time=N

 	command line option

 	
 --no-odr

 	command line option

 	
 --no-output

 	command line option

 	
 --no-progress-bar

 	command line option

 	
 --no-sort, -p

 	llvm-nm command line option

 	
 --no-swiftmodule-timestamp

 	command line option

 	
 --no-weak, -W

 	llvm-nm command line option

 	
 --num-shards=M

 	command line option

 	
 --numeric-sort, -n, -v

 	llvm-nm command line option

 	
 --oso-prepend-path=<path>

 	command line option

 	
 --papertrail

 	command line option

 	
 --path=PATH

 	command line option

 	
 --print-file-name, -A, -o

 	llvm-nm command line option

 	
 --print-machineinstrs

 	command line option

 	
 --print-size, -S

 	llvm-nm command line option

 	
 --radix=RADIX, -t

 	llvm-nm command line option

 	
 --regalloc=<allocator>

 	command line option

 	
 --run-shard=N

 	command line option

 	
 --show-suites

 	command line option

 	
 --show-tests

 	command line option

 	
 --show-unsupported

 	command line option

 	
 --show-xfail

 	command line option

 	
 --shuffle

 	command line option

 	
 --size-sort

 	llvm-nm command line option

 	
 --spiller=<spiller>

 	command line option

 	
 --statistics

 	command line option

 	
 --stats

 	command line option

 	
 --strict-whitespace

 	command line option

 	
 --time-passes

 	command line option

 	
 --time-tests

 	command line option

 	
 --toolchain

 	command line option

 	
 --undefined-only, -u

 	llvm-nm command line option

 	
 --verify

 	command line option

 	
 --version

 	command line option, [1]

 	
 --vg

 	command line option

 	
 --vg-arg=ARG

 	command line option

 	
 --vg-leak

 	command line option

 	
 --x86-asm-syntax=[att|intel]

 	command line option

 	
 -a, --all

 	command line option

 	
 -a, --all-blocks

 	llvm-cov-gcov command line option

 	
 -a, --show-all

 	command line option

 	
 -all

 	llvm-pdbutil-dump command line option

 	llvm-pdbutil-pretty command line option

 	
 -all-functions

 	llvm-profdata-show command line option

 	
 -all-stats

 	command line option

 	
 -all-views

 	command line option

 	
 -analysis-clusters-output-file=</path/to/file>

 	command line option

 	
 -analysis-espilon=<dbscan epsilon parameter>

 	command line option

 	
 -analysis-inconsistencies-output-file=</path/to/file>

 	command line option

 	
 -analysis-numpoints=<dbscan numPoints parameter>

 	command line option

 	
 -arch=<name>

 	llvm-cov-export command line option

 	llvm-cov-report command line option

 	
 -arch=[*NAMES*]

 	llvm-cov-show command line option

 	
 -asmparsernum N

 	tblgen command line option

 	
 -asmwriternum N

 	tblgen command line option

 	
 -B (default)

 	llvm-nm command line option

 	
 -b, --branch-probabilities

 	llvm-cov-gcov command line option

 	
 -benchmarks-file=</path/to/file>

 	command line option

 	
 -binary (default)

 	llvm-profdata-merge command line option

 	
 -block-range=<start[-end]>

 	llvm-pdbutil-bytes command line option

 	
 -byte-range=<start[-end]>

 	llvm-pdbutil-bytes command line option

 	
 -c, --branch-counts

 	llvm-cov-gcov command line option

 	
 -c, --show-children

 	command line option

 	
 -chunks

 	llvm-pdbutil-bytes command line option

 	
 -class className

 	tblgen command line option

 	
 -class-definitions=<format>

 	llvm-pdbutil-pretty command line option

 	
 -class-order

 	llvm-pdbutil-pretty command line option

 	
 -class-recurse-depth=<uint>

 	llvm-pdbutil-pretty command line option

 	
 -classes

 	llvm-pdbutil-pretty command line option

 	
 -code-model=model

 	command line option

 	
 -color-output

 	llvm-pdbutil-pretty command line option

 	
 -compilands

 	llvm-pdbutil-pretty command line option

 	
 -counts

 	llvm-profdata-show command line option

 	
 -d

 	command line option

 	
 -D NAME[=VALUE], --param NAME[=VALUE]

 	command line option

 	
 -D<VAR=VALUE>

 	command line option

 	
 -debug

 	command line option

 	
 -default-arch

 	command line option

 	
 -demangle

 	command line option

 	
 -dependents

 	llvm-pdbutil-dump command line option

 	
 -disable-excess-fp-precision

 	command line option

 	
 -disable-inlining

 	command line option

 	
 -disable-opt

 	command line option

 	
 -disable-post-RA-scheduler

 	command line option

 	
 -disable-spill-fusing

 	command line option

 	
 -dispatch-stats

 	command line option

 	
 -dispatch=<width>

 	command line option

 	
 -dsym-hint=<path/to/file.dSYM>

 	command line option

 	
 -dump

 	llvm-bcanalyzer command line option

 	
 -dump-json

 	tblgen command line option

 	
 -dyn-symbols

 	command line option

 	
 -dynamic-table

 	command line option

 	
 -ec

 	llvm-pdbutil-bytes command line option

 	
 -elf-section-groups, -g

 	command line option

 	
 -enable-no-infs-fp-math

 	command line option

 	
 -enable-no-nans-fp-math

 	command line option

 	
 -enable-unsafe-fp-math

 	command line option

 	
 -enums

 	llvm-pdbutil-pretty command line option

 	
 -exclude-compilands=<string>

 	llvm-pdbutil-pretty command line option

 	
 -exclude-symbols=<string>

 	llvm-pdbutil-pretty command line option

 	
 -exclude-types=<string>

 	llvm-pdbutil-pretty command line option

 	
 -expand-relocs

 	command line option

 	
 -externals

 	llvm-pdbutil-pretty command line option

 	
 -f

 	command line option, [1]

 	
 -f <name>, --find=<name>

 	command line option

 	
 -f, --flat

 	command line option

 	
 -f, --function-summaries

 	llvm-cov-gcov command line option

 	
 -F, --show-form

 	command line option

 	
 -fake-argv0=executable

 	command line option

 	
 -file-headers, -h

 	command line option

 	
 -files

 	llvm-pdbutil-bytes command line option

 	llvm-pdbutil-dump command line option

 	
 -filetype=<output file type>

 	command line option

 	
 -force-interpreter={false,true}

 	command line option

 	
 -format=<FORMAT>

 	llvm-cov-show command line option

 	
 -fpm

 	llvm-pdbutil-bytes command line option

 	
 -function=string

 	llvm-profdata-show command line option

 	
 -functions=[none|short|linkage]

 	command line option

 	
 -gcc

 	llvm-profdata-merge command line option

 	
 -gen-asm-matcher

 	tblgen command line option

 	
 -gen-asm-writer

 	tblgen command line option

 	
 -gen-dag-isel

 	tblgen command line option

 	
 -gen-dfa-packetizer

 	tblgen command line option

 	
 -gen-disassembler

 	tblgen command line option

 	
 -gen-emitter

 	tblgen command line option

 	
 -gen-enhanced-disassembly-info

 	tblgen command line option

 	
 -gen-fast-isel

 	tblgen command line option

 	
 -gen-instr-info

 	tblgen command line option

 	
 -gen-intrinsic-enums

 	tblgen command line option

 	
 -gen-intrinsic-impl

 	tblgen command line option

 	
 -gen-pseudo-lowering

 	tblgen command line option

 	
 -gen-register-info

 	tblgen command line option

 	
 -gen-subtarget

 	tblgen command line option

 	
 -gen-tgt-intrinsic

 	tblgen command line option

 	
 -global-extras

 	llvm-pdbutil-dump command line option

 	
 -globals

 	llvm-pdbutil-dump command line option

 	llvm-pdbutil-pretty command line option

 	
 -h, --help

 	command line option, [1]

 	
 -help

 	command line option, [1], [2], [3], [4], [5], [6], [7]

 	llvm-bcanalyzer command line option

 	llvm-nm command line option

 	llvm-profdata-merge command line option

 	llvm-profdata-show command line option

 	tblgen command line option

 	
 -I directory

 	tblgen command line option

 	
 -i, --ignore-case

 	command line option

 	
 -id-data

 	llvm-pdbutil-dump command line option

 	
 -id-extras

 	llvm-pdbutil-dump command line option

 	
 -id-index=<uint>

 	llvm-pdbutil-dump command line option

 	
 -id=<uint>

 	llvm-pdbutil-bytes command line option

 	
 -ids

 	llvm-pdbutil-dump command line option

 	
 -ignore-filename-regex=<PATTERN>

 	llvm-cov-export command line option

 	llvm-cov-report command line option

 	llvm-cov-show command line option

 	
 -ignore-invalid-sched-class=false

 	command line option

 	
 	
 -il

 	llvm-pdbutil-dump command line option

 	
 -include-compilands=<string>

 	llvm-pdbutil-pretty command line option

 	
 -include-symbols=<string>

 	llvm-pdbutil-pretty command line option

 	
 -include-types=<string>

 	llvm-pdbutil-pretty command line option

 	
 -inlining

 	command line option

 	
 -input-files=path, -f=path

 	llvm-profdata-merge command line option

 	
 -instr (default)

 	llvm-profdata-merge command line option

 	llvm-profdata-show command line option

 	
 -instruction-info

 	command line option

 	
 -instruction-tables

 	command line option

 	
 -iterations=<number of iterations>

 	command line option

 	
 -j <n>, --num-threads=<n>

 	command line option

 	
 -j N, --threads=N

 	command line option

 	
 -jit-enable-eh

 	command line option

 	
 -join-liveintervals

 	command line option

 	
 -l

 	llvm-pdbutil-dump command line option

 	
 -l, --long-file-names

 	llvm-cov-gcov command line option

 	
 -line-coverage-gt=<N>

 	llvm-cov-show command line option

 	
 -line-coverage-lt=<N>

 	llvm-cov-show command line option

 	
 -lines

 	llvm-pdbutil-pretty command line option

 	
 -load-address=<uint>

 	llvm-pdbutil-pretty command line option

 	
 -load=<plugin>

 	command line option

 	
 -load=pluginfilename

 	command line option

 	
 -lqueue=<load queue size>

 	command line option

 	
 -march=<arch>

 	command line option, [1]

 	
 -march=arch

 	command line option

 	
 -mattr=a1,+a2,-a3,...

 	command line option, [1]

 	
 -mcpu=<cpuname>

 	command line option, [1]

 	
 -mcpu=cpuname

 	command line option

 	
 -meabi=[default|gnu|4|5]

 	command line option

 	
 -memop-sizes

 	llvm-profdata-show command line option

 	
 -min-class-padding-imm=<uint>

 	llvm-pdbutil-pretty command line option

 	
 -min-class-padding=<uint>

 	llvm-pdbutil-pretty command line option

 	
 -min-type-size=<uint>

 	llvm-pdbutil-pretty command line option

 	
 -mod=<uint>

 	llvm-pdbutil-bytes command line option

 	
 -mode=[latency|uops|analysis]

 	command line option

 	
 -modi

 	llvm-pdbutil-bytes command line option

 	
 -modi=<uint>

 	llvm-pdbutil-dump command line option

 	
 -module-syms

 	llvm-pdbutil-pretty command line option

 	
 -modules

 	llvm-pdbutil-dump command line option

 	
 -mtriple=<target triple>

 	command line option, [1]

 	
 -mtriple=target triple

 	command line option

 	
 -n <pattern>, --name=<pattern>

 	command line option

 	
 -n, --no-output

 	llvm-cov-gcov command line option

 	
 -name-map

 	llvm-pdbutil-bytes command line option

 	
 -name-regex=<PATTERN>

 	llvm-cov-show command line option

 	
 -name-whitelist=<FILE>

 	llvm-cov-show command line option

 	
 -name=<NAME>

 	llvm-cov-show command line option

 	
 -needed-libs

 	command line option

 	
 -no-compiler-generated

 	llvm-pdbutil-pretty command line option

 	
 -no-enum-definitions

 	llvm-pdbutil-pretty command line option

 	
 -no-system-libs

 	llvm-pdbutil-pretty command line option

 	
 -noalias=<bool>

 	command line option

 	
 -nodetails

 	llvm-bcanalyzer command line option

 	
 -nozero-initialized-in-bss

 	command line option

 	
 -num-repetitions=<Number of repetition>

 	command line option

 	
 -num-threads=N, -j=N

 	llvm-cov-show command line option

 	llvm-profdata-merge command line option

 	
 -o <filename>

 	command line option, [1]

 	
 -o <path>, --out-file=<path>

 	command line option

 	
 -o filename

 	command line option, [1]

 	tblgen command line option

 	
 -o=<DIR|FILE>, --object-directory=<DIR>, --object-file=<FILE>

 	llvm-cov-gcov command line option

 	
 -O=uint

 	command line option

 	
 -obj

 	command line option

 	
 -opcode-index=<LLVM opcode index>

 	command line option

 	
 -opcode-name=<LLVM opcode name>

 	command line option

 	
 -output-asm-variant=<variant id>

 	command line option

 	
 -output-dir=PATH

 	llvm-cov-show command line option

 	
 -output=output, -o=output

 	llvm-profdata-merge command line option

 	llvm-profdata-show command line option

 	
 -P

 	llvm-nm command line option

 	
 -p

 	command line option

 	
 -p, --preserve-paths

 	llvm-cov-gcov command line option

 	
 -p, --show-parents

 	command line option

 	
 -path-equivalence=<from>,<to>

 	llvm-cov-show command line option

 	
 -pdb=<file-name>

 	llvm-pdbutil-merge command line option

 	llvm-pdbutil-yaml2pdb command line option

 	
 -pre-RA-sched=scheduler

 	command line option

 	
 -pretty-print

 	command line option

 	
 -print-address

 	command line option

 	
 -print-enums

 	tblgen command line option

 	
 -print-records

 	tblgen command line option

 	
 -print-sets

 	tblgen command line option

 	
 -program-headers

 	command line option

 	
 -public-extras

 	llvm-pdbutil-dump command line option

 	
 -publics

 	llvm-pdbutil-dump command line option

 	
 -q, --quiet

 	command line option

 	
 -r <n>, --recurse-depth=<n>

 	command line option

 	
 -regalloc=allocator

 	command line option

 	
 -region-coverage-gt=<N>

 	llvm-cov-show command line option

 	
 -region-coverage-lt=<N>

 	llvm-cov-show command line option

 	
 -register-file-size=<size>

 	command line option

 	
 -register-file-stats

 	command line option

 	
 -relocation-model=model

 	command line option

 	
 -relocations, -r

 	command line option

 	
 -resource-pressure

 	command line option

 	
 -retire-stats

 	command line option

 	
 -S

 	command line option, [1]

 	
 -s, --succinct

 	command line option

 	
 -s, --symtab

 	command line option

 	
 -sample

 	llvm-profdata-merge command line option

 	llvm-profdata-show command line option

 	
 -sc

 	llvm-pdbutil-bytes command line option

 	
 -scheduler-stats

 	command line option

 	
 -section-contribs

 	llvm-pdbutil-dump command line option

 	
 -section-data, -sd

 	command line option

 	
 -section-headers

 	llvm-pdbutil-dump command line option

 	
 -section-map

 	llvm-pdbutil-dump command line option

 	
 -section-relocations, -sr

 	command line option

 	
 -section-symbols, -st

 	command line option

 	
 -sections, -s

 	command line option

 	
 -seed seed

 	command line option

 	
 -show-expansions

 	llvm-cov-show command line option

 	
 -show-functions

 	llvm-cov-report command line option

 	
 -show-instantiation-summary

 	llvm-cov-report command line option

 	
 -show-instantiations

 	llvm-cov-show command line option

 	
 -show-line-counts

 	llvm-cov-show command line option

 	
 -show-line-counts-or-regions

 	llvm-cov-show command line option

 	
 -show-regions

 	llvm-cov-show command line option

 	
 -size size

 	command line option

 	
 -sm

 	llvm-pdbutil-bytes command line option

 	
 -soft-float

 	command line option

 	
 -sparse[=true|false]

 	llvm-profdata-merge command line option

 	
 -spiller

 	command line option

 	
 -split-chunks

 	llvm-pdbutil-bytes command line option

 	
 -squeue=<store queue size>

 	command line option

 	
 -stack-size-section

 	command line option

 	
 -stats

 	command line option, [1]

 	
 -stream-blocks

 	llvm-pdbutil-dump command line option

 	
 -stream-data=<string>

 	llvm-pdbutil-bytes command line option

 	
 -streams

 	llvm-pdbutil-dump command line option

 	
 -string-table

 	llvm-pdbutil-dump command line option

 	
 -strip-debug

 	command line option

 	
 -summary

 	llvm-pdbutil-dump command line option

 	
 -summary-only

 	llvm-cov-export command line option

 	
 -sym-data

 	llvm-pdbutil-dump command line option

 	
 -sym-types=<types>

 	llvm-pdbutil-pretty command line option

 	
 -symbol-order=<order>

 	llvm-pdbutil-pretty command line option

 	
 -symbols

 	llvm-pdbutil-dump command line option

 	
 -symbols, -t

 	command line option

 	
 -syms

 	llvm-pdbutil-bytes command line option

 	
 -tab-size=<TABSIZE>

 	llvm-cov-show command line option

 	
 -text

 	llvm-profdata-merge command line option

 	llvm-profdata-show command line option

 	
 -time-passes

 	command line option, [1]

 	
 -timeline

 	command line option

 	
 -timeline-max-cycles=<cycles>

 	command line option

 	
 -timeline-max-iterations=<iterations>

 	command line option

 	
 -topn=n

 	llvm-profdata-show command line option

 	
 -type-data

 	llvm-pdbutil-dump command line option

 	
 -type-extras

 	llvm-pdbutil-dump command line option

 	
 -type-index=<uint>

 	llvm-pdbutil-dump command line option

 	
 -type-server

 	llvm-pdbutil-bytes command line option

 	
 -type=<uint>

 	llvm-pdbutil-bytes command line option

 	
 -typedefs

 	llvm-pdbutil-pretty command line option

 	
 -types

 	llvm-pdbutil-dump command line option

 	llvm-pdbutil-pretty command line option

 	
 -u, --unconditional-branches

 	llvm-cov-gcov command line option

 	
 -u, --update

 	command line option

 	
 -u, --uuid

 	command line option

 	
 -unwind, -u

 	command line option

 	
 -use-color

 	llvm-cov-show command line option

 	
 -use-color[=VALUE]

 	llvm-cov-report command line option

 	
 -use-symbol-table

 	command line option

 	
 -v

 	command line option, [1]

 	
 -v, --verbose

 	command line option, [1], [2]

 	
 -verify

 	llvm-bcanalyzer command line option

 	
 -verify-each

 	command line option

 	
 -version

 	command line option, [1], [2]

 	llvm-cov-gcov command line option

 	tblgen command line option

 	
 -vv

 	command line option

 	
 -vv, --echo-all-commands

 	command line option

 	
 -weighted-input=weight,filename

 	llvm-profdata-merge command line option

 	
 -x, --regex

 	command line option

 	
 -x86-asm-syntax=syntax

 	command line option

 	
 -Xdemangler=<TOOL>|<TOOL-OPTION>

 	llvm-cov-show command line option

 	
 -xme

 	llvm-pdbutil-dump command line option

 	
 -xmi

 	llvm-pdbutil-dump command line option

 	
 -y

 	command line option

 	
 -z, --minimize

 	command line option

 	
 -{passname}

 	command line option

C

 	
 	
 command line option

 	--allow-deprecated-dag-overlap

 	--arch=<arch>, [1]

 	--check-prefix prefix

 	--check-prefixes prefix1,prefix2,...

 	--config-prefix=NAME

 	--debug

 	--debug-abbrev, --debug-aranges, --debug-cu-index, --debug-frame [=<offset>], --debug-gnu-pubnames, --debug-gnu-pubtypes, --debug-info [=<offset>], --debug-line [=<offset>], --debug-loc [=<offset>], --debug-macro, --debug-pubnames, --debug-pubtypes, --debug-ranges, --debug-str, --debug-str-offsets, --debug-tu-index, --debug-types, --eh-frame, --gdb-index, --apple-names, --apple-types, --apple-namespaces, --apple-objc

 	--diff

 	--disable-excess-fp-precision

 	--disable-fp-elim

 	--dump-debug-map

 	--dump-input-on-failure

 	--enable-no-infs-fp-math

 	--enable-no-nans-fp-math

 	--enable-unsafe-fp-math

 	--enable-var-scope

 	--filter=REGEXP

 	--implicit-check-not check-pattern

 	--input-file filename

 	--load=<dso_path>

 	--lookup=<address>

 	--match-full-lines

 	--max-tests=N

 	--max-time=N

 	--no-odr

 	--no-output

 	--no-progress-bar

 	--no-swiftmodule-timestamp

 	--num-shards=M

 	--oso-prepend-path=<path>

 	--papertrail

 	--path=PATH

 	--print-machineinstrs

 	--regalloc=<allocator>

 	--run-shard=N

 	--show-suites

 	--show-tests

 	--show-unsupported

 	--show-xfail

 	--shuffle

 	--spiller=<spiller>

 	--statistics

 	--stats

 	--strict-whitespace

 	--time-passes

 	--time-tests

 	--toolchain

 	--verify

 	--version, [1]

 	--vg

 	--vg-arg=ARG

 	--vg-leak

 	--x86-asm-syntax=[att|intel]

 	-D NAME[=VALUE], --param NAME[=VALUE]

 	-D<VAR=VALUE>

 	-F, --show-form

 	-O=uint

 	-S, [1]

 	-a, --all

 	-a, --show-all

 	-all-stats

 	-all-views

 	-analysis-clusters-output-file=</path/to/file>

 	-analysis-espilon=<dbscan epsilon parameter>

 	-analysis-inconsistencies-output-file=</path/to/file>

 	-analysis-numpoints=<dbscan numPoints parameter>

 	-benchmarks-file=</path/to/file>

 	-c, --show-children

 	-code-model=model

 	-d

 	-debug

 	-default-arch

 	-demangle

 	-disable-excess-fp-precision

 	-disable-inlining

 	-disable-opt

 	-disable-post-RA-scheduler

 	-disable-spill-fusing

 	-dispatch-stats

 	-dispatch=<width>

 	-dsym-hint=<path/to/file.dSYM>

 	-dyn-symbols

 	-dynamic-table

 	-elf-section-groups, -g

 	-enable-no-infs-fp-math

 	-enable-no-nans-fp-math

 	-enable-unsafe-fp-math

 	-expand-relocs

 	-f, [1]

 	-f <name>, --find=<name>

 	-f, --flat

 	-fake-argv0=executable

 	-file-headers, -h

 	-filetype=<output file type>

 	-force-interpreter={false,true}

 	-functions=[none|short|linkage]

 	-h, --help, [1]

 	-help, [1], [2], [3], [4], [5], [6], [7]

 	-i, --ignore-case

 	-ignore-invalid-sched-class=false

 	-inlining

 	-instruction-info

 	-instruction-tables

 	-iterations=<number of iterations>

 	-j <n>, --num-threads=<n>

 	-j N, --threads=N

 	-jit-enable-eh

 	-join-liveintervals

 	-load=<plugin>

 	-load=pluginfilename

 	-lqueue=<load queue size>

 	-march=<arch>, [1]

 	-march=arch

 	-mattr=a1,+a2,-a3,..., [1]

 	-mcpu=<cpuname>, [1]

 	-mcpu=cpuname

 	-meabi=[default|gnu|4|5]

 	-mode=[latency|uops|analysis]

 	-mtriple=<target triple>, [1]

 	-mtriple=target triple

 	-n <pattern>, --name=<pattern>

 	-needed-libs

 	-noalias=<bool>

 	-nozero-initialized-in-bss

 	-num-repetitions=<Number of repetition>

 	-o <filename>, [1]

 	-o <path>, --out-file=<path>

 	-o filename, [1]

 	-obj

 	-opcode-index=<LLVM opcode index>

 	-opcode-name=<LLVM opcode name>

 	-output-asm-variant=<variant id>

 	-p

 	-p, --show-parents

 	-pre-RA-sched=scheduler

 	-pretty-print

 	-print-address

 	-program-headers

 	-q, --quiet

 	-r <n>, --recurse-depth=<n>

 	-regalloc=allocator

 	-register-file-size=<size>

 	-register-file-stats

 	-relocation-model=model

 	-relocations, -r

 	-resource-pressure

 	-retire-stats

 	-s, --succinct

 	-s, --symtab

 	-scheduler-stats

 	-section-data, -sd

 	-section-relocations, -sr

 	-section-symbols, -st

 	-sections, -s

 	-seed seed

 	-size size

 	-soft-float

 	-spiller

 	-squeue=<store queue size>

 	-stack-size-section

 	-stats, [1]

 	-strip-debug

 	-symbols, -t

 	-time-passes, [1]

 	-timeline

 	-timeline-max-cycles=<cycles>

 	-timeline-max-iterations=<iterations>

 	-u, --update

 	-u, --uuid

 	-unwind, -u

 	-use-symbol-table

 	-v, [1]

 	-v, --verbose, [1], [2]

 	-verify-each

 	-version, [1], [2]

 	-vv

 	-vv, --echo-all-commands

 	-x, --regex

 	-x86-asm-syntax=syntax

 	-y

 	-z, --minimize

 	-{passname}

L

 	
 	
 llvm-bcanalyzer command line option

 	-dump

 	-help

 	-nodetails

 	-verify

 	
 llvm-cov-export command line option

 	-arch=<name>

 	-ignore-filename-regex=<PATTERN>

 	-summary-only

 	
 llvm-cov-gcov command line option

 	--help

 	-a, --all-blocks

 	-b, --branch-probabilities

 	-c, --branch-counts

 	-f, --function-summaries

 	-l, --long-file-names

 	-n, --no-output

 	-o=<DIR|FILE>, --object-directory=<DIR>, --object-file=<FILE>

 	-p, --preserve-paths

 	-u, --unconditional-branches

 	-version

 	
 llvm-cov-report command line option

 	-arch=<name>

 	-ignore-filename-regex=<PATTERN>

 	-show-functions

 	-show-instantiation-summary

 	-use-color[=VALUE]

 	
 llvm-cov-show command line option

 	-Xdemangler=<TOOL>|<TOOL-OPTION>

 	-arch=[*NAMES*]

 	-format=<FORMAT>

 	-ignore-filename-regex=<PATTERN>

 	-line-coverage-gt=<N>

 	-line-coverage-lt=<N>

 	-name-regex=<PATTERN>

 	-name-whitelist=<FILE>

 	-name=<NAME>

 	-num-threads=N, -j=N

 	-output-dir=PATH

 	-path-equivalence=<from>,<to>

 	-region-coverage-gt=<N>

 	-region-coverage-lt=<N>

 	-show-expansions

 	-show-instantiations

 	-show-line-counts

 	-show-line-counts-or-regions

 	-show-regions

 	-tab-size=<TABSIZE>

 	-use-color

 	
 llvm-nm command line option

 	--debug-syms, -a

 	--defined-only

 	--dynamic, -D

 	--extern-only, -g

 	--format=format, -f format

 	--no-sort, -p

 	--no-weak, -W

 	--numeric-sort, -n, -v

 	--print-file-name, -A, -o

 	--print-size, -S

 	--radix=RADIX, -t

 	--size-sort

 	--undefined-only, -u

 	-B (default)

 	-P

 	-help

 	
 llvm-pdbutil-bytes command line option

 	-block-range=<start[-end]>

 	-byte-range=<start[-end]>

 	-chunks

 	-ec

 	-files

 	-fpm

 	-id=<uint>

 	-mod=<uint>

 	-modi

 	-name-map

 	-sc

 	-sm

 	-split-chunks

 	-stream-data=<string>

 	-syms

 	-type-server

 	-type=<uint>

 	
 llvm-pdbutil-dump command line option

 	-all

 	-dependents

 	-files

 	-global-extras

 	-globals

 	-id-data

 	-id-extras

 	-id-index=<uint>

 	-ids

 	-il

 	-l

 	-modi=<uint>

 	-modules

 	-public-extras

 	-publics

 	-section-contribs

 	-section-headers

 	-section-map

 	-stream-blocks

 	-streams

 	-string-table

 	-summary

 	-sym-data

 	-symbols

 	-type-data

 	-type-extras

 	-type-index=<uint>

 	-types

 	-xme

 	-xmi

 	
 	
 llvm-pdbutil-merge command line option

 	-pdb=<file-name>

 	
 llvm-pdbutil-pretty command line option

 	-all

 	-class-definitions=<format>

 	-class-order

 	-class-recurse-depth=<uint>

 	-classes

 	-color-output

 	-compilands

 	-enums

 	-exclude-compilands=<string>

 	-exclude-symbols=<string>

 	-exclude-types=<string>

 	-externals

 	-globals

 	-include-compilands=<string>

 	-include-symbols=<string>

 	-include-types=<string>

 	-lines

 	-load-address=<uint>

 	-min-class-padding-imm=<uint>

 	-min-class-padding=<uint>

 	-min-type-size=<uint>

 	-module-syms

 	-no-compiler-generated

 	-no-enum-definitions

 	-no-system-libs

 	-sym-types=<types>

 	-symbol-order=<order>

 	-typedefs

 	-types

 	
 llvm-pdbutil-yaml2pdb command line option

 	-pdb=<file-name>

 	
 llvm-profdata-merge command line option

 	-binary (default)

 	-gcc

 	-help

 	-input-files=path, -f=path

 	-instr (default)

 	-num-threads=N, -j=N

 	-output=output, -o=output

 	-sample

 	-sparse[=true|false]

 	-text

 	-weighted-input=weight,filename

 	
 llvm-profdata-show command line option

 	-all-functions

 	-counts

 	-function=string

 	-help

 	-instr (default)

 	-memop-sizes

 	-output=output, -o=output

 	-sample

 	-text

 	-topn=n

T

 	
 	
 tblgen command line option

 	-I directory

 	-asmparsernum N

 	-asmwriternum N

 	-class className

 	-dump-json

 	-gen-asm-matcher

 	-gen-asm-writer

 	-gen-dag-isel

 	-gen-dfa-packetizer

 	-gen-disassembler

 	-gen-emitter

 	-gen-enhanced-disassembly-info

 	-gen-fast-isel

 	-gen-instr-info

 	-gen-intrinsic-enums

 	-gen-intrinsic-impl

 	-gen-pseudo-lowering

 	-gen-register-info

 	-gen-subtarget

 	-gen-tgt-intrinsic

 	-help

 	-o filename

 	-print-enums

 	-print-records

 	-print-sets

 	-version

_images/MCJIT-load-object.png
RuntimeDyldmp:IoadObject{Bufer)

v

ob)= CreateObjectimage(auter)

for each symibol

t0ELF or MachO information

[mmww,nmu. PR—

lsthisa
symbor?

¥

A 0 the common
symbols vector

ind or et the section (ozded.
memary) fo tis symbol

i

‘70 it 0 the loca and global symbol

vectors

Emit common symbal
memary

Tor each section

or each
Teocation i this

processhelocationfe)

_images/MCJIT-resolve-relocations.png
RuntimeDyldmpl:esobveRelocations()

foreach

external symiol
elocation
it

fethisan
absolute
ceocation,

resolveRelocationtsirelocs, 0

Askthe memory manager for the symbol

address

¥

resolveRelocationlsirelocs, add)

 esch section
elocation st

resoheRelocationsstirelocs,
Secton Loadadcress)

_images/MCJIT-load.png
Runtimeoyld
Modue RTOyidMemoryManager Torgethachine e
%
Objectuter |- — — — — — —
retumed by
emitObect)
loadObject..)
o

_images/linpack-pc.png
MFilops

10000

7500

5000

2500

Linpack-pc

moccaT

micc3

™ clang

Clang._No Vac

#200

#400

Array Size

_images/gcc-loops.png
lime (msec)

800

600

400

200

0

GCC-loops

Wocc47 MICC-13 M Clang M Clang - No Vec

PP P O e P o A P 0" o df"&““

_images/speculative_load_hardening_microbenchmarks.png
+10000000%

+1000000%

+100000%

+10000%

+1000%

+125%
+40%
-10%

Distribution of metric averages in exp. run, relative to baseline (geomean 2.501)

-

E-P--F--p@=83TH

me.

_images/llvm-exegesis-analysis.png
Sched Class EXTRACTPSrr_VEXTRACTPSrr contains instructions with distinct performance characteristics, falling into 2 clusters:

ClusteridOpcode/Config]iatency|
3 VEXTRACTPSrr | 2.01
4 exTRaCTPSFT | 3.00
llvm data:

|Valid|Variant|uOps|Latency WriteProcRes

2 BWPorte: 1
BWPorts: 1

v | x 2

_static/ajax-loader.gif

_images/MCJIT-engine-builder.png
Mode

passed o construcor

EngineBuler

—reates—

Targetachine

ViasetMCThemoryManager

RTDyidMemoryManager

_images/MCJIT-dyld-load.png
Mo

f———oadobject.)——»

Runtimeoyld

Objecufer

sy RTDYdMemoryManager
[l
I
new, ——————— !
b — — loadobist(.)
Secton based
v Relocatons
RuntimeDyldimpl
65 or Macho}
Extermal
Symibol Relocatons
rewms

Objectimage

_images/ARM-BE-bitcastsuccess.png
address x+0 X+12

s

LD1 v0.s32, [x]
bit ©

REV64 v0.s32, [x]

XB%I?

sr1 v, 12 I W]

address y+0 vi12

_images/ARM-BE-bitcastfail.png
address x+0 X+4 X+8 X+12

LD1 v0.s32, [x]
bit © 32 64 9

ST1 v@.s64, [x]
address y+0 a4 v+8 y+12

_images/ARM-BE-ldr.png
address x+0

DR Q0, [x]

bit 0

S

_images/ARM-BE-ld1.png
address x+0 X+4 X+8 X+12

o1 vo.uzz, 0 [T T [[T

bit o 32 64 96
L)) W S —)
lane 0 Lane 1 Lane 2 Lane 3

_images/MCJIT-creation.png
Modue

RTOyidMemoryManager

Torgethachine

x

EngineBuider

ets pointer 1

[MoreatemonT.. >

MO aemember—]

Runtimeoyld
(wrapper)

_images/LangImpl05-cfg.png
eniry
ifcond = femp one double %x, 0.000000e+00
bril %ifcond, label %then, label %else

T F

/ \

then! else:
Gcalltmp = call double @foo() | | Scalltmpl = call double @bar()
br label ifcont br label ifcont

N 7

phi double [%calltmp, %then . [%calltmpl, Selse |
ret double %0

‘CFG for 'baz function

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/comment-close.png

_static/down.png

_static/down-pressed.png

_st