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The LLVM compiler infrastructure supports a wide range of projects, from industrial strength compilers to specialized
JIT applications to small research projects.

Similarly, documentation is broken down into several high-level groupings targeted at different audiences:

Contents 1
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2 Contents



CHAPTER 1

LLVM Design & Overview

Several introductory papers and presentations.

LLVM Language Reference Manual

• Abstract

• Introduction

– Well-Formedness

• Identifiers

• High Level Structure

– Module Structure

– Linkage Types

– Calling Conventions

– Visibility Styles

– DLL Storage Classes

– Thread Local Storage Models

– Structure Types

– Global Variables

– Functions

– Aliases

– IFuncs

3
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– Comdats

– Named Metadata

– Parameter Attributes

– Garbage Collector Strategy Names

– Prefix Data

– Prologue Data

– Personality Function

– Attribute Groups

– Function Attributes

– Operand Bundles

* Deoptimization Operand Bundles

* Funclet Operand Bundles

* GC Transition Operand Bundles

– Module-Level Inline Assembly

– Data Layout

– Target Triple

– Pointer Aliasing Rules

– Volatile Memory Accesses

– Memory Model for Concurrent Operations

– Atomic Memory Ordering Constraints

– Fast-Math Flags

– Use-list Order Directives

– Source Filename

• Type System

– Void Type

– Function Type

– First Class Types

* Single Value Types

· Integer Type

· Floating Point Types

· X86_mmx Type

· Pointer Type

· Vector Type

* Label Type

* Token Type

4 Chapter 1. LLVM Design & Overview
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* Metadata Type

* Aggregate Types

· Array Type

· Structure Type

· Opaque Structure Types

• Constants

– Simple Constants

– Complex Constants

– Global Variable and Function Addresses

– Undefined Values

– Poison Values

– Addresses of Basic Blocks

– Constant Expressions

• Other Values

– Inline Assembler Expressions

* Inline Asm Constraint String

· Output constraints

· Input constraints

· Indirect inputs and outputs

· Clobber constraints

· Constraint Codes

· Supported Constraint Code List

* Asm template argument modifiers

* Inline Asm Metadata

• Metadata

– Metadata Nodes and Metadata Strings

* Specialized Metadata Nodes

· DICompileUnit

· DIFile

· DIBasicType

· DISubroutineType

· DIDerivedType

· DICompositeType

· DISubrange

· DIEnumerator

1.1. LLVM Language Reference Manual 5
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· DITemplateTypeParameter

· DITemplateValueParameter

· DINamespace

· DIGlobalVariable

· DISubprogram

· DILexicalBlock

· DILexicalBlockFile

· DILocation

· DILocalVariable

· DIExpression

· DIObjCProperty

· DIImportedEntity

· DIMacro

· DIMacroFile

* ‘tbaa‘ Metadata

* ‘tbaa.struct‘ Metadata

* ‘noalias‘ and ‘alias.scope‘ Metadata

* ‘fpmath‘ Metadata

* ‘range‘ Metadata

* ‘unpredictable‘ Metadata

* ‘llvm.loop‘

* ‘llvm.loop.vectorize‘ and ‘llvm.loop.interleave‘

* ‘llvm.loop.interleave.count‘ Metadata

* ‘llvm.loop.vectorize.enable‘ Metadata

* ‘llvm.loop.vectorize.width‘ Metadata

* ‘llvm.loop.unroll‘

* ‘llvm.loop.unroll.count‘ Metadata

* ‘llvm.loop.unroll.disable‘ Metadata

* ‘llvm.loop.unroll.runtime.disable‘ Metadata

* ‘llvm.loop.unroll.enable‘ Metadata

* ‘llvm.loop.unroll.full‘ Metadata

* ‘llvm.loop.licm_versioning.disable‘ Metadata

* ‘llvm.loop.distribute.enable‘ Metadata

* ‘llvm.mem‘

* ‘llvm.mem.parallel_loop_access‘ Metadata

6 Chapter 1. LLVM Design & Overview
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* ‘invariant.group‘ Metadata

• Module Flags Metadata

– Objective-C Garbage Collection Module Flags Metadata

– Automatic Linker Flags Module Flags Metadata

– C type width Module Flags Metadata

• Intrinsic Global Variables

– The ‘llvm.used‘ Global Variable

– The ‘llvm.compiler.used‘ Global Variable

– The ‘llvm.global_ctors‘ Global Variable

– The ‘llvm.global_dtors‘ Global Variable

• Instruction Reference

– Terminator Instructions

* ‘ret‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

* ‘br‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

* ‘switch‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Implementation:

· Example:

* ‘indirectbr‘ Instruction

· Syntax:

· Overview:

· Arguments:

1.1. LLVM Language Reference Manual 7
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· Semantics:

· Implementation:

· Example:

* ‘invoke‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

* ‘resume‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

* ‘catchswitch‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

* ‘catchret‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

* ‘cleanupret‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

* ‘unreachable‘ Instruction

· Syntax:

8 Chapter 1. LLVM Design & Overview
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· Overview:

· Semantics:

– Binary Operations

* ‘add‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

* ‘fadd‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

* ‘sub‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

* ‘fsub‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

* ‘mul‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

* ‘fmul‘ Instruction

· Syntax:

1.1. LLVM Language Reference Manual 9
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· Overview:

· Arguments:

· Semantics:

· Example:

* ‘udiv‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

* ‘sdiv‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

* ‘fdiv‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

* ‘urem‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

* ‘srem‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

* ‘frem‘ Instruction

10 Chapter 1. LLVM Design & Overview
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· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

– Bitwise Binary Operations

* ‘shl‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

* ‘lshr‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

* ‘ashr‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

* ‘and‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

* ‘or‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

1.1. LLVM Language Reference Manual 11
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· Example:

* ‘xor‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

– Vector Operations

* ‘extractelement‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

* ‘insertelement‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

* ‘shufflevector‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

– Aggregate Operations

* ‘extractvalue‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

* ‘insertvalue‘ Instruction

· Syntax:

12 Chapter 1. LLVM Design & Overview
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· Overview:

· Arguments:

· Semantics:

· Example:

– Memory Access and Addressing Operations

* ‘alloca‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

* ‘load‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Examples:

* ‘store‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

* ‘fence‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

* ‘cmpxchg‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

1.1. LLVM Language Reference Manual 13



LLVM Documentation, Release 3.9

* ‘atomicrmw‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

* ‘getelementptr‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

· Vector of pointers:

– Conversion Operations

* ‘trunc .. to‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

* ‘zext .. to‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

* ‘sext .. to‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

* ‘fptrunc .. to‘ Instruction

· Syntax:

· Overview:

14 Chapter 1. LLVM Design & Overview
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· Arguments:

· Semantics:

· Example:

* ‘fpext .. to‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

* ‘fptoui .. to‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

* ‘fptosi .. to‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

* ‘uitofp .. to‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

* ‘sitofp .. to‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

* ‘ptrtoint .. to‘ Instruction

· Syntax:

1.1. LLVM Language Reference Manual 15
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· Overview:

· Arguments:

· Semantics:

· Example:

* ‘inttoptr .. to‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

* ‘bitcast .. to‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

* ‘addrspacecast .. to‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

– Other Operations

* ‘icmp‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

* ‘fcmp‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

16 Chapter 1. LLVM Design & Overview
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* ‘phi‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

* ‘select‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

* ‘call‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

* ‘va_arg‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

* ‘landingpad‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

* ‘catchpad‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

1.1. LLVM Language Reference Manual 17
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· Example:

* ‘cleanuppad‘ Instruction

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Example:

• Intrinsic Functions

– Variable Argument Handling Intrinsics

* ‘llvm.va_start‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

* ‘llvm.va_end‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

* ‘llvm.va_copy‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

– Accurate Garbage Collection Intrinsics

* Experimental Statepoint Intrinsics

* ‘llvm.gcroot‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

* ‘llvm.gcread‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

18 Chapter 1. LLVM Design & Overview
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· Semantics:

* ‘llvm.gcwrite‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

– Code Generator Intrinsics

* ‘llvm.returnaddress‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

* ‘llvm.frameaddress‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

* ‘llvm.localescape‘ and ‘llvm.localrecover‘ Intrinsics

· Syntax:

· Overview:

· Arguments:

· Semantics:

* ‘llvm.read_register‘ and ‘llvm.write_register‘ Intrinsics

· Syntax:

· Overview:

· Semantics:

* ‘llvm.stacksave‘ Intrinsic

· Syntax:

· Overview:

· Semantics:

* ‘llvm.stackrestore‘ Intrinsic

· Syntax:

· Overview:

· Semantics:

* ‘llvm.get.dynamic.area.offset‘ Intrinsic
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· Syntax:

· Semantics:

* ‘llvm.prefetch‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

* ‘llvm.pcmarker‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

* ‘llvm.readcyclecounter‘ Intrinsic

· Syntax:

· Overview:

· Semantics:

* ‘llvm.clear_cache‘ Intrinsic

· Syntax:

· Overview:

· Semantics:

* ‘llvm.instrprof_increment‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

* ‘llvm.instrprof_value_profile‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

* ‘llvm.thread.pointer‘ Intrinsic

· Syntax:

· Overview:

· Semantics:

– Standard C Library Intrinsics
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* ‘llvm.memcpy‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

* ‘llvm.memmove‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

* ‘llvm.memset.*‘ Intrinsics

· Syntax:

· Overview:

· Arguments:

· Semantics:

* ‘llvm.sqrt.*‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

* ‘llvm.powi.*‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

* ‘llvm.sin.*‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

* ‘llvm.cos.*‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:
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* ‘llvm.pow.*‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

* ‘llvm.exp.*‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

* ‘llvm.exp2.*‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

* ‘llvm.log.*‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

* ‘llvm.log10.*‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

* ‘llvm.log2.*‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

* ‘llvm.fma.*‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:
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* ‘llvm.fabs.*‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

* ‘llvm.minnum.*‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

* ‘llvm.maxnum.*‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

* ‘llvm.copysign.*‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

* ‘llvm.floor.*‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

* ‘llvm.ceil.*‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

* ‘llvm.trunc.*‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:
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* ‘llvm.rint.*‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

* ‘llvm.nearbyint.*‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

* ‘llvm.round.*‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

– Bit Manipulation Intrinsics

* ‘llvm.bitreverse.*‘ Intrinsics

· Syntax:

· Overview:

· Semantics:

* ‘llvm.bswap.*‘ Intrinsics

· Syntax:

· Overview:

· Semantics:

* ‘llvm.ctpop.*‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

* ‘llvm.ctlz.*‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

* ‘llvm.cttz.*‘ Intrinsic
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· Syntax:

· Overview:

· Arguments:

· Semantics:

– Arithmetic with Overflow Intrinsics

* ‘llvm.sadd.with.overflow.*‘ Intrinsics

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Examples:

* ‘llvm.uadd.with.overflow.*‘ Intrinsics

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Examples:

* ‘llvm.ssub.with.overflow.*‘ Intrinsics

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Examples:

* ‘llvm.usub.with.overflow.*‘ Intrinsics

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Examples:

* ‘llvm.smul.with.overflow.*‘ Intrinsics

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Examples:
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* ‘llvm.umul.with.overflow.*‘ Intrinsics

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Examples:

– Specialised Arithmetic Intrinsics

* ‘llvm.canonicalize.*‘ Intrinsic

· Syntax:

· Overview:

* ‘llvm.fmuladd.*‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Examples:

– Half Precision Floating Point Intrinsics

* ‘llvm.convert.to.fp16‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Examples:

* ‘llvm.convert.from.fp16‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Examples:

– Debugger Intrinsics

– Exception Handling Intrinsics

– Trampoline Intrinsics

* ‘llvm.init.trampoline‘ Intrinsic

· Syntax:

· Overview:
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· Arguments:

· Semantics:

* ‘llvm.adjust.trampoline‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

– Masked Vector Load and Store Intrinsics

* ‘llvm.masked.load.*‘ Intrinsics

· Syntax:

· Overview:

· Arguments:

· Semantics:

* ‘llvm.masked.store.*‘ Intrinsics

· Syntax:

· Overview:

· Arguments:

· Semantics:

– Masked Vector Gather and Scatter Intrinsics

* ‘llvm.masked.gather.*‘ Intrinsics

· Syntax:

· Overview:

· Arguments:

· Semantics:

* ‘llvm.masked.scatter.*‘ Intrinsics

· Syntax:

· Overview:

· Arguments:

· Semantics:

– Memory Use Markers

* ‘llvm.lifetime.start‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:
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* ‘llvm.lifetime.end‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

* ‘llvm.invariant.start‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

* ‘llvm.invariant.end‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

* ‘llvm.invariant.group.barrier‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

– General Intrinsics

* ‘llvm.var.annotation‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

* ‘llvm.ptr.annotation.*‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

* ‘llvm.annotation.*‘ Intrinsic

· Syntax:

· Overview:

· Arguments:
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· Semantics:

* ‘llvm.trap‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

* ‘llvm.debugtrap‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

* ‘llvm.stackprotector‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

* ‘llvm.stackguard‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

* ‘llvm.objectsize‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

* ‘llvm.expect‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

* ‘llvm.assume‘ Intrinsic

· Syntax:

· Overview:

· Arguments:
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· Semantics:

* ‘llvm.type.test‘ Intrinsic

· Syntax:

· Arguments:

· Overview:

* ‘llvm.type.checked.load‘ Intrinsic

· Syntax:

· Arguments:

· Overview:

* ‘llvm.donothing‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

* ‘llvm.experimental.deoptimize‘ Intrinsic

· Syntax:

· Overview:

· Arguments:

· Semantics:

· Lowering:

* ‘llvm.experimental.guard‘ Intrinsic

· Syntax:

· Overview:

* ‘llvm.load.relative‘ Intrinsic

· Syntax:

· Overview:

– Stack Map Intrinsics

Abstract

This document is a reference manual for the LLVM assembly language. LLVM is a Static Single Assignment (SSA)
based representation that provides type safety, low-level operations, flexibility, and the capability of representing
‘all’ high-level languages cleanly. It is the common code representation used throughout all phases of the LLVM
compilation strategy.
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Introduction

The LLVM code representation is designed to be used in three different forms: as an in-memory compiler IR, as an on-
disk bitcode representation (suitable for fast loading by a Just-In-Time compiler), and as a human readable assembly
language representation. This allows LLVM to provide a powerful intermediate representation for efficient compiler
transformations and analysis, while providing a natural means to debug and visualize the transformations. The three
different forms of LLVM are all equivalent. This document describes the human readable representation and notation.

The LLVM representation aims to be light-weight and low-level while being expressive, typed, and extensible at the
same time. It aims to be a “universal IR” of sorts, by being at a low enough level that high-level ideas may be cleanly
mapped to it (similar to how microprocessors are “universal IR’s”, allowing many source languages to be mapped to
them). By providing type information, LLVM can be used as the target of optimizations: for example, through pointer
analysis, it can be proven that a C automatic variable is never accessed outside of the current function, allowing it to
be promoted to a simple SSA value instead of a memory location.

Well-Formedness

It is important to note that this document describes ‘well formed’ LLVM assembly language. There is a difference
between what the parser accepts and what is considered ‘well formed’. For example, the following instruction is
syntactically okay, but not well formed:

%x = add i32 1, %x

because the definition of %x does not dominate all of its uses. The LLVM infrastructure provides a verification pass
that may be used to verify that an LLVM module is well formed. This pass is automatically run by the parser after
parsing input assembly and by the optimizer before it outputs bitcode. The violations pointed out by the verifier pass
indicate bugs in transformation passes or input to the parser.

Identifiers

LLVM identifiers come in two basic types: global and local. Global identifiers (functions, global variables) begin with
the '@' character. Local identifiers (register names, types) begin with the '%' character. Additionally, there are three
different formats for identifiers, for different purposes:

1. Named values are represented as a string of characters with their prefix. For example, %foo,
@DivisionByZero, %a.really.long.identifier. The actual regular expression used is
‘[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*‘. Identifiers that require other characters in their names can
be surrounded with quotes. Special characters may be escaped using "\xx" where xx is the ASCII code for
the character in hexadecimal. In this way, any character can be used in a name value, even quotes themselves.
The "\01" prefix can be used on global variables to suppress mangling.

2. Unnamed values are represented as an unsigned numeric value with their prefix. For example, %12, @2, %44.

3. Constants, which are described in the section Constants below.

LLVM requires that values start with a prefix for two reasons: Compilers don’t need to worry about name clashes
with reserved words, and the set of reserved words may be expanded in the future without penalty. Additionally,
unnamed identifiers allow a compiler to quickly come up with a temporary variable without having to avoid symbol
table conflicts.

Reserved words in LLVM are very similar to reserved words in other languages. There are keywords for different
opcodes (‘add‘, ‘bitcast‘, ‘ret‘, etc...), for primitive type names (‘void‘, ‘i32‘, etc...), and others. These
reserved words cannot conflict with variable names, because none of them start with a prefix character ('%' or '@').

Here is an example of LLVM code to multiply the integer variable ‘%X‘ by 8:

The easy way:

1.1. LLVM Language Reference Manual 31



LLVM Documentation, Release 3.9

%result = mul i32 %X, 8

After strength reduction:

%result = shl i32 %X, 3

And the hard way:

%0 = add i32 %X, %X ; yields i32:%0
%1 = add i32 %0, %0 ; yields i32:%1
%result = add i32 %1, %1

This last way of multiplying %X by 8 illustrates several important lexical features of LLVM:

1. Comments are delimited with a ‘;‘ and go until the end of line.

2. Unnamed temporaries are created when the result of a computation is not assigned to a named value.

3. Unnamed temporaries are numbered sequentially (using a per-function incrementing counter, starting with 0).
Note that basic blocks and unnamed function parameters are included in this numbering. For example, if the
entry basic block is not given a label name and all function parameters are named, then it will get number 0.

It also shows a convention that we follow in this document. When demonstrating instructions, we will follow an
instruction with a comment that defines the type and name of value produced.

High Level Structure

Module Structure

LLVM programs are composed of Module‘s, each of which is a translation unit of the input programs. Each module
consists of functions, global variables, and symbol table entries. Modules may be combined together with the LLVM
linker, which merges function (and global variable) definitions, resolves forward declarations, and merges symbol
table entries. Here is an example of the “hello world” module:

; Declare the string constant as a global constant.
@.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"

; External declaration of the puts function
declare i32 @puts(i8* nocapture) nounwind

; Definition of main function
define i32 @main() { ; i32()*

; Convert [13 x i8]* to i8 *...
%cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0

; Call puts function to write out the string to stdout.
call i32 @puts(i8* %cast210)
ret i32 0

}

; Named metadata
!0 = !{i32 42, null, !"string"}
!foo = !{!0}

This example is made up of a global variable named “.str”, an external declaration of the “puts” function, a
function definition for “main” and named metadata “foo”.
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In general, a module is made up of a list of global values (where both functions and global variables are global values).
Global values are represented by a pointer to a memory location (in this case, a pointer to an array of char, and a
pointer to a function), and have one of the following linkage types.

Linkage Types

All Global Variables and Functions have one of the following types of linkage:

private Global values with “private” linkage are only directly accessible by objects in the current module.
In particular, linking code into a module with an private global value may cause the private to be renamed as
necessary to avoid collisions. Because the symbol is private to the module, all references can be updated. This
doesn’t show up in any symbol table in the object file.

internal Similar to private, but the value shows as a local symbol (STB_LOCAL in the case of ELF) in the object
file. This corresponds to the notion of the ‘static‘ keyword in C.

available_externally Globals with “available_externally” linkage are never emitted into the object
file corresponding to the LLVM module. From the linker’s perspective, an available_externally global
is equivalent to an external declaration. They exist to allow inlining and other optimizations to take place
given knowledge of the definition of the global, which is known to be somewhere outside the module. Globals
with available_externally linkage are allowed to be discarded at will, and allow inlining and other
optimizations. This linkage type is only allowed on definitions, not declarations.

linkonce Globals with “linkonce” linkage are merged with other globals of the same name when linkage occurs.
This can be used to implement some forms of inline functions, templates, or other code which must be generated
in each translation unit that uses it, but where the body may be overridden with a more definitive definition later.
Unreferenced linkonce globals are allowed to be discarded. Note that linkonce linkage does not actually
allow the optimizer to inline the body of this function into callers because it doesn’t know if this definition of the
function is the definitive definition within the program or whether it will be overridden by a stronger definition.
To enable inlining and other optimizations, use “linkonce_odr” linkage.

weak “weak” linkage has the same merging semantics as linkonce linkage, except that unreferenced globals with
weak linkage may not be discarded. This is used for globals that are declared “weak” in C source code.

common “common” linkage is most similar to “weak” linkage, but they are used for tentative definitions in C, such as
“int X;” at global scope. Symbols with “common” linkage are merged in the same way as weak symbols,
and they may not be deleted if unreferenced. common symbols may not have an explicit section, must have a
zero initializer, and may not be marked ‘constant‘. Functions and aliases may not have common linkage.

appending “appending” linkage may only be applied to global variables of pointer to array type. When two
global variables with appending linkage are linked together, the two global arrays are appended together. This
is the LLVM, typesafe, equivalent of having the system linker append together “sections” with identical names
when .o files are linked.

Unfortunately this doesn’t correspond to any feature in .o files, so it can only be used for variables like llvm.
global_ctors which llvm interprets specially.

extern_weak The semantics of this linkage follow the ELF object file model: the symbol is weak until linked, if
not linked, the symbol becomes null instead of being an undefined reference.

linkonce_odr, weak_odr Some languages allow differing globals to be merged, such as two functions with
different semantics. Other languages, such as C++, ensure that only equivalent globals are ever merged (the
“one definition rule” — “ODR”). Such languages can use the linkonce_odr and weak_odr linkage types
to indicate that the global will only be merged with equivalent globals. These linkage types are otherwise the
same as their non-odr versions.

external If none of the above identifiers are used, the global is externally visible, meaning that it participates in
linkage and can be used to resolve external symbol references.
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It is illegal for a function declaration to have any linkage type other than external or extern_weak.

Calling Conventions

LLVM functions, calls and invokes can all have an optional calling convention specified for the call. The calling
convention of any pair of dynamic caller/callee must match, or the behavior of the program is undefined. The following
calling conventions are supported by LLVM, and more may be added in the future:

“ccc” - The C calling convention This calling convention (the default if no other calling convention is specified)
matches the target C calling conventions. This calling convention supports varargs function calls and tolerates
some mismatch in the declared prototype and implemented declaration of the function (as does normal C).

“fastcc” - The fast calling convention This calling convention attempts to make calls as fast as possible (e.g. by
passing things in registers). This calling convention allows the target to use whatever tricks it wants to produce
fast code for the target, without having to conform to an externally specified ABI (Application Binary Interface).
Tail calls can only be optimized when this, the GHC or the HiPE convention is used. This calling convention
does not support varargs and requires the prototype of all callees to exactly match the prototype of the function
definition.

“coldcc” - The cold calling convention This calling convention attempts to make code in the caller as efficient
as possible under the assumption that the call is not commonly executed. As such, these calls often preserve
all registers so that the call does not break any live ranges in the caller side. This calling convention does not
support varargs and requires the prototype of all callees to exactly match the prototype of the function definition.
Furthermore the inliner doesn’t consider such function calls for inlining.

“cc 10” - GHC convention This calling convention has been implemented specifically for use by the Glasgow
Haskell Compiler (GHC). It passes everything in registers, going to extremes to achieve this by disabling callee
save registers. This calling convention should not be used lightly but only for specific situations such as an al-
ternative to the register pinning performance technique often used when implementing functional programming
languages. At the moment only X86 supports this convention and it has the following limitations:

• On X86-32 only supports up to 4 bit type parameters. No floating point types are supported.

• On X86-64 only supports up to 10 bit type parameters and 6 floating point parameters.

This calling convention supports tail call optimization but requires both the caller and callee are using it.

“cc 11” - The HiPE calling convention This calling convention has been implemented specifically for use by the
High-Performance Erlang (HiPE) compiler, the native code compiler of the Ericsson’s Open Source Erlang/OTP
system. It uses more registers for argument passing than the ordinary C calling convention and defines no callee-
saved registers. The calling convention properly supports tail call optimization but requires that both the caller
and the callee use it. It uses a register pinning mechanism, similar to GHC’s convention, for keeping frequently
accessed runtime components pinned to specific hardware registers. At the moment only X86 supports this
convention (both 32 and 64 bit).

“webkit_jscc” - WebKit’s JavaScript calling convention This calling convention has been implemented for
WebKit FTL JIT. It passes arguments on the stack right to left (as cdecl does), and returns a value in the
platform’s customary return register.

“anyregcc” - Dynamic calling convention for code patching This is a special convention that supports patch-
ing an arbitrary code sequence in place of a call site. This convention forces the call arguments into
registers but allows them to be dynamically allocated. This can currently only be used with calls to
llvm.experimental.patchpoint because only this intrinsic records the location of its arguments in a side table.
See Stack maps and patch points in LLVM.

“preserve_mostcc” - The PreserveMost calling convention This calling convention attempts to make the code
in the caller as unintrusive as possible. This convention behaves identically to the C calling convention on how
arguments and return values are passed, but it uses a different set of caller/callee-saved registers. This alleviates
the burden of saving and recovering a large register set before and after the call in the caller. If the arguments
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are passed in callee-saved registers, then they will be preserved by the callee across the call. This doesn’t apply
for values returned in callee-saved registers.

• On X86-64 the callee preserves all general purpose registers, except for R11. R11 can be used as a scratch
register. Floating-point registers (XMMs/YMMs) are not preserved and need to be saved by the caller.

The idea behind this convention is to support calls to runtime functions that have a hot path and a cold path. The
hot path is usually a small piece of code that doesn’t use many registers. The cold path might need to call out
to another function and therefore only needs to preserve the caller-saved registers, which haven’t already been
saved by the caller. The PreserveMost calling convention is very similar to the cold calling convention in terms
of caller/callee-saved registers, but they are used for different types of function calls. coldcc is for function calls
that are rarely executed, whereas preserve_mostcc function calls are intended to be on the hot path and definitely
executed a lot. Furthermore preserve_mostcc doesn’t prevent the inliner from inlining the function call.

This calling convention will be used by a future version of the ObjectiveC runtime and should therefore still be
considered experimental at this time. Although this convention was created to optimize certain runtime calls
to the ObjectiveC runtime, it is not limited to this runtime and might be used by other runtimes in the future
too. The current implementation only supports X86-64, but the intention is to support more architectures in the
future.

“preserve_allcc” - The PreserveAll calling convention This calling convention attempts to make the code in
the caller even less intrusive than the PreserveMost calling convention. This calling convention also behaves
identical to the C calling convention on how arguments and return values are passed, but it uses a different set
of caller/callee-saved registers. This removes the burden of saving and recovering a large register set before and
after the call in the caller. If the arguments are passed in callee-saved registers, then they will be preserved by
the callee across the call. This doesn’t apply for values returned in callee-saved registers.

• On X86-64 the callee preserves all general purpose registers, except for R11. R11 can be used as a scratch
register. Furthermore it also preserves all floating-point registers (XMMs/YMMs).

The idea behind this convention is to support calls to runtime functions that don’t need to call out to any other
functions.

This calling convention, like the PreserveMost calling convention, will be used by a future version of the Ob-
jectiveC runtime and should be considered experimental at this time.

“cxx_fast_tlscc” - The CXX_FAST_TLS calling convention for access functions Clang generates an access
function to access C++-style TLS. The access function generally has an entry block, an exit block and an
initialization block that is run at the first time. The entry and exit blocks can access a few TLS IR variables,
each access will be lowered to a platform-specific sequence.

This calling convention aims to minimize overhead in the caller by preserving as many registers as possible (all
the registers that are perserved on the fast path, composed of the entry and exit blocks).

This calling convention behaves identical to the C calling convention on how arguments and return values are
passed, but it uses a different set of caller/callee-saved registers.

Given that each platform has its own lowering sequence, hence its own set of preserved registers, we can’t use
the existing PreserveMost.

• On X86-64 the callee preserves all general purpose registers, except for RDI and RAX.

“swiftcc” - This calling convention is used for Swift language.

• On X86-64 RCX and R8 are available for additional integer returns, and XMM2 and XMM3 are available
for additional FP/vector returns.

• On iOS platforms, we use AAPCS-VFP calling convention.

“cc <n>” - Numbered convention Any calling convention may be specified by number, allowing target-specific
calling conventions to be used. Target specific calling conventions start at 64.
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More calling conventions can be added/defined on an as-needed basis, to support Pascal conventions or any other
well-known target-independent convention.

Visibility Styles

All Global Variables and Functions have one of the following visibility styles:

“default” - Default style On targets that use the ELF object file format, default visibility means that the declaration
is visible to other modules and, in shared libraries, means that the declared entity may be overridden. On
Darwin, default visibility means that the declaration is visible to other modules. Default visibility corresponds
to “external linkage” in the language.

“hidden” - Hidden style Two declarations of an object with hidden visibility refer to the same object if they are in
the same shared object. Usually, hidden visibility indicates that the symbol will not be placed into the dynamic
symbol table, so no other module (executable or shared library) can reference it directly.

“protected” - Protected style On ELF, protected visibility indicates that the symbol will be placed in the dynamic
symbol table, but that references within the defining module will bind to the local symbol. That is, the symbol
cannot be overridden by another module.

A symbol with internal or private linkage must have default visibility.

DLL Storage Classes

All Global Variables, Functions and Aliases can have one of the following DLL storage class:

dllimport “dllimport” causes the compiler to reference a function or variable via a global pointer to a pointer
that is set up by the DLL exporting the symbol. On Microsoft Windows targets, the pointer name is formed by
combining __imp_ and the function or variable name.

dllexport “dllexport” causes the compiler to provide a global pointer to a pointer in a DLL, so that it can
be referenced with the dllimport attribute. On Microsoft Windows targets, the pointer name is formed by
combining __imp_ and the function or variable name. Since this storage class exists for defining a dll interface,
the compiler, assembler and linker know it is externally referenced and must refrain from deleting the symbol.

Thread Local Storage Models

A variable may be defined as thread_local, which means that it will not be shared by threads (each thread will
have a separated copy of the variable). Not all targets support thread-local variables. Optionally, a TLS model may be
specified:

localdynamic For variables that are only used within the current shared library.

initialexec For variables in modules that will not be loaded dynamically.

localexec For variables defined in the executable and only used within it.

If no explicit model is given, the “general dynamic” model is used.

The models correspond to the ELF TLS models; see ELF Handling For Thread-Local Storage for more information
on under which circumstances the different models may be used. The target may choose a different TLS model if the
specified model is not supported, or if a better choice of model can be made.

A model can also be specified in an alias, but then it only governs how the alias is accessed. It will not have any effect
in the aliasee.

For platforms without linker support of ELF TLS model, the -femulated-tls flag can be used to generate GCC compat-
ible emulated TLS code.
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Structure Types

LLVM IR allows you to specify both “identified” and “literal” structure types. Literal types are uniqued structurally,
but identified types are never uniqued. An opaque structural type can also be used to forward declare a type that is not
yet available.

An example of an identified structure specification is:

%mytype = type { %mytype*, i32 }

Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only literal types are uniqued in recent
versions of LLVM.

Global Variables

Global variables define regions of memory allocated at compilation time instead of run-time.

Global variable definitions must be initialized.

Global variables in other translation units can also be declared, in which case they don’t have an initializer.

Either global variable definitions or declarations may have an explicit section to be placed in and may have an optional
explicit alignment specified.

A variable may be defined as a global constant, which indicates that the contents of the variable will never be
modified (enabling better optimization, allowing the global data to be placed in the read-only section of an executable,
etc). Note that variables that need runtime initialization cannot be marked constant as there is a store to the variable.

LLVM explicitly allows declarations of global variables to be marked constant, even if the final definition of the
global is not. This capability can be used to enable slightly better optimization of the program, but requires the
language definition to guarantee that optimizations based on the ‘constantness’ are valid for the translation units that
do not include the definition.

As SSA values, global variables define pointer values that are in scope (i.e. they dominate) all basic blocks in the
program. Global variables always define a pointer to their “content” type because they describe a region of memory,
and all memory objects in LLVM are accessed through pointers.

Global variables can be marked with unnamed_addr which indicates that the address is not significant, only the
content. Constants marked like this can be merged with other constants if they have the same initializer. Note that a
constant with significant address can be merged with a unnamed_addr constant, the result being a constant whose
address is significant.

If the local_unnamed_addr attribute is given, the address is known to not be significant within the module.

A global variable may be declared to reside in a target-specific numbered address space. For targets that support them,
address spaces may affect how optimizations are performed and/or what target instructions are used to access the
variable. The default address space is zero. The address space qualifier must precede any other attributes.

LLVM allows an explicit section to be specified for globals. If the target supports it, it will emit globals to the section
specified. Additionally, the global can placed in a comdat if the target has the necessary support.

By default, global initializers are optimized by assuming that global variables defined within the module are not
modified from their initial values before the start of the global initializer. This is true even for variables potentially
accessible from outside the module, including those with external linkage or appearing in @llvm.used or dllexported
variables. This assumption may be suppressed by marking the variable with externally_initialized.

An explicit alignment may be specified for a global, which must be a power of 2. If not present, or if the alignment is
set to zero, the alignment of the global is set by the target to whatever it feels convenient. If an explicit alignment is
specified, the global is forced to have exactly that alignment. Targets and optimizers are not allowed to over-align the
global if the global has an assigned section. In this case, the extra alignment could be observable: for example, code
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could assume that the globals are densely packed in their section and try to iterate over them as an array, alignment
padding would break this iteration. The maximum alignment is 1 << 29.

Globals can also have a DLL storage class and an optional list of attached metadata,

Variables and aliases can have a Thread Local Storage Model.

Syntax:

@<GlobalVarName> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
[(unnamed_addr|local_unnamed_addr)] [AddrSpace]
[ExternallyInitialized]
<global | constant> <Type> [<InitializerConstant>]
[, section "name"] [, comdat [($name)]]
[, align <Alignment>] (, !name !N)*

For example, the following defines a global in a numbered address space with an initializer, section, and alignment:

@G = addrspace(5) constant float 1.0, section "foo", align 4

The following example just declares a global variable

@G = external global i32

The following example defines a thread-local global with the initialexec TLS model:

@G = thread_local(initialexec) global i32 0, align 4

Functions

LLVM function definitions consist of the “define” keyword, an optional linkage type, an optional visibility style, an
optional DLL storage class, an optional calling convention, an optional unnamed_addr attribute, a return type, an
optional parameter attribute for the return type, a function name, a (possibly empty) argument list (each with optional
parameter attributes), optional function attributes, an optional section, an optional alignment, an optional comdat, an
optional garbage collector name, an optional prefix, an optional prologue, an optional personality, an optional list of
attached metadata, an opening curly brace, a list of basic blocks, and a closing curly brace.

LLVM function declarations consist of the “declare” keyword, an optional linkage type, an optional visi-
bility style, an optional DLL storage class, an optional calling convention, an optional unnamed_addr or
local_unnamed_addr attribute, a return type, an optional parameter attribute for the return type, a function
name, a possibly empty list of arguments, an optional alignment, an optional garbage collector name, an optional
prefix, and an optional prologue.

A function definition contains a list of basic blocks, forming the CFG (Control Flow Graph) for the function. Each
basic block may optionally start with a label (giving the basic block a symbol table entry), contains a list of instructions,
and ends with a terminator instruction (such as a branch or function return). If an explicit label is not provided, a block
is assigned an implicit numbered label, using the next value from the same counter as used for unnamed temporaries
(see above). For example, if a function entry block does not have an explicit label, it will be assigned label “%0”, then
the first unnamed temporary in that block will be “%1”, etc.

The first basic block in a function is special in two ways: it is immediately executed on entrance to the function, and
it is not allowed to have predecessor basic blocks (i.e. there can not be any branches to the entry block of a function).
Because the block can have no predecessors, it also cannot have any PHI nodes.

LLVM allows an explicit section to be specified for functions. If the target supports it, it will emit functions to the
section specified. Additionally, the function can be placed in a COMDAT.
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An explicit alignment may be specified for a function. If not present, or if the alignment is set to zero, the alignment
of the function is set by the target to whatever it feels convenient. If an explicit alignment is specified, the function is
forced to have at least that much alignment. All alignments must be a power of 2.

If the unnamed_addr attribute is given, the address is known to not be significant and two identical functions can
be merged.

If the local_unnamed_addr attribute is given, the address is known to not be significant within the module.

Syntax:

define [linkage] [visibility] [DLLStorageClass]
[cconv] [ret attrs]
<ResultType> @<FunctionName> ([argument list])
[(unnamed_addr|local_unnamed_addr)] [fn Attrs] [section "name"]
[comdat [($name)]] [align N] [gc] [prefix Constant]
[prologue Constant] [personality Constant] (!name !N)* { ... }

The argument list is a comma separated sequence of arguments where each argument is of the following form:

Syntax:

<type> [parameter Attrs] [name]

Aliases

Aliases, unlike function or variables, don’t create any new data. They are just a new symbol and metadata for an
existing position.

Aliases have a name and an aliasee that is either a global value or a constant expression.

Aliases may have an optional linkage type, an optional visibility style, an optional DLL storage class and an optional
tls model.

Syntax:

@<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [(unnamed_addr|local_
→˓unnamed_addr)] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>

The linkage must be one of private, internal, linkonce, weak, linkonce_odr, weak_odr, external.
Note that some system linkers might not correctly handle dropping a weak symbol that is aliased.

Aliases that are not unnamed_addr are guaranteed to have the same address as the aliasee expression.
unnamed_addr ones are only guaranteed to point to the same content.

If the local_unnamed_addr attribute is given, the address is known to not be significant within the module.

Since aliases are only a second name, some restrictions apply, of which some can only be checked when producing an
object file:

• The expression defining the aliasee must be computable at assembly time. Since it is just a name, no relocations
can be used.

• No alias in the expression can be weak as the possibility of the intermediate alias being overridden cannot be
represented in an object file.

• No global value in the expression can be a declaration, since that would require a relocation, which is not
possible.
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IFuncs

IFuncs, like as aliases, don’t create any new data or func. They are just a new symbol that dynamic linker resolves at
runtime by calling a resolver function.

IFuncs have a name and a resolver that is a function called by dynamic linker that returns address of another function
associated with the name.

IFunc may have an optional linkage type and an optional visibility style.

Syntax:

@<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>

Comdats

Comdat IR provides access to COFF and ELF object file COMDAT functionality.

Comdats have a name which represents the COMDAT key. All global objects that specify this key will only end up in
the final object file if the linker chooses that key over some other key. Aliases are placed in the same COMDAT that
their aliasee computes to, if any.

Comdats have a selection kind to provide input on how the linker should choose between keys in two different object
files.

Syntax:

$<Name> = comdat SelectionKind

The selection kind must be one of the following:

any The linker may choose any COMDAT key, the choice is arbitrary.

exactmatch The linker may choose any COMDAT key but the sections must contain the same data.

largest The linker will choose the section containing the largest COMDAT key.

noduplicates The linker requires that only section with this COMDAT key exist.

samesize The linker may choose any COMDAT key but the sections must contain the same amount of data.

Note that the Mach-O platform doesn’t support COMDATs and ELF only supports any as a selection kind.

Here is an example of a COMDAT group where a function will only be selected if the COMDAT key’s section is the
largest:

$foo = comdat largest
@foo = global i32 2, comdat($foo)

define void @bar() comdat($foo) {
ret void

}

As a syntactic sugar the $name can be omitted if the name is the same as the global name:

$foo = comdat any
@foo = global i32 2, comdat

In a COFF object file, this will create a COMDAT section with selection kind IMAGE_COMDAT_SELECT_LARGEST
containing the contents of the @foo symbol and another COMDAT section with selection kind
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IMAGE_COMDAT_SELECT_ASSOCIATIVE which is associated with the first COMDAT section and contains
the contents of the @bar symbol.

There are some restrictions on the properties of the global object. It, or an alias to it, must have the same name as the
COMDAT group when targeting COFF. The contents and size of this object may be used during link-time to determine
which COMDAT groups get selected depending on the selection kind. Because the name of the object must match the
name of the COMDAT group, the linkage of the global object must not be local; local symbols can get renamed if a
collision occurs in the symbol table.

The combined use of COMDATS and section attributes may yield surprising results. For example:

$foo = comdat any
$bar = comdat any
@g1 = global i32 42, section "sec", comdat($foo)
@g2 = global i32 42, section "sec", comdat($bar)

From the object file perspective, this requires the creation of two sections with the same name. This is necessary
because both globals belong to different COMDAT groups and COMDATs, at the object file level, are represented by
sections.

Note that certain IR constructs like global variables and functions may create COMDATs in the object file in addition
to any which are specified using COMDAT IR. This arises when the code generator is configured to emit globals in
individual sections (e.g. when -data-sections or -function-sections is supplied to llc).

Named Metadata

Named metadata is a collection of metadata. Metadata nodes (but not metadata strings) are the only valid operands
for a named metadata.

1. Named metadata are represented as a string of characters with the metadata prefix. The rules for metadata
names are the same as for identifiers, but quoted names are not allowed. "\xx" type escapes are still valid,
which allows any character to be part of a name.

Syntax:

; Some unnamed metadata nodes, which are referenced by the named metadata.
!0 = !{!"zero"}
!1 = !{!"one"}
!2 = !{!"two"}
; A named metadata.
!name = !{!0, !1, !2}

Parameter Attributes

The return type and each parameter of a function type may have a set of parameter attributes associated with them.
Parameter attributes are used to communicate additional information about the result or parameters of a function.
Parameter attributes are considered to be part of the function, not of the function type, so functions with different
parameter attributes can have the same function type.

Parameter attributes are simple keywords that follow the type specified. If multiple parameter attributes are needed,
they are space separated. For example:

declare i32 @printf(i8* noalias nocapture, ...)
declare i32 @atoi(i8 zeroext)
declare signext i8 @returns_signed_char()
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Note that any attributes for the function result (nounwind, readonly) come immediately after the argument list.

Currently, only the following parameter attributes are defined:

zeroext This indicates to the code generator that the parameter or return value should be zero-extended to the extent
required by the target’s ABI by the caller (for a parameter) or the callee (for a return value).

signext This indicates to the code generator that the parameter or return value should be sign-extended to the extent
required by the target’s ABI (which is usually 32-bits) by the caller (for a parameter) or the callee (for a return
value).

inreg This indicates that this parameter or return value should be treated in a special target-dependent fashion while
emitting code for a function call or return (usually, by putting it in a register as opposed to memory, though some
targets use it to distinguish between two different kinds of registers). Use of this attribute is target-specific.

byval This indicates that the pointer parameter should really be passed by value to the function. The attribute implies
that a hidden copy of the pointee is made between the caller and the callee, so the callee is unable to modify the
value in the caller. This attribute is only valid on LLVM pointer arguments. It is generally used to pass structs
and arrays by value, but is also valid on pointers to scalars. The copy is considered to belong to the caller not the
callee (for example, readonly functions should not write to byval parameters). This is not a valid attribute
for return values.

The byval attribute also supports specifying an alignment with the align attribute. It indicates the alignment of
the stack slot to form and the known alignment of the pointer specified to the call site. If the alignment is not
specified, then the code generator makes a target-specific assumption.

inalloca

The inalloca argument attribute allows the caller to take the address of outgoing stack arguments.
An inalloca argument must be a pointer to stack memory produced by an alloca instruction. The
alloca, or argument allocation, must also be tagged with the inalloca keyword. Only the last argument
may have the inalloca attribute, and that argument is guaranteed to be passed in memory.

An argument allocation may be used by a call at most once because the call may deallocate it. The
inalloca attribute cannot be used in conjunction with other attributes that affect argument storage, like
inreg, nest, sret, or byval. The inalloca attribute also disables LLVM’s implicit lowering of
large aggregate return values, which means that frontend authors must lower them with sret pointers.

When the call site is reached, the argument allocation must have been the most recent stack allocation that
is still live, or the results are undefined. It is possible to allocate additional stack space after an argument
allocation and before its call site, but it must be cleared off with llvm.stackrestore.

See Design and Usage of the InAlloca Attribute for more information on how to use this attribute.

sret This indicates that the pointer parameter specifies the address of a structure that is the return value of the
function in the source program. This pointer must be guaranteed by the caller to be valid: loads and stores to
the structure may be assumed by the callee not to trap and to be properly aligned. This may only be applied to
the first parameter. This is not a valid attribute for return values.

align <n> This indicates that the pointer value may be assumed by the optimizer to have the specified alignment.

Note that this attribute has additional semantics when combined with the byval attribute.

noalias This indicates that objects accessed via pointer values based on the argument or return value are not also
accessed, during the execution of the function, via pointer values not based on the argument or return value. The
attribute on a return value also has additional semantics described below. The caller shares the responsibility
with the callee for ensuring that these requirements are met. For further details, please see the discussion of the
NoAlias response in alias analysis.

Note that this definition of noalias is intentionally similar to the definition of restrict in C99 for function
arguments.
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For function return values, C99’s restrict is not meaningful, while LLVM’s noalias is. Furthermore, the
semantics of the noalias attribute on return values are stronger than the semantics of the attribute when used
on function arguments. On function return values, the noalias attribute indicates that the function acts like
a system memory allocation function, returning a pointer to allocated storage disjoint from the storage for any
other object accessible to the caller.

nocapture This indicates that the callee does not make any copies of the pointer that outlive the callee itself. This
is not a valid attribute for return values. Addresses used in volatile operations are considered to be captured.

nest This indicates that the pointer parameter can be excised using the trampoline intrinsics. This is not a valid
attribute for return values and can only be applied to one parameter.

returned This indicates that the function always returns the argument as its return value. This is a hint to the
optimizer and code generator used when generating the caller, allowing value propagation, tail call optimization,
and omission of register saves and restores in some cases; it is not checked or enforced when generating the
callee. The parameter and the function return type must be valid operands for the bitcast instruction. This is not
a valid attribute for return values and can only be applied to one parameter.

nonnull This indicates that the parameter or return pointer is not null. This attribute may only be applied to pointer
typed parameters. This is not checked or enforced by LLVM, the caller must ensure that the pointer passed in is
non-null, or the callee must ensure that the returned pointer is non-null.

dereferenceable(<n>) This indicates that the parameter or return pointer is dereferenceable. This attribute
may only be applied to pointer typed parameters. A pointer that is dereferenceable can be loaded from spec-
ulatively without a risk of trapping. The number of bytes known to be dereferenceable must be provided in
parentheses. It is legal for the number of bytes to be less than the size of the pointee type. The nonnull
attribute does not imply dereferenceability (consider a pointer to one element past the end of an array), however
dereferenceable(<n>) does imply nonnull in addrspace(0) (which is the default address space).

dereferenceable_or_null(<n>) This indicates that the parameter or return value isn’t both non-
null and non-dereferenceable (up to <n> bytes) at the same time. All non-null pointers tagged
with dereferenceable_or_null(<n>) are dereferenceable(<n>). For address space 0
dereferenceable_or_null(<n>) implies that a pointer is exactly one of dereferenceable(<n>)
or null, and in other address spaces dereferenceable_or_null(<n>) implies that a pointer is at least
one of dereferenceable(<n>) or null (i.e. it may be both null and dereferenceable(<n>)).
This attribute may only be applied to pointer typed parameters.

swiftself This indicates that the parameter is the self/context parameter. This is not a valid attribute for return
values and can only be applied to one parameter.

swifterror This attribute is motivated to model and optimize Swift error handling. It can be applied to a parameter
with pointer to pointer type or a pointer-sized alloca. At the call site, the actual argument that corresponds
to a swifterror parameter has to come from a swifterror alloca. A swifterror value (either the
parameter or the alloca) can only be loaded and stored from, or used as a swifterror argument. This is not
a valid attribute for return values and can only be applied to one parameter.

These constraints allow the calling convention to optimize access to swifterror variables by associating
them with a specific register at call boundaries rather than placing them in memory. Since this does change the
calling convention, a function which uses the swifterror attribute on a parameter is not ABI-compatible
with one which does not.

These constraints also allow LLVM to assume that a swifterror argument does not alias any other memory
visible within a function and that a swifterror alloca passed as an argument does not escape.

Garbage Collector Strategy Names

Each function may specify a garbage collector strategy name, which is simply a string:
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define void @f() gc "name" { ... }

The supported values of name includes those built in to LLVM and any provided by loaded plugins. Specifying a GC
strategy will cause the compiler to alter its output in order to support the named garbage collection algorithm. Note
that LLVM itself does not contain a garbage collector, this functionality is restricted to generating machine code which
can interoperate with a collector provided externally.

Prefix Data

Prefix data is data associated with a function which the code generator will emit immediately before the function’s
entrypoint. The purpose of this feature is to allow frontends to associate language-specific runtime metadata with
specific functions and make it available through the function pointer while still allowing the function pointer to be
called.

To access the data for a given function, a program may bitcast the function pointer to a pointer to the constant’s type
and dereference index -1. This implies that the IR symbol points just past the end of the prefix data. For instance, take
the example of a function annotated with a single i32,

define void @f() prefix i32 123 { ... }

The prefix data can be referenced as,

%0 = bitcast void* () @f to i32*
%a = getelementptr inbounds i32, i32* %0, i32 -1
%b = load i32, i32* %a

Prefix data is laid out as if it were an initializer for a global variable of the prefix data’s type. The function will be
placed such that the beginning of the prefix data is aligned. This means that if the size of the prefix data is not a
multiple of the alignment size, the function’s entrypoint will not be aligned. If alignment of the function’s entrypoint
is desired, padding must be added to the prefix data.

A function may have prefix data but no body. This has similar semantics to the available_externally linkage
in that the data may be used by the optimizers but will not be emitted in the object file.

Prologue Data

The prologue attribute allows arbitrary code (encoded as bytes) to be inserted prior to the function body. This can
be used for enabling function hot-patching and instrumentation.

To maintain the semantics of ordinary function calls, the prologue data must have a particular format. Specifically, it
must begin with a sequence of bytes which decode to a sequence of machine instructions, valid for the module’s target,
which transfer control to the point immediately succeeding the prologue data, without performing any other visible
action. This allows the inliner and other passes to reason about the semantics of the function definition without needing
to reason about the prologue data. Obviously this makes the format of the prologue data highly target dependent.

A trivial example of valid prologue data for the x86 architecture is i8 144, which encodes the nop instruction:

define void @f() prologue i8 144 { ... }

Generally prologue data can be formed by encoding a relative branch instruction which skips the metadata, as in this
example of valid prologue data for the x86_64 architecture, where the first two bytes encode jmp .+10:

%0 = type <{ i8, i8, i8* }>

define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
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A function may have prologue data but no body. This has similar semantics to the available_externally
linkage in that the data may be used by the optimizers but will not be emitted in the object file.

Personality Function

The personality attribute permits functions to specify what function to use for exception handling.

Attribute Groups

Attribute groups are groups of attributes that are referenced by objects within the IR. They are important for keeping
.ll files readable, because a lot of functions will use the same set of attributes. In the degenerative case of a .ll file
that corresponds to a single .c file, the single attribute group will capture the important command line flags used to
build that file.

An attribute group is a module-level object. To use an attribute group, an object references the attribute group’s ID
(e.g. #37). An object may refer to more than one attribute group. In that situation, the attributes from the different
groups are merged.

Here is an example of attribute groups for a function that should always be inlined, has a stack alignment of 4, and
which shouldn’t use SSE instructions:

; Target-independent attributes:
attributes #0 = { alwaysinline alignstack=4 }

; Target-dependent attributes:
attributes #1 = { "no-sse" }

; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
define void @f() #0 #1 { ... }

Function Attributes

Function attributes are set to communicate additional information about a function. Function attributes are considered
to be part of the function, not of the function type, so functions with different function attributes can have the same
function type.

Function attributes are simple keywords that follow the type specified. If multiple attributes are needed, they are space
separated. For example:

define void @f() noinline { ... }
define void @f() alwaysinline { ... }
define void @f() alwaysinline optsize { ... }
define void @f() optsize { ... }

alignstack(<n>) This attribute indicates that, when emitting the prologue and epilogue, the backend should
forcibly align the stack pointer. Specify the desired alignment, which must be a power of two, in parentheses.

allocsize(<EltSizeParam>[, <NumEltsParam>]) This attribute indicates that the annotated function
will always return at least a given number of bytes (or null). Its arguments are zero-indexed parameter num-
bers; if one argument is provided, then it’s assumed that at least CallSite.Args[EltSizeParam]
bytes will be available at the returned pointer. If two are provided, then it’s assumed that CallSite.
Args[EltSizeParam] * CallSite.Args[NumEltsParam] bytes are available. The referenced pa-
rameters must be integer types. No assumptions are made about the contents of the returned block of memory.
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alwaysinline This attribute indicates that the inliner should attempt to inline this function into callers whenever
possible, ignoring any active inlining size threshold for this caller.

builtin This indicates that the callee function at a call site should be recognized as a built-in function, even though
the function’s declaration uses the nobuiltin attribute. This is only valid at call sites for direct calls to
functions that are declared with the nobuiltin attribute.

cold This attribute indicates that this function is rarely called. When computing edge weights, basic blocks post-
dominated by a cold function call are also considered to be cold; and, thus, given low weight.

convergent In some parallel execution models, there exist operations that cannot be made control-dependent on
any additional values. We call such operations convergent, and mark them with this attribute.

The convergent attribute may appear on functions or call/invoke instructions. When it appears on a function,
it indicates that calls to this function should not be made control-dependent on additional values. For example,
the intrinsic llvm.nvvm.barrier0 is convergent, so calls to this intrinsic cannot be made control-
dependent on additional values.

When it appears on a call/invoke, the convergent attribute indicates that we should treat the call as though
we’re calling a convergent function. This is particularly useful on indirect calls; without this we may treat such
calls as though the target is non-convergent.

The optimizer may remove the convergent attribute on functions when it can prove that the function does
not execute any convergent operations. Similarly, the optimizer may remove convergent on calls/invokes
when it can prove that the call/invoke cannot call a convergent function.

inaccessiblememonly This attribute indicates that the function may only access memory that is not accessible
by the module being compiled. This is a weaker form of readnone.

inaccessiblemem_or_argmemonly This attribute indicates that the function may only access memory that is
either not accessible by the module being compiled, or is pointed to by its pointer arguments. This is a weaker
form of argmemonly

inlinehint This attribute indicates that the source code contained a hint that inlining this function is desirable
(such as the “inline” keyword in C/C++). It is just a hint; it imposes no requirements on the inliner.

jumptable This attribute indicates that the function should be added to a jump-instruction table at code-generation
time, and that all address-taken references to this function should be replaced with a reference to the appro-
priate jump-instruction-table function pointer. Note that this creates a new pointer for the original function,
which means that code that depends on function-pointer identity can break. So, any function annotated with
jumptable must also be unnamed_addr.

minsize This attribute suggests that optimization passes and code generator passes make choices that keep the code
size of this function as small as possible and perform optimizations that may sacrifice runtime performance in
order to minimize the size of the generated code.

naked This attribute disables prologue / epilogue emission for the function. This can have very system-specific
consequences.

nobuiltin This indicates that the callee function at a call site is not recognized as a built-in function. LLVM will
retain the original call and not replace it with equivalent code based on the semantics of the built-in function,
unless the call site uses the builtin attribute. This is valid at call sites and on function declarations and
definitions.

noduplicate This attribute indicates that calls to the function cannot be duplicated. A call to a noduplicate
function may be moved within its parent function, but may not be duplicated within its parent function.

A function containing a noduplicate call may still be an inlining candidate, provided that the call is not
duplicated by inlining. That implies that the function has internal linkage and only has one call site, so the
original call is dead after inlining.

noimplicitfloat This attributes disables implicit floating point instructions.
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noinline This attribute indicates that the inliner should never inline this function in any situation. This attribute
may not be used together with the alwaysinline attribute.

nonlazybind This attribute suppresses lazy symbol binding for the function. This may make calls to the function
faster, at the cost of extra program startup time if the function is not called during program startup.

noredzone This attribute indicates that the code generator should not use a red zone, even if the target-specific ABI
normally permits it.

noreturn This function attribute indicates that the function never returns normally. This produces undefined be-
havior at runtime if the function ever does dynamically return.

norecurse This function attribute indicates that the function does not call itself either directly or indirectly down
any possible call path. This produces undefined behavior at runtime if the function ever does recurse.

nounwind This function attribute indicates that the function never raises an exception. If the function does raise an
exception, its runtime behavior is undefined. However, functions marked nounwind may still trap or generate
asynchronous exceptions. Exception handling schemes that are recognized by LLVM to handle asynchronous
exceptions, such as SEH, will still provide their implementation defined semantics.

optnone This function attribute indicates that most optimization passes will skip this function, with the exception
of interprocedural optimization passes. Code generation defaults to the “fast” instruction selector. This at-
tribute cannot be used together with the alwaysinline attribute; this attribute is also incompatible with the
minsize attribute and the optsize attribute.

This attribute requires the noinline attribute to be specified on the function as well, so the function is never
inlined into any caller. Only functions with the alwaysinline attribute are valid candidates for inlining into
the body of this function.

optsize This attribute suggests that optimization passes and code generator passes make choices that keep the code
size of this function low, and otherwise do optimizations specifically to reduce code size as long as they do not
significantly impact runtime performance.

"patchable-function" This attribute tells the code generator that the code generated for this function needs to
follow certain conventions that make it possible for a runtime function to patch over it later. The exact effect of
this attribute depends on its string value, for which there currently is one legal possibility:

• "prologue-short-redirect" - This style of patchable function is intended to support patching a
function prologue to redirect control away from the function in a thread safe manner. It guarantees that the
first instruction of the function will be large enough to accommodate a short jump instruction, and will be
sufficiently aligned to allow being fully changed via an atomic compare-and-swap instruction. While the
first requirement can be satisfied by inserting large enough NOP, LLVM can and will try to re-purpose an
existing instruction (i.e. one that would have to be emitted anyway) as the patchable instruction larger than
a short jump.

"prologue-short-redirect" is currently only supported on x86-64.

This attribute by itself does not imply restrictions on inter-procedural optimizations. All of the semantic effects
the patching may have to be separately conveyed via the linkage type.

readnone On a function, this attribute indicates that the function computes its result (or decides to unwind an
exception) based strictly on its arguments, without dereferencing any pointer arguments or otherwise accessing
any mutable state (e.g. memory, control registers, etc) visible to caller functions. It does not write through any
pointer arguments (including byval arguments) and never changes any state visible to callers. This means that
it cannot unwind exceptions by calling the C++ exception throwing methods.

On an argument, this attribute indicates that the function does not dereference that pointer argument, even though
it may read or write the memory that the pointer points to if accessed through other pointers.

readonly On a function, this attribute indicates that the function does not write through any pointer arguments
(including byval arguments) or otherwise modify any state (e.g. memory, control registers, etc) visible to
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caller functions. It may dereference pointer arguments and read state that may be set in the caller. A readonly
function always returns the same value (or unwinds an exception identically) when called with the same set of
arguments and global state. It cannot unwind an exception by calling the C++ exception throwing methods.

On an argument, this attribute indicates that the function does not write through this pointer argument, even
though it may write to the memory that the pointer points to.

writeonly On a function, this attribute indicates that the function may write to but does not read from memory.

On an argument, this attribute indicates that the function may write to but does not read through this pointer
argument (even though it may read from the memory that the pointer points to).

argmemonly This attribute indicates that the only memory accesses inside function are loads and stores from objects
pointed to by its pointer-typed arguments, with arbitrary offsets. Or in other words, all memory operations in
the function can refer to memory only using pointers based on its function arguments. Note that argmemonly
can be used together with readonly attribute in order to specify that function reads only from its arguments.

returns_twice This attribute indicates that this function can return twice. The C setjmp is an example of such
a function. The compiler disables some optimizations (like tail calls) in the caller of these functions.

safestack This attribute indicates that SafeStack protection is enabled for this function.

If a function that has a safestack attribute is inlined into a function that doesn’t have a safestack attribute
or which has an ssp, sspstrong or sspreq attribute, then the resulting function will have a safestack
attribute.

sanitize_address This attribute indicates that AddressSanitizer checks (dynamic address safety analysis) are
enabled for this function.

sanitize_memory This attribute indicates that MemorySanitizer checks (dynamic detection of accesses to unini-
tialized memory) are enabled for this function.

sanitize_thread This attribute indicates that ThreadSanitizer checks (dynamic thread safety analysis) are en-
abled for this function.

ssp This attribute indicates that the function should emit a stack smashing protector. It is in the form of a “canary”
— a random value placed on the stack before the local variables that’s checked upon return from the function to
see if it has been overwritten. A heuristic is used to determine if a function needs stack protectors or not. The
heuristic used will enable protectors for functions with:

• Character arrays larger than ssp-buffer-size (default 8).

• Aggregates containing character arrays larger than ssp-buffer-size.

• Calls to alloca() with variable sizes or constant sizes greater than ssp-buffer-size.

Variables that are identified as requiring a protector will be arranged on the stack such that they are adjacent to
the stack protector guard.

If a function that has an ssp attribute is inlined into a function that doesn’t have an ssp attribute, then the
resulting function will have an ssp attribute.

sspreq This attribute indicates that the function should always emit a stack smashing protector. This overrides the
ssp function attribute.

Variables that are identified as requiring a protector will be arranged on the stack such that they are adjacent to
the stack protector guard. The specific layout rules are:

1. Large arrays and structures containing large arrays (>= ssp-buffer-size) are closest to the stack
protector.

2. Small arrays and structures containing small arrays (< ssp-buffer-size) are 2nd closest to the pro-
tector.
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3. Variables that have had their address taken are 3rd closest to the protector.

If a function that has an sspreq attribute is inlined into a function that doesn’t have an sspreq attribute or
which has an ssp or sspstrong attribute, then the resulting function will have an sspreq attribute.

sspstrong This attribute indicates that the function should emit a stack smashing protector. This attribute causes
a strong heuristic to be used when determining if a function needs stack protectors. The strong heuristic will
enable protectors for functions with:

• Arrays of any size and type

• Aggregates containing an array of any size and type.

• Calls to alloca().

• Local variables that have had their address taken.

Variables that are identified as requiring a protector will be arranged on the stack such that they are adjacent to
the stack protector guard. The specific layout rules are:

1. Large arrays and structures containing large arrays (>= ssp-buffer-size) are closest to the stack
protector.

2. Small arrays and structures containing small arrays (< ssp-buffer-size) are 2nd closest to the pro-
tector.

3. Variables that have had their address taken are 3rd closest to the protector.

This overrides the ssp function attribute.

If a function that has an sspstrong attribute is inlined into a function that doesn’t have an sspstrong
attribute, then the resulting function will have an sspstrong attribute.

"thunk" This attribute indicates that the function will delegate to some other function with a tail call. The prototype
of a thunk should not be used for optimization purposes. The caller is expected to cast the thunk prototype to
match the thunk target prototype.

uwtable This attribute indicates that the ABI being targeted requires that an unwind table entry be produced for this
function even if we can show that no exceptions passes by it. This is normally the case for the ELF x86-64 abi,
but it can be disabled for some compilation units.

Operand Bundles

Note: operand bundles are a work in progress, and they should be considered experimental at this time.

Operand bundles are tagged sets of SSA values that can be associated with certain LLVM instructions (currently only
call s and invoke s). In a way they are like metadata, but dropping them is incorrect and will change program
semantics.

Syntax:

operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
bundle operand ::= SSA value
tag ::= string constant

Operand bundles are not part of a function’s signature, and a given function may be called from multiple places with
different kinds of operand bundles. This reflects the fact that the operand bundles are conceptually a part of the call
(or invoke), not the callee being dispatched to.

Operand bundles are a generic mechanism intended to support runtime-introspection-like functionality for managed
languages. While the exact semantics of an operand bundle depend on the bundle tag, there are certain limitations to
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how much the presence of an operand bundle can influence the semantics of a program. These restrictions are described
as the semantics of an “unknown” operand bundle. As long as the behavior of an operand bundle is describable within
these restrictions, LLVM does not need to have special knowledge of the operand bundle to not miscompile programs
containing it.

• The bundle operands for an unknown operand bundle escape in unknown ways before control is transferred to
the callee or invokee.

• Calls and invokes with operand bundles have unknown read / write effect on the heap on entry and exit (even if
the call target is readnone or readonly), unless they’re overridden with callsite specific attributes.

• An operand bundle at a call site cannot change the implementation of the called function. Inter-procedural
optimizations work as usual as long as they take into account the first two properties.

More specific types of operand bundles are described below.

Deoptimization Operand Bundles

Deoptimization operand bundles are characterized by the "deopt" operand bundle tag. These operand bundles
represent an alternate “safe” continuation for the call site they’re attached to, and can be used by a suitable runtime to
deoptimize the compiled frame at the specified call site. There can be at most one "deopt" operand bundle attached
to a call site. Exact details of deoptimization is out of scope for the language reference, but it usually involves rewriting
a compiled frame into a set of interpreted frames.

From the compiler’s perspective, deoptimization operand bundles make the call sites they’re attached to at least
readonly. They read through all of their pointer typed operands (even if they’re not otherwise escaped) and the
entire visible heap. Deoptimization operand bundles do not capture their operands except during deoptimization, in
which case control will not be returned to the compiled frame.

The inliner knows how to inline through calls that have deoptimization operand bundles. Just like inlining through
a normal call site involves composing the normal and exceptional continuations, inlining through a call site with a
deoptimization operand bundle needs to appropriately compose the “safe” deoptimization continuation. The inliner
does this by prepending the parent’s deoptimization continuation to every deoptimization continuation in the inlined
body. E.g. inlining @f into @g in the following example

define void @f() {
call void @x() ;; no deopt state
call void @y() [ "deopt"(i32 10) ]
call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
ret void

}

define void @g() {
call void @f() [ "deopt"(i32 20) ]
ret void

}

will result in

define void @g() {
call void @x() ;; still no deopt state
call void @y() [ "deopt"(i32 20, i32 10) ]
call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
ret void

}

It is the frontend’s responsibility to structure or encode the deoptimization state in a way that syntactically prepending
the caller’s deoptimization state to the callee’s deoptimization state is semantically equivalent to composing the caller’s
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deoptimization continuation after the callee’s deoptimization continuation.

Funclet Operand Bundles

Funclet operand bundles are characterized by the "funclet" operand bundle tag. These operand bundles indicate
that a call site is within a particular funclet. There can be at most one "funclet" operand bundle attached to a call
site and it must have exactly one bundle operand.

If any funclet EH pads have been “entered” but not “exited” (per the description in the EH doc), it is undefined behavior
to execute a call or invoke which:

• does not have a "funclet" bundle and is not a call to a nounwind intrinsic, or

• has a "funclet" bundle whose operand is not the most-recently-entered not-yet-exited funclet EH pad.

Similarly, if no funclet EH pads have been entered-but-not-yet-exited, executing a call or invoke with a
"funclet" bundle is undefined behavior.

GC Transition Operand Bundles

GC transition operand bundles are characterized by the "gc-transition" operand bundle tag. These operand
bundles mark a call as a transition between a function with one GC strategy to a function with a different GC strategy.
If coordinating the transition between GC strategies requires additional code generation at the call site, these bundles
may contain any values that are needed by the generated code. For more details, see GC Transitions.

Module-Level Inline Assembly

Modules may contain “module-level inline asm” blocks, which corresponds to the GCC “file scope inline asm” blocks.
These blocks are internally concatenated by LLVM and treated as a single unit, but may be separated in the .ll file if
desired. The syntax is very simple:

module asm "inline asm code goes here"
module asm "more can go here"

The strings can contain any character by escaping non-printable characters. The escape sequence used is simply “\xx”
where “xx” is the two digit hex code for the number.

Note that the assembly string must be parseable by LLVM’s integrated assembler (unless it is disabled), even when
emitting a .s file.

Data Layout

A module may specify a target specific data layout string that specifies how data is to be laid out in memory. The
syntax for the data layout is simply:

target datalayout = "layout specification"

The layout specification consists of a list of specifications separated by the minus sign character (‘-‘). Each specifica-
tion starts with a letter and may include other information after the letter to define some aspect of the data layout. The
specifications accepted are as follows:

E Specifies that the target lays out data in big-endian form. That is, the bits with the most significance have the lowest
address location.
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e Specifies that the target lays out data in little-endian form. That is, the bits with the least significance have the
lowest address location.

S<size> Specifies the natural alignment of the stack in bits. Alignment promotion of stack variables is limited to
the natural stack alignment to avoid dynamic stack realignment. The stack alignment must be a multiple of
8-bits. If omitted, the natural stack alignment defaults to “unspecified”, which does not prevent any alignment
promotions.

p[n]:<size>:<abi>:<pref> This specifies the size of a pointer and its <abi> and <pref>erred alignments
for address space n. All sizes are in bits. The address space, n, is optional, and if not specified, denotes the
default address space 0. The value of n must be in the range [1,2^23).

i<size>:<abi>:<pref> This specifies the alignment for an integer type of a given bit <size>. The value of
<size> must be in the range [1,2^23).

v<size>:<abi>:<pref> This specifies the alignment for a vector type of a given bit <size>.

f<size>:<abi>:<pref> This specifies the alignment for a floating point type of a given bit <size>. Only
values of <size> that are supported by the target will work. 32 (float) and 64 (double) are supported on all
targets; 80 or 128 (different flavors of long double) are also supported on some targets.

a:<abi>:<pref> This specifies the alignment for an object of aggregate type.

m:<mangling> If present, specifies that llvm names are mangled in the output. The options are

• e: ELF mangling: Private symbols get a .L prefix.

• m: Mips mangling: Private symbols get a $ prefix.

• o: Mach-O mangling: Private symbols get L prefix. Other symbols get a _ prefix.

• w: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall functions also get a suffix based on
the frame size.

• x: Windows x86 COFF prefix: Similar to Windows COFF, but use a _ prefix for __cdecl functions.

n<size1>:<size2>:<size3>... This specifies a set of native integer widths for the target CPU in bits. For
example, it might contain n32 for 32-bit PowerPC, n32:64 for PowerPC 64, or n8:16:32:64 for X86-64.
Elements of this set are considered to support most general arithmetic operations efficiently.

On every specification that takes a <abi>:<pref>, specifying the <pref> alignment is optional. If omitted, the
preceding : should be omitted too and <pref> will be equal to <abi>.

When constructing the data layout for a given target, LLVM starts with a default set of specifications which are then
(possibly) overridden by the specifications in the datalayout keyword. The default specifications are given in this
list:

• E - big endian

• p:64:64:64 - 64-bit pointers with 64-bit alignment.

• p[n]:64:64:64 - Other address spaces are assumed to be the same as the default address space.

• S0 - natural stack alignment is unspecified

• i1:8:8 - i1 is 8-bit (byte) aligned

• i8:8:8 - i8 is 8-bit (byte) aligned

• i16:16:16 - i16 is 16-bit aligned

• i32:32:32 - i32 is 32-bit aligned

• i64:32:64 - i64 has ABI alignment of 32-bits but preferred alignment of 64-bits

• f16:16:16 - half is 16-bit aligned

52 Chapter 1. LLVM Design & Overview



LLVM Documentation, Release 3.9

• f32:32:32 - float is 32-bit aligned

• f64:64:64 - double is 64-bit aligned

• f128:128:128 - quad is 128-bit aligned

• v64:64:64 - 64-bit vector is 64-bit aligned

• v128:128:128 - 128-bit vector is 128-bit aligned

• a:0:64 - aggregates are 64-bit aligned

When LLVM is determining the alignment for a given type, it uses the following rules:

1. If the type sought is an exact match for one of the specifications, that specification is used.

2. If no match is found, and the type sought is an integer type, then the smallest integer type that is larger than
the bitwidth of the sought type is used. If none of the specifications are larger than the bitwidth then the largest
integer type is used. For example, given the default specifications above, the i7 type will use the alignment of i8
(next largest) while both i65 and i256 will use the alignment of i64 (largest specified).

3. If no match is found, and the type sought is a vector type, then the largest vector type that is smaller than the
sought vector type will be used as a fall back. This happens because <128 x double> can be implemented in
terms of 64 <2 x double>, for example.

The function of the data layout string may not be what you expect. Notably, this is not a specification from the frontend
of what alignment the code generator should use.

Instead, if specified, the target data layout is required to match what the ultimate code generator expects. This string is
used by the mid-level optimizers to improve code, and this only works if it matches what the ultimate code generator
uses. There is no way to generate IR that does not embed this target-specific detail into the IR. If you don’t specify
the string, the default specifications will be used to generate a Data Layout and the optimization phases will operate
accordingly and introduce target specificity into the IR with respect to these default specifications.

Target Triple

A module may specify a target triple string that describes the target host. The syntax for the target triple is simply:

target triple = "x86_64-apple-macosx10.7.0"

The target triple string consists of a series of identifiers delimited by the minus sign character (‘-‘). The canonical
forms are:

ARCHITECTURE-VENDOR-OPERATING_SYSTEM
ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT

This information is passed along to the backend so that it generates code for the proper architecture. It’s possible to
override this on the command line with the -mtriple command line option.

Pointer Aliasing Rules

Any memory access must be done through a pointer value associated with an address range of the memory access,
otherwise the behavior is undefined. Pointer values are associated with address ranges according to the following
rules:

• A pointer value is associated with the addresses associated with any value it is based on.

• An address of a global variable is associated with the address range of the variable’s storage.

• The result value of an allocation instruction is associated with the address range of the allocated storage.
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• A null pointer in the default address-space is associated with no address.

• An integer constant other than zero or a pointer value returned from a function not defined within LLVM may be
associated with address ranges allocated through mechanisms other than those provided by LLVM. Such ranges
shall not overlap with any ranges of addresses allocated by mechanisms provided by LLVM.

A pointer value is based on another pointer value according to the following rules:

• A pointer value formed from a getelementptr operation is based on the first value operand of the
getelementptr.

• The result value of a bitcast is based on the operand of the bitcast.

• A pointer value formed by an inttoptr is based on all pointer values that contribute (directly or indirectly)
to the computation of the pointer’s value.

• The “based on” relationship is transitive.

Note that this definition of “based” is intentionally similar to the definition of “based” in C99, though it is slightly
weaker.

LLVM IR does not associate types with memory. The result type of a load merely indicates the size and alignment of
the memory from which to load, as well as the interpretation of the value. The first operand type of a store similarly
only indicates the size and alignment of the store.

Consequently, type-based alias analysis, aka TBAA, aka -fstrict-aliasing, is not applicable to general un-
adorned LLVM IR. Metadata may be used to encode additional information which specialized optimization passes
may use to implement type-based alias analysis.

Volatile Memory Accesses

Certain memory accesses, such as load‘s, store‘s, and llvm.memcpy‘s may be marked volatile. The optimizers
must not change the number of volatile operations or change their order of execution relative to other volatile opera-
tions. The optimizers may change the order of volatile operations relative to non-volatile operations. This is not Java’s
“volatile” and has no cross-thread synchronization behavior.

IR-level volatile loads and stores cannot safely be optimized into llvm.memcpy or llvm.memmove intrinsics even when
those intrinsics are flagged volatile. Likewise, the backend should never split or merge target-legal volatile load/store
instructions.

Rationale

Platforms may rely on volatile loads and stores of natively supported data width to be executed as single instruction.
For example, in C this holds for an l-value of volatile primitive type with native hardware support, but not necessarily
for aggregate types. The frontend upholds these expectations, which are intentionally unspecified in the IR. The rules
above ensure that IR transformations do not violate the frontend’s contract with the language.

Memory Model for Concurrent Operations

The LLVM IR does not define any way to start parallel threads of execution or to register signal handlers. Nonetheless,
there are platform-specific ways to create them, and we define LLVM IR’s behavior in their presence. This model is
inspired by the C++0x memory model.

For a more informal introduction to this model, see the LLVM Atomic Instructions and Concurrency Guide.

We define a happens-before partial order as the least partial order that

• Is a superset of single-thread program order, and
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• When a synchronizes-with b, includes an edge from a to b. Synchronizes-with pairs are introduced by platform-
specific techniques, like pthread locks, thread creation, thread joining, etc., and by atomic instructions. (See
also Atomic Memory Ordering Constraints).

Note that program order does not introduce happens-before edges between a thread and signals executing inside that
thread.

Every (defined) read operation (load instructions, memcpy, atomic loads/read-modify-writes, etc.) R reads a series of
bytes written by (defined) write operations (store instructions, atomic stores/read-modify-writes, memcpy, etc.). For
the purposes of this section, initialized globals are considered to have a write of the initializer which is atomic and
happens before any other read or write of the memory in question. For each byte of a read R, Rbyte may see any write
to the same byte, except:

• If write1 happens before write2, and write2 happens before Rbyte, then Rbyte does not see write1.

• If Rbyte happens before write3, then Rbyte does not see write3.

Given that definition, Rbyte is defined as follows:

• If R is volatile, the result is target-dependent. (Volatile is supposed to give guarantees which can support
sig_atomic_t in C/C++, and may be used for accesses to addresses that do not behave like normal memory.
It does not generally provide cross-thread synchronization.)

• Otherwise, if there is no write to the same byte that happens before Rbyte, Rbyte returns undef for that byte.

• Otherwise, if Rbyte may see exactly one write, Rbyte returns the value written by that write.

• Otherwise, if R is atomic, and all the writes Rbyte may see are atomic, it chooses one of the values written. See
the Atomic Memory Ordering Constraints section for additional constraints on how the choice is made.

• Otherwise Rbyte returns undef.

R returns the value composed of the series of bytes it read. This implies that some bytes within the value may be
undef without the entire value being undef. Note that this only defines the semantics of the operation; it doesn’t
mean that targets will emit more than one instruction to read the series of bytes.

Note that in cases where none of the atomic intrinsics are used, this model places only one restriction on IR trans-
formations on top of what is required for single-threaded execution: introducing a store to a byte which might not
otherwise be stored is not allowed in general. (Specifically, in the case where another thread might write to and read
from an address, introducing a store can change a load that may see exactly one write into a load that may see multiple
writes.)

Atomic Memory Ordering Constraints

Atomic instructions (cmpxchg, atomicrmw, fence, atomic load, and atomic store) take ordering parameters that deter-
mine which other atomic instructions on the same address they synchronize with. These semantics are borrowed from
Java and C++0x, but are somewhat more colloquial. If these descriptions aren’t precise enough, check those specs (see
spec references in the atomics guide). fence instructions treat these orderings somewhat differently since they don’t
take an address. See that instruction’s documentation for details.

For a simpler introduction to the ordering constraints, see the LLVM Atomic Instructions and Concurrency Guide.

unordered The set of values that can be read is governed by the happens-before partial order. A value cannot be
read unless some operation wrote it. This is intended to provide a guarantee strong enough to model Java’s non-
volatile shared variables. This ordering cannot be specified for read-modify-write operations; it is not strong
enough to make them atomic in any interesting way.

monotonic In addition to the guarantees of unordered, there is a single total order for modifications by
monotonic operations on each address. All modification orders must be compatible with the happens-before
order. There is no guarantee that the modification orders can be combined to a global total order for the whole
program (and this often will not be possible). The read in an atomic read-modify-write operation (cmpxchg
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and atomicrmw) reads the value in the modification order immediately before the value it writes. If one atomic
read happens before another atomic read of the same address, the later read must see the same value or a later
value in the address’s modification order. This disallows reordering of monotonic (or stronger) operations on
the same address. If an address is written monotonic-ally by one thread, and other threads monotonic-ally
read that address repeatedly, the other threads must eventually see the write. This corresponds to the C++0x/C1x
memory_order_relaxed.

acquire In addition to the guarantees of monotonic, a synchronizes-with edge may be formed with a release
operation. This is intended to model C++’s memory_order_acquire.

release In addition to the guarantees of monotonic, if this operation writes a value which is subsequently read by
an acquire operation, it synchronizes-with that operation. (This isn’t a complete description; see the C++0x
definition of a release sequence.) This corresponds to the C++0x/C1x memory_order_release.

acq_rel (acquire+release) Acts as both an acquire and release operation on its address. This corresponds to
the C++0x/C1x memory_order_acq_rel.

seq_cst (sequentially consistent) In addition to the guarantees of acq_rel (acquire for an operation that only
reads, release for an operation that only writes), there is a global total order on all sequentially-consistent
operations on all addresses, which is consistent with the happens-before partial order and with the modification
orders of all the affected addresses. Each sequentially-consistent read sees the last preceding write to the same
address in this global order. This corresponds to the C++0x/C1x memory_order_seq_cst and Java volatile.

If an atomic operation is marked singlethread, it only synchronizes with or participates in modification and
seq_cst total orderings with other operations running in the same thread (for example, in signal handlers).

Fast-Math Flags

LLVM IR floating-point binary ops (fadd, fsub, fmul, fdiv, frem, fcmp) have the following flags that can be set to enable
otherwise unsafe floating point operations

nnan No NaNs - Allow optimizations to assume the arguments and result are not NaN. Such optimizations are
required to retain defined behavior over NaNs, but the value of the result is undefined.

ninf No Infs - Allow optimizations to assume the arguments and result are not +/-Inf. Such optimizations are
required to retain defined behavior over +/-Inf, but the value of the result is undefined.

nsz No Signed Zeros - Allow optimizations to treat the sign of a zero argument or result as insignificant.

arcp Allow Reciprocal - Allow optimizations to use the reciprocal of an argument rather than perform division.

fast Fast - Allow algebraically equivalent transformations that may dramatically change results in floating point
(e.g. reassociate). This flag implies all the others.

Use-list Order Directives

Use-list directives encode the in-memory order of each use-list, allowing the order to be recreated.
<order-indexes> is a comma-separated list of indexes that are assigned to the referenced value’s uses. The
referenced value’s use-list is immediately sorted by these indexes.

Use-list directives may appear at function scope or global scope. They are not instructions, and have no effect on the
semantics of the IR. When they’re at function scope, they must appear after the terminator of the final basic block.

If basic blocks have their address taken via blockaddress() expressions, uselistorder_bb can be used to
reorder their use-lists from outside their function’s scope.

Syntax
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uselistorder <ty> <value>, { <order-indexes> }
uselistorder_bb @function, %block { <order-indexes> }

Examples

define void @foo(i32 %arg1, i32 %arg2) {
entry:

; ... instructions ...
bb:

; ... instructions ...

; At function scope.
uselistorder i32 %arg1, { 1, 0, 2 }
uselistorder label %bb, { 1, 0 }

}

; At global scope.
uselistorder i32* @global, { 1, 2, 0 }
uselistorder i32 7, { 1, 0 }
uselistorder i32 (i32) @bar, { 1, 0 }
uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }

Source Filename

The source filename string is set to the original module identifier, which will be the name of the compiled source file
when compiling from source through the clang front end, for example. It is then preserved through the IR and bitcode.

This is currently necessary to generate a consistent unique global identifier for local functions used in profile data,
which prepends the source file name to the local function name.

The syntax for the source file name is simply:

source_filename = "/path/to/source.c"

Type System

The LLVM type system is one of the most important features of the intermediate representation. Being typed enables a
number of optimizations to be performed on the intermediate representation directly, without having to do extra analy-
ses on the side before the transformation. A strong type system makes it easier to read the generated code and enables
novel analyses and transformations that are not feasible to perform on normal three address code representations.

Void Type

Overview

The void type does not represent any value and has no size.

Syntax

void
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Function Type

Overview

The function type can be thought of as a function signature. It consists of a return type and a list of formal parameter
types. The return type of a function type is a void type or first class type — except for label and metadata types.

Syntax

<returntype> (<parameter list>)

...where ‘<parameter list>‘ is a comma-separated list of type specifiers. Optionally, the parameter list may
include a type ..., which indicates that the function takes a variable number of arguments. Variable argument
functions can access their arguments with the variable argument handling intrinsic functions. ‘<returntype>‘ is
any type except label and metadata.

Examples

i32 (i32) function taking an i32, returning an i32
float (i16,
i32 *) *

Pointer to a function that takes an i16 and a pointer to i32, returning float.

i32 (i8*,
...)

A vararg function that takes at least one pointer to i8 (char in C), which returns an integer.
This is the signature for printf in LLVM.

{i32, i32}
(i32)

A function taking an i32, returning a structure containing two i32 values

First Class Types

The first class types are perhaps the most important. Values of these types are the only ones which can be produced
by instructions.

Single Value Types

These are the types that are valid in registers from CodeGen’s perspective.

Integer Type

Overview

The integer type is a very simple type that simply specifies an arbitrary bit width for the integer type desired. Any bit
width from 1 bit to 223-1 (about 8 million) can be specified.

Syntax

iN

The number of bits the integer will occupy is specified by the N value.

Examples:

i1 a single-bit integer.
i32 a 32-bit integer.
i1942652 a really big integer of over 1 million bits.
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Floating Point Types

Type Description
half 16-bit floating point value
float 32-bit floating point value
double 64-bit floating point value
fp128 128-bit floating point value (112-bit mantissa)
x86_fp80 80-bit floating point value (X87)
ppc_fp128 128-bit floating point value (two 64-bits)

X86_mmx Type

Overview

The x86_mmx type represents a value held in an MMX register on an x86 machine. The operations allowed on
it are quite limited: parameters and return values, load and store, and bitcast. User-specified MMX instructions are
represented as intrinsic or asm calls with arguments and/or results of this type. There are no arrays, vectors or constants
of this type.

Syntax

x86_mmx

Pointer Type

Overview

The pointer type is used to specify memory locations. Pointers are commonly used to reference objects in memory.

Pointer types may have an optional address space attribute defining the numbered address space where the pointed-to
object resides. The default address space is number zero. The semantics of non-zero address spaces are target-specific.

Note that LLVM does not permit pointers to void (void*) nor does it permit pointers to labels (label*). Use i8*
instead.

Syntax

<type> *

Examples

[4 x i32]* A pointer to array of four i32 values.
i32 (i32*) * A pointer to a function that takes an i32*, returning an i32.
i32 addrspace(5)* A pointer to an i32 value that resides in address space #5.

Vector Type

Overview

A vector type is a simple derived type that represents a vector of elements. Vector types are used when multiple
primitive data are operated in parallel using a single instruction (SIMD). A vector type requires a size (number of
elements) and an underlying primitive data type. Vector types are considered first class.

Syntax
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< <# elements> x <elementtype> >

The number of elements is a constant integer value larger than 0; elementtype may be any integer, floating point or
pointer type. Vectors of size zero are not allowed.

Examples

<4 x i32> Vector of 4 32-bit integer values.
<8 x float> Vector of 8 32-bit floating-point values.
<2 x i64> Vector of 2 64-bit integer values.
<4 x i64*> Vector of 4 pointers to 64-bit integer values.

Label Type

Overview

The label type represents code labels.

Syntax

label

Token Type

Overview

The token type is used when a value is associated with an instruction but all uses of the value must not attempt to
introspect or obscure it. As such, it is not appropriate to have a phi or select of type token.

Syntax

token

Metadata Type

Overview

The metadata type represents embedded metadata. No derived types may be created from metadata except for function
arguments.

Syntax

metadata

Aggregate Types

Aggregate Types are a subset of derived types that can contain multiple member types. Arrays and structs are aggregate
types. Vectors are not considered to be aggregate types.
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Array Type

Overview

The array type is a very simple derived type that arranges elements sequentially in memory. The array type requires a
size (number of elements) and an underlying data type.

Syntax

[<# elements> x <elementtype>]

The number of elements is a constant integer value; elementtype may be any type with a size.

Examples

[40 x i32] Array of 40 32-bit integer values.
[41 x i32] Array of 41 32-bit integer values.
[4 x i8] Array of 4 8-bit integer values.

Here are some examples of multidimensional arrays:

[3 x [4 x i32]] 3x4 array of 32-bit integer values.
[12 x [10 x float]] 12x10 array of single precision floating point values.
[2 x [3 x [4 x i16]]] 2x3x4 array of 16-bit integer values.

There is no restriction on indexing beyond the end of the array implied by a static type (though there are restrictions on
indexing beyond the bounds of an allocated object in some cases). This means that single-dimension ‘variable sized
array’ addressing can be implemented in LLVM with a zero length array type. An implementation of ‘pascal style
arrays’ in LLVM could use the type “{ i32, [0 x float]}”, for example.

Structure Type

Overview

The structure type is used to represent a collection of data members together in memory. The elements of a structure
may be any type that has a size.

Structures in memory are accessed using ‘load‘ and ‘store‘ by getting a pointer to a field with the
‘getelementptr‘ instruction. Structures in registers are accessed using the ‘extractvalue‘ and
‘insertvalue‘ instructions.

Structures may optionally be “packed” structures, which indicate that the alignment of the struct is one byte, and that
there is no padding between the elements. In non-packed structs, padding between field types is inserted as defined by
the DataLayout string in the module, which is required to match what the underlying code generator expects.

Structures can either be “literal” or “identified”. A literal structure is defined inline with other types (e.g. {i32,
i32}*) whereas identified types are always defined at the top level with a name. Literal types are uniqued by their
contents and can never be recursive or opaque since there is no way to write one. Identified types can be recursive, can
be opaqued, and are never uniqued.

Syntax

%T1 = type { <type list> } ; Identified normal struct type
%T2 = type <{ <type list> }> ; Identified packed struct type

Examples
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{ i32, i32, i32
}

A triple of three i32 values

{ float, i32
(i32) * }

A pair, where the first element is a float and the second element is a pointer to a
function that takes an i32, returning an i32.

<{ i8, i32 }> A packed struct known to be 5 bytes in size.

Opaque Structure Types

Overview

Opaque structure types are used to represent named structure types that do not have a body specified. This corresponds
(for example) to the C notion of a forward declared structure.

Syntax

%X = type opaque
%52 = type opaque

Examples

opaque An opaque type.

Constants

LLVM has several different basic types of constants. This section describes them all and their syntax.

Simple Constants

Boolean constants The two strings ‘true‘ and ‘false‘ are both valid constants of the i1 type.

Integer constants Standard integers (such as ‘4’) are constants of the integer type. Negative numbers may be used
with integer types.

Floating point constants Floating point constants use standard decimal notation (e.g. 123.421), exponential notation
(e.g. 1.23421e+2), or a more precise hexadecimal notation (see below). The assembler requires the exact
decimal value of a floating-point constant. For example, the assembler accepts 1.25 but rejects 1.3 because 1.3
is a repeating decimal in binary. Floating point constants must have a floating point type.

Null pointer constants The identifier ‘null‘ is recognized as a null pointer constant and must be of pointer type.

Token constants The identifier ‘none‘ is recognized as an empty token constant and must be of token type.

The one non-intuitive notation for constants is the hexadecimal form of floating point constants. For example, the form
‘double 0x432ff973cafa8000‘ is equivalent to (but harder to read than) ‘double 4.5e+15‘. The only time
hexadecimal floating point constants are required (and the only time that they are generated by the disassembler) is
when a floating point constant must be emitted but it cannot be represented as a decimal floating point number in a
reasonable number of digits. For example, NaN’s, infinities, and other special values are represented in their IEEE
hexadecimal format so that assembly and disassembly do not cause any bits to change in the constants.

When using the hexadecimal form, constants of types half, float, and double are represented using the 16-digit form
shown above (which matches the IEEE754 representation for double); half and float values must, however, be exactly
representable as IEEE 754 half and single precision, respectively. Hexadecimal format is always used for long double,
and there are three forms of long double. The 80-bit format used by x86 is represented as 0xK followed by 20
hexadecimal digits. The 128-bit format used by PowerPC (two adjacent doubles) is represented by 0xM followed by
32 hexadecimal digits. The IEEE 128-bit format is represented by 0xL followed by 32 hexadecimal digits. Long
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doubles will only work if they match the long double format on your target. The IEEE 16-bit format (half precision)
is represented by 0xH followed by 4 hexadecimal digits. All hexadecimal formats are big-endian (sign bit at the left).

There are no constants of type x86_mmx.

Complex Constants

Complex constants are a (potentially recursive) combination of simple constants and smaller complex constants.

Structure constants Structure constants are represented with notation similar to structure type definitions (a comma
separated list of elements, surrounded by braces ({})). For example: “{ i32 4, float 17.0, i32*
@G }”, where “@G” is declared as “@G = external global i32”. Structure constants must have struc-
ture type, and the number and types of elements must match those specified by the type.

Array constants Array constants are represented with notation similar to array type definitions (a comma separated
list of elements, surrounded by square brackets ([])). For example: “[ i32 42, i32 11, i32 74 ]”.
Array constants must have array type, and the number and types of elements must match those specified by the
type. As a special case, character array constants may also be represented as a double-quoted string using the c
prefix. For example: “c"Hello World\0A\00"”.

Vector constants Vector constants are represented with notation similar to vector type definitions (a comma separated
list of elements, surrounded by less-than/greater-than’s (<>)). For example: “< i32 42, i32 11, i32
74, i32 100 >”. Vector constants must have vector type, and the number and types of elements must match
those specified by the type.

Zero initialization The string ‘zeroinitializer‘ can be used to zero initialize a value to zero of any type,
including scalar and aggregate types. This is often used to avoid having to print large zero initializers (e.g. for
large arrays) and is always exactly equivalent to using explicit zero initializers.

Metadata node A metadata node is a constant tuple without types. For example: “!{!0, !{!2, !0}, !
"test"}”. Metadata can reference constant values, for example: “!{!0, i32 0, i8* @global, i64
(i64)* @function, !"str"}”. Unlike other typed constants that are meant to be interpreted as part of
the instruction stream, metadata is a place to attach additional information such as debug info.

Global Variable and Function Addresses

The addresses of global variables and functions are always implicitly valid (link-time) constants. These constants
are explicitly referenced when the identifier for the global is used and always have pointer type. For example, the
following is a legal LLVM file:

@X = global i32 17
@Y = global i32 42
@Z = global [2 x i32*] [ i32* @X, i32* @Y ]

Undefined Values

The string ‘undef‘ can be used anywhere a constant is expected, and indicates that the user of the value may receive
an unspecified bit-pattern. Undefined values may be of any type (other than ‘label‘ or ‘void‘) and be used anywhere
a constant is permitted.

Undefined values are useful because they indicate to the compiler that the program is well defined no matter what
value is used. This gives the compiler more freedom to optimize. Here are some examples of (potentially surprising)
transformations that are valid (in pseudo IR):
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%A = add %X, undef
%B = sub %X, undef
%C = xor %X, undef

Safe:
%A = undef
%B = undef
%C = undef

This is safe because all of the output bits are affected by the undef bits. Any output bit can have a zero or one depending
on the input bits.

%A = or %X, undef
%B = and %X, undef

Safe:
%A = -1
%B = 0

Unsafe:
%A = undef
%B = undef

These logical operations have bits that are not always affected by the input. For example, if %X has a zero bit, then
the output of the ‘and‘ operation will always be a zero for that bit, no matter what the corresponding bit from the
‘undef‘ is. As such, it is unsafe to optimize or assume that the result of the ‘and‘ is ‘undef‘. However, it is safe to
assume that all bits of the ‘undef‘ could be 0, and optimize the ‘and‘ to 0. Likewise, it is safe to assume that all the
bits of the ‘undef‘ operand to the ‘or‘ could be set, allowing the ‘or‘ to be folded to -1.

%A = select undef, %X, %Y
%B = select undef, 42, %Y
%C = select %X, %Y, undef

Safe:
%A = %X (or %Y)
%B = 42 (or %Y)
%C = %Y

Unsafe:
%A = undef
%B = undef
%C = undef

This set of examples shows that undefined ‘select‘ (and conditional branch) conditions can go either way, but they
have to come from one of the two operands. In the %A example, if %X and %Y were both known to have a clear low bit,
then %A would have to have a cleared low bit. However, in the %C example, the optimizer is allowed to assume that
the ‘undef‘ operand could be the same as %Y, allowing the whole ‘select‘ to be eliminated.

%A = xor undef, undef

%B = undef
%C = xor %B, %B

%D = undef
%E = icmp slt %D, 4
%F = icmp gte %D, 4

Safe:
%A = undef
%B = undef
%C = undef
%D = undef
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%E = undef
%F = undef

This example points out that two ‘undef‘ operands are not necessarily the same. This can be surprising to people
(and also matches C semantics) where they assume that “X^X” is always zero, even if X is undefined. This isn’t true
for a number of reasons, but the short answer is that an ‘undef‘ “variable” can arbitrarily change its value over its
“live range”. This is true because the variable doesn’t actually have a live range. Instead, the value is logically read
from arbitrary registers that happen to be around when needed, so the value is not necessarily consistent over time. In
fact, %A and %C need to have the same semantics or the core LLVM “replace all uses with” concept would not hold.

%A = fdiv undef, %X
%B = fdiv %X, undef

Safe:
%A = undef

b: unreachable

These examples show the crucial difference between an undefined value and undefined behavior. An undefined value
(like ‘undef‘) is allowed to have an arbitrary bit-pattern. This means that the %A operation can be constant folded
to ‘undef‘, because the ‘undef‘ could be an SNaN, and fdiv is not (currently) defined on SNaN’s. However, in
the second example, we can make a more aggressive assumption: because the undef is allowed to be an arbitrary
value, we are allowed to assume that it could be zero. Since a divide by zero has undefined behavior, we are allowed
to assume that the operation does not execute at all. This allows us to delete the divide and all code after it. Because
the undefined operation “can’t happen”, the optimizer can assume that it occurs in dead code.

a: store undef -> %X
b: store %X -> undef
Safe:
a: <deleted>
b: unreachable

These examples reiterate the fdiv example: a store of an undefined value can be assumed to not have any effect; we
can assume that the value is overwritten with bits that happen to match what was already there. However, a store to an
undefined location could clobber arbitrary memory, therefore, it has undefined behavior.

Poison Values

Poison values are similar to undef values, however they also represent the fact that an instruction or constant expression
that cannot evoke side effects has nevertheless detected a condition that results in undefined behavior.

There is currently no way of representing a poison value in the IR; they only exist when produced by operations such
as add with the nsw flag.

Poison value behavior is defined in terms of value dependence:

• Values other than phi nodes depend on their operands.

• Phi nodes depend on the operand corresponding to their dynamic predecessor basic block.

• Function arguments depend on the corresponding actual argument values in the dynamic callers of their func-
tions.

• Call instructions depend on the ret instructions that dynamically transfer control back to them.

• Invoke instructions depend on the ret, resume, or exception-throwing call instructions that dynamically transfer
control back to them.

• Non-volatile loads and stores depend on the most recent stores to all of the referenced memory addresses,
following the order in the IR (including loads and stores implied by intrinsics such as @llvm.memcpy.)
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• An instruction with externally visible side effects depends on the most recent preceding instruction with exter-
nally visible side effects, following the order in the IR. (This includes volatile operations.)

• An instruction control-depends on a terminator instruction if the terminator instruction has multiple successors
and the instruction is always executed when control transfers to one of the successors, and may not be executed
when control is transferred to another.

• Additionally, an instruction also control-depends on a terminator instruction if the set of instructions it otherwise
depends on would be different if the terminator had transferred control to a different successor.

• Dependence is transitive.

Poison values have the same behavior as undef values, with the additional effect that any instruction that has a depen-
dence on a poison value has undefined behavior.

Here are some examples:

entry:
%poison = sub nuw i32 0, 1 ; Results in a poison value.
%still_poison = and i32 %poison, 0 ; 0, but also poison.
%poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned

store i32 %poison, i32* @g ; Poison value stored to memory.
%poison2 = load i32, i32* @g ; Poison value loaded back from memory.

store volatile i32 %poison, i32* @g ; External observation; undefined behavior.

%narrowaddr = bitcast i32* @g to i16*
%wideaddr = bitcast i32* @g to i64*
%poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
%poison4 = load i64, i64* %wideaddr ; Returns a poison value.

%cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
br i1 %cmp, label %true, label %end ; Branch to either destination.

true:
store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so

; it has undefined behavior.
br label %end

end:
%p = phi i32 [ 0, %entry ], [ 1, %true ]

; Both edges into this PHI are
; control-dependent on %cmp, so this
; always results in a poison value.

store volatile i32 0, i32* @g ; This would depend on the store in %true
; if %cmp is true, or the store in %entry
; otherwise, so this is undefined behavior.

br i1 %cmp, label %second_true, label %second_end
; The same branch again, but this time the
; true block doesn't have side effects.

second_true:
; No side effects!
ret void

second_end:
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store volatile i32 0, i32* @g ; This time, the instruction always depends
; on the store in %end. Also, it is
; control-equivalent to %end, so this is
; well-defined (ignoring earlier undefined
; behavior in this example).

Addresses of Basic Blocks

blockaddress(@function, %block)

The ‘blockaddress‘ constant computes the address of the specified basic block in the specified function, and
always has an i8* type. Taking the address of the entry block is illegal.

This value only has defined behavior when used as an operand to the ‘indirectbr‘ instruction, or for comparisons against
null. Pointer equality tests between labels addresses results in undefined behavior — though, again, comparison against
null is ok, and no label is equal to the null pointer. This may be passed around as an opaque pointer sized value as
long as the bits are not inspected. This allows ptrtoint and arithmetic to be performed on these values so long as
the original value is reconstituted before the indirectbr instruction.

Finally, some targets may provide defined semantics when using the value as the operand to an inline assembly, but
that is target specific.

Constant Expressions

Constant expressions are used to allow expressions involving other constants to be used as constants. Constant expres-
sions may be of any first class type and may involve any LLVM operation that does not have side effects (e.g. load
and call are not supported). The following is the syntax for constant expressions:

trunc (CST to TYPE) Truncate a constant to another type. The bit size of CST must be larger than the bit size
of TYPE. Both types must be integers.

zext (CST to TYPE) Zero extend a constant to another type. The bit size of CST must be smaller than the bit
size of TYPE. Both types must be integers.

sext (CST to TYPE) Sign extend a constant to another type. The bit size of CST must be smaller than the bit
size of TYPE. Both types must be integers.

fptrunc (CST to TYPE) Truncate a floating point constant to another floating point type. The size of CST
must be larger than the size of TYPE. Both types must be floating point.

fpext (CST to TYPE) Floating point extend a constant to another type. The size of CST must be smaller or
equal to the size of TYPE. Both types must be floating point.

fptoui (CST to TYPE) Convert a floating point constant to the corresponding unsigned integer constant. TYPE
must be a scalar or vector integer type. CST must be of scalar or vector floating point type. Both CST and TYPE
must be scalars, or vectors of the same number of elements. If the value won’t fit in the integer type, the results
are undefined.

fptosi (CST to TYPE) Convert a floating point constant to the corresponding signed integer constant. TYPE
must be a scalar or vector integer type. CST must be of scalar or vector floating point type. Both CST and TYPE
must be scalars, or vectors of the same number of elements. If the value won’t fit in the integer type, the results
are undefined.

uitofp (CST to TYPE) Convert an unsigned integer constant to the corresponding floating point constant.
TYPE must be a scalar or vector floating point type. CST must be of scalar or vector integer type. Both
CST and TYPE must be scalars, or vectors of the same number of elements. If the value won’t fit in the floating
point type, the results are undefined.
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sitofp (CST to TYPE) Convert a signed integer constant to the corresponding floating point constant. TYPE
must be a scalar or vector floating point type. CST must be of scalar or vector integer type. Both CST and TYPE
must be scalars, or vectors of the same number of elements. If the value won’t fit in the floating point type, the
results are undefined.

ptrtoint (CST to TYPE) Convert a pointer typed constant to the corresponding integer constant. TYPE must
be an integer type. CST must be of pointer type. The CST value is zero extended, truncated, or unchanged to
make it fit in TYPE.

inttoptr (CST to TYPE) Convert an integer constant to a pointer constant. TYPE must be a pointer type.
CST must be of integer type. The CST value is zero extended, truncated, or unchanged to make it fit in a pointer
size. This one is really dangerous!

bitcast (CST to TYPE) Convert a constant, CST, to another TYPE. The constraints of the operands are the
same as those for the bitcast instruction.

addrspacecast (CST to TYPE) Convert a constant pointer or constant vector of pointer, CST, to another
TYPE in a different address space. The constraints of the operands are the same as those for the addrspacecast
instruction.

getelementptr (TY, CSTPTR, IDX0, IDX1, ...), getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)
Perform the getelementptr operation on constants. As with the getelementptr instruction, the index list may
have zero or more indexes, which are required to make sense for the type of “pointer to TY”.

select (COND, VAL1, VAL2) Perform the select operation on constants.

icmp COND (VAL1, VAL2) Performs the icmp operation on constants.

fcmp COND (VAL1, VAL2) Performs the fcmp operation on constants.

extractelement (VAL, IDX) Perform the extractelement operation on constants.

insertelement (VAL, ELT, IDX) Perform the insertelement operation on constants.

shufflevector (VEC1, VEC2, IDXMASK) Perform the shufflevector operation on constants.

extractvalue (VAL, IDX0, IDX1, ...) Perform the extractvalue operation on constants. The index list
is interpreted in a similar manner as indices in a ‘getelementptr‘ operation. At least one index value must be
specified.

insertvalue (VAL, ELT, IDX0, IDX1, ...) Perform the insertvalue operation on constants. The index
list is interpreted in a similar manner as indices in a ‘getelementptr‘ operation. At least one index value must be
specified.

OPCODE (LHS, RHS) Perform the specified operation of the LHS and RHS constants. OPCODE may be any of
the binary or bitwise binary operations. The constraints on operands are the same as those for the corresponding
instruction (e.g. no bitwise operations on floating point values are allowed).

Other Values

Inline Assembler Expressions

LLVM supports inline assembler expressions (as opposed to Module-Level Inline Assembly) through the use of a
special value. This value represents the inline assembler as a template string (containing the instructions to emit), a
list of operand constraints (stored as a string), a flag that indicates whether or not the inline asm expression has side
effects, and a flag indicating whether the function containing the asm needs to align its stack conservatively.

The template string supports argument substitution of the operands using “$” followed by a number, to indicate
substitution of the given register/memory location, as specified by the constraint string. “${NUM:MODIFIER}”
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may also be used, where MODIFIER is a target-specific annotation for how to print the operand (See Asm template
argument modifiers).

A literal “$” may be included by using “$$” in the template. To include other special characters into the output, the
usual “\XX” escapes may be used, just as in other strings. Note that after template substitution, the resulting assembly
string is parsed by LLVM’s integrated assembler unless it is disabled – even when emitting a .s file – and thus must
contain assembly syntax known to LLVM.

LLVM’s support for inline asm is modeled closely on the requirements of Clang’s GCC-compatible inline-asm support.
Thus, the feature-set and the constraint and modifier codes listed here are similar or identical to those in GCC’s inline
asm support. However, to be clear, the syntax of the template and constraint strings described here is not the same as
the syntax accepted by GCC and Clang, and, while most constraint letters are passed through as-is by Clang, some get
translated to other codes when converting from the C source to the LLVM assembly.

An example inline assembler expression is:

i32 (i32) asm "bswap $0", "=r,r"

Inline assembler expressions may only be used as the callee operand of a call or an invoke instruction. Thus, typically
we have:

%X = call i32 asm "bswap $0", "=r,r"(i32 %Y)

Inline asms with side effects not visible in the constraint list must be marked as having side effects. This is done
through the use of the ‘sideeffect‘ keyword, like so:

call void asm sideeffect "eieio", ""()

In some cases inline asms will contain code that will not work unless the stack is aligned in some way, such as calls or
SSE instructions on x86, yet will not contain code that does that alignment within the asm. The compiler should make
conservative assumptions about what the asm might contain and should generate its usual stack alignment code in the
prologue if the ‘alignstack‘ keyword is present:

call void asm alignstack "eieio", ""()

Inline asms also support using non-standard assembly dialects. The assumed dialect is ATT. When the
‘inteldialect‘ keyword is present, the inline asm is using the Intel dialect. Currently, ATT and Intel are the
only supported dialects. An example is:

call void asm inteldialect "eieio", ""()

If multiple keywords appear the ‘sideeffect‘ keyword must come first, the ‘alignstack‘ keyword second and
the ‘inteldialect‘ keyword last.

Inline Asm Constraint String

The constraint list is a comma-separated string, each element containing one or more constraint codes.

For each element in the constraint list an appropriate register or memory operand will be chosen, and it will be made
available to assembly template string expansion as $0 for the first constraint in the list, $1 for the second, etc.

There are three different types of constraints, which are distinguished by a prefix symbol in front of the constraint
code: Output, Input, and Clobber. The constraints must always be given in that order: outputs first, then inputs, then
clobbers. They cannot be intermingled.

There are also three different categories of constraint codes:
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• Register constraint. This is either a register class, or a fixed physical register. This kind of constraint will allocate
a register, and if necessary, bitcast the argument or result to the appropriate type.

• Memory constraint. This kind of constraint is for use with an instruction taking a memory operand. Different
constraints allow for different addressing modes used by the target.

• Immediate value constraint. This kind of constraint is for an integer or other immediate value which can be
rendered directly into an instruction. The various target-specific constraints allow the selection of a value in the
proper range for the instruction you wish to use it with.

Output constraints

Output constraints are specified by an “=” prefix (e.g. “=r”). This indicates that the assembly will write to this
operand, and the operand will then be made available as a return value of the asm expression. Output constraints do
not consume an argument from the call instruction. (Except, see below about indirect outputs).

Normally, it is expected that no output locations are written to by the assembly expression until all of the inputs have
been read. As such, LLVM may assign the same register to an output and an input. If this is not safe (e.g. if the
assembly contains two instructions, where the first writes to one output, and the second reads an input and writes to
a second output), then the “&” modifier must be used (e.g. “=&r”) to specify that the output is an “early-clobber”
output. Marking an output as “early-clobber” ensures that LLVM will not use the same register for any inputs (other
than an input tied to this output).

Input constraints

Input constraints do not have a prefix – just the constraint codes. Each input constraint will consume one argument
from the call instruction. It is not permitted for the asm to write to any input register or memory location (unless
that input is tied to an output). Note also that multiple inputs may all be assigned to the same register, if LLVM can
determine that they necessarily all contain the same value.

Instead of providing a Constraint Code, input constraints may also “tie” themselves to an output constraint, by provid-
ing an integer as the constraint string. Tied inputs still consume an argument from the call instruction, and take up a
position in the asm template numbering as is usual – they will simply be constrained to always use the same register
as the output they’ve been tied to. For example, a constraint string of “=r,0” says to assign a register for output, and
use that register as an input as well (it being the 0’th constraint).

It is permitted to tie an input to an “early-clobber” output. In that case, no other input may share the same register as
the input tied to the early-clobber (even when the other input has the same value).

You may only tie an input to an output which has a register constraint, not a memory constraint. Only a single input
may be tied to an output.

There is also an “interesting” feature which deserves a bit of explanation: if a register class constraint allocates a
register which is too small for the value type operand provided as input, the input value will be split into multiple
registers, and all of them passed to the inline asm.

However, this feature is often not as useful as you might think.

Firstly, the registers are not guaranteed to be consecutive. So, on those architectures that have instructions which
operate on multiple consecutive instructions, this is not an appropriate way to support them. (e.g. the 32-bit SparcV8
has a 64-bit load, which instruction takes a single 32-bit register. The hardware then loads into both the named register,
and the next register. This feature of inline asm would not be useful to support that.)

A few of the targets provide a template string modifier allowing explicit access to the second register of a two-register
operand (e.g. MIPS L, M, and D). On such an architecture, you can actually access the second allocated register (yet,
still, not any subsequent ones). But, in that case, you’re still probably better off simply splitting the value into two
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separate operands, for clarity. (e.g. see the description of the A constraint on X86, which, despite existing only for use
with this feature, is not really a good idea to use)

Indirect inputs and outputs

Indirect output or input constraints can be specified by the “*” modifier (which goes after the “=” in case of an output).
This indicates that the asm will write to or read from the contents of an address provided as an input argument. (Note
that in this way, indirect outputs act more like an input than an output: just like an input, they consume an argument of
the call expression, rather than producing a return value. An indirect output constraint is an “output” only in that the
asm is expected to write to the contents of the input memory location, instead of just read from it).

This is most typically used for memory constraint, e.g. “=*m”, to pass the address of a variable as a value.

It is also possible to use an indirect register constraint, but only on output (e.g. “=*r”). This will cause LLVM to
allocate a register for an output value normally, and then, separately emit a store to the address provided as input, after
the provided inline asm. (It’s not clear what value this functionality provides, compared to writing the store explicitly
after the asm statement, and it can only produce worse code, since it bypasses many optimization passes. I would
recommend not using it.)

Clobber constraints

A clobber constraint is indicated by a “~” prefix. A clobber does not consume an input operand, nor generate an
output. Clobbers cannot use any of the general constraint code letters – they may use only explicit register constraints,
e.g. “~{eax}”. The one exception is that a clobber string of “~{memory}” indicates that the assembly writes to
arbitrary undeclared memory locations – not only the memory pointed to by a declared indirect output.

Constraint Codes

After a potential prefix comes constraint code, or codes.

A Constraint Code is either a single letter (e.g. “r”), a “^” character followed by two letters (e.g. “^wc”), or “{”
register-name “}” (e.g. “{eax}”).

The one and two letter constraint codes are typically chosen to be the same as GCC’s constraint codes.

A single constraint may include one or more than constraint code in it, leaving it up to LLVM to choose which one to
use. This is included mainly for compatibility with the translation of GCC inline asm coming from clang.

There are two ways to specify alternatives, and either or both may be used in an inline asm constraint list:

1. Append the codes to each other, making a constraint code set. E.g. “im” or “{eax}m”. This means “choose any
of the options in the set”. The choice of constraint is made independently for each constraint in the constraint
list.

2. Use “|” between constraint code sets, creating alternatives. Every constraint in the constraint list must have the
same number of alternative sets. With this syntax, the same alternative in all of the items in the constraint list
will be chosen together.

Putting those together, you might have a two operand constraint string like "rm|r,ri|rm". This indicates that if
operand 0 is r or m, then operand 1 may be one of r or i. If operand 0 is r, then operand 1 may be one of r or m. But,
operand 0 and 1 cannot both be of type m.

However, the use of either of the alternatives features is NOT recommended, as LLVM is not able to make an intelligent
choice about which one to use. (At the point it currently needs to choose, not enough information is available to do
so in a smart way.) Thus, it simply tries to make a choice that’s most likely to compile, not one that will be optimal
performance. (e.g., given “rm”, it’ll always choose to use memory, not registers). And, if given multiple registers,
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or multiple register classes, it will simply choose the first one. (In fact, it doesn’t currently even ensure explicitly
specified physical registers are unique, so specifying multiple physical registers as alternatives, like {r11}{r12},
{r11}{r12}, will assign r11 to both operands, not at all what was intended.)

Supported Constraint Code List

The constraint codes are, in general, expected to behave the same way they do in GCC. LLVM’s support is often
implemented on an ‘as-needed’ basis, to support C inline asm code which was supported by GCC. A mismatch in
behavior between LLVM and GCC likely indicates a bug in LLVM.

Some constraint codes are typically supported by all targets:

• r: A register in the target’s general purpose register class.

• m: A memory address operand. It is target-specific what addressing modes are supported, typical examples are
register, or register + register offset, or register + immediate offset (of some target-specific size).

• i: An integer constant (of target-specific width). Allows either a simple immediate, or a relocatable value.

• n: An integer constant – not including relocatable values.

• s: An integer constant, but allowing only relocatable values.

• X: Allows an operand of any kind, no constraint whatsoever. Typically useful to pass a label for an asm branch
or call.

• {register-name}: Requires exactly the named physical register.

Other constraints are target-specific:

AArch64:

• z: An immediate integer 0. Outputs WZR or XZR, as appropriate.

• I: An immediate integer valid for an ADD or SUB instruction, i.e. 0 to 4095 with optional shift by 12.

• J: An immediate integer that, when negated, is valid for an ADD or SUB instruction, i.e. -1 to -4095 with optional
left shift by 12.

• K: An immediate integer that is valid for the ‘bitmask immediate 32’ of a logical instruction like AND, EOR, or
ORR with a 32-bit register.

• L: An immediate integer that is valid for the ‘bitmask immediate 64’ of a logical instruction like AND, EOR, or
ORR with a 64-bit register.

• M: An immediate integer for use with the MOV assembly alias on a 32-bit register. This is a superset of K: in
addition to the bitmask immediate, also allows immediate integers which can be loaded with a single MOVZ or
MOVL instruction.

• N: An immediate integer for use with the MOV assembly alias on a 64-bit register. This is a superset of L.

• Q: Memory address operand must be in a single register (no offsets). (However, LLVM currently does this for
the m constraint as well.)

• r: A 32 or 64-bit integer register (W* or X*).

• w: A 32, 64, or 128-bit floating-point/SIMD register.

• x: A lower 128-bit floating-point/SIMD register (V0 to V15).

AMDGPU:

• r: A 32 or 64-bit integer register.

• [0-9]v: The 32-bit VGPR register, number 0-9.
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• [0-9]s: The 32-bit SGPR register, number 0-9.

All ARM modes:

• Q, Um, Un, Uq, Us, Ut, Uv, Uy: Memory address operand. Treated the same as operand m, at the moment.

ARM and ARM’s Thumb2 mode:

• j: An immediate integer between 0 and 65535 (valid for MOVW)

• I: An immediate integer valid for a data-processing instruction.

• J: An immediate integer between -4095 and 4095.

• K: An immediate integer whose bitwise inverse is valid for a data-processing instruction. (Can be used with
template modifier “B” to print the inverted value).

• L: An immediate integer whose negation is valid for a data-processing instruction. (Can be used with template
modifier “n” to print the negated value).

• M: A power of two or a integer between 0 and 32.

• N: Invalid immediate constraint.

• O: Invalid immediate constraint.

• r: A general-purpose 32-bit integer register (r0-r15).

• l: In Thumb2 mode, low 32-bit GPR registers (r0-r7). In ARM mode, same as r.

• h: In Thumb2 mode, a high 32-bit GPR register (r8-r15). In ARM mode, invalid.

• w: A 32, 64, or 128-bit floating-point/SIMD register: s0-s31, d0-d31, or q0-q15.

• x: A 32, 64, or 128-bit floating-point/SIMD register: s0-s15, d0-d7, or q0-q3.

• t: A floating-point/SIMD register, only supports 32-bit values: s0-s31.

ARM’s Thumb1 mode:

• I: An immediate integer between 0 and 255.

• J: An immediate integer between -255 and -1.

• K: An immediate integer between 0 and 255, with optional left-shift by some amount.

• L: An immediate integer between -7 and 7.

• M: An immediate integer which is a multiple of 4 between 0 and 1020.

• N: An immediate integer between 0 and 31.

• O: An immediate integer which is a multiple of 4 between -508 and 508.

• r: A low 32-bit GPR register (r0-r7).

• l: A low 32-bit GPR register (r0-r7).

• h: A high GPR register (r0-r7).

• w: A 32, 64, or 128-bit floating-point/SIMD register: s0-s31, d0-d31, or q0-q15.

• x: A 32, 64, or 128-bit floating-point/SIMD register: s0-s15, d0-d7, or q0-q3.

• t: A floating-point/SIMD register, only supports 32-bit values: s0-s31.

Hexagon:

• o, v: A memory address operand, treated the same as constraint m, at the moment.

• r: A 32 or 64-bit register.
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MSP430:

• r: An 8 or 16-bit register.

MIPS:

• I: An immediate signed 16-bit integer.

• J: An immediate integer zero.

• K: An immediate unsigned 16-bit integer.

• L: An immediate 32-bit integer, where the lower 16 bits are 0.

• N: An immediate integer between -65535 and -1.

• O: An immediate signed 15-bit integer.

• P: An immediate integer between 1 and 65535.

• m: A memory address operand. In MIPS-SE mode, allows a base address register plus 16-bit immediate offset.
In MIPS mode, just a base register.

• R: A memory address operand. In MIPS-SE mode, allows a base address register plus a 9-bit signed offset. In
MIPS mode, the same as constraint m.

• ZC: A memory address operand, suitable for use in a pref, ll, or sc instruction on the given subtarget (details
vary).

• r, d, y: A 32 or 64-bit GPR register.

• f: A 32 or 64-bit FPU register (F0-F31), or a 128-bit MSA register (W0-W31). In the case of MSA registers,
it is recommended to use the w argument modifier for compatibility with GCC.

• c: A 32-bit or 64-bit GPR register suitable for indirect jump (always 25).

• l: The lo register, 32 or 64-bit.

• x: Invalid.

NVPTX:

• b: A 1-bit integer register.

• c or h: A 16-bit integer register.

• r: A 32-bit integer register.

• l or N: A 64-bit integer register.

• f: A 32-bit float register.

• d: A 64-bit float register.

PowerPC:

• I: An immediate signed 16-bit integer.

• J: An immediate unsigned 16-bit integer, shifted left 16 bits.

• K: An immediate unsigned 16-bit integer.

• L: An immediate signed 16-bit integer, shifted left 16 bits.

• M: An immediate integer greater than 31.

• N: An immediate integer that is an exact power of 2.

• O: The immediate integer constant 0.
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• P: An immediate integer constant whose negation is a signed 16-bit constant.

• es, o, Q, Z, Zy: A memory address operand, currently treated the same as m.

• r: A 32 or 64-bit integer register.

• b: A 32 or 64-bit integer register, excluding R0 (that is: R1-R31).

• f: A 32 or 64-bit float register (F0-F31), or when QPX is enabled, a 128 or 256-bit QPX register (Q0-Q31;
aliases the F registers).

• v: For 4 x f32 or 4 x f64 types, when QPX is enabled, a 128 or 256-bit QPX register (Q0-Q31), otherwise
a 128-bit altivec vector register (V0-V31).

• y: Condition register (CR0-CR7).

• wc: An individual CR bit in a CR register.

• wa, wd, wf: Any 128-bit VSX vector register, from the full VSX register set (overlapping both the floating-point
and vector register files).

• ws: A 32 or 64-bit floating point register, from the full VSX register set.

Sparc:

• I: An immediate 13-bit signed integer.

• r: A 32-bit integer register.

SystemZ:

• I: An immediate unsigned 8-bit integer.

• J: An immediate unsigned 12-bit integer.

• K: An immediate signed 16-bit integer.

• L: An immediate signed 20-bit integer.

• M: An immediate integer 0x7fffffff.

• Q: A memory address operand with a base address and a 12-bit immediate unsigned displacement.

• R: A memory address operand with a base address, a 12-bit immediate unsigned displacement, and an index
register.

• S: A memory address operand with a base address and a 20-bit immediate signed displacement.

• T: A memory address operand with a base address, a 20-bit immediate signed displacement, and an index
register.

• r or d: A 32, 64, or 128-bit integer register.

• a: A 32, 64, or 128-bit integer address register (excludes R0, which in an address context evaluates as zero).

• h: A 32-bit value in the high part of a 64bit data register (LLVM-specific)

• f: A 32, 64, or 128-bit floating point register.

X86:

• I: An immediate integer between 0 and 31.

• J: An immediate integer between 0 and 64.

• K: An immediate signed 8-bit integer.

• L: An immediate integer, 0xff or 0xffff or (in 64-bit mode only) 0xffffffff.

• M: An immediate integer between 0 and 3.
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• N: An immediate unsigned 8-bit integer.

• O: An immediate integer between 0 and 127.

• e: An immediate 32-bit signed integer.

• Z: An immediate 32-bit unsigned integer.

• o, v: Treated the same as m, at the moment.

• q: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit l integer register. On X86-32, this is the a,
b, c, and d registers, and on X86-64, it is all of the integer registers.

• Q: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit h integer register. This is the a, b, c, and d
registers.

• r or l: An 8, 16, 32, or 64-bit integer register.

• R: An 8, 16, 32, or 64-bit “legacy” integer register – one which has existed since i386, and can be accessed
without the REX prefix.

• f: A 32, 64, or 80-bit ‘387 FPU stack pseudo-register.

• y: A 64-bit MMX register, if MMX is enabled.

• x: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector operand in a SSE register. If AVX is also
enabled, can also be a 256-bit vector operand in an AVX register. If AVX-512 is also enabled, can also be a
512-bit vector operand in an AVX512 register, Otherwise, an error.

• Y: The same as x, if SSE2 is enabled, otherwise an error.

• A: Special case: allocates EAX first, then EDX, for a single operand (in 32-bit mode, a 64-bit integer operand
will get split into two registers). It is not recommended to use this constraint, as in 64-bit mode, the 64-bit
operand will get allocated only to RAX – if two 32-bit operands are needed, you’re better off splitting it yourself,
before passing it to the asm statement.

XCore:

• r: A 32-bit integer register.

Asm template argument modifiers

In the asm template string, modifiers can be used on the operand reference, like “${0:n}”.

The modifiers are, in general, expected to behave the same way they do in GCC. LLVM’s support is often implemented
on an ‘as-needed’ basis, to support C inline asm code which was supported by GCC. A mismatch in behavior between
LLVM and GCC likely indicates a bug in LLVM.

Target-independent:

• c: Print an immediate integer constant unadorned, without the target-specific immediate punctuation (e.g. no $
prefix).

• n: Negate and print immediate integer constant unadorned, without the target-specific immediate punctuation
(e.g. no $ prefix).

• l: Print as an unadorned label, without the target-specific label punctuation (e.g. no $ prefix).

AArch64:

• w: Print a GPR register with a w* name instead of x* name. E.g., instead of x30, print w30.

• x: Print a GPR register with a x* name. (this is the default, anyhow).
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• b, h, s, d, q: Print a floating-point/SIMD register with a b*, h*, s*, d*, or q* name, rather than the default
of v*.

AMDGPU:

• r: No effect.

ARM:

• a: Print an operand as an address (with [ and ] surrounding a register).

• P: No effect.

• q: No effect.

• y: Print a VFP single-precision register as an indexed double (e.g. print as d4[1] instead of s9)

• B: Bitwise invert and print an immediate integer constant without # prefix.

• L: Print the low 16-bits of an immediate integer constant.

• M: Print as a register set suitable for ldm/stm. Also prints all register operands subsequent to the specified one
(!), so use carefully.

• Q: Print the low-order register of a register-pair, or the low-order register of a two-register operand.

• R: Print the high-order register of a register-pair, or the high-order register of a two-register operand.

• H: Print the second register of a register-pair. (On a big-endian system, H is equivalent to Q, and on little-endian
system, H is equivalent to R.)

• e: Print the low doubleword register of a NEON quad register.

• f: Print the high doubleword register of a NEON quad register.

• m: Print the base register of a memory operand without the [ and ] adornment.

Hexagon:

• L: Print the second register of a two-register operand. Requires that it has been allocated consecutively to the
first.

• I: Print the letter ‘i’ if the operand is an integer constant, otherwise nothing. Used to print ‘addi’ vs ‘add’
instructions.

MSP430:

No additional modifiers.

MIPS:

• X: Print an immediate integer as hexadecimal

• x: Print the low 16 bits of an immediate integer as hexadecimal.

• d: Print an immediate integer as decimal.

• m: Subtract one and print an immediate integer as decimal.

• z: Print $0 if an immediate zero, otherwise print normally.

• L: Print the low-order register of a two-register operand, or prints the address of the low-order word of a double-
word memory operand.

• M: Print the high-order register of a two-register operand, or prints the address of the high-order word of a
double-word memory operand.

• D: Print the second register of a two-register operand, or prints the second word of a double-word memory
operand. (On a big-endian system, D is equivalent to L, and on little-endian system, D is equivalent to M.)
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• w: No effect. Provided for compatibility with GCC which requires this modifier in order to print MSA registers
(W0-W31) with the f constraint.

NVPTX:

• r: No effect.

PowerPC:

• L: Print the second register of a two-register operand. Requires that it has been allocated consecutively to the
first.

• I: Print the letter ‘i’ if the operand is an integer constant, otherwise nothing. Used to print ‘addi’ vs ‘add’
instructions.

• y: For a memory operand, prints formatter for a two-register X-form instruction. (Currently always prints
r0,OPERAND).

• U: Prints ‘u’ if the memory operand is an update form, and nothing otherwise. (NOTE: LLVM does not support
update form, so this will currently always print nothing)

• X: Prints ‘x’ if the memory operand is an indexed form. (NOTE: LLVM does not support indexed form, so this
will currently always print nothing)

Sparc:

• r: No effect.

SystemZ:

SystemZ implements only n, and does not support any of the other target-independent modifiers.

X86:

• c: Print an unadorned integer or symbol name. (The latter is target-specific behavior for this typically target-
independent modifier).

• A: Print a register name with a ‘*‘ before it.

• b: Print an 8-bit register name (e.g. al); do nothing on a memory operand.

• h: Print the upper 8-bit register name (e.g. ah); do nothing on a memory operand.

• w: Print the 16-bit register name (e.g. ax); do nothing on a memory operand.

• k: Print the 32-bit register name (e.g. eax); do nothing on a memory operand.

• q: Print the 64-bit register name (e.g. rax), if 64-bit registers are available, otherwise the 32-bit register name;
do nothing on a memory operand.

• n: Negate and print an unadorned integer, or, for operands other than an immediate integer (e.g. a relocatable
symbol expression), print a ‘-‘ before the operand. (The behavior for relocatable symbol expressions is a target-
specific behavior for this typically target-independent modifier)

• H: Print a memory reference with additional offset +8.

• P: Print a memory reference or operand for use as the argument of a call instruction. (E.g. omit (rip), even
though it’s PC-relative.)

XCore:

No additional modifiers.
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Inline Asm Metadata

The call instructions that wrap inline asm nodes may have a “!srcloc” MDNode attached to it that contains a list
of constant integers. If present, the code generator will use the integer as the location cookie value when report errors
through the LLVMContext error reporting mechanisms. This allows a front-end to correlate backend errors that
occur with inline asm back to the source code that produced it. For example:

call void asm sideeffect "something bad", ""(), !srcloc !42
...
!42 = !{ i32 1234567 }

It is up to the front-end to make sense of the magic numbers it places in the IR. If the MDNode contains multiple
constants, the code generator will use the one that corresponds to the line of the asm that the error occurs on.

Metadata

LLVM IR allows metadata to be attached to instructions in the program that can convey extra information about the
code to the optimizers and code generator. One example application of metadata is source-level debug information.
There are two metadata primitives: strings and nodes.

Metadata does not have a type, and is not a value. If referenced from a call instruction, it uses the metadata type.

All metadata are identified in syntax by a exclamation point (‘!‘).

Metadata Nodes and Metadata Strings

A metadata string is a string surrounded by double quotes. It can contain any character by escaping non-printable
characters with “\xx” where “xx” is the two digit hex code. For example: “!"test\00"”.

Metadata nodes are represented with notation similar to structure constants (a comma separated list of elements,
surrounded by braces and preceded by an exclamation point). Metadata nodes can have any values as their operand.
For example:

!{ !"test\00", i32 10}

Metadata nodes that aren’t uniqued use the distinct keyword. For example:

!0 = distinct !{!"test\00", i32 10}

distinct nodes are useful when nodes shouldn’t be merged based on their content. They can also occur when
transformations cause uniquing collisions when metadata operands change.

A named metadata is a collection of metadata nodes, which can be looked up in the module symbol table. For example:

!foo = !{!4, !3}

Metadata can be used as function arguments. Here llvm.dbg.value function is using two metadata arguments:

call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)

Metadata can be attached to an instruction. Here metadata !21 is attached to the add instruction using the !dbg
identifier:

%indvar.next = add i64 %indvar, 1, !dbg !21

1.1. LLVM Language Reference Manual 79



LLVM Documentation, Release 3.9

Metadata can also be attached to a function definition. Here metadata !22 is attached to the foo function using the
!dbg identifier:

define void @foo() !dbg !22 {
ret void

}

More information about specific metadata nodes recognized by the optimizers and code generator is found below.

Specialized Metadata Nodes

Specialized metadata nodes are custom data structures in metadata (as opposed to generic tuples). Their fields are
labelled, and can be specified in any order.

These aren’t inherently debug info centric, but currently all the specialized metadata nodes are related to debug info.

DICompileUnit

DICompileUnit nodes represent a compile unit. The enums:, retainedTypes:, subprograms:,
globals:, imports: and macros: fields are tuples containing the debug info to be emitted along with the
compile unit, regardless of code optimizations (some nodes are only emitted if there are references to them from
instructions).

!0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
isOptimized: true, flags: "-O2", runtimeVersion: 2,
splitDebugFilename: "abc.debug", emissionKind: FullDebug,
enums: !2, retainedTypes: !3, subprograms: !4,
globals: !5, imports: !6, macros: !7, dwoId: 0x0abcd)

Compile unit descriptors provide the root scope for objects declared in a specific compilation unit. File descriptors are
defined using this scope. These descriptors are collected by a named metadata !llvm.dbg.cu. They keep track of
subprograms, global variables, type information, and imported entities (declarations and namespaces).

DIFile

DIFile nodes represent files. The filename: can include slashes.

!0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir")

Files are sometimes used in scope: fields, and are the only valid target for file: fields.

DIBasicType

DIBasicType nodes represent primitive types, such as int, bool and float. tag: defaults to
DW_TAG_base_type.

!0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
encoding: DW_ATE_unsigned_char)

!1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")

The encoding: describes the details of the type. Usually it’s one of the following:
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DW_ATE_address = 1
DW_ATE_boolean = 2
DW_ATE_float = 4
DW_ATE_signed = 5
DW_ATE_signed_char = 6
DW_ATE_unsigned = 7
DW_ATE_unsigned_char = 8

DISubroutineType

DISubroutineType nodes represent subroutine types. Their types: field refers to a tuple; the first operand is the
return type, while the rest are the types of the formal arguments in order. If the first operand is null, that represents
a function with no return value (such as void foo() {} in C++).

!0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
!1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
!2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)

DIDerivedType

DIDerivedType nodes represent types derived from other types, such as qualified types.

!0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
encoding: DW_ATE_unsigned_char)

!1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
align: 32)

The following tag: values are valid:

DW_TAG_member = 13
DW_TAG_pointer_type = 15
DW_TAG_reference_type = 16
DW_TAG_typedef = 22
DW_TAG_inheritance = 28
DW_TAG_ptr_to_member_type = 31
DW_TAG_const_type = 38
DW_TAG_friend = 42
DW_TAG_volatile_type = 53
DW_TAG_restrict_type = 55

DW_TAG_member is used to define a member of a composite type. The type of the member is the baseType:. The
offset: is the member’s bit offset. If the composite type has an ODR identifier: and does not set flags:
DIFwdDecl, then the member is uniqued based only on its name: and scope:.

DW_TAG_inheritance and DW_TAG_friend are used in the elements: field of composite types to describe
parents and friends.

DW_TAG_typedef is used to provide a name for the baseType:.

DW_TAG_pointer_type, DW_TAG_reference_type, DW_TAG_const_type,
DW_TAG_volatile_type and DW_TAG_restrict_type are used to qualify the baseType:.

Note that the void * type is expressed as a type derived from NULL.
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DICompositeType

DICompositeType nodes represent types composed of other types, like structures and unions. elements: points
to a tuple of the composed types.

If the source language supports ODR, the identifier: field gives the unique identifier used for type merging
between modules. When specified, subprogram declarations and member derived types that reference the ODR-type
in their scope: change uniquing rules.

For a given identifier:, there should only be a single composite type that does not have flags:
DIFlagFwdDecl set. LLVM tools that link modules together will unique such definitions at parse time via the
identifier: field, even if the nodes are distinct.

!0 = !DIEnumerator(name: "SixKind", value: 7)
!1 = !DIEnumerator(name: "SevenKind", value: 7)
!2 = !DIEnumerator(name: "NegEightKind", value: -8)
!3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,

line: 2, size: 32, align: 32, identifier: "_M4Enum",
elements: !{!0, !1, !2})

The following tag: values are valid:

DW_TAG_array_type = 1
DW_TAG_class_type = 2
DW_TAG_enumeration_type = 4
DW_TAG_structure_type = 19
DW_TAG_union_type = 23

For DW_TAG_array_type, the elements: should be subrange descriptors, each representing the range of sub-
scripts at that level of indexing. The DIFlagVector flag to flags: indicates that an array type is a native packed
vector.

For DW_TAG_enumeration_type, the elements: should be enumerator descriptors, each representing the
definition of an enumeration value for the set. All enumeration type descriptors are collected in the enums: field of
the compile unit.

For DW_TAG_structure_type, DW_TAG_class_type, and DW_TAG_union_type, the elements:
should be derived types with tag: DW_TAG_member, tag: DW_TAG_inheritance, or tag:
DW_TAG_friend; or subprograms with isDefinition: false.

DISubrange

DISubrange nodes are the elements for DW_TAG_array_type variants of DICompositeType. count: -1
indicates an empty array.

!0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
!1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
!2 = !DISubrange(count: -1) ; empty array.

DIEnumerator

DIEnumerator nodes are the elements for DW_TAG_enumeration_type variants of DICompositeType.
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!0 = !DIEnumerator(name: "SixKind", value: 7)
!1 = !DIEnumerator(name: "SevenKind", value: 7)
!2 = !DIEnumerator(name: "NegEightKind", value: -8)

DITemplateTypeParameter

DITemplateTypeParameter nodes represent type parameters to generic source language constructs. They are
used (optionally) in DICompositeType and DISubprogram templateParams: fields.

!0 = !DITemplateTypeParameter(name: "Ty", type: !1)

DITemplateValueParameter

DITemplateValueParameter nodes represent value parameters to generic source language constructs.
tag: defaults to DW_TAG_template_value_parameter, but if specified can also be set to
DW_TAG_GNU_template_template_param or DW_TAG_GNU_template_param_pack. They are used
(optionally) in DICompositeType and DISubprogram templateParams: fields.

!0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)

DINamespace

DINamespace nodes represent namespaces in the source language.

!0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)

DIGlobalVariable

DIGlobalVariable nodes represent global variables in the source language.

!0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
file: !2, line: 7, type: !3, isLocal: true,
isDefinition: false, variable: i32* @foo,
declaration: !4)

All global variables should be referenced by the globals: field of a compile unit.

DISubprogram

DISubprogram nodes represent functions from the source language. A DISubprogram may be attached to a
function definition using !dbg metadata. The variables: field points at variables that must be retained, even
if their IR counterparts are optimized out of the IR. The type: field must point at an DISubroutineType. When
isDefinition: false, subprograms describe a declaration in the type tree as opposed to a definition of a func-
tion. If the scope is a composite type with an ODR identifier: and that does not set flags: DIFwdDecl,
then the subprogram declaration is uniqued based only on its linkageName: and scope:.
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define void @_Z3foov() !dbg !0 {
...

}

!0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
file: !2, line: 7, type: !3, isLocal: true,
isDefinition: true, scopeLine: 8,
containingType: !4,
virtuality: DW_VIRTUALITY_pure_virtual,
virtualIndex: 10, flags: DIFlagPrototyped,
isOptimized: true, templateParams: !5,
declaration: !6, variables: !7)

DILexicalBlock

DILexicalBlock nodes describe nested blocks within a subprogram. The line number and column numbers are
used to distinguish two lexical blocks at same depth. They are valid targets for scope: fields.

!0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)

Usually lexical blocks are distinct to prevent node merging based on operands.

DILexicalBlockFile

DILexicalBlockFile nodes are used to discriminate between sections of a lexical block. The file: field can
be changed to indicate textual inclusion, or the discriminator: field can be used to discriminate between control
flow within a single block in the source language.

!0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
!1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
!2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)

DILocation

DILocation nodes represent source debug locations. The scope: field is mandatory, and points at an DILexical-
BlockFile, an DILexicalBlock, or an DISubprogram.

!0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)

DILocalVariable

DILocalVariable nodes represent local variables in the source language. If the arg: field is set to non-zero,
then this variable is a subprogram parameter, and it will be included in the variables: field of its DISubprogram.

!0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
type: !3, flags: DIFlagArtificial)

!1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
type: !3)

!2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
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DIExpression

DIExpression nodes represent DWARF expression sequences. They are used in debug intrinsics (such as llvm.
dbg.declare) to describe how the referenced LLVM variable relates to the source language variable.

The current supported vocabulary is limited:

• DW_OP_deref dereferences the working expression.

• DW_OP_plus, 93 adds 93 to the working expression.

• DW_OP_bit_piece, 16, 8 specifies the offset and size (16 and 8 here, respectively) of the variable piece
from the working expression.

!0 = !DIExpression(DW_OP_deref)
!1 = !DIExpression(DW_OP_plus, 3)
!2 = !DIExpression(DW_OP_bit_piece, 3, 7)
!3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)

DIObjCProperty

DIObjCProperty nodes represent Objective-C property nodes.

!3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
getter: "getFoo", attributes: 7, type: !2)

DIImportedEntity

DIImportedEntity nodes represent entities (such as modules) imported into a compile unit.

!2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
entity: !1, line: 7)

DIMacro

DIMacro nodes represent definition or undefinition of a macro identifiers. The name: field is the macro identifier,
followed by macro parameters when defining a function-like macro, and the value field is the token-string used to
expand the macro identifier.

!2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
value: "((x) + 1)")

!3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")

DIMacroFile

DIMacroFile nodes represent inclusion of source files. The nodes: field is a list of DIMacro and
DIMacroFile nodes that appear in the included source file.

!2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
nodes: !3)
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‘tbaa‘ Metadata

In LLVM IR, memory does not have types, so LLVM’s own type system is not suitable for doing TBAA. Instead,
metadata is added to the IR to describe a type system of a higher level language. This can be used to implement typical
C/C++ TBAA, but it can also be used to implement custom alias analysis behavior for other languages.

The current metadata format is very simple. TBAA metadata nodes have up to three fields, e.g.:

!0 = !{ !"an example type tree" }
!1 = !{ !"int", !0 }
!2 = !{ !"float", !0 }
!3 = !{ !"const float", !2, i64 1 }

The first field is an identity field. It can be any value, usually a metadata string, which uniquely identifies the type. The
most important name in the tree is the name of the root node. Two trees with different root node names are entirely
disjoint, even if they have leaves with common names.

The second field identifies the type’s parent node in the tree, or is null or omitted for a root node. A type is considered
to alias all of its descendants and all of its ancestors in the tree. Also, a type is considered to alias all types in other
trees, so that bitcode produced from multiple front-ends is handled conservatively.

If the third field is present, it’s an integer which if equal to 1 indicates that the type is “constant” (meaning
pointsToConstantMemory should return true; see other useful AliasAnalysis methods).

‘tbaa.struct‘ Metadata

The llvm.memcpy is often used to implement aggregate assignment operations in C and similar languages, however
it is defined to copy a contiguous region of memory, which is more than strictly necessary for aggregate types which
contain holes due to padding. Also, it doesn’t contain any TBAA information about the fields of the aggregate.

!tbaa.struct metadata can describe which memory subregions in a memcpy are padding and what the TBAA
tags of the struct are.

The current metadata format is very simple. !tbaa.struct metadata nodes are a list of operands which are in
conceptual groups of three. For each group of three, the first operand gives the byte offset of a field in bytes, the
second gives its size in bytes, and the third gives its tbaa tag. e.g.:

!4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }

This describes a struct with two fields. The first is at offset 0 bytes with size 4 bytes, and has tbaa tag !1. The second
is at offset 8 bytes and has size 4 bytes and has tbaa tag !2.

Note that the fields need not be contiguous. In this example, there is a 4 byte gap between the two fields. This gap
represents padding which does not carry useful data and need not be preserved.

‘noalias‘ and ‘alias.scope‘ Metadata

noalias and alias.scope metadata provide the ability to specify generic noalias memory-access sets. This
means that some collection of memory access instructions (loads, stores, memory-accessing calls, etc.) that carry
noalias metadata can specifically be specified not to alias with some other collection of memory access instructions
that carry alias.scope metadata. Each type of metadata specifies a list of scopes where each scope has an id and
a domain.

When evaluating an aliasing query, if for some domain, the set of scopes with that domain in one instruction’s alias.
scope list is a subset of (or equal to) the set of scopes for that domain in another instruction’s noalias list, then
the two memory accesses are assumed not to alias.
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Because scopes in one domain don’t affect scopes in other domains, separate domains can be used to compose multiple
independent noalias sets. This is used for example during inlining. As the noalias function parameters are turned into
noalias scope metadata, a new domain is used every time the function is inlined.

The metadata identifying each domain is itself a list containing one or two entries. The first entry is the name of
the domain. Note that if the name is a string then it can be combined across functions and translation units. A self-
reference can be used to create globally unique domain names. A descriptive string may optionally be provided as a
second list entry.

The metadata identifying each scope is also itself a list containing two or three entries. The first entry is the name of the
scope. Note that if the name is a string then it can be combined across functions and translation units. A self-reference
can be used to create globally unique scope names. A metadata reference to the scope’s domain is the second entry. A
descriptive string may optionally be provided as a third list entry.

For example,

; Two scope domains:
!0 = !{!0}
!1 = !{!1}

; Some scopes in these domains:
!2 = !{!2, !0}
!3 = !{!3, !0}
!4 = !{!4, !1}

; Some scope lists:
!5 = !{!4} ; A list containing only scope !4
!6 = !{!4, !3, !2}
!7 = !{!3}

; These two instructions don't alias:
%0 = load float, float* %c, align 4, !alias.scope !5
store float %0, float* %arrayidx.i, align 4, !noalias !5

; These two instructions also don't alias (for domain !1, the set of scopes
; in the !alias.scope equals that in the !noalias list):
%2 = load float, float* %c, align 4, !alias.scope !5
store float %2, float* %arrayidx.i2, align 4, !noalias !6

; These two instructions may alias (for domain !0, the set of scopes in
; the !noalias list is not a superset of, or equal to, the scopes in the
; !alias.scope list):
%2 = load float, float* %c, align 4, !alias.scope !6
store float %0, float* %arrayidx.i, align 4, !noalias !7

‘fpmath‘ Metadata

fpmath metadata may be attached to any instruction of floating point type. It can be used to express the maximum
acceptable error in the result of that instruction, in ULPs, thus potentially allowing the compiler to use a more efficient
but less accurate method of computing it. ULP is defined as follows:

If x is a real number that lies between two finite consecutive floating-point numbers a and b, without
being equal to one of them, then ulp(x) = |b - a|, otherwise ulp(x) is the distance between the
two non-equal finite floating-point numbers nearest x. Moreover, ulp(NaN) is NaN.

The metadata node shall consist of a single positive float type number representing the maximum relative error, for
example:
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!0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs

‘range‘ Metadata

range metadata may be attached only to load, call and invoke of integer types. It expresses the possible ranges
the loaded value or the value returned by the called function at this call site is in. The ranges are represented with a
flattened list of integers. The loaded value or the value returned is known to be in the union of the ranges defined by
each consecutive pair. Each pair has the following properties:

• The type must match the type loaded by the instruction.

• The pair a,b represents the range [a,b).

• Both a and b are constants.

• The range is allowed to wrap.

• The range should not represent the full or empty set. That is, a!=b.

In addition, the pairs must be in signed order of the lower bound and they must be non-contiguous.

Examples:

%a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
%b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
%c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
%d = invoke i8 @bar() to label %cont

unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
...
!0 = !{ i8 0, i8 2 }
!1 = !{ i8 255, i8 2 }
!2 = !{ i8 0, i8 2, i8 3, i8 6 }
!3 = !{ i8 -2, i8 0, i8 3, i8 6 }

‘unpredictable‘ Metadata

unpredictable metadata may be attached to any branch or switch instruction. It can be used to express the
unpredictability of control flow. Similar to the llvm.expect intrinsic, it may be used to alter optimizations related to
compare and branch instructions. The metadata is treated as a boolean value; if it exists, it signals that the branch or
switch that it is attached to is completely unpredictable.

‘llvm.loop‘

It is sometimes useful to attach information to loop constructs. Currently, loop metadata is implemented as metadata
attached to the branch instruction in the loop latch block. This type of metadata refer to a metadata node that is
guaranteed to be separate for each loop. The loop identifier metadata is specified with the name llvm.loop.

The loop identifier metadata is implemented using a metadata that refers to itself to avoid merging it with any other
identifier metadata, e.g., during module linkage or function inlining. That is, each loop should refer to their own iden-
tification metadata even if they reside in separate functions. The following example contains loop identifier metadata
for two separate loop constructs:

!0 = !{!0}
!1 = !{!1}
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The loop identifier metadata can be used to specify additional per-loop metadata. Any operands after the first operand
can be treated as user-defined metadata. For example the llvm.loop.unroll.count suggests an unroll factor to
the loop unroller:

br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
...
!0 = !{!0, !1}
!1 = !{!"llvm.loop.unroll.count", i32 4}

‘llvm.loop.vectorize‘ and ‘llvm.loop.interleave‘

Metadata prefixed with llvm.loop.vectorize or llvm.loop.interleave are used to control per-loop
vectorization and interleaving parameters such as vectorization width and interleave count. These metadata should
be used in conjunction with llvm.loop loop identification metadata. The llvm.loop.vectorize and llvm.
loop.interleave metadata are only optimization hints and the optimizer will only interleave and vectorize loops
if it believes it is safe to do so. The llvm.mem.parallel_loop_access metadata which contains information
about loop-carried memory dependencies can be helpful in determining the safety of these transformations.

‘llvm.loop.interleave.count‘ Metadata

This metadata suggests an interleave count to the loop interleaver. The first operand is the string llvm.loop.
interleave.count and the second operand is an integer specifying the interleave count. For example:

!0 = !{!"llvm.loop.interleave.count", i32 4}

Note that setting llvm.loop.interleave.count to 1 disables interleaving multiple iterations of the loop. If
llvm.loop.interleave.count is set to 0 then the interleave count will be determined automatically.

‘llvm.loop.vectorize.enable‘ Metadata

This metadata selectively enables or disables vectorization for the loop. The first operand is the string llvm.loop.
vectorize.enable and the second operand is a bit. If the bit operand value is 1 vectorization is enabled. A value
of 0 disables vectorization:

!0 = !{!"llvm.loop.vectorize.enable", i1 0}
!1 = !{!"llvm.loop.vectorize.enable", i1 1}

‘llvm.loop.vectorize.width‘ Metadata

This metadata sets the target width of the vectorizer. The first operand is the string llvm.loop.vectorize.
width and the second operand is an integer specifying the width. For example:

!0 = !{!"llvm.loop.vectorize.width", i32 4}

Note that setting llvm.loop.vectorize.width to 1 disables vectorization of the loop. If llvm.loop.
vectorize.width is set to 0 or if the loop does not have this metadata the width will be determined automatically.
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‘llvm.loop.unroll‘

Metadata prefixed with llvm.loop.unroll are loop unrolling optimization hints such as the unroll factor. llvm.
loop.unroll metadata should be used in conjunction with llvm.loop loop identification metadata. The llvm.
loop.unrollmetadata are only optimization hints and the unrolling will only be performed if the optimizer believes
it is safe to do so.

‘llvm.loop.unroll.count‘ Metadata

This metadata suggests an unroll factor to the loop unroller. The first operand is the string llvm.loop.unroll.
count and the second operand is a positive integer specifying the unroll factor. For example:

!0 = !{!"llvm.loop.unroll.count", i32 4}

If the trip count of the loop is less than the unroll count the loop will be partially unrolled.

‘llvm.loop.unroll.disable‘ Metadata

This metadata disables loop unrolling. The metadata has a single operand which is the string llvm.loop.unroll.
disable. For example:

!0 = !{!"llvm.loop.unroll.disable"}

‘llvm.loop.unroll.runtime.disable‘ Metadata

This metadata disables runtime loop unrolling. The metadata has a single operand which is the string llvm.loop.
unroll.runtime.disable. For example:

!0 = !{!"llvm.loop.unroll.runtime.disable"}

‘llvm.loop.unroll.enable‘ Metadata

This metadata suggests that the loop should be fully unrolled if the trip count is known at compile time and partially
unrolled if the trip count is not known at compile time. The metadata has a single operand which is the string llvm.
loop.unroll.enable. For example:

!0 = !{!"llvm.loop.unroll.enable"}

‘llvm.loop.unroll.full‘ Metadata

This metadata suggests that the loop should be unrolled fully. The metadata has a single operand which is the string
llvm.loop.unroll.full. For example:

!0 = !{!"llvm.loop.unroll.full"}
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‘llvm.loop.licm_versioning.disable‘ Metadata

This metadata indicates that the loop should not be versioned for the purpose of enabling loop-invariant code motion
(LICM). The metadata has a single operand which is the string llvm.loop.licm_versioning.disable. For
example:

!0 = !{!"llvm.loop.licm_versioning.disable"}

‘llvm.loop.distribute.enable‘ Metadata

Loop distribution allows splitting a loop into multiple loops. Currently, this is only performed if the entire loop cannot
be vectorized due to unsafe memory dependencies. The transformation will atempt to isolate the unsafe dependencies
into their own loop.

This metadata can be used to selectively enable or disable distribution of the loop. The first operand is the string
llvm.loop.distribute.enable and the second operand is a bit. If the bit operand value is 1 distribution is
enabled. A value of 0 disables distribution:

!0 = !{!"llvm.loop.distribute.enable", i1 0}
!1 = !{!"llvm.loop.distribute.enable", i1 1}

This metadata should be used in conjunction with llvm.loop loop identification metadata.

‘llvm.mem‘

Metadata types used to annotate memory accesses with information helpful for optimizations are prefixed with llvm.
mem.

‘llvm.mem.parallel_loop_access‘ Metadata

The llvm.mem.parallel_loop_access metadata refers to a loop identifier, or metadata containing a list of
loop identifiers for nested loops. The metadata is attached to memory accessing instructions and denotes that no
loop carried memory dependence exist between it and other instructions denoted with the same loop identifier. The
metadata on memory reads also implies that if conversion (i.e. speculative execution within a loop iteration) is safe.

Precisely, given two instructions m1 and m2 that both have the llvm.mem.parallel_loop_access metadata,
with L1 and L2 being the set of loops associated with that metadata, respectively, then there is no loop carried
dependence between m1 and m2 for loops in both L1 and L2.

As a special case, if all memory accessing instructions in a loop have llvm.mem.parallel_loop_access
metadata that refers to that loop, then the loop has no loop carried memory dependences and is considered to be a
parallel loop.

Note that if not all memory access instructions have such metadata referring to the loop, then the loop is considered
not being trivially parallel. Additional memory dependence analysis is required to make that determination. As a fail
safe mechanism, this causes loops that were originally parallel to be considered sequential (if optimization passes that
are unaware of the parallel semantics insert new memory instructions into the loop body).

Example of a loop that is considered parallel due to its correct use of both llvm.loop and llvm.mem.
parallel_loop_access metadata types that refer to the same loop identifier metadata.
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for.body:
...
%val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
...
store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
...
br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0

for.end:
...
!0 = !{!0}

It is also possible to have nested parallel loops. In that case the memory accesses refer to a list of loop identifier
metadata nodes instead of the loop identifier metadata node directly:

outer.for.body:
...
%val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
...
br label %inner.for.body

inner.for.body:
...
%val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
...
store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
...
br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1

inner.for.end:
...
store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
...
br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2

outer.for.end: ; preds = %for.body
...
!0 = !{!1, !2} ; a list of loop identifiers
!1 = !{!1} ; an identifier for the inner loop
!2 = !{!2} ; an identifier for the outer loop

‘invariant.group‘ Metadata

The invariant.group metadata may be attached to load/store instructions. The existence of the
invariant.group metadata on the instruction tells the optimizer that every load and store to the same
pointer operand within the same invariant group can be assumed to load or store the same value (but see the llvm.
invariant.group.barrier intrinsic which affects when two pointers are considered the same).

Examples:

@unknownPtr = external global i8
...
%ptr = alloca i8
store i8 42, i8* %ptr, !invariant.group !0
call void @foo(i8* %ptr)
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%a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't
→˓change
call void @foo(i8* %ptr)
%b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group
→˓changed

%newPtr = call i8* @getPointer(i8* %ptr)
%c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we
→˓only have information about %ptr

%unknownValue = load i8, i8* @unknownPtr
store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue
→˓== 42

call void @foo(i8* %ptr)
%newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
%d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.
→˓barrier to get value of %ptr

...
declare void @foo(i8*)
declare i8* @getPointer(i8*)
declare i8* @llvm.invariant.group.barrier(i8*)

!0 = !{!"magic ptr"}
!1 = !{!"other ptr"}

Module Flags Metadata

Information about the module as a whole is difficult to convey to LLVM’s subsystems. The LLVM IR isn’t sufficient
to transmit this information. The llvm.module.flags named metadata exists in order to facilitate this. These
flags are in the form of key / value pairs — much like a dictionary — making it easy for any subsystem who cares
about a flag to look it up.

The llvm.module.flags metadata contains a list of metadata triplets. Each triplet has the following form:

• The first element is a behavior flag, which specifies the behavior when two (or more) modules are merged
together, and it encounters two (or more) metadata with the same ID. The supported behaviors are described
below.

• The second element is a metadata string that is a unique ID for the metadata. Each module may only have one
flag entry for each unique ID (not including entries with the Require behavior).

• The third element is the value of the flag.

When two (or more) modules are merged together, the resulting llvm.module.flags metadata is the union of the
modules’ flags. That is, for each unique metadata ID string, there will be exactly one entry in the merged modules
llvm.module.flags metadata table, and the value for that entry will be determined by the merge behavior flag,
as described below. The only exception is that entries with the Require behavior are always preserved.

The following behaviors are supported:
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Value Behavior
1

Error Emits an error if two values disagree, otherwise
the resulting value is that of the operands.

2
Warning Emits a warning if two values disagree. The

result value will be the operand for the flag from
the first module being linked.

3
Require Adds a requirement that another module flag

be present and have a specified value after link-
ing is performed. The value must be a metadata
pair, where the first element of the pair is the ID
of the module flag to be restricted, and the sec-
ond element of the pair is the value the module
flag should be restricted to. This behavior can be
used to restrict the allowable results (via trigger-
ing of an error) of linking IDs with the Override
behavior.

4
Override Uses the specified value, regardless of the be-

havior or value of the other module. If both mod-
ules specify Override, but the values differ, an
error will be emitted.

5
Append Appends the two values, which are required to

be metadata nodes.

6
AppendUnique Appends the two values, which are re-

quired to be metadata nodes. However, duplicate
entries in the second list are dropped during the
append operation.

It is an error for a particular unique flag ID to have multiple behaviors, except in the case of Require (which adds
restrictions on another metadata value) or Override.

An example of module flags:

!0 = !{ i32 1, !"foo", i32 1 }
!1 = !{ i32 4, !"bar", i32 37 }
!2 = !{ i32 2, !"qux", i32 42 }
!3 = !{ i32 3, !"qux",
!{
!"foo", i32 1

}
}
!llvm.module.flags = !{ !0, !1, !2, !3 }

• Metadata !0 has the ID !"foo" and the value ‘1’. The behavior if two or more !"foo" flags are seen is to
emit an error if their values are not equal.

• Metadata !1 has the ID !"bar" and the value ‘37’. The behavior if two or more !"bar" flags are seen is to
use the value ‘37’.
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• Metadata !2 has the ID !"qux" and the value ‘42’. The behavior if two or more !"qux" flags are seen is to
emit a warning if their values are not equal.

• Metadata !3 has the ID !"qux" and the value:

!{ !"foo", i32 1 }

The behavior is to emit an error if the llvm.module.flags does not contain a flag with the ID !"foo"
that has the value ‘1’ after linking is performed.

Objective-C Garbage Collection Module Flags Metadata

On the Mach-O platform, Objective-C stores metadata about garbage collection in a special section called “image
info”. The metadata consists of a version number and a bitmask specifying what types of garbage collection are
supported (if any) by the file. If two or more modules are linked together their garbage collection metadata needs to
be merged rather than appended together.

The Objective-C garbage collection module flags metadata consists of the following key-value pairs:

Key Value
Objective-C
Version

[Required] — The Objective-C ABI version. Valid values are 1 and 2.

Objective-C
Image Info
Version

[Required] — The version of the image info section. Currently always 0.

Objective-C
Image Info
Section

[Required] — The section to place the metadata. Valid values are "__OBJC,
__image_info, regular" for Objective-C ABI version 1, and
"__DATA,__objc_imageinfo, regular, no_dead_strip" for
Objective-C ABI version 2.

Objective-C
Garbage
Collection

[Required] — Specifies whether garbage collection is supported or not. Valid values
are 0, for no garbage collection, and 2, for garbage collection supported.

Objective-C GC
Only

[Optional] — Specifies that only garbage collection is supported. If present, its value
must be 6. This flag requires that the Objective-C Garbage Collection flag
have the value 2.

Some important flag interactions:

• If a module with Objective-C Garbage Collection set to 0 is merged with a module with
Objective-C Garbage Collection set to 2, then the resulting module has the Objective-C
Garbage Collection flag set to 0.

• A module with Objective-C Garbage Collection set to 0 cannot be merged with a module with
Objective-C GC Only set to 6.

Automatic Linker Flags Module Flags Metadata

Some targets support embedding flags to the linker inside individual object files. Typically this is used in conjunction
with language extensions which allow source files to explicitly declare the libraries they depend on, and have these
automatically be transmitted to the linker via object files.

These flags are encoded in the IR using metadata in the module flags section, using the Linker Options key. The
merge behavior for this flag is required to be AppendUnique, and the value for the key is expected to be a metadata
node which should be a list of other metadata nodes, each of which should be a list of metadata strings defining linker
options.
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For example, the following metadata section specifies two separate sets of linker options, presumably to link against
libz and the Cocoa framework:

!0 = !{ i32 6, !"Linker Options",
!{

!{ !"-lz" },
!{ !"-framework", !"Cocoa" } } }

!llvm.module.flags = !{ !0 }

The metadata encoding as lists of lists of options, as opposed to a collapsed list of options, is chosen so that the IR
encoding can use multiple option strings to specify e.g., a single library, while still having that specifier be preserved
as an atomic element that can be recognized by a target specific assembly writer or object file emitter.

Each individual option is required to be either a valid option for the target’s linker, or an option that is reserved by the
target specific assembly writer or object file emitter. No other aspect of these options is defined by the IR.

C type width Module Flags Metadata

The ARM backend emits a section into each generated object file describing the options that it was compiled with (in
a compiler-independent way) to prevent linking incompatible objects, and to allow automatic library selection. Some
of these options are not visible at the IR level, namely wchar_t width and enum width.

To pass this information to the backend, these options are encoded in module flags metadata, using the following
key-value pairs:

Key Value
short_wchar

• 0 — sizeof(wchar_t) == 4
• 1 — sizeof(wchar_t) == 2

short_enum
• 0 — Enums are at least as large as an int.
• 1 — Enums are stored in the smallest integer type

which can represent all of its values.

For example, the following metadata section specifies that the module was compiled with a wchar_t width of 4
bytes, and the underlying type of an enum is the smallest type which can represent all of its values:

!llvm.module.flags = !{!0, !1}
!0 = !{i32 1, !"short_wchar", i32 1}
!1 = !{i32 1, !"short_enum", i32 0}

Intrinsic Global Variables

LLVM has a number of “magic” global variables that contain data that affect code generation or other IR semantics.
These are documented here. All globals of this sort should have a section specified as “llvm.metadata”. This
section and all globals that start with “llvm.” are reserved for use by LLVM.

The ‘llvm.used‘ Global Variable

The @llvm.used global is an array which has appending linkage. This array contains a list of pointers to named
global variables, functions and aliases which may optionally have a pointer cast formed of bitcast or getelementptr.
For example, a legal use of it is:
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@X = global i8 4
@Y = global i32 123

@llvm.used = appending global [2 x i8*] [
i8* @X,
i8* bitcast (i32* @Y to i8*)

], section "llvm.metadata"

If a symbol appears in the @llvm.used list, then the compiler, assembler, and linker are required to treat the symbol
as if there is a reference to the symbol that it cannot see (which is why they have to be named). For example, if a
variable has internal linkage and no references other than that from the @llvm.used list, it cannot be deleted. This is
commonly used to represent references from inline asms and other things the compiler cannot “see”, and corresponds
to “attribute((used))” in GNU C.

On some targets, the code generator must emit a directive to the assembler or object file to prevent the assembler and
linker from molesting the symbol.

The ‘llvm.compiler.used‘ Global Variable

The @llvm.compiler.used directive is the same as the @llvm.used directive, except that it only prevents the
compiler from touching the symbol. On targets that support it, this allows an intelligent linker to optimize references
to the symbol without being impeded as it would be by @llvm.used.

This is a rare construct that should only be used in rare circumstances, and should not be exposed to source languages.

The ‘llvm.global_ctors‘ Global Variable

%0 = type { i32, void ()*, i8* }
@llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8*
→˓@data }]

The @llvm.global_ctors array contains a list of constructor functions, priorities, and an optional associated
global or function. The functions referenced by this array will be called in ascending order of priority (i.e. lowest first)
when the module is loaded. The order of functions with the same priority is not defined.

If the third field is present, non-null, and points to a global variable or function, the initializer function will only run if
the associated data from the current module is not discarded.

The ‘llvm.global_dtors‘ Global Variable

%0 = type { i32, void ()*, i8* }
@llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8*
→˓@data }]

The @llvm.global_dtors array contains a list of destructor functions, priorities, and an optional associated
global or function. The functions referenced by this array will be called in descending order of priority (i.e. highest
first) when the module is unloaded. The order of functions with the same priority is not defined.

If the third field is present, non-null, and points to a global variable or function, the destructor function will only run
if the associated data from the current module is not discarded.
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Instruction Reference

The LLVM instruction set consists of several different classifications of instructions: terminator instructions, binary
instructions, bitwise binary instructions, memory instructions, and other instructions.

Terminator Instructions

As mentioned previously, every basic block in a program ends with a “Terminator” instruction, which indicates which
block should be executed after the current block is finished. These terminator instructions typically yield a ‘void‘
value: they produce control flow, not values (the one exception being the ‘invoke‘ instruction).

The terminator instructions are: ‘ret‘, ‘br‘, ‘switch‘, ‘indirectbr‘, ‘invoke‘, ‘resume‘, ‘catchswitch‘, ‘catchret‘,
‘cleanupret‘, and ‘unreachable‘.

‘ret‘ Instruction

Syntax:

ret <type> <value> ; Return a value from a non-void function
ret void ; Return from void function

Overview:

The ‘ret‘ instruction is used to return control flow (and optionally a value) from a function back to the caller.

There are two forms of the ‘ret‘ instruction: one that returns a value and then causes control flow, and one that just
causes control flow to occur.

Arguments:

The ‘ret‘ instruction optionally accepts a single argument, the return value. The type of the return value must be a
‘first class‘ type.

A function is not well formed if it it has a non-void return type and contains a ‘ret‘ instruction with no return value
or a return value with a type that does not match its type, or if it has a void return type and contains a ‘ret‘ instruction
with a return value.

Semantics:

When the ‘ret‘ instruction is executed, control flow returns back to the calling function’s context. If the caller is
a “call” instruction, execution continues at the instruction after the call. If the caller was an “invoke” instruction,
execution continues at the beginning of the “normal” destination block. If the instruction returns a value, that value
shall set the call or invoke instruction’s return value.

Example:

ret i32 5 ; Return an integer value of 5
ret void ; Return from a void function
ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
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‘br‘ Instruction

Syntax:

br i1 <cond>, label <iftrue>, label <iffalse>
br label <dest> ; Unconditional branch

Overview:

The ‘br‘ instruction is used to cause control flow to transfer to a different basic block in the current function. There
are two forms of this instruction, corresponding to a conditional branch and an unconditional branch.

Arguments:

The conditional branch form of the ‘br‘ instruction takes a single ‘i1‘ value and two ‘label‘ values. The uncondi-
tional form of the ‘br‘ instruction takes a single ‘label‘ value as a target.

Semantics:

Upon execution of a conditional ‘br‘ instruction, the ‘i1‘ argument is evaluated. If the value is true, control flows
to the ‘iftrue‘ label argument. If “cond” is false, control flows to the ‘iffalse‘ label argument.

Example:

Test:
%cond = icmp eq i32 %a, %b
br i1 %cond, label %IfEqual, label %IfUnequal

IfEqual:
ret i32 1

IfUnequal:
ret i32 0

‘switch‘ Instruction

Syntax:

switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]

Overview:

The ‘switch‘ instruction is used to transfer control flow to one of several different places. It is a generalization of
the ‘br‘ instruction, allowing a branch to occur to one of many possible destinations.
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Arguments:

The ‘switch‘ instruction uses three parameters: an integer comparison value ‘value‘, a default ‘label‘ destina-
tion, and an array of pairs of comparison value constants and ‘label‘s. The table is not allowed to contain duplicate
constant entries.

Semantics:

The switch instruction specifies a table of values and destinations. When the ‘switch‘ instruction is executed, this
table is searched for the given value. If the value is found, control flow is transferred to the corresponding destination;
otherwise, control flow is transferred to the default destination.

Implementation:

Depending on properties of the target machine and the particular switch instruction, this instruction may be code
generated in different ways. For example, it could be generated as a series of chained conditional branches or with a
lookup table.

Example:

; Emulate a conditional br instruction
%Val = zext i1 %value to i32
switch i32 %Val, label %truedest [ i32 0, label %falsedest ]

; Emulate an unconditional br instruction
switch i32 0, label %dest [ ]

; Implement a jump table:
switch i32 %val, label %otherwise [ i32 0, label %onzero

i32 1, label %onone
i32 2, label %ontwo ]

‘indirectbr‘ Instruction

Syntax:

indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]

Overview:

The ‘indirectbr‘ instruction implements an indirect branch to a label within the current function, whose address
is specified by “address”. Address must be derived from a blockaddress constant.

Arguments:

The ‘address‘ argument is the address of the label to jump to. The rest of the arguments indicate the full set of
possible destinations that the address may point to. Blocks are allowed to occur multiple times in the destination list,
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though this isn’t particularly useful.

This destination list is required so that dataflow analysis has an accurate understanding of the CFG.

Semantics:

Control transfers to the block specified in the address argument. All possible destination blocks must be listed in the
label list, otherwise this instruction has undefined behavior. This implies that jumps to labels defined in other functions
have undefined behavior as well.

Implementation:

This is typically implemented with a jump through a register.

Example:

indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]

‘invoke‘ Instruction

Syntax:

<result> = invoke [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn
→˓attrs]

[operand bundles] to label <normal label> unwind label <exception label>

Overview:

The ‘invoke‘ instruction causes control to transfer to a specified function, with the possibility of control flow transfer
to either the ‘normal‘ label or the ‘exception‘ label. If the callee function returns with the “ret” instruction,
control flow will return to the “normal” label. If the callee (or any indirect callees) returns via the “resume” instruction
or other exception handling mechanism, control is interrupted and continued at the dynamically nearest “exception”
label.

The ‘exception‘ label is a landing pad for the exception. As such, ‘exception‘ label is required to have the
“landingpad” instruction, which contains the information about the behavior of the program after unwinding hap-
pens, as its first non-PHI instruction. The restrictions on the “landingpad” instruction’s tightly couples it to the
“invoke” instruction, so that the important information contained within the “landingpad” instruction can’t be
lost through normal code motion.

Arguments:

This instruction requires several arguments:

1. The optional “cconv” marker indicates which calling convention the call should use. If none is specified, the
call defaults to using C calling conventions.

2. The optional Parameter Attributes list for return values. Only ‘zeroext‘, ‘signext‘, and ‘inreg‘ attributes
are valid here.
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3. ‘ty‘: the type of the call instruction itself which is also the type of the return value. Functions that return no
value are marked void.

4. ‘fnty‘: shall be the signature of the function being invoked. The argument types must match the types implied
by this signature. This type can be omitted if the function is not varargs.

5. ‘fnptrval‘: An LLVM value containing a pointer to a function to be invoked. In most cases, this is a direct
function invocation, but indirect invoke‘s are just as possible, calling an arbitrary pointer to function value.

6. ‘function args‘: argument list whose types match the function signature argument types and parameter
attributes. All arguments must be of first class type. If the function signature indicates the function accepts a
variable number of arguments, the extra arguments can be specified.

7. ‘normal label‘: the label reached when the called function executes a ‘ret‘ instruction.

8. ‘exception label‘: the label reached when a callee returns via the resume instruction or other exception
handling mechanism.

9. The optional function attributes list. Only ‘noreturn‘, ‘nounwind‘, ‘readonly‘ and ‘readnone‘ at-
tributes are valid here.

10. The optional operand bundles list.

Semantics:

This instruction is designed to operate as a standard ‘call‘ instruction in most regards. The primary difference is that
it establishes an association with a label, which is used by the runtime library to unwind the stack.

This instruction is used in languages with destructors to ensure that proper cleanup is performed in the case of either a
longjmp or a thrown exception. Additionally, this is important for implementation of ‘catch‘ clauses in high-level
languages that support them.

For the purposes of the SSA form, the definition of the value returned by the ‘invoke‘ instruction is deemed to occur
on the edge from the current block to the “normal” label. If the callee unwinds then no return value is available.

Example:

%retval = invoke i32 @Test(i32 15) to label %Continue
unwind label %TestCleanup ; i32:retval set

%retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
unwind label %TestCleanup ; i32:retval set

‘resume‘ Instruction

Syntax:

resume <type> <value>

Overview:

The ‘resume‘ instruction is a terminator instruction that has no successors.
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Arguments:

The ‘resume‘ instruction requires one argument, which must have the same type as the result of any ‘landingpad‘
instruction in the same function.

Semantics:

The ‘resume‘ instruction resumes propagation of an existing (in-flight) exception whose unwinding was interrupted
with a landingpad instruction.

Example:

resume { i8*, i32 } %exn

‘catchswitch‘ Instruction

Syntax:

<resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ]
→˓unwind to caller
<resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ]
→˓unwind label <default>

Overview:

The ‘catchswitch‘ instruction is used by LLVM’s exception handling system to describe the set of possible catch
handlers that may be executed by the EH personality routine.

Arguments:

The parent argument is the token of the funclet that contains the catchswitch instruction. If the catchswitch
is not inside a funclet, this operand may be the token none.

The default argument is the label of another basic block beginning with either a cleanuppad or catchswitch
instruction. This unwind destination must be a legal target with respect to the parent links, as described in the
exception handling documentation.

The handlers are a nonempty list of successor blocks that each begin with a catchpad instruction.

Semantics:

Executing this instruction transfers control to one of the successors in handlers, if appropriate, or continues to
unwind via the unwind label if present.

The catchswitch is both a terminator and a “pad” instruction, meaning that it must be both the first non-phi
instruction and last instruction in the basic block. Therefore, it must be the only non-phi instruction in the block.
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Example:

dispatch1:
%cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller

dispatch2:
%cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup

‘catchret‘ Instruction

Syntax:

catchret from <token> to label <normal>

Overview:

The ‘catchret‘ instruction is a terminator instruction that has a single successor.

Arguments:

The first argument to a ‘catchret‘ indicates which catchpad it exits. It must be a catchpad. The second argument
to a ‘catchret‘ specifies where control will transfer to next.

Semantics:

The ‘catchret‘ instruction ends an existing (in-flight) exception whose unwinding was interrupted with a catchpad
instruction. The personality function gets a chance to execute arbitrary code to, for example, destroy the active
exception. Control then transfers to normal.

The token argument must be a token produced by a catchpad instruction. If the specified catchpad is not the
most-recently-entered not-yet-exited funclet pad (as described in the EH documentation), the catchret‘s behavior
is undefined.

Example:

catchret from %catch label %continue

‘cleanupret‘ Instruction

Syntax:

cleanupret from <value> unwind label <continue>
cleanupret from <value> unwind to caller
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Overview:

The ‘cleanupret‘ instruction is a terminator instruction that has an optional successor.

Arguments:

The ‘cleanupret‘ instruction requires one argument, which indicates which cleanuppad it exits, and must be a
cleanuppad. If the specified cleanuppad is not the most-recently-entered not-yet-exited funclet pad (as described
in the EH documentation), the cleanupret‘s behavior is undefined.

The ‘cleanupret‘ instruction also has an optional successor, continue, which must be the label of another basic
block beginning with either a cleanuppad or catchswitch instruction. This unwind destination must be a legal
target with respect to the parent links, as described in the exception handling documentation.

Semantics:

The ‘cleanupret‘ instruction indicates to the personality function that one cleanuppad it transferred control to has
ended. It transfers control to continue or unwinds out of the function.

Example:

cleanupret from %cleanup unwind to caller
cleanupret from %cleanup unwind label %continue

‘unreachable‘ Instruction

Syntax:

unreachable

Overview:

The ‘unreachable‘ instruction has no defined semantics. This instruction is used to inform the optimizer that a
particular portion of the code is not reachable. This can be used to indicate that the code after a no-return function
cannot be reached, and other facts.

Semantics:

The ‘unreachable‘ instruction has no defined semantics.

Binary Operations

Binary operators are used to do most of the computation in a program. They require two operands of the same type,
execute an operation on them, and produce a single value. The operands might represent multiple data, as is the case
with the vector data type. The result value has the same type as its operands.

There are several different binary operators:
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‘add‘ Instruction

Syntax:

<result> = add <ty> <op1>, <op2> ; yields ty:result
<result> = add nuw <ty> <op1>, <op2> ; yields ty:result
<result> = add nsw <ty> <op1>, <op2> ; yields ty:result
<result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result

Overview:

The ‘add‘ instruction returns the sum of its two operands.

Arguments:

The two arguments to the ‘add‘ instruction must be integer or vector of integer values. Both arguments must have
identical types.

Semantics:

The value produced is the integer sum of the two operands.

If the sum has unsigned overflow, the result returned is the mathematical result modulo 2n, where n is the bit width of
the result.

Because LLVM integers use a two’s complement representation, this instruction is appropriate for both signed and
unsigned integers.

nuw and nsw stand for “No Unsigned Wrap” and “No Signed Wrap”, respectively. If the nuw and/or nsw keywords
are present, the result value of the add is a poison value if unsigned and/or signed overflow, respectively, occurs.

Example:

<result> = add i32 4, %var ; yields i32:result = 4 + %var

‘fadd‘ Instruction

Syntax:

<result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result

Overview:

The ‘fadd‘ instruction returns the sum of its two operands.
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Arguments:

The two arguments to the ‘fadd‘ instruction must be floating point or vector of floating point values. Both arguments
must have identical types.

Semantics:

The value produced is the floating point sum of the two operands. This instruction can also take any number of
fast-math flags, which are optimization hints to enable otherwise unsafe floating point optimizations:

Example:

<result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var

‘sub‘ Instruction

Syntax:

<result> = sub <ty> <op1>, <op2> ; yields ty:result
<result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
<result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
<result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result

Overview:

The ‘sub‘ instruction returns the difference of its two operands.

Note that the ‘sub‘ instruction is used to represent the ‘neg‘ instruction present in most other intermediate represen-
tations.

Arguments:

The two arguments to the ‘sub‘ instruction must be integer or vector of integer values. Both arguments must have
identical types.

Semantics:

The value produced is the integer difference of the two operands.

If the difference has unsigned overflow, the result returned is the mathematical result modulo 2n, where n is the bit
width of the result.

Because LLVM integers use a two’s complement representation, this instruction is appropriate for both signed and
unsigned integers.

nuw and nsw stand for “No Unsigned Wrap” and “No Signed Wrap”, respectively. If the nuw and/or nsw keywords
are present, the result value of the sub is a poison value if unsigned and/or signed overflow, respectively, occurs.
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Example:

<result> = sub i32 4, %var ; yields i32:result = 4 - %var
<result> = sub i32 0, %val ; yields i32:result = -%var

‘fsub‘ Instruction

Syntax:

<result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result

Overview:

The ‘fsub‘ instruction returns the difference of its two operands.

Note that the ‘fsub‘ instruction is used to represent the ‘fneg‘ instruction present in most other intermediate repre-
sentations.

Arguments:

The two arguments to the ‘fsub‘ instruction must be floating point or vector of floating point values. Both arguments
must have identical types.

Semantics:

The value produced is the floating point difference of the two operands. This instruction can also take any number of
fast-math flags, which are optimization hints to enable otherwise unsafe floating point optimizations:

Example:

<result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
<result> = fsub float -0.0, %val ; yields float:result = -%var

‘mul‘ Instruction

Syntax:

<result> = mul <ty> <op1>, <op2> ; yields ty:result
<result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
<result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
<result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result

Overview:

The ‘mul‘ instruction returns the product of its two operands.
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Arguments:

The two arguments to the ‘mul‘ instruction must be integer or vector of integer values. Both arguments must have
identical types.

Semantics:

The value produced is the integer product of the two operands.

If the result of the multiplication has unsigned overflow, the result returned is the mathematical result modulo 2n,
where n is the bit width of the result.

Because LLVM integers use a two’s complement representation, and the result is the same width as the operands, this
instruction returns the correct result for both signed and unsigned integers. If a full product (e.g. i32 * i32 -> i64)
is needed, the operands should be sign-extended or zero-extended as appropriate to the width of the full product.

nuw and nsw stand for “No Unsigned Wrap” and “No Signed Wrap”, respectively. If the nuw and/or nsw keywords
are present, the result value of the mul is a poison value if unsigned and/or signed overflow, respectively, occurs.

Example:

<result> = mul i32 4, %var ; yields i32:result = 4 * %var

‘fmul‘ Instruction

Syntax:

<result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result

Overview:

The ‘fmul‘ instruction returns the product of its two operands.

Arguments:

The two arguments to the ‘fmul‘ instruction must be floating point or vector of floating point values. Both arguments
must have identical types.

Semantics:

The value produced is the floating point product of the two operands. This instruction can also take any number of
fast-math flags, which are optimization hints to enable otherwise unsafe floating point optimizations:
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Example:

<result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var

‘udiv‘ Instruction

Syntax:

<result> = udiv <ty> <op1>, <op2> ; yields ty:result
<result> = udiv exact <ty> <op1>, <op2> ; yields ty:result

Overview:

The ‘udiv‘ instruction returns the quotient of its two operands.

Arguments:

The two arguments to the ‘udiv‘ instruction must be integer or vector of integer values. Both arguments must have
identical types.

Semantics:

The value produced is the unsigned integer quotient of the two operands.

Note that unsigned integer division and signed integer division are distinct operations; for signed integer division, use
‘sdiv‘.

Division by zero leads to undefined behavior.

If the exact keyword is present, the result value of the udiv is a poison value if %op1 is not a multiple of %op2 (as
such, “((a udiv exact b) mul b) == a”).

Example:

<result> = udiv i32 4, %var ; yields i32:result = 4 / %var

‘sdiv‘ Instruction

Syntax:

<result> = sdiv <ty> <op1>, <op2> ; yields ty:result
<result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
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Overview:

The ‘sdiv‘ instruction returns the quotient of its two operands.

Arguments:

The two arguments to the ‘sdiv‘ instruction must be integer or vector of integer values. Both arguments must have
identical types.

Semantics:

The value produced is the signed integer quotient of the two operands rounded towards zero.

Note that signed integer division and unsigned integer division are distinct operations; for unsigned integer division,
use ‘udiv‘.

Division by zero leads to undefined behavior. Overflow also leads to undefined behavior; this is a rare case, but can
occur, for example, by doing a 32-bit division of -2147483648 by -1.

If the exact keyword is present, the result value of the sdiv is a poison value if the result would be rounded.

Example:

<result> = sdiv i32 4, %var ; yields i32:result = 4 / %var

‘fdiv‘ Instruction

Syntax:

<result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result

Overview:

The ‘fdiv‘ instruction returns the quotient of its two operands.

Arguments:

The two arguments to the ‘fdiv‘ instruction must be floating point or vector of floating point values. Both arguments
must have identical types.

Semantics:

The value produced is the floating point quotient of the two operands. This instruction can also take any number of
fast-math flags, which are optimization hints to enable otherwise unsafe floating point optimizations:
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Example:

<result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var

‘urem‘ Instruction

Syntax:

<result> = urem <ty> <op1>, <op2> ; yields ty:result

Overview:

The ‘urem‘ instruction returns the remainder from the unsigned division of its two arguments.

Arguments:

The two arguments to the ‘urem‘ instruction must be integer or vector of integer values. Both arguments must have
identical types.

Semantics:

This instruction returns the unsigned integer remainder of a division. This instruction always performs an unsigned
division to get the remainder.

Note that unsigned integer remainder and signed integer remainder are distinct operations; for signed integer remain-
der, use ‘srem‘.

Taking the remainder of a division by zero leads to undefined behavior.

Example:

<result> = urem i32 4, %var ; yields i32:result = 4 % %var

‘srem‘ Instruction

Syntax:

<result> = srem <ty> <op1>, <op2> ; yields ty:result

Overview:

The ‘srem‘ instruction returns the remainder from the signed division of its two operands. This instruction can also
take vector versions of the values in which case the elements must be integers.
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Arguments:

The two arguments to the ‘srem‘ instruction must be integer or vector of integer values. Both arguments must have
identical types.

Semantics:

This instruction returns the remainder of a division (where the result is either zero or has the same sign as the dividend,
op1), not the modulo operator (where the result is either zero or has the same sign as the divisor, op2) of a value.
For more information about the difference, see The Math Forum. For a table of how this is implemented in various
languages, please see Wikipedia: modulo operation.

Note that signed integer remainder and unsigned integer remainder are distinct operations; for unsigned integer re-
mainder, use ‘urem‘.

Taking the remainder of a division by zero leads to undefined behavior. Overflow also leads to undefined behavior;
this is a rare case, but can occur, for example, by taking the remainder of a 32-bit division of -2147483648 by -1.
(The remainder doesn’t actually overflow, but this rule lets srem be implemented using instructions that return both
the result of the division and the remainder.)

Example:

<result> = srem i32 4, %var ; yields i32:result = 4 % %var

‘frem‘ Instruction

Syntax:

<result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result

Overview:

The ‘frem‘ instruction returns the remainder from the division of its two operands.

Arguments:

The two arguments to the ‘frem‘ instruction must be floating point or vector of floating point values. Both arguments
must have identical types.

Semantics:

This instruction returns the remainder of a division. The remainder has the same sign as the dividend. This instruction
can also take any number of fast-math flags, which are optimization hints to enable otherwise unsafe floating point
optimizations:
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Example:

<result> = frem float 4.0, %var ; yields float:result = 4.0 % %var

Bitwise Binary Operations

Bitwise binary operators are used to do various forms of bit-twiddling in a program. They are generally very efficient
instructions and can commonly be strength reduced from other instructions. They require two operands of the same
type, execute an operation on them, and produce a single value. The resulting value is the same type as its operands.

‘shl‘ Instruction

Syntax:

<result> = shl <ty> <op1>, <op2> ; yields ty:result
<result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
<result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
<result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result

Overview:

The ‘shl‘ instruction returns the first operand shifted to the left a specified number of bits.

Arguments:

Both arguments to the ‘shl‘ instruction must be the same integer or vector of integer type. ‘op2‘ is treated as an
unsigned value.

Semantics:

The value produced is op1 * 2op2 mod 2n, where n is the width of the result. If op2 is (statically or dynamically)
equal to or larger than the number of bits in op1, the result is undefined. If the arguments are vectors, each vector
element of op1 is shifted by the corresponding shift amount in op2.

If the nuw keyword is present, then the shift produces a poison value if it shifts out any non-zero bits. If the nsw
keyword is present, then the shift produces a poison value if it shifts out any bits that disagree with the resultant sign
bit. As such, NUW/NSW have the same semantics as they would if the shift were expressed as a mul instruction with
the same nsw/nuw bits in (mul %op1, (shl 1, %op2)).

Example:

<result> = shl i32 4, %var ; yields i32: 4 << %var
<result> = shl i32 4, 2 ; yields i32: 16
<result> = shl i32 1, 10 ; yields i32: 1024
<result> = shl i32 1, 32 ; undefined
<result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32>
→˓ < i32 2, i32 4>
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‘lshr‘ Instruction

Syntax:

<result> = lshr <ty> <op1>, <op2> ; yields ty:result
<result> = lshr exact <ty> <op1>, <op2> ; yields ty:result

Overview:

The ‘lshr‘ instruction (logical shift right) returns the first operand shifted to the right a specified number of bits with
zero fill.

Arguments:

Both arguments to the ‘lshr‘ instruction must be the same integer or vector of integer type. ‘op2‘ is treated as an
unsigned value.

Semantics:

This instruction always performs a logical shift right operation. The most significant bits of the result will be filled
with zero bits after the shift. If op2 is (statically or dynamically) equal to or larger than the number of bits in op1,
the result is undefined. If the arguments are vectors, each vector element of op1 is shifted by the corresponding shift
amount in op2.

If the exact keyword is present, the result value of the lshr is a poison value if any of the bits shifted out are
non-zero.

Example:

<result> = lshr i32 4, 1 ; yields i32:result = 2
<result> = lshr i32 4, 2 ; yields i32:result = 1
<result> = lshr i8 4, 3 ; yields i8:result = 0
<result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
<result> = lshr i32 1, 32 ; undefined
<result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x
→˓i32> < i32 0x7FFFFFFF, i32 1>

‘ashr‘ Instruction

Syntax:

<result> = ashr <ty> <op1>, <op2> ; yields ty:result
<result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
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Overview:

The ‘ashr‘ instruction (arithmetic shift right) returns the first operand shifted to the right a specified number of bits
with sign extension.

Arguments:

Both arguments to the ‘ashr‘ instruction must be the same integer or vector of integer type. ‘op2‘ is treated as an
unsigned value.

Semantics:

This instruction always performs an arithmetic shift right operation, The most significant bits of the result will be filled
with the sign bit of op1. If op2 is (statically or dynamically) equal to or larger than the number of bits in op1, the
result is undefined. If the arguments are vectors, each vector element of op1 is shifted by the corresponding shift
amount in op2.

If the exact keyword is present, the result value of the ashr is a poison value if any of the bits shifted out are
non-zero.

Example:

<result> = ashr i32 4, 1 ; yields i32:result = 2
<result> = ashr i32 4, 2 ; yields i32:result = 1
<result> = ashr i8 4, 3 ; yields i8:result = 0
<result> = ashr i8 -2, 1 ; yields i8:result = -1
<result> = ashr i32 1, 32 ; undefined
<result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x
→˓i32> < i32 -1, i32 0>

‘and‘ Instruction

Syntax:

<result> = and <ty> <op1>, <op2> ; yields ty:result

Overview:

The ‘and‘ instruction returns the bitwise logical and of its two operands.

Arguments:

The two arguments to the ‘and‘ instruction must be integer or vector of integer values. Both arguments must have
identical types.
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Semantics:

The truth table used for the ‘and‘ instruction is:

In0 In1 Out
0 0 0
0 1 0
1 0 0
1 1 1

Example:

<result> = and i32 4, %var ; yields i32:result = 4 & %var
<result> = and i32 15, 40 ; yields i32:result = 8
<result> = and i32 4, 8 ; yields i32:result = 0

‘or‘ Instruction

Syntax:

<result> = or <ty> <op1>, <op2> ; yields ty:result

Overview:

The ‘or‘ instruction returns the bitwise logical inclusive or of its two operands.

Arguments:

The two arguments to the ‘or‘ instruction must be integer or vector of integer values. Both arguments must have
identical types.

Semantics:

The truth table used for the ‘or‘ instruction is:

In0 In1 Out
0 0 0
0 1 1
1 0 1
1 1 1

Example:

<result> = or i32 4, %var ; yields i32:result = 4 | %var
<result> = or i32 15, 40 ; yields i32:result = 47
<result> = or i32 4, 8 ; yields i32:result = 12
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‘xor‘ Instruction

Syntax:

<result> = xor <ty> <op1>, <op2> ; yields ty:result

Overview:

The ‘xor‘ instruction returns the bitwise logical exclusive or of its two operands. The xor is used to implement the
“one’s complement” operation, which is the “~” operator in C.

Arguments:

The two arguments to the ‘xor‘ instruction must be integer or vector of integer values. Both arguments must have
identical types.

Semantics:

The truth table used for the ‘xor‘ instruction is:

In0 In1 Out
0 0 0
0 1 1
1 0 1
1 1 0

Example:

<result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
<result> = xor i32 15, 40 ; yields i32:result = 39
<result> = xor i32 4, 8 ; yields i32:result = 12
<result> = xor i32 %V, -1 ; yields i32:result = ~%V

Vector Operations

LLVM supports several instructions to represent vector operations in a target-independent manner. These instructions
cover the element-access and vector-specific operations needed to process vectors effectively. While LLVM does
directly support these vector operations, many sophisticated algorithms will want to use target-specific intrinsics to
take full advantage of a specific target.

‘extractelement‘ Instruction

Syntax:

<result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
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Overview:

The ‘extractelement‘ instruction extracts a single scalar element from a vector at a specified index.

Arguments:

The first operand of an ‘extractelement‘ instruction is a value of vector type. The second operand is an index
indicating the position from which to extract the element. The index may be a variable of any integer type.

Semantics:

The result is a scalar of the same type as the element type of val. Its value is the value at position idx of val. If
idx exceeds the length of val, the results are undefined.

Example:

<result> = extractelement <4 x i32> %vec, i32 0 ; yields i32

‘insertelement‘ Instruction

Syntax:

<result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x
→˓<ty>>

Overview:

The ‘insertelement‘ instruction inserts a scalar element into a vector at a specified index.

Arguments:

The first operand of an ‘insertelement‘ instruction is a value of vector type. The second operand is a scalar value
whose type must equal the element type of the first operand. The third operand is an index indicating the position at
which to insert the value. The index may be a variable of any integer type.

Semantics:

The result is a vector of the same type as val. Its element values are those of val except at position idx, where it
gets the value elt. If idx exceeds the length of val, the results are undefined.

Example:

<result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
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‘shufflevector‘ Instruction

Syntax:

<result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ;
→˓yields <m x <ty>>

Overview:

The ‘shufflevector‘ instruction constructs a permutation of elements from two input vectors, returning a vector
with the same element type as the input and length that is the same as the shuffle mask.

Arguments:

The first two operands of a ‘shufflevector‘ instruction are vectors with the same type. The third argument is a
shuffle mask whose element type is always ‘i32’. The result of the instruction is a vector whose length is the same as
the shuffle mask and whose element type is the same as the element type of the first two operands.

The shuffle mask operand is required to be a constant vector with either constant integer or undef values.

Semantics:

The elements of the two input vectors are numbered from left to right across both of the vectors. The shuffle mask
operand specifies, for each element of the result vector, which element of the two input vectors the result element
gets. The element selector may be undef (meaning “don’t care”) and the second operand may be undef if performing
a shuffle from only one vector.

Example:

<result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
<4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>

<result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
<4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> -

→˓Identity shuffle.
<result> = shufflevector <8 x i32> %v1, <8 x i32> undef,

<4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
<result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,

<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6,
→˓i32 7 > ; yields <8 x i32>

Aggregate Operations

LLVM supports several instructions for working with aggregate values.

‘extractvalue‘ Instruction
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Syntax:

<result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*

Overview:

The ‘extractvalue‘ instruction extracts the value of a member field from an aggregate value.

Arguments:

The first operand of an ‘extractvalue‘ instruction is a value of struct or array type. The other operands are
constant indices to specify which value to extract in a similar manner as indices in a ‘getelementptr‘ instruction.

The major differences to getelementptr indexing are:

• Since the value being indexed is not a pointer, the first index is omitted and assumed to be zero.

• At least one index must be specified.

• Not only struct indices but also array indices must be in bounds.

Semantics:

The result is the value at the position in the aggregate specified by the index operands.

Example:

<result> = extractvalue {i32, float} %agg, 0 ; yields i32

‘insertvalue‘ Instruction

Syntax:

<result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ;
→˓yields <aggregate type>

Overview:

The ‘insertvalue‘ instruction inserts a value into a member field in an aggregate value.

Arguments:

The first operand of an ‘insertvalue‘ instruction is a value of struct or array type. The second operand is a first-
class value to insert. The following operands are constant indices indicating the position at which to insert the value
in a similar manner as indices in a ‘extractvalue‘ instruction. The value to insert must have the same type as the
value identified by the indices.
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Semantics:

The result is an aggregate of the same type as val. Its value is that of val except that the value at the position
specified by the indices is that of elt.

Example:

%agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float
→˓undef}
%agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float
→˓%val}
%agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef,
→˓{float %val}}

Memory Access and Addressing Operations

A key design point of an SSA-based representation is how it represents memory. In LLVM, no memory locations are
in SSA form, which makes things very simple. This section describes how to read, write, and allocate memory in
LLVM.

‘alloca‘ Instruction

Syntax:

<result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ;
→˓ yields type*:result

Overview:

The ‘alloca‘ instruction allocates memory on the stack frame of the currently executing function, to be automatically
released when this function returns to its caller. The object is always allocated in the generic address space (address
space zero).

Arguments:

The ‘alloca‘ instruction allocates sizeof(<type>)*NumElements bytes of memory on the runtime stack,
returning a pointer of the appropriate type to the program. If “NumElements” is specified, it is the number of elements
allocated, otherwise “NumElements” is defaulted to be one. If a constant alignment is specified, the value result of the
allocation is guaranteed to be aligned to at least that boundary. The alignment may not be greater than 1 << 29. If
not specified, or if zero, the target can choose to align the allocation on any convenient boundary compatible with the
type.

‘type‘ may be any sized type.
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Semantics:

Memory is allocated; a pointer is returned. The operation is undefined if there is insufficient stack space for the
allocation. ‘alloca‘d memory is automatically released when the function returns. The ‘alloca‘ instruction is
commonly used to represent automatic variables that must have an address available. When the function returns
(either with the ret or resume instructions), the memory is reclaimed. Allocating zero bytes is legal, but the result
is undefined. The order in which memory is allocated (ie., which way the stack grows) is not specified.

Example:

%ptr = alloca i32 ; yields i32*:ptr
%ptr = alloca i32, i32 4 ; yields i32*:ptr
%ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
%ptr = alloca i32, align 1024 ; yields i32*:ptr

‘load‘ Instruction

Syntax:

<result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !
→˓<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !
→˓<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_
→˓bytes_node>][, !align !<align_node>]
<result> = load atomic [volatile] <ty>, <ty>* <pointer> [singlethread] <ordering>,
→˓align <alignment> [, !invariant.group !<index>]
!<index> = !{ i32 1 }
!<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
!<align_node> = !{ i64 <value_alignment> }

Overview:

The ‘load‘ instruction is used to read from memory.

Arguments:

The argument to the load instruction specifies the memory address from which to load. The type specified must be a
first class type of known size (i.e. not containing an opaque structural type). If the load is marked as volatile,
then the optimizer is not allowed to modify the number or order of execution of this load with other volatile opera-
tions.

If the load is marked as atomic, it takes an extra ordering and optional singlethread argument. The release
and acq_rel orderings are not valid on load instructions. Atomic loads produce defined results when they may
see multiple atomic stores. The type of the pointee must be an integer, pointer, or floating-point type whose bit width
is a power of two greater than or equal to eight and less than or equal to a target-specific size limit. align must be
explicitly specified on atomic loads, and the load has undefined behavior if the alignment is not set to a value which is
at least the size in bytes of the pointee. !nontemporal does not have any defined semantics for atomic loads.

The optional constant align argument specifies the alignment of the operation (that is, the alignment of the memory
address). A value of 0 or an omitted align argument means that the operation has the ABI alignment for the
target. It is the responsibility of the code emitter to ensure that the alignment information is correct. Overestimating
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the alignment results in undefined behavior. Underestimating the alignment may produce less efficient code. An
alignment of 1 is always safe. The maximum possible alignment is 1 << 29. An alignment value higher than the
size of the loaded type implies memory up to the alignment value bytes can be safely loaded without trapping in the
default address space. Access of the high bytes can interfere with debugging tools, so should not be accessed if the
function has the sanitize_thread or sanitize_address attributes.

The optional !nontemporal metadata must reference a single metadata name <index> corresponding to a meta-
data node with one i32 entry of value 1. The existence of the !nontemporal metadata on the instruction tells the
optimizer and code generator that this load is not expected to be reused in the cache. The code generator may select
special instructions to save cache bandwidth, such as the MOVNT instruction on x86.

The optional !invariant.load metadata must reference a single metadata name <index> corresponding to
a metadata node with no entries. The existence of the !invariant.load metadata on the instruction tells the
optimizer and code generator that the address operand to this load points to memory which can be assumed unchanged.
Being invariant does not imply that a location is dereferenceable, but it does imply that once the location is known
dereferenceable its value is henceforth unchanging.

The optional !invariant.group metadata must reference a single metadata name <index> correspond-
ing to a metadata node. See invariant.group metadata.

The optional !nonnull metadata must reference a single metadata name <index> corresponding to a metadata
node with no entries. The existence of the !nonnull metadata on the instruction tells the optimizer that the value
loaded is known to never be null. This is analogous to the nonnull attribute on parameters and return values. This
metadata can only be applied to loads of a pointer type.

The optional !dereferenceable metadata must reference a single metadata name <deref_bytes_node>
corresponding to a metadata node with one i64 entry. The existence of the !dereferenceable metadata on the
instruction tells the optimizer that the value loaded is known to be dereferenceable. The number of bytes known to
be dereferenceable is specified by the integer value in the metadata node. This is analogous to the ‘’dereferenceable”
attribute on parameters and return values. This metadata can only be applied to loads of a pointer type.

The optional !dereferenceable_or_null metadata must reference a single metadata name
<deref_bytes_node> corresponding to a metadata node with one i64 entry. The existence of the !
dereferenceable_or_null metadata on the instruction tells the optimizer that the value loaded is known to
be either dereferenceable or null. The number of bytes known to be dereferenceable is specified by the integer value
in the metadata node. This is analogous to the ‘’dereferenceable_or_null” attribute on parameters and return values.
This metadata can only be applied to loads of a pointer type.

The optional !alignmetadata must reference a single metadata name <align_node> corresponding to a metadata
node with one i64 entry. The existence of the !align metadata on the instruction tells the optimizer that the value
loaded is known to be aligned to a boundary specified by the integer value in the metadata node. The alignment must
be a power of 2. This is analogous to the ‘’align” attribute on parameters and return values. This metadata can only be
applied to loads of a pointer type.

Semantics:

The location of memory pointed to is loaded. If the value being loaded is of scalar type then the number of bytes read
does not exceed the minimum number of bytes needed to hold all bits of the type. For example, loading an i24 reads
at most three bytes. When loading a value of a type like i20 with a size that is not an integral number of bytes, the
result is undefined if the value was not originally written using a store of the same type.

Examples:
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%ptr = alloca i32 ; yields i32*:ptr
store i32 3, i32* %ptr ; yields void
%val = load i32, i32* %ptr ; yields i32:val = i32 3

‘store‘ Instruction

Syntax:

store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !
→˓<index>][, !invariant.group !<index>] ; yields void
store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>,
→˓align <alignment> [, !invariant.group !<index>] ; yields void

Overview:

The ‘store‘ instruction is used to write to memory.

Arguments:

There are two arguments to the store instruction: a value to store and an address at which to store it. The type of the
<pointer> operand must be a pointer to the first class type of the <value> operand. If the store is marked as
volatile, then the optimizer is not allowed to modify the number or order of execution of this store with other
volatile operations. Only values of first class types of known size (i.e. not containing an opaque structural type) can
be stored.

If the store is marked as atomic, it takes an extra ordering and optional singlethread argument. The
acquire and acq_rel orderings aren’t valid on store instructions. Atomic loads produce defined results when
they may see multiple atomic stores. The type of the pointee must be an integer, pointer, or floating-point type whose
bit width is a power of two greater than or equal to eight and less than or equal to a target-specific size limit. align
must be explicitly specified on atomic stores, and the store has undefined behavior if the alignment is not set to a value
which is at least the size in bytes of the pointee. !nontemporal does not have any defined semantics for atomic
stores.

The optional constant align argument specifies the alignment of the operation (that is, the alignment of the memory
address). A value of 0 or an omitted align argument means that the operation has the ABI alignment for the
target. It is the responsibility of the code emitter to ensure that the alignment information is correct. Overestimating
the alignment results in undefined behavior. Underestimating the alignment may produce less efficient code. An
alignment of 1 is always safe. The maximum possible alignment is 1 << 29. An alignment value higher than the
size of the stored type implies memory up to the alignment value bytes can be stored to without trapping in the default
address space. Storing to the higher bytes however may result in data races if another thread can access the same
address. Introducing a data race is not allowed. Storing to the extra bytes is not allowed even in situations where a
data race is known to not exist if the function has the sanitize_address attribute.

The optional !nontemporal metadata must reference a single metadata name <index> corresponding to a meta-
data node with one i32 entry of value 1. The existence of the !nontemporal metadata on the instruction tells the
optimizer and code generator that this load is not expected to be reused in the cache. The code generator may select
special instructions to save cache bandwidth, such as the MOVNT instruction on x86.

The optional !invariant.group metadata must reference a single metadata name <index>. See invariant.
group metadata.
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Semantics:

The contents of memory are updated to contain <value> at the location specified by the <pointer> operand. If
<value> is of scalar type then the number of bytes written does not exceed the minimum number of bytes needed
to hold all bits of the type. For example, storing an i24 writes at most three bytes. When writing a value of a type
like i20 with a size that is not an integral number of bytes, it is unspecified what happens to the extra bits that do not
belong to the type, but they will typically be overwritten.

Example:

%ptr = alloca i32 ; yields i32*:ptr
store i32 3, i32* %ptr ; yields void
%val = load i32, i32* %ptr ; yields i32:val = i32 3

‘fence‘ Instruction

Syntax:

fence [singlethread] <ordering> ; yields void

Overview:

The ‘fence‘ instruction is used to introduce happens-before edges between operations.

Arguments:

‘fence‘ instructions take an ordering argument which defines what synchronizes-with edges they add. They can only
be given acquire, release, acq_rel, and seq_cst orderings.

Semantics:

A fence A which has (at least) release ordering semantics synchronizes with a fence B with (at least) acquire
ordering semantics if and only if there exist atomic operations X and Y, both operating on some atomic object M, such
that A is sequenced before X, X modifies M (either directly or through some side effect of a sequence headed by X),
Y is sequenced before B, and Y observes M. This provides a happens-before dependency between A and B. Rather
than an explicit fence, one (but not both) of the atomic operations X or Y might provide a release or acquire
(resp.) ordering constraint and still synchronize-with the explicit fence and establish the happens-before edge.

A fence which has seq_cst ordering, in addition to having both acquire and release semantics specified
above, participates in the global program order of other seq_cst operations and/or fences.

The optional “singlethread” argument specifies that the fence only synchronizes with other fences in the same thread.
(This is useful for interacting with signal handlers.)
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Example:

fence acquire ; yields void
fence singlethread seq_cst ; yields void

‘cmpxchg‘ Instruction

Syntax:

cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread]
→˓<success ordering> <failure ordering> ; yields { ty, i1 }

Overview:

The ‘cmpxchg‘ instruction is used to atomically modify memory. It loads a value in memory and compares it to a
given value. If they are equal, it tries to store a new value into the memory.

Arguments:

There are three arguments to the ‘cmpxchg‘ instruction: an address to operate on, a value to compare to the value
currently be at that address, and a new value to place at that address if the compared values are equal. The type of
‘<cmp>’ must be an integer or pointer type whose bit width is a power of two greater than or equal to eight and less
than or equal to a target-specific size limit. ‘<cmp>’ and ‘<new>’ must have the same type, and the type of ‘<pointer>’
must be a pointer to that type. If the cmpxchg is marked as volatile, then the optimizer is not allowed to modify
the number or order of execution of this cmpxchg with other volatile operations.

The success and failure ordering arguments specify how this cmpxchg synchronizes with other atomic operations.
Both ordering parameters must be at least monotonic, the ordering constraint on failure must be no stronger than
that on success, and the failure ordering cannot be either release or acq_rel.

The optional “singlethread” argument declares that the cmpxchg is only atomic with respect to code (usually
signal handlers) running in the same thread as the cmpxchg. Otherwise the cmpxchg is atomic with respect to all
other code in the system.

The pointer passed into cmpxchg must have alignment greater than or equal to the size in memory of the operand.

Semantics:

The contents of memory at the location specified by the ‘<pointer>‘ operand is read and compared to ‘<cmp>‘; if
the read value is the equal, the ‘<new>‘ is written. The original value at the location is returned, together with a flag
indicating success (true) or failure (false).

If the cmpxchg operation is marked as weak then a spurious failure is permitted: the operation may not write <new>
even if the comparison matched.

If the cmpxchg operation is strong (the default), the i1 value is 1 if and only if the value loaded equals cmp.

A successful cmpxchg is a read-modify-write instruction for the purpose of identifying release sequences. A failed
cmpxchg is equivalent to an atomic load with an ordering parameter determined the second ordering parameter.
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Example:

entry:
%orig = load atomic i32, i32* %ptr unordered, align 4 ; yields

→˓i32
br label %loop

loop:
%cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
%squared = mul i32 %cmp, %cmp
%val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields

→˓ { i32, i1 }
%value_loaded = extractvalue { i32, i1 } %val_success, 0
%success = extractvalue { i32, i1 } %val_success, 1
br i1 %success, label %done, label %loop

done:
...

‘atomicrmw‘ Instruction

Syntax:

atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread]
→˓<ordering> ; yields ty

Overview:

The ‘atomicrmw‘ instruction is used to atomically modify memory.

Arguments:

There are three arguments to the ‘atomicrmw‘ instruction: an operation to apply, an address whose value to modify,
an argument to the operation. The operation must be one of the following keywords:

• xchg

• add

• sub

• and

• nand

• or

• xor

• max

• min

• umax

• umin
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The type of ‘<value>’ must be an integer type whose bit width is a power of two greater than or equal to eight and
less than or equal to a target-specific size limit. The type of the ‘<pointer>‘ operand must be a pointer to that type.
If the atomicrmw is marked as volatile, then the optimizer is not allowed to modify the number or order of
execution of this atomicrmw with other volatile operations.

Semantics:

The contents of memory at the location specified by the ‘<pointer>‘ operand are atomically read, modified, and
written back. The original value at the location is returned. The modification is specified by the operation argument:

• xchg: *ptr = val

• add: *ptr = *ptr + val

• sub: *ptr = *ptr - val

• and: *ptr = *ptr & val

• nand: *ptr = ~(*ptr & val)

• or: *ptr = *ptr | val

• xor: *ptr = *ptr ^ val

• max: *ptr = *ptr > val ? *ptr : val (using a signed comparison)

• min: *ptr = *ptr < val ? *ptr : val (using a signed comparison)

• umax: *ptr = *ptr > val ? *ptr : val (using an unsigned comparison)

• umin: *ptr = *ptr < val ? *ptr : val (using an unsigned comparison)

Example:

%old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32

‘getelementptr‘ Instruction

Syntax:

<result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
<result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
<result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>

Overview:

The ‘getelementptr‘ instruction is used to get the address of a subelement of an aggregate data structure. It
performs address calculation only and does not access memory. The instruction can also be used to calculate a vector
of such addresses.
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Arguments:

The first argument is always a type used as the basis for the calculations. The second argument is always a pointer or
a vector of pointers, and is the base address to start from. The remaining arguments are indices that indicate which
of the elements of the aggregate object are indexed. The interpretation of each index is dependent on the type being
indexed into. The first index always indexes the pointer value given as the first argument, the second index indexes
a value of the type pointed to (not necessarily the value directly pointed to, since the first index can be non-zero),
etc. The first type indexed into must be a pointer value, subsequent types can be arrays, vectors, and structs. Note
that subsequent types being indexed into can never be pointers, since that would require loading the pointer before
continuing calculation.

The type of each index argument depends on the type it is indexing into. When indexing into a (optionally packed)
structure, only i32 integer constants are allowed (when using a vector of indices they must all be the same i32
integer constant). When indexing into an array, pointer or vector, integers of any width are allowed, and they are not
required to be constant. These integers are treated as signed values where relevant.

For example, let’s consider a C code fragment and how it gets compiled to LLVM:

struct RT {
char A;
int B[10][20];
char C;

};
struct ST {
int X;
double Y;
struct RT Z;

};

int *foo(struct ST *s) {
return &s[1].Z.B[5][13];

}

The LLVM code generated by Clang is:

%struct.RT = type { i8, [10 x [20 x i32]], i8 }
%struct.ST = type { i32, double, %struct.RT }

define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
entry:

%arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1,
→˓i64 5, i64 13
ret i32* %arrayidx

}

Semantics:

In the example above, the first index is indexing into the ‘%struct.ST*‘ type, which is a pointer, yielding a
‘%struct.ST‘ = ‘{ i32, double, %struct.RT }‘ type, a structure. The second index indexes into the
third element of the structure, yielding a ‘%struct.RT‘ = ‘{ i8 , [10 x [20 x i32]], i8 }‘ type, an-
other structure. The third index indexes into the second element of the structure, yielding a ‘[10 x [20 x i32]]‘
type, an array. The two dimensions of the array are subscripted into, yielding an ‘i32‘ type. The ‘getelementptr‘
instruction returns a pointer to this element, thus computing a value of ‘i32*‘ type.

Note that it is perfectly legal to index partially through a structure, returning a pointer to an inner element. Because of
this, the LLVM code for the given testcase is equivalent to:
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define i32* @foo(%struct.ST* %s) {
%t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ;

→˓yields %struct.ST*:%t1
%t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ;

→˓yields %struct.RT*:%t2
%t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ;

→˓yields [10 x [20 x i32]]*:%t3
%t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ;

→˓yields [20 x i32]*:%t4
%t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ;

→˓yields i32*:%t5
ret i32* %t5

}

If the inbounds keyword is present, the result value of the getelementptr is a poison value if the base pointer is
not an in bounds address of an allocated object, or if any of the addresses that would be formed by successive addition
of the offsets implied by the indices to the base address with infinitely precise signed arithmetic are not an in bounds
address of that allocated object. The in bounds addresses for an allocated object are all the addresses that point into the
object, plus the address one byte past the end. In cases where the base is a vector of pointers the inbounds keyword
applies to each of the computations element-wise.

If the inbounds keyword is not present, the offsets are added to the base address with silently-wrapping two’s
complement arithmetic. If the offsets have a different width from the pointer, they are sign-extended or truncated
to the width of the pointer. The result value of the getelementptr may be outside the object pointed to by the
base pointer. The result value may not necessarily be used to access memory though, even if it happens to point into
allocated storage. See the Pointer Aliasing Rules section for more information.

The getelementptr instruction is often confusing. For some more insight into how it works, see the getelementptr FAQ.

Example:

; yields [12 x i8]*:aptr
%aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
; yields i8*:vptr
%vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
; yields i8*:eptr
%eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
; yields i32*:iptr
%iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0

Vector of pointers:

The getelementptr returns a vector of pointers, instead of a single address, when one or more of its arguments is
a vector. In such cases, all vector arguments should have the same number of elements, and every scalar argument will
be effectively broadcast into a vector during address calculation.

; All arguments are vectors:
; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
%A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets

; Add the same scalar offset to each pointer of a vector:
; A[i] = ptrs[i] + offset*sizeof(i8)
%A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
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; Add distinct offsets to the same pointer:
; A[i] = ptr + offsets[i]*sizeof(i8)
%A = getelementptr i8, i8* %ptr, <4 x i64> %offsets

; In all cases described above the type of the result is <4 x i8*>

The two following instructions are equivalent:

getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
<4 x i32> <i32 2, i32 2, i32 2, i32 2>,
<4 x i32> <i32 1, i32 1, i32 1, i32 1>,
<4 x i32> %ind4,
<4 x i64> <i64 13, i64 13, i64 13, i64 13>

getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
i32 2, i32 1, <4 x i32> %ind4, i64 13

Let’s look at the C code, where the vector version of getelementptr makes sense:

// Let's assume that we vectorize the following loop:
double *A, B; int *C;
for (int i = 0; i < size; ++i) {
A[i] = B[C[i]];

}

; get pointers for 8 elements from array B
%ptrs = getelementptr double, double* %B, <8 x i32> %C
; load 8 elements from array B into A
%A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,

i32 8, <8 x i1> %mask, <8 x double> %passthru)

Conversion Operations

The instructions in this category are the conversion instructions (casting) which all take a single operand and a type.
They perform various bit conversions on the operand.

‘trunc .. to‘ Instruction

Syntax:

<result> = trunc <ty> <value> to <ty2> ; yields ty2

Overview:

The ‘trunc‘ instruction truncates its operand to the type ty2.

Arguments:

The ‘trunc‘ instruction takes a value to trunc, and a type to trunc it to. Both types must be of integer types, or vectors
of the same number of integers. The bit size of the value must be larger than the bit size of the destination type,
ty2. Equal sized types are not allowed.
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Semantics:

The ‘trunc‘ instruction truncates the high order bits in value and converts the remaining bits to ty2. Since the
source size must be larger than the destination size, trunc cannot be a no-op cast. It will always truncate bits.

Example:

%X = trunc i32 257 to i8 ; yields i8:1
%Y = trunc i32 123 to i1 ; yields i1:true
%Z = trunc i32 122 to i1 ; yields i1:false
%W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>

‘zext .. to‘ Instruction

Syntax:

<result> = zext <ty> <value> to <ty2> ; yields ty2

Overview:

The ‘zext‘ instruction zero extends its operand to type ty2.

Arguments:

The ‘zext‘ instruction takes a value to cast, and a type to cast it to. Both types must be of integer types, or vectors of
the same number of integers. The bit size of the value must be smaller than the bit size of the destination type, ty2.

Semantics:

The zext fills the high order bits of the value with zero bits until it reaches the size of the destination type, ty2.

When zero extending from i1, the result will always be either 0 or 1.

Example:

%X = zext i32 257 to i64 ; yields i64:257
%Y = zext i1 true to i32 ; yields i32:1
%Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>

‘sext .. to‘ Instruction

Syntax:
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<result> = sext <ty> <value> to <ty2> ; yields ty2

Overview:

The ‘sext‘ sign extends value to the type ty2.

Arguments:

The ‘sext‘ instruction takes a value to cast, and a type to cast it to. Both types must be of integer types, or vectors of
the same number of integers. The bit size of the value must be smaller than the bit size of the destination type, ty2.

Semantics:

The ‘sext‘ instruction performs a sign extension by copying the sign bit (highest order bit) of the value until it
reaches the bit size of the type ty2.

When sign extending from i1, the extension always results in -1 or 0.

Example:

%X = sext i8 -1 to i16 ; yields i16 :65535
%Y = sext i1 true to i32 ; yields i32:-1
%Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>

‘fptrunc .. to‘ Instruction

Syntax:

<result> = fptrunc <ty> <value> to <ty2> ; yields ty2

Overview:

The ‘fptrunc‘ instruction truncates value to type ty2.

Arguments:

The ‘fptrunc‘ instruction takes a floating point value to cast and a floating point type to cast it to. The size of
value must be larger than the size of ty2. This implies that fptrunc cannot be used to make a no-op cast.

Semantics:

The ‘fptrunc‘ instruction casts a value from a larger floating point type to a smaller floating point type. If the
value cannot fit (i.e. overflows) within the destination type, ty2, then the results are undefined. If the cast produces
an inexact result, how rounding is performed (e.g. truncation, also known as round to zero) is undefined.
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Example:

%X = fptrunc double 123.0 to float ; yields float:123.0
%Y = fptrunc double 1.0E+300 to float ; yields undefined

‘fpext .. to‘ Instruction

Syntax:

<result> = fpext <ty> <value> to <ty2> ; yields ty2

Overview:

The ‘fpext‘ extends a floating point value to a larger floating point value.

Arguments:

The ‘fpext‘ instruction takes a floating point value to cast, and a floating point type to cast it to. The source type
must be smaller than the destination type.

Semantics:

The ‘fpext‘ instruction extends the value from a smaller floating point type to a larger floating point type. The
fpext cannot be used to make a no-op cast because it always changes bits. Use bitcast to make a no-op cast for
a floating point cast.

Example:

%X = fpext float 3.125 to double ; yields double:3.125000e+00
%Y = fpext double %X to fp128 ; yields
→˓fp128:0xL00000000000000004000900000000000

‘fptoui .. to‘ Instruction

Syntax:

<result> = fptoui <ty> <value> to <ty2> ; yields ty2

Overview:

The ‘fptoui‘ converts a floating point value to its unsigned integer equivalent of type ty2.
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Arguments:

The ‘fptoui‘ instruction takes a value to cast, which must be a scalar or vector floating point value, and a type to
cast it to ty2, which must be an integer type. If ty is a vector floating point type, ty2 must be a vector integer type
with the same number of elements as ty

Semantics:

The ‘fptoui‘ instruction converts its floating point operand into the nearest (rounding towards zero) unsigned integer
value. If the value cannot fit in ty2, the results are undefined.

Example:

%X = fptoui double 123.0 to i32 ; yields i32:123
%Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
%Z = fptoui float 1.04E+17 to i8 ; yields undefined:1

‘fptosi .. to‘ Instruction

Syntax:

<result> = fptosi <ty> <value> to <ty2> ; yields ty2

Overview:

The ‘fptosi‘ instruction converts floating point value to type ty2.

Arguments:

The ‘fptosi‘ instruction takes a value to cast, which must be a scalar or vector floating point value, and a type to
cast it to ty2, which must be an integer type. If ty is a vector floating point type, ty2 must be a vector integer type
with the same number of elements as ty

Semantics:

The ‘fptosi‘ instruction converts its floating point operand into the nearest (rounding towards zero) signed integer
value. If the value cannot fit in ty2, the results are undefined.

Example:

%X = fptosi double -123.0 to i32 ; yields i32:-123
%Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
%Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
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‘uitofp .. to‘ Instruction

Syntax:

<result> = uitofp <ty> <value> to <ty2> ; yields ty2

Overview:

The ‘uitofp‘ instruction regards value as an unsigned integer and converts that value to the ty2 type.

Arguments:

The ‘uitofp‘ instruction takes a value to cast, which must be a scalar or vector integer value, and a type to cast it
to ty2, which must be an floating point type. If ty is a vector integer type, ty2 must be a vector floating point type
with the same number of elements as ty

Semantics:

The ‘uitofp‘ instruction interprets its operand as an unsigned integer quantity and converts it to the corresponding
floating point value. If the value cannot fit in the floating point value, the results are undefined.

Example:

%X = uitofp i32 257 to float ; yields float:257.0
%Y = uitofp i8 -1 to double ; yields double:255.0

‘sitofp .. to‘ Instruction

Syntax:

<result> = sitofp <ty> <value> to <ty2> ; yields ty2

Overview:

The ‘sitofp‘ instruction regards value as a signed integer and converts that value to the ty2 type.

Arguments:

The ‘sitofp‘ instruction takes a value to cast, which must be a scalar or vector integer value, and a type to cast it
to ty2, which must be an floating point type. If ty is a vector integer type, ty2 must be a vector floating point type
with the same number of elements as ty
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Semantics:

The ‘sitofp‘ instruction interprets its operand as a signed integer quantity and converts it to the corresponding
floating point value. If the value cannot fit in the floating point value, the results are undefined.

Example:

%X = sitofp i32 257 to float ; yields float:257.0
%Y = sitofp i8 -1 to double ; yields double:-1.0

‘ptrtoint .. to‘ Instruction

Syntax:

<result> = ptrtoint <ty> <value> to <ty2> ; yields ty2

Overview:

The ‘ptrtoint‘ instruction converts the pointer or a vector of pointers value to the integer (or vector of integers)
type ty2.

Arguments:

The ‘ptrtoint‘ instruction takes a value to cast, which must be a value of type pointer or a vector of pointers,
and a type to cast it to ty2, which must be an integer or a vector of integers type.

Semantics:

The ‘ptrtoint‘ instruction converts value to integer type ty2 by interpreting the pointer value as an integer and
either truncating or zero extending that value to the size of the integer type. If value is smaller than ty2 then a zero
extension is done. If value is larger than ty2 then a truncation is done. If they are the same size, then nothing is
done (no-op cast) other than a type change.

Example:

%X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit
→˓architecture
%Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit
→˓architecture
%Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector
→˓of addresses on 32-bit architecture
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‘inttoptr .. to‘ Instruction

Syntax:

<result> = inttoptr <ty> <value> to <ty2> ; yields ty2

Overview:

The ‘inttoptr‘ instruction converts an integer value to a pointer type, ty2.

Arguments:

The ‘inttoptr‘ instruction takes an integer value to cast, and a type to cast it to, which must be a pointer type.

Semantics:

The ‘inttoptr‘ instruction converts value to type ty2 by applying either a zero extension or a truncation depend-
ing on the size of the integer value. If value is larger than the size of a pointer then a truncation is done. If value
is smaller than the size of a pointer then a zero extension is done. If they are the same size, nothing is done (no-op
cast).

Example:

%X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
%Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
%Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
%Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four
→˓pointers

‘bitcast .. to‘ Instruction

Syntax:

<result> = bitcast <ty> <value> to <ty2> ; yields ty2

Overview:

The ‘bitcast‘ instruction converts value to type ty2 without changing any bits.

Arguments:

The ‘bitcast‘ instruction takes a value to cast, which must be a non-aggregate first class value, and a type to cast it
to, which must also be a non-aggregate first class type. The bit sizes of value and the destination type, ty2, must be
identical. If the source type is a pointer, the destination type must also be a pointer of the same size. This instruction
supports bitwise conversion of vectors to integers and to vectors of other types (as long as they have the same size).
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Semantics:

The ‘bitcast‘ instruction converts value to type ty2. It is always a no-op cast because no bits change with this
conversion. The conversion is done as if the value had been stored to memory and read back as type ty2. Pointer
(or vector of pointers) types may only be converted to other pointer (or vector of pointers) types with the same address
space through this instruction. To convert pointers to other types, use the inttoptr or ptrtoint instructions first.

Example:

%X = bitcast i8 255 to i8 ; yields i8 :-1
%Y = bitcast i32* %x to sint* ; yields sint*:%x
%Z = bitcast <2 x int> %V to i64; ; yields i64: %V
%Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>

‘addrspacecast .. to‘ Instruction

Syntax:

<result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2

Overview:

The ‘addrspacecast‘ instruction converts ptrval from pty in address space n to type pty2 in address space
m.

Arguments:

The ‘addrspacecast‘ instruction takes a pointer or vector of pointer value to cast and a pointer type to cast it to,
which must have a different address space.

Semantics:

The ‘addrspacecast‘ instruction converts the pointer value ptrval to type pty2. It can be a no-op cast or a
complex value modification, depending on the target and the address space pair. Pointer conversions within the same
address space must be performed with the bitcast instruction. Note that if the address space conversion is legal
then both result and operand refer to the same memory location.

Example:

%X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
%Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64
→˓addrspace(2)*:%y
%Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float
→˓addrspace(3)*>:%z
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Other Operations

The instructions in this category are the “miscellaneous” instructions, which defy better classification.

‘icmp‘ Instruction

Syntax:

<result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result

Overview:

The ‘icmp‘ instruction returns a boolean value or a vector of boolean values based on comparison of its two integer,
integer vector, pointer, or pointer vector operands.

Arguments:

The ‘icmp‘ instruction takes three operands. The first operand is the condition code indicating the kind of comparison
to perform. It is not a value, just a keyword. The possible condition codes are:

1. eq: equal

2. ne: not equal

3. ugt: unsigned greater than

4. uge: unsigned greater or equal

5. ult: unsigned less than

6. ule: unsigned less or equal

7. sgt: signed greater than

8. sge: signed greater or equal

9. slt: signed less than

10. sle: signed less or equal

The remaining two arguments must be integer or pointer or integer vector typed. They must also be identical types.

Semantics:

The ‘icmp‘ compares op1 and op2 according to the condition code given as cond. The comparison performed
always yields either an i1 or vector of i1 result, as follows:

1. eq: yields true if the operands are equal, false otherwise. No sign interpretation is necessary or performed.

2. ne: yields true if the operands are unequal, false otherwise. No sign interpretation is necessary or per-
formed.

3. ugt: interprets the operands as unsigned values and yields true if op1 is greater than op2.

4. uge: interprets the operands as unsigned values and yields true if op1 is greater than or equal to op2.

5. ult: interprets the operands as unsigned values and yields true if op1 is less than op2.
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6. ule: interprets the operands as unsigned values and yields true if op1 is less than or equal to op2.

7. sgt: interprets the operands as signed values and yields true if op1 is greater than op2.

8. sge: interprets the operands as signed values and yields true if op1 is greater than or equal to op2.

9. slt: interprets the operands as signed values and yields true if op1 is less than op2.

10. sle: interprets the operands as signed values and yields true if op1 is less than or equal to op2.

If the operands are pointer typed, the pointer values are compared as if they were integers.

If the operands are integer vectors, then they are compared element by element. The result is an i1 vector with the
same number of elements as the values being compared. Otherwise, the result is an i1.

Example:

<result> = icmp eq i32 4, 5 ; yields: result=false
<result> = icmp ne float* %X, %X ; yields: result=false
<result> = icmp ult i16 4, 5 ; yields: result=true
<result> = icmp sgt i16 4, 5 ; yields: result=false
<result> = icmp ule i16 -4, 5 ; yields: result=false
<result> = icmp sge i16 4, 5 ; yields: result=false

‘fcmp‘ Instruction

Syntax:

<result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x
→˓i1>:result

Overview:

The ‘fcmp‘ instruction returns a boolean value or vector of boolean values based on comparison of its operands.

If the operands are floating point scalars, then the result type is a boolean (i1).

If the operands are floating point vectors, then the result type is a vector of boolean with the same number of elements
as the operands being compared.

Arguments:

The ‘fcmp‘ instruction takes three operands. The first operand is the condition code indicating the kind of comparison
to perform. It is not a value, just a keyword. The possible condition codes are:

1. false: no comparison, always returns false

2. oeq: ordered and equal

3. ogt: ordered and greater than

4. oge: ordered and greater than or equal

5. olt: ordered and less than

6. ole: ordered and less than or equal
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7. one: ordered and not equal

8. ord: ordered (no nans)

9. ueq: unordered or equal

10. ugt: unordered or greater than

11. uge: unordered or greater than or equal

12. ult: unordered or less than

13. ule: unordered or less than or equal

14. une: unordered or not equal

15. uno: unordered (either nans)

16. true: no comparison, always returns true

Ordered means that neither operand is a QNAN while unordered means that either operand may be a QNAN.

Each of val1 and val2 arguments must be either a floating point type or a vector of floating point type. They must
have identical types.

Semantics:

The ‘fcmp‘ instruction compares op1 and op2 according to the condition code given as cond. If the operands are
vectors, then the vectors are compared element by element. Each comparison performed always yields an i1 result, as
follows:

1. false: always yields false, regardless of operands.

2. oeq: yields true if both operands are not a QNAN and op1 is equal to op2.

3. ogt: yields true if both operands are not a QNAN and op1 is greater than op2.

4. oge: yields true if both operands are not a QNAN and op1 is greater than or equal to op2.

5. olt: yields true if both operands are not a QNAN and op1 is less than op2.

6. ole: yields true if both operands are not a QNAN and op1 is less than or equal to op2.

7. one: yields true if both operands are not a QNAN and op1 is not equal to op2.

8. ord: yields true if both operands are not a QNAN.

9. ueq: yields true if either operand is a QNAN or op1 is equal to op2.

10. ugt: yields true if either operand is a QNAN or op1 is greater than op2.

11. uge: yields true if either operand is a QNAN or op1 is greater than or equal to op2.

12. ult: yields true if either operand is a QNAN or op1 is less than op2.

13. ule: yields true if either operand is a QNAN or op1 is less than or equal to op2.

14. une: yields true if either operand is a QNAN or op1 is not equal to op2.

15. uno: yields true if either operand is a QNAN.

16. true: always yields true, regardless of operands.

The fcmp instruction can also optionally take any number of fast-math flags, which are optimization hints to enable
otherwise unsafe floating point optimizations.
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Any set of fast-math flags are legal on an fcmp instruction, but the only flags that have any effect on its semantics are
those that allow assumptions to be made about the values of input arguments; namely nnan, ninf, and nsz. See
Fast-Math Flags for more information.

Example:

<result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
<result> = fcmp one float 4.0, 5.0 ; yields: result=true
<result> = fcmp olt float 4.0, 5.0 ; yields: result=true
<result> = fcmp ueq double 1.0, 2.0 ; yields: result=false

‘phi‘ Instruction

Syntax:

<result> = phi <ty> [ <val0>, <label0>], ...

Overview:

The ‘phi‘ instruction is used to implement the 𝜑 node in the SSA graph representing the function.

Arguments:

The type of the incoming values is specified with the first type field. After this, the ‘phi‘ instruction takes a list of
pairs as arguments, with one pair for each predecessor basic block of the current block. Only values of first class type
may be used as the value arguments to the PHI node. Only labels may be used as the label arguments.

There must be no non-phi instructions between the start of a basic block and the PHI instructions: i.e. PHI instructions
must be first in a basic block.

For the purposes of the SSA form, the use of each incoming value is deemed to occur on the edge from the corre-
sponding predecessor block to the current block (but after any definition of an ‘invoke‘ instruction’s return value on
the same edge).

Semantics:

At runtime, the ‘phi‘ instruction logically takes on the value specified by the pair corresponding to the predecessor
basic block that executed just prior to the current block.

Example:

Loop: ; Infinite loop that counts from 0 on up...
%indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
%nextindvar = add i32 %indvar, 1
br label %Loop
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‘select‘ Instruction

Syntax:

<result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty

selty is either i1 or {<N x i1>}

Overview:

The ‘select‘ instruction is used to choose one value based on a condition, without IR-level branching.

Arguments:

The ‘select‘ instruction requires an ‘i1’ value or a vector of ‘i1’ values indicating the condition, and two values of
the same first class type.

Semantics:

If the condition is an i1 and it evaluates to 1, the instruction returns the first value argument; otherwise, it returns the
second value argument.

If the condition is a vector of i1, then the value arguments must be vectors of the same size, and the selection is done
element by element.

If the condition is an i1 and the value arguments are vectors of the same size, then an entire vector is selected.

Example:

%X = select i1 true, i8 17, i8 42 ; yields i8:17

‘call‘ Instruction

Syntax:

<result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty>
→˓|<fnty> <fnptrval>(<function args>) [fn attrs]

[ operand bundles ]

Overview:

The ‘call‘ instruction represents a simple function call.
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Arguments:

This instruction requires several arguments:

1. The optional tail and musttail markers indicate that the optimizers should perform tail call optimization.
The tail marker is a hint that can be ignored. The musttail marker means that the call must be tail call
optimized in order for the program to be correct. The musttail marker provides these guarantees:

(a) The call will not cause unbounded stack growth if it is part of a recursive cycle in the call graph.

(b) Arguments with the inalloca attribute are forwarded in place.

Both markers imply that the callee does not access allocas or varargs from the caller. Calls marked musttail
must obey the following additional rules:

• The call must immediately precede a ret instruction, or a pointer bitcast followed by a ret instruction.

• The ret instruction must return the (possibly bitcasted) value produced by the call or void.

• The caller and callee prototypes must match. Pointer types of parameters or return types may differ in
pointee type, but not in address space.

• The calling conventions of the caller and callee must match.

• All ABI-impacting function attributes, such as sret, byval, inreg, returned, and inalloca, must match.

• The callee must be varargs iff the caller is varargs. Bitcasting a non-varargs function to the appropriate
varargs type is legal so long as the non-varargs prefixes obey the other rules.

Tail call optimization for calls marked tail is guaranteed to occur if the following conditions are met:

• Caller and callee both have the calling convention fastcc.

• The call is in tail position (ret immediately follows call and ret uses value of call or is void).

• Option -tailcallopt is enabled, or llvm::GuaranteedTailCallOpt is true.

• Platform-specific constraints are met.

2. The optional notail marker indicates that the optimizers should not add tail or musttail markers to the
call. It is used to prevent tail call optimization from being performed on the call.

3. The optional fast-math flags marker indicates that the call has one or more fast-math flags, which are
optimization hints to enable otherwise unsafe floating-point optimizations. Fast-math flags are only valid for
calls that return a floating-point scalar or vector type.

4. The optional “cconv” marker indicates which calling convention the call should use. If none is specified, the call
defaults to using C calling conventions. The calling convention of the call must match the calling convention of
the target function, or else the behavior is undefined.

5. The optional Parameter Attributes list for return values. Only ‘zeroext‘, ‘signext‘, and ‘inreg‘ attributes
are valid here.

6. ‘ty‘: the type of the call instruction itself which is also the type of the return value. Functions that return no
value are marked void.

7. ‘fnty‘: shall be the signature of the function being called. The argument types must match the types implied
by this signature. This type can be omitted if the function is not varargs.

8. ‘fnptrval‘: An LLVM value containing a pointer to a function to be called. In most cases, this is a direct
function call, but indirect call‘s are just as possible, calling an arbitrary pointer to function value.

9. ‘function args‘: argument list whose types match the function signature argument types and parameter
attributes. All arguments must be of first class type. If the function signature indicates the function accepts a
variable number of arguments, the extra arguments can be specified.
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10. The optional function attributes list. Only ‘noreturn‘, ‘nounwind‘, ‘readonly‘ , ‘readnone‘, and
‘convergent‘ attributes are valid here.

11. The optional operand bundles list.

Semantics:

The ‘call‘ instruction is used to cause control flow to transfer to a specified function, with its incoming arguments
bound to the specified values. Upon a ‘ret‘ instruction in the called function, control flow continues with the instruc-
tion after the function call, and the return value of the function is bound to the result argument.

Example:

%retval = call i32 @test(i32 %argc)
call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
%X = tail call i32 @foo() ; yields i32
%Y = tail call fastcc i32 @foo() ; yields i32
call void %foo(i8 97 signext)

%struct.A = type { i32, i8 }
%r = call %struct.A @foo() ; yields { i32, i8 }
%gr = extractvalue %struct.A %r, 0 ; yields i32
%gr1 = extractvalue %struct.A %r, 1 ; yields i8
%Z = call void @foo() noreturn ; indicates that %foo never returns
→˓normally
%ZZ = call zeroext i32 @bar() ; Return value is %zero extended

llvm treats calls to some functions with names and arguments that match the standard C99 library as being the C99
library functions, and may perform optimizations or generate code for them under that assumption. This is something
we’d like to change in the future to provide better support for freestanding environments and non-C-based languages.

‘va_arg‘ Instruction

Syntax:

<resultval> = va_arg <va_list*> <arglist>, <argty>

Overview:

The ‘va_arg‘ instruction is used to access arguments passed through the “variable argument” area of a function call.
It is used to implement the va_arg macro in C.

Arguments:

This instruction takes a va_list* value and the type of the argument. It returns a value of the specified argument
type and increments the va_list to point to the next argument. The actual type of va_list is target specific.
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Semantics:

The ‘va_arg‘ instruction loads an argument of the specified type from the specified va_list and causes the
va_list to point to the next argument. For more information, see the variable argument handling Intrinsic Functions.

It is legal for this instruction to be called in a function which does not take a variable number of arguments, for
example, the vfprintf function.

va_arg is an LLVM instruction instead of an intrinsic function because it takes a type as an argument.

Example:

See the variable argument processing section.

Note that the code generator does not yet fully support va_arg on many targets. Also, it does not currently support
va_arg with aggregate types on any target.

‘landingpad‘ Instruction

Syntax:

<resultval> = landingpad <resultty> <clause>+
<resultval> = landingpad <resultty> cleanup <clause>*

<clause> := catch <type> <value>
<clause> := filter <array constant type> <array constant>

Overview:

The ‘landingpad‘ instruction is used by LLVM’s exception handling system to specify that a basic block is a landing
pad — one where the exception lands, and corresponds to the code found in the catch portion of a try/catch
sequence. It defines values supplied by the personality function upon re-entry to the function. The resultval has
the type resultty.

Arguments:

The optional cleanup flag indicates that the landing pad block is a cleanup.

A clause begins with the clause type — catch or filter — and contains the global variable representing the
“type” that may be caught or filtered respectively. Unlike the catch clause, the filter clause takes an array con-
stant as its argument. Use “[0 x i8**] undef” for a filter which cannot throw. The ‘landingpad‘ instruction
must contain at least one clause or the cleanup flag.

Semantics:

The ‘landingpad‘ instruction defines the values which are set by the personality function upon re-entry to the
function, and therefore the “result type” of the landingpad instruction. As with calling conventions, how the
personality function results are represented in LLVM IR is target specific.

The clauses are applied in order from top to bottom. If two landingpad instructions are merged together through
inlining, the clauses from the calling function are appended to the list of clauses. When the call stack is being unwound
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due to an exception being thrown, the exception is compared against each clause in turn. If it doesn’t match any of
the clauses, and the cleanup flag is not set, then unwinding continues further up the call stack.

The landingpad instruction has several restrictions:

• A landing pad block is a basic block which is the unwind destination of an ‘invoke‘ instruction.

• A landing pad block must have a ‘landingpad‘ instruction as its first non-PHI instruction.

• There can be only one ‘landingpad‘ instruction within the landing pad block.

• A basic block that is not a landing pad block may not include a ‘landingpad‘ instruction.

Example:

;; A landing pad which can catch an integer.
%res = landingpad { i8*, i32 }

catch i8** @_ZTIi
;; A landing pad that is a cleanup.
%res = landingpad { i8*, i32 }

cleanup
;; A landing pad which can catch an integer and can only throw a double.
%res = landingpad { i8*, i32 }

catch i8** @_ZTIi
filter [1 x i8**] [@_ZTId]

‘catchpad‘ Instruction

Syntax:

<resultval> = catchpad within <catchswitch> [<args>*]

Overview:

The ‘catchpad‘ instruction is used by LLVM’s exception handling system to specify that a basic block begins a
catch handler — one where a personality routine attempts to transfer control to catch an exception.

Arguments:

The catchswitch operand must always be a token produced by a catchswitch instruction in a predecessor block.
This ensures that each catchpad has exactly one predecessor block, and it always terminates in a catchswitch.

The args correspond to whatever information the personality routine requires to know if this is an appropriate handler
for the exception. Control will transfer to the catchpad if this is the first appropriate handler for the exception.

The resultval has the type token and is used to match the catchpad to corresponding catchrets and other nested
EH pads.
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Semantics:

When the call stack is being unwound due to an exception being thrown, the exception is compared against the args.
If it doesn’t match, control will not reach the catchpad instruction. The representation of args is entirely target
and personality function-specific.

Like the landingpad instruction, the catchpad instruction must be the first non-phi of its parent basic block.

The meaning of the tokens produced and consumed by catchpad and other “pad” instructions is described in the
Windows exception handling documentation.

When a catchpad has been “entered” but not yet “exited” (as described in the EH documentation), it is undefined
behavior to execute a call or invoke that does not carry an appropriate “funclet” bundle.

Example:

dispatch:
%cs = catchswitch within none [label %handler0] unwind to caller
;; A catch block which can catch an integer.

handler0:
%tok = catchpad within %cs [i8** @_ZTIi]

‘cleanuppad‘ Instruction

Syntax:

<resultval> = cleanuppad within <parent> [<args>*]

Overview:

The ‘cleanuppad‘ instruction is used by LLVM’s exception handling system to specify that a basic block is a
cleanup block — one where a personality routine attempts to transfer control to run cleanup actions. The args corre-
spond to whatever additional information the personality function requires to execute the cleanup. The resultval
has the type token and is used to match the cleanuppad to corresponding cleanuprets. The parent argument is
the token of the funclet that contains the cleanuppad instruction. If the cleanuppad is not inside a funclet, this
operand may be the token none.

Arguments:

The instruction takes a list of arbitrary values which are interpreted by the personality function.

Semantics:

When the call stack is being unwound due to an exception being thrown, the personality function transfers control to
the cleanuppadwith the aid of the personality-specific arguments. As with calling conventions, how the personality
function results are represented in LLVM IR is target specific.

The cleanuppad instruction has several restrictions:

• A cleanup block is a basic block which is the unwind destination of an exceptional instruction.
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• A cleanup block must have a ‘cleanuppad‘ instruction as its first non-PHI instruction.

• There can be only one ‘cleanuppad‘ instruction within the cleanup block.

• A basic block that is not a cleanup block may not include a ‘cleanuppad‘ instruction.

When a cleanuppad has been “entered” but not yet “exited” (as described in the EH documentation), it is undefined
behavior to execute a call or invoke that does not carry an appropriate “funclet” bundle.

Example:

%tok = cleanuppad within %cs []

Intrinsic Functions

LLVM supports the notion of an “intrinsic function”. These functions have well known names and semantics and
are required to follow certain restrictions. Overall, these intrinsics represent an extension mechanism for the LLVM
language that does not require changing all of the transformations in LLVM when adding to the language (or the
bitcode reader/writer, the parser, etc...).

Intrinsic function names must all start with an “llvm.” prefix. This prefix is reserved in LLVM for intrinsic names;
thus, function names may not begin with this prefix. Intrinsic functions must always be external functions: you cannot
define the body of intrinsic functions. Intrinsic functions may only be used in call or invoke instructions: it is illegal
to take the address of an intrinsic function. Additionally, because intrinsic functions are part of the LLVM language,
it is required if any are added that they be documented here.

Some intrinsic functions can be overloaded, i.e., the intrinsic represents a family of functions that perform the same
operation but on different data types. Because LLVM can represent over 8 million different integer types, overloading
is used commonly to allow an intrinsic function to operate on any integer type. One or more of the argument types or
the result type can be overloaded to accept any integer type. Argument types may also be defined as exactly matching
a previous argument’s type or the result type. This allows an intrinsic function which accepts multiple arguments, but
needs all of them to be of the same type, to only be overloaded with respect to a single argument or the result.

Overloaded intrinsics will have the names of its overloaded argument types encoded into its function name, each
preceded by a period. Only those types which are overloaded result in a name suffix. Arguments whose type is
matched against another type do not. For example, the llvm.ctpop function can take an integer of any width and
returns an integer of exactly the same integer width. This leads to a family of functions such as i8 @llvm.ctpop.
i8(i8 %val) and i29 @llvm.ctpop.i29(i29 %val). Only one type, the return type, is overloaded, and
only one type suffix is required. Because the argument’s type is matched against the return type, it does not require its
own name suffix.

To learn how to add an intrinsic function, please see the Extending LLVM Guide.

Variable Argument Handling Intrinsics

Variable argument support is defined in LLVM with the va_arg instruction and these three intrinsic functions. These
functions are related to the similarly named macros defined in the <stdarg.h> header file.

All of these functions operate on arguments that use a target-specific value type “va_list”. The LLVM assembly
language reference manual does not define what this type is, so all transformations should be prepared to handle these
functions regardless of the type used.

This example shows how the va_arg instruction and the variable argument handling intrinsic functions are used.
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; This struct is different for every platform. For most platforms,
; it is merely an i8*.
%struct.va_list = type { i8* }

; For Unix x86_64 platforms, va_list is the following struct:
; %struct.va_list = type { i32, i32, i8*, i8* }

define i32 @test(i32 %X, ...) {
; Initialize variable argument processing
%ap = alloca %struct.va_list
%ap2 = bitcast %struct.va_list* %ap to i8*
call void @llvm.va_start(i8* %ap2)

; Read a single integer argument
%tmp = va_arg i8* %ap2, i32

; Demonstrate usage of llvm.va_copy and llvm.va_end
%aq = alloca i8*
%aq2 = bitcast i8** %aq to i8*
call void @llvm.va_copy(i8* %aq2, i8* %ap2)
call void @llvm.va_end(i8* %aq2)

; Stop processing of arguments.
call void @llvm.va_end(i8* %ap2)
ret i32 %tmp

}

declare void @llvm.va_start(i8*)
declare void @llvm.va_copy(i8*, i8*)
declare void @llvm.va_end(i8*)

‘llvm.va_start‘ Intrinsic

Syntax:

declare void @llvm.va_start(i8* <arglist>)

Overview:

The ‘llvm.va_start‘ intrinsic initializes *<arglist> for subsequent use by va_arg.

Arguments:

The argument is a pointer to a va_list element to initialize.

Semantics:

The ‘llvm.va_start‘ intrinsic works just like the va_start macro available in C. In a target-dependent way, it
initializes the va_list element to which the argument points, so that the next call to va_arg will produce the first
variable argument passed to the function. Unlike the C va_start macro, this intrinsic does not need to know the
last argument of the function as the compiler can figure that out.
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‘llvm.va_end‘ Intrinsic

Syntax:

declare void @llvm.va_end(i8* <arglist>)

Overview:

The ‘llvm.va_end‘ intrinsic destroys *<arglist>, which has been initialized previously with llvm.
va_start or llvm.va_copy.

Arguments:

The argument is a pointer to a va_list to destroy.

Semantics:

The ‘llvm.va_end‘ intrinsic works just like the va_end macro available in C. In a target-dependent way, it de-
stroys the va_list element to which the argument points. Calls to llvm.va_start and llvm.va_copy must be matched
exactly with calls to llvm.va_end.

‘llvm.va_copy‘ Intrinsic

Syntax:

declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)

Overview:

The ‘llvm.va_copy‘ intrinsic copies the current argument position from the source argument list to the destination
argument list.

Arguments:

The first argument is a pointer to a va_list element to initialize. The second argument is a pointer to a va_list
element to copy from.

Semantics:

The ‘llvm.va_copy‘ intrinsic works just like the va_copy macro available in C. In a target-dependent way, it
copies the source va_list element into the destination va_list element. This intrinsic is necessary because the
‘‘ llvm.va_start‘‘ intrinsic may be arbitrarily complex and require, for example, memory allocation.
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Accurate Garbage Collection Intrinsics

LLVM’s support for Accurate Garbage Collection (GC) requires the frontend to generate code containing appropriate
intrinsic calls and select an appropriate GC strategy which knows how to lower these intrinsics in a manner which is
appropriate for the target collector.

These intrinsics allow identification of GC roots on the stack, as well as garbage collector implementations that require
read and write barriers. Frontends for type-safe garbage collected languages should generate these intrinsics to make
use of the LLVM garbage collectors. For more details, see Garbage Collection with LLVM.

Experimental Statepoint Intrinsics

LLVM provides an second experimental set of intrinsics for describing garbage collection safepoints in compiled code.
These intrinsics are an alternative to the llvm.gcroot intrinsics, but are compatible with the ones for read and write
barriers. The differences in approach are covered in the Garbage Collection with LLVM documentation. The intrinsics
themselves are described in Garbage Collection Safepoints in LLVM.

‘llvm.gcroot‘ Intrinsic

Syntax:

declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)

Overview:

The ‘llvm.gcroot‘ intrinsic declares the existence of a GC root to the code generator, and allows some metadata
to be associated with it.

Arguments:

The first argument specifies the address of a stack object that contains the root pointer. The second pointer (which
must be either a constant or a global value address) contains the meta-data to be associated with the root.

Semantics:

At runtime, a call to this intrinsic stores a null pointer into the “ptrloc” location. At compile-time, the code generator
generates information to allow the runtime to find the pointer at GC safe points. The ‘llvm.gcroot‘ intrinsic may
only be used in a function which specifies a GC algorithm.

‘llvm.gcread‘ Intrinsic

Syntax:

declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
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Overview:

The ‘llvm.gcread‘ intrinsic identifies reads of references from heap locations, allowing garbage collector imple-
mentations that require read barriers.

Arguments:

The second argument is the address to read from, which should be an address allocated from the garbage collector.
The first object is a pointer to the start of the referenced object, if needed by the language runtime (otherwise null).

Semantics:

The ‘llvm.gcread‘ intrinsic has the same semantics as a load instruction, but may be replaced with substantially
more complex code by the garbage collector runtime, as needed. The ‘llvm.gcread‘ intrinsic may only be used in
a function which specifies a GC algorithm.

‘llvm.gcwrite‘ Intrinsic

Syntax:

declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)

Overview:

The ‘llvm.gcwrite‘ intrinsic identifies writes of references to heap locations, allowing garbage collector imple-
mentations that require write barriers (such as generational or reference counting collectors).

Arguments:

The first argument is the reference to store, the second is the start of the object to store it to, and the third is the address
of the field of Obj to store to. If the runtime does not require a pointer to the object, Obj may be null.

Semantics:

The ‘llvm.gcwrite‘ intrinsic has the same semantics as a store instruction, but may be replaced with substantially
more complex code by the garbage collector runtime, as needed. The ‘llvm.gcwrite‘ intrinsic may only be used
in a function which specifies a GC algorithm.

Code Generator Intrinsics

These intrinsics are provided by LLVM to expose special features that may only be implemented with code generator
support.
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‘llvm.returnaddress‘ Intrinsic

Syntax:

declare i8 *@llvm.returnaddress(i32 <level>)

Overview:

The ‘llvm.returnaddress‘ intrinsic attempts to compute a target-specific value indicating the return address of
the current function or one of its callers.

Arguments:

The argument to this intrinsic indicates which function to return the address for. Zero indicates the calling function,
one indicates its caller, etc. The argument is required to be a constant integer value.

Semantics:

The ‘llvm.returnaddress‘ intrinsic either returns a pointer indicating the return address of the specified call
frame, or zero if it cannot be identified. The value returned by this intrinsic is likely to be incorrect or 0 for arguments
other than zero, so it should only be used for debugging purposes.

Note that calling this intrinsic does not prevent function inlining or other aggressive transformations, so the value
returned may not be that of the obvious source-language caller.

‘llvm.frameaddress‘ Intrinsic

Syntax:

declare i8* @llvm.frameaddress(i32 <level>)

Overview:

The ‘llvm.frameaddress‘ intrinsic attempts to return the target-specific frame pointer value for the specified
stack frame.

Arguments:

The argument to this intrinsic indicates which function to return the frame pointer for. Zero indicates the calling
function, one indicates its caller, etc. The argument is required to be a constant integer value.
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Semantics:

The ‘llvm.frameaddress‘ intrinsic either returns a pointer indicating the frame address of the specified call
frame, or zero if it cannot be identified. The value returned by this intrinsic is likely to be incorrect or 0 for arguments
other than zero, so it should only be used for debugging purposes.

Note that calling this intrinsic does not prevent function inlining or other aggressive transformations, so the value
returned may not be that of the obvious source-language caller.

‘llvm.localescape‘ and ‘llvm.localrecover‘ Intrinsics

Syntax:

declare void @llvm.localescape(...)
declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)

Overview:

The ‘llvm.localescape‘ intrinsic escapes offsets of a collection of static allocas, and the ‘llvm.
localrecover‘ intrinsic applies those offsets to a live frame pointer to recover the address of the allocation. The
offset is computed during frame layout of the caller of llvm.localescape.

Arguments:

All arguments to ‘llvm.localescape‘ must be pointers to static allocas or casts of static allocas. Each function
can only call ‘llvm.localescape‘ once, and it can only do so from the entry block.

The func argument to ‘llvm.localrecover‘ must be a constant bitcasted pointer to a function defined in the
current module. The code generator cannot determine the frame allocation offset of functions defined in other modules.

The fp argument to ‘llvm.localrecover‘ must be a frame pointer of a call frame that is currently live. The
return value of ‘llvm.localaddress‘ is one way to produce such a value, but various runtimes also expose a
suitable pointer in platform-specific ways.

The idx argument to ‘llvm.localrecover‘ indicates which alloca passed to ‘llvm.localescape‘ to re-
cover. It is zero-indexed.

Semantics:

These intrinsics allow a group of functions to share access to a set of local stack allocations of a one parent func-
tion. The parent function may call the ‘llvm.localescape‘ intrinsic once from the function entry block, and
the child functions can use ‘llvm.localrecover‘ to access the escaped allocas. The ‘llvm.localescape‘
intrinsic blocks inlining, as inlining changes where the escaped allocas are allocated, which would break attempts to
use ‘llvm.localrecover‘.

‘llvm.read_register‘ and ‘llvm.write_register‘ Intrinsics
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Syntax:

declare i32 @llvm.read_register.i32(metadata)
declare i64 @llvm.read_register.i64(metadata)
declare void @llvm.write_register.i32(metadata, i32 @value)
declare void @llvm.write_register.i64(metadata, i64 @value)
!0 = !{!"sp\00"}

Overview:

The ‘llvm.read_register‘ and ‘llvm.write_register‘ intrinsics provides access to the named register.
The register must be valid on the architecture being compiled to. The type needs to be compatible with the register
being read.

Semantics:

The ‘llvm.read_register‘ intrinsic returns the current value of the register, where possible. The ‘llvm.
write_register‘ intrinsic sets the current value of the register, where possible.

This is useful to implement named register global variables that need to always be mapped to a specific register, as is
common practice on bare-metal programs including OS kernels.

The compiler doesn’t check for register availability or use of the used register in surrounding code, including inline
assembly. Because of that, allocatable registers are not supported.

Warning: So far it only works with the stack pointer on selected architectures (ARM, AArch64, PowerPC and x86_64).
Significant amount of work is needed to support other registers and even more so, allocatable registers.

‘llvm.stacksave‘ Intrinsic

Syntax:

declare i8* @llvm.stacksave()

Overview:

The ‘llvm.stacksave‘ intrinsic is used to remember the current state of the function stack, for use with
llvm.stackrestore. This is useful for implementing language features like scoped automatic variable sized arrays in
C99.

Semantics:

This intrinsic returns a opaque pointer value that can be passed to llvm.stackrestore. When an llvm.stackrestore
intrinsic is executed with a value saved from llvm.stacksave, it effectively restores the state of the stack to the
state it was in when the llvm.stacksave intrinsic executed. In practice, this pops any alloca blocks from the stack
that were allocated after the llvm.stacksave was executed.
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‘llvm.stackrestore‘ Intrinsic

Syntax:

declare void @llvm.stackrestore(i8* %ptr)

Overview:

The ‘llvm.stackrestore‘ intrinsic is used to restore the state of the function stack to the state it was in when
the corresponding llvm.stacksave intrinsic executed. This is useful for implementing language features like scoped
automatic variable sized arrays in C99.

Semantics:

See the description for llvm.stacksave.

‘llvm.get.dynamic.area.offset‘ Intrinsic

Syntax:

declare i32 @llvm.get.dynamic.area.offset.i32()
declare i64 @llvm.get.dynamic.area.offset.i64()

Overview:
"""""""""

The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
get the offset from native stack pointer to the address of the most
recent dynamic alloca on the caller's stack. These intrinsics are
intendend for use in combination with
:ref:`llvm.stacksave <int_stacksave>` to get a
pointer to the most recent dynamic alloca. This is useful, for example,
for AddressSanitizer's stack unpoisoning routines.

Semantics:

These intrinsics return a non-negative integer value that can be used to get the address of the most re-
cent dynamic alloca, allocated by alloca on the caller’s stack. In particular, for targets where stack grows
downwards, adding this offset to the native stack pointer would get the address of the most recent dynamic
alloca. For targets where stack grows upwards, the situation is a bit more complicated, because substract-
ing this value from stack pointer would get the address one past the end of the most recent dynamic
alloca.

Although for most targets llvm.get.dynamic.area.offset <int_get_dynamic_area_offset> returns just a
zero, for others, such as PowerPC and PowerPC64, it returns a compile-time-known constant value.

The return value type of llvm.get.dynamic.area.offset must match the target’s generic address space’s
(address space 0) pointer type.

1.1. LLVM Language Reference Manual 159



LLVM Documentation, Release 3.9

‘llvm.prefetch‘ Intrinsic

Syntax:

declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)

Overview:

The ‘llvm.prefetch‘ intrinsic is a hint to the code generator to insert a prefetch instruction if supported; otherwise,
it is a noop. Prefetches have no effect on the behavior of the program but can change its performance characteristics.

Arguments:

address is the address to be prefetched, rw is the specifier determining if the fetch should be for a read (0) or write
(1), and locality is a temporal locality specifier ranging from (0) - no locality, to (3) - extremely local keep in
cache. The cache type specifies whether the prefetch is performed on the data (1) or instruction (0) cache. The
rw, locality and cache type arguments must be constant integers.

Semantics:

This intrinsic does not modify the behavior of the program. In particular, prefetches cannot trap and do not pro-
duce a value. On targets that support this intrinsic, the prefetch can provide hints to the processor cache for better
performance.

‘llvm.pcmarker‘ Intrinsic

Syntax:

declare void @llvm.pcmarker(i32 <id>)

Overview:

The ‘llvm.pcmarker‘ intrinsic is a method to export a Program Counter (PC) in a region of code to simulators and
other tools. The method is target specific, but it is expected that the marker will use exported symbols to transmit the PC
of the marker. The marker makes no guarantees that it will remain with any specific instruction after optimizations. It is
possible that the presence of a marker will inhibit optimizations. The intended use is to be inserted after optimizations
to allow correlations of simulation runs.

Arguments:

id is a numerical id identifying the marker.

Semantics:

This intrinsic does not modify the behavior of the program. Backends that do not support this intrinsic may ignore it.
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‘llvm.readcyclecounter‘ Intrinsic

Syntax:

declare i64 @llvm.readcyclecounter()

Overview:

The ‘llvm.readcyclecounter‘ intrinsic provides access to the cycle counter register (or similar low latency,
high accuracy clocks) on those targets that support it. On X86, it should map to RDTSC. On Alpha, it should map to
RPCC. As the backing counters overflow quickly (on the order of 9 seconds on alpha), this should only be used for
small timings.

Semantics:

When directly supported, reading the cycle counter should not modify any memory. Implementations are allowed to
either return a application specific value or a system wide value. On backends without support, this is lowered to a
constant 0.

Note that runtime support may be conditional on the privilege-level code is running at and the host platform.

‘llvm.clear_cache‘ Intrinsic

Syntax:

declare void @llvm.clear_cache(i8*, i8*)

Overview:

The ‘llvm.clear_cache‘ intrinsic ensures visibility of modifications in the specified range to the execution unit
of the processor. On targets with non-unified instruction and data cache, the implementation flushes the instruction
cache.

Semantics:

On platforms with coherent instruction and data caches (e.g. x86), this intrinsic is a nop. On platforms with non-
coherent instruction and data cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate instructions or a
system call, if cache flushing requires special privileges.

The default behavior is to emit a call to __clear_cache from the run time library.

This instrinsic does not empty the instruction pipeline. Modifications of the current function are outside the scope of
the intrinsic.
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‘llvm.instrprof_increment‘ Intrinsic

Syntax:

declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
i32 <num-counters>, i32 <index>)

Overview:

The ‘llvm.instrprof_increment‘ intrinsic can be emitted by a frontend for use with instrumentation based
profiling. These will be lowered by the -instrprof pass to generate execution counts of a program at runtime.

Arguments:

The first argument is a pointer to a global variable containing the name of the entity being instrumented. This should
generally be the (mangled) function name for a set of counters.

The second argument is a hash value that can be used by the consumer of the profile data to detect changes to
the instrumented source, and the third is the number of counters associated with name. It is an error if hash or
num-counters differ between two instances of instrprof_increment that refer to the same name.

The last argument refers to which of the counters for name should be incremented. It should be a value between 0 and
num-counters.

Semantics:

This intrinsic represents an increment of a profiling counter. It will cause the -instrprof pass to generate the
appropriate data structures and the code to increment the appropriate value, in a format that can be written out by a
compiler runtime and consumed via the llvm-profdata tool.

‘llvm.instrprof_value_profile‘ Intrinsic

Syntax:

declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
i64 <value>, i32 <value_kind>,
i32 <index>)

Overview:

The ‘llvm.instrprof_value_profile‘ intrinsic can be emitted by a frontend for use with instrumentation
based profiling. This will be lowered by the -instrprof pass to find out the target values, instrumented expressions
take in a program at runtime.
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Arguments:

The first argument is a pointer to a global variable containing the name of the entity being instrumented. name should
generally be the (mangled) function name for a set of counters.

The second argument is a hash value that can be used by the consumer of the profile data to detect changes to the
instrumented source. It is an error if hash differs between two instances of llvm.instrprof_* that refer to the
same name.

The third argument is the value of the expression being profiled. The profiled expression’s value should be rep-
resentable as an unsigned 64-bit value. The fourth argument represents the kind of value profiling that is being
done. The supported value profiling kinds are enumerated through the InstrProfValueKind type declared in
the <include/llvm/ProfileData/InstrProf.h> header file. The last argument is the index of the instru-
mented expression within name. It should be >= 0.

Semantics:

This intrinsic represents the point where a call to a runtime routine should be inserted for value profiling of
target expressions. -instrprof pass will generate the appropriate data structures and replace the llvm.
instrprof_value_profile intrinsic with the call to the profile runtime library with proper arguments.

‘llvm.thread.pointer‘ Intrinsic

Syntax:

declare i8* @llvm.thread.pointer()

Overview:

The ‘llvm.thread.pointer‘ intrinsic returns the value of the thread pointer.

Semantics:

The ‘llvm.thread.pointer‘ intrinsic returns a pointer to the TLS area for the current thread. The exact seman-
tics of this value are target specific: it may point to the start of TLS area, to the end, or somewhere in the middle.
Depending on the target, this intrinsic may read a register, call a helper function, read from an alternate memory space,
or perform other operations necessary to locate the TLS area. Not all targets support this intrinsic.

Standard C Library Intrinsics

LLVM provides intrinsics for a few important standard C library functions. These intrinsics allow source-language
front-ends to pass information about the alignment of the pointer arguments to the code generator, providing opportu-
nity for more efficient code generation.

‘llvm.memcpy‘ Intrinsic
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Syntax:

This is an overloaded intrinsic. You can use llvm.memcpy on any integer bit width and for different address spaces.
Not all targets support all bit widths however.

declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
i32 <len>, i32 <align>, i1 <isvolatile>)

declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
i64 <len>, i32 <align>, i1 <isvolatile>)

Overview:

The ‘llvm.memcpy.*‘ intrinsics copy a block of memory from the source location to the destination location.

Note that, unlike the standard libc function, the llvm.memcpy.* intrinsics do not return a value, takes extra align-
ment/isvolatile arguments and the pointers can be in specified address spaces.

Arguments:

The first argument is a pointer to the destination, the second is a pointer to the source. The third argument is an integer
argument specifying the number of bytes to copy, the fourth argument is the alignment of the source and destination
locations, and the fifth is a boolean indicating a volatile access.

If the call to this intrinsic has an alignment value that is not 0 or 1, then the caller guarantees that both the source and
destination pointers are aligned to that boundary.

If the isvolatile parameter is true, the llvm.memcpy call is a volatile operation. The detailed access behavior
is not very cleanly specified and it is unwise to depend on it.

Semantics:

The ‘llvm.memcpy.*‘ intrinsics copy a block of memory from the source location to the destination location,
which are not allowed to overlap. It copies “len” bytes of memory over. If the argument is known to be aligned to
some boundary, this can be specified as the fourth argument, otherwise it should be set to 0 or 1 (both meaning no
alignment).

‘llvm.memmove‘ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.memmove on any integer bit width and for different address space.
Not all targets support all bit widths however.

declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
i32 <len>, i32 <align>, i1 <isvolatile>)

declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
i64 <len>, i32 <align>, i1 <isvolatile>)
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Overview:

The ‘llvm.memmove.*‘ intrinsics move a block of memory from the source location to the destination location. It
is similar to the ‘llvm.memcpy‘ intrinsic but allows the two memory locations to overlap.

Note that, unlike the standard libc function, the llvm.memmove.* intrinsics do not return a value, takes extra
alignment/isvolatile arguments and the pointers can be in specified address spaces.

Arguments:

The first argument is a pointer to the destination, the second is a pointer to the source. The third argument is an integer
argument specifying the number of bytes to copy, the fourth argument is the alignment of the source and destination
locations, and the fifth is a boolean indicating a volatile access.

If the call to this intrinsic has an alignment value that is not 0 or 1, then the caller guarantees that the source and
destination pointers are aligned to that boundary.

If the isvolatile parameter is true, the llvm.memmove call is a volatile operation. The detailed access
behavior is not very cleanly specified and it is unwise to depend on it.

Semantics:

The ‘llvm.memmove.*‘ intrinsics copy a block of memory from the source location to the destination location,
which may overlap. It copies “len” bytes of memory over. If the argument is known to be aligned to some boundary,
this can be specified as the fourth argument, otherwise it should be set to 0 or 1 (both meaning no alignment).

‘llvm.memset.*‘ Intrinsics

Syntax:

This is an overloaded intrinsic. You can use llvm.memset on any integer bit width and for different address spaces.
However, not all targets support all bit widths.

declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
i32 <len>, i32 <align>, i1 <isvolatile>)

declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
i64 <len>, i32 <align>, i1 <isvolatile>)

Overview:

The ‘llvm.memset.*‘ intrinsics fill a block of memory with a particular byte value.

Note that, unlike the standard libc function, the llvm.memset intrinsic does not return a value and takes extra
alignment/volatile arguments. Also, the destination can be in an arbitrary address space.

Arguments:

The first argument is a pointer to the destination to fill, the second is the byte value with which to fill it, the third
argument is an integer argument specifying the number of bytes to fill, and the fourth argument is the known alignment
of the destination location.
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If the call to this intrinsic has an alignment value that is not 0 or 1, then the caller guarantees that the destination
pointer is aligned to that boundary.

If the isvolatile parameter is true, the llvm.memset call is a volatile operation. The detailed access behavior
is not very cleanly specified and it is unwise to depend on it.

Semantics:

The ‘llvm.memset.*‘ intrinsics fill “len” bytes of memory starting at the destination location. If the argument is
known to be aligned to some boundary, this can be specified as the fourth argument, otherwise it should be set to 0 or
1 (both meaning no alignment).

‘llvm.sqrt.*‘ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.sqrt on any floating point or vector of floating point type. Not
all targets support all types however.

declare float @llvm.sqrt.f32(float %Val)
declare double @llvm.sqrt.f64(double %Val)
declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
declare fp128 @llvm.sqrt.f128(fp128 %Val)
declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)

Overview:

The ‘llvm.sqrt‘ intrinsics return the sqrt of the specified operand, returning the same value as the libm ‘sqrt‘
functions would. Unlike sqrt in libm, however, llvm.sqrt has undefined behavior for negative numbers other
than -0.0 (which allows for better optimization, because there is no need to worry about errno being set). llvm.
sqrt(-0.0) is defined to return -0.0 like IEEE sqrt.

Arguments:

The argument and return value are floating point numbers of the same type.

Semantics:

This function returns the sqrt of the specified operand if it is a nonnegative floating point number.

‘llvm.powi.*‘ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.powi on any floating point or vector of floating point type. Not
all targets support all types however.
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declare float @llvm.powi.f32(float %Val, i32 %power)
declare double @llvm.powi.f64(double %Val, i32 %power)
declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)

Overview:

The ‘llvm.powi.*‘ intrinsics return the first operand raised to the specified (positive or negative) power. The order
of evaluation of multiplications is not defined. When a vector of floating point type is used, the second argument
remains a scalar integer value.

Arguments:

The second argument is an integer power, and the first is a value to raise to that power.

Semantics:

This function returns the first value raised to the second power with an unspecified sequence of rounding operations.

‘llvm.sin.*‘ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.sin on any floating point or vector of floating point type. Not all
targets support all types however.

declare float @llvm.sin.f32(float %Val)
declare double @llvm.sin.f64(double %Val)
declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
declare fp128 @llvm.sin.f128(fp128 %Val)
declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)

Overview:

The ‘llvm.sin.*‘ intrinsics return the sine of the operand.

Arguments:

The argument and return value are floating point numbers of the same type.

Semantics:

This function returns the sine of the specified operand, returning the same values as the libm sin functions would,
and handles error conditions in the same way.
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‘llvm.cos.*‘ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.cos on any floating point or vector of floating point type. Not all
targets support all types however.

declare float @llvm.cos.f32(float %Val)
declare double @llvm.cos.f64(double %Val)
declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
declare fp128 @llvm.cos.f128(fp128 %Val)
declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)

Overview:

The ‘llvm.cos.*‘ intrinsics return the cosine of the operand.

Arguments:

The argument and return value are floating point numbers of the same type.

Semantics:

This function returns the cosine of the specified operand, returning the same values as the libm cos functions would,
and handles error conditions in the same way.

‘llvm.pow.*‘ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.pow on any floating point or vector of floating point type. Not all
targets support all types however.

declare float @llvm.pow.f32(float %Val, float %Power)
declare double @llvm.pow.f64(double %Val, double %Power)
declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)

Overview:

The ‘llvm.pow.*‘ intrinsics return the first operand raised to the specified (positive or negative) power.

Arguments:

The second argument is a floating point power, and the first is a value to raise to that power.
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Semantics:

This function returns the first value raised to the second power, returning the same values as the libm pow functions
would, and handles error conditions in the same way.

‘llvm.exp.*‘ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.exp on any floating point or vector of floating point type. Not all
targets support all types however.

declare float @llvm.exp.f32(float %Val)
declare double @llvm.exp.f64(double %Val)
declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
declare fp128 @llvm.exp.f128(fp128 %Val)
declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)

Overview:

The ‘llvm.exp.*‘ intrinsics perform the exp function.

Arguments:

The argument and return value are floating point numbers of the same type.

Semantics:

This function returns the same values as the libm exp functions would, and handles error conditions in the same way.

‘llvm.exp2.*‘ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.exp2 on any floating point or vector of floating point type. Not
all targets support all types however.

declare float @llvm.exp2.f32(float %Val)
declare double @llvm.exp2.f64(double %Val)
declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
declare fp128 @llvm.exp2.f128(fp128 %Val)
declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)

Overview:

The ‘llvm.exp2.*‘ intrinsics perform the exp2 function.
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Arguments:

The argument and return value are floating point numbers of the same type.

Semantics:

This function returns the same values as the libm exp2 functions would, and handles error conditions in the same
way.

‘llvm.log.*‘ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.log on any floating point or vector of floating point type. Not all
targets support all types however.

declare float @llvm.log.f32(float %Val)
declare double @llvm.log.f64(double %Val)
declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
declare fp128 @llvm.log.f128(fp128 %Val)
declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)

Overview:

The ‘llvm.log.*‘ intrinsics perform the log function.

Arguments:

The argument and return value are floating point numbers of the same type.

Semantics:

This function returns the same values as the libm log functions would, and handles error conditions in the same way.

‘llvm.log10.*‘ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.log10 on any floating point or vector of floating point type. Not
all targets support all types however.

declare float @llvm.log10.f32(float %Val)
declare double @llvm.log10.f64(double %Val)
declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
declare fp128 @llvm.log10.f128(fp128 %Val)
declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
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Overview:

The ‘llvm.log10.*‘ intrinsics perform the log10 function.

Arguments:

The argument and return value are floating point numbers of the same type.

Semantics:

This function returns the same values as the libm log10 functions would, and handles error conditions in the same
way.

‘llvm.log2.*‘ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.log2 on any floating point or vector of floating point type. Not
all targets support all types however.

declare float @llvm.log2.f32(float %Val)
declare double @llvm.log2.f64(double %Val)
declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
declare fp128 @llvm.log2.f128(fp128 %Val)
declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)

Overview:

The ‘llvm.log2.*‘ intrinsics perform the log2 function.

Arguments:

The argument and return value are floating point numbers of the same type.

Semantics:

This function returns the same values as the libm log2 functions would, and handles error conditions in the same
way.

‘llvm.fma.*‘ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.fma on any floating point or vector of floating point type. Not all
targets support all types however.
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declare float @llvm.fma.f32(float %a, float %b, float %c)
declare double @llvm.fma.f64(double %a, double %b, double %c)
declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)

Overview:

The ‘llvm.fma.*‘ intrinsics perform the fused multiply-add operation.

Arguments:

The argument and return value are floating point numbers of the same type.

Semantics:

This function returns the same values as the libm fma functions would, and does not set errno.

‘llvm.fabs.*‘ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.fabs on any floating point or vector of floating point type. Not
all targets support all types however.

declare float @llvm.fabs.f32(float %Val)
declare double @llvm.fabs.f64(double %Val)
declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
declare fp128 @llvm.fabs.f128(fp128 %Val)
declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)

Overview:

The ‘llvm.fabs.*‘ intrinsics return the absolute value of the operand.

Arguments:

The argument and return value are floating point numbers of the same type.

Semantics:

This function returns the same values as the libm fabs functions would, and handles error conditions in the same
way.
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‘llvm.minnum.*‘ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.minnum on any floating point or vector of floating point type. Not
all targets support all types however.

declare float @llvm.minnum.f32(float %Val0, float %Val1)
declare double @llvm.minnum.f64(double %Val0, double %Val1)
declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)

Overview:

The ‘llvm.minnum.*‘ intrinsics return the minimum of the two arguments.

Arguments:

The arguments and return value are floating point numbers of the same type.

Semantics:

Follows the IEEE-754 semantics for minNum, which also match for libm’s fmin.

If either operand is a NaN, returns the other non-NaN operand. Returns NaN only if both operands are NaN. If the
operands compare equal, returns a value that compares equal to both operands. This means that fmin(+/-0.0, +/-0.0)
could return either -0.0 or 0.0.

‘llvm.maxnum.*‘ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.maxnum on any floating point or vector of floating point type. Not
all targets support all types however.

declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
declare double @llvm.maxnum.f64(double %Val0, double %Val1)
declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)

Overview:

The ‘llvm.maxnum.*‘ intrinsics return the maximum of the two arguments.
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Arguments:

The arguments and return value are floating point numbers of the same type.

Semantics:

Follows the IEEE-754 semantics for maxNum, which also match for libm’s fmax.

If either operand is a NaN, returns the other non-NaN operand. Returns NaN only if both operands are NaN. If the
operands compare equal, returns a value that compares equal to both operands. This means that fmax(+/-0.0, +/-0.0)
could return either -0.0 or 0.0.

‘llvm.copysign.*‘ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.copysign on any floating point or vector of floating point type.
Not all targets support all types however.

declare float @llvm.copysign.f32(float %Mag, float %Sgn)
declare double @llvm.copysign.f64(double %Mag, double %Sgn)
declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)

Overview:

The ‘llvm.copysign.*‘ intrinsics return a value with the magnitude of the first operand and the sign of the second
operand.

Arguments:

The arguments and return value are floating point numbers of the same type.

Semantics:

This function returns the same values as the libm copysign functions would, and handles error conditions in the
same way.

‘llvm.floor.*‘ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.floor on any floating point or vector of floating point type. Not
all targets support all types however.
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declare float @llvm.floor.f32(float %Val)
declare double @llvm.floor.f64(double %Val)
declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
declare fp128 @llvm.floor.f128(fp128 %Val)
declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)

Overview:

The ‘llvm.floor.*‘ intrinsics return the floor of the operand.

Arguments:

The argument and return value are floating point numbers of the same type.

Semantics:

This function returns the same values as the libm floor functions would, and handles error conditions in the same
way.

‘llvm.ceil.*‘ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.ceil on any floating point or vector of floating point type. Not
all targets support all types however.

declare float @llvm.ceil.f32(float %Val)
declare double @llvm.ceil.f64(double %Val)
declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
declare fp128 @llvm.ceil.f128(fp128 %Val)
declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)

Overview:

The ‘llvm.ceil.*‘ intrinsics return the ceiling of the operand.

Arguments:

The argument and return value are floating point numbers of the same type.

Semantics:

This function returns the same values as the libm ceil functions would, and handles error conditions in the same
way.
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‘llvm.trunc.*‘ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.trunc on any floating point or vector of floating point type. Not
all targets support all types however.

declare float @llvm.trunc.f32(float %Val)
declare double @llvm.trunc.f64(double %Val)
declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
declare fp128 @llvm.trunc.f128(fp128 %Val)
declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)

Overview:

The ‘llvm.trunc.*‘ intrinsics returns the operand rounded to the nearest integer not larger in magnitude than the
operand.

Arguments:

The argument and return value are floating point numbers of the same type.

Semantics:

This function returns the same values as the libm trunc functions would, and handles error conditions in the same
way.

‘llvm.rint.*‘ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.rint on any floating point or vector of floating point type. Not
all targets support all types however.

declare float @llvm.rint.f32(float %Val)
declare double @llvm.rint.f64(double %Val)
declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
declare fp128 @llvm.rint.f128(fp128 %Val)
declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)

Overview:

The ‘llvm.rint.*‘ intrinsics returns the operand rounded to the nearest integer. It may raise an inexact floating-
point exception if the operand isn’t an integer.

Arguments:

The argument and return value are floating point numbers of the same type.
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Semantics:

This function returns the same values as the libm rint functions would, and handles error conditions in the same
way.

‘llvm.nearbyint.*‘ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.nearbyint on any floating point or vector of floating point type.
Not all targets support all types however.

declare float @llvm.nearbyint.f32(float %Val)
declare double @llvm.nearbyint.f64(double %Val)
declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
declare fp128 @llvm.nearbyint.f128(fp128 %Val)
declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)

Overview:

The ‘llvm.nearbyint.*‘ intrinsics returns the operand rounded to the nearest integer.

Arguments:

The argument and return value are floating point numbers of the same type.

Semantics:

This function returns the same values as the libm nearbyint functions would, and handles error conditions in the
same way.

‘llvm.round.*‘ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.round on any floating point or vector of floating point type. Not
all targets support all types however.

declare float @llvm.round.f32(float %Val)
declare double @llvm.round.f64(double %Val)
declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
declare fp128 @llvm.round.f128(fp128 %Val)
declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)

Overview:

The ‘llvm.round.*‘ intrinsics returns the operand rounded to the nearest integer.
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Arguments:

The argument and return value are floating point numbers of the same type.

Semantics:

This function returns the same values as the libm round functions would, and handles error conditions in the same
way.

Bit Manipulation Intrinsics

LLVM provides intrinsics for a few important bit manipulation operations. These allow efficient code generation for
some algorithms.

‘llvm.bitreverse.*‘ Intrinsics

Syntax:

This is an overloaded intrinsic function. You can use bitreverse on any integer type.

declare i16 @llvm.bitreverse.i16(i16 <id>)
declare i32 @llvm.bitreverse.i32(i32 <id>)
declare i64 @llvm.bitreverse.i64(i64 <id>)

Overview:

The ‘llvm.bitreverse‘ family of intrinsics is used to reverse the bitpattern of an integer value; for example
0b10110110 becomes 0b01101101.

Semantics:

The llvm.bitreverse.iN intrinsic returns an i16 value that has bit M in the input moved to bit N-M in the output.

‘llvm.bswap.*‘ Intrinsics

Syntax:

This is an overloaded intrinsic function. You can use bswap on any integer type that is an even number of bytes (i.e.
BitWidth % 16 == 0).

declare i16 @llvm.bswap.i16(i16 <id>)
declare i32 @llvm.bswap.i32(i32 <id>)
declare i64 @llvm.bswap.i64(i64 <id>)
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Overview:

The ‘llvm.bswap‘ family of intrinsics is used to byte swap integer values with an even number of bytes (positive
multiple of 16 bits). These are useful for performing operations on data that is not in the target’s native byte order.

Semantics:

The llvm.bswap.i16 intrinsic returns an i16 value that has the high and low byte of the input i16 swapped.
Similarly, the llvm.bswap.i32 intrinsic returns an i32 value that has the four bytes of the input i32 swapped, so
that if the input bytes are numbered 0, 1, 2, 3 then the returned i32 will have its bytes in 3, 2, 1, 0 order. The llvm.
bswap.i48, llvm.bswap.i64 and other intrinsics extend this concept to additional even-byte lengths (6 bytes, 8
bytes and more, respectively).

‘llvm.ctpop.*‘ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit width, or on any vector with integer elements.
Not all targets support all bit widths or vector types, however.

declare i8 @llvm.ctpop.i8(i8 <src>)
declare i16 @llvm.ctpop.i16(i16 <src>)
declare i32 @llvm.ctpop.i32(i32 <src>)
declare i64 @llvm.ctpop.i64(i64 <src>)
declare i256 @llvm.ctpop.i256(i256 <src>)
declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)

Overview:

The ‘llvm.ctpop‘ family of intrinsics counts the number of bits set in a value.

Arguments:

The only argument is the value to be counted. The argument may be of any integer type, or a vector with integer
elements. The return type must match the argument type.

Semantics:

The ‘llvm.ctpop‘ intrinsic counts the 1’s in a variable, or within each element of a vector.

‘llvm.ctlz.*‘ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.ctlz on any integer bit width, or any vector whose elements are
integers. Not all targets support all bit widths or vector types, however.
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declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)

Overview:

The ‘llvm.ctlz‘ family of intrinsic functions counts the number of leading zeros in a variable.

Arguments:

The first argument is the value to be counted. This argument may be of any integer type, or a vector with integer
element type. The return type must match the first argument type.

The second argument must be a constant and is a flag to indicate whether the intrinsic should ensure that a zero as
the first argument produces a defined result. Historically some architectures did not provide a defined result for zero
values as efficiently, and many algorithms are now predicated on avoiding zero-value inputs.

Semantics:

The ‘llvm.ctlz‘ intrinsic counts the leading (most significant) zeros in a variable, or within each element of the
vector. If src == 0 then the result is the size in bits of the type of src if is_zero_undef == 0 and undef
otherwise. For example, llvm.ctlz(i32 2) = 30.

‘llvm.cttz.*‘ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.cttz on any integer bit width, or any vector of integer elements.
Not all targets support all bit widths or vector types, however.

declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)

Overview:

The ‘llvm.cttz‘ family of intrinsic functions counts the number of trailing zeros.

Arguments:

The first argument is the value to be counted. This argument may be of any integer type, or a vector with integer
element type. The return type must match the first argument type.
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The second argument must be a constant and is a flag to indicate whether the intrinsic should ensure that a zero as
the first argument produces a defined result. Historically some architectures did not provide a defined result for zero
values as efficiently, and many algorithms are now predicated on avoiding zero-value inputs.

Semantics:

The ‘llvm.cttz‘ intrinsic counts the trailing (least significant) zeros in a variable, or within each element of a
vector. If src == 0 then the result is the size in bits of the type of src if is_zero_undef == 0 and undef
otherwise. For example, llvm.cttz(2) = 1.

Arithmetic with Overflow Intrinsics

LLVM provides intrinsics for fast arithmetic overflow checking.

Each of these intrinsics returns a two-element struct. The first element of this struct contains the result of the cor-
responding arithmetic operation modulo 2n, where n is the bit width of the result. Therefore, for example, the first
element of the struct returned by llvm.sadd.with.overflow.i32 is always the same as the result of a 32-bit
add instruction with the same operands, where the add is not modified by an nsw or nuw flag.

The second element of the result is an i1 that is 1 if the arithmetic operation overflowed and 0 otherwise. An operation
overflows if, for any values of its operands A and B and for any N larger than the operands’ width, ext(A op B)
to iN is not equal to (ext(A) to iN) op (ext(B) to iN) where ext is sext for signed overflow and
zext for unsigned overflow, and op is the underlying arithmetic operation.

The behavior of these intrinsics is well-defined for all argument values.

‘llvm.sadd.with.overflow.*‘ Intrinsics

Syntax:

This is an overloaded intrinsic. You can use llvm.sadd.with.overflow on any integer bit width.

declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)

Overview:

The ‘llvm.sadd.with.overflow‘ family of intrinsic functions perform a signed addition of the two arguments,
and indicate whether an overflow occurred during the signed summation.

Arguments:

The arguments (%a and %b) and the first element of the result structure may be of integer types of any bit width, but
they must have the same bit width. The second element of the result structure must be of type i1. %a and %b are the
two values that will undergo signed addition.
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Semantics:

The ‘llvm.sadd.with.overflow‘ family of intrinsic functions perform a signed addition of the two variables.
They return a structure — the first element of which is the signed summation, and the second element of which is a bit
specifying if the signed summation resulted in an overflow.

Examples:

%res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
%sum = extractvalue {i32, i1} %res, 0
%obit = extractvalue {i32, i1} %res, 1
br i1 %obit, label %overflow, label %normal

‘llvm.uadd.with.overflow.*‘ Intrinsics

Syntax:

This is an overloaded intrinsic. You can use llvm.uadd.with.overflow on any integer bit width.

declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)

Overview:

The ‘llvm.uadd.with.overflow‘ family of intrinsic functions perform an unsigned addition of the two argu-
ments, and indicate whether a carry occurred during the unsigned summation.

Arguments:

The arguments (%a and %b) and the first element of the result structure may be of integer types of any bit width, but
they must have the same bit width. The second element of the result structure must be of type i1. %a and %b are the
two values that will undergo unsigned addition.

Semantics:

The ‘llvm.uadd.with.overflow‘ family of intrinsic functions perform an unsigned addition of the two argu-
ments. They return a structure — the first element of which is the sum, and the second element of which is a bit
specifying if the unsigned summation resulted in a carry.

Examples:

%res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
%sum = extractvalue {i32, i1} %res, 0
%obit = extractvalue {i32, i1} %res, 1
br i1 %obit, label %carry, label %normal
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‘llvm.ssub.with.overflow.*‘ Intrinsics

Syntax:

This is an overloaded intrinsic. You can use llvm.ssub.with.overflow on any integer bit width.

declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)

Overview:

The ‘llvm.ssub.with.overflow‘ family of intrinsic functions perform a signed subtraction of the two argu-
ments, and indicate whether an overflow occurred during the signed subtraction.

Arguments:

The arguments (%a and %b) and the first element of the result structure may be of integer types of any bit width, but
they must have the same bit width. The second element of the result structure must be of type i1. %a and %b are the
two values that will undergo signed subtraction.

Semantics:

The ‘llvm.ssub.with.overflow‘ family of intrinsic functions perform a signed subtraction of the two argu-
ments. They return a structure — the first element of which is the subtraction, and the second element of which is a
bit specifying if the signed subtraction resulted in an overflow.

Examples:

%res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
%sum = extractvalue {i32, i1} %res, 0
%obit = extractvalue {i32, i1} %res, 1
br i1 %obit, label %overflow, label %normal

‘llvm.usub.with.overflow.*‘ Intrinsics

Syntax:

This is an overloaded intrinsic. You can use llvm.usub.with.overflow on any integer bit width.

declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
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Overview:

The ‘llvm.usub.with.overflow‘ family of intrinsic functions perform an unsigned subtraction of the two
arguments, and indicate whether an overflow occurred during the unsigned subtraction.

Arguments:

The arguments (%a and %b) and the first element of the result structure may be of integer types of any bit width, but
they must have the same bit width. The second element of the result structure must be of type i1. %a and %b are the
two values that will undergo unsigned subtraction.

Semantics:

The ‘llvm.usub.with.overflow‘ family of intrinsic functions perform an unsigned subtraction of the two
arguments. They return a structure — the first element of which is the subtraction, and the second element of which is
a bit specifying if the unsigned subtraction resulted in an overflow.

Examples:

%res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
%sum = extractvalue {i32, i1} %res, 0
%obit = extractvalue {i32, i1} %res, 1
br i1 %obit, label %overflow, label %normal

‘llvm.smul.with.overflow.*‘ Intrinsics

Syntax:

This is an overloaded intrinsic. You can use llvm.smul.with.overflow on any integer bit width.

declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)

Overview:

The ‘llvm.smul.with.overflow‘ family of intrinsic functions perform a signed multiplication of the two argu-
ments, and indicate whether an overflow occurred during the signed multiplication.

Arguments:

The arguments (%a and %b) and the first element of the result structure may be of integer types of any bit width, but
they must have the same bit width. The second element of the result structure must be of type i1. %a and %b are the
two values that will undergo signed multiplication.
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Semantics:

The ‘llvm.smul.with.overflow‘ family of intrinsic functions perform a signed multiplication of the two argu-
ments. They return a structure — the first element of which is the multiplication, and the second element of which is
a bit specifying if the signed multiplication resulted in an overflow.

Examples:

%res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
%sum = extractvalue {i32, i1} %res, 0
%obit = extractvalue {i32, i1} %res, 1
br i1 %obit, label %overflow, label %normal

‘llvm.umul.with.overflow.*‘ Intrinsics

Syntax:

This is an overloaded intrinsic. You can use llvm.umul.with.overflow on any integer bit width.

declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)

Overview:

The ‘llvm.umul.with.overflow‘ family of intrinsic functions perform a unsigned multiplication of the two
arguments, and indicate whether an overflow occurred during the unsigned multiplication.

Arguments:

The arguments (%a and %b) and the first element of the result structure may be of integer types of any bit width, but
they must have the same bit width. The second element of the result structure must be of type i1. %a and %b are the
two values that will undergo unsigned multiplication.

Semantics:

The ‘llvm.umul.with.overflow‘ family of intrinsic functions perform an unsigned multiplication of the two
arguments. They return a structure — the first element of which is the multiplication, and the second element of which
is a bit specifying if the unsigned multiplication resulted in an overflow.

Examples:

%res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
%sum = extractvalue {i32, i1} %res, 0
%obit = extractvalue {i32, i1} %res, 1
br i1 %obit, label %overflow, label %normal

1.1. LLVM Language Reference Manual 185



LLVM Documentation, Release 3.9

Specialised Arithmetic Intrinsics

‘llvm.canonicalize.*‘ Intrinsic

Syntax:

declare float @llvm.canonicalize.f32(float %a)
declare double @llvm.canonicalize.f64(double %b)

Overview:

The ‘llvm.canonicalize.*‘ intrinsic returns the platform specific canonical encoding of a floating point num-
ber. This canonicalization is useful for implementing certain numeric primitives such as frexp. The canonical encoding
is defined by IEEE-754-2008 to be:

2.1.8 canonical encoding: The preferred encoding of a floating-point
representation in a format. Applied to declets, significands of finite
numbers, infinities, and NaNs, especially in decimal formats.

This operation can also be considered equivalent to the IEEE-754-2008 conversion of a floating-point value to the
same format. NaNs are handled according to section 6.2.

Examples of non-canonical encodings:

• x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are converted to a canonical represen-
tation per hardware-specific protocol.

• Many normal decimal floating point numbers have non-canonical alternative encodings.

• Some machines, like GPUs or ARMv7 NEON, do not support subnormal values. These are treated as non-
canonical encodings of zero and will be flushed to a zero of the same sign by this operation.

Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with default exception handling must signal
an invalid exception, and produce a quiet NaN result.

This function should always be implementable as multiplication by 1.0, provided that the compiler does not constant
fold the operation. Likewise, division by 1.0 and llvm.minnum(x, x) are possible implementations. Addition
with -0.0 is also sufficient provided that the rounding mode is not -Infinity.

@llvm.canonicalize must preserve the equality relation. That is:

• (@llvm.canonicalize(x) == x) is equivalent to (x == x)

• (@llvm.canonicalize(x) == @llvm.canonicalize(y)) is equivalent to to (x == y)

Additionally, the sign of zero must be conserved: @llvm.canonicalize(-0.0) = -0.0 and @llvm.
canonicalize(+0.0) = +0.0

The payload bits of a NaN must be conserved, with two exceptions. First, environments which use only a single
canonical representation of NaN must perform said canonicalization. Second, SNaNs must be quieted per the usual
methods.

The canonicalization operation may be optimized away if:

• The input is known to be canonical. For example, it was produced by a floating-point operation that is required
by the standard to be canonical.

• The result is consumed only by (or fused with) other floating-point operations. That is, the bits of the floating
point value are not examined.
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‘llvm.fmuladd.*‘ Intrinsic

Syntax:

declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
declare double @llvm.fmuladd.f64(double %a, double %b, double %c)

Overview:

The ‘llvm.fmuladd.*‘ intrinsic functions represent multiply-add expressions that can be fused if the code gener-
ator determines that (a) the target instruction set has support for a fused operation, and (b) that the fused operation is
more efficient than the equivalent, separate pair of mul and add instructions.

Arguments:

The ‘llvm.fmuladd.*‘ intrinsics each take three arguments: two multiplicands, a and b, and an addend c.

Semantics:

The expression:

%0 = call float @llvm.fmuladd.f32(%a, %b, %c)

is equivalent to the expression a * b + c, except that rounding will not be performed between the multiplication and
addition steps if the code generator fuses the operations. Fusion is not guaranteed, even if the target platform supports
it. If a fused multiply-add is required the corresponding llvm.fma.* intrinsic function should be used instead. This
never sets errno, just as ‘llvm.fma.*‘.

Examples:

%r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 =
→˓(a * b) + c

Half Precision Floating Point Intrinsics

For most target platforms, half precision floating point is a storage-only format. This means that it is a dense encoding
(in memory) but does not support computation in the format.

This means that code must first load the half-precision floating point value as an i16, then convert it to float with
llvm.convert.from.fp16. Computation can then be performed on the float value (including extending to double etc). To
store the value back to memory, it is first converted to float if needed, then converted to i16 with llvm.convert.to.fp16,
then storing as an i16 value.

‘llvm.convert.to.fp16‘ Intrinsic
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Syntax:

declare i16 @llvm.convert.to.fp16.f32(float %a)
declare i16 @llvm.convert.to.fp16.f64(double %a)

Overview:

The ‘llvm.convert.to.fp16‘ intrinsic function performs a conversion from a conventional floating point type
to half precision floating point format.

Arguments:

The intrinsic function contains single argument - the value to be converted.

Semantics:

The ‘llvm.convert.to.fp16‘ intrinsic function performs a conversion from a conventional floating point format
to half precision floating point format. The return value is an i16 which contains the converted number.

Examples:

%res = call i16 @llvm.convert.to.fp16.f32(float %a)
store i16 %res, i16* @x, align 2

‘llvm.convert.from.fp16‘ Intrinsic

Syntax:

declare float @llvm.convert.from.fp16.f32(i16 %a)
declare double @llvm.convert.from.fp16.f64(i16 %a)

Overview:

The ‘llvm.convert.from.fp16‘ intrinsic function performs a conversion from half precision floating point
format to single precision floating point format.

Arguments:

The intrinsic function contains single argument - the value to be converted.

Semantics:

The ‘llvm.convert.from.fp16‘ intrinsic function performs a conversion from half single precision floating
point format to single precision floating point format. The input half-float value is represented by an i16 value.
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Examples:

%a = load i16, i16* @x, align 2
%res = call float @llvm.convert.from.fp16(i16 %a)

Debugger Intrinsics

The LLVM debugger intrinsics (which all start with llvm.dbg. prefix), are described in the LLVM Source Level
Debugging document.

Exception Handling Intrinsics

The LLVM exception handling intrinsics (which all start with llvm.eh. prefix), are described in the LLVM Excep-
tion Handling document.

Trampoline Intrinsics

These intrinsics make it possible to excise one parameter, marked with the nest attribute, from a function. The result
is a callable function pointer lacking the nest parameter - the caller does not need to provide a value for it. Instead,
the value to use is stored in advance in a “trampoline”, a block of memory usually allocated on the stack, which also
contains code to splice the nest value into the argument list. This is used to implement the GCC nested function
address extension.

For example, if the function is i32 f(i8* nest %c, i32 %x, i32 %y) then the resulting function pointer
has signature i32 (i32, i32)*. It can be created as follows:

%tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
%tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to
→˓i8*), i8* %nval)
%p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
%fp = bitcast i8* %p to i32 (i32, i32)*

The call %val = call i32 %fp(i32 %x, i32 %y) is then equivalent to %val = call i32 %f(i8*
%nval, i32 %x, i32 %y).

‘llvm.init.trampoline‘ Intrinsic

Syntax:

declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)

Overview:

This fills the memory pointed to by tramp with executable code, turning it into a trampoline.
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Arguments:

The llvm.init.trampoline intrinsic takes three arguments, all pointers. The tramp argument must point to
a sufficiently large and sufficiently aligned block of memory; this memory is written to by the intrinsic. Note that
the size and the alignment are target-specific - LLVM currently provides no portable way of determining them, so a
front-end that generates this intrinsic needs to have some target-specific knowledge. The func argument must hold a
function bitcast to an i8*.

Semantics:

The block of memory pointed to by tramp is filled with target dependent code, turning it into a function. Then
tramp needs to be passed to llvm.adjust.trampoline to get a pointer which can be bitcast (to a new function) and
called. The new function’s signature is the same as that of func with any arguments marked with the nest attribute
removed. At most one such nest argument is allowed, and it must be of pointer type. Calling the new function is
equivalent to calling func with the same argument list, but with nval used for the missing nest argument. If, after
calling llvm.init.trampoline, the memory pointed to by tramp is modified, then the effect of any later call
to the returned function pointer is undefined.

‘llvm.adjust.trampoline‘ Intrinsic

Syntax:

declare i8* @llvm.adjust.trampoline(i8* <tramp>)

Overview:

This performs any required machine-specific adjustment to the address of a trampoline (passed as tramp).

Arguments:

tramp must point to a block of memory which already has trampoline code filled in by a previous call to
llvm.init.trampoline.

Semantics:

On some architectures the address of the code to be executed needs to be different than the address where the tram-
poline is actually stored. This intrinsic returns the executable address corresponding to tramp after performing the
required machine specific adjustments. The pointer returned can then be bitcast and executed.

Masked Vector Load and Store Intrinsics

LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand,
which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corre-
sponding to the “off” lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular
vector load or store. When all bits are off, no memory is accessed.
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‘llvm.masked.load.*‘ Intrinsics

Syntax:

This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.

declare <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* <ptr>, i32
→˓<alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
declare <2 x double> @llvm.masked.load.v2f64.p0v2f64 (<2 x double>* <ptr>, i32
→˓<alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
;; The data is a vector of pointers to double
declare <8 x double*> @llvm.masked.load.v8p0f64.p0v8p0f64 (<8 x double*>* <ptr>,
→˓i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
;; The data is a vector of function pointers
declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f.p0v8p0f_i32f (<8 x i32 ()*>* <ptr>,
→˓ i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)

Overview:

Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used
to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the
corresponding lanes of the ‘passthru‘ operand.

Arguments:

The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must
be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements
as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return
type, underlying type of the base pointer and the type of the ‘passthru‘ operand are the same vector types.

Semantics:

The ‘llvm.masked.load‘ intrinsic is designed for conditional reading of selected vector elements in a single IR
operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on
these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches
that guard scalar load operations. The result of this operation is equivalent to a regular vector load instruction followed
by a ‘select’ between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic
prevents exceptions on memory access to masked-off lanes.

%res = call <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* %ptr, i32 4,
→˓ <16 x i1>%mask, <16 x float> %passthru)

;; The result of the two following instructions is identical aside from potential
→˓memory access exception
%loadlal = load <16 x float>, <16 x float>* %ptr, align 4
%res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru

‘llvm.masked.store.*‘ Intrinsics
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Syntax:

This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data
type.

declare void @llvm.masked.store.v8i32.p0v8i32 (<8 x i32> <value>, <8 x i32>*
→˓<ptr>, i32 <alignment>, <8 x i1> <mask>)
declare void @llvm.masked.store.v16f32.p0v16f32 (<16 x float> <value>, <16 x float>*
→˓<ptr>, i32 <alignment>, <16 x i1> <mask>)
;; The data is a vector of pointers to double
declare void @llvm.masked.store.v8p0f64.p0v8p0f64 (<8 x double*> <value>, <8 x
→˓double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
;; The data is a vector of function pointers
declare void @llvm.masked.store.v4p0f_i32f.p0v4p0f_i32f (<4 x i32 ()*> <value>, <4 x
→˓i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)

Overview:

Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to
prevent memory accesses to the masked-off lanes.

Arguments:

The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it
has the same underlying type as the value operand. The third operand is the alignment of the destination location. The
fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same
number of vector elements.

Semantics:

The ‘llvm.masked.store‘ intrinsics is designed for conditional writing of selected vector elements in a single
IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks
on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of
branches that guard scalar store operations. The result of this operation is equivalent to a load-modify-store sequence.
However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.

call void @llvm.masked.store.v16f32.p0v16f32(<16 x float> %value, <16 x float>* %ptr,
→˓i32 4, <16 x i1> %mask)

;; The result of the following instructions is identical aside from potential data
→˓races and memory access exceptions
%oldval = load <16 x float>, <16 x float>* %ptr, align 4
%res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
store <16 x float> %res, <16 x float>* %ptr, align 4

Masked Vector Gather and Scatter Intrinsics

LLVM provides intrinsics for vector gather and scatter operations. They are similar to Masked Vector Load and Store,
except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter
also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off.
The memory addresses corresponding to the “off” lanes are not accessed. When all bits are off, no memory is accessed.
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‘llvm.masked.gather.*‘ Intrinsics

Syntax:

This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data
type gathered together into one vector.

declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32
→˓<alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32
→˓<alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
declare <8 x float*> @llvm.masked.gather.v8p0f32 (<8 x float**> <ptrs>, i32
→˓<alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)

Overview:

Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are
provided in the vector of pointers ‘ptrs‘. The memory is accessed according to the provided mask. The mask holds
a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in
the result vector are taken from the corresponding lanes of the ‘passthru‘ operand.

Arguments:

The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment
of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with
the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off
lanes of the result. The return type, underlying type of the vector of pointers and the type of the ‘passthru‘ operand
are the same vector types.

Semantics:

The ‘llvm.masked.gather‘ intrinsic is designed for conditional reading of multiple scalar values from arbitrary
memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows
vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for
example by lowering it into a sequence of scalar load operations. The semantics of this operation are equivalent to
a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask
restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.

%res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x
→˓i1>%mask, <4 x double> <true, true, true, true>)

;; The gather with all-true mask is equivalent to the following instruction sequence
%ptr0 = extractelement <4 x double*> %ptrs, i32 0
%ptr1 = extractelement <4 x double*> %ptrs, i32 1
%ptr2 = extractelement <4 x double*> %ptrs, i32 2
%ptr3 = extractelement <4 x double*> %ptrs, i32 3

%val0 = load double, double* %ptr0, align 8
%val1 = load double, double* %ptr1, align 8
%val2 = load double, double* %ptr2, align 8
%val3 = load double, double* %ptr3, align 8
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%vec0 = insertelement <4 x double>undef, %val0, 0
%vec01 = insertelement <4 x double>%vec0, %val1, 1
%vec012 = insertelement <4 x double>%vec01, %val2, 2
%vec0123 = insertelement <4 x double>%vec012, %val3, 3

‘llvm.masked.scatter.*‘ Intrinsics

Syntax:

This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data
type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed
to be ordered from least-significant to most-significant element.

declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*>
→˓<ptrs>, i32 <alignment>, <8 x i1> <mask>)
declare void @llvm.masked.scatter.v16f32 (<16 x float> <value>, <16 x float*>
→˓<ptrs>, i32 <alignment>, <16 x i1> <mask>)
declare void @llvm.masked.scatter.v4p0f64 (<4 x double*> <value>, <4 x double**>
→˓<ptrs>, i32 <alignment>, <4 x i1> <mask>)

Overview:

Writes each element from the value vector to the corresponding memory address. The memory addresses are repre-
sented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector
lane, and is used to prevent memory accesses to the masked-off lanes.

Arguments:

The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to
where the value elements should be stored. It has the same underlying type as the value operand. The third operand is
an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the
mask and the value operand must have the same number of vector elements.

Semantics:

The ‘llvm.masked.scatter‘ intrinsics is designed for writing selected vector elements to arbitrary memory
addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on.
It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control
divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches
that guard scalar store operations.

;; This instruction unconditionally stores data vector in multiple addresses
call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1>
→˓ <true, true, .. true>)

;; It is equivalent to a list of scalar stores
%val0 = extractelement <8 x i32> %value, i32 0
%val1 = extractelement <8 x i32> %value, i32 1
..
%val7 = extractelement <8 x i32> %value, i32 7
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%ptr0 = extractelement <8 x i32*> %ptrs, i32 0
%ptr1 = extractelement <8 x i32*> %ptrs, i32 1
..
%ptr7 = extractelement <8 x i32*> %ptrs, i32 7
;; Note: the order of the following stores is important when they overlap:
store i32 %val0, i32* %ptr0, align 4
store i32 %val1, i32* %ptr1, align 4
..
store i32 %val7, i32* %ptr7, align 4

Memory Use Markers

This class of intrinsics provides information about the lifetime of memory objects and ranges where variables are
immutable.

‘llvm.lifetime.start‘ Intrinsic

Syntax:

declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)

Overview:

The ‘llvm.lifetime.start‘ intrinsic specifies the start of a memory object’s lifetime.

Arguments:

The first argument is a constant integer representing the size of the object, or -1 if it is variable sized. The second
argument is a pointer to the object.

Semantics:

This intrinsic indicates that before this point in the code, the value of the memory pointed to by ptr is dead. This
means that it is known to never be used and has an undefined value. A load from the pointer that precedes this intrinsic
can be replaced with 'undef'.

‘llvm.lifetime.end‘ Intrinsic

Syntax:

declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)

Overview:

The ‘llvm.lifetime.end‘ intrinsic specifies the end of a memory object’s lifetime.
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Arguments:

The first argument is a constant integer representing the size of the object, or -1 if it is variable sized. The second
argument is a pointer to the object.

Semantics:

This intrinsic indicates that after this point in the code, the value of the memory pointed to by ptr is dead. This
means that it is known to never be used and has an undefined value. Any stores into the memory object following this
intrinsic may be removed as dead.

‘llvm.invariant.start‘ Intrinsic

Syntax:

declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)

Overview:

The ‘llvm.invariant.start‘ intrinsic specifies that the contents of a memory object will not change.

Arguments:

The first argument is a constant integer representing the size of the object, or -1 if it is variable sized. The second
argument is a pointer to the object.

Semantics:

This intrinsic indicates that until an llvm.invariant.end that uses the return value, the referenced memory
location is constant and unchanging.

‘llvm.invariant.end‘ Intrinsic

Syntax:

declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)

Overview:

The ‘llvm.invariant.end‘ intrinsic specifies that the contents of a memory object are mutable.
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Arguments:

The first argument is the matching llvm.invariant.start intrinsic. The second argument is a constant integer
representing the size of the object, or -1 if it is variable sized and the third argument is a pointer to the object.

Semantics:

This intrinsic indicates that the memory is mutable again.

‘llvm.invariant.group.barrier‘ Intrinsic

Syntax:

declare i8* @llvm.invariant.group.barrier(i8* <ptr>)

Overview:

The ‘llvm.invariant.group.barrier‘ intrinsic can be used when an invariant established by invariant.group
metadata no longer holds, to obtain a new pointer value that does not carry the invariant information.

Arguments:

The llvm.invariant.group.barrier takes only one argument, which is the pointer to the memory for which
the invariant.group no longer holds.

Semantics:

Returns another pointer that aliases its argument but which is considered different for the purposes of load/store
invariant.group metadata.

General Intrinsics

This class of intrinsics is designed to be generic and has no specific purpose.

‘llvm.var.annotation‘ Intrinsic

Syntax:

declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)

Overview:

The ‘llvm.var.annotation‘ intrinsic.
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Arguments:

The first argument is a pointer to a value, the second is a pointer to a global string, the third is a pointer to a global
string which is the source file name, and the last argument is the line number.

Semantics:

This intrinsic allows annotation of local variables with arbitrary strings. This can be useful for special purpose opti-
mizations that want to look for these annotations. These have no other defined use; they are ignored by code generation
and optimization.

‘llvm.ptr.annotation.*‘ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use ‘llvm.ptr.annotation‘ on a pointer to an integer of any width.
NOTE you must specify an address space for the pointer. The identifier for the default address space is the integer ‘0‘.

declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>,
→˓ i32 <int>)
declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8*
→˓<str>, i32 <int>)
declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8*
→˓<str>, i32 <int>)
declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8*
→˓<str>, i32 <int>)
declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8*
→˓<str>, i32 <int>)

Overview:

The ‘llvm.ptr.annotation‘ intrinsic.

Arguments:

The first argument is a pointer to an integer value of arbitrary bitwidth (result of some expression), the second is a
pointer to a global string, the third is a pointer to a global string which is the source file name, and the last argument is
the line number. It returns the value of the first argument.

Semantics:

This intrinsic allows annotation of a pointer to an integer with arbitrary strings. This can be useful for special purpose
optimizations that want to look for these annotations. These have no other defined use; they are ignored by code
generation and optimization.
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‘llvm.annotation.*‘ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use ‘llvm.annotation‘ on any integer bit width.

declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)

Overview:

The ‘llvm.annotation‘ intrinsic.

Arguments:

The first argument is an integer value (result of some expression), the second is a pointer to a global string, the third is
a pointer to a global string which is the source file name, and the last argument is the line number. It returns the value
of the first argument.

Semantics:

This intrinsic allows annotations to be put on arbitrary expressions with arbitrary strings. This can be useful for special
purpose optimizations that want to look for these annotations. These have no other defined use; they are ignored by
code generation and optimization.

‘llvm.trap‘ Intrinsic

Syntax:

declare void @llvm.trap() noreturn nounwind

Overview:

The ‘llvm.trap‘ intrinsic.

Arguments:

None.

Semantics:

This intrinsic is lowered to the target dependent trap instruction. If the target does not have a trap instruction, this
intrinsic will be lowered to a call of the abort() function.
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‘llvm.debugtrap‘ Intrinsic

Syntax:

declare void @llvm.debugtrap() nounwind

Overview:

The ‘llvm.debugtrap‘ intrinsic.

Arguments:

None.

Semantics:

This intrinsic is lowered to code which is intended to cause an execution trap with the intention of requesting the
attention of a debugger.

‘llvm.stackprotector‘ Intrinsic

Syntax:

declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)

Overview:

The llvm.stackprotector intrinsic takes the guard and stores it onto the stack at slot. The stack slot is
adjusted to ensure that it is placed on the stack before local variables.

Arguments:

The llvm.stackprotector intrinsic requires two pointer arguments. The first argument is the value loaded from
the stack guard @__stack_chk_guard. The second variable is an alloca that has enough space to hold the value
of the guard.

Semantics:

This intrinsic causes the prologue/epilogue inserter to force the position of the AllocaInst stack slot to be before
local variables on the stack. This is to ensure that if a local variable on the stack is overwritten, it will destroy the
value of the guard. When the function exits, the guard on the stack is checked against the original guard by llvm.
stackprotectorcheck. If they are different, then llvm.stackprotectorcheck causes the program to
abort by calling the __stack_chk_fail() function.

200 Chapter 1. LLVM Design & Overview



LLVM Documentation, Release 3.9

‘llvm.stackguard‘ Intrinsic

Syntax:

declare i8* @llvm.stackguard()

Overview:

The llvm.stackguard intrinsic returns the system stack guard value.

It should not be generated by frontends, since it is only for internal usage. The reason why we create this intrinsic is
that we still support IR form Stack Protector in FastISel.

Arguments:

None.

Semantics:

On some platforms, the value returned by this intrinsic remains unchanged between loads in the same thread. On other
platforms, it returns the same global variable value, if any, e.g. @__stack_chk_guard.

Currently some platforms have IR-level customized stack guard loading (e.g. X86 Linux) that is not handled by
llvm.stackguard(), while they should be in the future.

‘llvm.objectsize‘ Intrinsic

Syntax:

declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)

Overview:

The llvm.objectsize intrinsic is designed to provide information to the optimizers to determine at compile time
whether a) an operation (like memcpy) will overflow a buffer that corresponds to an object, or b) that a runtime check
for overflow isn’t necessary. An object in this context means an allocation of a specific class, structure, array, or other
object.

Arguments:

The llvm.objectsize intrinsic takes two arguments. The first argument is a pointer to or into the object. The
second argument is a boolean and determines whether llvm.objectsize returns 0 (if true) or -1 (if false) when
the object size is unknown. The second argument only accepts constants.
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Semantics:

The llvm.objectsize intrinsic is lowered to a constant representing the size of the object concerned. If the size
cannot be determined at compile time, llvm.objectsize returns i32/i64 -1 or 0 (depending on the min
argument).

‘llvm.expect‘ Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.expect on any integer bit width.

declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)

Overview:

The llvm.expect intrinsic provides information about expected (the most probable) value of val, which can be
used by optimizers.

Arguments:

The llvm.expect intrinsic takes two arguments. The first argument is a value. The second argument is an expected
value, this needs to be a constant value, variables are not allowed.

Semantics:

This intrinsic is lowered to the val.

‘llvm.assume‘ Intrinsic

Syntax:

declare void @llvm.assume(i1 %cond)

Overview:

The llvm.assume allows the optimizer to assume that the provided condition is true. This information can then be
used in simplifying other parts of the code.

Arguments:

The condition which the optimizer may assume is always true.

202 Chapter 1. LLVM Design & Overview



LLVM Documentation, Release 3.9

Semantics:

The intrinsic allows the optimizer to assume that the provided condition is always true whenever the control flow
reaches the intrinsic call. No code is generated for this intrinsic, and instructions that contribute only to the provided
condition are not used for code generation. If the condition is violated during execution, the behavior is undefined.

Note that the optimizer might limit the transformations performed on values used by the llvm.assume intrinsic
in order to preserve the instructions only used to form the intrinsic’s input argument. This might prove undesirable
if the extra information provided by the llvm.assume intrinsic does not cause sufficient overall improvement in
code quality. For this reason, llvm.assume should not be used to document basic mathematical invariants that the
optimizer can otherwise deduce or facts that are of little use to the optimizer.

‘llvm.type.test‘ Intrinsic

Syntax:

declare i1 @llvm.type.test(i8* %ptr, metadata %type) nounwind readnone

Arguments:

The first argument is a pointer to be tested. The second argument is a metadata object representing a type identifier.

Overview:

The llvm.type.test intrinsic tests whether the given pointer is associated with the given type identifier.

‘llvm.type.checked.load‘ Intrinsic

Syntax:

declare {i8*, i1} @llvm.type.checked.load(i8* %ptr, i32 %offset, metadata %type)
→˓argmemonly nounwind readonly

Arguments:

The first argument is a pointer from which to load a function pointer. The second argument is the byte offset from
which to load the function pointer. The third argument is a metadata object representing a type identifier.

Overview:

The llvm.type.checked.load intrinsic safely loads a function pointer from a virtual table pointer using type
metadata. This intrinsic is used to implement control flow integrity in conjunction with virtual call optimization. The
virtual call optimization pass will optimize away llvm.type.checked.load intrinsics associated with devirtu-
alized calls, thereby removing the type check in cases where it is not needed to enforce the control flow integrity
constraint.
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If the given pointer is associated with a type metadata identifier, this function returns true as the second element of its
return value. (Note that the function may also return true if the given pointer is not associated with a type metadata
identifier.) If the function’s return value’s second element is true, the following rules apply to the first element:

• If the given pointer is associated with the given type metadata identifier, it is the function pointer loaded from
the given byte offset from the given pointer.

• If the given pointer is not associated with the given type metadata identifier, it is one of the following (the choice
of which is unspecified):

1. The function pointer that would have been loaded from an arbitrarily chosen (through an unspecified
mechanism) pointer associated with the type metadata.

2. If the function has a non-void return type, a pointer to a function that returns an unspecified value without
causing side effects.

If the function’s return value’s second element is false, the value of the first element is undefined.

‘llvm.donothing‘ Intrinsic

Syntax:

declare void @llvm.donothing() nounwind readnone

Overview:

The llvm.donothing intrinsic doesn’t perform any operation. It’s one of only three intrinsics (besides llvm.
experimental.patchpoint and llvm.experimental.gc.statepoint) that can be called with an in-
voke instruction.

Arguments:

None.

Semantics:

This intrinsic does nothing, and it’s removed by optimizers and ignored by codegen.

‘llvm.experimental.deoptimize‘ Intrinsic

Syntax:

declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]

Overview:

This intrinsic, together with deoptimization operand bundles, allow frontends to express transfer of control and frame-
local state from the currently executing (typically more specialized, hence faster) version of a function into another
(typically more generic, hence slower) version.
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In languages with a fully integrated managed runtime like Java and JavaScript this intrinsic can be used to implement
“uncommon trap” or “side exit” like functionality. In unmanaged languages like C and C++, this intrinsic can be used
to represent the slow paths of specialized functions.

Arguments:

The intrinsic takes an arbitrary number of arguments, whose meaning is decided by the lowering strategy.

Semantics:

The @llvm.experimental.deoptimize intrinsic executes an attached deoptimization continuation (denoted
using a deoptimization operand bundle) and returns the value returned by the deoptimization continuation. Defining the
semantic properties of the continuation itself is out of scope of the language reference – as far as LLVM is concerned,
the deoptimization continuation can invoke arbitrary side effects, including reading from and writing to the entire heap.

Deoptimization continuations expressed using "deopt" operand bundles always continue execution to the end of the
physical frame containing them, so all calls to @llvm.experimental.deoptimize must be in “tail position”:

• @llvm.experimental.deoptimize cannot be invoked.

• The call must immediately precede a ret instruction.

• The ret instruction must return the value produced by the @llvm.experimental.deoptimize call if
there is one, or void.

Note that the above restrictions imply that the return type for a call to @llvm.experimental.deoptimize will
match the return type of its immediate caller.

The inliner composes the "deopt" continuations of the caller into the "deopt" continuations present in the inlinee,
and also updates calls to this intrinsic to return directly from the frame of the function it inlined into.

All declarations of @llvm.experimental.deoptimize must share the same calling convention.

Lowering:

Calls to @llvm.experimental.deoptimize are lowered to calls to the symbol __llvm_deoptimize (it is
the frontend’s responsibility to ensure that this symbol is defined). The call arguments to @llvm.experimental.
deoptimize are lowered as if they were formal arguments of the specified types, and not as varargs.

‘llvm.experimental.guard‘ Intrinsic

Syntax:

declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]

Overview:

This intrinsic, together with deoptimization operand bundles, allows frontends to express guards or checks on op-
timistic assumptions made during compilation. The semantics of @llvm.experimental.guard is defined in
terms of @llvm.experimental.deoptimize – its body is defined to be equivalent to:
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define void @llvm.experimental.guard(i1 %pred, <args...>) {
%realPred = and i1 %pred, undef
br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]

leave:
call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
ret void

continue:
ret void

}

with the optional [, !make.implicit !{}] present if and only if it is present on the call site. For more details
on !make.implicit, see FaultMaps and implicit checks.

In words, @llvm.experimental.guard executes the attached "deopt" continuation if (but not only if) its
first argument is false. Since the optimizer is allowed to replace the undef with an arbitrary value, it can optimize
guard to fail “spuriously”, i.e. without the original condition being false (hence the “not only if”); and this allows for
“check widening” type optimizations.

@llvm.experimental.guard cannot be invoked.

‘llvm.load.relative‘ Intrinsic

Syntax:

declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly

Overview:

This intrinsic loads a 32-bit value from the address %ptr + %offset, adds %ptr to that value and returns it. The
constant folder specifically recognizes the form of this intrinsic and the constant initializers it may load from; if a
loaded constant initializer is known to have the form i32 trunc(x - %ptr), the intrinsic call is folded to x.

LLVM provides that the calculation of such a constant initializer will not overflow at link time under the medium
code model if x is an unnamed_addr function. However, it does not provide this guarantee for a constant initializer
folded into a function body. This intrinsic can be used to avoid the possibility of overflows when loading from such a
constant.

Stack Map Intrinsics

LLVM provides experimental intrinsics to support runtime patching mechanisms commonly desired in dynamic lan-
guage JITs. These intrinsics are described in Stack maps and patch points in LLVM.

LLVM Language Reference Manual Defines the LLVM intermediate representation.

Introduction to the LLVM Compiler Presentation providing a users introduction to LLVM.

Intro to LLVM Book chapter providing a compiler hacker’s introduction to LLVM.

LLVM: A Compilation Framework for Lifelong Program Analysis & Transformation Design overview.

LLVM: An Infrastructure for Multi-Stage Optimization More details (quite old now).

Publications mentioning LLVM
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CHAPTER 2

User Guides

For those new to the LLVM system.

NOTE: If you are a user who is only interested in using LLVM-based compilers, you should look into Clang or
DragonEgg instead. The documentation here is intended for users who have a need to work with the intermediate
LLVM representation.

Building LLVM with CMake

• Introduction

• Quick start

• Basic CMake usage

• Options and variables

– Frequently-used CMake variables

– LLVM-specific variables

• CMake Caches

• Executing the test suite

• Cross compiling

• Embedding LLVM in your project

– Developing LLVM passes out of source

• Compiler/Platform-specific topics

– Microsoft Visual C++
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Introduction

CMake is a cross-platform build-generator tool. CMake does not build the project, it generates the files needed by
your build tool (GNU make, Visual Studio, etc.) for building LLVM.

If you are a new contributor, please start with the Getting Started with the LLVM System page. This page is geared
for existing contributors moving from the legacy configure/make system.

If you are really anxious about getting a functional LLVM build, go to the Quick start section. If you are a CMake
novice, start with Basic CMake usage and then go back to the Quick start section once you know what you are doing.
The Options and variables section is a reference for customizing your build. If you already have experience with
CMake, this is the recommended starting point.

This page is geared towards users of the LLVM CMake build. If you’re looking for information about modifying the
LLVM CMake build system you may want to see the CMake Primer page. It has a basic overview of the CMake
language.

Quick start

We use here the command-line, non-interactive CMake interface.

1. Download and install CMake. Version 3.4.3 is the minimum required.

2. Open a shell. Your development tools must be reachable from this shell through the PATH environment variable.

3. Create a build directory. Building LLVM in the source directory is not supported. cd to this directory:

$ mkdir mybuilddir
$ cd mybuilddir

4. Execute this command in the shell replacing path/to/llvm/source/root with the path to the root of your LLVM
source tree:

$ cmake path/to/llvm/source/root

CMake will detect your development environment, perform a series of tests, and generate the files required for
building LLVM. CMake will use default values for all build parameters. See the Options and variables section
for a list of build parameters that you can modify.

This can fail if CMake can’t detect your toolset, or if it thinks that the environment is not sane enough. In this
case, make sure that the toolset that you intend to use is the only one reachable from the shell, and that the shell
itself is the correct one for your development environment. CMake will refuse to build MinGW makefiles if you
have a POSIX shell reachable through the PATH environment variable, for instance. You can force CMake to
use a given build tool; for instructions, see the Usage section, below.

5. After CMake has finished running, proceed to use IDE project files, or start the build from the build directory:

$ cmake --build .

The --build option tells cmake to invoke the underlying build tool (make, ninja, xcodebuild,
msbuild, etc.)

The underlying build tool can be invoked directly, of course, but the --build option is portable.

6. After LLVM has finished building, install it from the build directory:

$ cmake --build . --target install
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The --target option with install parameter in addition to the --build option tells cmake to build the
install target.

It is possible to set a different install prefix at installation time by invoking the cmake_install.cmake
script generated in the build directory:

$ cmake -DCMAKE_INSTALL_PREFIX=/tmp/llvm -P cmake_install.cmake

Basic CMake usage

This section explains basic aspects of CMake which you may need in your day-to-day usage.

CMake comes with extensive documentation, in the form of html files, and as online help accessible via the cmake
executable itself. Execute cmake --help for further help options.

CMake allows you to specify a build tool (e.g., GNU make, Visual Studio, or Xcode). If not specified on the command
line, CMake tries to guess which build tool to use, based on your environment. Once it has identified your build
tool, CMake uses the corresponding Generator to create files for your build tool (e.g., Makefiles or Visual Studio or
Xcode project files). You can explicitly specify the generator with the command line option -G "Name of the
generator". To see a list of the available generators on your system, execute

$ cmake --help

This will list the generator names at the end of the help text.

Generators’ names are case-sensitive, and may contain spaces. For this reason, you should enter them exactly as they
are listed in the cmake --help output, in quotes. For example, to generate project files specifically for Visual
Studio 12, you can execute:

$ cmake -G "Visual Studio 12" path/to/llvm/source/root

For a given development platform there can be more than one adequate generator. If you use Visual Studio, “NMake
Makefiles” is a generator you can use for building with NMake. By default, CMake chooses the most specific generator
supported by your development environment. If you want an alternative generator, you must tell this to CMake with
the -G option.

Options and variables

Variables customize how the build will be generated. Options are boolean variables, with possible values ON/OFF.
Options and variables are defined on the CMake command line like this:

$ cmake -DVARIABLE=value path/to/llvm/source

You can set a variable after the initial CMake invocation to change its value. You can also undefine a variable:

$ cmake -UVARIABLE path/to/llvm/source

Variables are stored in the CMake cache. This is a file named CMakeCache.txt stored at the root of your build
directory that is generated by cmake. Editing it yourself is not recommended.

Variables are listed in the CMake cache and later in this document with the variable name and type separated by a
colon. You can also specify the variable and type on the CMake command line:

$ cmake -DVARIABLE:TYPE=value path/to/llvm/source
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Frequently-used CMake variables

Here are some of the CMake variables that are used often, along with a brief explanation and LLVM-specific notes.
For full documentation, consult the CMake manual, or execute cmake --help-variable VARIABLE_NAME.

CMAKE_BUILD_TYPE:STRING Sets the build type for make-based generators. Possible values are Release,
Debug, RelWithDebInfo and MinSizeRel. If you are using an IDE such as Visual Studio, you should use the
IDE settings to set the build type.

CMAKE_INSTALL_PREFIX:PATH Path where LLVM will be installed if “make install” is invoked or the “install”
target is built.

LLVM_LIBDIR_SUFFIX:STRING Extra suffix to append to the directory where libraries are to be installed. On a
64-bit architecture, one could use -DLLVM_LIBDIR_SUFFIX=64 to install libraries to /usr/lib64.

CMAKE_C_FLAGS:STRING Extra flags to use when compiling C source files.

CMAKE_CXX_FLAGS:STRING Extra flags to use when compiling C++ source files.

LLVM-specific variables

LLVM_TARGETS_TO_BUILD:STRING Semicolon-separated list of targets to build, or all for building all targets.
Case-sensitive. Defaults to all. Example: -DLLVM_TARGETS_TO_BUILD="X86;PowerPC".

LLVM_BUILD_TOOLS:BOOL Build LLVM tools. Defaults to ON. Targets for building each tool are generated
in any case. You can build a tool separately by invoking its target. For example, you can build llvm-as with a
Makefile-based system by executing make llvm-as at the root of your build directory.

LLVM_INCLUDE_TOOLS:BOOL Generate build targets for the LLVM tools. Defaults to ON. You can use this
option to disable the generation of build targets for the LLVM tools.

LLVM_BUILD_EXAMPLES:BOOL Build LLVM examples. Defaults to OFF. Targets for building each example
are generated in any case. See documentation for LLVM_BUILD_TOOLS above for more details.

LLVM_INCLUDE_EXAMPLES:BOOL Generate build targets for the LLVM examples. Defaults to ON. You can
use this option to disable the generation of build targets for the LLVM examples.

LLVM_BUILD_TESTS:BOOL Build LLVM unit tests. Defaults to OFF. Targets for building each unit test are
generated in any case. You can build a specific unit test using the targets defined under unittests, such as
ADTTests, IRTests, SupportTests, etc. (Search for add_llvm_unittest in the subdirectories of unittests
for a complete list of unit tests.) It is possible to build all unit tests with the target UnitTests.

LLVM_INCLUDE_TESTS:BOOL Generate build targets for the LLVM unit tests. Defaults to ON. You can use
this option to disable the generation of build targets for the LLVM unit tests.

LLVM_APPEND_VC_REV:BOOL Append version control revision info (svn revision number or Git revision id)
to LLVM version string (stored in the PACKAGE_VERSION macro). For this to work cmake must be invoked
before the build. Defaults to OFF.

LLVM_ENABLE_THREADS:BOOL Build with threads support, if available. Defaults to ON.

LLVM_ENABLE_CXX1Y:BOOL Build in C++1y mode, if available. Defaults to OFF.

LLVM_ENABLE_ASSERTIONS:BOOL Enables code assertions. Defaults to ON if and only if
CMAKE_BUILD_TYPE is Debug.

LLVM_ENABLE_EH:BOOL Build LLVM with exception-handling support. This is necessary if you wish to link
against LLVM libraries and make use of C++ exceptions in your own code that need to propagate through LLVM
code. Defaults to OFF.

LLVM_ENABLE_EXPENSIVE_CHECKS:BOOL Enable additional time/memory expensive checking. Defaults
to OFF.
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LLVM_ENABLE_PIC:BOOL Add the -fPIC flag to the compiler command-line, if the compiler supports this
flag. Some systems, like Windows, do not need this flag. Defaults to ON.

LLVM_ENABLE_RTTI:BOOL Build LLVM with run-time type information. Defaults to OFF.

LLVM_ENABLE_WARNINGS:BOOL Enable all compiler warnings. Defaults to ON.

LLVM_ENABLE_PEDANTIC:BOOL Enable pedantic mode. This disables compiler-specific extensions, if possi-
ble. Defaults to ON.

LLVM_ENABLE_WERROR:BOOL Stop and fail the build, if a compiler warning is triggered. Defaults to OFF.

LLVM_ABI_BREAKING_CHECKS:STRING Used to decide if LLVM should be built with ABI breaking checks
or not. Allowed values are WITH_ASSERTS (default), FORCE_ON and FORCE_OFF. WITH_ASSERTS turns
on ABI breaking checks in an assertion enabled build. FORCE_ON (FORCE_OFF) turns them on (off) irre-
spective of whether normal (NDEBUG-based) assertions are enabled or not. A version of LLVM built with ABI
breaking checks is not ABI compatible with a version built without it.

LLVM_BUILD_32_BITS:BOOL Build 32-bit executables and libraries on 64-bit systems. This option is available
only on some 64-bit Unix systems. Defaults to OFF.

LLVM_TARGET_ARCH:STRING LLVM target to use for native code generation. This is required for JIT genera-
tion. It defaults to “host”, meaning that it shall pick the architecture of the machine where LLVM is being built.
If you are cross-compiling, set it to the target architecture name.

LLVM_TABLEGEN:STRING Full path to a native TableGen executable (usually named llvm-tblgen). This is
intended for cross-compiling: if the user sets this variable, no native TableGen will be created.

LLVM_LIT_ARGS:STRING Arguments given to lit. make check and make clang-test are affected. By
default, '-sv --no-progress-bar' on Visual C++ and Xcode, '-sv' on others.

LLVM_LIT_TOOLS_DIR:PATH The path to GnuWin32 tools for tests. Valid on Windows host. Defaults to the
empty string, in which case lit will look for tools needed for tests (e.g. grep, sort, etc.) in your %PATH%.
If GnuWin32 is not in your %PATH%, then you can set this variable to the GnuWin32 directory so that lit can
find tools needed for tests in that directory.

LLVM_ENABLE_FFI:BOOL Indicates whether the LLVM Interpreter will be linked with the Foreign Function
Interface library (libffi) in order to enable calling external functions. If the library or its headers are installed in a
custom location, you can also set the variables FFI_INCLUDE_DIR and FFI_LIBRARY_DIR to the directories
where ffi.h and libffi.so can be found, respectively. Defaults to OFF.

LLVM_EXTERNAL_{CLANG,LLD,POLLY}_SOURCE_DIR:PATH These variables specify the path to the
source directory for the external LLVM projects Clang, lld, and Polly, respectively, relative to the top-level
source directory. If the in-tree subdirectory for an external project exists (e.g., llvm/tools/clang for Clang), then
the corresponding variable will not be used. If the variable for an external project does not point to a valid path,
then that project will not be built.

LLVM_EXTERNAL_PROJECTS:STRING Semicolon-separated list of additional external projects to build as
part of llvm. For each project LLVM_EXTERNAL_<NAME>_SOURCE_DIR have to be specified with
the path for the source code of the project. Example: -DLLVM_EXTERNAL_PROJECTS="Foo;Bar"
-DLLVM_EXTERNAL_FOO_SOURCE_DIR=/src/foo -DLLVM_EXTERNAL_BAR_SOURCE_DIR=/
src/bar.

LLVM_USE_OPROFILE:BOOL Enable building OProfile JIT support. Defaults to OFF.

LLVM_PROFDATA_FILE:PATH Path to a profdata file to pass into clang’s -fprofile-instr-use flag. This can only
be specified if you’re building with clang.

LLVM_USE_INTEL_JITEVENTS:BOOL Enable building support for Intel JIT Events API. Defaults to OFF.

LLVM_ENABLE_ZLIB:BOOL Enable building with zlib to support compression/uncompression in LLVM tools.
Defaults to ON.
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LLVM_USE_SANITIZER:STRING Define the sanitizer used to build LLVM binaries and tests. Possible values are
Address, Memory, MemoryWithOrigins, Undefined, Thread, and Address;Undefined. De-
faults to empty string.

LLVM_ENABLE_LTO:STRING Add -flto or -flto= flags to the compile and link command lines, enabling
link-time optimization. Possible values are Off, On, Thin and Full. Defaults to OFF.

LLVM_PARALLEL_COMPILE_JOBS:STRING Define the maximum number of concurrent compilation jobs.

LLVM_PARALLEL_LINK_JOBS:STRING Define the maximum number of concurrent link jobs.

LLVM_BUILD_DOCS:BOOL Adds all enabled documentation targets (i.e. Doxgyen and Sphinx targets) as de-
pendencies of the default build targets. This results in all of the (enabled) documentation targets being as part
of a normal build. If the install target is run then this also enables all built documentation targets to be
installed. Defaults to OFF. To enable a particular documentation target, see see LLVM_ENABLE_SPHINX and
LLVM_ENABLE_DOXYGEN.

LLVM_ENABLE_DOXYGEN:BOOL Enables the generation of browsable HTML documentation using doxygen.
Defaults to OFF.

LLVM_ENABLE_DOXYGEN_QT_HELP:BOOL Enables the generation of a Qt Compressed Help file. Defaults
to OFF. This affects the make target doxygen-llvm. When enabled, apart from the normal HTML output
generated by doxygen, this will produce a QCH file named org.llvm.qch. You can then load this file into
Qt Creator. This option is only useful in combination with -DLLVM_ENABLE_DOXYGEN=ON; otherwise this
has no effect.

LLVM_DOXYGEN_QCH_FILENAME:STRING The filename of the Qt Compressed Help file that will
be generated when -DLLVM_ENABLE_DOXYGEN=ON and -DLLVM_ENABLE_DOXYGEN_QT_HELP=ON
are given. Defaults to org.llvm.qch. This option is only useful in combination with
-DLLVM_ENABLE_DOXYGEN_QT_HELP=ON; otherwise it has no effect.

LLVM_DOXYGEN_QHP_NAMESPACE:STRING Namespace under which the intermediate Qt Help Project file
lives. See Qt Help Project for more information. Defaults to “org.llvm”. This option is only useful in combina-
tion with -DLLVM_ENABLE_DOXYGEN_QT_HELP=ON; otherwise it has no effect.

LLVM_DOXYGEN_QHP_CUST_FILTER_NAME:STRING See Qt Help Project for more information. Defaults
to the CMake variable ${PACKAGE_STRING} which is a combination of the package name and version
string. This filter can then be used in Qt Creator to select only documentation from LLVM when brows-
ing through all the help files that you might have loaded. This option is only useful in combination with
-DLLVM_ENABLE_DOXYGEN_QT_HELP=ON; otherwise it has no effect.

LLVM_DOXYGEN_QHELPGENERATOR_PATH:STRING The path to the qhelpgenerator executable.
Defaults to whatever CMake’s find_program() can find. This option is only useful in combination with
-DLLVM_ENABLE_DOXYGEN_QT_HELP=ON; otherwise it has no effect.

LLVM_DOXYGEN_SVG:BOOL Uses .svg files instead of .png files for graphs in the Doxygen output. Defaults to
OFF.

LLVM_ENABLE_SPHINX:BOOL If specified, CMake will search for the sphinx-build executable and will
make the SPHINX_OUTPUT_HTML and SPHINX_OUTPUT_MAN CMake options available. Defaults to OFF.

SPHINX_EXECUTABLE:STRING The path to the sphinx-build executable detected by CMake.

SPHINX_OUTPUT_HTML:BOOL If enabled (and LLVM_ENABLE_SPHINX is enabled) then the targets for
building the documentation as html are added (but not built by default unless LLVM_BUILD_DOCS is en-
abled). There is a target for each project in the source tree that uses sphinx (e.g. docs-llvm-html,
docs-clang-html and docs-lld-html). Defaults to ON.

SPHINX_OUTPUT_MAN:BOOL If enabled (and LLVM_ENABLE_SPHINX is enabled) the targets for building
the man pages are added (but not built by default unless LLVM_BUILD_DOCS is enabled). Currently the only
target added is docs-llvm-man. Defaults to ON.
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SPHINX_WARNINGS_AS_ERRORS:BOOL If enabled then sphinx documentation warnings will be treated as
errors. Defaults to ON.

LLVM_CREATE_XCODE_TOOLCHAIN:BOOL OS X Only: If enabled CMake will generate a target named
‘install-xcode-toolchain’. This target will create a directory at $CMAKE_INSTALL_PREFIX/Toolchains con-
taining an xctoolchain directory which can be used to override the default system tools.

LLVM_BUILD_LLVM_DYLIB:BOOL If enabled, the target for building the libLLVM shared library is added.
This library contains all of LLVM’s components in a single shared library. Defaults to OFF. This cannot
be used in conjunction with BUILD_SHARED_LIBS. Tools will only be linked to the libLLVM shared li-
brary if LLVM_LINK_LLVM_DYLIB is also ON. The components in the library can be customised by setting
LLVM_DYLIB_COMPONENTS to a list of the desired components.

LLVM_LINK_LLVM_DYLIB:BOOL If enabled, tools will be linked with the libLLVM shared library. Defaults to
OFF. Setting LLVM_LINK_LLVM_DYLIB to ON also sets LLVM_BUILD_LLVM_DYLIB to ON.

BUILD_SHARED_LIBS:BOOL Flag indicating if each LLVM component (e.g. Support) is built as a shared library
(ON) or as a static library (OFF). Its default value is OFF. On Windows, shared libraries may be used when
building with MinGW, including mingw-w64, but not when building with the Microsoft toolchain.

Note: BUILD_SHARED_LIBS is only recommended for use by LLVM developers. If you want to build
LLVM as a shared library, you should use the LLVM_BUILD_LLVM_DYLIB option.

LLVM_OPTIMIZED_TABLEGEN:BOOL If enabled and building a debug or asserts build the CMake build sys-
tem will generate a Release build tree to build a fully optimized tablegen for use during the build. Enabling this
option can significantly speed up build times especially when building LLVM in Debug configurations.

CMake Caches

Recently LLVM and Clang have been adding some more complicated build system features. Utilizing these new
features often involves a complicated chain of CMake variables passed on the command line. Clang provides a
collection of CMake cache scripts to make these features more approachable.

CMake cache files are utilized using CMake’s -C flag:

$ cmake -C <path to cache file> <path to sources>

CMake cache scripts are processed in an isolated scope, only cached variables remain set when the main configuration
runs. CMake cached variables do not reset variables that are already set unless the FORCE option is specified.

A few notes about CMake Caches:

• Order of command line arguments is important

– -D arguments specified before -C are set before the cache is processed and can be read inside the cache file

– -D arguments specified after -C are set after the cache is processed and are unset inside the cache file

• All -D arguments will override cache file settings

• CMAKE_TOOLCHAIN_FILE is evaluated after both the cache file and the command line arguments

• It is recommended that all -D options should be specified before -C

For more information about some of the advanced build configurations supported via Cache files see Advanced Build
Configurations.
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Executing the test suite

Testing is performed when the check-all target is built. For instance, if you are using Makefiles, execute this command
in the root of your build directory:

$ make check-all

On Visual Studio, you may run tests by building the project “check-all”. For more information about testing, see the
LLVM Testing Infrastructure Guide.

Cross compiling

See this wiki page for generic instructions on how to cross-compile with CMake. It goes into detailed explanations and
may seem daunting, but it is not. On the wiki page there are several examples including toolchain files. Go directly to
this section for a quick solution.

Also see the LLVM-specific variables section for variables used when cross-compiling.

Embedding LLVM in your project

From LLVM 3.5 onwards both the CMake and autoconf/Makefile build systems export LLVM libraries as importable
CMake targets. This means that clients of LLVM can now reliably use CMake to develop their own LLVM-based
projects against an installed version of LLVM regardless of how it was built.

Here is a simple example of a CMakeLists.txt file that imports the LLVM libraries and uses them to build a simple
application simple-tool.

cmake_minimum_required(VERSION 3.4.3)
project(SimpleProject)

find_package(LLVM REQUIRED CONFIG)

message(STATUS "Found LLVM ${LLVM_PACKAGE_VERSION}")
message(STATUS "Using LLVMConfig.cmake in: ${LLVM_DIR}")

# Set your project compile flags.
# E.g. if using the C++ header files
# you will need to enable C++11 support
# for your compiler.

include_directories(${LLVM_INCLUDE_DIRS})
add_definitions(${LLVM_DEFINITIONS})

# Now build our tools
add_executable(simple-tool tool.cpp)

# Find the libraries that correspond to the LLVM components
# that we wish to use
llvm_map_components_to_libnames(llvm_libs support core irreader)

# Link against LLVM libraries
target_link_libraries(simple-tool ${llvm_libs})

The find_package(...) directive when used in CONFIG mode (as in the above example) will look for the
LLVMConfig.cmake file in various locations (see cmake manual for details). It creates a LLVM_DIR cache entry
to save the directory where LLVMConfig.cmake is found or allows the user to specify the directory (e.g. by
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passing -DLLVM_DIR=/usr/lib/cmake/llvm to the cmake command or by setting it directly in ccmake or
cmake-gui).

This file is available in two different locations.

• <INSTALL_PREFIX>/lib/cmake/llvm/LLVMConfig.cmake where <INSTALL_PREFIX> is the
install prefix of an installed version of LLVM. On Linux typically this is /usr/lib/cmake/llvm/
LLVMConfig.cmake.

• <LLVM_BUILD_ROOT>/lib/cmake/llvm/LLVMConfig.cmake where <LLVM_BUILD_ROOT> is
the root of the LLVM build tree. Note: this is only available when building LLVM with CMake.

If LLVM is installed in your operating system’s normal installation prefix (e.g. on Linux this is usually /usr/)
find_package(LLVM ...) will automatically find LLVM if it is installed correctly. If LLVM is not installed or
you wish to build directly against the LLVM build tree you can use LLVM_DIR as previously mentioned.

The LLVMConfig.cmake file sets various useful variables. Notable variables include

LLVM_CMAKE_DIR The path to the LLVM CMake directory (i.e. the directory containing LLVMConfig.cmake).

LLVM_DEFINITIONS A list of preprocessor defines that should be used when building against LLVM.

LLVM_ENABLE_ASSERTIONS This is set to ON if LLVM was built with assertions, otherwise OFF.

LLVM_ENABLE_EH This is set to ON if LLVM was built with exception handling (EH) enabled, otherwise OFF.

LLVM_ENABLE_RTTI This is set to ON if LLVM was built with run time type information (RTTI), otherwise OFF.

LLVM_INCLUDE_DIRS A list of include paths to directories containing LLVM header files.

LLVM_PACKAGE_VERSION The LLVM version. This string can be used with CMake conditionals, e.g., if
(${LLVM_PACKAGE_VERSION} VERSION_LESS "3.5").

LLVM_TOOLS_BINARY_DIR The path to the directory containing the LLVM tools (e.g. llvm-as).

Notice that in the above example we link simple-tool against several LLVM libraries. The list of libraries is
determined by using the llvm_map_components_to_libnames() CMake function. For a list of available
components look at the output of running llvm-config --components.

Note that for LLVM < 3.5 llvm_map_components_to_libraries() was used instead of
llvm_map_components_to_libnames(). This is now deprecated and will be removed in a future ver-
sion of LLVM.

Developing LLVM passes out of source

It is possible to develop LLVM passes out of LLVM’s source tree (i.e. against an installed or built LLVM). An example
of a project layout is provided below.

<project dir>/
|
CMakeLists.txt
<pass name>/

|
CMakeLists.txt
Pass.cpp
...

Contents of <project dir>/CMakeLists.txt:

find_package(LLVM REQUIRED CONFIG)

add_definitions(${LLVM_DEFINITIONS})
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include_directories(${LLVM_INCLUDE_DIRS})

add_subdirectory(<pass name>)

Contents of <project dir>/<pass name>/CMakeLists.txt:

add_library(LLVMPassname MODULE Pass.cpp)

Note if you intend for this pass to be merged into the LLVM source tree at some point in the future it might make more
sense to use LLVM’s internal add_llvm_loadable_module function instead by...

Adding the following to <project dir>/CMakeLists.txt (after find_package(LLVM ...))

list(APPEND CMAKE_MODULE_PATH "${LLVM_CMAKE_DIR}")
include(AddLLVM)

And then changing <project dir>/<pass name>/CMakeLists.txt to

add_llvm_loadable_module(LLVMPassname
Pass.cpp
)

When you are done developing your pass, you may wish to integrate it into the LLVM source tree. You can achieve it
in two easy steps:

1. Copying <pass name> folder into <LLVM root>/lib/Transform directory.

2. Adding add_subdirectory(<pass name>) line into <LLVM root>/lib/Transform/
CMakeLists.txt.

Compiler/Platform-specific topics

Notes for specific compilers and/or platforms.

Microsoft Visual C++

LLVM_COMPILER_JOBS:STRING Specifies the maximum number of parallel compiler jobs to use per project
when building with msbuild or Visual Studio. Only supported for the Visual Studio 2010 CMake generator. 0
means use all processors. Default is 0.

CMake Primer

• Introduction

• 10,000 ft View

• Scripting Overview

• Variables, Types, and Scope

– Dereferencing

– Lists
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– Lists of Lists

– Other Types

– Scope

• Control Flow

– If, ElseIf, Else

– Loops

• Modules, Functions and Macros

– Modules

– Argument Handling

– Functions Vs Macros

• LLVM Project Wrappers

• Useful Built-in Commands

Warning: Disclaimer: This documentation is written by LLVM project contributors not anyone affiliated with the
CMake project. This document may contain inaccurate terminology, phrasing, or technical details. It is provided
with the best intentions.

Introduction

The LLVM project and many of the core projects built on LLVM build using CMake. This document aims to provide
a brief overview of CMake for developers modifying LLVM projects or building their own projects on top of LLVM.

The official CMake language references is available in the cmake-language manpage and cmake-language online
documentation.

10,000 ft View

CMake is a tool that reads script files in its own language that describe how a software project builds. As CMake
evaluates the scripts it constructs an internal representation of the software project. Once the scripts have been fully
processed, if there are no errors, CMake will generate build files to actually build the project. CMake supports
generating build files for a variety of command line build tools as well as for popular IDEs.

When a user runs CMake it performs a variety of checks similar to how autoconf worked historically. During the
checks and the evaluation of the build description scripts CMake caches values into the CMakeCache. This is useful
because it allows the build system to skip long-running checks during incremental development. CMake caching also
has some drawbacks, but that will be discussed later.

Scripting Overview

CMake’s scripting language has a very simple grammar. Every language construct is a command that matches the
pattern _name_(_args_). Commands come in three primary types: language-defined (commands implemented in C++
in CMake), defined functions, and defined macros. The CMake distribution also contains a suite of CMake modules
that contain definitions for useful functionality.
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The example below is the full CMake build for building a C++ “Hello World” program. The example uses only CMake
language-defined functions.

cmake_minimum_required(VERSION 3.2)
project(HelloWorld)
add_executable(HelloWorld HelloWorld.cpp)

The CMake language provides control flow constructs in the form of foreach loops and if blocks. To make the example
above more complicated you could add an if block to define “APPLE” when targeting Apple platforms:

cmake_minimum_required(VERSION 3.2)
project(HelloWorld)
add_executable(HelloWorld HelloWorld.cpp)
if(APPLE)

target_compile_definitions(HelloWorld PUBLIC APPLE)
endif()

Variables, Types, and Scope

Dereferencing

In CMake variables are “stringly” typed. All variables are represented as strings throughout evaluation. Wrapping a
variable in ${} dereferences it and results in a literal substitution of the name for the value. CMake refers to this as
“variable evaluation” in their documentation. Dereferences are performed before the command being called receives
the arguments. This means dereferencing a list results in multiple separate arguments being passed to the command.

Variable dereferences can be nested and be used to model complex data. For example:

set(var_name var1)
set(${var_name} foo) # same as "set(var1 foo)"
set(${${var_name}}_var bar) # same as "set(foo_var bar)"

Dereferencing an unset variable results in an empty expansion. It is a common pattern in CMake to conditionally set
variables knowing that it will be used in code paths that the variable isn’t set. There are examples of this throughout
the LLVM CMake build system.

An example of variable empty expansion is:

if(APPLE)
set(extra_sources Apple.cpp)

endif()
add_executable(HelloWorld HelloWorld.cpp ${extra_sources})

In this example the extra_sources variable is only defined if you’re targeting an Apple platform. For all other
targets the extra_sources will be evaluated as empty before add_executable is given its arguments.

One big “Gotcha” with variable dereferencing is that if commands implicitly dereference values. This has some
unexpected results. For example:

if("${SOME_VAR}" STREQUAL "MSVC")

In this code sample MSVC will be implicitly dereferenced, which will result in the if command comparing the value of
the dereferenced variables SOME_VAR and MSVC. A common workaround to this solution is to prepend strings being
compared with an x.
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if("x${SOME_VAR}" STREQUAL "xMSVC")

This works because while MSVC is a defined variable, xMSVC is not. This pattern is uncommon, but it does occur in
LLVM’s CMake scripts.

Note: Once the LLVM project upgrades its minimum CMake version to 3.1 or later we can prevent this behavior
by setting CMP0054 to new. For more information on CMake policies please see the cmake-policies manpage or the
cmake-policies online documentation.

Lists

In CMake lists are semi-colon delimited strings, and it is strongly advised that you avoid using semi-colons in lists; it
doesn’t go smoothly. A few examples of defining lists:

# Creates a list with members a, b, c, and d
set(my_list a b c d)
set(my_list "a;b;c;d")

# Creates a string "a b c d"
set(my_string "a b c d")

Lists of Lists

One of the more complicated patterns in CMake is lists of lists. Because a list cannot contain an element with a
semi-colon to construct a list of lists you make a list of variable names that refer to other lists. For example:

set(list_of_lists a b c)
set(a 1 2 3)
set(b 4 5 6)
set(c 7 8 9)

With this layout you can iterate through the list of lists printing each value with the following code:

foreach(list_name IN LISTS list_of_lists)
foreach(value IN LISTS ${list_name})
message(${value})

endforeach()
endforeach()

You’ll notice that the inner foreach loop’s list is doubly dereferenced. This is because the first dereference turns
list_name into the name of the sub-list (a, b, or c in the example), then the second dereference is to get the value
of the list.

This pattern is used throughout CMake, the most common example is the compiler flags options,
which CMake refers to using the following variable expansions: CMAKE_${LANGUAGE}_FLAGS and
CMAKE_${LANGUAGE}_FLAGS_${CMAKE_BUILD_TYPE}.

Other Types

Variables that are cached or specified on the command line can have types associated with them. The variable’s type
is used by CMake’s UI tool to display the right input field. The variable’s type generally doesn’t impact evaluation.
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One of the few examples is PATH variables, which CMake does have some special handling for. You can read more
about the special handling in CMake’s set documentation.

Scope

CMake inherently has a directory-based scoping. Setting a variable in a CMakeLists file, will set the variable for that
file, and all subdirectories. Variables set in a CMake module that is included in a CMakeLists file will be set in the
scope they are included from, and all subdirectories.

When a variable that is already set is set again in a subdirectory it overrides the value in that scope and any deeper
subdirectories.

The CMake set command provides two scope-related options. PARENT_SCOPE sets a variable into the parent scope,
and not the current scope. The CACHE option sets the variable in the CMakeCache, which results in it being set in
all scopes. The CACHE option will not set a variable that already exists in the CACHE unless the FORCE option is
specified.

In addition to directory-based scope, CMake functions also have their own scope. This means variables set inside
functions do not bleed into the parent scope. This is not true of macros, and it is for this reason LLVM prefers
functions over macros whenever reasonable.

Note: Unlike C-based languages, CMake’s loop and control flow blocks do not have their own scopes.

Control Flow

CMake features the same basic control flow constructs you would expect in any scripting language, but there are a few
quarks because, as with everything in CMake, control flow constructs are commands.

If, ElseIf, Else

Note: For the full documentation on the CMake if command go here. That resource is far more complete.

In general CMake if blocks work the way you’d expect:

if(<condition>)
.. do stuff

elseif(<condition>)
.. do other stuff

else()
.. do other other stuff

endif()

The single most important thing to know about CMake’s if blocks coming from a C background is that they do not
have their own scope. Variables set inside conditional blocks persist after the endif().

Loops

The most common form of the CMake foreach block is:
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foreach(var ...)
.. do stuff

endforeach()

The variable argument portion of the foreach block can contain dereferenced lists, values to iterate, or a mix of
both:

foreach(var foo bar baz)
message(${var})

endforeach()
# prints:
# foo
# bar
# baz

set(my_list 1 2 3)
foreach(var ${my_list})

message(${var})
endforeach()
# prints:
# 1
# 2
# 3

foreach(var ${my_list} out_of_bounds)
message(${var})

endforeach()
# prints:
# 1
# 2
# 3
# out_of_bounds

There is also a more modern CMake foreach syntax. The code below is equivalent to the code above:

foreach(var IN ITEMS foo bar baz)
message(${var})

endforeach()
# prints:
# foo
# bar
# baz

set(my_list 1 2 3)
foreach(var IN LISTS my_list)

message(${var})
endforeach()
# prints:
# 1
# 2
# 3

foreach(var IN LISTS my_list ITEMS out_of_bounds)
message(${var})

endforeach()
# prints:
# 1
# 2
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# 3
# out_of_bounds

Similar to the conditional statements, these generally behave how you would expect, and they do not have their own
scope.

CMake also supports while loops, although they are not widely used in LLVM.

Modules, Functions and Macros

Modules

Modules are CMake’s vehicle for enabling code reuse. CMake modules are just CMake script files. They can contain
code to execute on include as well as definitions for commands.

In CMake macros and functions are universally referred to as commands, and they are the primary method of defining
code that can be called multiple times.

In LLVM we have several CMake modules that are included as part of our distribution for developers who don’t
build our project from source. Those modules are the fundamental pieces needed to build LLVM-based projects with
CMake. We also rely on modules as a way of organizing the build system’s functionality for maintainability and re-use
within LLVM projects.

Argument Handling

When defining a CMake command handling arguments is very useful. The examples in this section will all use the
CMake function block, but this all applies to the macro block as well.

CMake commands can have named arguments, but all commands are implicitly variable argument. If the command
has named arguments they are required and must be specified at every call site. Below is a trivial example of providing
a wrapper function for CMake’s built in function add_dependencies.

function(add_deps target)
add_dependencies(${target} ${ARGV})

endfunction()

This example defines a new macro named add_deps which takes a required first argument, and just calls another
function passing through the first argument and all trailing arguments. When variable arguments are present CMake
defines them in a list named ARGV, and the count of the arguments is defined in ARGN.

CMake provides a module CMakeParseArgumentswhich provides an implementation of advanced argument pars-
ing. We use this all over LLVM, and it is recommended for any function that has complex argument-based behaviors
or optional arguments. CMake’s official documentation for the module is in the cmake-modules manpage, and is
also available at the cmake-modules online documentation.

Note: As of CMake 3.5 the cmake_parse_arguments command has become a native command and the
CMakeParseArguments module is empty and only left around for compatibility.

Functions Vs Macros

Functions and Macros look very similar in how they are used, but there is one fundamental difference between the
two. Functions have their own scope, and macros don’t. This means variables set in macros will bleed out into the
calling scope. That makes macros suitable for defining very small bits of functionality only.
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The other difference between CMake functions and macros is how arguments are passed. Arguments to macros are
not set as variables, instead dereferences to the parameters are resolved across the macro before executing it. This can
result in some unexpected behavior if using unreferenced variables. For example:

macro(print_list my_list)
foreach(var IN LISTS my_list)
message("${var}")

endforeach()
endmacro()

set(my_list a b c d)
set(my_list_of_numbers 1 2 3 4)
print_list(my_list_of_numbers)
# prints:
# a
# b
# c
# d

Generally speaking this issue is uncommon because it requires using non-dereferenced variables with names that
overlap in the parent scope, but it is important to be aware of because it can lead to subtle bugs.

LLVM Project Wrappers

LLVM projects provide lots of wrappers around critical CMake built-in commands. We use these wrappers to provide
consistent behaviors across LLVM components and to reduce code duplication.

We generally (but not always) follow the convention that commands prefaced with llvm_ are intended to be used
only as building blocks for other commands. Wrapper commands that are intended for direct use are generally named
following with the project in the middle of the command name (i.e. add_llvm_executable is the wrapper for
add_executable). The LLVM add_* wrapper functions are all defined in AddLLVM.cmake which is installed
as part of the LLVM distribution. It can be included and used by any LLVM sub-project that requires LLVM.

Note: Not all LLVM projects require LLVM for all use cases. For example compiler-rt can be built without LLVM,
and the compiler-rt sanitizer libraries are used with GCC.

Useful Built-in Commands

CMake has a bunch of useful built-in commands. This document isn’t going to go into details about them because The
CMake project has excellent documentation. To highlight a few useful functions see:

• add_custom_command

• add_custom_target

• file

• list

• math

• string

The full documentation for CMake commands is in the cmake-commands manpage and available on CMake’s
website
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Advanced Build Configurations

• Introduction

• Bootstrap Builds

• Apple Clang Builds (A More Complex Bootstrap)

• Multi-stage PGO

• 3-Stage Non-Determinism

Introduction

CMake is a cross-platform build-generator tool. CMake does not build the project, it generates the files needed by
your build tool (GNU make, Visual Studio, etc.) for building LLVM.

If you are a new contributor, please start with the Getting Started with the LLVM System or Building LLVM with
CMake pages. This page is intended for users doing more complex builds.

Many of the examples below are written assuming specific CMake Generators. Unless otherwise explicitly called out
these commands should work with any CMake generator.

Bootstrap Builds

The Clang CMake build system supports bootstrap (aka multi-stage) builds. At a high level a multi-stage build is a
chain of builds that pass data from one stage into the next. The most common and simple version of this is a traditional
bootstrap build.

In a simple two-stage bootstrap build, we build clang using the system compiler, then use that just-built clang
to build clang again. In CMake this simplest form of a bootstrap build can be configured with a single option,
CLANG_ENABLE_BOOTSTRAP.

$ cmake -G Ninja -DCLANG_ENABLE_BOOTSTRAP=On <path to source>
$ ninja stage2

This command itself isn’t terribly useful because it assumes default configurations for each stage. The next series of
examples utilize CMake cache scripts to provide more complex options.

The clang build system refers to builds as stages. A stage1 build is a standard build using the compiler installed on the
host, and a stage2 build is built using the stage1 compiler. This nomenclature holds up to more stages too. In general
a stage*n* build is built using the output from stage*n-1*.

Apple Clang Builds (A More Complex Bootstrap)

Apple’s Clang builds are a slightly more complicated example of the simple bootstrapping scenario. Apple Clang is
built using a 2-stage build.

The stage1 compiler is a host-only compiler with some options set. The stage1 compiler is a balance of optimization
vs build time because it is a throwaway. The stage2 compiler is the fully optimized compiler intended to ship to users.

Setting up these compilers requires a lot of options. To simplify the configuration the Apple Clang build settings are
contained in CMake Cache files. You can build an Apple Clang compiler using the following commands:
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$ cmake -G Ninja -C <path to clang>/cmake/caches/Apple-stage1.cmake <path to source>
$ ninja stage2-distribution

This CMake invocation configures the stage1 host compiler, and sets CLANG_BOOTSTRAP_CMAKE_ARGS to
pass the Apple-stage2.cmake cache script to the stage2 configuration step.

When you build the stage2-distribution target it builds the minimal stage1 compiler and required tools, then configures
and builds the stage2 compiler based on the settings in Apple-stage2.cmake.

This pattern of using cache scripts to set complex settings, and specifically to make later stage builds include cache
scripts is common in our more advanced build configurations.

Multi-stage PGO

Profile-Guided Optimizations (PGO) is a really great way to optimize the code clang generates. Our multi-stage PGO
builds are a workflow for generating PGO profiles that can be used to optimize clang.

At a high level, the way PGO works is that you build an instrumented compiler, then you run the instrumented
compiler against sample source files. While the instrumented compiler runs it will output a bunch of files containing
performance counters (.profraw files). After generating all the profraw files you use llvm-profdata to merge the files
into a single profdata file that you can feed into the LLVM_PROFDATA_FILE option.

Our PGO.cmake cache script automates that whole process. You can use it by running:

$ cmake -G Ninja -C <path_to_clang>/cmake/caches/PGO.cmake <source dir>
$ ninja stage2-instrumented-generate-profdata

If you let that run for a few hours or so, it will place a profdata file in your build directory. This takes a really long
time because it builds clang twice, and you must have compiler-rt in your build tree.

This process uses any source files under the perf-training directory as training data as long as the source files are
marked up with LIT-style RUN lines.

After it finishes you can use “find . -name clang.profdata” to find it, but it should be at a path something like:

<build dir>/tools/clang/stage2-instrumented-bins/utils/perf-training/clang.profdata

You can feed that file into the LLVM_PROFDATA_FILE option when you build your optimized compiler.

The PGO came cache has a slightly different stage naming scheme than other multi-stage builds. It generates three
stages; stage1, stage2-instrumented, and stage2. Both of the stage2 builds are built using the stage1 compiler.

The PGO came cache generates the following additional targets:

stage2-instrumented Builds a stage1 x86 compiler, runtime, and required tools (llvm-config, llvm-profdata) then
uses that compiler to build an instrumented stage2 compiler.

stage2-instrumented-generate-profdata Depends on “stage2-instrumented” and will use the instrumented compiler
to generate profdata based on the training files in <clang>/utils/perf-training

stage2 Depends of “stage2-instrumented-generate-profdata” and will use the stage1 compiler with the stage2 profdata
to build a PGO-optimized compiler.

stage2-check-llvm Depends on stage2 and runs check-llvm using the stage2 compiler.

stage2-check-clang Depends on stage2 and runs check-clang using the stage2 compiler.

stage2-check-all Depends on stage2 and runs check-all using the stage2 compiler.

stage2-test-suite Depends on stage2 and runs the test-suite using the stage3 compiler (requires in-tree test-suite).
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3-Stage Non-Determinism

In the ancient lore of compilers non-determinism is like the multi-headed hydra. Whenever it’s head pops up, terror
and chaos ensue.

Historically one of the tests to verify that a compiler was deterministic would be a three stage build. The idea of a
three stage build is you take your sources and build a compiler (stage1), then use that compiler to rebuild the sources
(stage2), then you use that compiler to rebuild the sources a third time (stage3) with an identical configuration to the
stage2 build. At the end of this, you have a stage2 and stage3 compiler that should be bit-for-bit identical.

You can perform one of these 3-stage builds with LLVM & clang using the following commands:

$ cmake -G Ninja -C <path_to_clang>/cmake/caches/3-stage.cmake <source dir>
$ ninja stage3

After the build you can compare the stage2 & stage3 compilers. We have a bot setup here that runs this build and
compare configuration.

How To Build On ARM

Introduction

This document contains information about building/testing LLVM and Clang on an ARM machine.

This document is NOT tailored to help you cross-compile LLVM/Clang to ARM on another architecture, for example
an x86_64 machine. To find out more about cross-compiling, please check How To Cross-Compile Clang/LLVM using
Clang/LLVM.

Notes On Building LLVM/Clang on ARM

Here are some notes on building/testing LLVM/Clang on ARM. Note that ARM encompasses a wide variety of CPUs;
this advice is primarily based on the ARMv6 and ARMv7 architectures and may be inapplicable to older chips.

1. The most popular Linaro/Ubuntu OS’s for ARM boards, e.g., the Pandaboard, have become hard-float platforms.
There are a number of choices when using CMake. Autoconf usage is deprecated as of 3.8.

Building LLVM/Clang in Relese mode is preferred since it consumes a lot less memory. Otherwise, the
building process will very likely fail due to insufficient memory. It’s also a lot quicker to only build the relevant
back-ends (ARM and AArch64), since it’s very unlikely that you’ll use an ARM board to cross-compile to other
arches. If you’re running Compiler-RT tests, also include the x86 back-end, or some tests will fail.

cmake $LLVM_SRC_DIR -DCMAKE_BUILD_TYPE=Release \
-DLLVM_TARGETS_TO_BUILD="ARM;X86;AArch64"

Other options you can use are:

Use Ninja instead of Make: "-G Ninja"
Build with assertions on: "-DLLVM_ENABLE_ASSERTIONS=True"
Force Python2: "-DPYTHON_EXECUTABLE=/usr/bin/python2"
Local (non-sudo) install path: "-DCMAKE_INSTALL_PREFIX=$HOME/llvm/instal"
CPU flags: "DCMAKE_C_FLAGS=-mcpu=cortex-a15" (same for CXX_FLAGS)

After that, just typing make -jN or ninja will build everything. make -jN check-all or ninja
check-all will run all compiler tests. For running the test suite, please refer to LLVM Testing Infrastruc-
ture Guide.
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2. If you are building LLVM/Clang on an ARM board with 1G of memory or less, please use gold rather then
GNU ld. In any case it is probably a good idea to set up a swap partition, too.

$ sudo ln -sf /usr/bin/ld /usr/bin/ld.gold

3. ARM development boards can be unstable and you may experience that cores are disappearing, caches being
flushed on every big.LITTLE switch, and other similar issues. To help ease the effect of this, set the Linux
scheduler to “performance” on all cores using this little script:

# The code below requires the package 'cpufrequtils' to be installed.
for ((cpu=0; cpu<`grep -c proc /proc/cpuinfo`; cpu++)); do

sudo cpufreq-set -c $cpu -g performance
done

Remember to turn that off after the build, or you may risk burning your CPU. Most modern kernels don’t need
that, so only use it if you have problems.

4. Running the build on SD cards is ok, but they are more prone to failures than good quality USB sticks, and those
are more prone to failures than external hard-drives (those are also a lot faster). So, at least, you should consider
to buy a fast USB stick. On systems with a fast eMMC, that’s a good option too.

5. Make sure you have a decent power supply (dozens of dollars worth) that can provide at least 4 amperes, this
is especially important if you use USB devices with your board. Externally powered USB/SATA harddrives are
even better than having a good power supply.

How To Cross-Compile Clang/LLVM using Clang/LLVM

Introduction

This document contains information about building LLVM and Clang on host machine, targeting another platform.

For more information on how to use Clang as a cross-compiler, please check http://clang.llvm.org/docs/
CrossCompilation.html.

TODO: Add MIPS and other platforms to this document.

Cross-Compiling from x86_64 to ARM

In this use case, we’ll be using CMake and Ninja, on a Debian-based Linux system, cross-compiling from an x86_64
host (most Intel and AMD chips nowadays) to a hard-float ARM target (most ARM targets nowadays).

The packages you’ll need are:

• cmake

• ninja-build (from backports in Ubuntu)

• gcc-4.7-arm-linux-gnueabihf

• gcc-4.7-multilib-arm-linux-gnueabihf

• binutils-arm-linux-gnueabihf

• libgcc1-armhf-cross

• libsfgcc1-armhf-cross

• libstdc++6-armhf-cross

2.5. How To Cross-Compile Clang/LLVM using Clang/LLVM 227

http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html


LLVM Documentation, Release 3.9

• libstdc++6-4.7-dev-armhf-cross

Configuring CMake

For more information on how to configure CMake for LLVM/Clang, see Building LLVM with CMake.

The CMake options you need to add are:

• -DCMAKE_CROSSCOMPILING=True

• -DCMAKE_INSTALL_PREFIX=<install-dir>

• -DLLVM_TABLEGEN=<path-to-host-bin>/llvm-tblgen

• -DCLANG_TABLEGEN=<path-to-host-bin>/clang-tblgen

• -DLLVM_DEFAULT_TARGET_TRIPLE=arm-linux-gnueabihf

• -DLLVM_TARGET_ARCH=ARM

• -DLLVM_TARGETS_TO_BUILD=ARM

If you’re compiling with GCC, you can use architecture options for your target, and the compiler driver will detect
everything that it needs:

• -DCMAKE_CXX_FLAGS='-march=armv7-a -mcpu=cortex-a9 -mfloat-abi=hard'

However, if you’re using Clang, the driver might not be up-to-date with your specific Linux distribution, version or
GCC layout, so you’ll need to fudge.

In addition to the ones above, you’ll also need:

• '-target arm-linux-gnueabihf' or whatever is the triple of your cross GCC.

• '--sysroot=/usr/arm-linux-gnueabihf', '--sysroot=/opt/gcc/
arm-linux-gnueabihf' or whatever is the location of your GCC’s sysroot (where /lib, /bin etc
are).

• Appropriate use of -I and -L, depending on how the cross GCC is installed, and where are the libraries and
headers.

The TableGen options are required to compile it with the host compiler, so you’ll need to compile LLVM (or at least
llvm-tblgen) to your host platform before you start. The CXX flags define the target, cpu (which in this case
defaults to fpu=VFP3 with NEON), and forcing the hard-float ABI. If you’re using Clang as a cross-compiler, you
will also have to set --sysroot to make sure it picks the correct linker.

When using Clang, it’s important that you choose the triple to be identical to the GCC triple and the sysroot. This will
make it easier for Clang to find the correct tools and include headers. But that won’t mean all headers and libraries
will be found. You’ll still need to use -I and -L to locate those extra ones, depending on your distribution.

Most of the time, what you want is to have a native compiler to the platform itself, but not others. So there’s rarely
a point in compiling all back-ends. For that reason, you should also set the TARGETS_TO_BUILD to only build the
back-end you’re targeting to.

You must set the CMAKE_INSTALL_PREFIX, otherwise a ninja install will copy ARM binaries to your root
filesystem, which is not what you want.

Hacks

There are some bugs in current LLVM, which require some fiddling before running CMake:
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1. If you’re using Clang as the cross-compiler, there is a problem in the LLVM ARM back-end that is producing
absolute relocations on position-independent code (R_ARM_THM_MOVW_ABS_NC), so for now, you should
disable PIC:

-DLLVM_ENABLE_PIC=False

This is not a problem, since Clang/LLVM libraries are statically linked anyway, it shouldn’t affect much.

2. The ARM libraries won’t be installed in your system. But the CMake prepare step, which checks for depen-
dencies, will check the host libraries, not the target ones. Below there’s a list of some dependencies, but your
project could have more, or this document could be outdated. You’ll see the errors while linking as an indication
of that.

Debian based distros have a way to add multiarch, which adds a new architecture and allows you to install
packages for those systems. See https://wiki.debian.org/Multiarch/HOWTO for more info.

But not all distros will have that, and possibly not an easy way to install them in any anyway, so you’ll have to
build/download them separately.

A quick way of getting the libraries is to download them from a distribution repository, like Debian (http:
//packages.debian.org/jessie/), and download the missing libraries. Note that the libXXX will have the shared
objects (.so) and the libXXX-devwill give you the headers and the static (.a) library. Just in case, download
both.

The ones you need for ARM are: libtinfo, zlib1g, libxml2 and liblzma. In the Debian repository
you’ll find downloads for all architectures.

After you download and unpack all .deb packages, copy all .so and .a to a directory, make the appropriate
symbolic links (if necessary), and add the relevant -L and -I paths to -DCMAKE_CXX_FLAGS above.

Running CMake and Building

Finally, if you’re using your platform compiler, run:

$ cmake -G Ninja <source-dir> <options above>

If you’re using Clang as the cross-compiler, run:

$ CC='clang' CXX='clang++' cmake -G Ninja <source-dir> <options above>

If you have clang/clang++ on the path, it should just work, and special Ninja files will be created in the build
directory. I strongly suggest you to run cmake on a separate build directory, not inside the source tree.

To build, simply type:

$ ninja

It should automatically find out how many cores you have, what are the rules that needs building and will build the
whole thing.

You can’t run ninja check-all on this tree because the created binaries are targeted to ARM, not x86_64.

Installing and Using

After the LLVM/Clang has built successfully, you should install it via:

$ ninja install
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which will create a sysroot on the install-dir. You can then tar that directory into a binary with the full triple name (for
easy identification), like:

$ ln -sf <install-dir> arm-linux-gnueabihf-clang
$ tar zchf arm-linux-gnueabihf-clang.tar.gz arm-linux-gnueabihf-clang

If you copy that tarball to your target board, you’ll be able to use it for running the test-suite, for example. Follow the
guidelines at http://llvm.org/docs/lnt/quickstart.html, unpack the tarball in the test directory, and use options:

$ ./sandbox/bin/python sandbox/bin/lnt runtest nt \
--sandbox sandbox \
--test-suite `pwd`/test-suite \
--cc `pwd`/arm-linux-gnueabihf-clang/bin/clang \
--cxx `pwd`/arm-linux-gnueabihf-clang/bin/clang++

Remember to add the -jN options to lnt to the number of CPUs on your board. Also, the path to your clang has to
be absolute, so you’ll need the pwd trick above.

LLVM Command Guide

The following documents are command descriptions for all of the LLVM tools. These pages describe how to use the
LLVM commands and what their options are. Note that these pages do not describe all of the options available for
all tools. To get a complete listing, pass the --help (general options) or --help-hidden (general and debugging
options) arguments to the tool you are interested in.

Basic Commands

llvm-as - LLVM assembler

SYNOPSIS

llvm-as [options] [filename]

DESCRIPTION

llvm-as is the LLVM assembler. It reads a file containing human-readable LLVM assembly language, translates it to
LLVM bitcode, and writes the result into a file or to standard output.

If filename is omitted or is -, then llvm-as reads its input from standard input.

If an output file is not specified with the -o option, then llvm-as sends its output to a file or standard output by following
these rules:

• If the input is standard input, then the output is standard output.

• If the input is a file that ends with .ll, then the output file is of the same name, except that the suffix is changed
to .bc.

• If the input is a file that does not end with the .ll suffix, then the output file has the same name as the input
file, except that the .bc suffix is appended.
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OPTIONS

-f Enable binary output on terminals. Normally, llvm-as will refuse to write raw bitcode output if the output stream
is a terminal. With this option, llvm-as will write raw bitcode regardless of the output device.

-help Print a summary of command line options.

-o filename Specify the output file name. If filename is -, then llvm-as sends its output to standard output.

EXIT STATUS

If llvm-as succeeds, it will exit with 0. Otherwise, if an error occurs, it will exit with a non-zero value.

SEE ALSO

llvm-dis|llvm-dis, gccas|gccas

llvm-dis - LLVM disassembler

SYNOPSIS

llvm-dis [options] [filename]

DESCRIPTION

The llvm-dis command is the LLVM disassembler. It takes an LLVM bitcode file and converts it into human-readable
LLVM assembly language.

If filename is omitted or specified as -, llvm-dis reads its input from standard input.

If the input is being read from standard input, then llvm-dis will send its output to standard output by default. Other-
wise, the output will be written to a file named after the input file, with a .ll suffix added (any existing .bc suffix
will first be removed). You can override the choice of output file using the -o option.

OPTIONS

-f

Enable binary output on terminals. Normally, llvm-dis will refuse to write raw bitcode output if the output
stream is a terminal. With this option, llvm-dis will write raw bitcode regardless of the output device.

-help

Print a summary of command line options.

-o filename

Specify the output file name. If filename is -, then the output is sent to standard output.

EXIT STATUS

If llvm-dis succeeds, it will exit with 0. Otherwise, if an error occurs, it will exit with a non-zero value.
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SEE ALSO

llvm-as|llvm-as

opt - LLVM optimizer

SYNOPSIS

opt [options] [filename]

DESCRIPTION

The opt command is the modular LLVM optimizer and analyzer. It takes LLVM source files as input, runs the
specified optimizations or analyses on it, and then outputs the optimized file or the analysis results. The function of
opt depends on whether the -analyze option is given.

When -analyze is specified, opt performs various analyses of the input source. It will usually print the results on
standard output, but in a few cases, it will print output to standard error or generate a file with the analysis output,
which is usually done when the output is meant for another program.

While -analyze is not given, opt attempts to produce an optimized output file. The optimizations available via opt
depend upon what libraries were linked into it as well as any additional libraries that have been loaded with the -load
option. Use the -help option to determine what optimizations you can use.

If filename is omitted from the command line or is “-”, opt reads its input from standard input. Inputs can be in
either the LLVM assembly language format (.ll) or the LLVM bitcode format (.bc).

If an output filename is not specified with the -o option, opt writes its output to the standard output.

OPTIONS

-f
Enable binary output on terminals. Normally, opt will refuse to write raw bitcode output if the output stream
is a terminal. With this option, opt will write raw bitcode regardless of the output device.

-help
Print a summary of command line options.

-o <filename>
Specify the output filename.

-S
Write output in LLVM intermediate language (instead of bitcode).

-{passname}
opt provides the ability to run any of LLVM’s optimization or analysis passes in any order. The -help option
lists all the passes available. The order in which the options occur on the command line are the order in which
they are executed (within pass constraints).

-disable-inlining
This option simply removes the inlining pass from the standard list.

-disable-opt
This option is only meaningful when -std-link-opts is given. It disables most passes.
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-strip-debug
This option causes opt to strip debug information from the module before applying other optimizations. It is
essentially the same as -strip but it ensures that stripping of debug information is done first.

-verify-each
This option causes opt to add a verify pass after every pass otherwise specified on the command line (including
-verify). This is useful for cases where it is suspected that a pass is creating an invalid module but it is not clear
which pass is doing it.

-stats
Print statistics.

-time-passes
Record the amount of time needed for each pass and print it to standard error.

-debug
If this is a debug build, this option will enable debug printouts from passes which use the DEBUG() macro. See
the LLVM Programmer’s Manual, section #DEBUG for more information.

-load=<plugin>
Load the dynamic object plugin. This object should register new optimization or analysis passes. Once
loaded, the object will add new command line options to enable various optimizations or analyses. To see the
new complete list of optimizations, use the -help and -load options together. For example:

opt -load=plugin.so -help

-p
Print module after each transformation.

EXIT STATUS

If opt succeeds, it will exit with 0. Otherwise, if an error occurs, it will exit with a non-zero value.

llc - LLVM static compiler

SYNOPSIS

llc [options] [filename]

DESCRIPTION

The llc command compiles LLVM source inputs into assembly language for a specified architecture. The assembly
language output can then be passed through a native assembler and linker to generate a native executable.

The choice of architecture for the output assembly code is automatically determined from the input file, unless the
-march option is used to override the default.

OPTIONS

If filename is “-” or omitted, llc reads from standard input. Otherwise, it will from filename. Inputs can be
in either the LLVM assembly language format (.ll) or the LLVM bitcode format (.bc).

If the -o option is omitted, then llc will send its output to standard output if the input is from standard input. If the
-o option specifies “-”, then the output will also be sent to standard output.
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If no -o option is specified and an input file other than “-” is specified, then llc creates the output filename by taking
the input filename, removing any existing .bc extension, and adding a .s suffix.

Other llc options are described below.

End-user Options

-help
Print a summary of command line options.

-O=uint
Generate code at different optimization levels. These correspond to the -O0, -O1, -O2, and -O3 optimization
levels used by clang.

-mtriple=<target triple>
Override the target triple specified in the input file with the specified string.

-march=<arch>
Specify the architecture for which to generate assembly, overriding the target encoded in the input file. See
the output of llc -help for a list of valid architectures. By default this is inferred from the target triple or
autodetected to the current architecture.

-mcpu=<cpuname>
Specify a specific chip in the current architecture to generate code for. By default this is inferred from the target
triple and autodetected to the current architecture. For a list of available CPUs, use:

llvm-as < /dev/null | llc -march=xyz -mcpu=help

-filetype=<output file type>
Specify what kind of output llc should generated. Options are: asm for textual assembly ( '.s'), obj for
native object files ('.o') and null for not emitting anything (for performance testing).

Note that not all targets support all options.

-mattr=a1,+a2,-a3,...
Override or control specific attributes of the target, such as whether SIMD operations are enabled or not. The
default set of attributes is set by the current CPU. For a list of available attributes, use:

llvm-as < /dev/null | llc -march=xyz -mattr=help

--disable-fp-elim
Disable frame pointer elimination optimization.

--disable-excess-fp-precision
Disable optimizations that may produce excess precision for floating point. Note that this option can dramati-
cally slow down code on some systems (e.g. X86).

--enable-no-infs-fp-math
Enable optimizations that assume no Inf values.

--enable-no-nans-fp-math
Enable optimizations that assume no NAN values.

--enable-unsafe-fp-math
Enable optimizations that make unsafe assumptions about IEEE math (e.g. that addition is associative) or may
not work for all input ranges. These optimizations allow the code generator to make use of some instructions
which would otherwise not be usable (such as fsin on X86).

--stats
Print statistics recorded by code-generation passes.
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--time-passes
Record the amount of time needed for each pass and print a report to standard error.

--load=<dso_path>
Dynamically load dso_path (a path to a dynamically shared object) that implements an LLVM target. This
will permit the target name to be used with the -march option so that code can be generated for that target.

-meabi=[default|gnu|4|5]
Specify which EABI version should conform to. Valid EABI versions are gnu, 4 and 5. Default value (default)
depends on the triple.

Tuning/Configuration Options

--print-machineinstrs
Print generated machine code between compilation phases (useful for debugging).

--regalloc=<allocator>
Specify the register allocator to use. Valid register allocators are:

basic

Basic register allocator.

fast

Fast register allocator. It is the default for unoptimized code.

greedy

Greedy register allocator. It is the default for optimized code.

pbqp

Register allocator based on ‘Partitioned Boolean Quadratic Programming’.

--spiller=<spiller>
Specify the spiller to use for register allocators that support it. Currently this option is used only by the linear
scan register allocator. The default spiller is local. Valid spillers are:

simple

Simple spiller

local

Local spiller

Intel IA-32-specific Options

--x86-asm-syntax=[att|intel]
Specify whether to emit assembly code in AT&T syntax (the default) or Intel syntax.

EXIT STATUS

If llc succeeds, it will exit with 0. Otherwise, if an error occurs, it will exit with a non-zero value.
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SEE ALSO

lli

lli - directly execute programs from LLVM bitcode

SYNOPSIS

lli [options] [filename] [program args]

DESCRIPTION

lli directly executes programs in LLVM bitcode format. It takes a program in LLVM bitcode format and executes it
using a just-in-time compiler or an interpreter.

lli is not an emulator. It will not execute IR of different architectures and it can only interpret (or JIT-compile) for
the host architecture.

The JIT compiler takes the same arguments as other tools, like llc, but they don’t necessarily work for the interpreter.

If filename is not specified, then lli reads the LLVM bitcode for the program from standard input.

The optional args specified on the command line are passed to the program as arguments.

GENERAL OPTIONS

-fake-argv0=executable
Override the argv[0] value passed into the executing program.

-force-interpreter={false,true}
If set to true, use the interpreter even if a just-in-time compiler is available for this architecture. Defaults to false.

-help
Print a summary of command line options.

-load=pluginfilename
Causes lli to load the plugin (shared object) named pluginfilename and use it for optimization.

-stats
Print statistics from the code-generation passes. This is only meaningful for the just-in-time compiler, at present.

-time-passes
Record the amount of time needed for each code-generation pass and print it to standard error.

-version
Print out the version of lli and exit without doing anything else.

TARGET OPTIONS

-mtriple=target triple
Override the target triple specified in the input bitcode file with the specified string. This may result in a crash
if you pick an architecture which is not compatible with the current system.
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-march=arch
Specify the architecture for which to generate assembly, overriding the target encoded in the bitcode file. See the
output of llc -help for a list of valid architectures. By default this is inferred from the target triple or autodetected
to the current architecture.

-mcpu=cpuname
Specify a specific chip in the current architecture to generate code for. By default this is inferred from the target
triple and autodetected to the current architecture. For a list of available CPUs, use: llvm-as < /dev/null | llc
-march=xyz -mcpu=help

-mattr=a1,+a2,-a3,...
Override or control specific attributes of the target, such as whether SIMD operations are enabled or not. The
default set of attributes is set by the current CPU. For a list of available attributes, use: llvm-as < /dev/null | llc
-march=xyz -mattr=help

FLOATING POINT OPTIONS

-disable-excess-fp-precision
Disable optimizations that may increase floating point precision.

-enable-no-infs-fp-math
Enable optimizations that assume no Inf values.

-enable-no-nans-fp-math
Enable optimizations that assume no NAN values.

-enable-unsafe-fp-math
Causes lli to enable optimizations that may decrease floating point precision.

-soft-float
Causes lli to generate software floating point library calls instead of equivalent hardware instructions.

CODE GENERATION OPTIONS

-code-model=model
Choose the code model from:

default: Target default code model
small: Small code model
kernel: Kernel code model
medium: Medium code model
large: Large code model

-disable-post-RA-scheduler
Disable scheduling after register allocation.

-disable-spill-fusing
Disable fusing of spill code into instructions.

-jit-enable-eh
Exception handling should be enabled in the just-in-time compiler.

-join-liveintervals
Coalesce copies (default=true).

-nozero-initialized-in-bss
Don’t place zero-initialized symbols into the BSS section.
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-pre-RA-sched=scheduler
Instruction schedulers available (before register allocation):

=default: Best scheduler for the target
=none: No scheduling: breadth first sequencing
=simple: Simple two pass scheduling: minimize critical path and maximize
→˓processor utilization
=simple-noitin: Simple two pass scheduling: Same as simple except using generic
→˓latency
=list-burr: Bottom-up register reduction list scheduling
=list-tdrr: Top-down register reduction list scheduling
=list-td: Top-down list scheduler -print-machineinstrs - Print generated machine
→˓code

-regalloc=allocator
Register allocator to use (default=linearscan)

=bigblock: Big-block register allocator
=linearscan: linear scan register allocator =local - local register allocator
=simple: simple register allocator

-relocation-model=model
Choose relocation model from:

=default: Target default relocation model
=static: Non-relocatable code =pic - Fully relocatable, position independent
→˓code
=dynamic-no-pic: Relocatable external references, non-relocatable code

-spiller
Spiller to use (default=local)

=simple: simple spiller
=local: local spiller

-x86-asm-syntax=syntax
Choose style of code to emit from X86 backend:

=att: Emit AT&T-style assembly
=intel: Emit Intel-style assembly

EXIT STATUS

If lli fails to load the program, it will exit with an exit code of 1. Otherwise, it will return the exit code of the
program it executes.

SEE ALSO

llc

llvm-link - LLVM bitcode linker
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SYNOPSIS

llvm-link [options] filename ...

DESCRIPTION

llvm-link takes several LLVM bitcode files and links them together into a single LLVM bitcode file. It writes the
output file to standard output, unless the -o option is used to specify a filename.

OPTIONS

-f
Enable binary output on terminals. Normally, llvm-link will refuse to write raw bitcode output if the output
stream is a terminal. With this option, llvm-link will write raw bitcode regardless of the output device.

-o filename
Specify the output file name. If filename is “-”, then llvm-link will write its output to standard output.

-S
Write output in LLVM intermediate language (instead of bitcode).

-d
If specified, llvm-link prints a human-readable version of the output bitcode file to standard error.

-help
Print a summary of command line options.

-v
Verbose mode. Print information about what llvm-link is doing. This typically includes a message for each
bitcode file linked in and for each library found.

EXIT STATUS

If llvm-link succeeds, it will exit with 0. Otherwise, if an error occurs, it will exit with a non-zero value.

llvm-ar - LLVM archiver

SYNOPSIS

llvm-ar [-]{dmpqrtx}[Rabfikou] [relpos] [count] <archive> [files...]

DESCRIPTION

The llvm-ar command is similar to the common Unix utility, ar. It archives several files together into a single file. The
intent for this is to produce archive libraries by LLVM bitcode that can be linked into an LLVM program. However,
the archive can contain any kind of file. By default, llvm-ar generates a symbol table that makes linking faster because
only the symbol table needs to be consulted, not each individual file member of the archive.

The llvm-ar command can be used to read SVR4, GNU and BSD style archive files. However, right now it can only
write in the GNU format. If an SVR4 or BSD style archive is used with the r (replace) or q (quick update) operations,
the archive will be reconstructed in GNU format.
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Here’s where llvm-ar departs from previous ar implementations:

Symbol Table

Since llvm-ar supports bitcode files. The symbol table it creates is in GNU format and includes both
native and bitcode files.

Long Paths

Currently llvm-ar can read GNU and BSD long file names, but only writes archives with the GNU format.

OPTIONS

The options to llvm-ar are compatible with other ar implementations. However, there are a few modifiers (R) that
are not found in other ar implementations. The options to llvm-ar specify a single basic operation to perform on the
archive, a variety of modifiers for that operation, the name of the archive file, and an optional list of file names. These
options are used to determine how llvm-ar should process the archive file.

The Operations and Modifiers are explained in the sections below. The minimal set of options is at least one operator
and the name of the archive. Typically archive files end with a .a suffix, but this is not required. Following the
archive-name comes a list of files that indicate the specific members of the archive to operate on. If the files option is
not specified, it generally means either “none” or “all” members, depending on the operation.

Operations

d

Delete files from the archive. No modifiers are applicable to this operation. The files options specify
which members should be removed from the archive. It is not an error if a specified file does not appear
in the archive. If no files are specified, the archive is not modified.

m[abi]

Move files from one location in the archive to another. The a, b, and i modifiers apply to this operation.
The files will all be moved to the location given by the modifiers. If no modifiers are used, the files will
be moved to the end of the archive. If no files are specified, the archive is not modified.

p

Print files to the standard output. This operation simply prints the files indicated to the standard output.
If no files are specified, the entire archive is printed. Printing bitcode files is ill-advised as they might
confuse your terminal settings. The p operation never modifies the archive.

q

Quickly append files to the end of the archive. This operation quickly adds the files to the archive without
checking for duplicates that should be removed first. If no files are specified, the archive is not modified.
Because of the way that llvm-ar constructs the archive file, its dubious whether the q operation is any
faster than the r operation.

r[abu]

Replace or insert file members. The a, b, and u modifiers apply to this operation. This operation will
replace existing files or insert them at the end of the archive if they do not exist. If no files are specified,
the archive is not modified.

t[v]
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Print the table of contents. Without any modifiers, this operation just prints the names of the members
to the standard output. With the v modifier, llvm-ar also prints out the file type (B=bitcode, S=symbol
table, blank=regular file), the permission mode, the owner and group, the size, and the date. If any files
are specified, the listing is only for those files. If no files are specified, the table of contents for the whole
archive is printed.

x[oP]

Extract archive members back to files. The o modifier applies to this operation. This operation retrieves
the indicated files from the archive and writes them back to the operating system’s file system. If no files
are specified, the entire archive is extract.

Modifiers (operation specific)

The modifiers below are specific to certain operations. See the Operations section (above) to determine which modi-
fiers are applicable to which operations.

[a]

When inserting or moving member files, this option specifies the destination of the new files as being after
the relpos member. If relpos is not found, the files are placed at the end of the archive.

[b]

When inserting or moving member files, this option specifies the destination of the new files as being
before the relpos member. If relpos is not found, the files are placed at the end of the archive. This
modifier is identical to the i modifier.

[i]

A synonym for the b option.

[o]

When extracting files, this option will cause llvm-ar to preserve the original modification times of the
files it writes.

[u]

When replacing existing files in the archive, only replace those files that have a time stamp than the time
stamp of the member in the archive.

Modifiers (generic)

The modifiers below may be applied to any operation.

[c]

For all operations, llvm-ar will always create the archive if it doesn’t exist. Normally, llvm-ar will print
a warning message indicating that the archive is being created. Using this modifier turns off that warning.

[s]

This modifier requests that an archive index (or symbol table) be added to the archive. This is the default
mode of operation. The symbol table will contain all the externally visible functions and global variables
defined by all the bitcode files in the archive.

[S]

This modifier is the opposite of the s modifier. It instructs llvm-ar to not build the symbol table. If both s
and S are used, the last modifier to occur in the options will prevail.
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[v]

This modifier instructs llvm-ar to be verbose about what it is doing. Each editing operation taken against
the archive will produce a line of output saying what is being done.

STANDARDS

The llvm-ar utility is intended to provide a superset of the IEEE Std 1003.2 (POSIX.2) functionality for ar. llvm-ar
can read both SVR4 and BSD4.4 (or Mac OS X) archives. If the f modifier is given to the x or r operations then llvm-
ar will write SVR4 compatible archives. Without this modifier, llvm-ar will write BSD4.4 compatible archives that
have long names immediately after the header and indicated using the “#1/ddd” notation for the name in the header.

FILE FORMAT

The file format for LLVM Archive files is similar to that of BSD 4.4 or Mac OSX archive files. In fact, except for the
symbol table, the ar commands on those operating systems should be able to read LLVM archive files. The details of
the file format follow.

Each archive begins with the archive magic number which is the eight printable characters ”!<arch>n” where n rep-
resents the newline character (0x0A). Following the magic number, the file is composed of even length members that
begin with an archive header and end with a n padding character if necessary (to make the length even). Each file
member is composed of a header (defined below), an optional newline-terminated “long file name” and the contents
of the file.

The fields of the header are described in the items below. All fields of the header contain only ASCII characters, are
left justified and are right padded with space characters.

name - char[16]

This field of the header provides the name of the archive member. If the name is longer than 15 characters
or contains a slash (/) character, then this field contains #1/nnn where nnn provides the length of
the name and the #1/ is literal. In this case, the actual name of the file is provided in the nnn bytes
immediately following the header. If the name is 15 characters or less, it is contained directly in this field
and terminated with a slash (/) character.

date - char[12]

This field provides the date of modification of the file in the form of a decimal encoded number that
provides the number of seconds since the epoch (since 00:00:00 Jan 1, 1970) per Posix specifications.

uid - char[6]

This field provides the user id of the file encoded as a decimal ASCII string. This field might not make
much sense on non-Unix systems. On Unix, it is the same value as the st_uid field of the stat structure
returned by the stat(2) operating system call.

gid - char[6]

This field provides the group id of the file encoded as a decimal ASCII string. This field might not make
much sense on non-Unix systems. On Unix, it is the same value as the st_gid field of the stat structure
returned by the stat(2) operating system call.

mode - char[8]

This field provides the access mode of the file encoded as an octal ASCII string. This field might not make
much sense on non-Unix systems. On Unix, it is the same value as the st_mode field of the stat structure
returned by the stat(2) operating system call.

size - char[10]
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This field provides the size of the file, in bytes, encoded as a decimal ASCII string.

fmag - char[2]

This field is the archive file member magic number. Its content is always the two characters back tick
(0x60) and newline (0x0A). This provides some measure utility in identifying archive files that have been
corrupted.

offset - vbr encoded 32-bit integer

The offset item provides the offset into the archive file where the bitcode member is stored that is associ-
ated with the symbol. The offset value is 0 based at the start of the first “normal” file member. To derive
the actual file offset of the member, you must add the number of bytes occupied by the file signature (8
bytes) and the symbol tables. The value of this item is encoded using variable bit rate encoding to reduce
the size of the symbol table. Variable bit rate encoding uses the high bit (0x80) of each byte to indicate if
there are more bytes to follow. The remaining 7 bits in each byte carry bits from the value. The final byte
does not have the high bit set.

length - vbr encoded 32-bit integer

The length item provides the length of the symbol that follows. Like this offset item, the length is variable
bit rate encoded.

symbol - character array

The symbol item provides the text of the symbol that is associated with the offset. The symbol is not
terminated by any character. Its length is provided by the length field. Note that is allowed (but unwise)
to use non-printing characters (even 0x00) in the symbol. This allows for multiple encodings of symbol
names.

EXIT STATUS

If llvm-ar succeeds, it will exit with 0. A usage error, results in an exit code of 1. A hard (file system typically) error
results in an exit code of 2. Miscellaneous or unknown errors result in an exit code of 3.

SEE ALSO

ar(1)

llvm-lib - LLVM lib.exe compatible library tool

SYNOPSIS

llvm-lib [/libpath:<path>] [/out:<output>] [/llvmlibthin] [/ignore] [/machine] [/nologo] [files...]

DESCRIPTION

The llvm-lib command is intended to be a lib.exe compatible tool. See https://msdn.microsoft.com/en-us/library/
7ykb2k5f for the general description.

llvm-lib has the following extensions:

• Bitcode files in symbol tables. llvm-lib includes symbols from both bitcode files and regular object files in the
symbol table.
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• Creating thin archives. The /llvmlibthin option causes llvm-lib to create thin archive that contain only the
symbol table and the header for the various members. These files are much smaller, but are not compatible with
link.exe (lld can handle them).

llvm-nm - list LLVM bitcode and object file’s symbol table

SYNOPSIS

llvm-nm [options] [filenames...]

DESCRIPTION

The llvm-nm utility lists the names of symbols from the LLVM bitcode files, object files, or ar archives containing
them, named on the command line. Each symbol is listed along with some simple information about its provenance.
If no file name is specified, or - is used as a file name, llvm-nm will process a file on its standard input stream.

llvm-nm‘s default output format is the traditional BSD nm output format. Each such output record consists of an
(optional) 8-digit hexadecimal address, followed by a type code character, followed by a name, for each symbol. One
record is printed per line; fields are separated by spaces. When the address is omitted, it is replaced by 8 spaces.

Type code characters currently supported, and their meanings, are as follows:

U

Named object is referenced but undefined in this bitcode file

C

Common (multiple definitions link together into one def)

W

Weak reference (multiple definitions link together into zero or one definitions)

t

Local function (text) object

T

Global function (text) object

d

Local data object

D

Global data object

?

Something unrecognizable

Because LLVM bitcode files typically contain objects that are not considered to have addresses until they are linked
into an executable image or dynamically compiled “just-in-time”, llvm-nm does not print an address for any symbol
in an LLVM bitcode file, even symbols which are defined in the bitcode file.
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OPTIONS

-B (default)
Use BSD output format. Alias for –format=bsd.

-P
Use POSIX.2 output format. Alias for –format=posix.

--debug-syms, -a
Show all symbols, even debugger only.

--defined-only
Print only symbols defined in this file (as opposed to symbols which may be referenced by objects in this file,
but not defined in this file.)

--dynamic, -D
Display dynamic symbols instead of normal symbols.

--extern-only, -g
Print only symbols whose definitions are external; that is, accessible from other files.

--format=format, -f format
Select an output format; format may be sysv, posix, or bsd. The default is bsd.

-help
Print a summary of command-line options and their meanings.

--no-sort, -p
Shows symbols in order encountered.

--numeric-sort, -n, -v
Sort symbols by address.

--print-file-name, -A, -o
Precede each symbol with the file it came from.

--print-size, -S
Show symbol size instead of address.

--size-sort
Sort symbols by size.

--undefined-only, -u
Print only symbols referenced but not defined in this file.

--radix=RADIX, -t
Specify the radix of the symbol address(es). Values accepted d(decimal), x(hexadecomal) and o(octal).

BUGS

• llvm-nm cannot demangle C++ mangled names, like GNU nm can.

• llvm-nm does not support the full set of arguments that GNU nm does.

EXIT STATUS

llvm-nm exits with an exit code of zero.
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SEE ALSO

llvm-dis, ar(1), nm(1)

llvm-config - Print LLVM compilation options

SYNOPSIS

llvm-config option [components...]

DESCRIPTION

llvm-config makes it easier to build applications that use LLVM. It can print the compiler flags, linker flags and object
libraries needed to link against LLVM.

EXAMPLES

To link against the JIT:

g++ `llvm-config --cxxflags` -o HowToUseJIT.o -c HowToUseJIT.cpp
g++ `llvm-config --ldflags` -o HowToUseJIT HowToUseJIT.o \

`llvm-config --libs engine bcreader scalaropts`

OPTIONS

–version

Print the version number of LLVM.

-help

Print a summary of llvm-config arguments.

–prefix

Print the installation prefix for LLVM.

–src-root

Print the source root from which LLVM was built.

–obj-root

Print the object root used to build LLVM.

–bindir

Print the installation directory for LLVM binaries.

–includedir

Print the installation directory for LLVM headers.

–libdir

Print the installation directory for LLVM libraries.

–cxxflags
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Print the C++ compiler flags needed to use LLVM headers.

–ldflags

Print the flags needed to link against LLVM libraries.

–libs

Print all the libraries needed to link against the specified LLVM components, including any dependencies.

–libnames

Similar to –libs, but prints the bare filenames of the libraries without -l or pathnames. Useful for linking
against a not-yet-installed copy of LLVM.

–libfiles

Similar to –libs, but print the full path to each library file. This is useful when creating makefile depen-
dencies, to ensure that a tool is relinked if any library it uses changes.

–components

Print all valid component names.

–targets-built

Print the component names for all targets supported by this copy of LLVM.

–build-mode

Print the build mode used when LLVM was built (e.g. Debug or Release)

COMPONENTS

To print a list of all available components, run llvm-config –components. In most cases, components correspond
directly to LLVM libraries. Useful “virtual” components include:

all

Includes all LLVM libraries. The default if no components are specified.

backend

Includes either a native backend or the C backend.

engine

Includes either a native JIT or the bitcode interpreter.

EXIT STATUS

If llvm-config succeeds, it will exit with 0. Otherwise, if an error occurs, it will exit with a non-zero value.

llvm-diff - LLVM structural ‘diff’

SYNOPSIS

llvm-diff [options] module 1 module 2 [global name ...]
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DESCRIPTION

llvm-diff compares the structure of two LLVM modules, primarily focusing on differences in function definitions.
Insignificant differences, such as changes in the ordering of globals or in the names of local values, are ignored.

An input module will be interpreted as an assembly file if its name ends in ‘.ll’; otherwise it will be read in as a bitcode
file.

If a list of global names is given, just the values with those names are compared; otherwise, all global values are
compared, and diagnostics are produced for globals which only appear in one module or the other.

llvm-diff compares two functions by comparing their basic blocks, beginning with the entry blocks. If the terminators
seem to match, then the corresponding successors are compared; otherwise they are ignored. This algorithm is very
sensitive to changes in control flow, which tend to stop any downstream changes from being detected.

llvm-diff is intended as a debugging tool for writers of LLVM passes and frontends. It does not have a stable output
format.

EXIT STATUS

If llvm-diff finds no differences between the modules, it will exit with 0 and produce no output. Otherwise it will exit
with a non-zero value.

BUGS

Many important differences, like changes in linkage or function attributes, are not diagnosed.

Changes in memory behavior (for example, coalescing loads) can cause massive detected differences in blocks.

llvm-cov - emit coverage information

SYNOPSIS

llvm-cov command [args...]

DESCRIPTION

The llvm-cov tool shows code coverage information for programs that are instrumented to emit profile data. It can
be used to work with gcov-style coverage or with clang‘s instrumentation based profiling.

If the program is invoked with a base name of gcov, it will behave as if the llvm-cov gcov command were called.
Otherwise, a command should be provided.

COMMANDS

• gcov

• show

• report
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GCOV COMMAND

SYNOPSIS

llvm-cov gcov [options] SOURCEFILE

DESCRIPTION

The llvm-cov gcov tool reads code coverage data files and displays the coverage information for a specified
source file. It is compatible with the gcov tool from version 4.2 of GCC and may also be compatible with some later
versions of gcov.

To use llvm-cov gcov, you must first build an instrumented version of your application that collects coverage
data as it runs. Compile with the -fprofile-arcs and -ftest-coverage options to add the instrumentation.
(Alternatively, you can use the --coverage option, which includes both of those other options.) You should compile
with debugging information (-g) and without optimization (-O0); otherwise, the coverage data cannot be accurately
mapped back to the source code.

At the time you compile the instrumented code, a .gcno data file will be generated for each object file. These .gcno
files contain half of the coverage data. The other half of the data comes from .gcda files that are generated when
you run the instrumented program, with a separate .gcda file for each object file. Each time you run the program,
the execution counts are summed into any existing .gcda files, so be sure to remove any old files if you do not want
their contents to be included.

By default, the .gcda files are written into the same directory as the object files, but you can override that by set-
ting the GCOV_PREFIX and GCOV_PREFIX_STRIP environment variables. The GCOV_PREFIX_STRIP variable
specifies a number of directory components to be removed from the start of the absolute path to the object file directory.
After stripping those directories, the prefix from the GCOV_PREFIX variable is added. These environment variables
allow you to run the instrumented program on a machine where the original object file directories are not accessible,
but you will then need to copy the .gcda files back to the object file directories where llvm-cov gcov expects to
find them.

Once you have generated the coverage data files, run llvm-cov gcov for each main source file where you want to
examine the coverage results. This should be run from the same directory where you previously ran the compiler. The
results for the specified source file are written to a file named by appending a .gcov suffix. A separate output file is
also created for each file included by the main source file, also with a .gcov suffix added.

The basic content of an .gcov output file is a copy of the source file with an execution count and line number
prepended to every line. The execution count is shown as - if a line does not contain any executable code. If a line
contains code but that code was never executed, the count is displayed as #####.

OPTIONS

-a, --all-blocks
Display all basic blocks. If there are multiple blocks for a single line of source code, this option causes llvm-cov
to show the count for each block instead of just one count for the entire line.

-b, --branch-probabilities
Display conditional branch probabilities and a summary of branch information.

-c, --branch-counts
Display branch counts instead of probabilities (requires -b).

-f, --function-summaries
Show a summary of coverage for each function instead of just one summary for an entire source file.
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--help
Display available options (–help-hidden for more).

-l, --long-file-names
For coverage output of files included from the main source file, add the main file name followed by ## as a
prefix to the output file names. This can be combined with the –preserve-paths option to use complete paths for
both the main file and the included file.

-n, --no-output
Do not output any .gcov files. Summary information is still displayed.

-o=<DIR|FILE>, --object-directory=<DIR>, --object-file=<FILE>
Find objects in DIR or based on FILE’s path. If you specify a particular object file, the coverage data files are
expected to have the same base name with .gcno and .gcda extensions. If you specify a directory, the files
are expected in that directory with the same base name as the source file.

-p, --preserve-paths
Preserve path components when naming the coverage output files. In addition to the source file name, include
the directories from the path to that file. The directories are separate by # characters, with . directories removed
and .. directories replaced by ^ characters. When used with the –long-file-names option, this applies to both
the main file name and the included file name.

-u, --unconditional-branches
Include unconditional branches in the output for the –branch-probabilities option.

-version
Display the version of llvm-cov.

EXIT STATUS

llvm-cov gcov returns 1 if it cannot read input files. Otherwise, it exits with zero.

SHOW COMMAND

SYNOPSIS

llvm-cov show [options] -instr-profile PROFILE BIN [SOURCES]

DESCRIPTION

The llvm-cov show command shows line by line coverage of a binary BIN using the profile data PROFILE. It can
optionally be filtered to only show the coverage for the files listed in SOURCES.

To use llvm-cov show, you need a program that is compiled with instrumentation to emit profile and coverage data.
To build such a program with clang use the -fprofile-instr-generate and -fcoverage-mapping
flags. If linking with the clang driver, pass -fprofile-instr-generate to the link stage to make sure the
necessary runtime libraries are linked in.

The coverage information is stored in the built executable or library itself, and this is what you should pass to
llvm-cov show as the BIN argument. The profile data is generated by running this instrumented program nor-
mally. When the program exits it will write out a raw profile file, typically called default.profraw, which can
be converted to a format that is suitable for the PROFILE argument using the llvm-profdata merge tool.

250 Chapter 2. User Guides



LLVM Documentation, Release 3.9

OPTIONS

-show-line-counts
Show the execution counts for each line. This is enabled by default, unless another -show option is used.

-show-expansions
Expand inclusions, such as preprocessor macros or textual inclusions, inline in the display of the source file.

-show-instantiations
For source regions that are instantiated multiple times, such as templates in C++, show each instantiation sepa-
rately as well as the combined summary.

-show-regions
Show the execution counts for each region by displaying a caret that points to the character where the region
starts.

-show-line-counts-or-regions
Show the execution counts for each line if there is only one region on the line, but show the individual regions
if there are multiple on the line.

-use-color[=VALUE]
Enable or disable color output. By default this is autodetected.

-arch=<name>
If the covered binary is a universal binary, select the architecture to use. It is an error to specify an architecture
that is not included in the universal binary or to use an architecture that does not match a non-universal binary.

-name=<NAME>
Show code coverage only for functions with the given name.

-name-regex=<PATTERN>
Show code coverage only for functions that match the given regular expression.

-format=<FORMAT>
Use the specified output format. The supported formats are: “text”, “html”.

-output-dir=PATH
Specify a directory to write coverage reports into. If the directory does not exist, it is created. When used
in function view mode (i.e when -name or -name-regex are used to select specific functions), the report is
written to PATH/functions.EXTENSION. When used in file view mode, a report for each file is written to
PATH/REL_PATH_TO_FILE.EXTENSION.

-Xdemangler=<TOOL>|<TOOL-OPTION>
Specify a symbol demangler. This can be used to make reports more human-readable. This option can be
specified multiple times to supply arguments to the demangler (e.g -Xdemangler c++filt -Xdemangler -n for
C++). The demangler is expected to read a newline-separated list of symbols from stdin and write a newline-
separated list of the same length to stdout.

-line-coverage-gt=<N>
Show code coverage only for functions with line coverage greater than the given threshold.

-line-coverage-lt=<N>
Show code coverage only for functions with line coverage less than the given threshold.

-region-coverage-gt=<N>
Show code coverage only for functions with region coverage greater than the given threshold.

-region-coverage-lt=<N>
Show code coverage only for functions with region coverage less than the given threshold.
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REPORT COMMAND

SYNOPSIS

llvm-cov report [options] -instr-profile PROFILE BIN [SOURCES]

DESCRIPTION

The llvm-cov report command displays a summary of the coverage of a binary BIN using the profile data
PROFILE. It can optionally be filtered to only show the coverage for the files listed in SOURCES.

If no source files are provided, a summary line is printed for each file in the coverage data. If any files are provided,
summaries are shown for each function in the listed files instead.

For information on compiling programs for coverage and generating profile data, see SHOW COMMAND.

OPTIONS

-use-color[=VALUE]
Enable or disable color output. By default this is autodetected.

-arch=<name>
If the covered binary is a universal binary, select the architecture to use. It is an error to specify an architecture
that is not included in the universal binary or to use an architecture that does not match a non-universal binary.

llvm-profdata - Profile data tool

SYNOPSIS

llvm-profdata command [args...]

DESCRIPTION

The llvm-profdata tool is a small utility for working with profile data files.

COMMANDS

• merge

• show

MERGE

SYNOPSIS

llvm-profdata merge [options] [filename...]
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DESCRIPTION

llvm-profdata merge takes several profile data files generated by PGO instrumentation and merges them to-
gether into a single indexed profile data file.

By default profile data is merged without modification. This means that the relative importance of each input file is
proportional to the number of samples or counts it contains. In general, the input from a longer training run will be
interpreted as relatively more important than a shorter run. Depending on the nature of the training runs it may be
useful to adjust the weight given to each input file by using the -weighted-input option.

Profiles passed in via -weighted-input, -input-files, or via positional arguments are processed once for
each time they are seen.

OPTIONS

-help
Print a summary of command line options.

-output=output, -o=output
Specify the output file name. Output cannot be - as the resulting indexed profile data can’t be written to standard
output.

-weighted-input=weight,filename
Specify an input file name along with a weight. The profile counts of the supplied filename will be scaled
(multiplied) by the supplied weight, where where weight is a decimal integer >= 1. Input files specified
without using this option are assigned a default weight of 1. Examples are shown below.

-input-files=path, -f=path
Specify a file which contains a list of files to merge. The entries in this file are newline-separated. Lines starting
with ‘#’ are skipped. Entries may be of the form <filename> or <weight>,<filename>.

-instr (default)
Specify that the input profile is an instrumentation-based profile.

-sample
Specify that the input profile is a sample-based profile.

The format of the generated file can be generated in one of three ways:

-binary (default)

Emit the profile using a binary encoding. For instrumentation-based profile the output format is the indexed
binary format.

-text

Emit the profile in text mode. This option can also be used with both sample-based and instrumentation-based
profile. When this option is used the profile will be dumped in the text format that is parsable by the profile
reader.

-gcc

Emit the profile using GCC’s gcov format (Not yet supported).

-sparse[=true|false]
Do not emit function records with 0 execution count. Can only be used in conjunction with -instr. Defaults to
false, since it can inhibit compiler optimization during PGO.
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EXAMPLES

Basic Usage

Merge three profiles:

llvm-profdata merge foo.profdata bar.profdata baz.profdata -output merged.profdata

Weighted Input

The input file foo.profdata is especially important, multiply its counts by 10:

llvm-profdata merge -weighted-input=10,foo.profdata bar.profdata baz.profdata -output
→˓merged.profdata

Exactly equivalent to the previous invocation (explicit form; useful for programmatic invocation):

llvm-profdata merge -weighted-input=10,foo.profdata -weighted-input=1,bar.profdata -
→˓weighted-input=1,baz.profdata -output merged.profdata

SHOW

SYNOPSIS

llvm-profdata show [options] [filename]

DESCRIPTION

llvm-profdata show takes a profile data file and displays the information about the profile counters for this file
and for any of the specified function(s).

If filename is omitted or is -, then llvm-profdata show reads its input from standard input.

OPTIONS

-all-functions
Print details for every function.

-counts
Print the counter values for the displayed functions.

-function=string
Print details for a function if the function’s name contains the given string.

-help
Print a summary of command line options.

-output=output, -o=output
Specify the output file name. If output is - or it isn’t specified, then the output is sent to standard output.

-instr (default)
Specify that the input profile is an instrumentation-based profile.
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-text
Instruct the profile dumper to show profile counts in the text format of the instrumentation-based profile data
representation. By default, the profile information is dumped in a more human readable form (also in text) with
annotations.

-sample
Specify that the input profile is a sample-based profile.

EXIT STATUS

llvm-profdata returns 1 if the command is omitted or is invalid, if it cannot read input files, or if there is a
mismatch between their data.

llvm-stress - generate random .ll files

SYNOPSIS

llvm-stress [-size=filesize] [-seed=initialseed] [-o=outfile]

DESCRIPTION

The llvm-stress tool is used to generate random .ll files that can be used to test different components of LLVM.

OPTIONS

-o filename
Specify the output filename.

-size size
Specify the size of the generated .ll file.

-seed seed
Specify the seed to be used for the randomly generated instructions.

EXIT STATUS

llvm-stress returns 0.

llvm-symbolizer - convert addresses into source code locations

SYNOPSIS

llvm-symbolizer [options]
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DESCRIPTION

llvm-symbolizer reads object file names and addresses from standard input and prints corresponding source
code locations to standard output. If object file is specified in command line, llvm-symbolizer processes only
addresses from standard input, the rest is output verbatim. This program uses debug info sections and symbol table in
the object files.

EXAMPLE

$ cat addr.txt
a.out 0x4004f4
/tmp/b.out 0x400528
/tmp/c.so 0x710
/tmp/mach_universal_binary:i386 0x1f84
/tmp/mach_universal_binary:x86_64 0x100000f24
$ llvm-symbolizer < addr.txt
main
/tmp/a.cc:4

f(int, int)
/tmp/b.cc:11

h_inlined_into_g
/tmp/header.h:2
g_inlined_into_f
/tmp/header.h:7
f_inlined_into_main
/tmp/source.cc:3
main
/tmp/source.cc:8

_main
/tmp/source_i386.cc:8

_main
/tmp/source_x86_64.cc:8
$ cat addr2.txt
0x4004f4
0x401000
$ llvm-symbolizer -obj=a.out < addr2.txt
main
/tmp/a.cc:4

foo(int)
/tmp/a.cc:12
$cat addr.txt
0x40054d
$llvm-symbolizer -inlining -print-address -pretty-print -obj=addr.exe < addr.txt
0x40054d: inc at /tmp/x.c:3:3
(inlined by) main at /tmp/x.c:9:0

$llvm-symbolizer -inlining -pretty-print -obj=addr.exe < addr.txt
inc at /tmp/x.c:3:3
(inlined by) main at /tmp/x.c:9:0
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OPTIONS

-obj
Path to object file to be symbolized.

-functions=[none|short|linkage]
Specify the way function names are printed (omit function name, print short function name, or print full linkage
name, respectively). Defaults to linkage.

-use-symbol-table
Prefer function names stored in symbol table to function names in debug info sections. Defaults to true.

-demangle
Print demangled function names. Defaults to true.

-inlining
If a source code location is in an inlined function, prints all the inlnied frames. Defaults to true.

-default-arch
If a binary contains object files for multiple architectures (e.g. it is a Mach-O universal binary), symbolize the
object file for a given architecture. You can also specify architecture by writing binary_name:arch_name
in the input (see example above). If architecture is not specified in either way, address will not be symbolized.
Defaults to empty string.

-dsym-hint=<path/to/file.dSYM>
(Darwin-only flag). If the debug info for a binary isn’t present in the default location, look for the debug info at
the .dSYM path provided via the -dsym-hint flag. This flag can be used multiple times.

-print-address
Print address before the source code location. Defaults to false.

-pretty-print
Print human readable output. If -inlining is specified, enclosing scope is prefixed by (inlined by). Refer to
listed examples.

EXIT STATUS

llvm-symbolizer returns 0. Other exit codes imply internal program error.

llvm-dwarfdump - print contents of DWARF sections

SYNOPSIS

llvm-dwarfdump [options] [filenames...]

DESCRIPTION

llvm-dwarfdump parses DWARF sections in the object files and prints their contents in human-readable form.

OPTIONS

-debug-dump=section
Specify the DWARF section to dump. For example, use abbrev to dump the contents of .debug_abbrev
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section, loc.dwo to dump the contents of .debug_loc.dwo etc. See llvm-dwarfdump --help for
the complete list of supported sections. Use all to dump all DWARF sections. It is the default.

EXIT STATUS

llvm-dwarfdump returns 0 if the input files were parsed and dumped successfully. Otherwise, it returns 1.

Debugging Tools

bugpoint - automatic test case reduction tool

SYNOPSIS

bugpoint [options] [input LLVM ll/bc files] [LLVM passes] –args program arguments

DESCRIPTION

bugpoint narrows down the source of problems in LLVM tools and passes. It can be used to debug three types of
failures: optimizer crashes, miscompilations by optimizers, or bad native code generation (including problems in the
static and JIT compilers). It aims to reduce large test cases to small, useful ones. For more information on the design
and inner workings of bugpoint, as well as advice for using bugpoint, see LLVM bugpoint tool: design and usage in
the LLVM distribution.

OPTIONS

–additional-so library

Load the dynamic shared object library into the test program whenever it is run. This is useful if you are
debugging programs which depend on non-LLVM libraries (such as the X or curses libraries) to run.

–append-exit-code={true,false}

Append the test programs exit code to the output file so that a change in exit code is considered a test
failure. Defaults to false.

–args program args

Pass all arguments specified after –args to the test program whenever it runs. Note that if any of the
program args start with a “-”, you should use:

bugpoint [bugpoint args] --args -- [program args]

The “--” right after the –args option tells bugpoint to consider any options starting with “-” to be part
of the –args option, not as options to bugpoint itself.

–tool-args tool args

Pass all arguments specified after –tool-args to the LLVM tool under test (llc, lli, etc.) whenever it runs.
You should use this option in the following way:

bugpoint [bugpoint args] --tool-args -- [tool args]

The “--” right after the –tool-args option tells bugpoint to consider any options starting with “-” to be
part of the –tool-args option, not as options to bugpoint itself. (See –args, above.)
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–safe-tool-args tool args

Pass all arguments specified after –safe-tool-args to the “safe” execution tool.

–gcc-tool-args gcc tool args

Pass all arguments specified after –gcc-tool-args to the invocation of gcc.

–opt-args opt args

Pass all arguments specified after –opt-args to the invocation of opt.

–disable-{dce,simplifycfg}

Do not run the specified passes to clean up and reduce the size of the test program. By default, bugpoint
uses these passes internally when attempting to reduce test programs. If you’re trying to find a bug in one
of these passes, bugpoint may crash.

–enable-valgrind

Use valgrind to find faults in the optimization phase. This will allow bugpoint to find otherwise asymp-
tomatic problems caused by memory mis-management.

-find-bugs

Continually randomize the specified passes and run them on the test program until a bug is found or the
user kills bugpoint.

-help

Print a summary of command line options.

–input filename

Open filename and redirect the standard input of the test program, whenever it runs, to come from that
file.

–load plugin

Load the dynamic object plugin into bugpoint itself. This object should register new optimization passes.
Once loaded, the object will add new command line options to enable various optimizations. To see the
new complete list of optimizations, use the -help and –load options together; for example:

bugpoint --load myNewPass.so -help

–mlimit megabytes

Specifies an upper limit on memory usage of the optimization and codegen. Set to zero to disable the
limit.

–output filename

Whenever the test program produces output on its standard output stream, it should match the contents
of filename (the “reference output”). If you do not use this option, bugpoint will attempt to generate a
reference output by compiling the program with the “safe” backend and running it.

–run-{int,jit,llc,custom}

Whenever the test program is compiled, bugpoint should generate code for it using the specified code
generator. These options allow you to choose the interpreter, the JIT compiler, the static native code
compiler, or a custom command (see –exec-command) respectively.

–safe-{llc,custom}
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When debugging a code generator, bugpoint should use the specified code generator as the “safe” code
generator. This is a known-good code generator used to generate the “reference output” if it has not
been provided, and to compile portions of the program that as they are excluded from the testcase. These
options allow you to choose the static native code compiler, or a custom command, (see –exec-command)
respectively. The interpreter and the JIT backends cannot currently be used as the “safe” backends.

–exec-command command

This option defines the command to use with the –run-custom and –safe-custom options to execute the
bitcode testcase. This can be useful for cross-compilation.

–compile-command command

This option defines the command to use with the –compile-custom option to compile the bitcode testcase.
The command should exit with a failure exit code if the file is “interesting” and should exit with a success
exit code (i.e. 0) otherwise (this is the same as if it crashed on “interesting” inputs).

This can be useful for testing compiler output without running any link or execute stages. To generate
a reduced unit test, you may add CHECK directives to the testcase and pass the name of an executable
compile-command script in this form:

#!/bin/sh
llc "$@"
not FileCheck [bugpoint input file].ll < bugpoint-test-program.s

This script will “fail” as long as FileCheck passes. So the result will be the minimum bitcode that passes
FileCheck.

–safe-path path

This option defines the path to the command to execute with the –safe-{int,jit,llc,custom} option.

–verbose-errors={true,false}

The default behavior of bugpoint is to print “<crash>” when it finds a reduced test that crashes compila-
tion. This flag prints the output of the crashing program to stderr. This is useful to make sure it is the same
error being tracked down and not a different error that happens to crash the compiler as well. Defaults to
false.

EXIT STATUS

If bugpoint succeeds in finding a problem, it will exit with 0. Otherwise, if an error occurs, it will exit with a non-zero
value.

SEE ALSO

opt|opt

llvm-extract - extract a function from an LLVM module

SYNOPSIS

llvm-extract [options] –func function-name [filename]

260 Chapter 2. User Guides



LLVM Documentation, Release 3.9

DESCRIPTION

The llvm-extract command takes the name of a function and extracts it from the specified LLVM bitcode file. It
is primarily used as a debugging tool to reduce test cases from larger programs that are triggering a bug.

In addition to extracting the bitcode of the specified function, llvm-extract will also remove unreachable global
variables, prototypes, and unused types.

The llvm-extract command reads its input from standard input if filename is omitted or if filename is -. The
output is always written to standard output, unless the -o option is specified (see below).

OPTIONS

-f

Enable binary output on terminals. Normally, llvm-extract will refuse to write raw bitcode output if
the output stream is a terminal. With this option, llvm-extract will write raw bitcode regardless of
the output device.

–func function-name

Extract the function named function-name from the LLVM bitcode. May be specified multiple times to
extract multiple functions at once.

–rfunc function-regular-expr

Extract the function(s) matching function-regular-expr from the LLVM bitcode. All functions matching
the regular expression will be extracted. May be specified multiple times.

–glob global-name

Extract the global variable named global-name from the LLVM bitcode. May be specified multiple times
to extract multiple global variables at once.

–rglob glob-regular-expr

Extract the global variable(s) matching global-regular-expr from the LLVM bitcode. All global variables
matching the regular expression will be extracted. May be specified multiple times.

-help

Print a summary of command line options.

-o filename

Specify the output filename. If filename is “-” (the default), then llvm-extract sends its output to
standard output.

-S

Write output in LLVM intermediate language (instead of bitcode).

EXIT STATUS

If llvm-extract succeeds, it will exit with 0. Otherwise, if an error occurs, it will exit with a non-zero value.

SEE ALSO

bugpoint
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llvm-bcanalyzer - LLVM bitcode analyzer

SYNOPSIS

llvm-bcanalyzer [options] [filename]

DESCRIPTION

The llvm-bcanalyzer command is a small utility for analyzing bitcode files. The tool reads a bitcode file (such
as generated with the llvm-as tool) and produces a statistical report on the contents of the bitcode file. The tool can
also dump a low level but human readable version of the bitcode file. This tool is probably not of much interest or
utility except for those working directly with the bitcode file format. Most LLVM users can just ignore this tool.

If filename is omitted or is -, then llvm-bcanalyzer reads its input from standard input. This is useful for
combining the tool into a pipeline. Output is written to the standard output.

OPTIONS

-nodetails
Causes llvm-bcanalyzer to abbreviate its output by writing out only a module level summary. The details
for individual functions are not displayed.

-dump
Causes llvm-bcanalyzer to dump the bitcode in a human readable format. This format is significantly
different from LLVM assembly and provides details about the encoding of the bitcode file.

-verify
Causes llvm-bcanalyzer to verify the module produced by reading the bitcode. This ensures that the
statistics generated are based on a consistent module.

-help
Print a summary of command line options.

EXIT STATUS

If llvm-bcanalyzer succeeds, it will exit with 0. Otherwise, if an error occurs, it will exit with a non-zero value,
usually 1.

SUMMARY OUTPUT DEFINITIONS

The following items are always printed by llvm-bcanalyzer. They comprize the summary output.

Bitcode Analysis Of Module

This just provides the name of the module for which bitcode analysis is being generated.

Bitcode Version Number

The bitcode version (not LLVM version) of the file read by the analyzer.

File Size

The size, in bytes, of the entire bitcode file.

Module Bytes
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The size, in bytes, of the module block. Percentage is relative to File Size.

Function Bytes

The size, in bytes, of all the function blocks. Percentage is relative to File Size.

Global Types Bytes

The size, in bytes, of the Global Types Pool. Percentage is relative to File Size. This is the size of the
definitions of all types in the bitcode file.

Constant Pool Bytes

The size, in bytes, of the Constant Pool Blocks Percentage is relative to File Size.

Module Globals Bytes

Ths size, in bytes, of the Global Variable Definitions and their initializers. Percentage is relative to File
Size.

Instruction List Bytes

The size, in bytes, of all the instruction lists in all the functions. Percentage is relative to File Size. Note
that this value is also included in the Function Bytes.

Compaction Table Bytes

The size, in bytes, of all the compaction tables in all the functions. Percentage is relative to File Size.
Note that this value is also included in the Function Bytes.

Symbol Table Bytes

The size, in bytes, of all the symbol tables in all the functions. Percentage is relative to File Size. Note
that this value is also included in the Function Bytes.

Dependent Libraries Bytes

The size, in bytes, of the list of dependent libraries in the module. Percentage is relative to File Size. Note
that this value is also included in the Module Global Bytes.

Number Of Bitcode Blocks

The total number of blocks of any kind in the bitcode file.

Number Of Functions

The total number of function definitions in the bitcode file.

Number Of Types

The total number of types defined in the Global Types Pool.

Number Of Constants

The total number of constants (of any type) defined in the Constant Pool.

Number Of Basic Blocks

The total number of basic blocks defined in all functions in the bitcode file.

Number Of Instructions

The total number of instructions defined in all functions in the bitcode file.

Number Of Long Instructions

The total number of long instructions defined in all functions in the bitcode file. Long instructions are
those taking greater than 4 bytes. Typically long instructions are GetElementPtr with several indices, PHI
nodes, and calls to functions with large numbers of arguments.
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Number Of Operands

The total number of operands used in all instructions in the bitcode file.

Number Of Compaction Tables

The total number of compaction tables in all functions in the bitcode file.

Number Of Symbol Tables

The total number of symbol tables in all functions in the bitcode file.

Number Of Dependent Libs

The total number of dependent libraries found in the bitcode file.

Total Instruction Size

The total size of the instructions in all functions in the bitcode file.

Average Instruction Size

The average number of bytes per instruction across all functions in the bitcode file. This value is computed
by dividing Total Instruction Size by Number Of Instructions.

Maximum Type Slot Number

The maximum value used for a type’s slot number. Larger slot number values take more bytes to encode.

Maximum Value Slot Number

The maximum value used for a value’s slot number. Larger slot number values take more bytes to encode.

Bytes Per Value

The average size of a Value definition (of any type). This is computed by dividing File Size by the total
number of values of any type.

Bytes Per Global

The average size of a global definition (constants and global variables).

Bytes Per Function

The average number of bytes per function definition. This is computed by dividing Function Bytes by
Number Of Functions.

# of VBR 32-bit Integers

The total number of 32-bit integers encoded using the Variable Bit Rate encoding scheme.

# of VBR 64-bit Integers

The total number of 64-bit integers encoded using the Variable Bit Rate encoding scheme.

# of VBR Compressed Bytes

The total number of bytes consumed by the 32-bit and 64-bit integers that use the Variable Bit Rate
encoding scheme.

# of VBR Expanded Bytes

The total number of bytes that would have been consumed by the 32-bit and 64-bit integers had they not
been compressed with the Variable Bit Rage encoding scheme.

Bytes Saved With VBR

The total number of bytes saved by using the Variable Bit Rate encoding scheme. The percentage is
relative to # of VBR Expanded Bytes.
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DETAILED OUTPUT DEFINITIONS

The following definitions occur only if the -nodetails option was not given. The detailed output provides additional
information on a per-function basis.

Type

The type signature of the function.

Byte Size

The total number of bytes in the function’s block.

Basic Blocks

The number of basic blocks defined by the function.

Instructions

The number of instructions defined by the function.

Long Instructions

The number of instructions using the long instruction format in the function.

Operands

The number of operands used by all instructions in the function.

Instruction Size

The number of bytes consumed by instructions in the function.

Average Instruction Size

The average number of bytes consumed by the instructions in the function. This value is computed by
dividing Instruction Size by Instructions.

Bytes Per Instruction

The average number of bytes used by the function per instruction. This value is computed by dividing
Byte Size by Instructions. Note that this is not the same as Average Instruction Size. It computes a number
relative to the total function size not just the size of the instruction list.

Number of VBR 32-bit Integers

The total number of 32-bit integers found in this function (for any use).

Number of VBR 64-bit Integers

The total number of 64-bit integers found in this function (for any use).

Number of VBR Compressed Bytes

The total number of bytes in this function consumed by the 32-bit and 64-bit integers that use the Variable
Bit Rate encoding scheme.

Number of VBR Expanded Bytes

The total number of bytes in this function that would have been consumed by the 32-bit and 64-bit integers
had they not been compressed with the Variable Bit Rate encoding scheme.

Bytes Saved With VBR

The total number of bytes saved in this function by using the Variable Bit Rate encoding scheme. The
percentage is relative to # of VBR Expanded Bytes.
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SEE ALSO

llvm-dis - LLVM disassembler, LLVM Bitcode File Format

Developer Tools

FileCheck - Flexible pattern matching file verifier

SYNOPSIS

FileCheck match-filename [–check-prefix=XXX] [–strict-whitespace]

DESCRIPTION

FileCheck reads two files (one from standard input, and one specified on the command line) and uses one to verify
the other. This behavior is particularly useful for the testsuite, which wants to verify that the output of some tool (e.g.
llc) contains the expected information (for example, a movsd from esp or whatever is interesting). This is similar to
using grep, but it is optimized for matching multiple different inputs in one file in a specific order.

The match-filename file specifies the file that contains the patterns to match. The file to verify is read from
standard input unless the --input-file option is used.

OPTIONS

-help
Print a summary of command line options.

--check-prefix prefix
FileCheck searches the contents of match-filename for patterns to match. By default, these patterns are
prefixed with “CHECK:”. If you’d like to use a different prefix (e.g. because the same input file is checking
multiple different tool or options), the --check-prefix argument allows you to specify one or more prefixes
to match. Multiple prefixes are useful for tests which might change for different run options, but most lines
remain the same.

--check-prefixes prefix1,prefix2,...
An alias of --check-prefix that allows multiple prefixes to be specified as a comma separated list.

--input-file filename
File to check (defaults to stdin).

--match-full-lines
By default, FileCheck allows matches of anywhere on a line. This option will require all positive matches to
cover an entire line. Leading and trailing whitespace is ignored, unless --strict-whitespace is also
specified. (Note: negative matches from CHECK-NOT are not affected by this option!)

Passing this option is equivalent to inserting {{^ *}} or {{^}} before, and {{ *$}} or {{$}} after every
positive check pattern.

--strict-whitespace
By default, FileCheck canonicalizes input horizontal whitespace (spaces and tabs) which causes it to ignore
these differences (a space will match a tab). The --strict-whitespace argument disables this behavior.
End-of-line sequences are canonicalized to UNIX-style \n in all modes.
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--implicit-check-not check-pattern
Adds implicit negative checks for the specified patterns between positive checks. The option allows writing
stricter tests without stuffing them with CHECK-NOTs.

For example, “--implicit-check-not warning:” can be useful when testing diagnostic messages
from tools that don’t have an option similar to clang -verify. With this option FileCheck will verify that
input does not contain warnings not covered by any CHECK: patterns.

-version
Show the version number of this program.

EXIT STATUS

If FileCheck verifies that the file matches the expected contents, it exits with 0. Otherwise, if not, or if an error
occurs, it will exit with a non-zero value.

TUTORIAL

FileCheck is typically used from LLVM regression tests, being invoked on the RUN line of the test. A simple example
of using FileCheck from a RUN line looks like this:

; RUN: llvm-as < %s | llc -march=x86-64 | FileCheck %s

This syntax says to pipe the current file (“%s”) into llvm-as, pipe that into llc, then pipe the output of llc into
FileCheck. This means that FileCheck will be verifying its standard input (the llc output) against the filename
argument specified (the original .ll file specified by “%s”). To see how this works, let’s look at the rest of the .ll
file (after the RUN line):

define void @sub1(i32* %p, i32 %v) {
entry:
; CHECK: sub1:
; CHECK: subl

%0 = tail call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %p, i32 %v)
ret void

}

define void @inc4(i64* %p) {
entry:
; CHECK: inc4:
; CHECK: incq

%0 = tail call i64 @llvm.atomic.load.add.i64.p0i64(i64* %p, i64 1)
ret void

}

Here you can see some “CHECK:” lines specified in comments. Now you can see how the file is piped into llvm-as,
then llc, and the machine code output is what we are verifying. FileCheck checks the machine code output to verify
that it matches what the “CHECK:” lines specify.

The syntax of the “CHECK:” lines is very simple: they are fixed strings that must occur in order. FileCheck defaults
to ignoring horizontal whitespace differences (e.g. a space is allowed to match a tab) but otherwise, the contents of
the “CHECK:” line is required to match some thing in the test file exactly.

One nice thing about FileCheck (compared to grep) is that it allows merging test cases together into logical groups.
For example, because the test above is checking for the “sub1:” and “inc4:” labels, it will not match unless there
is a “subl” in between those labels. If it existed somewhere else in the file, that would not count: “grep subl”
matches if “subl” exists anywhere in the file.
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The FileCheck -check-prefix option

The FileCheck -check-prefix option allows multiple test configurations to be driven from one .ll file. This is useful in
many circumstances, for example, testing different architectural variants with llc. Here’s a simple example:

; RUN: llvm-as < %s | llc -mtriple=i686-apple-darwin9 -mattr=sse41 \
; RUN: | FileCheck %s -check-prefix=X32
; RUN: llvm-as < %s | llc -mtriple=x86_64-apple-darwin9 -mattr=sse41 \
; RUN: | FileCheck %s -check-prefix=X64

define <4 x i32> @pinsrd_1(i32 %s, <4 x i32> %tmp) nounwind {
%tmp1 = insertelement <4 x i32>; %tmp, i32 %s, i32 1
ret <4 x i32> %tmp1

; X32: pinsrd_1:
; X32: pinsrd $1, 4(%esp), %xmm0

; X64: pinsrd_1:
; X64: pinsrd $1, %edi, %xmm0
}

In this case, we’re testing that we get the expected code generation with both 32-bit and 64-bit code generation.

The “CHECK-NEXT:” directive

Sometimes you want to match lines and would like to verify that matches happen on exactly consecutive lines with no
other lines in between them. In this case, you can use “CHECK:” and “CHECK-NEXT:” directives to specify this. If
you specified a custom check prefix, just use “<PREFIX>-NEXT:”. For example, something like this works as you’d
expect:

define void @t2(<2 x double>* %r, <2 x double>* %A, double %B) {
%tmp3 = load <2 x double>* %A, align 16
%tmp7 = insertelement <2 x double> undef, double %B, i32 0
%tmp9 = shufflevector <2 x double> %tmp3,

<2 x double> %tmp7,
<2 x i32> < i32 0, i32 2 >

store <2 x double> %tmp9, <2 x double>* %r, align 16
ret void

; CHECK: t2:
; CHECK: movl 8(%esp), %eax
; CHECK-NEXT: movapd (%eax), %xmm0
; CHECK-NEXT: movhpd 12(%esp), %xmm0
; CHECK-NEXT: movl 4(%esp), %eax
; CHECK-NEXT: movapd %xmm0, (%eax)
; CHECK-NEXT: ret
}

“CHECK-NEXT:” directives reject the input unless there is exactly one newline between it and the previous directive.
A “CHECK-NEXT:” cannot be the first directive in a file.

The “CHECK-SAME:” directive

Sometimes you want to match lines and would like to verify that matches happen on the same line as the previous
match. In this case, you can use “CHECK:” and “CHECK-SAME:” directives to specify this. If you specified a custom
check prefix, just use “<PREFIX>-SAME:”.
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“CHECK-SAME:” is particularly powerful in conjunction with “CHECK-NOT:” (described below).

For example, the following works like you’d expect:

!0 = !DILocation(line: 5, scope: !1, inlinedAt: !2)

; CHECK: !DILocation(line: 5,
; CHECK-NOT: column:
; CHECK-SAME: scope: ![[SCOPE:[0-9]+]]

“CHECK-SAME:” directives reject the input if there are any newlines between it and the previous directive. A
“CHECK-SAME:” cannot be the first directive in a file.

The “CHECK-NOT:” directive

The “CHECK-NOT:” directive is used to verify that a string doesn’t occur between two matches (or before the first
match, or after the last match). For example, to verify that a load is removed by a transformation, a test like this can
be used:

define i8 @coerce_offset0(i32 %V, i32* %P) {
store i32 %V, i32* %P

%P2 = bitcast i32* %P to i8*
%P3 = getelementptr i8* %P2, i32 2

%A = load i8* %P3
ret i8 %A

; CHECK: @coerce_offset0
; CHECK-NOT: load
; CHECK: ret i8
}

The “CHECK-DAG:” directive

If it’s necessary to match strings that don’t occur in a strictly sequential order, “CHECK-DAG:” could be used to verify
them between two matches (or before the first match, or after the last match). For example, clang emits vtable globals
in reverse order. Using CHECK-DAG:, we can keep the checks in the natural order:

// RUN: %clang_cc1 %s -emit-llvm -o - | FileCheck %s

struct Foo { virtual void method(); };
Foo f; // emit vtable
// CHECK-DAG: @_ZTV3Foo =

struct Bar { virtual void method(); };
Bar b;
// CHECK-DAG: @_ZTV3Bar =

CHECK-NOT: directives could be mixed with CHECK-DAG: directives to exclude strings between the surrounding
CHECK-DAG: directives. As a result, the surrounding CHECK-DAG: directives cannot be reordered, i.e. all occur-
rences matching CHECK-DAG: before CHECK-NOT:must not fall behind occurrences matching CHECK-DAG: after
CHECK-NOT:. For example,

2.6. LLVM Command Guide 269



LLVM Documentation, Release 3.9

; CHECK-DAG: BEFORE
; CHECK-NOT: NOT
; CHECK-DAG: AFTER

This case will reject input strings where BEFORE occurs after AFTER.

With captured variables, CHECK-DAG: is able to match valid topological orderings of a DAG with edges from the
definition of a variable to its use. It’s useful, e.g., when your test cases need to match different output sequences from
the instruction scheduler. For example,

; CHECK-DAG: add [[REG1:r[0-9]+]], r1, r2
; CHECK-DAG: add [[REG2:r[0-9]+]], r3, r4
; CHECK: mul r5, [[REG1]], [[REG2]]

In this case, any order of that two add instructions will be allowed.

If you are defining and using variables in the same CHECK-DAG: block, be aware that the definition rule can match
after its use.

So, for instance, the code below will pass:

; CHECK-DAG: vmov.32 [[REG2:d[0-9]+]][0]
; CHECK-DAG: vmov.32 [[REG2]][1]
vmov.32 d0[1]
vmov.32 d0[0]

While this other code, will not:

; CHECK-DAG: vmov.32 [[REG2:d[0-9]+]][0]
; CHECK-DAG: vmov.32 [[REG2]][1]
vmov.32 d1[1]
vmov.32 d0[0]

While this can be very useful, it’s also dangerous, because in the case of register sequence, you must have a strong
order (read before write, copy before use, etc). If the definition your test is looking for doesn’t match (because of a
bug in the compiler), it may match further away from the use, and mask real bugs away.

In those cases, to enforce the order, use a non-DAG directive between DAG-blocks.

The “CHECK-LABEL:” directive

Sometimes in a file containing multiple tests divided into logical blocks, one or more CHECK: directives may inad-
vertently succeed by matching lines in a later block. While an error will usually eventually be generated, the check
flagged as causing the error may not actually bear any relationship to the actual source of the problem.

In order to produce better error messages in these cases, the “CHECK-LABEL:” directive can be used. It is treated
identically to a normal CHECK directive except that FileCheck makes an additional assumption that a line matched by
the directive cannot also be matched by any other check present in match-filename; this is intended to be used
for lines containing labels or other unique identifiers. Conceptually, the presence of CHECK-LABEL divides the input
stream into separate blocks, each of which is processed independently, preventing a CHECK: directive in one block
matching a line in another block. For example,

define %struct.C* @C_ctor_base(%struct.C* %this, i32 %x) {
entry:
; CHECK-LABEL: C_ctor_base:
; CHECK: mov [[SAVETHIS:r[0-9]+]], r0
; CHECK: bl A_ctor_base
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; CHECK: mov r0, [[SAVETHIS]]
%0 = bitcast %struct.C* %this to %struct.A*
%call = tail call %struct.A* @A_ctor_base(%struct.A* %0)
%1 = bitcast %struct.C* %this to %struct.B*
%call2 = tail call %struct.B* @B_ctor_base(%struct.B* %1, i32 %x)
ret %struct.C* %this

}

define %struct.D* @D_ctor_base(%struct.D* %this, i32 %x) {
entry:
; CHECK-LABEL: D_ctor_base:

The use of CHECK-LABEL: directives in this case ensures that the three CHECK: directives only accept lines cor-
responding to the body of the @C_ctor_base function, even if the patterns match lines found later in the file.
Furthermore, if one of these three CHECK: directives fail, FileCheck will recover by continuing to the next block,
allowing multiple test failures to be detected in a single invocation.

There is no requirement that CHECK-LABEL: directives contain strings that correspond to actual syntactic labels in a
source or output language: they must simply uniquely match a single line in the file being verified.

CHECK-LABEL: directives cannot contain variable definitions or uses.

FileCheck Pattern Matching Syntax

All FileCheck directives take a pattern to match. For most uses of FileCheck, fixed string matching is perfectly
sufficient. For some things, a more flexible form of matching is desired. To support this, FileCheck allows you to
specify regular expressions in matching strings, surrounded by double braces: {{yourregex}}. Because we want
to use fixed string matching for a majority of what we do, FileCheck has been designed to support mixing and matching
fixed string matching with regular expressions. This allows you to write things like this:

; CHECK: movhpd {{[0-9]+}}(%esp), {{%xmm[0-7]}}

In this case, any offset from the ESP register will be allowed, and any xmm register will be allowed.

Because regular expressions are enclosed with double braces, they are visually distinct, and you don’t need to use
escape characters within the double braces like you would in C. In the rare case that you want to match double braces
explicitly from the input, you can use something ugly like {{[{][{]}} as your pattern.

FileCheck Variables

It is often useful to match a pattern and then verify that it occurs again later in the file. For codegen tests, this can
be useful to allow any register, but verify that that register is used consistently later. To do this, FileCheck allows
named variables to be defined and substituted into patterns. Here is a simple example:

; CHECK: test5:
; CHECK: notw [[REGISTER:%[a-z]+]]
; CHECK: andw {{.*}}[[REGISTER]]

The first check line matches a regex %[a-z]+ and captures it into the variable REGISTER. The second line verifies
that whatever is in REGISTER occurs later in the file after an “andw”. FileCheck variable references are always
contained in [[ ]] pairs, and their names can be formed with the regex [a-zA-Z][a-zA-Z0-9]*. If a colon
follows the name, then it is a definition of the variable; otherwise, it is a use.

FileCheck variables can be defined multiple times, and uses always get the latest value. Variables can also be used
later on the same line they were defined on. For example:
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; CHECK: op [[REG:r[0-9]+]], [[REG]]

Can be useful if you want the operands of op to be the same register, and don’t care exactly which register it is.

FileCheck Expressions

Sometimes there’s a need to verify output which refers line numbers of the match file, e.g. when testing compiler
diagnostics. This introduces a certain fragility of the match file structure, as “CHECK:” lines contain absolute line
numbers in the same file, which have to be updated whenever line numbers change due to text addition or deletion.

To support this case, FileCheck allows using [[@LINE]], [[@LINE+<offset>]], [[@LINE-<offset>]]
expressions in patterns. These expressions expand to a number of the line where a pattern is located (with an optional
integer offset).

This way match patterns can be put near the relevant test lines and include relative line number references, for example:

// CHECK: test.cpp:[[@LINE+4]]:6: error: expected ';' after top level declarator
// CHECK-NEXT: {{^int a}}
// CHECK-NEXT: {{^ \^}}
// CHECK-NEXT: {{^ ;}}
int a

Matching Newline Characters

To match newline characters in regular expressions the character class [[:space:]] can be used. For example, the
following pattern:

// CHECK: DW_AT_location [DW_FORM_sec_offset] ([[DLOC:0x[0-9a-f]+]]){{[[:space:]].*}}
→˓"intd"

matches output of the form (from llvm-dwarfdump):

DW_AT_location [DW_FORM_sec_offset] (0x00000233)
DW_AT_name [DW_FORM_strp] ( .debug_str[0x000000c9] = "intd")

letting us set the FileCheck variable DLOC to the desired value 0x00000233, extracted from the line immediately
preceding “intd”.

tblgen - Target Description To C++ Code Generator

SYNOPSIS

tblgen [options] [filename]

DESCRIPTION

tblgen translates from target description (.td) files into C++ code that can be included in the definition of an LLVM
target library. Most users of LLVM will not need to use this program. It is only for assisting with writing an LLVM
target backend.

The input and output of tblgen is beyond the scope of this short introduction; please see the introduction to Table-
Gen.
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The filename argument specifies the name of a Target Description (.td) file to read as input.

OPTIONS

-help
Print a summary of command line options.

-o filename
Specify the output file name. If filename is -, then tblgen sends its output to standard output.

-I directory
Specify where to find other target description files for inclusion. The directory value should be a full or
partial path to a directory that contains target description files.

-asmparsernum N
Make -gen-asm-parser emit assembly writer number N.

-asmwriternum N
Make -gen-asm-writer emit assembly writer number N.

-class className
Print the enumeration list for this class.

-print-records
Print all records to standard output (default).

-print-enums
Print enumeration values for a class.

-print-sets
Print expanded sets for testing DAG exprs.

-gen-emitter
Generate machine code emitter.

-gen-register-info
Generate registers and register classes info.

-gen-instr-info
Generate instruction descriptions.

-gen-asm-writer
Generate the assembly writer.

-gen-disassembler
Generate disassembler.

-gen-pseudo-lowering
Generate pseudo instruction lowering.

-gen-dag-isel
Generate a DAG (Directed Acycle Graph) instruction selector.

-gen-asm-matcher
Generate assembly instruction matcher.

-gen-dfa-packetizer
Generate DFA Packetizer for VLIW targets.

-gen-fast-isel
Generate a “fast” instruction selector.
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-gen-subtarget
Generate subtarget enumerations.

-gen-intrinsic
Generate intrinsic information.

-gen-tgt-intrinsic
Generate target intrinsic information.

-gen-enhanced-disassembly-info
Generate enhanced disassembly info.

-version
Show the version number of this program.

EXIT STATUS

If tblgen succeeds, it will exit with 0. Otherwise, if an error occurs, it will exit with a non-zero value.

lit - LLVM Integrated Tester

SYNOPSIS

lit [options] [tests]

DESCRIPTION

lit is a portable tool for executing LLVM and Clang style test suites, summarizing their results, and providing
indication of failures. lit is designed to be a lightweight testing tool with as simple a user interface as possible.

lit should be run with one or more tests to run specified on the command line. Tests can be either individual test
files or directories to search for tests (see TEST DISCOVERY).

Each specified test will be executed (potentially in parallel) and once all tests have been run lit will print summary
information on the number of tests which passed or failed (see TEST STATUS RESULTS). The lit program will
execute with a non-zero exit code if any tests fail.

By default lit will use a succinct progress display and will only print summary information for test failures. See
OUTPUT OPTIONS for options controlling the lit progress display and output.

lit also includes a number of options for controlling how tests are executed (specific features may depend on the
particular test format). See EXECUTION OPTIONS for more information.

Finally, lit also supports additional options for only running a subset of the options specified on the command line,
see SELECTION OPTIONS for more information.

Users interested in the lit architecture or designing a lit testing implementation should see LIT INFRASTRUC-
TURE.

GENERAL OPTIONS

-h, --help
Show the lit help message.
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-j N, --threads=N
Run N tests in parallel. By default, this is automatically chosen to match the number of detected available CPUs.

--config-prefix=NAME
Search for NAME.cfg and NAME.site.cfg when searching for test suites, instead of lit.cfg and lit.
site.cfg.

-D NAME, -D NAME=VALUE, --param NAME, --param NAME=VALUE
Add a user defined parameter NAME with the given VALUE (or the empty string if not given). The meaning and
use of these parameters is test suite dependent.

OUTPUT OPTIONS

-q, --quiet
Suppress any output except for test failures.

-s, --succinct
Show less output, for example don’t show information on tests that pass.

-v, --verbose
Show more information on test failures, for example the entire test output instead of just the test result.

-a, --show-all
Show more information about all tests, for example the entire test commandline and output.

--no-progress-bar
Do not use curses based progress bar.

--show-unsupported
Show the names of unsupported tests.

--show-xfail
Show the names of tests that were expected to fail.

EXECUTION OPTIONS

--path=PATH
Specify an additional PATH to use when searching for executables in tests.

--vg
Run individual tests under valgrind (using the memcheck tool). The --error-exitcode argument for
valgrind is used so that valgrind failures will cause the program to exit with a non-zero status.

When this option is enabled, lit will also automatically provide a “valgrind” feature that can be used to
conditionally disable (or expect failure in) certain tests.

--vg-arg=ARG
When --vg is used, specify an additional argument to pass to valgrind itself.

--vg-leak
When --vg is used, enable memory leak checks. When this option is enabled, lit will also automatically
provide a “vg_leak” feature that can be used to conditionally disable (or expect failure in) certain tests.

--time-tests
Track the wall time individual tests take to execute and includes the results in the summary output. This is useful
for determining which tests in a test suite take the most time to execute. Note that this option is most useful with
-j 1.
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SELECTION OPTIONS

--max-tests=N
Run at most N tests and then terminate.

--max-time=N
Spend at most N seconds (approximately) running tests and then terminate.

--shuffle
Run the tests in a random order.

ADDITIONAL OPTIONS

--debug
Run lit in debug mode, for debugging configuration issues and lit itself.

--show-suites
List the discovered test suites and exit.

--show-tests
List all of the discovered tests and exit.

EXIT STATUS

lit will exit with an exit code of 1 if there are any FAIL or XPASS results. Otherwise, it will exit with the status 0.
Other exit codes are used for non-test related failures (for example a user error or an internal program error).

TEST DISCOVERY

The inputs passed to lit can be either individual tests, or entire directories or hierarchies of tests to run. When lit
starts up, the first thing it does is convert the inputs into a complete list of tests to run as part of test discovery.

In the lit model, every test must exist inside some test suite. lit resolves the inputs specified on the command line
to test suites by searching upwards from the input path until it finds a lit.cfg or lit.site.cfg file. These files
serve as both a marker of test suites and as configuration files which lit loads in order to understand how to find and
run the tests inside the test suite.

Once lit has mapped the inputs into test suites it traverses the list of inputs adding tests for individual files and
recursively searching for tests in directories.

This behavior makes it easy to specify a subset of tests to run, while still allowing the test suite configuration to control
exactly how tests are interpreted. In addition, lit always identifies tests by the test suite they are in, and their relative
path inside the test suite. For appropriately configured projects, this allows lit to provide convenient and flexible
support for out-of-tree builds.

TEST STATUS RESULTS

Each test ultimately produces one of the following six results:

PASS

The test succeeded.

XFAIL
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The test failed, but that is expected. This is used for test formats which allow specifying that a test does
not currently work, but wish to leave it in the test suite.

XPASS

The test succeeded, but it was expected to fail. This is used for tests which were specified as expected to
fail, but are now succeeding (generally because the feature they test was broken and has been fixed).

FAIL

The test failed.

UNRESOLVED

The test result could not be determined. For example, this occurs when the test could not be run, the test
itself is invalid, or the test was interrupted.

UNSUPPORTED

The test is not supported in this environment. This is used by test formats which can report unsupported
tests.

Depending on the test format tests may produce additional information about their status (generally only for failures).
See the OUTPUT OPTIONS section for more information.

LIT INFRASTRUCTURE

This section describes the lit testing architecture for users interested in creating a new lit testing implementation,
or extending an existing one.

lit proper is primarily an infrastructure for discovering and running arbitrary tests, and to expose a single convenient
interface to these tests. lit itself doesn’t know how to run tests, rather this logic is defined by test suites.

TEST SUITES

As described in TEST DISCOVERY , tests are always located inside a test suite. Test suites serve to define the format
of the tests they contain, the logic for finding those tests, and any additional information to run the tests.

lit identifies test suites as directories containing lit.cfg or lit.site.cfg files (see also
--config-prefix). Test suites are initially discovered by recursively searching up the directory hierarchy
for all the input files passed on the command line. You can use --show-suites to display the discovered test
suites at startup.

Once a test suite is discovered, its config file is loaded. Config files themselves are Python modules which will be
executed. When the config file is executed, two important global variables are predefined:

lit_config

The global lit configuration object (a LitConfig instance), which defines the builtin test formats, global
configuration parameters, and other helper routines for implementing test configurations.

config

This is the config object (a TestingConfig instance) for the test suite, which the config file is expected to
populate. The following variables are also available on the config object, some of which must be set by
the config and others are optional or predefined:

name [required] The name of the test suite, for use in reports and diagnostics.

test_format [required] The test format object which will be used to discover and run tests in the test suite.
Generally this will be a builtin test format available from the lit.formats module.

2.6. LLVM Command Guide 277



LLVM Documentation, Release 3.9

test_source_root The filesystem path to the test suite root. For out-of-dir builds this is the directory that
will be scanned for tests.

test_exec_root For out-of-dir builds, the path to the test suite root inside the object directory. This is
where tests will be run and temporary output files placed.

environment A dictionary representing the environment to use when executing tests in the suite.

suffixes For lit test formats which scan directories for tests, this variable is a list of suffixes to identify test
files. Used by: ShTest.

substitutions For lit test formats which substitute variables into a test script, the list of substitutions to
perform. Used by: ShTest.

unsupported Mark an unsupported directory, all tests within it will be reported as unsupported. Used by:
ShTest.

parent The parent configuration, this is the config object for the directory containing the test suite, or
None.

root The root configuration. This is the top-most lit configuration in the project.

pipefail Normally a test using a shell pipe fails if any of the commands on the pipe fail. If this is not
desired, setting this variable to false makes the test fail only if the last command in the pipe fails.

TEST DISCOVERY

Once test suites are located, lit recursively traverses the source directory (following test_source_root) looking for
tests. When lit enters a sub-directory, it first checks to see if a nested test suite is defined in that directory. If so, it
loads that test suite recursively, otherwise it instantiates a local test config for the directory (see LOCAL CONFIGU-
RATION FILES).

Tests are identified by the test suite they are contained within, and the relative path inside that suite. Note that the
relative path may not refer to an actual file on disk; some test formats (such as GoogleTest) define “virtual tests” which
have a path that contains both the path to the actual test file and a subpath to identify the virtual test.

LOCAL CONFIGURATION FILES

When lit loads a subdirectory in a test suite, it instantiates a local test configuration by cloning the configuration
for the parent directory — the root of this configuration chain will always be a test suite. Once the test configuration
is cloned lit checks for a lit.local.cfg file in the subdirectory. If present, this file will be loaded and can be used to
specialize the configuration for each individual directory. This facility can be used to define subdirectories of optional
tests, or to change other configuration parameters — for example, to change the test format, or the suffixes which
identify test files.

PRE-DEFINED SUBSTITUTIONS

lit provides various patterns that can be used with the RUN command. These are defined in TestRunner.py.
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Macro Substitution
%s source path (path to the file currently being run)
%S source dir (directory of the file currently being run)
%p same as %S
%{pathsep} path separator
%t temporary file name unique to the test
%T temporary directory unique to the test
%% %
%/s same as %s but replace all / with \
%/S same as %S but replace all / with \
%/p same as %p but replace all / with \
%/t same as %t but replace all / with \
%/T same as %T but replace all / with \

Further substitution patterns might be defined by each test module. See the modules LOCAL CONFIGURATION
FILES.

More information on the testing infrastucture can be found in the LLVM Testing Infrastructure Guide.

TEST RUN OUTPUT FORMAT

The lit output for a test run conforms to the following schema, in both short and verbose modes (although in short
mode no PASS lines will be shown). This schema has been chosen to be relatively easy to reliably parse by a machine
(for example in buildbot log scraping), and for other tools to generate.

Each test result is expected to appear on a line that matches:

<result code>: <test name> (<progress info>)

where <result-code> is a standard test result such as PASS, FAIL, XFAIL, XPASS, UNRESOLVED, or UNSUP-
PORTED. The performance result codes of IMPROVED and REGRESSED are also allowed.

The <test name> field can consist of an arbitrary string containing no newline.

The <progress info> field can be used to report progress information such as (1/300) or can be empty, but even
when empty the parentheses are required.

Each test result may include additional (multiline) log information in the following format:

<log delineator> TEST '(<test name>)' <trailing delineator>
... log message ...
<log delineator>

where <test name> should be the name of a preceding reported test, <log delineator> is a string of “*”
characters at least four characters long (the recommended length is 20), and <trailing delineator> is an
arbitrary (unparsed) string.

The following is an example of a test run output which consists of four tests A, B, C, and D, and a log message for the
failing test C:

PASS: A (1 of 4)
PASS: B (2 of 4)
FAIL: C (3 of 4)

******************** TEST 'C' FAILED ********************
Test 'C' failed as a result of exit code 1.

********************
PASS: D (4 of 4)
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LIT EXAMPLE TESTS

The lit distribution contains several example implementations of test suites in the ExampleTests directory.

SEE ALSO

valgrind(1)

llvm-build - LLVM Project Build Utility

SYNOPSIS

llvm-build [options]

DESCRIPTION

llvm-build is a tool for working with LLVM projects that use the LLVMBuild system for describing their components.

At heart, llvm-build is responsible for loading, verifying, and manipulating the project’s component data. The tool
is primarily designed for use in implementing build systems and tools which need access to the project structure
information.

OPTIONS

-h, –help

Print the builtin program help.

–source-root=PATH

If given, load the project at the given source root path. If this option is not given, the location of the project
sources will be inferred from the location of the llvm-build script itself.

–print-tree

Print the component tree for the project.

–write-library-table

Write out the C++ fragment which defines the components, library names, and required libraries. This
C++ fragment is built into llvm-config|llvm-config in order to provide clients with the list of required
libraries for arbitrary component combinations.

–write-llvmbuild

Write out new LLVMBuild.txt files based on the loaded components. This is useful for auto-upgrading the
schema of the files. llvm-build will try to a limited extent to preserve the comments which were written
in the original source file, although at this time it only preserves block comments that precede the section
names in the LLVMBuild files.

–write-cmake-fragment

Write out the LLVMBuild in the form of a CMake fragment, so it can easily be consumed by the CMake
based build system. The exact contents and format of this file are closely tied to how LLVMBuild is
integrated with CMake, see LLVM’s top-level CMakeLists.txt.
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–write-make-fragment

Write out the LLVMBuild in the form of a Makefile fragment, so it can easily be consumed by a Make
based build system. The exact contents and format of this file are closely tied to how LLVMBuild is
integrated with the Makefiles, see LLVM’s Makefile.rules.

–llvmbuild-source-root=PATH

If given, expect the LLVMBuild files for the project to be rooted at the given path, instead of inside the
source tree itself. This option is primarily designed for use in conjunction with –write-llvmbuild to test
changes to LLVMBuild schema.

EXIT STATUS

llvm-build exits with 0 if operation was successful. Otherwise, it will exist with a non-zero value.

llvm-readobj - LLVM Object Reader

SYNOPSIS

llvm-readobj [options] [input...]

DESCRIPTION

The llvm-readobj tool displays low-level format-specific information about one or more object files. The tool and
its output is primarily designed for use in FileCheck-based tests.

OPTIONS

If input is “-” or omitted, llvm-readobj reads from standard input. Otherwise, it will read from the specified
filenames.

-help
Print a summary of command line options.

-version
Display the version of this program

-file-headers, -h
Display file headers.

-sections, -s
Display all sections.

-section-data, -sd
When used with -sections, display section data for each section shown.

-section-relocations, -sr
When used with -sections, display relocations for each section shown.

-section-symbols, -st
When used with -sections, display symbols for each section shown.

-relocations, -r
Display the relocation entries in the file.
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-symbols, -t
Display the symbol table.

-dyn-symbols
Display the dynamic symbol table (only for ELF object files).

-unwind, -u
Display unwind information.

-expand-relocs
When used with -relocations, display each relocation in an expanded multi-line format.

-dynamic-table
Display the ELF .dynamic section table (only for ELF object files).

-needed-libs
Display the needed libraries (only for ELF object files).

-program-headers
Display the ELF program headers (only for ELF object files).

-elf-section-groups, -g
Display section groups (only for ELF object files).

EXIT STATUS

llvm-readobj returns 0.

Getting Started with the LLVM System

• Overview

• Getting Started Quickly (A Summary)

• Requirements

– Hardware

– Software

– Host C++ Toolchain, both Compiler and Standard Library

* Getting a Modern Host C++ Toolchain

• Getting Started with LLVM

– Terminology and Notation

– Unpacking the LLVM Archives

– Checkout LLVM from Subversion

– Git Mirror

* Sending patches with Git

* For developers to work with git-svn

– Local LLVM Configuration
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– Compiling the LLVM Suite Source Code

– Cross-Compiling LLVM

– The Location of LLVM Object Files

– Optional Configuration Items

• Directory Layout

– llvm/examples

– llvm/include

– llvm/lib

– llvm/projects

– llvm/test

– test-suite

– llvm/tools

– llvm/utils

• An Example Using the LLVM Tool Chain

– Example with clang

• Common Problems

• Links

Overview

Welcome to LLVM! In order to get started, you first need to know some basic information.

First, LLVM comes in three pieces. The first piece is the LLVM suite. This contains all of the tools, libraries, and
header files needed to use LLVM. It contains an assembler, disassembler, bitcode analyzer and bitcode optimizer. It
also contains basic regression tests that can be used to test the LLVM tools and the Clang front end.

The second piece is the Clang front end. This component compiles C, C++, Objective C, and Objective C++ code
into LLVM bitcode. Once compiled into LLVM bitcode, a program can be manipulated with the LLVM tools from the
LLVM suite.

There is a third, optional piece called Test Suite. It is a suite of programs with a testing harness that can be used to
further test LLVM’s functionality and performance.

Getting Started Quickly (A Summary)

The LLVM Getting Started documentation may be out of date. So, the Clang Getting Started page might also be a
good place to start.

Here’s the short story for getting up and running quickly with LLVM:

1. Read the documentation.

2. Read the documentation.

3. Remember that you were warned twice about reading the documentation.

• In particular, the relative paths specified are important.
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4. Checkout LLVM:

• cd where-you-want-llvm-to-live

• svn co http://llvm.org/svn/llvm-project/llvm/trunk llvm

5. Checkout Clang:

• cd where-you-want-llvm-to-live

• cd llvm/tools

• svn co http://llvm.org/svn/llvm-project/cfe/trunk clang

6. Checkout Compiler-RT (required to build the sanitizers) [Optional]:

• cd where-you-want-llvm-to-live

• cd llvm/projects

• svn co http://llvm.org/svn/llvm-project/compiler-rt/trunk compiler-rt

7. Checkout Libomp (required for OpenMP support) [Optional]:

• cd where-you-want-llvm-to-live

• cd llvm/projects

• svn co http://llvm.org/svn/llvm-project/openmp/trunk openmp

8. Checkout libcxx and libcxxabi [Optional]:

• cd where-you-want-llvm-to-live

• cd llvm/projects

• svn co http://llvm.org/svn/llvm-project/libcxx/trunk libcxx

• svn co http://llvm.org/svn/llvm-project/libcxxabi/trunk libcxxabi

9. Get the Test Suite Source Code [Optional]

• cd where-you-want-llvm-to-live

• cd llvm/projects

• svn co http://llvm.org/svn/llvm-project/test-suite/trunk test-suite

10. Configure and build LLVM and Clang:

Warning: Make sure you’ve checked out all of the source code before trying to configure with cmake. cmake
does not pickup newly added source directories in incremental builds.

The build uses CMake. LLVM requires CMake 3.4.3 to build. It is generally recommended to use a recent
CMake, especially if you’re generating Ninja build files. This is because the CMake project is constantly
improving the quality of the generators, and the Ninja generator gets a lot of attention.

• cd where you want to build llvm

• mkdir build

• cd build

• cmake -G <generator> [options] <path to llvm sources>

Some common generators are:

– Unix Makefiles — for generating make-compatible parallel makefiles.

– Ninja — for generating Ninja build files. Most llvm developers use Ninja.

284 Chapter 2. User Guides

https://ninja-build.org


LLVM Documentation, Release 3.9

– Visual Studio — for generating Visual Studio projects and solutions.

– Xcode — for generating Xcode projects.

Some Common options:

– -DCMAKE_INSTALL_PREFIX=directory — Specify for directory the full pathname of where
you want the LLVM tools and libraries to be installed (default /usr/local).

– -DCMAKE_BUILD_TYPE=type — Valid options for type are Debug, Release, RelWithDebInfo,
and MinSizeRel. Default is Debug.

– -DLLVM_ENABLE_ASSERTIONS=On — Compile with assertion checks enabled (default is Yes for
Debug builds, No for all other build types).

• Run your build tool of choice!

– The default target (i.e. make) will build all of LLVM

– The check-all target (i.e. make check-all) will run the regression tests to ensure everything
is in working order.

– CMake will generate build targets for each tool and library, and most LLVM sub-projects generate
their own check-<project> target.

– Running a serial build will be slow. Make sure you run a parallel build; for make, use make -j.

• For more information see CMake

• If you get an “internal compiler error (ICE)” or test failures, see below.

Consult the Getting Started with LLVM section for detailed information on configuring and compiling LLVM. Go to
Directory Layout to learn about the layout of the source code tree.

Requirements

Before you begin to use the LLVM system, review the requirements given below. This may save you some trouble by
knowing ahead of time what hardware and software you will need.

Hardware

LLVM is known to work on the following host platforms:

OS Arch Compilers
Linux x861 GCC, Clang
Linux amd64 GCC, Clang
Linux ARM4 GCC, Clang
Linux PowerPC GCC, Clang
Solaris V9 (Ultrasparc) GCC
FreeBSD x861 GCC, Clang
FreeBSD amd64 GCC, Clang
MacOS X2 PowerPC GCC
MacOS X x86 GCC, Clang
Cygwin/Win32 x861, 3 GCC
Windows x861 Visual Studio
Windows x64 x86-64 Visual Studio

Note:
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1. Code generation supported for Pentium processors and up

2. Code generation supported for 32-bit ABI only

3. To use LLVM modules on Win32-based system, you may configure LLVM with
-DBUILD_SHARED_LIBS=On.

4. MCJIT not working well pre-v7, old JIT engine not supported any more.

Note that Debug builds require a lot of time and disk space. An LLVM-only build will need about 1-3 GB of space. A
full build of LLVM and Clang will need around 15-20 GB of disk space. The exact space requirements will vary by
system. (It is so large because of all the debugging information and the fact that the libraries are statically linked into
multiple tools).

If you you are space-constrained, you can build only selected tools or only selected targets. The Release build requires
considerably less space.

The LLVM suite may compile on other platforms, but it is not guaranteed to do so. If compilation is successful,
the LLVM utilities should be able to assemble, disassemble, analyze, and optimize LLVM bitcode. Code generation
should work as well, although the generated native code may not work on your platform.

Software

Compiling LLVM requires that you have several software packages installed. The table below lists those required
packages. The Package column is the usual name for the software package that LLVM depends on. The Version
column provides “known to work” versions of the package. The Notes column describes how LLVM uses the package
and provides other details.

Package Version Notes
GNU Make 3.79, 3.79.1 Makefile/build processor
GCC >=4.7.0 C/C++ compiler1

python >=2.7 Automated test suite2

zlib >=1.2.3.4 Compression library3

Note:

1. Only the C and C++ languages are needed so there’s no need to build the other languages for LLVM’s purposes.
See below for specific version info.

2. Only needed if you want to run the automated test suite in the llvm/test directory.

3. Optional, adds compression / uncompression capabilities to selected LLVM tools.

Additionally, your compilation host is expected to have the usual plethora of Unix utilities. Specifically:

• ar — archive library builder

• bzip2 — bzip2 command for distribution generation

• bunzip2 — bunzip2 command for distribution checking

• chmod — change permissions on a file

• cat — output concatenation utility

• cp — copy files

• date — print the current date/time

• echo — print to standard output

286 Chapter 2. User Guides

http://savannah.gnu.org/projects/make
http://gcc.gnu.org/
http://www.python.org/
http://zlib.net


LLVM Documentation, Release 3.9

• egrep — extended regular expression search utility

• find — find files/dirs in a file system

• grep — regular expression search utility

• gzip — gzip command for distribution generation

• gunzip — gunzip command for distribution checking

• install — install directories/files

• mkdir — create a directory

• mv — move (rename) files

• ranlib — symbol table builder for archive libraries

• rm — remove (delete) files and directories

• sed — stream editor for transforming output

• sh — Bourne shell for make build scripts

• tar — tape archive for distribution generation

• test — test things in file system

• unzip — unzip command for distribution checking

• zip — zip command for distribution generation

Host C++ Toolchain, both Compiler and Standard Library

LLVM is very demanding of the host C++ compiler, and as such tends to expose bugs in the compiler. We are also
planning to follow improvements and developments in the C++ language and library reasonably closely. As such, we
require a modern host C++ toolchain, both compiler and standard library, in order to build LLVM.

For the most popular host toolchains we check for specific minimum versions in our build systems:

• Clang 3.1

• GCC 4.7

• Visual Studio 2013

Anything older than these toolchains may work, but will require forcing the build system with a special option and is
not really a supported host platform. Also note that older versions of these compilers have often crashed or miscom-
piled LLVM.

For less widely used host toolchains such as ICC or xlC, be aware that a very recent version may be required to support
all of the C++ features used in LLVM.

We track certain versions of software that are known to fail when used as part of the host toolchain. These even include
linkers at times.

GCC 4.6.3 on ARM: Miscompiles llvm-readobj at -O3. A test failure in test/Object/
readobj-shared-object.test is one symptom of the problem.

GNU ld 2.16.X. Some 2.16.X versions of the ld linker will produce very long warning messages complaining that
some “.gnu.linkonce.t.*” symbol was defined in a discarded section. You can safely ignore these messages as
they are erroneous and the linkage is correct. These messages disappear using ld 2.17.

GNU binutils 2.17: Binutils 2.17 contains a bug which causes huge link times (minutes instead of seconds) when
building LLVM. We recommend upgrading to a newer version (2.17.50.0.4 or later).
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GNU Binutils 2.19.1 Gold: This version of Gold contained a bug which causes intermittent failures when building
LLVM with position independent code. The symptom is an error about cyclic dependencies. We recommend upgrading
to a newer version of Gold.

Clang 3.0 with libstdc++ 4.7.x: a few Linux distributions (Ubuntu 12.10, Fedora 17) have both Clang 3.0 and lib-
stdc++ 4.7 in their repositories. Clang 3.0 does not implement a few builtins that are used in this library. We recom-
mend using the system GCC to compile LLVM and Clang in this case.

Clang 3.0 on Mageia 2. There’s a packaging issue: Clang can not find at least some (cxxabi.h) libstdc++ headers.

Clang in C++11 mode and libstdc++ 4.7.2. This version of libstdc++ contained a bug which causes Clang to refuse
to compile condition_variable header file. At the time of writing, this breaks LLD build.

Getting a Modern Host C++ Toolchain

This section mostly applies to Linux and older BSDs. On Mac OS X, you should have a sufficiently modern Xcode,
or you will likely need to upgrade until you do. On Windows, just use Visual Studio 2013 as the host compiler, it is
explicitly supported and widely available. FreeBSD 10.0 and newer have a modern Clang as the system compiler.

However, some Linux distributions and some other or older BSDs sometimes have extremely old versions of GCC.
These steps attempt to help you upgrade you compiler even on such a system. However, if at all possible, we encourage
you to use a recent version of a distribution with a modern system compiler that meets these requirements. Note that
it is tempting to to install a prior version of Clang and libc++ to be the host compiler, however libc++ was not well
tested or set up to build on Linux until relatively recently. As a consequence, this guide suggests just using libstdc++
and a modern GCC as the initial host in a bootstrap, and then using Clang (and potentially libc++).

The first step is to get a recent GCC toolchain installed. The most common distribution on which users have struggled
with the version requirements is Ubuntu Precise, 12.04 LTS. For this distribution, one easy option is to install the
toolchain testing PPA and use it to install a modern GCC. There is a really nice discussions of this on the ask ubuntu
stack exchange. However, not all users can use PPAs and there are many other distributions, so it may be necessary
(or just useful, if you’re here you are doing compiler development after all) to build and install GCC from source. It is
also quite easy to do these days.

Easy steps for installing GCC 4.8.2:

% wget https://ftp.gnu.org/gnu/gcc/gcc-4.8.2/gcc-4.8.2.tar.bz2
% wget https://ftp.gnu.org/gnu/gcc/gcc-4.8.2/gcc-4.8.2.tar.bz2.sig
% wget https://ftp.gnu.org/gnu/gnu-keyring.gpg
% signature_invalid=`gpg --verify --no-default-keyring --keyring ./gnu-keyring.gpg
→˓gcc-4.8.2.tar.bz2.sig`
% if [ $signature_invalid ]; then echo "Invalid signature" ; exit 1 ; fi
% tar -xvjf gcc-4.8.2.tar.bz2
% cd gcc-4.8.2
% ./contrib/download_prerequisites
% cd ..
% mkdir gcc-4.8.2-build
% cd gcc-4.8.2-build
% $PWD/../gcc-4.8.2/configure --prefix=$HOME/toolchains --enable-languages=c,c++
% make -j$(nproc)
% make install

For more details, check out the excellent GCC wiki entry, where I got most of this information from.

Once you have a GCC toolchain, configure your build of LLVM to use the new toolchain for your host compiler and
C++ standard library. Because the new version of libstdc++ is not on the system library search path, you need to pass
extra linker flags so that it can be found at link time (-L) and at runtime (-rpath). If you are using CMake, this
invocation should produce working binaries:
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% mkdir build
% cd build
% CC=$HOME/toolchains/bin/gcc CXX=$HOME/toolchains/bin/g++ \

cmake .. -DCMAKE_CXX_LINK_FLAGS="-Wl,-rpath,$HOME/toolchains/lib64 -L$HOME/
→˓toolchains/lib64"

If you fail to set rpath, most LLVM binaries will fail on startup with a message from the loader similar to libstdc++.
so.6: version `GLIBCXX_3.4.20' not found. This means you need to tweak the -rpath linker flag.

When you build Clang, you will need to give it access to modern C++11 standard library in order to use it as your
new host in part of a bootstrap. There are two easy ways to do this, either build (and install) libc++ along with Clang
and then use it with the -stdlib=libc++ compile and link flag, or install Clang into the same prefix ($HOME/
toolchains above) as GCC. Clang will look within its own prefix for libstdc++ and use it if found. You can also add
an explicit prefix for Clang to look in for a GCC toolchain with the --gcc-toolchain=/opt/my/gcc/prefix
flag, passing it to both compile and link commands when using your just-built-Clang to bootstrap.

Getting Started with LLVM

The remainder of this guide is meant to get you up and running with LLVM and to give you some basic information
about the LLVM environment.

The later sections of this guide describe the general layout of the LLVM source tree, a simple example using the LLVM
tool chain, and links to find more information about LLVM or to get help via e-mail.

Terminology and Notation

Throughout this manual, the following names are used to denote paths specific to the local system and working
environment. These are not environment variables you need to set but just strings used in the rest of this document
below. In any of the examples below, simply replace each of these names with the appropriate pathname on your local
system. All these paths are absolute:

SRC_ROOT

This is the top level directory of the LLVM source tree.

OBJ_ROOT

This is the top level directory of the LLVM object tree (i.e. the tree where object files and compiled
programs will be placed. It can be the same as SRC_ROOT).

Unpacking the LLVM Archives

If you have the LLVM distribution, you will need to unpack it before you can begin to compile it. LLVM is distributed
as a set of two files: the LLVM suite and the LLVM GCC front end compiled for your platform. There is an additional
test suite that is optional. Each file is a TAR archive that is compressed with the gzip program.

The files are as follows, with x.y marking the version number:

llvm-x.y.tar.gz

Source release for the LLVM libraries and tools.

llvm-test-x.y.tar.gz

Source release for the LLVM test-suite.
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Checkout LLVM from Subversion

If you have access to our Subversion repository, you can get a fresh copy of the entire source code. All you need to do
is check it out from Subversion as follows:

• cd where-you-want-llvm-to-live

• Read-Only: svn co http://llvm.org/svn/llvm-project/llvm/trunk llvm

• Read-Write: svn co https://user@llvm.org/svn/llvm-project/llvm/trunk llvm

This will create an ‘llvm‘ directory in the current directory and fully populate it with the LLVM source code, Make-
files, test directories, and local copies of documentation files.

If you want to get a specific release (as opposed to the most recent revision), you can checkout it from the ‘tags‘
directory (instead of ‘trunk‘). The following releases are located in the following subdirectories of the ‘tags‘
directory:

• Release 3.4: RELEASE_34/final

• Release 3.3: RELEASE_33/final

• Release 3.2: RELEASE_32/final

• Release 3.1: RELEASE_31/final

• Release 3.0: RELEASE_30/final

• Release 2.9: RELEASE_29/final

• Release 2.8: RELEASE_28

• Release 2.7: RELEASE_27

• Release 2.6: RELEASE_26

• Release 2.5: RELEASE_25

• Release 2.4: RELEASE_24

• Release 2.3: RELEASE_23

• Release 2.2: RELEASE_22

• Release 2.1: RELEASE_21

• Release 2.0: RELEASE_20

• Release 1.9: RELEASE_19

• Release 1.8: RELEASE_18

• Release 1.7: RELEASE_17

• Release 1.6: RELEASE_16

• Release 1.5: RELEASE_15

• Release 1.4: RELEASE_14

• Release 1.3: RELEASE_13

• Release 1.2: RELEASE_12

• Release 1.1: RELEASE_11

• Release 1.0: RELEASE_1

If you would like to get the LLVM test suite (a separate package as of 1.4), you get it from the Subversion repository:
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% cd llvm/projects
% svn co http://llvm.org/svn/llvm-project/test-suite/trunk test-suite

By placing it in the llvm/projects, it will be automatically configured by the LLVM cmake configuration.

Git Mirror

Git mirrors are available for a number of LLVM subprojects. These mirrors sync automatically with each Subversion
commit and contain all necessary git-svn marks (so, you can recreate git-svn metadata locally). Note that right now
mirrors reflect only trunk for each project. You can do the read-only Git clone of LLVM via:

% git clone http://llvm.org/git/llvm.git

If you want to check out clang too, run:

% cd llvm/tools
% git clone http://llvm.org/git/clang.git

If you want to check out compiler-rt (required to build the sanitizers), run:

% cd llvm/projects
% git clone http://llvm.org/git/compiler-rt.git

If you want to check out libomp (required for OpenMP support), run:

% cd llvm/projects
% git clone http://llvm.org/git/openmp.git

If you want to check out libcxx and libcxxabi (optional), run:

% cd llvm/projects
% git clone http://llvm.org/git/libcxx.git
% git clone http://llvm.org/git/libcxxabi.git

If you want to check out the Test Suite Source Code (optional), run:

% cd llvm/projects
% git clone http://llvm.org/git/test-suite.git

Since the upstream repository is in Subversion, you should use git pull --rebase instead of git pull to
avoid generating a non-linear history in your clone. To configure git pull to pass --rebase by default on the
master branch, run the following command:

% git config branch.master.rebase true

Sending patches with Git

Please read Developer Policy, too.

Assume master points the upstream and mybranch points your working branch, and mybranch is rebased onto
master. At first you may check sanity of whitespaces:

% git diff --check master..mybranch
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The easiest way to generate a patch is as below:

% git diff master..mybranch > /path/to/mybranch.diff

It is a little different from svn-generated diff. git-diff-generated diff has prefixes like a/ and b/. Don’t worry, most
developers might know it could be accepted with patch -p1 -N.

But you may generate patchset with git-format-patch. It generates by-each-commit patchset. To generate patch files
to attach to your article:

% git format-patch --no-attach master..mybranch -o /path/to/your/patchset

If you would like to send patches directly, you may use git-send-email or git-imap-send. Here is an example to generate
the patchset in Gmail’s [Drafts].

% git format-patch --attach master..mybranch --stdout | git imap-send

Then, your .git/config should have [imap] sections.

[imap]
host = imaps://imap.gmail.com
user = your.gmail.account@gmail.com
pass = himitsu!
port = 993
sslverify = false

; in English
folder = "[Gmail]/Drafts"

; example for Japanese, "Modified UTF-7" encoded.
folder = "[Gmail]/&Tgtm+DBN-"

; example for Traditional Chinese
folder = "[Gmail]/&g0l6Pw-"

For developers to work with git-svn

To set up clone from which you can submit code using git-svn, run:

% git clone http://llvm.org/git/llvm.git
% cd llvm
% git svn init https://llvm.org/svn/llvm-project/llvm/trunk --username=<username>
% git config svn-remote.svn.fetch :refs/remotes/origin/master
% git svn rebase -l # -l avoids fetching ahead of the git mirror.

# If you have clang too:
% cd tools
% git clone http://llvm.org/git/clang.git
% cd clang
% git svn init https://llvm.org/svn/llvm-project/cfe/trunk --username=<username>
% git config svn-remote.svn.fetch :refs/remotes/origin/master
% git svn rebase -l

Likewise for compiler-rt, libomp and test-suite.

To update this clone without generating git-svn tags that conflict with the upstream Git repo, run:

% git fetch && (cd tools/clang && git fetch) # Get matching revisions of both trees.
% git checkout master
% git svn rebase -l
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% (cd tools/clang &&
git checkout master &&
git svn rebase -l)

Likewise for compiler-rt, libomp and test-suite.

This leaves your working directories on their master branches, so you’ll need to checkout each working branch
individually and rebase it on top of its parent branch.

For those who wish to be able to update an llvm repo/revert patches easily using git-svn, please look in the directory
for the scripts git-svnup and git-svnrevert.

To perform the aforementioned update steps go into your source directory and just type git-svnup or git svnup
and everything will just work.

If one wishes to revert a commit with git-svn, but do not want the git hash to escape into the commit message, one
can use the script git-svnrevert or git svnrevert which will take in the git hash for the commit you want
to revert, look up the appropriate svn revision, and output a message where all references to the git hash have been
replaced with the svn revision.

To commit back changes via git-svn, use git svn dcommit:

% git svn dcommit

Note that git-svn will create one SVN commit for each Git commit you have pending, so squash and edit each commit
before executing dcommit to make sure they all conform to the coding standards and the developers’ policy.

On success, dcommit will rebase against the HEAD of SVN, so to avoid conflict, please make sure your current
branch is up-to-date (via fetch/rebase) before proceeding.

The git-svn metadata can get out of sync after you mess around with branches and dcommit. When that happens,
git svn dcommit stops working, complaining about files with uncommitted changes. The fix is to rebuild the
metadata:

% rm -rf .git/svn
% git svn rebase -l

Please, refer to the Git-SVN manual (man git-svn) for more information.

Local LLVM Configuration

Once checked out from the Subversion repository, the LLVM suite source code must be configured before being built.
This process uses CMake. Unlinke the normal configure script, CMake generates the build files in whatever format
you request as well as various *.inc files, and llvm/include/Config/config.h.

Variables are passed to cmake on the command line using the format -D<variable name>=<value>. The
following variables are some common options used by people developing LLVM.
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Variable Purpose
CMAKE_C_COMPILERTells cmake which C compiler to use. By default, this will be /usr/bin/cc.
CMAKE_CXX_COMPILERTells cmake which C++ compiler to use. By default, this will be /usr/bin/c++.
CMAKE_BUILD_TYPETells cmake what type of build you are trying to generate files for. Valid options are

Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.
CMAKE_INSTALL_PREFIXSpecifies the install directory to target when running the install action of the build files.
LLVM_TARGETS_TO_BUILDA semicolon delimited list controlling which targets will be built and linked into llc. This is

equivalent to the --enable-targets option in the configure script. The default list is
defined as LLVM_ALL_TARGETS, and can be set to include out-of-tree targets. The default
value includes: AArch64, AMDGPU, ARM, BPF, Hexagon, Mips, MSP430,
NVPTX, PowerPC, Sparc, SystemZ, X86, XCore.

LLVM_ENABLE_DOXYGENBuild doxygen-based documentation from the source code This is disabled by default
because it is slow and generates a lot of output.

LLVM_ENABLE_SPHINXBuild sphinx-based documentation from the source code. This is disabled by default
because it is slow and generates a lot of output.

LLVM_BUILD_LLVM_DYLIBGenerate libLLVM.so. This library contains a default set of LLVM components that can be
overridden with LLVM_DYLIB_COMPONENTS. The default contains most of LLVM and is
defined in tools/llvm-shlib/CMakelists.txt.

LLVM_OPTIMIZED_TABLEGENBuilds a release tablegen that gets used during the LLVM build. This can dramatically
speed up debug builds.

To configure LLVM, follow these steps:

1. Change directory into the object root directory:

% cd OBJ_ROOT

2. Run the cmake:

% cmake -G "Unix Makefiles" -DCMAKE_INSTALL_PREFIX=prefix=/install/path
[other options] SRC_ROOT

Compiling the LLVM Suite Source Code

Unlike with autotools, with CMake your build type is defined at configuration. If you want to change your build type,
you can re-run cmake with the following invocation:

% cmake -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=type SRC_ROOT

Between runs, CMake preserves the values set for all options. CMake has the following build types defined:

Debug

These builds are the default. The build system will compile the tools and libraries unoptimized, with
debugging information, and asserts enabled.

Release

For these builds, the build system will compile the tools and libraries with optimizations enabled and not
generate debug info. CMakes default optimization level is -O3. This can be configured by setting the
CMAKE_CXX_FLAGS_RELEASE variable on the CMake command line.

RelWithDebInfo

These builds are useful when debugging. They generate optimized binaries with debug infor-
mation. CMakes default optimization level is -O2. This can be configured by setting the
CMAKE_CXX_FLAGS_RELWITHDEBINFO variable on the CMake command line.
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Once you have LLVM configured, you can build it by entering the OBJ_ROOT directory and issuing the following
command:

% make

If the build fails, please check here to see if you are using a version of GCC that is known not to compile LLVM.

If you have multiple processors in your machine, you may wish to use some of the parallel build options provided by
GNU Make. For example, you could use the command:

% make -j2

There are several special targets which are useful when working with the LLVM source code:

make clean

Removes all files generated by the build. This includes object files, generated C/C++ files, libraries, and
executables.

make install

Installs LLVM header files, libraries, tools, and documentation in a hierarchy under $PREFIX, specified
with CMAKE_INSTALL_PREFIX, which defaults to /usr/local.

make docs-llvm-html

If configured with -DLLVM_ENABLE_SPHINX=On, this will generate a directory at OBJ_ROOT/
docs/html which contains the HTML formatted documentation.

Cross-Compiling LLVM

It is possible to cross-compile LLVM itself. That is, you can create LLVM executables and libraries to be hosted on a
platform different from the platform where they are built (a Canadian Cross build). To generate build files for cross-
compiling CMake provides a variable CMAKE_TOOLCHAIN_FILE which can define compiler flags and variables
used during the CMake test operations.

The result of such a build is executables that are not runnable on on the build host but can be executed on the target.
As an example the following CMake invocation can generate build files targeting iOS. This will work on Mac OS X
with the latest Xcode:

% cmake -G "Ninja" -DCMAKE_OSX_ARCHITECTURES="armv7;armv7s;arm64"
-DCMAKE_TOOLCHAIN_FILE=<PATH_TO_LLVM>/cmake/platforms/iOS.cmake
-DCMAKE_BUILD_TYPE=Release -DLLVM_BUILD_RUNTIME=Off -DLLVM_INCLUDE_TESTS=Off
-DLLVM_INCLUDE_EXAMPLES=Off -DLLVM_ENABLE_BACKTRACES=Off [options]
<PATH_TO_LLVM>

Note: There are some additional flags that need to be passed when building for iOS due to limitations in the iOS SDK.

Check How To Cross-Compile Clang/LLVM using Clang/LLVM and Clang docs on how to cross-compile in general
for more information about cross-compiling.

The Location of LLVM Object Files

The LLVM build system is capable of sharing a single LLVM source tree among several LLVM builds. Hence, it is
possible to build LLVM for several different platforms or configurations using the same source tree.

• Change directory to where the LLVM object files should live:
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% cd OBJ_ROOT

• Run cmake:

% cmake -G "Unix Makefiles" SRC_ROOT

The LLVM build will create a structure underneath OBJ_ROOT that matches the LLVM source tree. At each
level where source files are present in the source tree there will be a corresponding CMakeFiles directory in the
OBJ_ROOT. Underneath that directory there is another directory with a name ending in .dir under which you’ll find
object files for each source.

For example:

% cd llvm_build_dir
% find lib/Support/ -name APFloat*
lib/Support/CMakeFiles/LLVMSupport.dir/APFloat.cpp.o

Optional Configuration Items

If you’re running on a Linux system that supports the binfmt_misc module, and you have root access on the system,
you can set your system up to execute LLVM bitcode files directly. To do this, use commands like this (the first
command may not be required if you are already using the module):

% mount -t binfmt_misc none /proc/sys/fs/binfmt_misc
% echo ':llvm:M::BC::/path/to/lli:' > /proc/sys/fs/binfmt_misc/register
% chmod u+x hello.bc (if needed)
% ./hello.bc

This allows you to execute LLVM bitcode files directly. On Debian, you can also use this command instead of the
‘echo’ command above:

% sudo update-binfmts --install llvm /path/to/lli --magic 'BC'

Directory Layout

One useful source of information about the LLVM source base is the LLVM doxygen documentation available at
http://llvm.org/doxygen/. The following is a brief introduction to code layout:

llvm/examples

Simple examples using the LLVM IR and JIT.

llvm/include

Public header files exported from the LLVM library. The three main subdirectories:

llvm/include/llvm

All LLVM-specific header files, and subdirectories for different portions of LLVM: Analysis,
CodeGen, Target, Transforms, etc...

llvm/include/llvm/Support
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Generic support libraries provided with LLVM but not necessarily specific to LLVM. For example, some
C++ STL utilities and a Command Line option processing library store header files here.

llvm/include/llvm/Config

Header files configured by the configure script. They wrap “standard” UNIX and C header files.
Source code can include these header files which automatically take care of the conditional #includes that
the configure script generates.

llvm/lib

Most source files are here. By putting code in libraries, LLVM makes it easy to share code among the tools.

llvm/lib/IR/

Core LLVM source files that implement core classes like Instruction and BasicBlock.

llvm/lib/AsmParser/

Source code for the LLVM assembly language parser library.

llvm/lib/Bitcode/

Code for reading and writing bitcode.

llvm/lib/Analysis/

A variety of program analyses, such as Call Graphs, Induction Variables, Natural Loop Identification, etc.

llvm/lib/Transforms/

IR-to-IR program transformations, such as Aggressive Dead Code Elimination, Sparse Conditional Con-
stant Propagation, Inlining, Loop Invariant Code Motion, Dead Global Elimination, and many others.

llvm/lib/Target/

Files describing target architectures for code generation. For example, llvm/lib/Target/X86 holds
the X86 machine description.

llvm/lib/CodeGen/

The major parts of the code generator: Instruction Selector, Instruction Scheduling, and Register Alloca-
tion.

llvm/lib/MC/

(FIXME: T.B.D.) ....?

llvm/lib/ExecutionEngine/

Libraries for directly executing bitcode at runtime in interpreted and JIT-compiled scenarios.

llvm/lib/Support/

Source code that corresponding to the header files in llvm/include/ADT/ and llvm/include/
Support/.

llvm/projects

Projects not strictly part of LLVM but shipped with LLVM. This is also the directory for creating your own LLVM-
based projects which leverage the LLVM build system.
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llvm/test

Feature and regression tests and other sanity checks on LLVM infrastructure. These are intended to run quickly and
cover a lot of territory without being exhaustive.

test-suite

A comprehensive correctness, performance, and benchmarking test suite for LLVM. Comes in a separate Subversion
module because not every LLVM user is interested in such a comprehensive suite. For details see the Testing Guide
document.

llvm/tools

Executables built out of the libraries above, which form the main part of the user interface. You can always get help
for a tool by typing tool_name -help. The following is a brief introduction to the most important tools. More
detailed information is in the Command Guide.

bugpoint

bugpoint is used to debug optimization passes or code generation backends by narrowing down the
given test case to the minimum number of passes and/or instructions that still cause a problem, whether it
is a crash or miscompilation. See HowToSubmitABug.html for more information on using bugpoint.

llvm-ar

The archiver produces an archive containing the given LLVM bitcode files, optionally with an index for
faster lookup.

llvm-as

The assembler transforms the human readable LLVM assembly to LLVM bitcode.

llvm-dis

The disassembler transforms the LLVM bitcode to human readable LLVM assembly.

llvm-link

llvm-link, not surprisingly, links multiple LLVM modules into a single program.

lli

lli is the LLVM interpreter, which can directly execute LLVM bitcode (although very slowly...). For
architectures that support it (currently x86, Sparc, and PowerPC), by default, lli will function as a Just-
In-Time compiler (if the functionality was compiled in), and will execute the code much faster than the
interpreter.

llc

llc is the LLVM backend compiler, which translates LLVM bitcode to a native code assembly file or to
C code (with the -march=c option).

opt

opt reads LLVM bitcode, applies a series of LLVM to LLVM transformations (which are specified on
the command line), and outputs the resultant bitcode. ‘opt -help‘ is a good way to get a list of the
program transformations available in LLVM.

opt can also run a specific analysis on an input LLVM bitcode file and print the results. Primarily useful
for debugging analyses, or familiarizing yourself with what an analysis does.
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llvm/utils

Utilities for working with LLVM source code; some are part of the build process because they are code generators for
parts of the infrastructure.

codegen-diff

codegen-diff finds differences between code that LLC generates and code that LLI generates. This
is useful if you are debugging one of them, assuming that the other generates correct output. For the full
user manual, run `perldoc codegen-diff'.

emacs/

Emacs and XEmacs syntax highlighting for LLVM assembly files and TableGen description files. See the
README for information on using them.

getsrcs.sh

Finds and outputs all non-generated source files, useful if one wishes to do a lot of development across
directories and does not want to find each file. One way to use it is to run, for example: xemacs
`utils/getsources.sh` from the top of the LLVM source tree.

llvmgrep

Performs an egrep -H -n on each source file in LLVM and passes to it a regular expression provided
on llvmgrep‘s command line. This is an efficient way of searching the source base for a particular
regular expression.

makellvm

Compiles all files in the current directory, then compiles and links the tool that is the first argument. For
example, assuming you are in llvm/lib/Target/Sparc, if makellvm is in your path, running
makellvm llc will make a build of the current directory, switch to directory llvm/tools/llc and
build it, causing a re-linking of LLC.

TableGen/

Contains the tool used to generate register descriptions, instruction set descriptions, and even assemblers
from common TableGen description files.

vim/

vim syntax-highlighting for LLVM assembly files and TableGen description files. See the README for
how to use them.

An Example Using the LLVM Tool Chain

This section gives an example of using LLVM with the Clang front end.

Example with clang

1. First, create a simple C file, name it ‘hello.c’:

#include <stdio.h>

int main() {
printf("hello world\n");
return 0;

}
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2. Next, compile the C file into a native executable:

% clang hello.c -o hello

Note: Clang works just like GCC by default. The standard -S and -c arguments work as usual (producing a
native .s or .o file, respectively).

3. Next, compile the C file into an LLVM bitcode file:

% clang -O3 -emit-llvm hello.c -c -o hello.bc

The -emit-llvm option can be used with the -S or -c options to emit an LLVM .ll or .bc file (respectively) for
the code. This allows you to use the standard LLVM tools on the bitcode file.

4. Run the program in both forms. To run the program, use:

% ./hello

and

% lli hello.bc

The second examples shows how to invoke the LLVM JIT, lli.

5. Use the llvm-dis utility to take a look at the LLVM assembly code:

% llvm-dis < hello.bc | less

6. Compile the program to native assembly using the LLC code generator:

% llc hello.bc -o hello.s

7. Assemble the native assembly language file into a program:

% /opt/SUNWspro/bin/cc -xarch=v9 hello.s -o hello.native # On Solaris

% gcc hello.s -o hello.native # On others

8. Execute the native code program:

% ./hello.native

Note that using clang to compile directly to native code (i.e. when the -emit-llvm option is not present) does
steps 6/7/8 for you.

Common Problems

If you are having problems building or using LLVM, or if you have any other general questions about LLVM, please
consult the Frequently Asked Questions page.

Links

This document is just an introduction on how to use LLVM to do some simple things... there are many more interest-
ing and complicated things that you can do that aren’t documented here (but we’ll gladly accept a patch if you want to
write something up!). For more information about LLVM, check out:
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• LLVM Homepage

• LLVM Doxygen Tree

• Starting a Project that Uses LLVM

Getting Started with the LLVM System using Microsoft Visual Studio

• Overview

• Requirements

– Hardware

– Software

• Getting Started

• An Example Using the LLVM Tool Chain

• Common Problems

• Links

Overview

Welcome to LLVM on Windows! This document only covers LLVM on Windows using Visual Studio, not mingw or
cygwin. In order to get started, you first need to know some basic information.

There are many different projects that compose LLVM. The first piece is the LLVM suite. This contains all of the
tools, libraries, and header files needed to use LLVM. It contains an assembler, disassembler, bitcode analyzer and
bitcode optimizer. It also contains basic regression tests that can be used to test the LLVM tools and the Clang front
end.

The second piece is the Clang front end. This component compiles C, C++, Objective C, and Objective C++ code into
LLVM bitcode. Clang typically uses LLVM libraries to optimize the bitcode and emit machine code. LLVM fully
supports the COFF object file format, which is compatible with all other existing Windows toolchains.

The last major part of LLVM, the execution Test Suite, does not run on Windows, and this document does not discuss
it.

Additional information about the LLVM directory structure and tool chain can be found on the main Getting Started
with the LLVM System page.

Requirements

Before you begin to use the LLVM system, review the requirements given below. This may save you some trouble by
knowing ahead of time what hardware and software you will need.

Hardware

Any system that can adequately run Visual Studio 2013 is fine. The LLVM source tree and object files, libraries and
executables will consume approximately 3GB.
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Software

You will need Visual Studio 2013 or higher, with the latest Update installed.

You will also need the CMake build system since it generates the project files you will use to build with. CMake
2.8.12.2 is the minimum required version for building with Visual Studio, though the latest version of CMake is
recommended.

If you would like to run the LLVM tests you will need Python. Version 2.7 and newer are known to work. You will
need GnuWin32 tools, too.

Do not install the LLVM directory tree into a path containing spaces (e.g. C:\Documents and Settings\...)
as the configure step will fail.

Getting Started

Here’s the short story for getting up and running quickly with LLVM:

1. Read the documentation.

2. Seriously, read the documentation.

3. Remember that you were warned twice about reading the documentation.

4. Get the Source Code

• With the distributed files:

(a) cd <where-you-want-llvm-to-live>

(b) gunzip --stdout llvm-VERSION.tar.gz | tar -xvf - (or use WinZip)

(c) cd llvm

• With anonymous Subversion access:

(a) cd <where-you-want-llvm-to-live>

(b) svn co http://llvm.org/svn/llvm-project/llvm/trunk llvm

(c) cd llvm

5. Use CMake to generate up-to-date project files:

• Once CMake is installed then the simplest way is to just start the CMake GUI, select the directory where
you have LLVM extracted to, and the default options should all be fine. One option you may really want to
change, regardless of anything else, might be the CMAKE_INSTALL_PREFIX setting to select a directory
to INSTALL to once compiling is complete, although installation is not mandatory for using LLVM.
Another important option is LLVM_TARGETS_TO_BUILD, which controls the LLVM target architectures
that are included on the build.

• If CMake complains that it cannot find the compiler, make sure that you have the Visual Studio C++
Tools installed, not just Visual Studio itself (trying to create a C++ project in Visual Studio will generally
download the C++ tools if they haven’t already been).

• See the LLVM CMake guide for detailed information about how to configure the LLVM build.

• CMake generates project files for all build types. To select a specific build type, use the Configuration
manager from the VS IDE or the /property:Configuration command line option when using
MSBuild.

6. Start Visual Studio
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• In the directory you created the project files will have an llvm.sln file, just double-click on that to open
Visual Studio.

7. Build the LLVM Suite:

• The projects may still be built individually, but to build them all do not just select all of them in batch build
(as some are meant as configuration projects), but rather select and build just the ALL_BUILD project
to build everything, or the INSTALL project, which first builds the ALL_BUILD project, then installs
the LLVM headers, libs, and other useful things to the directory set by the CMAKE_INSTALL_PREFIX
setting when you first configured CMake.

• The Fibonacci project is a sample program that uses the JIT. Modify the project’s debugging properties to
provide a numeric command line argument or run it from the command line. The program will print the
corresponding fibonacci value.

8. Test LLVM in Visual Studio:

• If %PATH% does not contain GnuWin32, you may specify LLVM_LIT_TOOLS_DIR on CMake for the
path to GnuWin32.

• You can run LLVM tests by merely building the project “check”. The test results will be shown in the VS
output window.

9. Test LLVM on the command line:

• The LLVM tests can be run by changing directory to the llvm source directory and running:

C:\..\llvm> python ..\build\bin\llvm-lit --param build_config=Win32 --param
→˓build_mode=Debug --param llvm_site_config=../build/test/lit.site.cfg test

This example assumes that Python is in your PATH variable, you have built a Win32 Debug version of
llvm with a standard out of line build. You should not see any unexpected failures, but will see many
unsupported tests and expected failures.

A specific test or test directory can be run with:

C:\..\llvm> python ..\build\bin\llvm-lit --param build_config=Win32 --param
→˓build_mode=Debug --param llvm_site_config=../build/test/lit.site.cfg test/
→˓path/to/test

An Example Using the LLVM Tool Chain

1. First, create a simple C file, name it ‘hello.c‘:

#include <stdio.h>
int main() {
printf("hello world\n");
return 0;

}

2. Next, compile the C file into an LLVM bitcode file:

C:\..> clang -c hello.c -emit-llvm -o hello.bc

This will create the result file hello.bc which is the LLVM bitcode that corresponds the compiled program
and the library facilities that it required. You can execute this file directly using lli tool, compile it to native
assembly with the llc, optimize or analyze it further with the opt tool, etc.

Alternatively you can directly output an executable with clang with:
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C:\..> clang hello.c -o hello.exe

The -o hello.exe is required because clang currently outputs a.out when neither -o nor -c are given.

3. Run the program using the just-in-time compiler:

C:\..> lli hello.bc

4. Use the llvm-dis utility to take a look at the LLVM assembly code:

C:\..> llvm-dis < hello.bc | more

5. Compile the program to object code using the LLC code generator:

C:\..> llc -filetype=obj hello.bc

6. Link to binary using Microsoft link:

C:\..> link hello.obj -defaultlib:libcmt

7. Execute the native code program:

C:\..> hello.exe

Common Problems

If you are having problems building or using LLVM, or if you have any other general questions about LLVM, please
consult the Frequently Asked Questions page.

Links

This document is just an introduction to how to use LLVM to do some simple things... there are many more interesting
and complicated things that you can do that aren’t documented here (but we’ll gladly accept a patch if you want to
write something up!). For more information about LLVM, check out:

• LLVM homepage

• LLVM doxygen tree

Frequently Asked Questions (FAQ)

• License

– Does the University of Illinois Open Source License really qualify as an “open source” license?

– Can I modify LLVM source code and redistribute the modified source?

– Can I modify the LLVM source code and redistribute binaries or other tools based on it, without redis-
tributing the source?

• Source Code

– In what language is LLVM written?
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– How portable is the LLVM source code?

– What API do I use to store a value to one of the virtual registers in LLVM IR’s SSA representation?

• Source Languages

– What source languages are supported?

– I’d like to write a self-hosting LLVM compiler. How should I interface with the LLVM middle-end
optimizers and back-end code generators?

– What support is there for a higher level source language constructs for building a compiler?

– I don’t understand the GetElementPtr instruction. Help!

• Using the C and C++ Front Ends

– Can I compile C or C++ code to platform-independent LLVM bitcode?

• Questions about code generated by the demo page

– What is this llvm.global_ctors and _GLOBAL__I_a... stuff that happens when I #include
<iostream>?

– Where did all of my code go??

– What is this “undef” thing that shows up in my code?

– Why does instcombine + simplifycfg turn a call to a function with a mismatched calling convention into
“unreachable”? Why not make the verifier reject it?

License

Does the University of Illinois Open Source License really qualify as an “open source” license?

Yes, the license is certified by the Open Source Initiative (OSI).

Can I modify LLVM source code and redistribute the modified source?

Yes. The modified source distribution must retain the copyright notice and follow the three bulletted conditions listed
in the LLVM license.

Can I modify the LLVM source code and redistribute binaries or other tools based on it, without
redistributing the source?

Yes. This is why we distribute LLVM under a less restrictive license than GPL, as explained in the first question above.

Source Code

In what language is LLVM written?

All of the LLVM tools and libraries are written in C++ with extensive use of the STL.
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How portable is the LLVM source code?

The LLVM source code should be portable to most modern Unix-like operating systems. Most of the code is written
in standard C++ with operating system services abstracted to a support library. The tools required to build and test
LLVM have been ported to a plethora of platforms.

Some porting problems may exist in the following areas:

• The autoconf/makefile build system relies heavily on UNIX shell tools, like the Bourne Shell and sed. Porting
to systems without these tools (MacOS 9, Plan 9) will require more effort.

What API do I use to store a value to one of the virtual registers in LLVM IR’s SSA representation?

In short: you can’t. It’s actually kind of a silly question once you grok what’s going on. Basically, in code like:

%result = add i32 %foo, %bar

, %result is just a name given to the Value of the add instruction. In other words, %result is the add instruction.
The “assignment” doesn’t explicitly “store” anything to any “virtual register”; the “=” is more like the mathematical
sense of equality.

Longer explanation: In order to generate a textual representation of the IR, some kind of name has to be given to each
instruction so that other instructions can textually reference it. However, the isomorphic in-memory representation that
you manipulate from C++ has no such restriction since instructions can simply keep pointers to any other Value‘s
that they reference. In fact, the names of dummy numbered temporaries like %1 are not explicitly represented in the
in-memory representation at all (see Value::getName()).

Source Languages

What source languages are supported?

LLVM currently has full support for C and C++ source languages through Clang. Many other language frontends have
been written using LLVM, and an incomplete list is available at projects with LLVM.

I’d like to write a self-hosting LLVM compiler. How should I interface with the LLVM middle-end
optimizers and back-end code generators?

Your compiler front-end will communicate with LLVM by creating a module in the LLVM intermediate representation
(IR) format. Assuming you want to write your language’s compiler in the language itself (rather than C++), there are
3 major ways to tackle generating LLVM IR from a front-end:

1. Call into the LLVM libraries code using your language’s FFI (foreign function interface).

• for: best tracks changes to the LLVM IR, .ll syntax, and .bc format

• for: enables running LLVM optimization passes without a emit/parse overhead

• for: adapts well to a JIT context

• against: lots of ugly glue code to write

2. Emit LLVM assembly from your compiler’s native language.

• for: very straightforward to get started

• against: the .ll parser is slower than the bitcode reader when interfacing to the middle end

• against: it may be harder to track changes to the IR
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3. Emit LLVM bitcode from your compiler’s native language.

• for: can use the more-efficient bitcode reader when interfacing to the middle end

• against: you’ll have to re-engineer the LLVM IR object model and bitcode writer in your language

• against: it may be harder to track changes to the IR

If you go with the first option, the C bindings in include/llvm-c should help a lot, since most languages have strong
support for interfacing with C. The most common hurdle with calling C from managed code is interfacing with the
garbage collector. The C interface was designed to require very little memory management, and so is straightforward
in this regard.

What support is there for a higher level source language constructs for building a compiler?

Currently, there isn’t much. LLVM supports an intermediate representation which is useful for code representation but
will not support the high level (abstract syntax tree) representation needed by most compilers. There are no facilities
for lexical nor semantic analysis.

I don’t understand the GetElementPtr instruction. Help!

See The Often Misunderstood GEP Instruction.

Using the C and C++ Front Ends

Can I compile C or C++ code to platform-independent LLVM bitcode?

No. C and C++ are inherently platform-dependent languages. The most obvious example of this is the preprocessor.
A very common way that C code is made portable is by using the preprocessor to include platform-specific code. In
practice, information about other platforms is lost after preprocessing, so the result is inherently dependent on the
platform that the preprocessing was targeting.

Another example is sizeof. It’s common for sizeof(long) to vary between platforms. In most C front-ends,
sizeof is expanded to a constant immediately, thus hard-wiring a platform-specific detail.

Also, since many platforms define their ABIs in terms of C, and since LLVM is lower-level than C, front-ends currently
must emit platform-specific IR in order to have the result conform to the platform ABI.

Questions about code generated by the demo page

What is this llvm.global_ctors and _GLOBAL__I_a... stuff that happens when I #include
<iostream>?

If you #include the <iostream> header into a C++ translation unit, the file will probably use the
std::cin/std::cout/... global objects. However, C++ does not guarantee an order of initialization between
static objects in different translation units, so if a static ctor/dtor in your .cpp file used std::cout, for example, the
object would not necessarily be automatically initialized before your use.

To make std::cout and friends work correctly in these scenarios, the STL that we use declares a static object that
gets created in every translation unit that includes <iostream>. This object has a static constructor and destructor
that initializes and destroys the global iostream objects before they could possibly be used in the file. The code that
you see in the .ll file corresponds to the constructor and destructor registration code.

If you would like to make it easier to understand the LLVM code generated by the compiler in the demo page, consider
using printf() instead of iostreams to print values.
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Where did all of my code go??

If you are using the LLVM demo page, you may often wonder what happened to all of the code that you typed in.
Remember that the demo script is running the code through the LLVM optimizers, so if your code doesn’t actually do
anything useful, it might all be deleted.

To prevent this, make sure that the code is actually needed. For example, if you are computing some expression, return
the value from the function instead of leaving it in a local variable. If you really want to constrain the optimizer, you
can read from and assign to volatile global variables.

What is this “undef” thing that shows up in my code?

undef is the LLVM way of representing a value that is not defined. You can get these if you do not initialize a variable
before you use it. For example, the C function:

int X() { int i; return i; }

Is compiled to “ret i32 undef” because “i” never has a value specified for it.

Why does instcombine + simplifycfg turn a call to a function with a mismatched calling convention
into “unreachable”? Why not make the verifier reject it?

This is a common problem run into by authors of front-ends that are using custom calling conventions: you need to
make sure to set the right calling convention on both the function and on each call to the function. For example, this
code:

define fastcc void @foo() {
ret void

}
define void @bar() {

call void @foo()
ret void

}

Is optimized to:

define fastcc void @foo() {
ret void

}
define void @bar() {

unreachable
}

... with “opt -instcombine -simplifycfg”. This often bites people because “all their code disappears”.
Setting the calling convention on the caller and callee is required for indirect calls to work, so people often ask why
not make the verifier reject this sort of thing.

The answer is that this code has undefined behavior, but it is not illegal. If we made it illegal, then every transformation
that could potentially create this would have to ensure that it doesn’t, and there is valid code that can create this sort
of construct (in dead code). The sorts of things that can cause this to happen are fairly contrived, but we still need to
accept them. Here’s an example:

define fastcc void @foo() {
ret void

}
define internal void @bar(void()* %FP, i1 %cond) {
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br i1 %cond, label %T, label %F
T:

call void %FP()
ret void

F:
call fastcc void %FP()
ret void

}
define void @test() {

%X = or i1 false, false
call void @bar(void()* @foo, i1 %X)
ret void

}

In this example, “test” always passes @foo/false into bar, which ensures that it is dynamically called with the
right calling conv (thus, the code is perfectly well defined). If you run this through the inliner, you get this (the explicit
“or” is there so that the inliner doesn’t dead code eliminate a bunch of stuff):

define fastcc void @foo() {
ret void

}
define void @test() {

%X = or i1 false, false
br i1 %X, label %T.i, label %F.i

T.i:
call void @foo()
br label %bar.exit

F.i:
call fastcc void @foo()
br label %bar.exit

bar.exit:
ret void

}

Here you can see that the inlining pass made an undefined call to @foo with the wrong calling convention. We really
don’t want to make the inliner have to know about this sort of thing, so it needs to be valid code. In this case, dead
code elimination can trivially remove the undefined code. However, if %X was an input argument to @test, the inliner
would produce this:

define fastcc void @foo() {
ret void

}

define void @test(i1 %X) {
br i1 %X, label %T.i, label %F.i

T.i:
call void @foo()
br label %bar.exit

F.i:
call fastcc void @foo()
br label %bar.exit

bar.exit:
ret void

}

The interesting thing about this is that %X must be false for the code to be well-defined, but no amount of dead code
elimination will be able to delete the broken call as unreachable. However, since instcombine/simplifycfg
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turns the undefined call into unreachable, we end up with a branch on a condition that goes to unreachable: a branch
to unreachable can never happen, so “-inline -instcombine -simplifycfg” is able to produce:

define fastcc void @foo() {
ret void

}
define void @test(i1 %X) {
F.i:

call fastcc void @foo()
ret void

}

The LLVM Lexicon

Note: This document is a work in progress!

Definitions

A

ADCE Aggressive Dead Code Elimination

AST Abstract Syntax Tree.

Due to Clang’s influence (mostly the fact that parsing and semantic analysis are so intertwined for C and es-
pecially C++), the typical working definition of AST in the LLVM community is roughly “the compiler’s first
complete symbolic (as opposed to textual) representation of an input program”. As such, an “AST” might be a
more general graph instead of a “tree” (consider the symbolic representation for the type of a typical “linked list
node”). This working definition is closer to what some authors call an “annotated abstract syntax tree”.

Consult your favorite compiler book or search engine for more details.

B

BB Vectorization Basic-Block Vectorization

BURS Bottom Up Rewriting System — A method of instruction selection for code generation. An example is the
BURG tool.

C

CFI Call Frame Information. Used in DWARF debug info and in C++ unwind info to show how the function prolog
lays out the stack frame.

CIE Common Information Entry. A kind of CFI used to reduce the size of FDEs. The compiler creates a CIE which
contains the information common across all the FDEs. Each FDE then points to its CIE.

CSE Common Subexpression Elimination. An optimization that removes common subexpression compuation. For
example (a+b)*(a+b) has two subexpressions that are the same: (a+b). This optimization would perform
the addition only once and then perform the multiply (but only if it’s computationally correct/safe).
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D

DAG Directed Acyclic Graph

Derived Pointer A pointer to the interior of an object, such that a garbage collector is unable to use the pointer
for reachability analysis. While a derived pointer is live, the corresponding object pointer must be kept in a
root, otherwise the collector might free the referenced object. With copying collectors, derived pointers pose
an additional hazard that they may be invalidated at any safe point. This term is used in opposition to object
pointer.

DSA Data Structure Analysis

DSE Dead Store Elimination

F

FCA First Class Aggregate

FDE Frame Description Entry. A kind of CFI used to describe the stack frame of one function.

G

GC Garbage Collection. The practice of using reachability analysis instead of explicit memory management to re-
claim unused memory.

H

Heap In garbage collection, the region of memory which is managed using reachability analysis.

I

IPA Inter-Procedural Analysis. Refers to any variety of code analysis that occurs between procedures, functions or
compilation units (modules).

IPO Inter-Procedural Optimization. Refers to any variety of code optimization that occurs between procedures, func-
tions or compilation units (modules).

ISel Instruction Selection

L

LCSSA Loop-Closed Static Single Assignment Form

LGTM “Looks Good To Me”. In a review thread, this indicates that the reviewer thinks that the patch is okay to
commit.

LICM Loop Invariant Code Motion

LSDA Language Specific Data Area. C++ “zero cost” unwinding is built on top a generic unwinding mechanism. As
the unwinder walks each frame, it calls a “personality” function to do language specific analysis. Each function’s
FDE points to an optional LSDA which is passed to the personality function. For C++, the LSDA contain info
about the type and location of catch statements in that function.

Load-VN Load Value Numbering

LTO Link-Time Optimization
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M

MC Machine Code

N

NFC “No functional change”. Used in a commit message to indicate that a patch is a pure refactoring/cleanup.
Usually used in the first line, so it is visible without opening the actual commit email.

O

Object Pointer A pointer to an object such that the garbage collector is able to trace references contained within the
object. This term is used in opposition to derived pointer.

P

PRE Partial Redundancy Elimination

R

RAUW

Replace All Uses With. The functions User::replaceUsesOfWith(),
Value::replaceAllUsesWith(), and Constant::replaceUsesOfWithOnConstant()
implement the replacement of one Value with another by iterating over its def/use chain and fixing up all
of the pointers to point to the new value. See also def/use chains.

Reassociation Rearranging associative expressions to promote better redundancy elimination and other optimization.
For example, changing (A+B-A) into (B+A-A), permitting it to be optimized into (B+0) then (B).

Root In garbage collection, a pointer variable lying outside of the heap from which the collector begins its reachability
analysis. In the context of code generation, “root” almost always refers to a “stack root” — a local or temporary
variable within an executing function.

RPO Reverse postorder

S

Safe Point In garbage collection, it is necessary to identify stack roots so that reachability analysis may proceed. It
may be infeasible to provide this information for every instruction, so instead the information may is calculated
only at designated safe points. With a copying collector, derived pointers must not be retained across safe points
and object pointers must be reloaded from stack roots.

SDISel Selection DAG Instruction Selection.

SCC Strongly Connected Component

SCCP Sparse Conditional Constant Propagation

SLP Superword-Level Parallelism, same as Basic-Block Vectorization.

SRoA Scalar Replacement of Aggregates

SSA Static Single Assignment
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Stack Map In garbage collection, metadata emitted by the code generator which identifies roots within the stack
frame of an executing function.

T

TBAA Type-Based Alias Analysis

How To Add Your Build Configuration To LLVM Buildbot Infrastruc-
ture

Introduction

This document contains information about adding a build configuration and buildslave to private slave builder to
LLVM Buildbot Infrastructure http://lab.llvm.org:8011.

Steps To Add Builder To LLVM Buildbot

Volunteers can provide their build machines to work as build slaves to public LLVM Buildbot.

Here are the steps you can follow to do so:

1. Check the existing build configurations to make sure the one you are interested in is not covered yet or gets built
on your computer much faster than on the existing one. We prefer faster builds so developers will get feedback
sooner after changes get committed.

2. The computer you will be registering with the LLVM buildbot infrastructure should have all dependencies
installed and you can actually build your configuration successfully. Please check what degree of parallelism (-j
param) would give the fastest build. You can build multiple configurations on one computer.

3. Install buildslave (currently we are using buildbot version 0.8.5). Depending on the platform, buildslave could
be available to download and install with your packet manager, or you can download it directly from http:
//trac.buildbot.net and install it manually.

4. Create a designated user account, your buildslave will be running under, and set appropriate permissions.

5. Choose the buildslave root directory (all builds will be placed under it), buildslave access name and password
the build master will be using to authenticate your buildslave.

6. Create a buildslave in context of that buildslave account. Point it to the lab.llvm.org port 9990 (see Buildbot
documentation, Creating a slave for more details) by running the following command:

$ buildslave create-slave <buildslave-root-directory> \
lab.llvm.org:9990 \
<buildslave-access-name> <buildslave-access-password>

7. Fill the buildslave description and admin name/e-mail. Here is an example of the buildslave description:

Windows 7 x64
Core i7 (2.66GHz), 16GB of RAM

g++.exe (TDM-1 mingw32) 4.4.0
GNU Binutils 2.19.1
cmake version 2.8.4
Microsoft(R) 32-bit C/C++ Optimizing Compiler Version 16.00.40219.01 for 80x86
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8. Make sure you can actually start the buildslave successfully. Then set up your buildslave to start automatically
at the start up time. See the buildbot documentation for help. You may want to restart your computer to see if it
works.

9. Send a patch which adds your build slave and your builder to zorg.

• slaves are added to buildbot/osuosl/master/config/slaves.py

• builders are added to buildbot/osuosl/master/config/builders.py

10. Send the buildslave access name and the access password directly to Galina Kistanova, and wait till she will let
you know that your changes are applied and buildmaster is reconfigured.

11. Check the status of your buildslave on the Waterfall Display to make sure it is connected, and http:/
/lab.llvm.org:8011/buildslaves/<your-buildslave-name> to see if administrator contact
and slave information are correct.

12. Wait for the first build to succeed and enjoy.

yaml2obj

yaml2obj takes a YAML description of an object file and converts it to a binary file.

$ yaml2obj input-file

Outputs the binary to stdout.

COFF Syntax

Here’s a sample COFF file.

header:
Machine: IMAGE_FILE_MACHINE_I386 # (0x14C)

sections:
- Name: .text
Characteristics: [ IMAGE_SCN_CNT_CODE

, IMAGE_SCN_ALIGN_16BYTES
, IMAGE_SCN_MEM_EXECUTE
, IMAGE_SCN_MEM_READ
] # 0x60500020

SectionData:

→˓"\x83\xEC\x0C\xC7\x44\x24\x08\x00\x00\x00\x00\xC7\x04\x24\x00\x00\x00\x00\xE8\x00\x00\x00\x00\xE8\x00\x00\x00\x00\x8B\x44\x24\x08\x83\xC4\x0C\xC3
→˓" # |....D$.......$...............D$.....|

symbols:
- Name: .text
Value: 0
SectionNumber: 1
SimpleType: IMAGE_SYM_TYPE_NULL # (0)
ComplexType: IMAGE_SYM_DTYPE_NULL # (0)
StorageClass: IMAGE_SYM_CLASS_STATIC # (3)
NumberOfAuxSymbols: 1
AuxiliaryData:

"\x24\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00" # |$.
→˓................|
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- Name: _main
Value: 0
SectionNumber: 1
SimpleType: IMAGE_SYM_TYPE_NULL # (0)
ComplexType: IMAGE_SYM_DTYPE_NULL # (0)
StorageClass: IMAGE_SYM_CLASS_EXTERNAL # (2)

Here’s a simplified Kwalify schema with an extension to allow alternate types.

type: map
mapping:
header:

type: map
mapping:

Machine: [ {type: str, enum:
[ IMAGE_FILE_MACHINE_UNKNOWN
, IMAGE_FILE_MACHINE_AM33
, IMAGE_FILE_MACHINE_AMD64
, IMAGE_FILE_MACHINE_ARM
, IMAGE_FILE_MACHINE_ARMNT
, IMAGE_FILE_MACHINE_ARM64
, IMAGE_FILE_MACHINE_EBC
, IMAGE_FILE_MACHINE_I386
, IMAGE_FILE_MACHINE_IA64
, IMAGE_FILE_MACHINE_M32R
, IMAGE_FILE_MACHINE_MIPS16
, IMAGE_FILE_MACHINE_MIPSFPU
, IMAGE_FILE_MACHINE_MIPSFPU16
, IMAGE_FILE_MACHINE_POWERPC
, IMAGE_FILE_MACHINE_POWERPCFP
, IMAGE_FILE_MACHINE_R4000
, IMAGE_FILE_MACHINE_SH3
, IMAGE_FILE_MACHINE_SH3DSP
, IMAGE_FILE_MACHINE_SH4
, IMAGE_FILE_MACHINE_SH5
, IMAGE_FILE_MACHINE_THUMB
, IMAGE_FILE_MACHINE_WCEMIPSV2
]}

, {type: int}
]

Characteristics:
- type: seq
sequence:
- type: str
enum: [ IMAGE_FILE_RELOCS_STRIPPED

, IMAGE_FILE_EXECUTABLE_IMAGE
, IMAGE_FILE_LINE_NUMS_STRIPPED
, IMAGE_FILE_LOCAL_SYMS_STRIPPED
, IMAGE_FILE_AGGRESSIVE_WS_TRIM
, IMAGE_FILE_LARGE_ADDRESS_AWARE
, IMAGE_FILE_BYTES_REVERSED_LO
, IMAGE_FILE_32BIT_MACHINE
, IMAGE_FILE_DEBUG_STRIPPED
, IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP
, IMAGE_FILE_NET_RUN_FROM_SWAP
, IMAGE_FILE_SYSTEM
, IMAGE_FILE_DLL
, IMAGE_FILE_UP_SYSTEM_ONLY
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, IMAGE_FILE_BYTES_REVERSED_HI
]

- type: int
sections:

type: seq
sequence:

- type: map
mapping:

Name: {type: str}
Characteristics:
- type: seq
sequence:
- type: str
enum: [ IMAGE_SCN_TYPE_NO_PAD

, IMAGE_SCN_CNT_CODE
, IMAGE_SCN_CNT_INITIALIZED_DATA
, IMAGE_SCN_CNT_UNINITIALIZED_DATA
, IMAGE_SCN_LNK_OTHER
, IMAGE_SCN_LNK_INFO
, IMAGE_SCN_LNK_REMOVE
, IMAGE_SCN_LNK_COMDAT
, IMAGE_SCN_GPREL
, IMAGE_SCN_MEM_PURGEABLE
, IMAGE_SCN_MEM_16BIT
, IMAGE_SCN_MEM_LOCKED
, IMAGE_SCN_MEM_PRELOAD
, IMAGE_SCN_ALIGN_1BYTES
, IMAGE_SCN_ALIGN_2BYTES
, IMAGE_SCN_ALIGN_4BYTES
, IMAGE_SCN_ALIGN_8BYTES
, IMAGE_SCN_ALIGN_16BYTES
, IMAGE_SCN_ALIGN_32BYTES
, IMAGE_SCN_ALIGN_64BYTES
, IMAGE_SCN_ALIGN_128BYTES
, IMAGE_SCN_ALIGN_256BYTES
, IMAGE_SCN_ALIGN_512BYTES
, IMAGE_SCN_ALIGN_1024BYTES
, IMAGE_SCN_ALIGN_2048BYTES
, IMAGE_SCN_ALIGN_4096BYTES
, IMAGE_SCN_ALIGN_8192BYTES
, IMAGE_SCN_LNK_NRELOC_OVFL
, IMAGE_SCN_MEM_DISCARDABLE
, IMAGE_SCN_MEM_NOT_CACHED
, IMAGE_SCN_MEM_NOT_PAGED
, IMAGE_SCN_MEM_SHARED
, IMAGE_SCN_MEM_EXECUTE
, IMAGE_SCN_MEM_READ
, IMAGE_SCN_MEM_WRITE
]

- type: int
SectionData: {type: str}

symbols:
type: seq
sequence:

- type: map
mapping:
Name: {type: str}
Value: {type: int}
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SectionNumber: {type: int}
SimpleType: [ {type: str, enum: [ IMAGE_SYM_TYPE_NULL

, IMAGE_SYM_TYPE_VOID
, IMAGE_SYM_TYPE_CHAR
, IMAGE_SYM_TYPE_SHORT
, IMAGE_SYM_TYPE_INT
, IMAGE_SYM_TYPE_LONG
, IMAGE_SYM_TYPE_FLOAT
, IMAGE_SYM_TYPE_DOUBLE
, IMAGE_SYM_TYPE_STRUCT
, IMAGE_SYM_TYPE_UNION
, IMAGE_SYM_TYPE_ENUM
, IMAGE_SYM_TYPE_MOE
, IMAGE_SYM_TYPE_BYTE
, IMAGE_SYM_TYPE_WORD
, IMAGE_SYM_TYPE_UINT
, IMAGE_SYM_TYPE_DWORD
]}

, {type: int}
]

ComplexType: [ {type: str, enum: [ IMAGE_SYM_DTYPE_NULL
, IMAGE_SYM_DTYPE_POINTER
, IMAGE_SYM_DTYPE_FUNCTION
, IMAGE_SYM_DTYPE_ARRAY
]}

, {type: int}
]

StorageClass: [ {type: str, enum:
[ IMAGE_SYM_CLASS_END_OF_FUNCTION
, IMAGE_SYM_CLASS_NULL
, IMAGE_SYM_CLASS_AUTOMATIC
, IMAGE_SYM_CLASS_EXTERNAL
, IMAGE_SYM_CLASS_STATIC
, IMAGE_SYM_CLASS_REGISTER
, IMAGE_SYM_CLASS_EXTERNAL_DEF
, IMAGE_SYM_CLASS_LABEL
, IMAGE_SYM_CLASS_UNDEFINED_LABEL
, IMAGE_SYM_CLASS_MEMBER_OF_STRUCT
, IMAGE_SYM_CLASS_ARGUMENT
, IMAGE_SYM_CLASS_STRUCT_TAG
, IMAGE_SYM_CLASS_MEMBER_OF_UNION
, IMAGE_SYM_CLASS_UNION_TAG
, IMAGE_SYM_CLASS_TYPE_DEFINITION
, IMAGE_SYM_CLASS_UNDEFINED_STATIC
, IMAGE_SYM_CLASS_ENUM_TAG
, IMAGE_SYM_CLASS_MEMBER_OF_ENUM
, IMAGE_SYM_CLASS_REGISTER_PARAM
, IMAGE_SYM_CLASS_BIT_FIELD
, IMAGE_SYM_CLASS_BLOCK
, IMAGE_SYM_CLASS_FUNCTION
, IMAGE_SYM_CLASS_END_OF_STRUCT
, IMAGE_SYM_CLASS_FILE
, IMAGE_SYM_CLASS_SECTION
, IMAGE_SYM_CLASS_WEAK_EXTERNAL
, IMAGE_SYM_CLASS_CLR_TOKEN
]}

, {type: int}
]

2.12. yaml2obj 317



LLVM Documentation, Release 3.9

How to submit an LLVM bug report

Introduction - Got bugs?

If you’re working with LLVM and run into a bug, we definitely want to know about it. This document describes what
you can do to increase the odds of getting it fixed quickly.

Basically you have to do two things at a minimum. First, decide whether the bug crashes the compiler (or an LLVM
pass), or if the compiler is miscompiling the program (i.e., the compiler successfully produces an executable, but it
doesn’t run right). Based on what type of bug it is, follow the instructions in the linked section to narrow down the
bug so that the person who fixes it will be able to find the problem more easily.

Once you have a reduced test-case, go to the LLVM Bug Tracking System and fill out the form with the necessary
details (note that you don’t need to pick a category, just use the “new-bugs” category if you’re not sure). The bug
description should contain the following information:

• All information necessary to reproduce the problem.

• The reduced test-case that triggers the bug.

• The location where you obtained LLVM (if not from our Subversion repository).

Thanks for helping us make LLVM better!

Crashing Bugs

More often than not, bugs in the compiler cause it to crash—often due to an assertion failure of some sort. The most
important piece of the puzzle is to figure out if it is crashing in the GCC front-end or if it is one of the LLVM libraries
(e.g. the optimizer or code generator) that has problems.

To figure out which component is crashing (the front-end, optimizer or code generator), run the clang command line
as you were when the crash occurred, but with the following extra command line options:

• -O0 -emit-llvm: If clang still crashes when passed these options (which disable the optimizer and code
generator), then the crash is in the front-end. Jump ahead to the section on front-end bugs.

• -emit-llvm: If clang crashes with this option (which disables the code generator), you found an optimizer
bug. Jump ahead to compile-time optimization bugs.

• Otherwise, you have a code generator crash. Jump ahead to code generator bugs.

Front-end bugs

If the problem is in the front-end, you should re-run the same clang command that resulted in the crash, but add the
-save-temps option. The compiler will crash again, but it will leave behind a foo.i file (containing preprocessed
C source code) and possibly foo.s for each compiled foo.c file. Send us the foo.i file, along with the options
you passed to clang, and a brief description of the error it caused.

The delta tool helps to reduce the preprocessed file down to the smallest amount of code that still replicates the
problem. You’re encouraged to use delta to reduce the code to make the developers’ lives easier. This website has
instructions on the best way to use delta.

Compile-time optimization bugs

If you find that a bug crashes in the optimizer, compile your test-case to a .bc file by passing “-emit-llvm -O0
-c -o foo.bc”. Then run:
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opt -O3 -debug-pass=Arguments foo.bc -disable-output

This command should do two things: it should print out a list of passes, and then it should crash in the same way as
clang. If it doesn’t crash, please follow the instructions for a front-end bug.

If this does crash, then you should be able to debug this with the following bugpoint command:

bugpoint foo.bc <list of passes printed by opt>

Please run this, then file a bug with the instructions and reduced .bc files that bugpoint emits. If something goes wrong
with bugpoint, please submit the “foo.bc” file and the list of passes printed by opt.

Code generator bugs

If you find a bug that crashes clang in the code generator, compile your source file to a .bc file by passing
“-emit-llvm -c -o foo.bc” to clang (in addition to the options you already pass). Once your have foo.bc,
one of the following commands should fail:

1. llc foo.bc

2. llc foo.bc -relocation-model=pic

3. llc foo.bc -relocation-model=static

If none of these crash, please follow the instructions for a front-end bug. If one of these do crash, you should be able
to reduce this with one of the following bugpoint command lines (use the one corresponding to the command above
that failed):

1. bugpoint -run-llc foo.bc

2. bugpoint -run-llc foo.bc --tool-args -relocation-model=pic

3. bugpoint -run-llc foo.bc --tool-args -relocation-model=static

Please run this, then file a bug with the instructions and reduced .bc file that bugpoint emits. If something goes wrong
with bugpoint, please submit the “foo.bc” file and the option that llc crashes with.

Miscompilations

If clang successfully produces an executable, but that executable doesn’t run right, this is either a bug in the code
or a bug in the compiler. The first thing to check is to make sure it is not using undefined behavior (e.g. reading a
variable before it is defined). In particular, check to see if the program valgrind‘s clean, passes purify, or some other
memory checker tool. Many of the “LLVM bugs” that we have chased down ended up being bugs in the program
being compiled, not LLVM.

Once you determine that the program itself is not buggy, you should choose which code generator you wish to compile
the program with (e.g. LLC or the JIT) and optionally a series of LLVM passes to run. For example:

bugpoint -run-llc [... optzn passes ...] file-to-test.bc --args -- [program arguments]

bugpoint will try to narrow down your list of passes to the one pass that causes an error, and simplify the bitcode file
as much as it can to assist you. It will print a message letting you know how to reproduce the resulting error.

Incorrect code generation

Similarly to debugging incorrect compilation by mis-behaving passes, you can debug incorrect code generation by
either LLC or the JIT, using bugpoint. The process bugpoint follows in this case is to try to narrow the code
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down to a function that is miscompiled by one or the other method, but since for correctness, the entire program must
be run, bugpoint will compile the code it deems to not be affected with the C Backend, and then link in the shared
object it generates.

To debug the JIT:

bugpoint -run-jit -output=[correct output file] [bitcode file] \
--tool-args -- [arguments to pass to lli] \
--args -- [program arguments]

Similarly, to debug the LLC, one would run:

bugpoint -run-llc -output=[correct output file] [bitcode file] \
--tool-args -- [arguments to pass to llc] \
--args -- [program arguments]

Special note: if you are debugging MultiSource or SPEC tests that already exist in the llvm/test hierarchy, there
is an easier way to debug the JIT, LLC, and CBE, using the pre-written Makefile targets, which will pass the program
options specified in the Makefiles:

cd llvm/test/../../program
make bugpoint-jit

At the end of a successful bugpoint run, you will be presented with two bitcode files: a safe file which can be
compiled with the C backend and the test file which either LLC or the JIT mis-codegenerates, and thus causes the
error.

To reproduce the error that bugpoint found, it is sufficient to do the following:

1. Regenerate the shared object from the safe bitcode file:

llc -march=c safe.bc -o safe.c
gcc -shared safe.c -o safe.so

2. If debugging LLC, compile test bitcode native and link with the shared object:

llc test.bc -o test.s
gcc test.s safe.so -o test.llc
./test.llc [program options]

3. If debugging the JIT, load the shared object and supply the test bitcode:

lli -load=safe.so test.bc [program options]

Sphinx Quickstart Template

Introduction and Quickstart

This document is meant to get you writing documentation as fast as possible even if you have no previous experience
with Sphinx. The goal is to take someone in the state of “I want to write documentation and get it added to LLVM’s
docs” and turn that into useful documentation mailed to llvm-commits with as little nonsense as possible.

You can find this document in docs/SphinxQuickstartTemplate.rst. You should copy it, open the new
file in your text editor, write your docs, and then send the new document to llvm-commits for review.

Focus on content. It is easy to fix the Sphinx (reStructuredText) syntax later if necessary, although reStructuredText
tries to imitate common plain-text conventions so it should be quite natural. A basic knowledge of reStructuredText
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syntax is useful when writing the document, so the last ~half of this document (starting with Example Section) gives
examples which should cover 99% of use cases.

Let me say that again: focus on content. But if you really need to verify Sphinx’s output, see docs/README.txt
for information.

Once you have finished with the content, please send the .rst file to llvm-commits for review.

Guidelines

Try to answer the following questions in your first section:

1. Why would I want to read this document?

2. What should I know to be able to follow along with this document?

3. What will I have learned by the end of this document?

Common names for the first section are Introduction, Overview, or Background.

If possible, make your document a “how to”. Give it a name HowTo*.rst like the other “how to” documents. This
format is usually the easiest for another person to understand and also the most useful.

You generally should not be writing documentation other than a “how to” unless there is already a “how to” about your
topic. The reason for this is that without a “how to” document to read first, it is difficult for a person to understand a
more advanced document.

Focus on content (yes, I had to say it again).

The rest of this document shows example reStructuredText markup constructs that are meant to be read by you in your
text editor after you have copied this file into a new file for the documentation you are about to write.

Example Section

Your text can be emphasized, bold, or monospace.

Use blank lines to separate paragraphs.

Headings (like Example Section just above) give your document its structure. Use the same kind of adornments
(e.g. ====== vs. ------) as are used in this document. The adornment must be the same length as the text above
it. For Vim users, variations of yypVr= might be handy.

Example Subsection

Make a link like this. There is also a more sophisticated syntax which can be more readable for longer links since
it disrupts the flow less. You can put the .. _`link text`: <URL> block pretty much anywhere later in the
document.

Lists can be made like this:

1. A list starting with #. will be automatically numbered.

2. This is a second list element.

(a) Use indentation to create nested lists.

You can also use unordered lists.

• Stuff.

– Deeper stuff.
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• More stuff.

Example Subsubsection

You can make blocks of code like this:

int main() {
return 0;

}

For a shell session, use a console code block (some existing docs use bash):

$ echo "Goodbye cruel world!"
$ rm -rf /

If you need to show LLVM IR use the llvm code block.

define i32 @test1() {
entry:

ret i32 0
}

Some other common code blocks you might need are c, objc, make, and cmake. If you need something beyond
that, you can look at the full list of supported code blocks.

However, don’t waste time fiddling with syntax highlighting when you could be adding meaningful content. When in
doubt, show preformatted text without any syntax highlighting like this:

.
+:.

..:: ::
.++:+:: ::+:.:.

.:+ :
::.::..:: .+.

..:+ :: :
......+:. ..

:++. .. :
.+:::+:: :
.. . .+ ::

+.: .::+.
...+. .: .

.++:..
...

Hopefully you won’t need to be this deep

If you need to do fancier things than what has been shown in this document, you can mail the list or check Sphinx’s
reStructuredText Primer.

Code Reviews with Phabricator
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• Sign up

• Requesting a review via the command line

• Requesting a review via the web interface

• Reviewing code with Phabricator

• Committing a change

– Subversion and Arcanist

– git-svn and Arcanist

• Abandoning a change

• Status

If you prefer to use a web user interface for code reviews, you can now submit your patches for Clang and LLVM at
LLVM’s Phabricator instance.

While Phabricator is a useful tool for some, the relevant -commits mailing list is the system of record for all LLVM
code review. The mailing list should be added as a subscriber on all reviews, and Phabricator users should be prepared
to respond to free-form comments in mail sent to the commits list.

Sign up

To get started with Phabricator, navigate to http://reviews.llvm.org and click the power icon in the top right. You can
register with a GitHub account, a Google account, or you can create your own profile.

Make sure that the email address registered with Phabricator is subscribed to the relevant -commits mailing list. If you
are not subscribed to the commit list, all mail sent by Phabricator on your behalf will be held for moderation.

Note that if you use your Subversion user name as Phabricator user name, Phabricator will automatically connect your
submits to your Phabricator user in the Code Repository Browser.

Requesting a review via the command line

Phabricator has a tool called Arcanist to upload patches from the command line. To get you set up, follow the Arcanist
Quick Start instructions.

You can learn more about how to use arc to interact with Phabricator in the Arcanist User Guide.

Requesting a review via the web interface

The tool to create and review patches in Phabricator is called Differential.

Note that you can upload patches created through various diff tools, including git and svn. To make reviews easier,
please always include as much context as possible with your diff! Don’t worry, Phabricator will automatically send
a diff with a smaller context in the review email, but having the full file in the web interface will help the reviewer
understand your code.

To get a full diff, use one of the following commands (or just use Arcanist to upload your patch):

• git diff -U999999 other-branch

• svn diff --diff-cmd=diff -x -U999999

To upload a new patch:
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• Click Differential.

• Click + Create Diff.

• Paste the text diff or browse to the patch file. Click Create Diff.

• Leave the Repository field blank.

• Leave the drop down on Create a new Revision... and click Continue.

• Enter a descriptive title and summary. The title and summary are usually in the form of a commit message.

• Add reviewers (see below for advice) and subscribe mailing lists that you want to be included in the review. If
your patch is for LLVM, add llvm-commits as a Subscriber; if your patch is for Clang, add cfe-commits.

• Leave the Repository and Project fields blank.

• Click Save.

To submit an updated patch:

• Click Differential.

• Click + Create Diff.

• Paste the updated diff or browse to the updated patch file. Click Create Diff.

• Select the review you want to from the Attach To dropdown and click Continue.

• Leave the Repository and Project fields blank.

• Add comments about the changes in the new diff. Click Save.

Choosing reviewers: You typically pick one or two people as initial reviewers. This choice is not crucial, because
you are merely suggesting and not requiring them to participate. Many people will see the email notification on
cfe-commits or llvm-commits, and if the subject line suggests the patch is something they should look at, they will.

Here are a couple of ways to pick the initial reviewer(s):

• Use svn blame and the commit log to find names of people who have recently modified the same area of code
that you are modifying.

• Look in CODE_OWNERS.TXT to see who might be responsible for that area.

• If you’ve discussed the change on a dev list, the people who participated might be appropriate reviewers.

Even if you think the code owner is the busiest person in the world, it’s still okay to put them as a reviewer. Being the
code owner means they have accepted responsibility for making sure the review happens.

Reviewing code with Phabricator

Phabricator allows you to add inline comments as well as overall comments to a revision. To add an inline comment,
select the lines of code you want to comment on by clicking and dragging the line numbers in the diff pane. When you
have added all your comments, scroll to the bottom of the page and click the Submit button.

You can add overall comments in the text box at the bottom of the page. When you’re done, click the Submit button.

Phabricator has many useful features, for example allowing you to select diffs between different versions of the patch
as it was reviewed in the Revision Update History. Most features are self descriptive - explore, and if you have a
question, drop by on #llvm in IRC to get help.

Note that as e-mail is the system of reference for code reviews, and some people prefer it over a web interface, we
do not generate automated mail when a review changes state, for example by clicking “Accept Revision” in the web
interface. Thus, please type LGTM into the comment box to accept a change from Phabricator.
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Committing a change

Once a patch has been reviewed and approved on Phabricator it can then be committed to trunk. There are multiple
workflows to achieve this. Whichever method you follow it is recommend that your commit message ends with the
line:

Differential Revision: <URL>

where <URL> is the URL for the code review, starting with http://reviews.llvm.org/.

This allows people reading the version history to see the review for context. This also allows Phabricator to detect the
commit, close the review, and add a link from the review to the commit.

Note that if you use the Arcanist tool the Differential Revision line will be added automatically. If you don’t
want to use Arcanist, you can add the Differential Revision line (as the last line) to the commit message
yourself.

Using the Arcanist tool can simplify the process of committing reviewed code as it will retrieve reviewers, the
Differential Revision, etc from the review and place it in the commit message. Several methods of us-
ing Arcanist to commit code are given below. If you do not wish to use Arcanist then simply commit the reviewed
patch as you would normally.

Note that if you commit the change without using Arcanist and forget to add the Differential Revision line
to your commit message then it is recommended that you close the review manually. In the web UI, under “Leap Into
Action” put the SVN revision number in the Comment, set the Action to “Close Revision” and click Submit. Note the
review must have been Accepted first.

Subversion and Arcanist

On a clean Subversion working copy run the following (where <Revision> is the Phabricator review number):

arc patch D<Revision>
arc commit --revision D<Revision>

The first command will take the latest version of the reviewed patch and apply it to the working copy. The second
command will commit this revision to trunk.

git-svn and Arcanist

This presumes that the git repository has been configured as described in For developers to work with git-svn.

On a clean Git repository on an up to date master branch run the following (where <Revision> is the Phabricator
review number):

arc patch D<Revision>

This will create a new branch called arcpatch-D<Revision> based on the current master and will create a
commit corresponding to D<Revision> with a commit message derived from information in the Phabricator review.

Check you are happy with the commit message and amend it if necessary. Now switch to the master branch and add
the new commit to it and commit it to trunk. This can be done by running the following:

git checkout master
git merge --ff-only arcpatch-D<Revision>
git svn dcommit
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Abandoning a change

If you decide you should not commit the patch, you should explicitly abandon the review so that reviewers don’t think
it is still open. In the web UI, scroll to the bottom of the page where normally you would enter an overall comment.
In the drop-down Action list, which defaults to “Comment,” you should select “Abandon Revision” and then enter a
comment explaining why. Click the Submit button to finish closing the review.

Status

Please let us know whether you like it and what could be improved! We’re still working on setting up a bug tracker,
but you can email klimek-at-google-dot-com and chandlerc-at-gmail-dot-com and CC the llvm-dev mailing list with
questions until then. We also could use help implementing improvements. This sadly is really painful and hard
because the Phabricator codebase is in PHP and not as testable as you might like. However, we’ve put exactly what
we’re deploying up on an llvm-reviews GitHub project where folks can hack on it and post pull requests. We’re looking
into what the right long-term hosting for this is, but note that it is a derivative of an existing open source project, and
so not trivially a good fit for an official LLVM project.
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– test-suite Makefiles

LLVM test-suite Guide

• Overview

• Test suite Structure

• Running the test suite via CMake

• Running the test suite via Makefiles (deprecated)

– Configuring External Tests

– Running different tests

– Generating test output

– Writing custom tests for the test suite

Overview

This document describes the features of the Makefile-based LLVM test-suite as well as the cmake based replacement.
This way of interacting with the test-suite is deprecated in favor of running the test-suite using LNT, but may continue
to prove useful for some users. See the Testing Guide’s test-suite Quickstart section for more information.

Test suite Structure

The test-suite module contains a number of programs that can be compiled with LLVM and executed. These
programs are compiled using the native compiler and various LLVM backends. The output from the program compiled
with the native compiler is assumed correct; the results from the other programs are compared to the native program
output and pass if they match.

When executing tests, it is usually a good idea to start out with a subset of the available tests or programs. This makes
test run times smaller at first and later on this is useful to investigate individual test failures. To run some test only on
a subset of programs, simply change directory to the programs you want tested and run gmake there. Alternatively,
you can run a different test using the TEST variable to change what tests or run on the selected programs (see below
for more info).

In addition for testing correctness, the test-suite directory also performs timing tests of various LLVM optimiza-
tions. It also records compilation times for the compilers and the JIT. This information can be used to compare the
effectiveness of LLVM’s optimizations and code generation.

test-suite tests are divided into three types of tests: MultiSource, SingleSource, and External.

• test-suite/SingleSource

The SingleSource directory contains test programs that are only a single source file in size. These are usually
small benchmark programs or small programs that calculate a particular value. Several such programs are
grouped together in each directory.

• test-suite/MultiSource

The MultiSource directory contains subdirectories which contain entire programs with multiple source files.
Large benchmarks and whole applications go here.
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• test-suite/External

The External directory contains Makefiles for building code that is external to (i.e., not distributed with) LLVM.
The most prominent members of this directory are the SPEC 95 and SPEC 2000 benchmark suites. The
External directory does not contain these actual tests, but only the Makefiles that know how to properly
compile these programs from somewhere else. The presence and location of these external programs is config-
ured by the test-suite configure script.

Each tree is then subdivided into several categories, including applications, benchmarks, regression tests, code that is
strange grammatically, etc. These organizations should be relatively self explanatory.

Some tests are known to fail. Some are bugs that we have not fixed yet; others are features that we haven’t added yet
(or may never add). In the regression tests, the result for such tests will be XFAIL (eXpected FAILure). In this way,
you can tell the difference between an expected and unexpected failure.

The tests in the test suite have no such feature at this time. If the test passes, only warnings and other miscellaneous
output will be generated. If a test fails, a large <program> FAILED message will be displayed. This will help you
separate benign warnings from actual test failures.

Running the test suite via CMake

To run the test suite, you need to use the following steps:

1. The test suite uses the lit test runner to run the test-suite, you need to have lit installed first. Check out LLVM
and install lit:

% svn co http://llvm.org/svn/llvm-project/llvm/trunk llvm
% cd llvm/utils/lit
% sudo python setup.py install # Or without sudo, install in virtual-env.
running install
running bdist_egg
running egg_info
writing lit.egg-info/PKG-INFO
...
% lit --version
lit 0.5.0dev

2. Check out the test-suite module with:

% svn co http://llvm.org/svn/llvm-project/test-suite/trunk test-suite

3. Use CMake to configure the test suite in a new directory. You cannot build the test suite in the source tree.

% mkdir test-suite-build
% cd test-suite-build
% cmake ../test-suite

4. Build the benchmarks, using the makefiles CMake generated.

% make
Scanning dependencies of target timeit-target
[ 0%] Building C object tools/CMakeFiles/timeit-target.dir/timeit.c.o
[ 0%] Linking C executable timeit-target
[ 0%] Built target timeit-target
Scanning dependencies of target fpcmp-host
[ 0%] [TEST_SUITE_HOST_CC] Building host executable fpcmp
[ 0%] Built target fpcmp-host
Scanning dependencies of target timeit-host
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[ 0%] [TEST_SUITE_HOST_CC] Building host executable timeit
[ 0%] Built target timeit-host

1. Run the tests with lit:

% lit -v -j 1 . -o results.json
-- Testing: 474 tests, 1 threads --
PASS: test-suite :: MultiSource/Applications/ALAC/decode/alacconvert-decode.test (1
→˓of 474)

********** TEST 'test-suite :: MultiSource/Applications/ALAC/decode/alacconvert-
→˓decode.test' RESULTS **********
compile_time: 0.2192
exec_time: 0.0462
hash: "59620e187c6ac38b36382685ccd2b63b"
size: 83348

**********
PASS: test-suite :: MultiSource/Applications/ALAC/encode/alacconvert-encode.test (2
→˓of 474)

Running the test suite via Makefiles (deprecated)

First, all tests are executed within the LLVM object directory tree. They are not executed inside of the LLVM source
tree. This is because the test suite creates temporary files during execution.

To run the test suite, you need to use the following steps:

1. cd into the llvm/projects directory in your source tree.

2. Check out the test-suite module with:

% svn co http://llvm.org/svn/llvm-project/test-suite/trunk test-suite

This will get the test suite into llvm/projects/test-suite.

3. Configure and build llvm.

4. Configure and build llvm-gcc.

5. Install llvm-gcc somewhere.

6. Re-configure llvm from the top level of each build tree (LLVM object directory tree) in which you want to run
the test suite, just as you do before building LLVM.

During the re-configuration, you must either: (1) have llvm-gcc you just built in your path, or (2) specify the
directory where your just-built llvm-gcc is installed using --with-llvmgccdir=$LLVM_GCC_DIR.

You must also tell the configure machinery that the test suite is available so it can be configured for your build
tree:

% cd $LLVM_OBJ_ROOT ; $LLVM_SRC_ROOT/configure [--with-llvmgccdir=$LLVM_GCC_DIR]

[Remember that $LLVM_GCC_DIR is the directory where you installed llvm-gcc, not its src or obj directory.]

7. You can now run the test suite from your build tree as follows:

% cd $LLVM_OBJ_ROOT/projects/test-suite
% make

Note that the second and third steps only need to be done once. After you have the suite checked out and configured,
you don’t need to do it again (unless the test code or configure script changes).
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Configuring External Tests

In order to run the External tests in the test-suite module, you must specify –with-externals. This must be
done during the re-configuration step (see above), and the llvm re-configuration must recognize the previously-built
llvm-gcc. If any of these is missing or neglected, the External tests won’t work.

• –with-externals

• –with-externals=<directory>

This tells LLVM where to find any external tests. They are expected to be in specifically named subdirectories of
<directory>. If directory is left unspecified, configure uses the default value /home/vadve/shared/
benchmarks/speccpu2000/benchspec. Subdirectory names known to LLVM include:

• spec95

• speccpu2000

• speccpu2006

• povray31

Others are added from time to time, and can be determined from configure.

Running different tests

In addition to the regular “whole program” tests, the test-suite module also provides a mechanism for compiling
the programs in different ways. If the variable TEST is defined on the gmake command line, the test system will
include a Makefile named TEST.<value of TEST variable>.Makefile. This Makefile can modify build
rules to yield different results.

For example, the LLVM nightly tester uses TEST.nightly.Makefile to create the nightly test reports. To run
the nightly tests, run gmake TEST=nightly.

There are several TEST Makefiles available in the tree. Some of them are designed for internal LLVM research and
will not work outside of the LLVM research group. They may still be valuable, however, as a guide to writing your
own TEST Makefile for any optimization or analysis passes that you develop with LLVM.

Generating test output

There are a number of ways to run the tests and generate output. The most simple one is simply running gmake with
no arguments. This will compile and run all programs in the tree using a number of different methods and compare
results. Any failures are reported in the output, but are likely drowned in the other output. Passes are not reported
explicitly.

Somewhat better is running gmake TEST=sometest test, which runs the specified test and usually adds per-
program summaries to the output (depending on which sometest you use). For example, the nightly test explicitly
outputs TEST-PASS or TEST-FAIL for every test after each program. Though these lines are still drowned in the
output, it’s easy to grep the output logs in the Output directories.

Even better are the report and report.format targets (where format is one of html, csv, text or graphs).
The exact contents of the report are dependent on which TEST you are running, but the text results are always shown
at the end of the run and the results are always stored in the report.<type>.format file (when running with
TEST=<type>). The report also generate a file called report.<type>.raw.out containing the output of
the entire test run.
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Writing custom tests for the test suite

Assuming you can run the test suite, (e.g. “gmake TEST=nightly report” should work), it is really easy to run
optimizations or code generator components against every program in the tree, collecting statistics or running custom
checks for correctness. At base, this is how the nightly tester works, it’s just one example of a general framework.

Lets say that you have an LLVM optimization pass, and you want to see how many times it triggers. First thing you
should do is add an LLVM statistic to your pass, which will tally counts of things you care about.

Following this, you can set up a test and a report that collects these and formats them for easy viewing. This consists
of two files, a “test-suite/TEST.XXX.Makefile” fragment (where XXX is the name of your test) and a
“test-suite/TEST.XXX.report” file that indicates how to format the output into a table. There are many
example reports of various levels of sophistication included with the test suite, and the framework is very general.

If you are interested in testing an optimization pass, check out the “libcalls” test as an example. It can be run like this:

% cd llvm/projects/test-suite/MultiSource/Benchmarks # or some other level
% make TEST=libcalls report

This will do a bunch of stuff, then eventually print a table like this:

Name | total | #exit |
...
FreeBench/analyzer/analyzer | 51 | 6 |
FreeBench/fourinarow/fourinarow | 1 | 1 |
FreeBench/neural/neural | 19 | 9 |
FreeBench/pifft/pifft | 5 | 3 |
MallocBench/cfrac/cfrac | 1 | * |
MallocBench/espresso/espresso | 52 | 12 |
MallocBench/gs/gs | 4 | * |
Prolangs-C/TimberWolfMC/timberwolfmc | 302 | * |
Prolangs-C/agrep/agrep | 33 | 12 |
Prolangs-C/allroots/allroots | * | * |
Prolangs-C/assembler/assembler | 47 | * |
Prolangs-C/bison/mybison | 74 | * |
...

This basically is grepping the -stats output and displaying it in a table. You can also use the “TEST=libcalls re-
port.html” target to get the table in HTML form, similarly for report.csv and report.tex.

The source for this is in test-suite/TEST.libcalls.*. The format is pretty simple: the Makefile indicates
how to run the test (in this case, “opt -simplify-libcalls -stats”), and the report contains one line for
each column of the output. The first value is the header for the column and the second is the regex to grep the output
of the command for. There are lots of example reports that can do fancy stuff.

Overview

This document is the reference manual for the LLVM testing infrastructure. It documents the structure of the LLVM
testing infrastructure, the tools needed to use it, and how to add and run tests.

Requirements

In order to use the LLVM testing infrastructure, you will need all of the software required to build LLVM, as well as
Python 2.7 or later.
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If you intend to run the test-suite, you will also need a development version of zlib (zlib1g-dev is known to work on
several Linux distributions).

LLVM testing infrastructure organization

The LLVM testing infrastructure contains two major categories of tests: regression tests and whole programs. The
regression tests are contained inside the LLVM repository itself under llvm/test and are expected to always pass
– they should be run before every commit.

The whole programs tests are referred to as the “LLVM test suite” (or “test-suite”) and are in the test-suite
module in subversion. For historical reasons, these tests are also referred to as the “nightly tests” in places, which is
less ambiguous than “test-suite” and remains in use although we run them much more often than nightly.

Regression tests

The regression tests are small pieces of code that test a specific feature of LLVM or trigger a specific bug in LLVM.
The language they are written in depends on the part of LLVM being tested. These tests are driven by the Lit testing
tool (which is part of LLVM), and are located in the llvm/test directory.

Typically when a bug is found in LLVM, a regression test containing just enough code to reproduce the problem should
be written and placed somewhere underneath this directory. For example, it can be a small piece of LLVM IR distilled
from an actual application or benchmark.

test-suite

The test suite contains whole programs, which are pieces of code which can be compiled and linked into a stand-alone
program that can be executed. These programs are generally written in high level languages such as C or C++.

These programs are compiled using a user specified compiler and set of flags, and then executed to capture the program
output and timing information. The output of these programs is compared to a reference output to ensure that the
program is being compiled correctly.

In addition to compiling and executing programs, whole program tests serve as a way of benchmarking LLVM per-
formance, both in terms of the efficiency of the programs generated as well as the speed with which LLVM compiles,
optimizes, and generates code.

The test-suite is located in the test-suite Subversion module.

Debugging Information tests

The test suite contains tests to check quality of debugging information. The test are written in C based languages or in
LLVM assembly language.

These tests are compiled and run under a debugger. The debugger output is checked to validate of debugging informa-
tion. See README.txt in the test suite for more information . This test suite is located in the debuginfo-tests
Subversion module.

Quick start

The tests are located in two separate Subversion modules. The regressions tests are in the main “llvm” module under
the directory llvm/test (so you get these tests for free with the main LLVM tree). Use make check-all to run
the regression tests after building LLVM.
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The more comprehensive test suite that includes whole programs in C and C++ is in the test-suite module. See
test-suite Quickstart for more information on running these tests.

Regression tests

To run all of the LLVM regression tests use the check-llvm target:

% make check-llvm

If you have Clang checked out and built, you can run the LLVM and Clang tests simultaneously using:

% make check-all

To run the tests with Valgrind (Memcheck by default), use the LIT_ARGS make variable to pass the required options
to lit. For example, you can use:

% make check LIT_ARGS="-v --vg --vg-leak"

to enable testing with valgrind and with leak checking enabled.

To run individual tests or subsets of tests, you can use the llvm-lit script which is built as part of LLVM. For
example, to run the Integer/BitPacked.ll test by itself you can run:

% llvm-lit ~/llvm/test/Integer/BitPacked.ll

or to run all of the ARM CodeGen tests:

% llvm-lit ~/llvm/test/CodeGen/ARM

For more information on using the lit tool, see llvm-lit --help or the lit man page.

Debugging Information tests

To run debugging information tests simply checkout the tests inside clang/test directory.

% cd clang/test
% svn co http://llvm.org/svn/llvm-project/debuginfo-tests/trunk debuginfo-tests

These tests are already set up to run as part of clang regression tests.

Regression test structure

The LLVM regression tests are driven by lit and are located in the llvm/test directory.

This directory contains a large array of small tests that exercise various features of LLVM and to ensure that regressions
do not occur. The directory is broken into several sub-directories, each focused on a particular area of LLVM.

Writing new regression tests

The regression test structure is very simple, but does require some information to be set. This information is gathered
via configure and is written to a file, test/lit.site.cfg in the build directory. The llvm/test Makefile
does this work for you.
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In order for the regression tests to work, each directory of tests must have a lit.local.cfg file. lit looks for this
file to determine how to run the tests. This file is just Python code and thus is very flexible, but we’ve standardized it for
the LLVM regression tests. If you’re adding a directory of tests, just copy lit.local.cfg from another directory
to get running. The standard lit.local.cfg simply specifies which files to look in for tests. Any directory that
contains only directories does not need the lit.local.cfg file. Read the Lit documentation for more information.

Each test file must contain lines starting with “RUN:” that tell lit how to run it. If there are no RUN lines, lit will
issue an error while running a test.

RUN lines are specified in the comments of the test program using the keyword RUN followed by a colon, and lastly
the command (pipeline) to execute. Together, these lines form the “script” that lit executes to run the test case. The
syntax of the RUN lines is similar to a shell’s syntax for pipelines including I/O redirection and variable substitution.
However, even though these lines may look like a shell script, they are not. RUN lines are interpreted by lit.
Consequently, the syntax differs from shell in a few ways. You can specify as many RUN lines as needed.

lit performs substitution on each RUN line to replace LLVM tool names with the full paths to the executable built
for each tool (in $(LLVM_OBJ_ROOT)/$(BuildMode)/bin). This ensures that lit does not invoke any stray
LLVM tools in the user’s path during testing.

Each RUN line is executed on its own, distinct from other lines unless its last character is \. This continuation character
causes the RUN line to be concatenated with the next one. In this way you can build up long pipelines of commands
without making huge line lengths. The lines ending in \ are concatenated until a RUN line that doesn’t end in \ is
found. This concatenated set of RUN lines then constitutes one execution. lit will substitute variables and arrange
for the pipeline to be executed. If any process in the pipeline fails, the entire line (and test case) fails too.

Below is an example of legal RUN lines in a .ll file:

; RUN: llvm-as < %s | llvm-dis > %t1
; RUN: llvm-dis < %s.bc-13 > %t2
; RUN: diff %t1 %t2

As with a Unix shell, the RUN lines permit pipelines and I/O redirection to be used.

There are some quoting rules that you must pay attention to when writing your RUN lines. In general nothing needs
to be quoted. lit won’t strip off any quote characters so they will get passed to the invoked program. To avoid this
use curly braces to tell lit that it should treat everything enclosed as one value.

In general, you should strive to keep your RUN lines as simple as possible, using them only to run tools that generate
textual output you can then examine. The recommended way to examine output to figure out if the test passes is using
the FileCheck tool. [The usage of grep in RUN lines is deprecated - please do not send or commit patches that use it.]

Put related tests into a single file rather than having a separate file per test. Check if there are files already covering
your feature and consider adding your code there instead of creating a new file.

Extra files

If your test requires extra files besides the file containing the RUN: lines, the idiomatic place to put them is in a
subdirectory Inputs. You can then refer to the extra files as %S/Inputs/foo.bar.

For example, consider test/Linker/ident.ll. The directory structure is as follows:

test/
Linker/
ident.ll
Inputs/

ident.a.ll
ident.b.ll

For convenience, these are the contents:
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;;;;; ident.ll:

; RUN: llvm-link %S/Inputs/ident.a.ll %S/Inputs/ident.b.ll -S | FileCheck %s

; Verify that multiple input llvm.ident metadata are linked together.

; CHECK-DAG: !llvm.ident = !{!0, !1, !2}
; CHECK-DAG: "Compiler V1"
; CHECK-DAG: "Compiler V2"
; CHECK-DAG: "Compiler V3"

;;;;; Inputs/ident.a.ll:

!llvm.ident = !{!0, !1}
!0 = metadata !{metadata !"Compiler V1"}
!1 = metadata !{metadata !"Compiler V2"}

;;;;; Inputs/ident.b.ll:

!llvm.ident = !{!0}
!0 = metadata !{metadata !"Compiler V3"}

For symmetry reasons, ident.ll is just a dummy file that doesn’t actually participate in the test besides holding the
RUN: lines.

Note: Some existing tests use RUN: true in extra files instead of just putting the extra files in an Inputs/
directory. This pattern is deprecated.

Fragile tests

It is easy to write a fragile test that would fail spuriously if the tool being tested outputs a full path to the input file.
For example, opt by default outputs a ModuleID:

$ cat example.ll
define i32 @main() nounwind {

ret i32 0
}

$ opt -S /path/to/example.ll
; ModuleID = '/path/to/example.ll'

define i32 @main() nounwind {
ret i32 0

}

ModuleID can unexpetedly match against CHECK lines. For example:

; RUN: opt -S %s | FileCheck

define i32 @main() nounwind {
; CHECK-NOT: load
ret i32 0

}

This test will fail if placed into a download directory.
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To make your tests robust, always use opt ... < %s in the RUN line. opt does not output a ModuleID when
input comes from stdin.

Platform-Specific Tests

Whenever adding tests that require the knowledge of a specific platform, either related to code generated, specific out-
put or back-end features, you must make sure to isolate the features, so that buildbots that run on different architectures
(and don’t even compile all back-ends), don’t fail.

The first problem is to check for target-specific output, for example sizes of structures, paths and architecture names,
for example:

• Tests containing Windows paths will fail on Linux and vice-versa.

• Tests that check for x86_64 somewhere in the text will fail anywhere else.

• Tests where the debug information calculates the size of types and structures.

Also, if the test rely on any behaviour that is coded in any back-end, it must go in its own directory. So, for instance,
code generator tests for ARM go into test/CodeGen/ARM and so on. Those directories contain a special lit
configuration file that ensure all tests in that directory will only run if a specific back-end is compiled and available.

For instance, on test/CodeGen/ARM, the lit.local.cfg is:

config.suffixes = ['.ll', '.c', '.cpp', '.test']
if not 'ARM' in config.root.targets:
config.unsupported = True

Other platform-specific tests are those that depend on a specific feature of a specific sub-architecture, for example only
to Intel chips that support AVX2.

For instance, test/CodeGen/X86/psubus.ll tests three sub-architecture variants:

; RUN: llc -mcpu=core2 < %s | FileCheck %s -check-prefix=SSE2
; RUN: llc -mcpu=corei7-avx < %s | FileCheck %s -check-prefix=AVX1
; RUN: llc -mcpu=core-avx2 < %s | FileCheck %s -check-prefix=AVX2

And the checks are different:

; SSE2: @test1
; SSE2: psubusw LCPI0_0(%rip), %xmm0
; AVX1: @test1
; AVX1: vpsubusw LCPI0_0(%rip), %xmm0, %xmm0
; AVX2: @test1
; AVX2: vpsubusw LCPI0_0(%rip), %xmm0, %xmm0

So, if you’re testing for a behaviour that you know is platform-specific or depends on special features of sub-
architectures, you must add the specific triple, test with the specific FileCheck and put it into the specific directory that
will filter out all other architectures.

REQUIRES and REQUIRES-ANY directive

Some tests can be enabled only in specific situation - like having debug build. Use REQUIRES directive to specify
those requirements.

; This test will be only enabled in the build with asserts
; REQUIRES: asserts
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You can separate requirements by a comma. REQUIRES means all listed requirements must be satisfied.
REQUIRES-ANY means at least one must be satisfied.

List of features that can be used in REQUIRES and REQUIRES-ANY can be found in lit.cfg files.

Substitutions

Besides replacing LLVM tool names the following substitutions are performed in RUN lines:

%% Replaced by a single %. This allows escaping other substitutions.

%s File path to the test case’s source. This is suitable for passing on the command line as the input to an LLVM tool.

Example: /home/user/llvm/test/MC/ELF/foo_test.s

%S Directory path to the test case’s source.

Example: /home/user/llvm/test/MC/ELF

%t File path to a temporary file name that could be used for this test case. The file name won’t conflict with other test
cases. You can append to it if you need multiple temporaries. This is useful as the destination of some redirected
output.

Example: /home/user/llvm.build/test/MC/ELF/Output/foo_test.s.tmp

%T Directory of %t.

Example: /home/user/llvm.build/test/MC/ELF/Output

%{pathsep}

Expands to the path separator, i.e. : (or ; on Windows).

LLVM-specific substitutions:

%shlibext The suffix for the host platforms shared library files. This includes the period as the first character.

Example: .so (Linux), .dylib (OS X), .dll (Windows)

%exeext The suffix for the host platforms executable files. This includes the period as the first character.

Example: .exe (Windows), empty on Linux.

%(line), %(line+<number>), %(line-<number>) The number of the line where this substitution is used,
with an optional integer offset. This can be used in tests with multiple RUN lines, which reference test file’s line
numbers.

Clang-specific substitutions:

%clang Invokes the Clang driver.

%clang_cpp Invokes the Clang driver for C++.

%clang_cl Invokes the CL-compatible Clang driver.

%clangxx Invokes the G++-compatible Clang driver.

%clang_cc1 Invokes the Clang frontend.

%itanium_abi_triple, %ms_abi_triple These substitutions can be used to get the current target triple
adjusted to the desired ABI. For example, if the test suite is running with the i686-pc-win32 target,
%itanium_abi_triple will expand to i686-pc-mingw32. This allows a test to run with a specific
ABI without constraining it to a specific triple.

To add more substituations, look at test/lit.cfg or lit.local.cfg.
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Options

The llvm lit configuration allows to customize some things with user options:

llc, opt, ... Substitute the respective llvm tool name with a custom command line. This allows to specify custom
paths and default arguments for these tools. Example:

% llvm-lit “-Dllc=llc -verify-machineinstrs”

run_long_tests Enable the execution of long running tests.

llvm_site_config Load the specified lit configuration instead of the default one.

Other Features

To make RUN line writing easier, there are several helper programs. These helpers are in the PATH when running
tests, so you can just call them using their name. For example:

not This program runs its arguments and then inverts the result code from it. Zero result codes become 1. Non-zero
result codes become 0.

Sometimes it is necessary to mark a test case as “expected fail” or XFAIL. You can easily mark a test as XFAIL just
by including XFAIL: on a line near the top of the file. This signals that the test case should succeed if the test fails.
Such test cases are counted separately by the testing tool. To specify an expected fail, use the XFAIL keyword in the
comments of the test program followed by a colon and one or more failure patterns. Each failure pattern can be either
* (to specify fail everywhere), or a part of a target triple (indicating the test should fail on that platform), or the name
of a configurable feature (for example, loadable_module). If there is a match, the test is expected to fail. If not,
the test is expected to succeed. To XFAIL everywhere just specify XFAIL: *. Here is an example of an XFAIL line:

; XFAIL: darwin,sun

To make the output more useful, lit will scan the lines of the test case for ones that contain a pattern that matches
PR[0-9]+. This is the syntax for specifying a PR (Problem Report) number that is related to the test case. The
number after “PR” specifies the LLVM bugzilla number. When a PR number is specified, it will be used in the
pass/fail reporting. This is useful to quickly get some context when a test fails.

Finally, any line that contains “END.” will cause the special interpretation of lines to terminate. This is generally done
right after the last RUN: line. This has two side effects:

1. it prevents special interpretation of lines that are part of the test program, not the instructions to the test case,
and

2. it speeds things up for really big test cases by avoiding interpretation of the remainder of the file.

test-suite Overview

The test-suite module contains a number of programs that can be compiled and executed. The test-suite
includes reference outputs for all of the programs, so that the output of the executed program can be checked for
correctness.

test-suite tests are divided into three types of tests: MultiSource, SingleSource, and External.

• test-suite/SingleSource

The SingleSource directory contains test programs that are only a single source file in size. These are usually
small benchmark programs or small programs that calculate a particular value. Several such programs are
grouped together in each directory.
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• test-suite/MultiSource

The MultiSource directory contains subdirectories which contain entire programs with multiple source files.
Large benchmarks and whole applications go here.

• test-suite/External

The External directory contains Makefiles for building code that is external to (i.e., not distributed with) LLVM.
The most prominent members of this directory are the SPEC 95 and SPEC 2000 benchmark suites. The
External directory does not contain these actual tests, but only the Makefiles that know how to properly
compile these programs from somewhere else. When using LNT, use the --test-externals option to
include these tests in the results.

test-suite Quickstart

The modern way of running the test-suite is focused on testing and benchmarking complete compilers using the
LNT testing infrastructure.

For more information on using LNT to execute the test-suite, please see the LNT Quickstart documentation.

test-suite Makefiles

Historically, the test-suite was executed using a complicated setup of Makefiles. The LNT based approach above
is recommended for most users, but there are some testing scenarios which are not supported by the LNT approach.
In addition, LNT currently uses the Makefile setup under the covers and so developers who are interested in how LNT
works under the hood may want to understand the Makefile based setup.

For more information on the test-suite Makefile setup, please see the Test Suite Makefile Guide.

LLVM Tutorial: Table of Contents

Kaleidoscope: Implementing a Language with LLVM

Kaleidoscope: Tutorial Introduction and the Lexer

• Tutorial Introduction

• The Basic Language

• The Lexer

Tutorial Introduction

Welcome to the “Implementing a language with LLVM” tutorial. This tutorial runs through the implementation of a
simple language, showing how fun and easy it can be. This tutorial will get you up and started as well as help to build
a framework you can extend to other languages. The code in this tutorial can also be used as a playground to hack on
other LLVM specific things.

The goal of this tutorial is to progressively unveil our language, describing how it is built up over time. This will let us
cover a fairly broad range of language design and LLVM-specific usage issues, showing and explaining the code for it
all along the way, without overwhelming you with tons of details up front.
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It is useful to point out ahead of time that this tutorial is really about teaching compiler techniques and LLVM specif-
ically, not about teaching modern and sane software engineering principles. In practice, this means that we’ll take a
number of shortcuts to simplify the exposition. For example, the code uses global variables all over the place, doesn’t
use nice design patterns like visitors, etc... but it is very simple. If you dig in and use the code as a basis for future
projects, fixing these deficiencies shouldn’t be hard.

I’ve tried to put this tutorial together in a way that makes chapters easy to skip over if you are already familiar with or
are uninterested in the various pieces. The structure of the tutorial is:

• Chapter #1: Introduction to the Kaleidoscope language, and the definition of its Lexer - This shows where we are
going and the basic functionality that we want it to do. In order to make this tutorial maximally understandable
and hackable, we choose to implement everything in C++ instead of using lexer and parser generators. LLVM
obviously works just fine with such tools, feel free to use one if you prefer.

• Chapter #2: Implementing a Parser and AST - With the lexer in place, we can talk about parsing techniques
and basic AST construction. This tutorial describes recursive descent parsing and operator precedence parsing.
Nothing in Chapters 1 or 2 is LLVM-specific, the code doesn’t even link in LLVM at this point. :)

• Chapter #3: Code generation to LLVM IR - With the AST ready, we can show off how easy generation of LLVM
IR really is.

• Chapter #4: Adding JIT and Optimizer Support - Because a lot of people are interested in using LLVM as a JIT,
we’ll dive right into it and show you the 3 lines it takes to add JIT support. LLVM is also useful in many other
ways, but this is one simple and “sexy” way to show off its power. :)

• Chapter #5: Extending the Language: Control Flow - With the language up and running, we show how to extend
it with control flow operations (if/then/else and a ‘for’ loop). This gives us a chance to talk about simple SSA
construction and control flow.

• Chapter #6: Extending the Language: User-defined Operators - This is a silly but fun chapter that talks about
extending the language to let the user program define their own arbitrary unary and binary operators (with
assignable precedence!). This lets us build a significant piece of the “language” as library routines.

• Chapter #7: Extending the Language: Mutable Variables - This chapter talks about adding user-defined local
variables along with an assignment operator. The interesting part about this is how easy and trivial it is to
construct SSA form in LLVM: no, LLVM does not require your front-end to construct SSA form!

• Chapter #8: Compiling to Object Files - This chapter explains how to take LLVM IR and compile it down to
object files.

• Chapter #9: Extending the Language: Debug Information - Having built a decent little programming language
with control flow, functions and mutable variables, we consider what it takes to add debug information to
standalone executables. This debug information will allow you to set breakpoints in Kaleidoscope functions,
print out argument variables, and call functions - all from within the debugger!

• Chapter #10: Conclusion and other useful LLVM tidbits - This chapter wraps up the series by talking about
potential ways to extend the language, but also includes a bunch of pointers to info about “special topics” like
adding garbage collection support, exceptions, debugging, support for “spaghetti stacks”, and a bunch of other
tips and tricks.

By the end of the tutorial, we’ll have written a bit less than 1000 lines of non-comment, non-blank, lines of code.
With this small amount of code, we’ll have built up a very reasonable compiler for a non-trivial language including a
hand-written lexer, parser, AST, as well as code generation support with a JIT compiler. While other systems may have
interesting “hello world” tutorials, I think the breadth of this tutorial is a great testament to the strengths of LLVM and
why you should consider it if you’re interested in language or compiler design.

A note about this tutorial: we expect you to extend the language and play with it on your own. Take the code and go
crazy hacking away at it, compilers don’t need to be scary creatures - it can be a lot of fun to play with languages!
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The Basic Language

This tutorial will be illustrated with a toy language that we’ll call “Kaleidoscope” (derived from “meaning beautiful,
form, and view”). Kaleidoscope is a procedural language that allows you to define functions, use conditionals, math,
etc. Over the course of the tutorial, we’ll extend Kaleidoscope to support the if/then/else construct, a for loop, user
defined operators, JIT compilation with a simple command line interface, etc.

Because we want to keep things simple, the only datatype in Kaleidoscope is a 64-bit floating point type (aka ‘double’
in C parlance). As such, all values are implicitly double precision and the language doesn’t require type declarations.
This gives the language a very nice and simple syntax. For example, the following simple example computes Fibonacci
numbers:

# Compute the x'th fibonacci number.
def fib(x)
if x < 3 then
1

else
fib(x-1)+fib(x-2)

# This expression will compute the 40th number.
fib(40)

We also allow Kaleidoscope to call into standard library functions (the LLVM JIT makes this completely trivial). This
means that you can use the ‘extern’ keyword to define a function before you use it (this is also useful for mutually
recursive functions). For example:

extern sin(arg);
extern cos(arg);
extern atan2(arg1 arg2);

atan2(sin(.4), cos(42))

A more interesting example is included in Chapter 6 where we write a little Kaleidoscope application that displays a
Mandelbrot Set at various levels of magnification.

Lets dive into the implementation of this language!

The Lexer

When it comes to implementing a language, the first thing needed is the ability to process a text file and recognize
what it says. The traditional way to do this is to use a “lexer” (aka ‘scanner’) to break the input up into “tokens”. Each
token returned by the lexer includes a token code and potentially some metadata (e.g. the numeric value of a number).
First, we define the possibilities:

// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
// of these for known things.
enum Token {

tok_eof = -1,

// commands
tok_def = -2,
tok_extern = -3,

// primary
tok_identifier = -4,
tok_number = -5,
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};

static std::string IdentifierStr; // Filled in if tok_identifier
static double NumVal; // Filled in if tok_number

Each token returned by our lexer will either be one of the Token enum values or it will be an ‘unknown’ character like
‘+’, which is returned as its ASCII value. If the current token is an identifier, the IdentifierStr global variable
holds the name of the identifier. If the current token is a numeric literal (like 1.0), NumVal holds its value. Note that
we use global variables for simplicity, this is not the best choice for a real language implementation :).

The actual implementation of the lexer is a single function named gettok. The gettok function is called to return
the next token from standard input. Its definition starts as:

/// gettok - Return the next token from standard input.
static int gettok() {

static int LastChar = ' ';

// Skip any whitespace.
while (isspace(LastChar))
LastChar = getchar();

gettok works by calling the C getchar() function to read characters one at a time from standard input. It eats
them as it recognizes them and stores the last character read, but not processed, in LastChar. The first thing that it has
to do is ignore whitespace between tokens. This is accomplished with the loop above.

The next thing gettok needs to do is recognize identifiers and specific keywords like “def”. Kaleidoscope does this
with this simple loop:

if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
IdentifierStr = LastChar;
while (isalnum((LastChar = getchar())))
IdentifierStr += LastChar;

if (IdentifierStr == "def")
return tok_def;

if (IdentifierStr == "extern")
return tok_extern;

return tok_identifier;
}

Note that this code sets the ‘IdentifierStr‘ global whenever it lexes an identifier. Also, since language keywords
are matched by the same loop, we handle them here inline. Numeric values are similar:

if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
std::string NumStr;
do {
NumStr += LastChar;
LastChar = getchar();

} while (isdigit(LastChar) || LastChar == '.');

NumVal = strtod(NumStr.c_str(), 0);
return tok_number;

}

This is all pretty straight-forward code for processing input. When reading a numeric value from input, we use the C
strtod function to convert it to a numeric value that we store in NumVal. Note that this isn’t doing sufficient error
checking: it will incorrectly read “1.23.45.67” and handle it as if you typed in “1.23”. Feel free to extend it :). Next
we handle comments:

342 Chapter 2. User Guides



LLVM Documentation, Release 3.9

if (LastChar == '#') {
// Comment until end of line.
do
LastChar = getchar();

while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');

if (LastChar != EOF)
return gettok();

}

We handle comments by skipping to the end of the line and then return the next token. Finally, if the input doesn’t
match one of the above cases, it is either an operator character like ‘+’ or the end of the file. These are handled with
this code:

// Check for end of file. Don't eat the EOF.
if (LastChar == EOF)
return tok_eof;

// Otherwise, just return the character as its ascii value.
int ThisChar = LastChar;
LastChar = getchar();
return ThisChar;

}

With this, we have the complete lexer for the basic Kaleidoscope language (the full code listing for the Lexer is
available in the next chapter of the tutorial). Next we’ll build a simple parser that uses this to build an Abstract Syntax
Tree. When we have that, we’ll include a driver so that you can use the lexer and parser together.

Next: Implementing a Parser and AST

Kaleidoscope: Implementing a Parser and AST

• Chapter 2 Introduction

• The Abstract Syntax Tree (AST)

• Parser Basics

• Basic Expression Parsing

• Binary Expression Parsing

• Parsing the Rest

• The Driver

• Conclusions

• Full Code Listing

Chapter 2 Introduction

Welcome to Chapter 2 of the “Implementing a language with LLVM” tutorial. This chapter shows you how to use the
lexer, built in Chapter 1, to build a full parser for our Kaleidoscope language. Once we have a parser, we’ll define and
build an Abstract Syntax Tree (AST).
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The parser we will build uses a combination of Recursive Descent Parsing and Operator-Precedence Parsing to parse
the Kaleidoscope language (the latter for binary expressions and the former for everything else). Before we get to
parsing though, lets talk about the output of the parser: the Abstract Syntax Tree.

The Abstract Syntax Tree (AST)

The AST for a program captures its behavior in such a way that it is easy for later stages of the compiler (e.g. code
generation) to interpret. We basically want one object for each construct in the language, and the AST should closely
model the language. In Kaleidoscope, we have expressions, a prototype, and a function object. We’ll start with
expressions first:

/// ExprAST - Base class for all expression nodes.
class ExprAST {
public:

virtual ~ExprAST() {}
};

/// NumberExprAST - Expression class for numeric literals like "1.0".
class NumberExprAST : public ExprAST {
double Val;

public:
NumberExprAST(double Val) : Val(Val) {}

};

The code above shows the definition of the base ExprAST class and one subclass which we use for numeric literals.
The important thing to note about this code is that the NumberExprAST class captures the numeric value of the literal
as an instance variable. This allows later phases of the compiler to know what the stored numeric value is.

Right now we only create the AST, so there are no useful accessor methods on them. It would be very easy to add a
virtual method to pretty print the code, for example. Here are the other expression AST node definitions that we’ll use
in the basic form of the Kaleidoscope language:

/// VariableExprAST - Expression class for referencing a variable, like "a".
class VariableExprAST : public ExprAST {
std::string Name;

public:
VariableExprAST(const std::string &Name) : Name(Name) {}

};

/// BinaryExprAST - Expression class for a binary operator.
class BinaryExprAST : public ExprAST {
char Op;
std::unique_ptr<ExprAST> LHS, RHS;

public:
BinaryExprAST(char op, std::unique_ptr<ExprAST> LHS,

std::unique_ptr<ExprAST> RHS)
: Op(op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}

};

/// CallExprAST - Expression class for function calls.
class CallExprAST : public ExprAST {

std::string Callee;
std::vector<std::unique_ptr<ExprAST>> Args;
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public:
CallExprAST(const std::string &Callee,

std::vector<std::unique_ptr<ExprAST>> Args)
: Callee(Callee), Args(std::move(Args)) {}

};

This is all (intentionally) rather straight-forward: variables capture the variable name, binary operators capture their
opcode (e.g. ‘+’), and calls capture a function name as well as a list of any argument expressions. One thing that is
nice about our AST is that it captures the language features without talking about the syntax of the language. Note
that there is no discussion about precedence of binary operators, lexical structure, etc.

For our basic language, these are all of the expression nodes we’ll define. Because it doesn’t have conditional control
flow, it isn’t Turing-complete; we’ll fix that in a later installment. The two things we need next are a way to talk about
the interface to a function, and a way to talk about functions themselves:

/// PrototypeAST - This class represents the "prototype" for a function,
/// which captures its name, and its argument names (thus implicitly the number
/// of arguments the function takes).
class PrototypeAST {

std::string Name;
std::vector<std::string> Args;

public:
PrototypeAST(const std::string &name, std::vector<std::string> Args)
: Name(name), Args(std::move(Args)) {}

};

/// FunctionAST - This class represents a function definition itself.
class FunctionAST {
std::unique_ptr<PrototypeAST> Proto;
std::unique_ptr<ExprAST> Body;

public:
FunctionAST(std::unique_ptr<PrototypeAST> Proto,

std::unique_ptr<ExprAST> Body)
: Proto(std::move(Proto)), Body(std::move(Body)) {}

};

In Kaleidoscope, functions are typed with just a count of their arguments. Since all values are double precision floating
point, the type of each argument doesn’t need to be stored anywhere. In a more aggressive and realistic language, the
“ExprAST” class would probably have a type field.

With this scaffolding, we can now talk about parsing expressions and function bodies in Kaleidoscope.

Parser Basics

Now that we have an AST to build, we need to define the parser code to build it. The idea here is that we want to parse
something like “x+y” (which is returned as three tokens by the lexer) into an AST that could be generated with calls
like this:

auto LHS = llvm::make_unique<VariableExprAST>("x");
auto RHS = llvm::make_unique<VariableExprAST>("y");
auto Result = std::make_unique<BinaryExprAST>('+', std::move(LHS),

std::move(RHS));

In order to do this, we’ll start by defining some basic helper routines:
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/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
/// token the parser is looking at. getNextToken reads another token from the
/// lexer and updates CurTok with its results.
static int CurTok;
static int getNextToken() {

return CurTok = gettok();
}

This implements a simple token buffer around the lexer. This allows us to look one token ahead at what the lexer is
returning. Every function in our parser will assume that CurTok is the current token that needs to be parsed.

/// LogError* - These are little helper functions for error handling.
std::unique_ptr<ExprAST> LogError(const char *Str) {

fprintf(stderr, "LogError: %s\n", Str);
return nullptr;

}
std::unique_ptr<PrototypeAST> LogErrorP(const char *Str) {

LogError(Str);
return nullptr;

}

The LogError routines are simple helper routines that our parser will use to handle errors. The error recovery in
our parser will not be the best and is not particular user-friendly, but it will be enough for our tutorial. These routines
make it easier to handle errors in routines that have various return types: they always return null.

With these basic helper functions, we can implement the first piece of our grammar: numeric literals.

Basic Expression Parsing

We start with numeric literals, because they are the simplest to process. For each production in our grammar, we’ll
define a function which parses that production. For numeric literals, we have:

/// numberexpr ::= number
static std::unique_ptr<ExprAST> ParseNumberExpr() {
auto Result = llvm::make_unique<NumberExprAST>(NumVal);
getNextToken(); // consume the number
return std::move(Result);

}

This routine is very simple: it expects to be called when the current token is a tok_number token. It takes the current
number value, creates a NumberExprAST node, advances the lexer to the next token, and finally returns.

There are some interesting aspects to this. The most important one is that this routine eats all of the tokens that
correspond to the production and returns the lexer buffer with the next token (which is not part of the grammar
production) ready to go. This is a fairly standard way to go for recursive descent parsers. For a better example, the
parenthesis operator is defined like this:

/// parenexpr ::= '(' expression ')'
static std::unique_ptr<ExprAST> ParseParenExpr() {
getNextToken(); // eat (.
auto V = ParseExpression();
if (!V)
return nullptr;

if (CurTok != ')')
return LogError("expected ')'");
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getNextToken(); // eat ).
return V;

}

This function illustrates a number of interesting things about the parser:

1) It shows how we use the LogError routines. When called, this function expects that the current token is a ‘(‘ token,
but after parsing the subexpression, it is possible that there is no ‘)’ waiting. For example, if the user types in “(4 x”
instead of “(4)”, the parser should emit an error. Because errors can occur, the parser needs a way to indicate that they
happened: in our parser, we return null on an error.

2) Another interesting aspect of this function is that it uses recursion by calling ParseExpression (we will soon see
that ParseExpression can call ParseParenExpr). This is powerful because it allows us to handle recursive
grammars, and keeps each production very simple. Note that parentheses do not cause construction of AST nodes
themselves. While we could do it this way, the most important role of parentheses are to guide the parser and provide
grouping. Once the parser constructs the AST, parentheses are not needed.

The next simple production is for handling variable references and function calls:

/// identifierexpr
/// ::= identifier
/// ::= identifier '(' expression* ')'
static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
std::string IdName = IdentifierStr;

getNextToken(); // eat identifier.

if (CurTok != '(') // Simple variable ref.
return llvm::make_unique<VariableExprAST>(IdName);

// Call.
getNextToken(); // eat (
std::vector<std::unique_ptr<ExprAST>> Args;
if (CurTok != ')') {
while (1) {

if (auto Arg = ParseExpression())
Args.push_back(std::move(Arg));

else
return nullptr;

if (CurTok == ')')
break;

if (CurTok != ',')
return LogError("Expected ')' or ',' in argument list");

getNextToken();
}

}

// Eat the ')'.
getNextToken();

return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
}

This routine follows the same style as the other routines. (It expects to be called if the current token is a
tok_identifier token). It also has recursion and error handling. One interesting aspect of this is that it uses look-
ahead to determine if the current identifier is a stand alone variable reference or if it is a function call expression. It
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handles this by checking to see if the token after the identifier is a ‘(‘ token, constructing either a VariableExprAST
or CallExprAST node as appropriate.

Now that we have all of our simple expression-parsing logic in place, we can define a helper function to wrap it
together into one entry point. We call this class of expressions “primary” expressions, for reasons that will become
more clear later in the tutorial. In order to parse an arbitrary primary expression, we need to determine what sort of
expression it is:

/// primary
/// ::= identifierexpr
/// ::= numberexpr
/// ::= parenexpr
static std::unique_ptr<ExprAST> ParsePrimary() {
switch (CurTok) {
default:
return LogError("unknown token when expecting an expression");

case tok_identifier:
return ParseIdentifierExpr();

case tok_number:
return ParseNumberExpr();

case '(':
return ParseParenExpr();

}
}

Now that you see the definition of this function, it is more obvious why we can assume the state of CurTok in the
various functions. This uses look-ahead to determine which sort of expression is being inspected, and then parses it
with a function call.

Now that basic expressions are handled, we need to handle binary expressions. They are a bit more complex.

Binary Expression Parsing

Binary expressions are significantly harder to parse because they are often ambiguous. For example, when given the
string “x+y*z”, the parser can choose to parse it as either “(x+y)*z” or “x+(y*z)”. With common definitions from
mathematics, we expect the later parse, because “*” (multiplication) has higher precedence than “+” (addition).

There are many ways to handle this, but an elegant and efficient way is to use Operator-Precedence Parsing. This
parsing technique uses the precedence of binary operators to guide recursion. To start with, we need a table of
precedences:

/// BinopPrecedence - This holds the precedence for each binary operator that is
/// defined.
static std::map<char, int> BinopPrecedence;

/// GetTokPrecedence - Get the precedence of the pending binary operator token.
static int GetTokPrecedence() {

if (!isascii(CurTok))
return -1;

// Make sure it's a declared binop.
int TokPrec = BinopPrecedence[CurTok];
if (TokPrec <= 0) return -1;
return TokPrec;

}

int main() {
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// Install standard binary operators.
// 1 is lowest precedence.
BinopPrecedence['<'] = 10;
BinopPrecedence['+'] = 20;
BinopPrecedence['-'] = 20;
BinopPrecedence['*'] = 40; // highest.
...

}

For the basic form of Kaleidoscope, we will only support 4 binary operators (this can obviously be extended by you,
our brave and intrepid reader). The GetTokPrecedence function returns the precedence for the current token, or
-1 if the token is not a binary operator. Having a map makes it easy to add new operators and makes it clear that the
algorithm doesn’t depend on the specific operators involved, but it would be easy enough to eliminate the map and do
the comparisons in the GetTokPrecedence function. (Or just use a fixed-size array).

With the helper above defined, we can now start parsing binary expressions. The basic idea of operator precedence
parsing is to break down an expression with potentially ambiguous binary operators into pieces. Consider, for example,
the expression “a+b+(c+d)*e*f+g”. Operator precedence parsing considers this as a stream of primary expressions
separated by binary operators. As such, it will first parse the leading primary expression “a”, then it will see the pairs
[+, b] [+, (c+d)] [*, e] [*, f] and [+, g]. Note that because parentheses are primary expressions, the binary expression
parser doesn’t need to worry about nested subexpressions like (c+d) at all.

To start, an expression is a primary expression potentially followed by a sequence of [binop,primaryexpr] pairs:

/// expression
/// ::= primary binoprhs
///
static std::unique_ptr<ExprAST> ParseExpression() {
auto LHS = ParsePrimary();
if (!LHS)
return nullptr;

return ParseBinOpRHS(0, std::move(LHS));
}

ParseBinOpRHS is the function that parses the sequence of pairs for us. It takes a precedence and a pointer to an
expression for the part that has been parsed so far. Note that “x” is a perfectly valid expression: As such, “binoprhs”
is allowed to be empty, in which case it returns the expression that is passed into it. In our example above, the code
passes the expression for “a” into ParseBinOpRHS and the current token is “+”.

The precedence value passed into ParseBinOpRHS indicates the minimal operator precedence that the function is
allowed to eat. For example, if the current pair stream is [+, x] and ParseBinOpRHS is passed in a precedence of
40, it will not consume any tokens (because the precedence of ‘+’ is only 20). With this in mind, ParseBinOpRHS
starts with:

/// binoprhs
/// ::= ('+' primary)*
static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,

std::unique_ptr<ExprAST> LHS) {
// If this is a binop, find its precedence.
while (1) {
int TokPrec = GetTokPrecedence();

// If this is a binop that binds at least as tightly as the current binop,
// consume it, otherwise we are done.
if (TokPrec < ExprPrec)

return LHS;
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This code gets the precedence of the current token and checks to see if if is too low. Because we defined invalid tokens
to have a precedence of -1, this check implicitly knows that the pair-stream ends when the token stream runs out of
binary operators. If this check succeeds, we know that the token is a binary operator and that it will be included in this
expression:

// Okay, we know this is a binop.
int BinOp = CurTok;
getNextToken(); // eat binop

// Parse the primary expression after the binary operator.
auto RHS = ParsePrimary();
if (!RHS)

return nullptr;

As such, this code eats (and remembers) the binary operator and then parses the primary expression that follows. This
builds up the whole pair, the first of which is [+, b] for the running example.

Now that we parsed the left-hand side of an expression and one pair of the RHS sequence, we have to decide which
way the expression associates. In particular, we could have “(a+b) binop unparsed” or “a + (b binop unparsed)”. To
determine this, we look ahead at “binop” to determine its precedence and compare it to BinOp’s precedence (which is
‘+’ in this case):

// If BinOp binds less tightly with RHS than the operator after RHS, let
// the pending operator take RHS as its LHS.
int NextPrec = GetTokPrecedence();
if (TokPrec < NextPrec) {

If the precedence of the binop to the right of “RHS” is lower or equal to the precedence of our current operator, then
we know that the parentheses associate as “(a+b) binop ...”. In our example, the current operator is “+” and the next
operator is “+”, we know that they have the same precedence. In this case we’ll create the AST node for “a+b”, and
then continue parsing:

... if body omitted ...
}

// Merge LHS/RHS.
LHS = llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS),

std::move(RHS));
} // loop around to the top of the while loop.

}

In our example above, this will turn “a+b+” into “(a+b)” and execute the next iteration of the loop, with “+” as the
current token. The code above will eat, remember, and parse “(c+d)” as the primary expression, which makes the
current pair equal to [+, (c+d)]. It will then evaluate the ‘if’ conditional above with “*” as the binop to the right of the
primary. In this case, the precedence of “*” is higher than the precedence of “+” so the if condition will be entered.

The critical question left here is “how can the if condition parse the right hand side in full”? In particular, to build the
AST correctly for our example, it needs to get all of “(c+d)*e*f” as the RHS expression variable. The code to do this
is surprisingly simple (code from the above two blocks duplicated for context):

// If BinOp binds less tightly with RHS than the operator after RHS, let
// the pending operator take RHS as its LHS.
int NextPrec = GetTokPrecedence();
if (TokPrec < NextPrec) {

RHS = ParseBinOpRHS(TokPrec+1, std::move(RHS));
if (!RHS)

return nullptr;
}
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// Merge LHS/RHS.
LHS = llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS),

std::move(RHS));
} // loop around to the top of the while loop.

}

At this point, we know that the binary operator to the RHS of our primary has higher precedence than the binop we are
currently parsing. As such, we know that any sequence of pairs whose operators are all higher precedence than “+”
should be parsed together and returned as “RHS”. To do this, we recursively invoke the ParseBinOpRHS function
specifying “TokPrec+1” as the minimum precedence required for it to continue. In our example above, this will cause
it to return the AST node for “(c+d)*e*f” as RHS, which is then set as the RHS of the ‘+’ expression.

Finally, on the next iteration of the while loop, the “+g” piece is parsed and added to the AST. With this little bit of
code (14 non-trivial lines), we correctly handle fully general binary expression parsing in a very elegant way. This was
a whirlwind tour of this code, and it is somewhat subtle. I recommend running through it with a few tough examples
to see how it works.

This wraps up handling of expressions. At this point, we can point the parser at an arbitrary token stream and build
an expression from it, stopping at the first token that is not part of the expression. Next up we need to handle function
definitions, etc.

Parsing the Rest

The next thing missing is handling of function prototypes. In Kaleidoscope, these are used both for ‘extern’ function
declarations as well as function body definitions. The code to do this is straight-forward and not very interesting (once
you’ve survived expressions):

/// prototype
/// ::= id '(' id* ')'
static std::unique_ptr<PrototypeAST> ParsePrototype() {
if (CurTok != tok_identifier)
return LogErrorP("Expected function name in prototype");

std::string FnName = IdentifierStr;
getNextToken();

if (CurTok != '(')
return LogErrorP("Expected '(' in prototype");

// Read the list of argument names.
std::vector<std::string> ArgNames;
while (getNextToken() == tok_identifier)
ArgNames.push_back(IdentifierStr);

if (CurTok != ')')
return LogErrorP("Expected ')' in prototype");

// success.
getNextToken(); // eat ')'.

return llvm::make_unique<PrototypeAST>(FnName, std::move(ArgNames));
}

Given this, a function definition is very simple, just a prototype plus an expression to implement the body:

/// definition ::= 'def' prototype expression
static std::unique_ptr<FunctionAST> ParseDefinition() {
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getNextToken(); // eat def.
auto Proto = ParsePrototype();
if (!Proto) return nullptr;

if (auto E = ParseExpression())
return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));

return nullptr;
}

In addition, we support ‘extern’ to declare functions like ‘sin’ and ‘cos’ as well as to support forward declaration of
user functions. These ‘extern’s are just prototypes with no body:

/// external ::= 'extern' prototype
static std::unique_ptr<PrototypeAST> ParseExtern() {
getNextToken(); // eat extern.
return ParsePrototype();

}

Finally, we’ll also let the user type in arbitrary top-level expressions and evaluate them on the fly. We will handle this
by defining anonymous nullary (zero argument) functions for them:

/// toplevelexpr ::= expression
static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
if (auto E = ParseExpression()) {
// Make an anonymous proto.
auto Proto = llvm::make_unique<PrototypeAST>("", std::vector<std::string>());
return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));

}
return nullptr;

}

Now that we have all the pieces, let’s build a little driver that will let us actually execute this code we’ve built!

The Driver

The driver for this simply invokes all of the parsing pieces with a top-level dispatch loop. There isn’t much interesting
here, so I’ll just include the top-level loop. See below for full code in the “Top-Level Parsing” section.

/// top ::= definition | external | expression | ';'
static void MainLoop() {
while (1) {
fprintf(stderr, "ready> ");
switch (CurTok) {
case tok_eof:
return;

case ';': // ignore top-level semicolons.
getNextToken();
break;

case tok_def:
HandleDefinition();
break;

case tok_extern:
HandleExtern();
break;

default:
HandleTopLevelExpression();
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break;
}

}
}

The most interesting part of this is that we ignore top-level semicolons. Why is this, you ask? The basic reason is
that if you type “4 + 5” at the command line, the parser doesn’t know whether that is the end of what you will type or
not. For example, on the next line you could type “def foo...” in which case 4+5 is the end of a top-level expression.
Alternatively you could type “* 6”, which would continue the expression. Having top-level semicolons allows you to
type “4+5;”, and the parser will know you are done.

Conclusions

With just under 400 lines of commented code (240 lines of non-comment, non-blank code), we fully defined our min-
imal language, including a lexer, parser, and AST builder. With this done, the executable will validate Kaleidoscope
code and tell us if it is grammatically invalid. For example, here is a sample interaction:

$ ./a.out
ready> def foo(x y) x+foo(y, 4.0);
Parsed a function definition.
ready> def foo(x y) x+y y;
Parsed a function definition.
Parsed a top-level expr
ready> def foo(x y) x+y );
Parsed a function definition.
Error: unknown token when expecting an expression
ready> extern sin(a);
ready> Parsed an extern
ready> ^D
$

There is a lot of room for extension here. You can define new AST nodes, extend the language in many ways, etc. In
the next installment, we will describe how to generate LLVM Intermediate Representation (IR) from the AST.

Full Code Listing

Here is the complete code listing for this and the previous chapter. Note that it is fully self-contained: you don’t need
LLVM or any external libraries at all for this. (Besides the C and C++ standard libraries, of course.) To build this, just
compile with:

# Compile
clang++ -g -O3 toy.cpp
# Run
./a.out

Here is the code:

#include <cctype>
#include <cstdio>
#include <cstdlib>
#include <map>
#include <memory>
#include <string>
#include <vector>
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namespace helper {
// Cloning make_unique here until it's standard in C++14.
// Using a namespace to avoid conflicting with MSVC's std::make_unique (which
// ADL can sometimes find in unqualified calls).
template <class T, class... Args>
static

typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Args &&... args) {

return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
}
} // end namespace helper

//===----------------------------------------------------------------------===//
// Lexer
//===----------------------------------------------------------------------===//

// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
// of these for known things.
enum Token {

tok_eof = -1,

// commands
tok_def = -2,
tok_extern = -3,

// primary
tok_identifier = -4,
tok_number = -5

};

static std::string IdentifierStr; // Filled in if tok_identifier
static double NumVal; // Filled in if tok_number

/// gettok - Return the next token from standard input.
static int gettok() {

static int LastChar = ' ';

// Skip any whitespace.
while (isspace(LastChar))
LastChar = getchar();

if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
IdentifierStr = LastChar;
while (isalnum((LastChar = getchar())))

IdentifierStr += LastChar;

if (IdentifierStr == "def")
return tok_def;

if (IdentifierStr == "extern")
return tok_extern;

return tok_identifier;
}

if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
std::string NumStr;
do {

NumStr += LastChar;
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LastChar = getchar();
} while (isdigit(LastChar) || LastChar == '.');

NumVal = strtod(NumStr.c_str(), nullptr);
return tok_number;

}

if (LastChar == '#') {
// Comment until end of line.
do

LastChar = getchar();
while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');

if (LastChar != EOF)
return gettok();

}

// Check for end of file. Don't eat the EOF.
if (LastChar == EOF)
return tok_eof;

// Otherwise, just return the character as its ascii value.
int ThisChar = LastChar;
LastChar = getchar();
return ThisChar;

}

//===----------------------------------------------------------------------===//
// Abstract Syntax Tree (aka Parse Tree)
//===----------------------------------------------------------------------===//
namespace {
/// ExprAST - Base class for all expression nodes.
class ExprAST {
public:

virtual ~ExprAST() {}
};

/// NumberExprAST - Expression class for numeric literals like "1.0".
class NumberExprAST : public ExprAST {
double Val;

public:
NumberExprAST(double Val) : Val(Val) {}

};

/// VariableExprAST - Expression class for referencing a variable, like "a".
class VariableExprAST : public ExprAST {
std::string Name;

public:
VariableExprAST(const std::string &Name) : Name(Name) {}

};

/// BinaryExprAST - Expression class for a binary operator.
class BinaryExprAST : public ExprAST {
char Op;
std::unique_ptr<ExprAST> LHS, RHS;
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public:
BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,

std::unique_ptr<ExprAST> RHS)
: Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}

};

/// CallExprAST - Expression class for function calls.
class CallExprAST : public ExprAST {

std::string Callee;
std::vector<std::unique_ptr<ExprAST>> Args;

public:
CallExprAST(const std::string &Callee,

std::vector<std::unique_ptr<ExprAST>> Args)
: Callee(Callee), Args(std::move(Args)) {}

};

/// PrototypeAST - This class represents the "prototype" for a function,
/// which captures its name, and its argument names (thus implicitly the number
/// of arguments the function takes).
class PrototypeAST {

std::string Name;
std::vector<std::string> Args;

public:
PrototypeAST(const std::string &Name, std::vector<std::string> Args)

: Name(Name), Args(std::move(Args)) {}
};

/// FunctionAST - This class represents a function definition itself.
class FunctionAST {
std::unique_ptr<PrototypeAST> Proto;
std::unique_ptr<ExprAST> Body;

public:
FunctionAST(std::unique_ptr<PrototypeAST> Proto,

std::unique_ptr<ExprAST> Body)
: Proto(std::move(Proto)), Body(std::move(Body)) {}

};
} // end anonymous namespace

//===----------------------------------------------------------------------===//
// Parser
//===----------------------------------------------------------------------===//

/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
/// token the parser is looking at. getNextToken reads another token from the
/// lexer and updates CurTok with its results.
static int CurTok;
static int getNextToken() { return CurTok = gettok(); }

/// BinopPrecedence - This holds the precedence for each binary operator that is
/// defined.
static std::map<char, int> BinopPrecedence;

/// GetTokPrecedence - Get the precedence of the pending binary operator token.
static int GetTokPrecedence() {

if (!isascii(CurTok))
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return -1;

// Make sure it's a declared binop.
int TokPrec = BinopPrecedence[CurTok];
if (TokPrec <= 0)
return -1;

return TokPrec;
}

/// LogError* - These are little helper functions for error handling.
std::unique_ptr<ExprAST> LogError(const char *Str) {

fprintf(stderr, "Error: %s\n", Str);
return nullptr;

}
std::unique_ptr<PrototypeAST> LogErrorP(const char *Str) {

LogError(Str);
return nullptr;

}

static std::unique_ptr<ExprAST> ParseExpression();

/// numberexpr ::= number
static std::unique_ptr<ExprAST> ParseNumberExpr() {
auto Result = helper::make_unique<NumberExprAST>(NumVal);
getNextToken(); // consume the number
return std::move(Result);

}

/// parenexpr ::= '(' expression ')'
static std::unique_ptr<ExprAST> ParseParenExpr() {

getNextToken(); // eat (.
auto V = ParseExpression();
if (!V)
return nullptr;

if (CurTok != ')')
return LogError("expected ')'");

getNextToken(); // eat ).
return V;

}

/// identifierexpr
/// ::= identifier
/// ::= identifier '(' expression* ')'
static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
std::string IdName = IdentifierStr;

getNextToken(); // eat identifier.

if (CurTok != '(') // Simple variable ref.
return helper::make_unique<VariableExprAST>(IdName);

// Call.
getNextToken(); // eat (
std::vector<std::unique_ptr<ExprAST>> Args;
if (CurTok != ')') {
while (true) {

if (auto Arg = ParseExpression())
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Args.push_back(std::move(Arg));
else

return nullptr;

if (CurTok == ')')
break;

if (CurTok != ',')
return LogError("Expected ')' or ',' in argument list");

getNextToken();
}

}

// Eat the ')'.
getNextToken();

return helper::make_unique<CallExprAST>(IdName, std::move(Args));
}

/// primary
/// ::= identifierexpr
/// ::= numberexpr
/// ::= parenexpr
static std::unique_ptr<ExprAST> ParsePrimary() {
switch (CurTok) {
default:
return LogError("unknown token when expecting an expression");

case tok_identifier:
return ParseIdentifierExpr();

case tok_number:
return ParseNumberExpr();

case '(':
return ParseParenExpr();

}
}

/// binoprhs
/// ::= ('+' primary)*
static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,

std::unique_ptr<ExprAST> LHS) {
// If this is a binop, find its precedence.
while (true) {
int TokPrec = GetTokPrecedence();

// If this is a binop that binds at least as tightly as the current binop,
// consume it, otherwise we are done.
if (TokPrec < ExprPrec)

return LHS;

// Okay, we know this is a binop.
int BinOp = CurTok;
getNextToken(); // eat binop

// Parse the primary expression after the binary operator.
auto RHS = ParsePrimary();
if (!RHS)

return nullptr;
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// If BinOp binds less tightly with RHS than the operator after RHS, let
// the pending operator take RHS as its LHS.
int NextPrec = GetTokPrecedence();
if (TokPrec < NextPrec) {

RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
if (!RHS)

return nullptr;
}

// Merge LHS/RHS.
LHS = helper::make_unique<BinaryExprAST>(BinOp, std::move(LHS),

std::move(RHS));
}

}

/// expression
/// ::= primary binoprhs
///
static std::unique_ptr<ExprAST> ParseExpression() {

auto LHS = ParsePrimary();
if (!LHS)
return nullptr;

return ParseBinOpRHS(0, std::move(LHS));
}

/// prototype
/// ::= id '(' id* ')'
static std::unique_ptr<PrototypeAST> ParsePrototype() {
if (CurTok != tok_identifier)
return LogErrorP("Expected function name in prototype");

std::string FnName = IdentifierStr;
getNextToken();

if (CurTok != '(')
return LogErrorP("Expected '(' in prototype");

std::vector<std::string> ArgNames;
while (getNextToken() == tok_identifier)
ArgNames.push_back(IdentifierStr);

if (CurTok != ')')
return LogErrorP("Expected ')' in prototype");

// success.
getNextToken(); // eat ')'.

return helper::make_unique<PrototypeAST>(FnName, std::move(ArgNames));
}

/// definition ::= 'def' prototype expression
static std::unique_ptr<FunctionAST> ParseDefinition() {
getNextToken(); // eat def.
auto Proto = ParsePrototype();
if (!Proto)
return nullptr;

if (auto E = ParseExpression())
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return helper::make_unique<FunctionAST>(std::move(Proto), std::move(E));
return nullptr;

}

/// toplevelexpr ::= expression
static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {

if (auto E = ParseExpression()) {
// Make an anonymous proto.
auto Proto = helper::make_unique<PrototypeAST>("__anon_expr",

std::vector<std::string>());
return helper::make_unique<FunctionAST>(std::move(Proto), std::move(E));

}
return nullptr;

}

/// external ::= 'extern' prototype
static std::unique_ptr<PrototypeAST> ParseExtern() {

getNextToken(); // eat extern.
return ParsePrototype();

}

//===----------------------------------------------------------------------===//
// Top-Level parsing
//===----------------------------------------------------------------------===//

static void HandleDefinition() {
if (ParseDefinition()) {
fprintf(stderr, "Parsed a function definition.\n");

} else {
// Skip token for error recovery.
getNextToken();

}
}

static void HandleExtern() {
if (ParseExtern()) {
fprintf(stderr, "Parsed an extern\n");

} else {
// Skip token for error recovery.
getNextToken();

}
}

static void HandleTopLevelExpression() {
// Evaluate a top-level expression into an anonymous function.
if (ParseTopLevelExpr()) {
fprintf(stderr, "Parsed a top-level expr\n");

} else {
// Skip token for error recovery.
getNextToken();

}
}

/// top ::= definition | external | expression | ';'
static void MainLoop() {

while (true) {
fprintf(stderr, "ready> ");
switch (CurTok) {
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case tok_eof:
return;

case ';': // ignore top-level semicolons.
getNextToken();
break;

case tok_def:
HandleDefinition();
break;

case tok_extern:
HandleExtern();
break;

default:
HandleTopLevelExpression();
break;

}
}

}

//===----------------------------------------------------------------------===//
// Main driver code.
//===----------------------------------------------------------------------===//

int main() {
// Install standard binary operators.
// 1 is lowest precedence.
BinopPrecedence['<'] = 10;
BinopPrecedence['+'] = 20;
BinopPrecedence['-'] = 20;
BinopPrecedence['*'] = 40; // highest.

// Prime the first token.
fprintf(stderr, "ready> ");
getNextToken();

// Run the main "interpreter loop" now.
MainLoop();

return 0;
}

Next: Implementing Code Generation to LLVM IR

Kaleidoscope: Code generation to LLVM IR

• Chapter 3 Introduction

• Code Generation Setup

• Expression Code Generation

• Function Code Generation

• Driver Changes and Closing Thoughts

• Full Code Listing

2.17. LLVM Tutorial: Table of Contents 361



LLVM Documentation, Release 3.9

Chapter 3 Introduction

Welcome to Chapter 3 of the “Implementing a language with LLVM” tutorial. This chapter shows you how to trans-
form the Abstract Syntax Tree, built in Chapter 2, into LLVM IR. This will teach you a little bit about how LLVM
does things, as well as demonstrate how easy it is to use. It’s much more work to build a lexer and parser than it is to
generate LLVM IR code. :)

Please note: the code in this chapter and later require LLVM 3.7 or later. LLVM 3.6 and before will not work with it.
Also note that you need to use a version of this tutorial that matches your LLVM release: If you are using an official
LLVM release, use the version of the documentation included with your release or on the llvm.org releases page.

Code Generation Setup

In order to generate LLVM IR, we want some simple setup to get started. First we define virtual code generation
(codegen) methods in each AST class:

/// ExprAST - Base class for all expression nodes.
class ExprAST {
public:

virtual ~ExprAST() {}
virtual Value *codegen() = 0;

};

/// NumberExprAST - Expression class for numeric literals like "1.0".
class NumberExprAST : public ExprAST {
double Val;

public:
NumberExprAST(double Val) : Val(Val) {}
virtual Value *codegen();

};
...

The codegen() method says to emit IR for that AST node along with all the things it depends on, and they all return an
LLVM Value object. “Value” is the class used to represent a “Static Single Assignment (SSA) register” or “SSA value”
in LLVM. The most distinct aspect of SSA values is that their value is computed as the related instruction executes,
and it does not get a new value until (and if) the instruction re-executes. In other words, there is no way to “change” an
SSA value. For more information, please read up on Static Single Assignment - the concepts are really quite natural
once you grok them.

Note that instead of adding virtual methods to the ExprAST class hierarchy, it could also make sense to use a visitor
pattern or some other way to model this. Again, this tutorial won’t dwell on good software engineering practices: for
our purposes, adding a virtual method is simplest.

The second thing we want is an “LogError” method like we used for the parser, which will be used to report errors
found during code generation (for example, use of an undeclared parameter):

static LLVMContext TheContext;
static IRBuilder<> Builder(TheContext);
static std::unique_ptr<Module> TheModule;
static std::map<std::string, Value *> NamedValues;

Value *LogErrorV(const char *Str) {
LogError(Str);
return nullptr;

}
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The static variables will be used during code generation. TheContext is an opaque object that owns a lot of core
LLVM data structures, such as the type and constant value tables. We don’t need to understand it in detail, we just
need a single instance to pass into APIs that require it.

The Builder object is a helper object that makes it easy to generate LLVM instructions. Instances of the IRBuilder
class template keep track of the current place to insert instructions and has methods to create new instructions.

TheModule is an LLVM construct that contains functions and global variables. In many ways, it is the top-level
structure that the LLVM IR uses to contain code. It will own the memory for all of the IR that we generate, which is
why the codegen() method returns a raw Value*, rather than a unique_ptr<Value>.

The NamedValues map keeps track of which values are defined in the current scope and what their LLVM represen-
tation is. (In other words, it is a symbol table for the code). In this form of Kaleidoscope, the only things that can be
referenced are function parameters. As such, function parameters will be in this map when generating code for their
function body.

With these basics in place, we can start talking about how to generate code for each expression. Note that this assumes
that the Builder has been set up to generate code into something. For now, we’ll assume that this has already been
done, and we’ll just use it to emit code.

Expression Code Generation

Generating LLVM code for expression nodes is very straightforward: less than 45 lines of commented code for all
four of our expression nodes. First we’ll do numeric literals:

Value *NumberExprAST::codegen() {
return ConstantFP::get(LLVMContext, APFloat(Val));

}

In the LLVM IR, numeric constants are represented with the ConstantFP class, which holds the numeric value
in an APFloat internally (APFloat has the capability of holding floating point constants of Arbitrary Precision).
This code basically just creates and returns a ConstantFP. Note that in the LLVM IR that constants are all uniqued
together and shared. For this reason, the API uses the “foo::get(...)” idiom instead of “new foo(..)” or “foo::Create(..)”.

Value *VariableExprAST::codegen() {
// Look this variable up in the function.
Value *V = NamedValues[Name];
if (!V)
LogErrorV("Unknown variable name");

return V;
}

References to variables are also quite simple using LLVM. In the simple version of Kaleidoscope, we assume that the
variable has already been emitted somewhere and its value is available. In practice, the only values that can be in the
NamedValues map are function arguments. This code simply checks to see that the specified name is in the map
(if not, an unknown variable is being referenced) and returns the value for it. In future chapters, we’ll add support for
loop induction variables in the symbol table, and for local variables.

Value *BinaryExprAST::codegen() {
Value *L = LHS->codegen();
Value *R = RHS->codegen();
if (!L || !R)
return nullptr;

switch (Op) {
case '+':
return Builder.CreateFAdd(L, R, "addtmp");
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case '-':
return Builder.CreateFSub(L, R, "subtmp");

case '*':
return Builder.CreateFMul(L, R, "multmp");

case '<':
L = Builder.CreateFCmpULT(L, R, "cmptmp");
// Convert bool 0/1 to double 0.0 or 1.0
return Builder.CreateUIToFP(L, Type::getDoubleTy(LLVMContext),

"booltmp");
default:
return LogErrorV("invalid binary operator");

}
}

Binary operators start to get more interesting. The basic idea here is that we recursively emit code for the left-hand
side of the expression, then the right-hand side, then we compute the result of the binary expression. In this code, we
do a simple switch on the opcode to create the right LLVM instruction.

In the example above, the LLVM builder class is starting to show its value. IRBuilder knows where to insert the newly
created instruction, all you have to do is specify what instruction to create (e.g. with CreateFAdd), which operands
to use (L and R here) and optionally provide a name for the generated instruction.

One nice thing about LLVM is that the name is just a hint. For instance, if the code above emits multiple “addtmp”
variables, LLVM will automatically provide each one with an increasing, unique numeric suffix. Local value names
for instructions are purely optional, but it makes it much easier to read the IR dumps.

LLVM instructions are constrained by strict rules: for example, the Left and Right operators of an add instruction must
have the same type, and the result type of the add must match the operand types. Because all values in Kaleidoscope
are doubles, this makes for very simple code for add, sub and mul.

On the other hand, LLVM specifies that the fcmp instruction always returns an ‘i1’ value (a one bit integer). The
problem with this is that Kaleidoscope wants the value to be a 0.0 or 1.0 value. In order to get these semantics, we
combine the fcmp instruction with a uitofp instruction. This instruction converts its input integer into a floating point
value by treating the input as an unsigned value. In contrast, if we used the sitofp instruction, the Kaleidoscope ‘<’
operator would return 0.0 and -1.0, depending on the input value.

Value *CallExprAST::codegen() {
// Look up the name in the global module table.
Function *CalleeF = TheModule->getFunction(Callee);
if (!CalleeF)
return LogErrorV("Unknown function referenced");

// If argument mismatch error.
if (CalleeF->arg_size() != Args.size())
return LogErrorV("Incorrect # arguments passed");

std::vector<Value *> ArgsV;
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
ArgsV.push_back(Args[i]->codegen());
if (!ArgsV.back())

return nullptr;
}

return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
}

Code generation for function calls is quite straightforward with LLVM. The code above initially does a function name
lookup in the LLVM Module’s symbol table. Recall that the LLVM Module is the container that holds the functions
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we are JIT’ing. By giving each function the same name as what the user specifies, we can use the LLVM symbol table
to resolve function names for us.

Once we have the function to call, we recursively codegen each argument that is to be passed in, and create an LLVM
call instruction. Note that LLVM uses the native C calling conventions by default, allowing these calls to also call into
standard library functions like “sin” and “cos”, with no additional effort.

This wraps up our handling of the four basic expressions that we have so far in Kaleidoscope. Feel free to go in and add
some more. For example, by browsing the LLVM language reference you’ll find several other interesting instructions
that are really easy to plug into our basic framework.

Function Code Generation

Code generation for prototypes and functions must handle a number of details, which make their code less beautiful
than expression code generation, but allows us to illustrate some important points. First, lets talk about code generation
for prototypes: they are used both for function bodies and external function declarations. The code starts with:

Function *PrototypeAST::codegen() {
// Make the function type: double(double,double) etc.
std::vector<Type*> Doubles(Args.size(),

Type::getDoubleTy(LLVMContext));
FunctionType *FT =
FunctionType::get(Type::getDoubleTy(LLVMContext), Doubles, false);

Function *F =
Function::Create(FT, Function::ExternalLinkage, Name, TheModule);

This code packs a lot of power into a few lines. Note first that this function returns a “Function*” instead of a
“Value*”. Because a “prototype” really talks about the external interface for a function (not the value computed by an
expression), it makes sense for it to return the LLVM Function it corresponds to when codegen’d.

The call to FunctionType::get creates the FunctionType that should be used for a given Prototype. Since
all function arguments in Kaleidoscope are of type double, the first line creates a vector of “N” LLVM double types. It
then uses the Functiontype::get method to create a function type that takes “N” doubles as arguments, returns
one double as a result, and that is not vararg (the false parameter indicates this). Note that Types in LLVM are uniqued
just like Constants are, so you don’t “new” a type, you “get” it.

The final line above actually creates the IR Function corresponding to the Prototype. This indicates the type, linkage
and name to use, as well as which module to insert into. “external linkage” means that the function may be defined
outside the current module and/or that it is callable by functions outside the module. The Name passed in is the name
the user specified: since “TheModule” is specified, this name is registered in “TheModule“s symbol table.

// Set names for all arguments.
unsigned Idx = 0;
for (auto &Arg : F->args())
Arg.setName(Args[Idx++]);

return F;

Finally, we set the name of each of the function’s arguments according to the names given in the Prototype. This step
isn’t strictly necessary, but keeping the names consistent makes the IR more readable, and allows subsequent code to
refer directly to the arguments for their names, rather than having to look up them up in the Prototype AST.

At this point we have a function prototype with no body. This is how LLVM IR represents function declarations.
For extern statements in Kaleidoscope, this is as far as we need to go. For function definitions however, we need to
codegen and attach a function body.
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Function *FunctionAST::codegen() {
// First, check for an existing function from a previous 'extern' declaration.

Function *TheFunction = TheModule->getFunction(Proto->getName());

if (!TheFunction)
TheFunction = Proto->codegen();

if (!TheFunction)
return nullptr;

if (!TheFunction->empty())
return (Function*)LogErrorV("Function cannot be redefined.");

For function definitions, we start by searching TheModule’s symbol table for an existing version of this function, in
case one has already been created using an ‘extern’ statement. If Module::getFunction returns null then no previous
version exists, so we’ll codegen one from the Prototype. In either case, we want to assert that the function is empty
(i.e. has no body yet) before we start.

// Create a new basic block to start insertion into.
BasicBlock *BB = BasicBlock::Create(LLVMContext, "entry", TheFunction);
Builder.SetInsertPoint(BB);

// Record the function arguments in the NamedValues map.
NamedValues.clear();
for (auto &Arg : TheFunction->args())
NamedValues[Arg.getName()] = &Arg;

Now we get to the point where the Builder is set up. The first line creates a new basic block (named “entry”), which
is inserted into TheFunction. The second line then tells the builder that new instructions should be inserted into
the end of the new basic block. Basic blocks in LLVM are an important part of functions that define the Control Flow
Graph. Since we don’t have any control flow, our functions will only contain one block at this point. We’ll fix this in
Chapter 5 :).

Next we add the function arguments to the NamedValues map (after first clearing it out) so that they’re accessible to
VariableExprAST nodes.

if (Value *RetVal = Body->codegen()) {
// Finish off the function.
Builder.CreateRet(RetVal);

// Validate the generated code, checking for consistency.
verifyFunction(*TheFunction);

return TheFunction;
}

Once the insertion point has been set up and the NamedValues map populated, we call the codegen() method for
the root expression of the function. If no error happens, this emits code to compute the expression into the entry block
and returns the value that was computed. Assuming no error, we then create an LLVM ret instruction, which completes
the function. Once the function is built, we call verifyFunction, which is provided by LLVM. This function does
a variety of consistency checks on the generated code, to determine if our compiler is doing everything right. Using
this is important: it can catch a lot of bugs. Once the function is finished and validated, we return it.

// Error reading body, remove function.
TheFunction->eraseFromParent();
return nullptr;

}
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The only piece left here is handling of the error case. For simplicity, we handle this by merely deleting the function
we produced with the eraseFromParent method. This allows the user to redefine a function that they incorrectly
typed in before: if we didn’t delete it, it would live in the symbol table, with a body, preventing future redefinition.

This code does have a bug, though: If the FunctionAST::codegen() method finds an existing IR Function, it
does not validate its signature against the definition’s own prototype. This means that an earlier ‘extern’ declaration
will take precedence over the function definition’s signature, which can cause codegen to fail, for instance if the
function arguments are named differently. There are a number of ways to fix this bug, see what you can come up with!
Here is a testcase:

extern foo(a); # ok, defines foo.
def foo(b) b; # Error: Unknown variable name. (decl using 'a' takes precedence).

Driver Changes and Closing Thoughts

For now, code generation to LLVM doesn’t really get us much, except that we can look at the pretty IR calls. The
sample code inserts calls to codegen into the “HandleDefinition”, “HandleExtern” etc functions, and then
dumps out the LLVM IR. This gives a nice way to look at the LLVM IR for simple functions. For example:

ready> 4+5;
Read top-level expression:
define double @0() {
entry:

ret double 9.000000e+00
}

Note how the parser turns the top-level expression into anonymous functions for us. This will be handy when we
add JIT support in the next chapter. Also note that the code is very literally transcribed, no optimizations are being
performed except simple constant folding done by IRBuilder. We will add optimizations explicitly in the next chapter.

ready> def foo(a b) a*a + 2*a*b + b*b;
Read function definition:
define double @foo(double %a, double %b) {
entry:

%multmp = fmul double %a, %a
%multmp1 = fmul double 2.000000e+00, %a
%multmp2 = fmul double %multmp1, %b
%addtmp = fadd double %multmp, %multmp2
%multmp3 = fmul double %b, %b
%addtmp4 = fadd double %addtmp, %multmp3
ret double %addtmp4

}

This shows some simple arithmetic. Notice the striking similarity to the LLVM builder calls that we use to create the
instructions.

ready> def bar(a) foo(a, 4.0) + bar(31337);
Read function definition:
define double @bar(double %a) {
entry:

%calltmp = call double @foo(double %a, double 4.000000e+00)
%calltmp1 = call double @bar(double 3.133700e+04)
%addtmp = fadd double %calltmp, %calltmp1
ret double %addtmp

}

2.17. LLVM Tutorial: Table of Contents 367



LLVM Documentation, Release 3.9

This shows some function calls. Note that this function will take a long time to execute if you call it. In the future
we’ll add conditional control flow to actually make recursion useful :).

ready> extern cos(x);
Read extern:
declare double @cos(double)

ready> cos(1.234);
Read top-level expression:
define double @1() {
entry:

%calltmp = call double @cos(double 1.234000e+00)
ret double %calltmp

}

This shows an extern for the libm “cos” function, and a call to it.

ready> ^D
; ModuleID = 'my cool jit'

define double @0() {
entry:

%addtmp = fadd double 4.000000e+00, 5.000000e+00
ret double %addtmp

}

define double @foo(double %a, double %b) {
entry:

%multmp = fmul double %a, %a
%multmp1 = fmul double 2.000000e+00, %a
%multmp2 = fmul double %multmp1, %b
%addtmp = fadd double %multmp, %multmp2
%multmp3 = fmul double %b, %b
%addtmp4 = fadd double %addtmp, %multmp3
ret double %addtmp4

}

define double @bar(double %a) {
entry:

%calltmp = call double @foo(double %a, double 4.000000e+00)
%calltmp1 = call double @bar(double 3.133700e+04)
%addtmp = fadd double %calltmp, %calltmp1
ret double %addtmp

}

declare double @cos(double)

define double @1() {
entry:

%calltmp = call double @cos(double 1.234000e+00)
ret double %calltmp

}

When you quit the current demo, it dumps out the IR for the entire module generated. Here you can see the big picture
with all the functions referencing each other.

This wraps up the third chapter of the Kaleidoscope tutorial. Up next, we’ll describe how to add JIT codegen and
optimizer support to this so we can actually start running code!
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Full Code Listing

Here is the complete code listing for our running example, enhanced with the LLVM code generator. Because this uses
the LLVM libraries, we need to link them in. To do this, we use the llvm-config tool to inform our makefile/command
line about which options to use:

# Compile
clang++ -g -O3 toy.cpp `llvm-config --cxxflags --ldflags --system-libs --libs core` -
→˓o toy
# Run
./toy

Here is the code:

#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Verifier.h"
#include <cctype>
#include <cstdio>
#include <cstdlib>
#include <map>
#include <memory>
#include <string>
#include <vector>

using namespace llvm;

//===----------------------------------------------------------------------===//
// Lexer
//===----------------------------------------------------------------------===//

// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
// of these for known things.
enum Token {

tok_eof = -1,

// commands
tok_def = -2,
tok_extern = -3,

// primary
tok_identifier = -4,
tok_number = -5

};

static std::string IdentifierStr; // Filled in if tok_identifier
static double NumVal; // Filled in if tok_number

/// gettok - Return the next token from standard input.
static int gettok() {
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static int LastChar = ' ';

// Skip any whitespace.
while (isspace(LastChar))
LastChar = getchar();

if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
IdentifierStr = LastChar;
while (isalnum((LastChar = getchar())))

IdentifierStr += LastChar;

if (IdentifierStr == "def")
return tok_def;

if (IdentifierStr == "extern")
return tok_extern;

return tok_identifier;
}

if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
std::string NumStr;
do {

NumStr += LastChar;
LastChar = getchar();

} while (isdigit(LastChar) || LastChar == '.');

NumVal = strtod(NumStr.c_str(), nullptr);
return tok_number;

}

if (LastChar == '#') {
// Comment until end of line.
do

LastChar = getchar();
while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');

if (LastChar != EOF)
return gettok();

}

// Check for end of file. Don't eat the EOF.
if (LastChar == EOF)
return tok_eof;

// Otherwise, just return the character as its ascii value.
int ThisChar = LastChar;
LastChar = getchar();
return ThisChar;

}

//===----------------------------------------------------------------------===//
// Abstract Syntax Tree (aka Parse Tree)
//===----------------------------------------------------------------------===//
namespace {
/// ExprAST - Base class for all expression nodes.
class ExprAST {
public:

virtual ~ExprAST() {}
virtual Value *codegen() = 0;
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};

/// NumberExprAST - Expression class for numeric literals like "1.0".
class NumberExprAST : public ExprAST {
double Val;

public:
NumberExprAST(double Val) : Val(Val) {}
Value *codegen() override;

};

/// VariableExprAST - Expression class for referencing a variable, like "a".
class VariableExprAST : public ExprAST {
std::string Name;

public:
VariableExprAST(const std::string &Name) : Name(Name) {}
Value *codegen() override;

};

/// BinaryExprAST - Expression class for a binary operator.
class BinaryExprAST : public ExprAST {
char Op;
std::unique_ptr<ExprAST> LHS, RHS;

public:
BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,

std::unique_ptr<ExprAST> RHS)
: Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}

Value *codegen() override;
};

/// CallExprAST - Expression class for function calls.
class CallExprAST : public ExprAST {
std::string Callee;
std::vector<std::unique_ptr<ExprAST>> Args;

public:
CallExprAST(const std::string &Callee,

std::vector<std::unique_ptr<ExprAST>> Args)
: Callee(Callee), Args(std::move(Args)) {}

Value *codegen() override;
};

/// PrototypeAST - This class represents the "prototype" for a function,
/// which captures its name, and its argument names (thus implicitly the number
/// of arguments the function takes).
class PrototypeAST {

std::string Name;
std::vector<std::string> Args;

public:
PrototypeAST(const std::string &Name, std::vector<std::string> Args)

: Name(Name), Args(std::move(Args)) {}
Function *codegen();
const std::string &getName() const { return Name; }

};
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/// FunctionAST - This class represents a function definition itself.
class FunctionAST {

std::unique_ptr<PrototypeAST> Proto;
std::unique_ptr<ExprAST> Body;

public:
FunctionAST(std::unique_ptr<PrototypeAST> Proto,

std::unique_ptr<ExprAST> Body)
: Proto(std::move(Proto)), Body(std::move(Body)) {}

Function *codegen();
};
} // end anonymous namespace

//===----------------------------------------------------------------------===//
// Parser
//===----------------------------------------------------------------------===//

/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
/// token the parser is looking at. getNextToken reads another token from the
/// lexer and updates CurTok with its results.
static int CurTok;
static int getNextToken() { return CurTok = gettok(); }

/// BinopPrecedence - This holds the precedence for each binary operator that is
/// defined.
static std::map<char, int> BinopPrecedence;

/// GetTokPrecedence - Get the precedence of the pending binary operator token.
static int GetTokPrecedence() {

if (!isascii(CurTok))
return -1;

// Make sure it's a declared binop.
int TokPrec = BinopPrecedence[CurTok];
if (TokPrec <= 0)
return -1;

return TokPrec;
}

/// LogError* - These are little helper functions for error handling.
std::unique_ptr<ExprAST> LogError(const char *Str) {
fprintf(stderr, "Error: %s\n", Str);
return nullptr;

}

std::unique_ptr<PrototypeAST> LogErrorP(const char *Str) {
LogError(Str);
return nullptr;

}

static std::unique_ptr<ExprAST> ParseExpression();

/// numberexpr ::= number
static std::unique_ptr<ExprAST> ParseNumberExpr() {
auto Result = llvm::make_unique<NumberExprAST>(NumVal);
getNextToken(); // consume the number
return std::move(Result);

}
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/// parenexpr ::= '(' expression ')'
static std::unique_ptr<ExprAST> ParseParenExpr() {
getNextToken(); // eat (.
auto V = ParseExpression();
if (!V)
return nullptr;

if (CurTok != ')')
return LogError("expected ')'");

getNextToken(); // eat ).
return V;

}

/// identifierexpr
/// ::= identifier
/// ::= identifier '(' expression* ')'
static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
std::string IdName = IdentifierStr;

getNextToken(); // eat identifier.

if (CurTok != '(') // Simple variable ref.
return llvm::make_unique<VariableExprAST>(IdName);

// Call.
getNextToken(); // eat (
std::vector<std::unique_ptr<ExprAST>> Args;
if (CurTok != ')') {
while (true) {

if (auto Arg = ParseExpression())
Args.push_back(std::move(Arg));

else
return nullptr;

if (CurTok == ')')
break;

if (CurTok != ',')
return LogError("Expected ')' or ',' in argument list");

getNextToken();
}

}

// Eat the ')'.
getNextToken();

return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
}

/// primary
/// ::= identifierexpr
/// ::= numberexpr
/// ::= parenexpr
static std::unique_ptr<ExprAST> ParsePrimary() {
switch (CurTok) {
default:
return LogError("unknown token when expecting an expression");
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case tok_identifier:
return ParseIdentifierExpr();

case tok_number:
return ParseNumberExpr();

case '(':
return ParseParenExpr();

}
}

/// binoprhs
/// ::= ('+' primary)*
static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,

std::unique_ptr<ExprAST> LHS) {
// If this is a binop, find its precedence.
while (true) {
int TokPrec = GetTokPrecedence();

// If this is a binop that binds at least as tightly as the current binop,
// consume it, otherwise we are done.
if (TokPrec < ExprPrec)

return LHS;

// Okay, we know this is a binop.
int BinOp = CurTok;
getNextToken(); // eat binop

// Parse the primary expression after the binary operator.
auto RHS = ParsePrimary();
if (!RHS)

return nullptr;

// If BinOp binds less tightly with RHS than the operator after RHS, let
// the pending operator take RHS as its LHS.
int NextPrec = GetTokPrecedence();
if (TokPrec < NextPrec) {

RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
if (!RHS)

return nullptr;
}

// Merge LHS/RHS.
LHS =

llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
}

}

/// expression
/// ::= primary binoprhs
///
static std::unique_ptr<ExprAST> ParseExpression() {
auto LHS = ParsePrimary();
if (!LHS)
return nullptr;

return ParseBinOpRHS(0, std::move(LHS));
}

/// prototype
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/// ::= id '(' id* ')'
static std::unique_ptr<PrototypeAST> ParsePrototype() {
if (CurTok != tok_identifier)
return LogErrorP("Expected function name in prototype");

std::string FnName = IdentifierStr;
getNextToken();

if (CurTok != '(')
return LogErrorP("Expected '(' in prototype");

std::vector<std::string> ArgNames;
while (getNextToken() == tok_identifier)
ArgNames.push_back(IdentifierStr);

if (CurTok != ')')
return LogErrorP("Expected ')' in prototype");

// success.
getNextToken(); // eat ')'.

return llvm::make_unique<PrototypeAST>(FnName, std::move(ArgNames));
}

/// definition ::= 'def' prototype expression
static std::unique_ptr<FunctionAST> ParseDefinition() {
getNextToken(); // eat def.
auto Proto = ParsePrototype();
if (!Proto)
return nullptr;

if (auto E = ParseExpression())
return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));

return nullptr;
}

/// toplevelexpr ::= expression
static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {

if (auto E = ParseExpression()) {
// Make an anonymous proto.
auto Proto = llvm::make_unique<PrototypeAST>("__anon_expr",

std::vector<std::string>());
return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));

}
return nullptr;

}

/// external ::= 'extern' prototype
static std::unique_ptr<PrototypeAST> ParseExtern() {

getNextToken(); // eat extern.
return ParsePrototype();

}

//===----------------------------------------------------------------------===//
// Code Generation
//===----------------------------------------------------------------------===//

static LLVMContext TheContext;
static IRBuilder<> Builder(TheContext);
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static std::unique_ptr<Module> TheModule;
static std::map<std::string, Value *> NamedValues;

Value *LogErrorV(const char *Str) {
LogError(Str);
return nullptr;

}

Value *NumberExprAST::codegen() {
return ConstantFP::get(TheContext, APFloat(Val));

}

Value *VariableExprAST::codegen() {
// Look this variable up in the function.
Value *V = NamedValues[Name];
if (!V)
return LogErrorV("Unknown variable name");

return V;
}

Value *BinaryExprAST::codegen() {
Value *L = LHS->codegen();
Value *R = RHS->codegen();
if (!L || !R)
return nullptr;

switch (Op) {
case '+':
return Builder.CreateFAdd(L, R, "addtmp");

case '-':
return Builder.CreateFSub(L, R, "subtmp");

case '*':
return Builder.CreateFMul(L, R, "multmp");

case '<':
L = Builder.CreateFCmpULT(L, R, "cmptmp");
// Convert bool 0/1 to double 0.0 or 1.0
return Builder.CreateUIToFP(L, Type::getDoubleTy(TheContext), "booltmp");

default:
return LogErrorV("invalid binary operator");

}
}

Value *CallExprAST::codegen() {
// Look up the name in the global module table.
Function *CalleeF = TheModule->getFunction(Callee);
if (!CalleeF)
return LogErrorV("Unknown function referenced");

// If argument mismatch error.
if (CalleeF->arg_size() != Args.size())
return LogErrorV("Incorrect # arguments passed");

std::vector<Value *> ArgsV;
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
ArgsV.push_back(Args[i]->codegen());
if (!ArgsV.back())

return nullptr;
}
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return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
}

Function *PrototypeAST::codegen() {
// Make the function type: double(double,double) etc.
std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(TheContext));
FunctionType *FT =

FunctionType::get(Type::getDoubleTy(TheContext), Doubles, false);

Function *F =
Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get());

// Set names for all arguments.
unsigned Idx = 0;
for (auto &Arg : F->args())
Arg.setName(Args[Idx++]);

return F;
}

Function *FunctionAST::codegen() {
// First, check for an existing function from a previous 'extern' declaration.
Function *TheFunction = TheModule->getFunction(Proto->getName());

if (!TheFunction)
TheFunction = Proto->codegen();

if (!TheFunction)
return nullptr;

// Create a new basic block to start insertion into.
BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction);
Builder.SetInsertPoint(BB);

// Record the function arguments in the NamedValues map.
NamedValues.clear();
for (auto &Arg : TheFunction->args())
NamedValues[Arg.getName()] = &Arg;

if (Value *RetVal = Body->codegen()) {
// Finish off the function.
Builder.CreateRet(RetVal);

// Validate the generated code, checking for consistency.
verifyFunction(*TheFunction);

return TheFunction;
}

// Error reading body, remove function.
TheFunction->eraseFromParent();
return nullptr;

}

//===----------------------------------------------------------------------===//
// Top-Level parsing and JIT Driver
//===----------------------------------------------------------------------===//
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static void HandleDefinition() {
if (auto FnAST = ParseDefinition()) {
if (auto *FnIR = FnAST->codegen()) {
fprintf(stderr, "Read function definition:");
FnIR->dump();

}
} else {
// Skip token for error recovery.
getNextToken();

}
}

static void HandleExtern() {
if (auto ProtoAST = ParseExtern()) {
if (auto *FnIR = ProtoAST->codegen()) {
fprintf(stderr, "Read extern: ");
FnIR->dump();

}
} else {
// Skip token for error recovery.
getNextToken();

}
}

static void HandleTopLevelExpression() {
// Evaluate a top-level expression into an anonymous function.
if (auto FnAST = ParseTopLevelExpr()) {
if (auto *FnIR = FnAST->codegen()) {
fprintf(stderr, "Read top-level expression:");
FnIR->dump();

}
} else {
// Skip token for error recovery.
getNextToken();

}
}

/// top ::= definition | external | expression | ';'
static void MainLoop() {
while (true) {
fprintf(stderr, "ready> ");
switch (CurTok) {
case tok_eof:
return;

case ';': // ignore top-level semicolons.
getNextToken();
break;

case tok_def:
HandleDefinition();
break;

case tok_extern:
HandleExtern();
break;

default:
HandleTopLevelExpression();
break;

}
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}
}

//===----------------------------------------------------------------------===//
// Main driver code.
//===----------------------------------------------------------------------===//

int main() {
// Install standard binary operators.
// 1 is lowest precedence.
BinopPrecedence['<'] = 10;
BinopPrecedence['+'] = 20;
BinopPrecedence['-'] = 20;
BinopPrecedence['*'] = 40; // highest.

// Prime the first token.
fprintf(stderr, "ready> ");
getNextToken();

// Make the module, which holds all the code.
TheModule = llvm::make_unique<Module>("my cool jit", TheContext);

// Run the main "interpreter loop" now.
MainLoop();

// Print out all of the generated code.
TheModule->dump();

return 0;
}

Next: Adding JIT and Optimizer Support

Kaleidoscope: Adding JIT and Optimizer Support

• Chapter 4 Introduction

• Trivial Constant Folding

• LLVM Optimization Passes

• Adding a JIT Compiler

• Full Code Listing

Chapter 4 Introduction

Welcome to Chapter 4 of the “Implementing a language with LLVM” tutorial. Chapters 1-3 described the implemen-
tation of a simple language and added support for generating LLVM IR. This chapter describes two new techniques:
adding optimizer support to your language, and adding JIT compiler support. These additions will demonstrate how
to get nice, efficient code for the Kaleidoscope language.
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Trivial Constant Folding

Our demonstration for Chapter 3 is elegant and easy to extend. Unfortunately, it does not produce wonderful code.
The IRBuilder, however, does give us obvious optimizations when compiling simple code:

ready> def test(x) 1+2+x;
Read function definition:
define double @test(double %x) {
entry:

%addtmp = fadd double 3.000000e+00, %x
ret double %addtmp

}

This code is not a literal transcription of the AST built by parsing the input. That would be:

ready> def test(x) 1+2+x;
Read function definition:
define double @test(double %x) {
entry:

%addtmp = fadd double 2.000000e+00, 1.000000e+00
%addtmp1 = fadd double %addtmp, %x
ret double %addtmp1

}

Constant folding, as seen above, in particular, is a very common and very important optimization: so much so that
many language implementors implement constant folding support in their AST representation.

With LLVM, you don’t need this support in the AST. Since all calls to build LLVM IR go through the LLVM IR
builder, the builder itself checked to see if there was a constant folding opportunity when you call it. If so, it just does
the constant fold and return the constant instead of creating an instruction.

Well, that was easy :). In practice, we recommend always using IRBuilder when generating code like this. It has no
“syntactic overhead” for its use (you don’t have to uglify your compiler with constant checks everywhere) and it can
dramatically reduce the amount of LLVM IR that is generated in some cases (particular for languages with a macro
preprocessor or that use a lot of constants).

On the other hand, the IRBuilder is limited by the fact that it does all of its analysis inline with the code as it is
built. If you take a slightly more complex example:

ready> def test(x) (1+2+x)*(x+(1+2));
ready> Read function definition:
define double @test(double %x) {
entry:

%addtmp = fadd double 3.000000e+00, %x
%addtmp1 = fadd double %x, 3.000000e+00
%multmp = fmul double %addtmp, %addtmp1
ret double %multmp

}

In this case, the LHS and RHS of the multiplication are the same value. We’d really like to see this generate “tmp =
x+3; result = tmp*tmp;” instead of computing “x+3” twice.

Unfortunately, no amount of local analysis will be able to detect and correct this. This requires two transformations:
reassociation of expressions (to make the add’s lexically identical) and Common Subexpression Elimination (CSE) to
delete the redundant add instruction. Fortunately, LLVM provides a broad range of optimizations that you can use, in
the form of “passes”.
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LLVM Optimization Passes

LLVM provides many optimization passes, which do many different sorts of things and have different tradeoffs. Unlike
other systems, LLVM doesn’t hold to the mistaken notion that one set of optimizations is right for all languages and
for all situations. LLVM allows a compiler implementor to make complete decisions about what optimizations to use,
in which order, and in what situation.

As a concrete example, LLVM supports both “whole module” passes, which look across as large of body of code as
they can (often a whole file, but if run at link time, this can be a substantial portion of the whole program). It also
supports and includes “per-function” passes which just operate on a single function at a time, without looking at other
functions. For more information on passes and how they are run, see the How to Write a Pass document and the List
of LLVM Passes.

For Kaleidoscope, we are currently generating functions on the fly, one at a time, as the user types them in. We aren’t
shooting for the ultimate optimization experience in this setting, but we also want to catch the easy and quick stuff
where possible. As such, we will choose to run a few per-function optimizations as the user types the function in. If
we wanted to make a “static Kaleidoscope compiler”, we would use exactly the code we have now, except that we
would defer running the optimizer until the entire file has been parsed.

In order to get per-function optimizations going, we need to set up a FunctionPassManager to hold and organize the
LLVM optimizations that we want to run. Once we have that, we can add a set of optimizations to run. We’ll need a
new FunctionPassManager for each module that we want to optimize, so we’ll write a function to create and initialize
both the module and pass manager for us:

void InitializeModuleAndPassManager(void) {
// Open a new module.
Context LLVMContext;
TheModule = llvm::make_unique<Module>("my cool jit", LLVMContext);
TheModule->setDataLayout(TheJIT->getTargetMachine().createDataLayout());

// Create a new pass manager attached to it.
TheFPM = llvm::make_unique<FunctionPassManager>(TheModule.get());

// Provide basic AliasAnalysis support for GVN.
TheFPM.add(createBasicAliasAnalysisPass());
// Do simple "peephole" optimizations and bit-twiddling optzns.
TheFPM.add(createInstructionCombiningPass());
// Reassociate expressions.
TheFPM.add(createReassociatePass());
// Eliminate Common SubExpressions.
TheFPM.add(createGVNPass());
// Simplify the control flow graph (deleting unreachable blocks, etc).
TheFPM.add(createCFGSimplificationPass());

TheFPM.doInitialization();
}

This code initializes the global module TheModule, and the function pass manager TheFPM, which is attached to
TheModule. Once the pass manager is set up, we use a series of “add” calls to add a bunch of LLVM passes.

In this case, we choose to add five passes: one analysis pass (alias analysis), and four optimization passes. The passes
we choose here are a pretty standard set of “cleanup” optimizations that are useful for a wide variety of code. I won’t
delve into what they do but, believe me, they are a good starting place :).

Once the PassManager is set up, we need to make use of it. We do this by running it after our newly created function
is constructed (in FunctionAST::codegen()), but before it is returned to the client:
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if (Value *RetVal = Body->codegen()) {
// Finish off the function.
Builder.CreateRet(RetVal);

// Validate the generated code, checking for consistency.
verifyFunction(*TheFunction);

// Optimize the function.
TheFPM->run(*TheFunction);

return TheFunction;
}

As you can see, this is pretty straightforward. The FunctionPassManager optimizes and updates the LLVM
Function* in place, improving (hopefully) its body. With this in place, we can try our test above again:

ready> def test(x) (1+2+x)*(x+(1+2));
ready> Read function definition:
define double @test(double %x) {
entry:

%addtmp = fadd double %x, 3.000000e+00
%multmp = fmul double %addtmp, %addtmp
ret double %multmp

}

As expected, we now get our nicely optimized code, saving a floating point add instruction from every execution of
this function.

LLVM provides a wide variety of optimizations that can be used in certain circumstances. Some documentation about
the various passes is available, but it isn’t very complete. Another good source of ideas can come from looking at the
passes that Clang runs to get started. The “opt” tool allows you to experiment with passes from the command line,
so you can see if they do anything.

Now that we have reasonable code coming out of our front-end, lets talk about executing it!

Adding a JIT Compiler

Code that is available in LLVM IR can have a wide variety of tools applied to it. For example, you can run optimiza-
tions on it (as we did above), you can dump it out in textual or binary forms, you can compile the code to an assembly
file (.s) for some target, or you can JIT compile it. The nice thing about the LLVM IR representation is that it is the
“common currency” between many different parts of the compiler.

In this section, we’ll add JIT compiler support to our interpreter. The basic idea that we want for Kaleidoscope is to
have the user enter function bodies as they do now, but immediately evaluate the top-level expressions they type in.
For example, if they type in “1 + 2;”, we should evaluate and print out 3. If they define a function, they should be able
to call it from the command line.

In order to do this, we first declare and initialize the JIT. This is done by adding a global variable TheJIT, and
initializing it in main:

static std::unique_ptr<KaleidoscopeJIT> TheJIT;
...
int main() {
..
TheJIT = llvm::make_unique<KaleidoscopeJIT>();

// Run the main "interpreter loop" now.
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MainLoop();

return 0;
}

The KaleidoscopeJIT class is a simple JIT built specifically for these tutorials. In later chapters we will look at how it
works and extend it with new features, but for now we will take it as given. Its API is very simple:: addModule adds
an LLVM IR module to the JIT, making its functions available for execution; removeModule removes a module,
freeing any memory associated with the code in that module; and findSymbol allows us to look up pointers to the
compiled code.

We can take this simple API and change our code that parses top-level expressions to look like this:

static void HandleTopLevelExpression() {
// Evaluate a top-level expression into an anonymous function.
if (auto FnAST = ParseTopLevelExpr()) {
if (FnAST->codegen()) {

// JIT the module containing the anonymous expression, keeping a handle so
// we can free it later.
auto H = TheJIT->addModule(std::move(TheModule));
InitializeModuleAndPassManager();

// Search the JIT for the __anon_expr symbol.
auto ExprSymbol = TheJIT->findSymbol("__anon_expr");
assert(ExprSymbol && "Function not found");

// Get the symbol's address and cast it to the right type (takes no
// arguments, returns a double) so we can call it as a native function.
double (*FP)() = (double (*)())(intptr_t)ExprSymbol.getAddress();
fprintf(stderr, "Evaluated to %f\n", FP());

// Delete the anonymous expression module from the JIT.
TheJIT->removeModule(H);

}

If parsing and codegen succeeed, the next step is to add the module containing the top-level expression to the
JIT. We do this by calling addModule, which triggers code generation for all the functions in the module, and
returns a handle that can be used to remove the module from the JIT later. Once the module has been added
to the JIT it can no longer be modified, so we also open a new module to hold subsequent code by calling
InitializeModuleAndPassManager().

Once we’ve added the module to the JIT we need to get a pointer to the final generated code. We do this by calling the
JIT’s findSymbol method, and passing the name of the top-level expression function: __anon_expr. Since we just
added this function, we assert that findSymbol returned a result.

Next, we get the in-memory address of the __anon_expr function by calling getAddress() on the symbol.
Recall that we compile top-level expressions into a self-contained LLVM function that takes no arguments and returns
the computed double. Because the LLVM JIT compiler matches the native platform ABI, this means that you can just
cast the result pointer to a function pointer of that type and call it directly. This means, there is no difference between
JIT compiled code and native machine code that is statically linked into your application.

Finally, since we don’t support re-evaluation of top-level expressions, we remove the module from the JIT when
we’re done to free the associated memory. Recall, however, that the module we created a few lines earlier (via
InitializeModuleAndPassManager) is still open and waiting for new code to be added.

With just these two changes, lets see how Kaleidoscope works now!
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ready> 4+5;
Read top-level expression:
define double @0() {
entry:

ret double 9.000000e+00
}

Evaluated to 9.000000

Well this looks like it is basically working. The dump of the function shows the “no argument function that always
returns double” that we synthesize for each top-level expression that is typed in. This demonstrates very basic func-
tionality, but can we do more?

ready> def testfunc(x y) x + y*2;
Read function definition:
define double @testfunc(double %x, double %y) {
entry:

%multmp = fmul double %y, 2.000000e+00
%addtmp = fadd double %multmp, %x
ret double %addtmp

}

ready> testfunc(4, 10);
Read top-level expression:
define double @1() {
entry:

%calltmp = call double @testfunc(double 4.000000e+00, double 1.000000e+01)
ret double %calltmp

}

Evaluated to 24.000000

ready> testfunc(5, 10);
ready> LLVM ERROR: Program used external function 'testfunc' which could not be
→˓resolved!

Function definitions and calls also work, but something went very wrong on that last line. The call looks valid, so
what happened? As you may have guessed from the the API a Module is a unit of allocation for the JIT, and testfunc
was part of the same module that contained anonymous expression. When we removed that module from the JIT to
free the memory for the anonymous expression, we deleted the definition of testfunc along with it. Then, when
we tried to call testfunc a second time, the JIT could no longer find it.

The easiest way to fix this is to put the anonymous expression in a separate module from the rest of the function
definitions. The JIT will happily resolve function calls across module boundaries, as long as each of the functions
called has a prototype, and is added to the JIT before it is called. By putting the anonymous expression in a different
module we can delete it without affecting the rest of the functions.

In fact, we’re going to go a step further and put every function in its own module. Doing so allows us to exploit a
useful property of the KaleidoscopeJIT that will make our environment more REPL-like: Functions can be added to
the JIT more than once (unlike a module where every function must have a unique definition). When you look up a
symbol in KaleidoscopeJIT it will always return the most recent definition:

ready> def foo(x) x + 1;
Read function definition:
define double @foo(double %x) {
entry:

%addtmp = fadd double %x, 1.000000e+00
ret double %addtmp
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}

ready> foo(2);
Evaluated to 3.000000

ready> def foo(x) x + 2;
define double @foo(double %x) {
entry:

%addtmp = fadd double %x, 2.000000e+00
ret double %addtmp

}

ready> foo(2);
Evaluated to 4.000000

To allow each function to live in its own module we’ll need a way to re-generate previous function declarations into
each new module we open:

static std::unique_ptr<KaleidoscopeJIT> TheJIT;

...

Function *getFunction(std::string Name) {
// First, see if the function has already been added to the current module.
if (auto *F = TheModule->getFunction(Name))
return F;

// If not, check whether we can codegen the declaration from some existing
// prototype.
auto FI = FunctionProtos.find(Name);
if (FI != FunctionProtos.end())
return FI->second->codegen();

// If no existing prototype exists, return null.
return nullptr;

}

...

Value *CallExprAST::codegen() {
// Look up the name in the global module table.
Function *CalleeF = getFunction(Callee);

...

Function *FunctionAST::codegen() {
// Transfer ownership of the prototype to the FunctionProtos map, but keep a
// reference to it for use below.
auto &P = *Proto;
FunctionProtos[Proto->getName()] = std::move(Proto);
Function *TheFunction = getFunction(P.getName());
if (!TheFunction)
return nullptr;

To enable this, we’ll start by adding a new global, FunctionProtos, that holds the most recent pro-
totype for each function. We’ll also add a convenience method, getFunction(), to replace calls to
TheModule->getFunction(). Our convenience method searches TheModule for an existing function
declaration, falling back to generating a new declaration from FunctionProtos if it doesn’t find one. In
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CallExprAST::codegen() we just need to replace the call to TheModule->getFunction(). In
FunctionAST::codegen() we need to update the FunctionProtos map first, then call getFunction(). With
this done, we can always obtain a function declaration in the current module for any previously declared function.

We also need to update HandleDefinition and HandleExtern:

static void HandleDefinition() {
if (auto FnAST = ParseDefinition()) {
if (auto *FnIR = FnAST->codegen()) {
fprintf(stderr, "Read function definition:");
FnIR->dump();
TheJIT->addModule(std::move(TheModule));
InitializeModuleAndPassManager();

}
} else {
// Skip token for error recovery.
getNextToken();

}
}

static void HandleExtern() {
if (auto ProtoAST = ParseExtern()) {
if (auto *FnIR = ProtoAST->codegen()) {
fprintf(stderr, "Read extern: ");
FnIR->dump();
FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST);

}
} else {
// Skip token for error recovery.
getNextToken();

}
}

In HandleDefinition, we add two lines to transfer the newly defined function to the JIT and open a new module. In
HandleExtern, we just need to add one line to add the prototype to FunctionProtos.

With these changes made, lets try our REPL again (I removed the dump of the anonymous functions this time, you
should get the idea by now :) :

ready> def foo(x) x + 1;
ready> foo(2);
Evaluated to 3.000000

ready> def foo(x) x + 2;
ready> foo(2);
Evaluated to 4.000000

It works!

Even with this simple code, we get some surprisingly powerful capabilities - check this out:

ready> extern sin(x);
Read extern:
declare double @sin(double)

ready> extern cos(x);
Read extern:
declare double @cos(double)
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ready> sin(1.0);
Read top-level expression:
define double @2() {
entry:

ret double 0x3FEAED548F090CEE
}

Evaluated to 0.841471

ready> def foo(x) sin(x)*sin(x) + cos(x)*cos(x);
Read function definition:
define double @foo(double %x) {
entry:

%calltmp = call double @sin(double %x)
%multmp = fmul double %calltmp, %calltmp
%calltmp2 = call double @cos(double %x)
%multmp4 = fmul double %calltmp2, %calltmp2
%addtmp = fadd double %multmp, %multmp4
ret double %addtmp

}

ready> foo(4.0);
Read top-level expression:
define double @3() {
entry:

%calltmp = call double @foo(double 4.000000e+00)
ret double %calltmp

}

Evaluated to 1.000000

Whoa, how does the JIT know about sin and cos? The answer is surprisingly simple: The KaleidoscopeJIT has a
straightforward symbol resolution rule that it uses to find symbols that aren’t available in any given module: First it
searches all the modules that have already been added to the JIT, from the most recent to the oldest, to find the newest
definition. If no definition is found inside the JIT, it falls back to calling “dlsym("sin")” on the Kaleidoscope
process itself. Since “sin” is defined within the JIT’s address space, it simply patches up calls in the module to call
the libm version of sin directly.

In the future we’ll see how tweaking this symbol resolution rule can be used to enable all sorts of useful features, from
security (restricting the set of symbols available to JIT’d code), to dynamic code generation based on symbol names,
and even lazy compilation.

One immediate benefit of the symbol resolution rule is that we can now extend the language by writing arbitrary C++
code to implement operations. For example, if we add:

/// putchard - putchar that takes a double and returns 0.
extern "C" double putchard(double X) {
fputc((char)X, stderr);
return 0;

}

Now we can produce simple output to the console by using things like: “extern putchard(x);
putchard(120);”, which prints a lowercase ‘x’ on the console (120 is the ASCII code for ‘x’). Similar code
could be used to implement file I/O, console input, and many other capabilities in Kaleidoscope.

This completes the JIT and optimizer chapter of the Kaleidoscope tutorial. At this point, we can compile a non-Turing-
complete programming language, optimize and JIT compile it in a user-driven way. Next up we’ll look into extending
the language with control flow constructs, tackling some interesting LLVM IR issues along the way.
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Full Code Listing

Here is the complete code listing for our running example, enhanced with the LLVM JIT and optimizer. To build this
example, use:

# Compile
clang++ -g toy.cpp `llvm-config --cxxflags --ldflags --system-libs --libs core mcjit
→˓native` -O3 -o toy
# Run
./toy

If you are compiling this on Linux, make sure to add the “-rdynamic” option as well. This makes sure that the external
functions are resolved properly at runtime.

Here is the code:

#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVN.h"
#include "../include/KaleidoscopeJIT.h"
#include <cassert>
#include <cctype>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <map>
#include <memory>
#include <string>
#include <vector>

using namespace llvm;
using namespace llvm::orc;

//===----------------------------------------------------------------------===//
// Lexer
//===----------------------------------------------------------------------===//

// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
// of these for known things.
enum Token {

tok_eof = -1,

// commands
tok_def = -2,
tok_extern = -3,
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// primary
tok_identifier = -4,
tok_number = -5

};

static std::string IdentifierStr; // Filled in if tok_identifier
static double NumVal; // Filled in if tok_number

/// gettok - Return the next token from standard input.
static int gettok() {

static int LastChar = ' ';

// Skip any whitespace.
while (isspace(LastChar))
LastChar = getchar();

if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
IdentifierStr = LastChar;
while (isalnum((LastChar = getchar())))

IdentifierStr += LastChar;

if (IdentifierStr == "def")
return tok_def;

if (IdentifierStr == "extern")
return tok_extern;

return tok_identifier;
}

if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
std::string NumStr;
do {

NumStr += LastChar;
LastChar = getchar();

} while (isdigit(LastChar) || LastChar == '.');

NumVal = strtod(NumStr.c_str(), nullptr);
return tok_number;

}

if (LastChar == '#') {
// Comment until end of line.
do

LastChar = getchar();
while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');

if (LastChar != EOF)
return gettok();

}

// Check for end of file. Don't eat the EOF.
if (LastChar == EOF)
return tok_eof;

// Otherwise, just return the character as its ascii value.
int ThisChar = LastChar;
LastChar = getchar();
return ThisChar;
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}

//===----------------------------------------------------------------------===//
// Abstract Syntax Tree (aka Parse Tree)
//===----------------------------------------------------------------------===//
namespace {
/// ExprAST - Base class for all expression nodes.
class ExprAST {
public:

virtual ~ExprAST() {}
virtual Value *codegen() = 0;

};

/// NumberExprAST - Expression class for numeric literals like "1.0".
class NumberExprAST : public ExprAST {
double Val;

public:
NumberExprAST(double Val) : Val(Val) {}
Value *codegen() override;

};

/// VariableExprAST - Expression class for referencing a variable, like "a".
class VariableExprAST : public ExprAST {
std::string Name;

public:
VariableExprAST(const std::string &Name) : Name(Name) {}
Value *codegen() override;

};

/// BinaryExprAST - Expression class for a binary operator.
class BinaryExprAST : public ExprAST {
char Op;
std::unique_ptr<ExprAST> LHS, RHS;

public:
BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,

std::unique_ptr<ExprAST> RHS)
: Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}

Value *codegen() override;
};

/// CallExprAST - Expression class for function calls.
class CallExprAST : public ExprAST {
std::string Callee;
std::vector<std::unique_ptr<ExprAST>> Args;

public:
CallExprAST(const std::string &Callee,

std::vector<std::unique_ptr<ExprAST>> Args)
: Callee(Callee), Args(std::move(Args)) {}

Value *codegen() override;
};

/// PrototypeAST - This class represents the "prototype" for a function,
/// which captures its name, and its argument names (thus implicitly the number
/// of arguments the function takes).
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class PrototypeAST {
std::string Name;
std::vector<std::string> Args;

public:
PrototypeAST(const std::string &Name, std::vector<std::string> Args)

: Name(Name), Args(std::move(Args)) {}
Function *codegen();
const std::string &getName() const { return Name; }

};

/// FunctionAST - This class represents a function definition itself.
class FunctionAST {
std::unique_ptr<PrototypeAST> Proto;
std::unique_ptr<ExprAST> Body;

public:
FunctionAST(std::unique_ptr<PrototypeAST> Proto,

std::unique_ptr<ExprAST> Body)
: Proto(std::move(Proto)), Body(std::move(Body)) {}

Function *codegen();
};
} // end anonymous namespace

//===----------------------------------------------------------------------===//
// Parser
//===----------------------------------------------------------------------===//

/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
/// token the parser is looking at. getNextToken reads another token from the
/// lexer and updates CurTok with its results.
static int CurTok;
static int getNextToken() { return CurTok = gettok(); }

/// BinopPrecedence - This holds the precedence for each binary operator that is
/// defined.
static std::map<char, int> BinopPrecedence;

/// GetTokPrecedence - Get the precedence of the pending binary operator token.
static int GetTokPrecedence() {
if (!isascii(CurTok))
return -1;

// Make sure it's a declared binop.
int TokPrec = BinopPrecedence[CurTok];
if (TokPrec <= 0)
return -1;

return TokPrec;
}

/// LogError* - These are little helper functions for error handling.
std::unique_ptr<ExprAST> LogError(const char *Str) {
fprintf(stderr, "Error: %s\n", Str);
return nullptr;

}

std::unique_ptr<PrototypeAST> LogErrorP(const char *Str) {
LogError(Str);
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return nullptr;
}

static std::unique_ptr<ExprAST> ParseExpression();

/// numberexpr ::= number
static std::unique_ptr<ExprAST> ParseNumberExpr() {
auto Result = llvm::make_unique<NumberExprAST>(NumVal);
getNextToken(); // consume the number
return std::move(Result);

}

/// parenexpr ::= '(' expression ')'
static std::unique_ptr<ExprAST> ParseParenExpr() {
getNextToken(); // eat (.
auto V = ParseExpression();
if (!V)
return nullptr;

if (CurTok != ')')
return LogError("expected ')'");

getNextToken(); // eat ).
return V;

}

/// identifierexpr
/// ::= identifier
/// ::= identifier '(' expression* ')'
static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
std::string IdName = IdentifierStr;

getNextToken(); // eat identifier.

if (CurTok != '(') // Simple variable ref.
return llvm::make_unique<VariableExprAST>(IdName);

// Call.
getNextToken(); // eat (
std::vector<std::unique_ptr<ExprAST>> Args;
if (CurTok != ')') {
while (true) {

if (auto Arg = ParseExpression())
Args.push_back(std::move(Arg));

else
return nullptr;

if (CurTok == ')')
break;

if (CurTok != ',')
return LogError("Expected ')' or ',' in argument list");

getNextToken();
}

}

// Eat the ')'.
getNextToken();
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return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
}

/// primary
/// ::= identifierexpr
/// ::= numberexpr
/// ::= parenexpr
static std::unique_ptr<ExprAST> ParsePrimary() {
switch (CurTok) {
default:
return LogError("unknown token when expecting an expression");

case tok_identifier:
return ParseIdentifierExpr();

case tok_number:
return ParseNumberExpr();

case '(':
return ParseParenExpr();

}
}

/// binoprhs
/// ::= ('+' primary)*
static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,

std::unique_ptr<ExprAST> LHS) {
// If this is a binop, find its precedence.
while (true) {
int TokPrec = GetTokPrecedence();

// If this is a binop that binds at least as tightly as the current binop,
// consume it, otherwise we are done.
if (TokPrec < ExprPrec)

return LHS;

// Okay, we know this is a binop.
int BinOp = CurTok;
getNextToken(); // eat binop

// Parse the primary expression after the binary operator.
auto RHS = ParsePrimary();
if (!RHS)

return nullptr;

// If BinOp binds less tightly with RHS than the operator after RHS, let
// the pending operator take RHS as its LHS.
int NextPrec = GetTokPrecedence();
if (TokPrec < NextPrec) {

RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
if (!RHS)

return nullptr;
}

// Merge LHS/RHS.
LHS =

llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
}

}

/// expression
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/// ::= primary binoprhs
///
static std::unique_ptr<ExprAST> ParseExpression() {
auto LHS = ParsePrimary();
if (!LHS)
return nullptr;

return ParseBinOpRHS(0, std::move(LHS));
}

/// prototype
/// ::= id '(' id* ')'
static std::unique_ptr<PrototypeAST> ParsePrototype() {
if (CurTok != tok_identifier)
return LogErrorP("Expected function name in prototype");

std::string FnName = IdentifierStr;
getNextToken();

if (CurTok != '(')
return LogErrorP("Expected '(' in prototype");

std::vector<std::string> ArgNames;
while (getNextToken() == tok_identifier)
ArgNames.push_back(IdentifierStr);

if (CurTok != ')')
return LogErrorP("Expected ')' in prototype");

// success.
getNextToken(); // eat ')'.

return llvm::make_unique<PrototypeAST>(FnName, std::move(ArgNames));
}

/// definition ::= 'def' prototype expression
static std::unique_ptr<FunctionAST> ParseDefinition() {
getNextToken(); // eat def.
auto Proto = ParsePrototype();
if (!Proto)
return nullptr;

if (auto E = ParseExpression())
return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));

return nullptr;
}

/// toplevelexpr ::= expression
static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {

if (auto E = ParseExpression()) {
// Make an anonymous proto.
auto Proto = llvm::make_unique<PrototypeAST>("__anon_expr",

std::vector<std::string>());
return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));

}
return nullptr;

}

/// external ::= 'extern' prototype

394 Chapter 2. User Guides



LLVM Documentation, Release 3.9

static std::unique_ptr<PrototypeAST> ParseExtern() {
getNextToken(); // eat extern.
return ParsePrototype();

}

//===----------------------------------------------------------------------===//
// Code Generation
//===----------------------------------------------------------------------===//

static LLVMContext TheContext;
static IRBuilder<> Builder(TheContext);
static std::unique_ptr<Module> TheModule;
static std::map<std::string, Value *> NamedValues;
static std::unique_ptr<legacy::FunctionPassManager> TheFPM;
static std::unique_ptr<KaleidoscopeJIT> TheJIT;
static std::map<std::string, std::unique_ptr<PrototypeAST>> FunctionProtos;

Value *LogErrorV(const char *Str) {
LogError(Str);
return nullptr;

}

Function *getFunction(std::string Name) {
// First, see if the function has already been added to the current module.
if (auto *F = TheModule->getFunction(Name))
return F;

// If not, check whether we can codegen the declaration from some existing
// prototype.
auto FI = FunctionProtos.find(Name);
if (FI != FunctionProtos.end())
return FI->second->codegen();

// If no existing prototype exists, return null.
return nullptr;

}

Value *NumberExprAST::codegen() {
return ConstantFP::get(TheContext, APFloat(Val));

}

Value *VariableExprAST::codegen() {
// Look this variable up in the function.
Value *V = NamedValues[Name];
if (!V)
return LogErrorV("Unknown variable name");

return V;
}

Value *BinaryExprAST::codegen() {
Value *L = LHS->codegen();
Value *R = RHS->codegen();
if (!L || !R)
return nullptr;

switch (Op) {
case '+':
return Builder.CreateFAdd(L, R, "addtmp");
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case '-':
return Builder.CreateFSub(L, R, "subtmp");

case '*':
return Builder.CreateFMul(L, R, "multmp");

case '<':
L = Builder.CreateFCmpULT(L, R, "cmptmp");
// Convert bool 0/1 to double 0.0 or 1.0
return Builder.CreateUIToFP(L, Type::getDoubleTy(TheContext), "booltmp");

default:
return LogErrorV("invalid binary operator");

}
}

Value *CallExprAST::codegen() {
// Look up the name in the global module table.
Function *CalleeF = getFunction(Callee);
if (!CalleeF)
return LogErrorV("Unknown function referenced");

// If argument mismatch error.
if (CalleeF->arg_size() != Args.size())
return LogErrorV("Incorrect # arguments passed");

std::vector<Value *> ArgsV;
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
ArgsV.push_back(Args[i]->codegen());
if (!ArgsV.back())

return nullptr;
}

return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
}

Function *PrototypeAST::codegen() {
// Make the function type: double(double,double) etc.
std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(TheContext));
FunctionType *FT =

FunctionType::get(Type::getDoubleTy(TheContext), Doubles, false);

Function *F =
Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get());

// Set names for all arguments.
unsigned Idx = 0;
for (auto &Arg : F->args())
Arg.setName(Args[Idx++]);

return F;
}

Function *FunctionAST::codegen() {
// Transfer ownership of the prototype to the FunctionProtos map, but keep a
// reference to it for use below.
auto &P = *Proto;
FunctionProtos[Proto->getName()] = std::move(Proto);
Function *TheFunction = getFunction(P.getName());
if (!TheFunction)
return nullptr;
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// Create a new basic block to start insertion into.
BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction);
Builder.SetInsertPoint(BB);

// Record the function arguments in the NamedValues map.
NamedValues.clear();
for (auto &Arg : TheFunction->args())
NamedValues[Arg.getName()] = &Arg;

if (Value *RetVal = Body->codegen()) {
// Finish off the function.
Builder.CreateRet(RetVal);

// Validate the generated code, checking for consistency.
verifyFunction(*TheFunction);

// Run the optimizer on the function.
TheFPM->run(*TheFunction);

return TheFunction;
}

// Error reading body, remove function.
TheFunction->eraseFromParent();
return nullptr;

}

//===----------------------------------------------------------------------===//
// Top-Level parsing and JIT Driver
//===----------------------------------------------------------------------===//

static void InitializeModuleAndPassManager() {
// Open a new module.
TheModule = llvm::make_unique<Module>("my cool jit", TheContext);
TheModule->setDataLayout(TheJIT->getTargetMachine().createDataLayout());

// Create a new pass manager attached to it.
TheFPM = llvm::make_unique<legacy::FunctionPassManager>(TheModule.get());

// Do simple "peephole" optimizations and bit-twiddling optzns.
TheFPM->add(createInstructionCombiningPass());
// Reassociate expressions.
TheFPM->add(createReassociatePass());
// Eliminate Common SubExpressions.
TheFPM->add(createGVNPass());
// Simplify the control flow graph (deleting unreachable blocks, etc).
TheFPM->add(createCFGSimplificationPass());

TheFPM->doInitialization();
}

static void HandleDefinition() {
if (auto FnAST = ParseDefinition()) {
if (auto *FnIR = FnAST->codegen()) {
fprintf(stderr, "Read function definition:");
FnIR->dump();
TheJIT->addModule(std::move(TheModule));
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InitializeModuleAndPassManager();
}

} else {
// Skip token for error recovery.
getNextToken();

}
}

static void HandleExtern() {
if (auto ProtoAST = ParseExtern()) {
if (auto *FnIR = ProtoAST->codegen()) {
fprintf(stderr, "Read extern: ");
FnIR->dump();
FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST);

}
} else {
// Skip token for error recovery.
getNextToken();

}
}

static void HandleTopLevelExpression() {
// Evaluate a top-level expression into an anonymous function.
if (auto FnAST = ParseTopLevelExpr()) {
if (FnAST->codegen()) {

// JIT the module containing the anonymous expression, keeping a handle so
// we can free it later.
auto H = TheJIT->addModule(std::move(TheModule));
InitializeModuleAndPassManager();

// Search the JIT for the __anon_expr symbol.
auto ExprSymbol = TheJIT->findSymbol("__anon_expr");
assert(ExprSymbol && "Function not found");

// Get the symbol's address and cast it to the right type (takes no
// arguments, returns a double) so we can call it as a native function.
double (*FP)() = (double (*)())(intptr_t)ExprSymbol.getAddress();
fprintf(stderr, "Evaluated to %f\n", FP());

// Delete the anonymous expression module from the JIT.
TheJIT->removeModule(H);

}
} else {
// Skip token for error recovery.
getNextToken();

}
}

/// top ::= definition | external | expression | ';'
static void MainLoop() {
while (true) {
fprintf(stderr, "ready> ");
switch (CurTok) {
case tok_eof:
return;

case ';': // ignore top-level semicolons.
getNextToken();
break;

398 Chapter 2. User Guides



LLVM Documentation, Release 3.9

case tok_def:
HandleDefinition();
break;

case tok_extern:
HandleExtern();
break;

default:
HandleTopLevelExpression();
break;

}
}

}

//===----------------------------------------------------------------------===//
// "Library" functions that can be "extern'd" from user code.
//===----------------------------------------------------------------------===//

/// putchard - putchar that takes a double and returns 0.
extern "C" double putchard(double X) {
fputc((char)X, stderr);
return 0;

}

/// printd - printf that takes a double prints it as "%f\n", returning 0.
extern "C" double printd(double X) {
fprintf(stderr, "%f\n", X);
return 0;

}

//===----------------------------------------------------------------------===//
// Main driver code.
//===----------------------------------------------------------------------===//

int main() {
InitializeNativeTarget();
InitializeNativeTargetAsmPrinter();
InitializeNativeTargetAsmParser();

// Install standard binary operators.
// 1 is lowest precedence.
BinopPrecedence['<'] = 10;
BinopPrecedence['+'] = 20;
BinopPrecedence['-'] = 20;
BinopPrecedence['*'] = 40; // highest.

// Prime the first token.
fprintf(stderr, "ready> ");
getNextToken();

TheJIT = llvm::make_unique<KaleidoscopeJIT>();

InitializeModuleAndPassManager();

// Run the main "interpreter loop" now.
MainLoop();

return 0;
}
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Next: Extending the language: control flow

Kaleidoscope: Extending the Language: Control Flow

• Chapter 5 Introduction

• If/Then/Else

– Lexer Extensions for If/Then/Else

– AST Extensions for If/Then/Else

– Parser Extensions for If/Then/Else

– LLVM IR for If/Then/Else

– Code Generation for If/Then/Else

• ‘for’ Loop Expression

– Lexer Extensions for the ‘for’ Loop

– AST Extensions for the ‘for’ Loop

– Parser Extensions for the ‘for’ Loop

– LLVM IR for the ‘for’ Loop

– Code Generation for the ‘for’ Loop

• Full Code Listing

Chapter 5 Introduction

Welcome to Chapter 5 of the “Implementing a language with LLVM” tutorial. Parts 1-4 described the implementation
of the simple Kaleidoscope language and included support for generating LLVM IR, followed by optimizations and
a JIT compiler. Unfortunately, as presented, Kaleidoscope is mostly useless: it has no control flow other than call
and return. This means that you can’t have conditional branches in the code, significantly limiting its power. In this
episode of “build that compiler”, we’ll extend Kaleidoscope to have an if/then/else expression plus a simple ‘for’ loop.

If/Then/Else

Extending Kaleidoscope to support if/then/else is quite straightforward. It basically requires adding support for this
“new” concept to the lexer, parser, AST, and LLVM code emitter. This example is nice, because it shows how easy it
is to “grow” a language over time, incrementally extending it as new ideas are discovered.

Before we get going on “how” we add this extension, lets talk about “what” we want. The basic idea is that we want
to be able to write this sort of thing:

def fib(x)
if x < 3 then
1

else
fib(x-1)+fib(x-2);
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In Kaleidoscope, every construct is an expression: there are no statements. As such, the if/then/else expression needs
to return a value like any other. Since we’re using a mostly functional form, we’ll have it evaluate its conditional, then
return the ‘then’ or ‘else’ value based on how the condition was resolved. This is very similar to the C ”?:” expression.

The semantics of the if/then/else expression is that it evaluates the condition to a boolean equality value: 0.0 is consid-
ered to be false and everything else is considered to be true. If the condition is true, the first subexpression is evaluated
and returned, if the condition is false, the second subexpression is evaluated and returned. Since Kaleidoscope allows
side-effects, this behavior is important to nail down.

Now that we know what we “want”, lets break this down into its constituent pieces.

Lexer Extensions for If/Then/Else

The lexer extensions are straightforward. First we add new enum values for the relevant tokens:

// control
tok_if = -6,
tok_then = -7,
tok_else = -8,

Once we have that, we recognize the new keywords in the lexer. This is pretty simple stuff:

...
if (IdentifierStr == "def")

return tok_def;
if (IdentifierStr == "extern")

return tok_extern;
if (IdentifierStr == "if")

return tok_if;
if (IdentifierStr == "then")

return tok_then;
if (IdentifierStr == "else")

return tok_else;
return tok_identifier;

AST Extensions for If/Then/Else

To represent the new expression we add a new AST node for it:

/// IfExprAST - Expression class for if/then/else.
class IfExprAST : public ExprAST {
std::unique_ptr<ExprAST> Cond, Then, Else;

public:
IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,

std::unique_ptr<ExprAST> Else)
: Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}

virtual Value *codegen();
};

The AST node just has pointers to the various subexpressions.
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Parser Extensions for If/Then/Else

Now that we have the relevant tokens coming from the lexer and we have the AST node to build, our parsing logic is
relatively straightforward. First we define a new parsing function:

/// ifexpr ::= 'if' expression 'then' expression 'else' expression
static std::unique_ptr<ExprAST> ParseIfExpr() {
getNextToken(); // eat the if.

// condition.
auto Cond = ParseExpression();
if (!Cond)
return nullptr;

if (CurTok != tok_then)
return LogError("expected then");

getNextToken(); // eat the then

auto Then = ParseExpression();
if (!Then)
return nullptr;

if (CurTok != tok_else)
return LogError("expected else");

getNextToken();

auto Else = ParseExpression();
if (!Else)
return nullptr;

return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
std::move(Else));

}

Next we hook it up as a primary expression:

static std::unique_ptr<ExprAST> ParsePrimary() {
switch (CurTok) {
default:
return LogError("unknown token when expecting an expression");

case tok_identifier:
return ParseIdentifierExpr();

case tok_number:
return ParseNumberExpr();

case '(':
return ParseParenExpr();

case tok_if:
return ParseIfExpr();

}
}

LLVM IR for If/Then/Else

Now that we have it parsing and building the AST, the final piece is adding LLVM code generation support. This is
the most interesting part of the if/then/else example, because this is where it starts to introduce new concepts. All of
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the code above has been thoroughly described in previous chapters.

To motivate the code we want to produce, lets take a look at a simple example. Consider:

extern foo();
extern bar();
def baz(x) if x then foo() else bar();

If you disable optimizations, the code you’ll (soon) get from Kaleidoscope looks like this:

declare double @foo()

declare double @bar()

define double @baz(double %x) {
entry:

%ifcond = fcmp one double %x, 0.000000e+00
br i1 %ifcond, label %then, label %else

then: ; preds = %entry
%calltmp = call double @foo()
br label %ifcont

else: ; preds = %entry
%calltmp1 = call double @bar()
br label %ifcont

ifcont: ; preds = %else, %then
%iftmp = phi double [ %calltmp, %then ], [ %calltmp1, %else ]
ret double %iftmp

}

To visualize the control flow graph, you can use a nifty feature of the LLVM ‘opt‘ tool. If you put this LLVM IR into
“t.ll” and run “llvm-as < t.ll | opt -analyze -view-cfg”, a window will pop up and you’ll see this
graph:

Another way to get this is to call “F->viewCFG()” or “F->viewCFGOnly()” (where F is a “Function*”)
either by inserting actual calls into the code and recompiling or by calling these in the debugger. LLVM has many nice
features for visualizing various graphs.

Getting back to the generated code, it is fairly simple: the entry block evaluates the conditional expression (“x” in our
case here) and compares the result to 0.0 with the “fcmp one” instruction (‘one’ is “Ordered and Not Equal”). Based
on the result of this expression, the code jumps to either the “then” or “else” blocks, which contain the expressions for
the true/false cases.

Once the then/else blocks are finished executing, they both branch back to the ‘ifcont’ block to execute the code that
happens after the if/then/else. In this case the only thing left to do is to return to the caller of the function. The question
then becomes: how does the code know which expression to return?

The answer to this question involves an important SSA operation: the Phi operation. If you’re not familiar with SSA,
the wikipedia article is a good introduction and there are various other introductions to it available on your favorite
search engine. The short version is that “execution” of the Phi operation requires “remembering” which block control
came from. The Phi operation takes on the value corresponding to the input control block. In this case, if control
comes in from the “then” block, it gets the value of “calltmp”. If control comes from the “else” block, it gets the value
of “calltmp1”.

At this point, you are probably starting to think “Oh no! This means my simple and elegant front-end will have to
start generating SSA form in order to use LLVM!”. Fortunately, this is not the case, and we strongly advise not
implementing an SSA construction algorithm in your front-end unless there is an amazingly good reason to do so.
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Fig. 2.1: Example CFG
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In practice, there are two sorts of values that float around in code written for your average imperative programming
language that might need Phi nodes:

1. Code that involves user variables: x = 1; x = x + 1;

2. Values that are implicit in the structure of your AST, such as the Phi node in this case.

In Chapter 7 of this tutorial (“mutable variables”), we’ll talk about #1 in depth. For now, just believe me that you don’t
need SSA construction to handle this case. For #2, you have the choice of using the techniques that we will describe
for #1, or you can insert Phi nodes directly, if convenient. In this case, it is really easy to generate the Phi node, so we
choose to do it directly.

Okay, enough of the motivation and overview, lets generate code!

Code Generation for If/Then/Else

In order to generate code for this, we implement the codegen method for IfExprAST:

Value *IfExprAST::codegen() {
Value *CondV = Cond->codegen();
if (!CondV)
return nullptr;

// Convert condition to a bool by comparing equal to 0.0.
CondV = Builder.CreateFCmpONE(

CondV, ConstantFP::get(LLVMContext, APFloat(0.0)), "ifcond");

This code is straightforward and similar to what we saw before. We emit the expression for the condition, then compare
that value to zero to get a truth value as a 1-bit (bool) value.

Function *TheFunction = Builder.GetInsertBlock()->getParent();

// Create blocks for the then and else cases. Insert the 'then' block at the
// end of the function.
BasicBlock *ThenBB =

BasicBlock::Create(LLVMContext, "then", TheFunction);
BasicBlock *ElseBB = BasicBlock::Create(LLVMContext, "else");
BasicBlock *MergeBB = BasicBlock::Create(LLVMContext, "ifcont");

Builder.CreateCondBr(CondV, ThenBB, ElseBB);

This code creates the basic blocks that are related to the if/then/else statement, and correspond directly to the blocks in
the example above. The first line gets the current Function object that is being built. It gets this by asking the builder
for the current BasicBlock, and asking that block for its “parent” (the function it is currently embedded into).

Once it has that, it creates three blocks. Note that it passes “TheFunction” into the constructor for the “then” block.
This causes the constructor to automatically insert the new block into the end of the specified function. The other two
blocks are created, but aren’t yet inserted into the function.

Once the blocks are created, we can emit the conditional branch that chooses between them. Note that creating new
blocks does not implicitly affect the IRBuilder, so it is still inserting into the block that the condition went into. Also
note that it is creating a branch to the “then” block and the “else” block, even though the “else” block isn’t inserted
into the function yet. This is all ok: it is the standard way that LLVM supports forward references.

// Emit then value.
Builder.SetInsertPoint(ThenBB);

Value *ThenV = Then->codegen();
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if (!ThenV)
return nullptr;

Builder.CreateBr(MergeBB);
// Codegen of 'Then' can change the current block, update ThenBB for the PHI.
ThenBB = Builder.GetInsertBlock();

After the conditional branch is inserted, we move the builder to start inserting into the “then” block. Strictly speaking,
this call moves the insertion point to be at the end of the specified block. However, since the “then” block is empty, it
also starts out by inserting at the beginning of the block. :)

Once the insertion point is set, we recursively codegen the “then” expression from the AST. To finish off the “then”
block, we create an unconditional branch to the merge block. One interesting (and very important) aspect of the LLVM
IR is that it requires all basic blocks to be “terminated” with a control flow instruction such as return or branch. This
means that all control flow, including fall throughs must be made explicit in the LLVM IR. If you violate this rule, the
verifier will emit an error.

The final line here is quite subtle, but is very important. The basic issue is that when we create the Phi node in the
merge block, we need to set up the block/value pairs that indicate how the Phi will work. Importantly, the Phi node
expects to have an entry for each predecessor of the block in the CFG. Why then, are we getting the current block
when we just set it to ThenBB 5 lines above? The problem is that the “Then” expression may actually itself change the
block that the Builder is emitting into if, for example, it contains a nested “if/then/else” expression. Because calling
codegen() recursively could arbitrarily change the notion of the current block, we are required to get an up-to-date
value for code that will set up the Phi node.

// Emit else block.
TheFunction->getBasicBlockList().push_back(ElseBB);
Builder.SetInsertPoint(ElseBB);

Value *ElseV = Else->codegen();
if (!ElseV)

return nullptr;

Builder.CreateBr(MergeBB);
// codegen of 'Else' can change the current block, update ElseBB for the PHI.
ElseBB = Builder.GetInsertBlock();

Code generation for the ‘else’ block is basically identical to codegen for the ‘then’ block. The only significant differ-
ence is the first line, which adds the ‘else’ block to the function. Recall previously that the ‘else’ block was created,
but not added to the function. Now that the ‘then’ and ‘else’ blocks are emitted, we can finish up with the merge code:

// Emit merge block.
TheFunction->getBasicBlockList().push_back(MergeBB);
Builder.SetInsertPoint(MergeBB);
PHINode *PN =
Builder.CreatePHI(Type::getDoubleTy(LLVMContext), 2, "iftmp");

PN->addIncoming(ThenV, ThenBB);
PN->addIncoming(ElseV, ElseBB);
return PN;

}

The first two lines here are now familiar: the first adds the “merge” block to the Function object (it was previously
floating, like the else block above). The second changes the insertion point so that newly created code will go into the
“merge” block. Once that is done, we need to create the PHI node and set up the block/value pairs for the PHI.

Finally, the CodeGen function returns the phi node as the value computed by the if/then/else expression. In our
example above, this returned value will feed into the code for the top-level function, which will create the return
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instruction.

Overall, we now have the ability to execute conditional code in Kaleidoscope. With this extension, Kaleidoscope is
a fairly complete language that can calculate a wide variety of numeric functions. Next up we’ll add another useful
expression that is familiar from non-functional languages...

‘for’ Loop Expression

Now that we know how to add basic control flow constructs to the language, we have the tools to add more powerful
things. Lets add something more aggressive, a ‘for’ expression:

extern putchard(char)
def printstar(n)
for i = 1, i < n, 1.0 in
putchard(42); # ascii 42 = '*'

# print 100 '*' characters
printstar(100);

This expression defines a new variable (“i” in this case) which iterates from a starting value, while the condition (“i
< n” in this case) is true, incrementing by an optional step value (“1.0” in this case). If the step value is omitted,
it defaults to 1.0. While the loop is true, it executes its body expression. Because we don’t have anything better to
return, we’ll just define the loop as always returning 0.0. In the future when we have mutable variables, it will get
more useful.

As before, lets talk about the changes that we need to Kaleidoscope to support this.

Lexer Extensions for the ‘for’ Loop

The lexer extensions are the same sort of thing as for if/then/else:

... in enum Token ...
// control
tok_if = -6, tok_then = -7, tok_else = -8,
tok_for = -9, tok_in = -10

... in gettok ...
if (IdentifierStr == "def")

return tok_def;
if (IdentifierStr == "extern")

return tok_extern;
if (IdentifierStr == "if")

return tok_if;
if (IdentifierStr == "then")

return tok_then;
if (IdentifierStr == "else")

return tok_else;
if (IdentifierStr == "for")

return tok_for;
if (IdentifierStr == "in")

return tok_in;
return tok_identifier;
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AST Extensions for the ‘for’ Loop

The AST node is just as simple. It basically boils down to capturing the variable name and the constituent expressions
in the node.

/// ForExprAST - Expression class for for/in.
class ForExprAST : public ExprAST {
std::string VarName;
std::unique_ptr<ExprAST> Start, End, Step, Body;

public:
ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start,

std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
std::unique_ptr<ExprAST> Body)

: VarName(VarName), Start(std::move(Start)), End(std::move(End)),
Step(std::move(Step)), Body(std::move(Body)) {}

virtual Value *codegen();
};

Parser Extensions for the ‘for’ Loop

The parser code is also fairly standard. The only interesting thing here is handling of the optional step value. The
parser code handles it by checking to see if the second comma is present. If not, it sets the step value to null in the
AST node:

/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
static std::unique_ptr<ExprAST> ParseForExpr() {
getNextToken(); // eat the for.

if (CurTok != tok_identifier)
return LogError("expected identifier after for");

std::string IdName = IdentifierStr;
getNextToken(); // eat identifier.

if (CurTok != '=')
return LogError("expected '=' after for");

getNextToken(); // eat '='.

auto Start = ParseExpression();
if (!Start)
return nullptr;

if (CurTok != ',')
return LogError("expected ',' after for start value");

getNextToken();

auto End = ParseExpression();
if (!End)
return nullptr;

// The step value is optional.
std::unique_ptr<ExprAST> Step;
if (CurTok == ',') {
getNextToken();
Step = ParseExpression();
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if (!Step)
return nullptr;

}

if (CurTok != tok_in)
return LogError("expected 'in' after for");

getNextToken(); // eat 'in'.

auto Body = ParseExpression();
if (!Body)
return nullptr;

return llvm::make_unique<ForExprAST>(IdName, std::move(Start),
std::move(End), std::move(Step),
std::move(Body));

}

LLVM IR for the ‘for’ Loop

Now we get to the good part: the LLVM IR we want to generate for this thing. With the simple example above, we
get this LLVM IR (note that this dump is generated with optimizations disabled for clarity):

declare double @putchard(double)

define double @printstar(double %n) {
entry:

; initial value = 1.0 (inlined into phi)
br label %loop

loop: ; preds = %loop, %entry
%i = phi double [ 1.000000e+00, %entry ], [ %nextvar, %loop ]
; body
%calltmp = call double @putchard(double 4.200000e+01)
; increment
%nextvar = fadd double %i, 1.000000e+00

; termination test
%cmptmp = fcmp ult double %i, %n
%booltmp = uitofp i1 %cmptmp to double
%loopcond = fcmp one double %booltmp, 0.000000e+00
br i1 %loopcond, label %loop, label %afterloop

afterloop: ; preds = %loop
; loop always returns 0.0
ret double 0.000000e+00

}

This loop contains all the same constructs we saw before: a phi node, several expressions, and some basic blocks. Lets
see how this fits together.

Code Generation for the ‘for’ Loop

The first part of codegen is very simple: we just output the start expression for the loop value:
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Value *ForExprAST::codegen() {
// Emit the start code first, without 'variable' in scope.
Value *StartVal = Start->codegen();
if (StartVal == 0) return 0;

With this out of the way, the next step is to set up the LLVM basic block for the start of the loop body. In the case
above, the whole loop body is one block, but remember that the body code itself could consist of multiple blocks (e.g.
if it contains an if/then/else or a for/in expression).

// Make the new basic block for the loop header, inserting after current
// block.
Function *TheFunction = Builder.GetInsertBlock()->getParent();
BasicBlock *PreheaderBB = Builder.GetInsertBlock();
BasicBlock *LoopBB =

BasicBlock::Create(LLVMContext, "loop", TheFunction);

// Insert an explicit fall through from the current block to the LoopBB.
Builder.CreateBr(LoopBB);

This code is similar to what we saw for if/then/else. Because we will need it to create the Phi node, we remember the
block that falls through into the loop. Once we have that, we create the actual block that starts the loop and create an
unconditional branch for the fall-through between the two blocks.

// Start insertion in LoopBB.
Builder.SetInsertPoint(LoopBB);

// Start the PHI node with an entry for Start.
PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(LLVMContext),

2, VarName.c_str());
Variable->addIncoming(StartVal, PreheaderBB);

Now that the “preheader” for the loop is set up, we switch to emitting code for the loop body. To begin with, we move
the insertion point and create the PHI node for the loop induction variable. Since we already know the incoming value
for the starting value, we add it to the Phi node. Note that the Phi will eventually get a second value for the backedge,
but we can’t set it up yet (because it doesn’t exist!).

// Within the loop, the variable is defined equal to the PHI node. If it
// shadows an existing variable, we have to restore it, so save it now.
Value *OldVal = NamedValues[VarName];
NamedValues[VarName] = Variable;

// Emit the body of the loop. This, like any other expr, can change the
// current BB. Note that we ignore the value computed by the body, but don't
// allow an error.
if (!Body->codegen())

return nullptr;

Now the code starts to get more interesting. Our ‘for’ loop introduces a new variable to the symbol table. This means
that our symbol table can now contain either function arguments or loop variables. To handle this, before we codegen
the body of the loop, we add the loop variable as the current value for its name. Note that it is possible that there
is a variable of the same name in the outer scope. It would be easy to make this an error (emit an error and return
null if there is already an entry for VarName) but we choose to allow shadowing of variables. In order to handle this
correctly, we remember the Value that we are potentially shadowing in OldVal (which will be null if there is no
shadowed variable).

Once the loop variable is set into the symbol table, the code recursively codegen’s the body. This allows the body to
use the loop variable: any references to it will naturally find it in the symbol table.
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// Emit the step value.
Value *StepVal = nullptr;
if (Step) {

StepVal = Step->codegen();
if (!StepVal)
return nullptr;

} else {
// If not specified, use 1.0.
StepVal = ConstantFP::get(LLVMContext, APFloat(1.0));

}

Value *NextVar = Builder.CreateFAdd(Variable, StepVal, "nextvar");

Now that the body is emitted, we compute the next value of the iteration variable by adding the step value, or 1.0 if it
isn’t present. ‘NextVar‘ will be the value of the loop variable on the next iteration of the loop.

// Compute the end condition.
Value *EndCond = End->codegen();
if (!EndCond)

return nullptr;

// Convert condition to a bool by comparing equal to 0.0.
EndCond = Builder.CreateFCmpONE(

EndCond, ConstantFP::get(LLVMContext, APFloat(0.0)), "loopcond");

Finally, we evaluate the exit value of the loop, to determine whether the loop should exit. This mirrors the condition
evaluation for the if/then/else statement.

// Create the "after loop" block and insert it.
BasicBlock *LoopEndBB = Builder.GetInsertBlock();
BasicBlock *AfterBB =

BasicBlock::Create(LLVMContext, "afterloop", TheFunction);

// Insert the conditional branch into the end of LoopEndBB.
Builder.CreateCondBr(EndCond, LoopBB, AfterBB);

// Any new code will be inserted in AfterBB.
Builder.SetInsertPoint(AfterBB);

With the code for the body of the loop complete, we just need to finish up the control flow for it. This code remembers
the end block (for the phi node), then creates the block for the loop exit (“afterloop”). Based on the value of the exit
condition, it creates a conditional branch that chooses between executing the loop again and exiting the loop. Any
future code is emitted in the “afterloop” block, so it sets the insertion position to it.

// Add a new entry to the PHI node for the backedge.
Variable->addIncoming(NextVar, LoopEndBB);

// Restore the unshadowed variable.
if (OldVal)
NamedValues[VarName] = OldVal;

else
NamedValues.erase(VarName);

// for expr always returns 0.0.
return Constant::getNullValue(Type::getDoubleTy(LLVMContext));

}

The final code handles various cleanups: now that we have the “NextVar” value, we can add the incoming value
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to the loop PHI node. After that, we remove the loop variable from the symbol table, so that it isn’t in scope
after the for loop. Finally, code generation of the for loop always returns 0.0, so that is what we return from
ForExprAST::codegen().

With this, we conclude the “adding control flow to Kaleidoscope” chapter of the tutorial. In this chapter we added two
control flow constructs, and used them to motivate a couple of aspects of the LLVM IR that are important for front-end
implementors to know. In the next chapter of our saga, we will get a bit crazier and add user-defined operators to our
poor innocent language.

Full Code Listing

Here is the complete code listing for our running example, enhanced with the if/then/else and for expressions.. To
build this example, use:

# Compile
clang++ -g toy.cpp `llvm-config --cxxflags --ldflags --system-libs --libs core mcjit
→˓native` -O3 -o toy
# Run
./toy

Here is the code:

#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVN.h"
#include "../include/KaleidoscopeJIT.h"
#include <cassert>
#include <cctype>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <map>
#include <memory>
#include <string>
#include <vector>

using namespace llvm;
using namespace llvm::orc;

//===----------------------------------------------------------------------===//
// Lexer
//===----------------------------------------------------------------------===//
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// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
// of these for known things.
enum Token {

tok_eof = -1,

// commands
tok_def = -2,
tok_extern = -3,

// primary
tok_identifier = -4,
tok_number = -5,

// control
tok_if = -6,
tok_then = -7,
tok_else = -8,
tok_for = -9,
tok_in = -10

};

static std::string IdentifierStr; // Filled in if tok_identifier
static double NumVal; // Filled in if tok_number

/// gettok - Return the next token from standard input.
static int gettok() {

static int LastChar = ' ';

// Skip any whitespace.
while (isspace(LastChar))
LastChar = getchar();

if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
IdentifierStr = LastChar;
while (isalnum((LastChar = getchar())))

IdentifierStr += LastChar;

if (IdentifierStr == "def")
return tok_def;

if (IdentifierStr == "extern")
return tok_extern;

if (IdentifierStr == "if")
return tok_if;

if (IdentifierStr == "then")
return tok_then;

if (IdentifierStr == "else")
return tok_else;

if (IdentifierStr == "for")
return tok_for;

if (IdentifierStr == "in")
return tok_in;

return tok_identifier;
}

if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
std::string NumStr;
do {

NumStr += LastChar;
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LastChar = getchar();
} while (isdigit(LastChar) || LastChar == '.');

NumVal = strtod(NumStr.c_str(), nullptr);
return tok_number;

}

if (LastChar == '#') {
// Comment until end of line.
do

LastChar = getchar();
while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');

if (LastChar != EOF)
return gettok();

}

// Check for end of file. Don't eat the EOF.
if (LastChar == EOF)
return tok_eof;

// Otherwise, just return the character as its ascii value.
int ThisChar = LastChar;
LastChar = getchar();
return ThisChar;

}

//===----------------------------------------------------------------------===//
// Abstract Syntax Tree (aka Parse Tree)
//===----------------------------------------------------------------------===//
namespace {
/// ExprAST - Base class for all expression nodes.
class ExprAST {
public:

virtual ~ExprAST() {}
virtual Value *codegen() = 0;

};

/// NumberExprAST - Expression class for numeric literals like "1.0".
class NumberExprAST : public ExprAST {
double Val;

public:
NumberExprAST(double Val) : Val(Val) {}
Value *codegen() override;

};

/// VariableExprAST - Expression class for referencing a variable, like "a".
class VariableExprAST : public ExprAST {
std::string Name;

public:
VariableExprAST(const std::string &Name) : Name(Name) {}
Value *codegen() override;

};

/// BinaryExprAST - Expression class for a binary operator.
class BinaryExprAST : public ExprAST {
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char Op;
std::unique_ptr<ExprAST> LHS, RHS;

public:
BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,

std::unique_ptr<ExprAST> RHS)
: Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}

Value *codegen() override;
};

/// CallExprAST - Expression class for function calls.
class CallExprAST : public ExprAST {
std::string Callee;
std::vector<std::unique_ptr<ExprAST>> Args;

public:
CallExprAST(const std::string &Callee,

std::vector<std::unique_ptr<ExprAST>> Args)
: Callee(Callee), Args(std::move(Args)) {}

Value *codegen() override;
};

/// IfExprAST - Expression class for if/then/else.
class IfExprAST : public ExprAST {

std::unique_ptr<ExprAST> Cond, Then, Else;

public:
IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,

std::unique_ptr<ExprAST> Else)
: Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}

Value *codegen() override;
};

/// ForExprAST - Expression class for for/in.
class ForExprAST : public ExprAST {
std::string VarName;
std::unique_ptr<ExprAST> Start, End, Step, Body;

public:
ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start,

std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
std::unique_ptr<ExprAST> Body)

: VarName(VarName), Start(std::move(Start)), End(std::move(End)),
Step(std::move(Step)), Body(std::move(Body)) {}

Value *codegen() override;
};

/// PrototypeAST - This class represents the "prototype" for a function,
/// which captures its name, and its argument names (thus implicitly the number
/// of arguments the function takes).
class PrototypeAST {
std::string Name;
std::vector<std::string> Args;

public:
PrototypeAST(const std::string &Name, std::vector<std::string> Args)

: Name(Name), Args(std::move(Args)) {}
Function *codegen();
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const std::string &getName() const { return Name; }
};

/// FunctionAST - This class represents a function definition itself.
class FunctionAST {
std::unique_ptr<PrototypeAST> Proto;
std::unique_ptr<ExprAST> Body;

public:
FunctionAST(std::unique_ptr<PrototypeAST> Proto,

std::unique_ptr<ExprAST> Body)
: Proto(std::move(Proto)), Body(std::move(Body)) {}

Function *codegen();
};
} // end anonymous namespace

//===----------------------------------------------------------------------===//
// Parser
//===----------------------------------------------------------------------===//

/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
/// token the parser is looking at. getNextToken reads another token from the
/// lexer and updates CurTok with its results.
static int CurTok;
static int getNextToken() { return CurTok = gettok(); }

/// BinopPrecedence - This holds the precedence for each binary operator that is
/// defined.
static std::map<char, int> BinopPrecedence;

/// GetTokPrecedence - Get the precedence of the pending binary operator token.
static int GetTokPrecedence() {

if (!isascii(CurTok))
return -1;

// Make sure it's a declared binop.
int TokPrec = BinopPrecedence[CurTok];
if (TokPrec <= 0)
return -1;

return TokPrec;
}

/// LogError* - These are little helper functions for error handling.
std::unique_ptr<ExprAST> LogError(const char *Str) {
fprintf(stderr, "Error: %s\n", Str);
return nullptr;

}

std::unique_ptr<PrototypeAST> LogErrorP(const char *Str) {
LogError(Str);
return nullptr;

}

static std::unique_ptr<ExprAST> ParseExpression();

/// numberexpr ::= number
static std::unique_ptr<ExprAST> ParseNumberExpr() {
auto Result = llvm::make_unique<NumberExprAST>(NumVal);

416 Chapter 2. User Guides



LLVM Documentation, Release 3.9

getNextToken(); // consume the number
return std::move(Result);

}

/// parenexpr ::= '(' expression ')'
static std::unique_ptr<ExprAST> ParseParenExpr() {
getNextToken(); // eat (.
auto V = ParseExpression();
if (!V)
return nullptr;

if (CurTok != ')')
return LogError("expected ')'");

getNextToken(); // eat ).
return V;

}

/// identifierexpr
/// ::= identifier
/// ::= identifier '(' expression* ')'
static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
std::string IdName = IdentifierStr;

getNextToken(); // eat identifier.

if (CurTok != '(') // Simple variable ref.
return llvm::make_unique<VariableExprAST>(IdName);

// Call.
getNextToken(); // eat (
std::vector<std::unique_ptr<ExprAST>> Args;
if (CurTok != ')') {
while (true) {

if (auto Arg = ParseExpression())
Args.push_back(std::move(Arg));

else
return nullptr;

if (CurTok == ')')
break;

if (CurTok != ',')
return LogError("Expected ')' or ',' in argument list");

getNextToken();
}

}

// Eat the ')'.
getNextToken();

return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
}

/// ifexpr ::= 'if' expression 'then' expression 'else' expression
static std::unique_ptr<ExprAST> ParseIfExpr() {
getNextToken(); // eat the if.

// condition.
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auto Cond = ParseExpression();
if (!Cond)
return nullptr;

if (CurTok != tok_then)
return LogError("expected then");

getNextToken(); // eat the then

auto Then = ParseExpression();
if (!Then)
return nullptr;

if (CurTok != tok_else)
return LogError("expected else");

getNextToken();

auto Else = ParseExpression();
if (!Else)
return nullptr;

return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
std::move(Else));

}

/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
static std::unique_ptr<ExprAST> ParseForExpr() {
getNextToken(); // eat the for.

if (CurTok != tok_identifier)
return LogError("expected identifier after for");

std::string IdName = IdentifierStr;
getNextToken(); // eat identifier.

if (CurTok != '=')
return LogError("expected '=' after for");

getNextToken(); // eat '='.

auto Start = ParseExpression();
if (!Start)
return nullptr;

if (CurTok != ',')
return LogError("expected ',' after for start value");

getNextToken();

auto End = ParseExpression();
if (!End)
return nullptr;

// The step value is optional.
std::unique_ptr<ExprAST> Step;
if (CurTok == ',') {
getNextToken();
Step = ParseExpression();
if (!Step)

return nullptr;
}
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if (CurTok != tok_in)
return LogError("expected 'in' after for");

getNextToken(); // eat 'in'.

auto Body = ParseExpression();
if (!Body)
return nullptr;

return llvm::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
std::move(Step), std::move(Body));

}

/// primary
/// ::= identifierexpr
/// ::= numberexpr
/// ::= parenexpr
/// ::= ifexpr
/// ::= forexpr
static std::unique_ptr<ExprAST> ParsePrimary() {
switch (CurTok) {
default:
return LogError("unknown token when expecting an expression");

case tok_identifier:
return ParseIdentifierExpr();

case tok_number:
return ParseNumberExpr();

case '(':
return ParseParenExpr();

case tok_if:
return ParseIfExpr();

case tok_for:
return ParseForExpr();

}
}

/// binoprhs
/// ::= ('+' primary)*
static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,

std::unique_ptr<ExprAST> LHS) {
// If this is a binop, find its precedence.
while (true) {
int TokPrec = GetTokPrecedence();

// If this is a binop that binds at least as tightly as the current binop,
// consume it, otherwise we are done.
if (TokPrec < ExprPrec)

return LHS;

// Okay, we know this is a binop.
int BinOp = CurTok;
getNextToken(); // eat binop

// Parse the primary expression after the binary operator.
auto RHS = ParsePrimary();
if (!RHS)

return nullptr;
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// If BinOp binds less tightly with RHS than the operator after RHS, let
// the pending operator take RHS as its LHS.
int NextPrec = GetTokPrecedence();
if (TokPrec < NextPrec) {

RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
if (!RHS)

return nullptr;
}

// Merge LHS/RHS.
LHS =

llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
}

}

/// expression
/// ::= primary binoprhs
///
static std::unique_ptr<ExprAST> ParseExpression() {
auto LHS = ParsePrimary();
if (!LHS)
return nullptr;

return ParseBinOpRHS(0, std::move(LHS));
}

/// prototype
/// ::= id '(' id* ')'
static std::unique_ptr<PrototypeAST> ParsePrototype() {
if (CurTok != tok_identifier)
return LogErrorP("Expected function name in prototype");

std::string FnName = IdentifierStr;
getNextToken();

if (CurTok != '(')
return LogErrorP("Expected '(' in prototype");

std::vector<std::string> ArgNames;
while (getNextToken() == tok_identifier)
ArgNames.push_back(IdentifierStr);

if (CurTok != ')')
return LogErrorP("Expected ')' in prototype");

// success.
getNextToken(); // eat ')'.

return llvm::make_unique<PrototypeAST>(FnName, std::move(ArgNames));
}

/// definition ::= 'def' prototype expression
static std::unique_ptr<FunctionAST> ParseDefinition() {
getNextToken(); // eat def.
auto Proto = ParsePrototype();
if (!Proto)
return nullptr;

if (auto E = ParseExpression())
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return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
return nullptr;

}

/// toplevelexpr ::= expression
static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {

if (auto E = ParseExpression()) {
// Make an anonymous proto.
auto Proto = llvm::make_unique<PrototypeAST>("__anon_expr",

std::vector<std::string>());
return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));

}
return nullptr;

}

/// external ::= 'extern' prototype
static std::unique_ptr<PrototypeAST> ParseExtern() {

getNextToken(); // eat extern.
return ParsePrototype();

}

//===----------------------------------------------------------------------===//
// Code Generation
//===----------------------------------------------------------------------===//

static LLVMContext TheContext;
static IRBuilder<> Builder(TheContext);
static std::unique_ptr<Module> TheModule;
static std::map<std::string, Value *> NamedValues;
static std::unique_ptr<legacy::FunctionPassManager> TheFPM;
static std::unique_ptr<KaleidoscopeJIT> TheJIT;
static std::map<std::string, std::unique_ptr<PrototypeAST>> FunctionProtos;

Value *LogErrorV(const char *Str) {
LogError(Str);
return nullptr;

}

Function *getFunction(std::string Name) {
// First, see if the function has already been added to the current module.
if (auto *F = TheModule->getFunction(Name))
return F;

// If not, check whether we can codegen the declaration from some existing
// prototype.
auto FI = FunctionProtos.find(Name);
if (FI != FunctionProtos.end())
return FI->second->codegen();

// If no existing prototype exists, return null.
return nullptr;

}

Value *NumberExprAST::codegen() {
return ConstantFP::get(TheContext, APFloat(Val));

}

Value *VariableExprAST::codegen() {
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// Look this variable up in the function.
Value *V = NamedValues[Name];
if (!V)
return LogErrorV("Unknown variable name");

return V;
}

Value *BinaryExprAST::codegen() {
Value *L = LHS->codegen();
Value *R = RHS->codegen();
if (!L || !R)
return nullptr;

switch (Op) {
case '+':
return Builder.CreateFAdd(L, R, "addtmp");

case '-':
return Builder.CreateFSub(L, R, "subtmp");

case '*':
return Builder.CreateFMul(L, R, "multmp");

case '<':
L = Builder.CreateFCmpULT(L, R, "cmptmp");
// Convert bool 0/1 to double 0.0 or 1.0
return Builder.CreateUIToFP(L, Type::getDoubleTy(TheContext), "booltmp");

default:
return LogErrorV("invalid binary operator");

}
}

Value *CallExprAST::codegen() {
// Look up the name in the global module table.
Function *CalleeF = getFunction(Callee);
if (!CalleeF)
return LogErrorV("Unknown function referenced");

// If argument mismatch error.
if (CalleeF->arg_size() != Args.size())
return LogErrorV("Incorrect # arguments passed");

std::vector<Value *> ArgsV;
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
ArgsV.push_back(Args[i]->codegen());
if (!ArgsV.back())

return nullptr;
}

return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
}

Value *IfExprAST::codegen() {
Value *CondV = Cond->codegen();
if (!CondV)
return nullptr;

// Convert condition to a bool by comparing equal to 0.0.
CondV = Builder.CreateFCmpONE(

CondV, ConstantFP::get(TheContext, APFloat(0.0)), "ifcond");
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Function *TheFunction = Builder.GetInsertBlock()->getParent();

// Create blocks for the then and else cases. Insert the 'then' block at the
// end of the function.
BasicBlock *ThenBB = BasicBlock::Create(TheContext, "then", TheFunction);
BasicBlock *ElseBB = BasicBlock::Create(TheContext, "else");
BasicBlock *MergeBB = BasicBlock::Create(TheContext, "ifcont");

Builder.CreateCondBr(CondV, ThenBB, ElseBB);

// Emit then value.
Builder.SetInsertPoint(ThenBB);

Value *ThenV = Then->codegen();
if (!ThenV)
return nullptr;

Builder.CreateBr(MergeBB);
// Codegen of 'Then' can change the current block, update ThenBB for the PHI.
ThenBB = Builder.GetInsertBlock();

// Emit else block.
TheFunction->getBasicBlockList().push_back(ElseBB);
Builder.SetInsertPoint(ElseBB);

Value *ElseV = Else->codegen();
if (!ElseV)
return nullptr;

Builder.CreateBr(MergeBB);
// Codegen of 'Else' can change the current block, update ElseBB for the PHI.
ElseBB = Builder.GetInsertBlock();

// Emit merge block.
TheFunction->getBasicBlockList().push_back(MergeBB);
Builder.SetInsertPoint(MergeBB);
PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(TheContext), 2, "iftmp");

PN->addIncoming(ThenV, ThenBB);
PN->addIncoming(ElseV, ElseBB);
return PN;

}

// Output for-loop as:
// ...
// start = startexpr
// goto loop
// loop:
// variable = phi [start, loopheader], [nextvariable, loopend]
// ...
// bodyexpr
// ...
// loopend:
// step = stepexpr
// nextvariable = variable + step
// endcond = endexpr
// br endcond, loop, endloop
// outloop:
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Value *ForExprAST::codegen() {
// Emit the start code first, without 'variable' in scope.
Value *StartVal = Start->codegen();
if (!StartVal)
return nullptr;

// Make the new basic block for the loop header, inserting after current
// block.
Function *TheFunction = Builder.GetInsertBlock()->getParent();
BasicBlock *PreheaderBB = Builder.GetInsertBlock();
BasicBlock *LoopBB = BasicBlock::Create(TheContext, "loop", TheFunction);

// Insert an explicit fall through from the current block to the LoopBB.
Builder.CreateBr(LoopBB);

// Start insertion in LoopBB.
Builder.SetInsertPoint(LoopBB);

// Start the PHI node with an entry for Start.
PHINode *Variable =

Builder.CreatePHI(Type::getDoubleTy(TheContext), 2, VarName);
Variable->addIncoming(StartVal, PreheaderBB);

// Within the loop, the variable is defined equal to the PHI node. If it
// shadows an existing variable, we have to restore it, so save it now.
Value *OldVal = NamedValues[VarName];
NamedValues[VarName] = Variable;

// Emit the body of the loop. This, like any other expr, can change the
// current BB. Note that we ignore the value computed by the body, but don't
// allow an error.
if (!Body->codegen())
return nullptr;

// Emit the step value.
Value *StepVal = nullptr;
if (Step) {
StepVal = Step->codegen();
if (!StepVal)

return nullptr;
} else {
// If not specified, use 1.0.
StepVal = ConstantFP::get(TheContext, APFloat(1.0));

}

Value *NextVar = Builder.CreateFAdd(Variable, StepVal, "nextvar");

// Compute the end condition.
Value *EndCond = End->codegen();
if (!EndCond)
return nullptr;

// Convert condition to a bool by comparing equal to 0.0.
EndCond = Builder.CreateFCmpONE(

EndCond, ConstantFP::get(TheContext, APFloat(0.0)), "loopcond");

// Create the "after loop" block and insert it.
BasicBlock *LoopEndBB = Builder.GetInsertBlock();
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BasicBlock *AfterBB =
BasicBlock::Create(TheContext, "afterloop", TheFunction);

// Insert the conditional branch into the end of LoopEndBB.
Builder.CreateCondBr(EndCond, LoopBB, AfterBB);

// Any new code will be inserted in AfterBB.
Builder.SetInsertPoint(AfterBB);

// Add a new entry to the PHI node for the backedge.
Variable->addIncoming(NextVar, LoopEndBB);

// Restore the unshadowed variable.
if (OldVal)
NamedValues[VarName] = OldVal;

else
NamedValues.erase(VarName);

// for expr always returns 0.0.
return Constant::getNullValue(Type::getDoubleTy(TheContext));

}

Function *PrototypeAST::codegen() {
// Make the function type: double(double,double) etc.
std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(TheContext));
FunctionType *FT =

FunctionType::get(Type::getDoubleTy(TheContext), Doubles, false);

Function *F =
Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get());

// Set names for all arguments.
unsigned Idx = 0;
for (auto &Arg : F->args())
Arg.setName(Args[Idx++]);

return F;
}

Function *FunctionAST::codegen() {
// Transfer ownership of the prototype to the FunctionProtos map, but keep a
// reference to it for use below.
auto &P = *Proto;
FunctionProtos[Proto->getName()] = std::move(Proto);
Function *TheFunction = getFunction(P.getName());
if (!TheFunction)
return nullptr;

// Create a new basic block to start insertion into.
BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction);
Builder.SetInsertPoint(BB);

// Record the function arguments in the NamedValues map.
NamedValues.clear();
for (auto &Arg : TheFunction->args())
NamedValues[Arg.getName()] = &Arg;

if (Value *RetVal = Body->codegen()) {
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// Finish off the function.
Builder.CreateRet(RetVal);

// Validate the generated code, checking for consistency.
verifyFunction(*TheFunction);

// Run the optimizer on the function.
TheFPM->run(*TheFunction);

return TheFunction;
}

// Error reading body, remove function.
TheFunction->eraseFromParent();
return nullptr;

}

//===----------------------------------------------------------------------===//
// Top-Level parsing and JIT Driver
//===----------------------------------------------------------------------===//

static void InitializeModuleAndPassManager() {
// Open a new module.
TheModule = llvm::make_unique<Module>("my cool jit", TheContext);
TheModule->setDataLayout(TheJIT->getTargetMachine().createDataLayout());

// Create a new pass manager attached to it.
TheFPM = llvm::make_unique<legacy::FunctionPassManager>(TheModule.get());

// Do simple "peephole" optimizations and bit-twiddling optzns.
TheFPM->add(createInstructionCombiningPass());
// Reassociate expressions.
TheFPM->add(createReassociatePass());
// Eliminate Common SubExpressions.
TheFPM->add(createGVNPass());
// Simplify the control flow graph (deleting unreachable blocks, etc).
TheFPM->add(createCFGSimplificationPass());

TheFPM->doInitialization();
}

static void HandleDefinition() {
if (auto FnAST = ParseDefinition()) {
if (auto *FnIR = FnAST->codegen()) {
fprintf(stderr, "Read function definition:");
FnIR->dump();
TheJIT->addModule(std::move(TheModule));
InitializeModuleAndPassManager();

}
} else {
// Skip token for error recovery.
getNextToken();

}
}

static void HandleExtern() {
if (auto ProtoAST = ParseExtern()) {
if (auto *FnIR = ProtoAST->codegen()) {
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fprintf(stderr, "Read extern: ");
FnIR->dump();
FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST);

}
} else {
// Skip token for error recovery.
getNextToken();

}
}

static void HandleTopLevelExpression() {
// Evaluate a top-level expression into an anonymous function.
if (auto FnAST = ParseTopLevelExpr()) {
if (FnAST->codegen()) {

// JIT the module containing the anonymous expression, keeping a handle so
// we can free it later.
auto H = TheJIT->addModule(std::move(TheModule));
InitializeModuleAndPassManager();

// Search the JIT for the __anon_expr symbol.
auto ExprSymbol = TheJIT->findSymbol("__anon_expr");
assert(ExprSymbol && "Function not found");

// Get the symbol's address and cast it to the right type (takes no
// arguments, returns a double) so we can call it as a native function.
double (*FP)() = (double (*)())(intptr_t)ExprSymbol.getAddress();
fprintf(stderr, "Evaluated to %f\n", FP());

// Delete the anonymous expression module from the JIT.
TheJIT->removeModule(H);

}
} else {
// Skip token for error recovery.
getNextToken();

}
}

/// top ::= definition | external | expression | ';'
static void MainLoop() {
while (true) {
fprintf(stderr, "ready> ");
switch (CurTok) {
case tok_eof:
return;

case ';': // ignore top-level semicolons.
getNextToken();
break;

case tok_def:
HandleDefinition();
break;

case tok_extern:
HandleExtern();
break;

default:
HandleTopLevelExpression();
break;

}
}
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}

//===----------------------------------------------------------------------===//
// "Library" functions that can be "extern'd" from user code.
//===----------------------------------------------------------------------===//

/// putchard - putchar that takes a double and returns 0.
extern "C" double putchard(double X) {
fputc((char)X, stderr);
return 0;

}

/// printd - printf that takes a double prints it as "%f\n", returning 0.
extern "C" double printd(double X) {
fprintf(stderr, "%f\n", X);
return 0;

}

//===----------------------------------------------------------------------===//
// Main driver code.
//===----------------------------------------------------------------------===//

int main() {
InitializeNativeTarget();
InitializeNativeTargetAsmPrinter();
InitializeNativeTargetAsmParser();

// Install standard binary operators.
// 1 is lowest precedence.
BinopPrecedence['<'] = 10;
BinopPrecedence['+'] = 20;
BinopPrecedence['-'] = 20;
BinopPrecedence['*'] = 40; // highest.

// Prime the first token.
fprintf(stderr, "ready> ");
getNextToken();

TheJIT = llvm::make_unique<KaleidoscopeJIT>();

InitializeModuleAndPassManager();

// Run the main "interpreter loop" now.
MainLoop();

return 0;
}

Next: Extending the language: user-defined operators

Kaleidoscope: Extending the Language: User-defined Operators

• Chapter 6 Introduction

• User-defined Operators: the Idea
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• User-defined Binary Operators

• User-defined Unary Operators

• Kicking the Tires

• Full Code Listing

Chapter 6 Introduction

Welcome to Chapter 6 of the “Implementing a language with LLVM” tutorial. At this point in our tutorial, we now
have a fully functional language that is fairly minimal, but also useful. There is still one big problem with it, however.
Our language doesn’t have many useful operators (like division, logical negation, or even any comparisons besides
less-than).

This chapter of the tutorial takes a wild digression into adding user-defined operators to the simple and beautiful
Kaleidoscope language. This digression now gives us a simple and ugly language in some ways, but also a powerful
one at the same time. One of the great things about creating your own language is that you get to decide what is good
or bad. In this tutorial we’ll assume that it is okay to use this as a way to show some interesting parsing techniques.

At the end of this tutorial, we’ll run through an example Kaleidoscope application that renders the Mandelbrot set.
This gives an example of what you can build with Kaleidoscope and its feature set.

User-defined Operators: the Idea

The “operator overloading” that we will add to Kaleidoscope is more general than languages like C++. In C++, you are
only allowed to redefine existing operators: you can’t programatically change the grammar, introduce new operators,
change precedence levels, etc. In this chapter, we will add this capability to Kaleidoscope, which will let the user
round out the set of operators that are supported.

The point of going into user-defined operators in a tutorial like this is to show the power and flexibility of using a hand-
written parser. Thus far, the parser we have been implementing uses recursive descent for most parts of the grammar
and operator precedence parsing for the expressions. See Chapter 2 for details. Without using operator precedence
parsing, it would be very difficult to allow the programmer to introduce new operators into the grammar: the grammar
is dynamically extensible as the JIT runs.

The two specific features we’ll add are programmable unary operators (right now, Kaleidoscope has no unary operators
at all) as well as binary operators. An example of this is:

# Logical unary not.
def unary!(v)

if v then
0

else
1;

# Define > with the same precedence as <.
def binary> 10 (LHS RHS)

RHS < LHS;

# Binary "logical or", (note that it does not "short circuit")
def binary| 5 (LHS RHS)

if LHS then
1

else if RHS then
1

2.17. LLVM Tutorial: Table of Contents 429



LLVM Documentation, Release 3.9

else
0;

# Define = with slightly lower precedence than relationals.
def binary= 9 (LHS RHS)

!(LHS < RHS | LHS > RHS);

Many languages aspire to being able to implement their standard runtime library in the language itself. In Kaleido-
scope, we can implement significant parts of the language in the library!

We will break down implementation of these features into two parts: implementing support for user-defined binary
operators and adding unary operators.

User-defined Binary Operators

Adding support for user-defined binary operators is pretty simple with our current framework. We’ll first add support
for the unary/binary keywords:

enum Token {
...
// operators
tok_binary = -11,
tok_unary = -12

};
...
static int gettok() {
...

if (IdentifierStr == "for")
return tok_for;

if (IdentifierStr == "in")
return tok_in;

if (IdentifierStr == "binary")
return tok_binary;

if (IdentifierStr == "unary")
return tok_unary;

return tok_identifier;

This just adds lexer support for the unary and binary keywords, like we did in previous chapters. One nice thing about
our current AST, is that we represent binary operators with full generalisation by using their ASCII code as the opcode.
For our extended operators, we’ll use this same representation, so we don’t need any new AST or parser support.

On the other hand, we have to be able to represent the definitions of these new operators, in the “def binary| 5” part
of the function definition. In our grammar so far, the “name” for the function definition is parsed as the “prototype”
production and into the PrototypeAST AST node. To represent our new user-defined operators as prototypes, we
have to extend the PrototypeAST AST node like this:

/// PrototypeAST - This class represents the "prototype" for a function,
/// which captures its argument names as well as if it is an operator.
class PrototypeAST {

std::string Name;
std::vector<std::string> Args;
bool IsOperator;
unsigned Precedence; // Precedence if a binary op.

public:
PrototypeAST(const std::string &name, std::vector<std::string> Args,
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bool IsOperator = false, unsigned Prec = 0)
: Name(name), Args(std::move(Args)), IsOperator(IsOperator),
Precedence(Prec) {}

bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
bool isBinaryOp() const { return IsOperator && Args.size() == 2; }

char getOperatorName() const {
assert(isUnaryOp() || isBinaryOp());
return Name[Name.size()-1];

}

unsigned getBinaryPrecedence() const { return Precedence; }

Function *codegen();
};

Basically, in addition to knowing a name for the prototype, we now keep track of whether it was an operator, and if it
was, what precedence level the operator is at. The precedence is only used for binary operators (as you’ll see below, it
just doesn’t apply for unary operators). Now that we have a way to represent the prototype for a user-defined operator,
we need to parse it:

/// prototype
/// ::= id '(' id* ')'
/// ::= binary LETTER number? (id, id)
static std::unique_ptr<PrototypeAST> ParsePrototype() {
std::string FnName;

unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
unsigned BinaryPrecedence = 30;

switch (CurTok) {
default:
return LogErrorP("Expected function name in prototype");

case tok_identifier:
FnName = IdentifierStr;
Kind = 0;
getNextToken();
break;

case tok_binary:
getNextToken();
if (!isascii(CurTok))

return LogErrorP("Expected binary operator");
FnName = "binary";
FnName += (char)CurTok;
Kind = 2;
getNextToken();

// Read the precedence if present.
if (CurTok == tok_number) {

if (NumVal < 1 || NumVal > 100)
return LogErrorP("Invalid precedecnce: must be 1..100");

BinaryPrecedence = (unsigned)NumVal;
getNextToken();

}
break;

}
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if (CurTok != '(')
return LogErrorP("Expected '(' in prototype");

std::vector<std::string> ArgNames;
while (getNextToken() == tok_identifier)
ArgNames.push_back(IdentifierStr);

if (CurTok != ')')
return LogErrorP("Expected ')' in prototype");

// success.
getNextToken(); // eat ')'.

// Verify right number of names for operator.
if (Kind && ArgNames.size() != Kind)
return LogErrorP("Invalid number of operands for operator");

return llvm::make_unique<PrototypeAST>(FnName, std::move(ArgNames), Kind != 0,
BinaryPrecedence);

}

This is all fairly straightforward parsing code, and we have already seen a lot of similar code in the past. One inter-
esting part about the code above is the couple lines that set up FnName for binary operators. This builds names like
“binary@” for a newly defined “@” operator. This then takes advantage of the fact that symbol names in the LLVM
symbol table are allowed to have any character in them, including embedded nul characters.

The next interesting thing to add, is codegen support for these binary operators. Given our current structure, this is a
simple addition of a default case for our existing binary operator node:

Value *BinaryExprAST::codegen() {
Value *L = LHS->codegen();
Value *R = RHS->codegen();
if (!L || !R)
return nullptr;

switch (Op) {
case '+':
return Builder.CreateFAdd(L, R, "addtmp");

case '-':
return Builder.CreateFSub(L, R, "subtmp");

case '*':
return Builder.CreateFMul(L, R, "multmp");

case '<':
L = Builder.CreateFCmpULT(L, R, "cmptmp");
// Convert bool 0/1 to double 0.0 or 1.0
return Builder.CreateUIToFP(L, Type::getDoubleTy(LLVMContext),

"booltmp");
default:
break;

}

// If it wasn't a builtin binary operator, it must be a user defined one. Emit
// a call to it.
Function *F = TheModule->getFunction(std::string("binary") + Op);
assert(F && "binary operator not found!");

Value *Ops[2] = { L, R };
return Builder.CreateCall(F, Ops, "binop");

}
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As you can see above, the new code is actually really simple. It just does a lookup for the appropriate operator in
the symbol table and generates a function call to it. Since user-defined operators are just built as normal functions
(because the “prototype” boils down to a function with the right name) everything falls into place.

The final piece of code we are missing, is a bit of top-level magic:

Function *FunctionAST::codegen() {
NamedValues.clear();

Function *TheFunction = Proto->codegen();
if (!TheFunction)
return nullptr;

// If this is an operator, install it.
if (Proto->isBinaryOp())
BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();

// Create a new basic block to start insertion into.
BasicBlock *BB = BasicBlock::Create(LLVMContext, "entry", TheFunction);
Builder.SetInsertPoint(BB);

if (Value *RetVal = Body->codegen()) {
...

Basically, before codegening a function, if it is a user-defined operator, we register it in the precedence table. This
allows the binary operator parsing logic we already have in place to handle it. Since we are working on a fully-general
operator precedence parser, this is all we need to do to “extend the grammar”.

Now we have useful user-defined binary operators. This builds a lot on the previous framework we built for other
operators. Adding unary operators is a bit more challenging, because we don’t have any framework for it yet - lets see
what it takes.

User-defined Unary Operators

Since we don’t currently support unary operators in the Kaleidoscope language, we’ll need to add everything to support
them. Above, we added simple support for the ‘unary’ keyword to the lexer. In addition to that, we need an AST node:

/// UnaryExprAST - Expression class for a unary operator.
class UnaryExprAST : public ExprAST {

char Opcode;
std::unique_ptr<ExprAST> Operand;

public:
UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
: Opcode(Opcode), Operand(std::move(Operand)) {}

virtual Value *codegen();
};

This AST node is very simple and obvious by now. It directly mirrors the binary operator AST node, except that it
only has one child. With this, we need to add the parsing logic. Parsing a unary operator is pretty simple: we’ll add a
new function to do it:

/// unary
/// ::= primary
/// ::= '!' unary
static std::unique_ptr<ExprAST> ParseUnary() {
// If the current token is not an operator, it must be a primary expr.
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if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
return ParsePrimary();

// If this is a unary operator, read it.
int Opc = CurTok;
getNextToken();
if (auto Operand = ParseUnary())
return llvm::unique_ptr<UnaryExprAST>(Opc, std::move(Operand));

return nullptr;
}

The grammar we add is pretty straightforward here. If we see a unary operator when parsing a primary operator, we
eat the operator as a prefix and parse the remaining piece as another unary operator. This allows us to handle multiple
unary operators (e.g. ”!!x”). Note that unary operators can’t have ambiguous parses like binary operators can, so there
is no need for precedence information.

The problem with this function, is that we need to call ParseUnary from somewhere. To do this, we change previous
callers of ParsePrimary to call ParseUnary instead:

/// binoprhs
/// ::= ('+' unary)*
static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,

std::unique_ptr<ExprAST> LHS) {
...
// Parse the unary expression after the binary operator.
auto RHS = ParseUnary();
if (!RHS)

return nullptr;
...

}
/// expression
/// ::= unary binoprhs
///
static std::unique_ptr<ExprAST> ParseExpression() {

auto LHS = ParseUnary();
if (!LHS)
return nullptr;

return ParseBinOpRHS(0, std::move(LHS));
}

With these two simple changes, we are now able to parse unary operators and build the AST for them. Next up, we
need to add parser support for prototypes, to parse the unary operator prototype. We extend the binary operator code
above with:

/// prototype
/// ::= id '(' id* ')'
/// ::= binary LETTER number? (id, id)
/// ::= unary LETTER (id)
static std::unique_ptr<PrototypeAST> ParsePrototype() {
std::string FnName;

unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
unsigned BinaryPrecedence = 30;

switch (CurTok) {
default:
return LogErrorP("Expected function name in prototype");
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case tok_identifier:
FnName = IdentifierStr;
Kind = 0;
getNextToken();
break;

case tok_unary:
getNextToken();
if (!isascii(CurTok))

return LogErrorP("Expected unary operator");
FnName = "unary";
FnName += (char)CurTok;
Kind = 1;
getNextToken();
break;

case tok_binary:
...

As with binary operators, we name unary operators with a name that includes the operator character. This assists us at
code generation time. Speaking of, the final piece we need to add is codegen support for unary operators. It looks like
this:

Value *UnaryExprAST::codegen() {
Value *OperandV = Operand->codegen();
if (!OperandV)
return nullptr;

Function *F = TheModule->getFunction(std::string("unary")+Opcode);
if (!F)
return LogErrorV("Unknown unary operator");

return Builder.CreateCall(F, OperandV, "unop");
}

This code is similar to, but simpler than, the code for binary operators. It is simpler primarily because it doesn’t need
to handle any predefined operators.

Kicking the Tires

It is somewhat hard to believe, but with a few simple extensions we’ve covered in the last chapters, we have grown a
real-ish language. With this, we can do a lot of interesting things, including I/O, math, and a bunch of other things. For
example, we can now add a nice sequencing operator (printd is defined to print out the specified value and a newline):

ready> extern printd(x);
Read extern:
declare double @printd(double)

ready> def binary : 1 (x y) 0; # Low-precedence operator that ignores operands.
..
ready> printd(123) : printd(456) : printd(789);
123.000000
456.000000
789.000000
Evaluated to 0.000000

We can also define a bunch of other “primitive” operations, such as:
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# Logical unary not.
def unary!(v)

if v then
0

else
1;

# Unary negate.
def unary-(v)

0-v;

# Define > with the same precedence as <.
def binary> 10 (LHS RHS)

RHS < LHS;

# Binary logical or, which does not short circuit.
def binary| 5 (LHS RHS)

if LHS then
1

else if RHS then
1

else
0;

# Binary logical and, which does not short circuit.
def binary& 6 (LHS RHS)

if !LHS then
0

else
!!RHS;

# Define = with slightly lower precedence than relationals.
def binary = 9 (LHS RHS)

!(LHS < RHS | LHS > RHS);

# Define ':' for sequencing: as a low-precedence operator that ignores operands
# and just returns the RHS.
def binary : 1 (x y) y;

Given the previous if/then/else support, we can also define interesting functions for I/O. For example, the following
prints out a character whose “density” reflects the value passed in: the lower the value, the denser the character:

ready>

extern putchard(char)
def printdensity(d)
if d > 8 then
putchard(32) # ' '

else if d > 4 then
putchard(46) # '.'

else if d > 2 then
putchard(43) # '+'

else
putchard(42); # '*'

...
ready> printdensity(1): printdensity(2): printdensity(3):

printdensity(4): printdensity(5): printdensity(9):
putchard(10);
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**++.
Evaluated to 0.000000

Based on these simple primitive operations, we can start to define more interesting things. For example, here’s a little
function that solves for the number of iterations it takes a function in the complex plane to converge:

# Determine whether the specific location diverges.
# Solve for z = z^2 + c in the complex plane.
def mandelconverger(real imag iters creal cimag)
if iters > 255 | (real*real + imag*imag > 4) then
iters

else
mandelconverger(real*real - imag*imag + creal,

2*real*imag + cimag,
iters+1, creal, cimag);

# Return the number of iterations required for the iteration to escape
def mandelconverge(real imag)
mandelconverger(real, imag, 0, real, imag);

This “z = z2 + c” function is a beautiful little creature that is the basis for computation of the Mandelbrot Set. Our
mandelconverge function returns the number of iterations that it takes for a complex orbit to escape, saturating to
255. This is not a very useful function by itself, but if you plot its value over a two-dimensional plane, you can see the
Mandelbrot set. Given that we are limited to using putchard here, our amazing graphical output is limited, but we can
whip together something using the density plotter above:

# Compute and plot the mandelbrot set with the specified 2 dimensional range
# info.
def mandelhelp(xmin xmax xstep ymin ymax ystep)
for y = ymin, y < ymax, ystep in (
(for x = xmin, x < xmax, xstep in

printdensity(mandelconverge(x,y)))
: putchard(10)

)

# mandel - This is a convenient helper function for plotting the mandelbrot set
# from the specified position with the specified Magnification.
def mandel(realstart imagstart realmag imagmag)
mandelhelp(realstart, realstart+realmag*78, realmag,

imagstart, imagstart+imagmag*40, imagmag);

Given this, we can try plotting out the mandelbrot set! Lets try it out:

ready> mandel(-2.3, -1.3, 0.05, 0.07);

*******************************+++++++++++*************************************
*************************+++++++++++++++++++++++*******************************
**********************+++++++++++++++++++++++++++++****************************
*******************+++++++++++++++++++++.. ...++++++++*************************
*****************++++++++++++++++++++++.... ...+++++++++***********************
***************+++++++++++++++++++++++..... ...+++++++++*********************
**************+++++++++++++++++++++++.... ....+++++++++********************
*************++++++++++++++++++++++...... .....++++++++*******************
************+++++++++++++++++++++....... .......+++++++******************
***********+++++++++++++++++++.... ... .+++++++*****************
**********+++++++++++++++++....... .+++++++****************
*********++++++++++++++........... ...+++++++***************
********++++++++++++............ ...++++++++**************
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********++++++++++... .......... .++++++++**************
*******+++++++++..... .+++++++++*************
*******++++++++...... ..+++++++++*************
*******++++++....... ..+++++++++*************
*******+++++...... ..+++++++++*************
*******.... .... ...+++++++++*************
*******.... . ...+++++++++*************
*******+++++...... ...+++++++++*************
*******++++++....... ..+++++++++*************
*******++++++++...... .+++++++++*************
*******+++++++++..... ..+++++++++*************
********++++++++++... .......... .++++++++**************
********++++++++++++............ ...++++++++**************
*********++++++++++++++.......... ...+++++++***************
**********++++++++++++++++........ .+++++++****************
**********++++++++++++++++++++.... ... ..+++++++****************
***********++++++++++++++++++++++....... .......++++++++*****************
************+++++++++++++++++++++++...... ......++++++++******************
**************+++++++++++++++++++++++.... ....++++++++********************
***************+++++++++++++++++++++++..... ...+++++++++*********************
*****************++++++++++++++++++++++.... ...++++++++***********************
*******************+++++++++++++++++++++......++++++++*************************
*********************++++++++++++++++++++++.++++++++***************************
*************************+++++++++++++++++++++++*******************************
******************************+++++++++++++************************************
*******************************************************************************
*******************************************************************************
*******************************************************************************
Evaluated to 0.000000
ready> mandel(-2, -1, 0.02, 0.04);

**************************+++++++++++++++++++++++++++++++++++++++++++++++++++++

***********************++++++++++++++++++++++++++++++++++++++++++++++++++++++++

*********************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++.

*******************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++...

*****************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++.....

***************++++++++++++++++++++++++++++++++++++++++++++++++++++++++........

**************++++++++++++++++++++++++++++++++++++++++++++++++++++++...........

************+++++++++++++++++++++++++++++++++++++++++++++++++++++..............

***********++++++++++++++++++++++++++++++++++++++++++++++++++........ .

**********++++++++++++++++++++++++++++++++++++++++++++++.............

********+++++++++++++++++++++++++++++++++++++++++++..................

*******+++++++++++++++++++++++++++++++++++++++.......................

******+++++++++++++++++++++++++++++++++++...........................

*****++++++++++++++++++++++++++++++++............................

*****++++++++++++++++++++++++++++...............................

****++++++++++++++++++++++++++...... .........................

***++++++++++++++++++++++++......... ...... ...........

***++++++++++++++++++++++............

**+++++++++++++++++++++..............

**+++++++++++++++++++................

*++++++++++++++++++.................

*++++++++++++++++............ ...

*++++++++++++++..............

*+++....++++................

*.......... ...........

*
*.......... ...........

*+++....++++................
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*++++++++++++++..............

*++++++++++++++++............ ...

*++++++++++++++++++.................

**+++++++++++++++++++................

**+++++++++++++++++++++..............

***++++++++++++++++++++++............

***++++++++++++++++++++++++......... ...... ...........

****++++++++++++++++++++++++++...... .........................

*****++++++++++++++++++++++++++++...............................

*****++++++++++++++++++++++++++++++++............................

******+++++++++++++++++++++++++++++++++++...........................

*******+++++++++++++++++++++++++++++++++++++++.......................

********+++++++++++++++++++++++++++++++++++++++++++..................
Evaluated to 0.000000
ready> mandel(-0.9, -1.4, 0.02, 0.03);

*******************************************************************************
*******************************************************************************
*******************************************************************************
**********+++++++++++++++++++++************************************************
*+++++++++++++++++++++++++++++++++++++++***************************************
+++++++++++++++++++++++++++++++++++++++++++++**********************************
++++++++++++++++++++++++++++++++++++++++++++++++++*****************************
++++++++++++++++++++++++++++++++++++++++++++++++++++++*************************
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++**********************
+++++++++++++++++++++++++++++++++.........++++++++++++++++++*******************
+++++++++++++++++++++++++++++++.... ......+++++++++++++++++++****************
+++++++++++++++++++++++++++++....... ........+++++++++++++++++++**************
++++++++++++++++++++++++++++........ ........++++++++++++++++++++************
+++++++++++++++++++++++++++......... .. ...+++++++++++++++++++++**********
++++++++++++++++++++++++++........... ....++++++++++++++++++++++********
++++++++++++++++++++++++............. .......++++++++++++++++++++++******
+++++++++++++++++++++++............. ........+++++++++++++++++++++++****
++++++++++++++++++++++........... ..........++++++++++++++++++++++***
++++++++++++++++++++........... .........++++++++++++++++++++++*
++++++++++++++++++............ ...........++++++++++++++++++++
++++++++++++++++............... .............++++++++++++++++++
++++++++++++++................. ...............++++++++++++++++
++++++++++++.................. .................++++++++++++++
+++++++++.................. .................+++++++++++++
++++++........ . ......... ..++++++++++++
++............ ...... ....++++++++++
.............. ...++++++++++
.............. ....+++++++++
.............. .....++++++++
............. ......++++++++
........... .......++++++++
......... ........+++++++
......... ........+++++++
......... ....+++++++
........ ...+++++++
....... ...+++++++

....+++++++
.....+++++++
....+++++++
....+++++++
....+++++++

Evaluated to 0.000000
ready> ^D
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At this point, you may be starting to realize that Kaleidoscope is a real and powerful language. It may not be self-
similar :), but it can be used to plot things that are!

With this, we conclude the “adding user-defined operators” chapter of the tutorial. We have successfully augmented
our language, adding the ability to extend the language in the library, and we have shown how this can be used to
build a simple but interesting end-user application in Kaleidoscope. At this point, Kaleidoscope can build a variety
of applications that are functional and can call functions with side-effects, but it can’t actually define and mutate a
variable itself.

Strikingly, variable mutation is an important feature of some languages, and it is not at all obvious how to add support
for mutable variables without having to add an “SSA construction” phase to your front-end. In the next chapter, we
will describe how you can add variable mutation without building SSA in your front-end.

Full Code Listing

Here is the complete code listing for our running example, enhanced with the if/then/else and for expressions.. To
build this example, use:

# Compile
clang++ -g toy.cpp `llvm-config --cxxflags --ldflags --system-libs --libs core mcjit
→˓native` -O3 -o toy
# Run
./toy

On some platforms, you will need to specify -rdynamic or -Wl,–export-dynamic when linking. This ensures that
symbols defined in the main executable are exported to the dynamic linker and so are available for symbol resolution
at run time. This is not needed if you compile your support code into a shared library, although doing that will cause
problems on Windows.

Here is the code:

#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVN.h"
#include "../include/KaleidoscopeJIT.h"
#include <cassert>
#include <cctype>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <map>
#include <memory>
#include <string>

440 Chapter 2. User Guides



LLVM Documentation, Release 3.9

#include <vector>

using namespace llvm;
using namespace llvm::orc;

//===----------------------------------------------------------------------===//
// Lexer
//===----------------------------------------------------------------------===//

// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
// of these for known things.
enum Token {

tok_eof = -1,

// commands
tok_def = -2,
tok_extern = -3,

// primary
tok_identifier = -4,
tok_number = -5,

// control
tok_if = -6,
tok_then = -7,
tok_else = -8,
tok_for = -9,
tok_in = -10,

// operators
tok_binary = -11,
tok_unary = -12

};

static std::string IdentifierStr; // Filled in if tok_identifier
static double NumVal; // Filled in if tok_number

/// gettok - Return the next token from standard input.
static int gettok() {

static int LastChar = ' ';

// Skip any whitespace.
while (isspace(LastChar))
LastChar = getchar();

if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
IdentifierStr = LastChar;
while (isalnum((LastChar = getchar())))

IdentifierStr += LastChar;

if (IdentifierStr == "def")
return tok_def;

if (IdentifierStr == "extern")
return tok_extern;

if (IdentifierStr == "if")
return tok_if;

if (IdentifierStr == "then")
return tok_then;
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if (IdentifierStr == "else")
return tok_else;

if (IdentifierStr == "for")
return tok_for;

if (IdentifierStr == "in")
return tok_in;

if (IdentifierStr == "binary")
return tok_binary;

if (IdentifierStr == "unary")
return tok_unary;

return tok_identifier;
}

if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
std::string NumStr;
do {

NumStr += LastChar;
LastChar = getchar();

} while (isdigit(LastChar) || LastChar == '.');

NumVal = strtod(NumStr.c_str(), nullptr);
return tok_number;

}

if (LastChar == '#') {
// Comment until end of line.
do

LastChar = getchar();
while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');

if (LastChar != EOF)
return gettok();

}

// Check for end of file. Don't eat the EOF.
if (LastChar == EOF)
return tok_eof;

// Otherwise, just return the character as its ascii value.
int ThisChar = LastChar;
LastChar = getchar();
return ThisChar;

}

//===----------------------------------------------------------------------===//
// Abstract Syntax Tree (aka Parse Tree)
//===----------------------------------------------------------------------===//
namespace {
/// ExprAST - Base class for all expression nodes.
class ExprAST {
public:

virtual ~ExprAST() {}
virtual Value *codegen() = 0;

};

/// NumberExprAST - Expression class for numeric literals like "1.0".
class NumberExprAST : public ExprAST {
double Val;
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public:
NumberExprAST(double Val) : Val(Val) {}
Value *codegen() override;

};

/// VariableExprAST - Expression class for referencing a variable, like "a".
class VariableExprAST : public ExprAST {
std::string Name;

public:
VariableExprAST(const std::string &Name) : Name(Name) {}
Value *codegen() override;

};

/// UnaryExprAST - Expression class for a unary operator.
class UnaryExprAST : public ExprAST {
char Opcode;
std::unique_ptr<ExprAST> Operand;

public:
UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)

: Opcode(Opcode), Operand(std::move(Operand)) {}
Value *codegen() override;

};

/// BinaryExprAST - Expression class for a binary operator.
class BinaryExprAST : public ExprAST {
char Op;
std::unique_ptr<ExprAST> LHS, RHS;

public:
BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,

std::unique_ptr<ExprAST> RHS)
: Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}

Value *codegen() override;
};

/// CallExprAST - Expression class for function calls.
class CallExprAST : public ExprAST {
std::string Callee;
std::vector<std::unique_ptr<ExprAST>> Args;

public:
CallExprAST(const std::string &Callee,

std::vector<std::unique_ptr<ExprAST>> Args)
: Callee(Callee), Args(std::move(Args)) {}

Value *codegen() override;
};

/// IfExprAST - Expression class for if/then/else.
class IfExprAST : public ExprAST {
std::unique_ptr<ExprAST> Cond, Then, Else;

public:
IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,

std::unique_ptr<ExprAST> Else)
: Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}
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Value *codegen() override;
};

/// ForExprAST - Expression class for for/in.
class ForExprAST : public ExprAST {
std::string VarName;
std::unique_ptr<ExprAST> Start, End, Step, Body;

public:
ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start,

std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
std::unique_ptr<ExprAST> Body)

: VarName(VarName), Start(std::move(Start)), End(std::move(End)),
Step(std::move(Step)), Body(std::move(Body)) {}

Value *codegen() override;
};

/// PrototypeAST - This class represents the "prototype" for a function,
/// which captures its name, and its argument names (thus implicitly the number
/// of arguments the function takes), as well as if it is an operator.
class PrototypeAST {
std::string Name;
std::vector<std::string> Args;
bool IsOperator;
unsigned Precedence; // Precedence if a binary op.

public:
PrototypeAST(const std::string &Name, std::vector<std::string> Args,

bool IsOperator = false, unsigned Prec = 0)
: Name(Name), Args(std::move(Args)), IsOperator(IsOperator),

Precedence(Prec) {}
Function *codegen();
const std::string &getName() const { return Name; }

bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
bool isBinaryOp() const { return IsOperator && Args.size() == 2; }

char getOperatorName() const {
assert(isUnaryOp() || isBinaryOp());
return Name[Name.size() - 1];

}

unsigned getBinaryPrecedence() const { return Precedence; }
};

/// FunctionAST - This class represents a function definition itself.
class FunctionAST {

std::unique_ptr<PrototypeAST> Proto;
std::unique_ptr<ExprAST> Body;

public:
FunctionAST(std::unique_ptr<PrototypeAST> Proto,

std::unique_ptr<ExprAST> Body)
: Proto(std::move(Proto)), Body(std::move(Body)) {}

Function *codegen();
};
} // end anonymous namespace
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//===----------------------------------------------------------------------===//
// Parser
//===----------------------------------------------------------------------===//

/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
/// token the parser is looking at. getNextToken reads another token from the
/// lexer and updates CurTok with its results.
static int CurTok;
static int getNextToken() { return CurTok = gettok(); }

/// BinopPrecedence - This holds the precedence for each binary operator that is
/// defined.
static std::map<char, int> BinopPrecedence;

/// GetTokPrecedence - Get the precedence of the pending binary operator token.
static int GetTokPrecedence() {

if (!isascii(CurTok))
return -1;

// Make sure it's a declared binop.
int TokPrec = BinopPrecedence[CurTok];
if (TokPrec <= 0)
return -1;

return TokPrec;
}

/// Error* - These are little helper functions for error handling.
std::unique_ptr<ExprAST> LogError(const char *Str) {

fprintf(stderr, "Error: %s\n", Str);
return nullptr;

}

std::unique_ptr<PrototypeAST> LogErrorP(const char *Str) {
LogError(Str);
return nullptr;

}

static std::unique_ptr<ExprAST> ParseExpression();

/// numberexpr ::= number
static std::unique_ptr<ExprAST> ParseNumberExpr() {
auto Result = llvm::make_unique<NumberExprAST>(NumVal);
getNextToken(); // consume the number
return std::move(Result);

}

/// parenexpr ::= '(' expression ')'
static std::unique_ptr<ExprAST> ParseParenExpr() {
getNextToken(); // eat (.
auto V = ParseExpression();
if (!V)
return nullptr;

if (CurTok != ')')
return LogError("expected ')'");

getNextToken(); // eat ).
return V;

}
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/// identifierexpr
/// ::= identifier
/// ::= identifier '(' expression* ')'
static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
std::string IdName = IdentifierStr;

getNextToken(); // eat identifier.

if (CurTok != '(') // Simple variable ref.
return llvm::make_unique<VariableExprAST>(IdName);

// Call.
getNextToken(); // eat (
std::vector<std::unique_ptr<ExprAST>> Args;
if (CurTok != ')') {
while (true) {

if (auto Arg = ParseExpression())
Args.push_back(std::move(Arg));

else
return nullptr;

if (CurTok == ')')
break;

if (CurTok != ',')
return LogError("Expected ')' or ',' in argument list");

getNextToken();
}

}

// Eat the ')'.
getNextToken();

return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
}

/// ifexpr ::= 'if' expression 'then' expression 'else' expression
static std::unique_ptr<ExprAST> ParseIfExpr() {
getNextToken(); // eat the if.

// condition.
auto Cond = ParseExpression();
if (!Cond)
return nullptr;

if (CurTok != tok_then)
return LogError("expected then");

getNextToken(); // eat the then

auto Then = ParseExpression();
if (!Then)
return nullptr;

if (CurTok != tok_else)
return LogError("expected else");

getNextToken();
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auto Else = ParseExpression();
if (!Else)
return nullptr;

return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
std::move(Else));

}

/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
static std::unique_ptr<ExprAST> ParseForExpr() {
getNextToken(); // eat the for.

if (CurTok != tok_identifier)
return LogError("expected identifier after for");

std::string IdName = IdentifierStr;
getNextToken(); // eat identifier.

if (CurTok != '=')
return LogError("expected '=' after for");

getNextToken(); // eat '='.

auto Start = ParseExpression();
if (!Start)
return nullptr;

if (CurTok != ',')
return LogError("expected ',' after for start value");

getNextToken();

auto End = ParseExpression();
if (!End)
return nullptr;

// The step value is optional.
std::unique_ptr<ExprAST> Step;
if (CurTok == ',') {
getNextToken();
Step = ParseExpression();
if (!Step)

return nullptr;
}

if (CurTok != tok_in)
return LogError("expected 'in' after for");

getNextToken(); // eat 'in'.

auto Body = ParseExpression();
if (!Body)
return nullptr;

return llvm::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
std::move(Step), std::move(Body));

}

/// primary
/// ::= identifierexpr
/// ::= numberexpr
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/// ::= parenexpr
/// ::= ifexpr
/// ::= forexpr
static std::unique_ptr<ExprAST> ParsePrimary() {
switch (CurTok) {
default:
return LogError("unknown token when expecting an expression");

case tok_identifier:
return ParseIdentifierExpr();

case tok_number:
return ParseNumberExpr();

case '(':
return ParseParenExpr();

case tok_if:
return ParseIfExpr();

case tok_for:
return ParseForExpr();

}
}

/// unary
/// ::= primary
/// ::= '!' unary
static std::unique_ptr<ExprAST> ParseUnary() {

// If the current token is not an operator, it must be a primary expr.
if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
return ParsePrimary();

// If this is a unary operator, read it.
int Opc = CurTok;
getNextToken();
if (auto Operand = ParseUnary())
return llvm::make_unique<UnaryExprAST>(Opc, std::move(Operand));

return nullptr;
}

/// binoprhs
/// ::= ('+' unary)*
static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,

std::unique_ptr<ExprAST> LHS) {
// If this is a binop, find its precedence.
while (true) {
int TokPrec = GetTokPrecedence();

// If this is a binop that binds at least as tightly as the current binop,
// consume it, otherwise we are done.
if (TokPrec < ExprPrec)

return LHS;

// Okay, we know this is a binop.
int BinOp = CurTok;
getNextToken(); // eat binop

// Parse the unary expression after the binary operator.
auto RHS = ParseUnary();
if (!RHS)

return nullptr;
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// If BinOp binds less tightly with RHS than the operator after RHS, let
// the pending operator take RHS as its LHS.
int NextPrec = GetTokPrecedence();
if (TokPrec < NextPrec) {

RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
if (!RHS)

return nullptr;
}

// Merge LHS/RHS.
LHS =

llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
}

}

/// expression
/// ::= unary binoprhs
///
static std::unique_ptr<ExprAST> ParseExpression() {
auto LHS = ParseUnary();
if (!LHS)
return nullptr;

return ParseBinOpRHS(0, std::move(LHS));
}

/// prototype
/// ::= id '(' id* ')'
/// ::= binary LETTER number? (id, id)
/// ::= unary LETTER (id)
static std::unique_ptr<PrototypeAST> ParsePrototype() {
std::string FnName;

unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
unsigned BinaryPrecedence = 30;

switch (CurTok) {
default:
return LogErrorP("Expected function name in prototype");

case tok_identifier:
FnName = IdentifierStr;
Kind = 0;
getNextToken();
break;

case tok_unary:
getNextToken();
if (!isascii(CurTok))

return LogErrorP("Expected unary operator");
FnName = "unary";
FnName += (char)CurTok;
Kind = 1;
getNextToken();
break;

case tok_binary:
getNextToken();
if (!isascii(CurTok))

return LogErrorP("Expected binary operator");
FnName = "binary";
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FnName += (char)CurTok;
Kind = 2;
getNextToken();

// Read the precedence if present.
if (CurTok == tok_number) {

if (NumVal < 1 || NumVal > 100)
return LogErrorP("Invalid precedecnce: must be 1..100");

BinaryPrecedence = (unsigned)NumVal;
getNextToken();

}
break;

}

if (CurTok != '(')
return LogErrorP("Expected '(' in prototype");

std::vector<std::string> ArgNames;
while (getNextToken() == tok_identifier)
ArgNames.push_back(IdentifierStr);

if (CurTok != ')')
return LogErrorP("Expected ')' in prototype");

// success.
getNextToken(); // eat ')'.

// Verify right number of names for operator.
if (Kind && ArgNames.size() != Kind)
return LogErrorP("Invalid number of operands for operator");

return llvm::make_unique<PrototypeAST>(FnName, ArgNames, Kind != 0,
BinaryPrecedence);

}

/// definition ::= 'def' prototype expression
static std::unique_ptr<FunctionAST> ParseDefinition() {
getNextToken(); // eat def.
auto Proto = ParsePrototype();
if (!Proto)
return nullptr;

if (auto E = ParseExpression())
return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));

return nullptr;
}

/// toplevelexpr ::= expression
static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {

if (auto E = ParseExpression()) {
// Make an anonymous proto.
auto Proto = llvm::make_unique<PrototypeAST>("__anon_expr",

std::vector<std::string>());
return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));

}
return nullptr;

}

/// external ::= 'extern' prototype
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static std::unique_ptr<PrototypeAST> ParseExtern() {
getNextToken(); // eat extern.
return ParsePrototype();

}

//===----------------------------------------------------------------------===//
// Code Generation
//===----------------------------------------------------------------------===//

static LLVMContext TheContext;
static IRBuilder<> Builder(TheContext);
static std::unique_ptr<Module> TheModule;
static std::map<std::string, Value *> NamedValues;
static std::unique_ptr<legacy::FunctionPassManager> TheFPM;
static std::unique_ptr<KaleidoscopeJIT> TheJIT;
static std::map<std::string, std::unique_ptr<PrototypeAST>> FunctionProtos;

Value *LogErrorV(const char *Str) {
LogError(Str);
return nullptr;

}

Function *getFunction(std::string Name) {
// First, see if the function has already been added to the current module.
if (auto *F = TheModule->getFunction(Name))
return F;

// If not, check whether we can codegen the declaration from some existing
// prototype.
auto FI = FunctionProtos.find(Name);
if (FI != FunctionProtos.end())
return FI->second->codegen();

// If no existing prototype exists, return null.
return nullptr;

}

Value *NumberExprAST::codegen() {
return ConstantFP::get(TheContext, APFloat(Val));

}

Value *VariableExprAST::codegen() {
// Look this variable up in the function.
Value *V = NamedValues[Name];
if (!V)
return LogErrorV("Unknown variable name");

return V;
}

Value *UnaryExprAST::codegen() {
Value *OperandV = Operand->codegen();
if (!OperandV)
return nullptr;

Function *F = getFunction(std::string("unary") + Opcode);
if (!F)
return LogErrorV("Unknown unary operator");
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return Builder.CreateCall(F, OperandV, "unop");
}

Value *BinaryExprAST::codegen() {
Value *L = LHS->codegen();
Value *R = RHS->codegen();
if (!L || !R)
return nullptr;

switch (Op) {
case '+':
return Builder.CreateFAdd(L, R, "addtmp");

case '-':
return Builder.CreateFSub(L, R, "subtmp");

case '*':
return Builder.CreateFMul(L, R, "multmp");

case '<':
L = Builder.CreateFCmpULT(L, R, "cmptmp");
// Convert bool 0/1 to double 0.0 or 1.0
return Builder.CreateUIToFP(L, Type::getDoubleTy(TheContext), "booltmp");

default:
break;

}

// If it wasn't a builtin binary operator, it must be a user defined one. Emit
// a call to it.
Function *F = getFunction(std::string("binary") + Op);
assert(F && "binary operator not found!");

Value *Ops[] = {L, R};
return Builder.CreateCall(F, Ops, "binop");

}

Value *CallExprAST::codegen() {
// Look up the name in the global module table.
Function *CalleeF = getFunction(Callee);
if (!CalleeF)
return LogErrorV("Unknown function referenced");

// If argument mismatch error.
if (CalleeF->arg_size() != Args.size())
return LogErrorV("Incorrect # arguments passed");

std::vector<Value *> ArgsV;
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
ArgsV.push_back(Args[i]->codegen());
if (!ArgsV.back())

return nullptr;
}

return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
}

Value *IfExprAST::codegen() {
Value *CondV = Cond->codegen();
if (!CondV)
return nullptr;
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// Convert condition to a bool by comparing equal to 0.0.
CondV = Builder.CreateFCmpONE(

CondV, ConstantFP::get(TheContext, APFloat(0.0)), "ifcond");

Function *TheFunction = Builder.GetInsertBlock()->getParent();

// Create blocks for the then and else cases. Insert the 'then' block at the
// end of the function.
BasicBlock *ThenBB = BasicBlock::Create(TheContext, "then", TheFunction);
BasicBlock *ElseBB = BasicBlock::Create(TheContext, "else");
BasicBlock *MergeBB = BasicBlock::Create(TheContext, "ifcont");

Builder.CreateCondBr(CondV, ThenBB, ElseBB);

// Emit then value.
Builder.SetInsertPoint(ThenBB);

Value *ThenV = Then->codegen();
if (!ThenV)
return nullptr;

Builder.CreateBr(MergeBB);
// Codegen of 'Then' can change the current block, update ThenBB for the PHI.
ThenBB = Builder.GetInsertBlock();

// Emit else block.
TheFunction->getBasicBlockList().push_back(ElseBB);
Builder.SetInsertPoint(ElseBB);

Value *ElseV = Else->codegen();
if (!ElseV)
return nullptr;

Builder.CreateBr(MergeBB);
// Codegen of 'Else' can change the current block, update ElseBB for the PHI.
ElseBB = Builder.GetInsertBlock();

// Emit merge block.
TheFunction->getBasicBlockList().push_back(MergeBB);
Builder.SetInsertPoint(MergeBB);
PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(TheContext), 2, "iftmp");

PN->addIncoming(ThenV, ThenBB);
PN->addIncoming(ElseV, ElseBB);
return PN;

}

// Output for-loop as:
// ...
// start = startexpr
// goto loop
// loop:
// variable = phi [start, loopheader], [nextvariable, loopend]
// ...
// bodyexpr
// ...
// loopend:
// step = stepexpr

2.17. LLVM Tutorial: Table of Contents 453



LLVM Documentation, Release 3.9

// nextvariable = variable + step
// endcond = endexpr
// br endcond, loop, endloop
// outloop:
Value *ForExprAST::codegen() {
// Emit the start code first, without 'variable' in scope.
Value *StartVal = Start->codegen();
if (!StartVal)
return nullptr;

// Make the new basic block for the loop header, inserting after current
// block.
Function *TheFunction = Builder.GetInsertBlock()->getParent();
BasicBlock *PreheaderBB = Builder.GetInsertBlock();
BasicBlock *LoopBB = BasicBlock::Create(TheContext, "loop", TheFunction);

// Insert an explicit fall through from the current block to the LoopBB.
Builder.CreateBr(LoopBB);

// Start insertion in LoopBB.
Builder.SetInsertPoint(LoopBB);

// Start the PHI node with an entry for Start.
PHINode *Variable =

Builder.CreatePHI(Type::getDoubleTy(TheContext), 2, VarName);
Variable->addIncoming(StartVal, PreheaderBB);

// Within the loop, the variable is defined equal to the PHI node. If it
// shadows an existing variable, we have to restore it, so save it now.
Value *OldVal = NamedValues[VarName];
NamedValues[VarName] = Variable;

// Emit the body of the loop. This, like any other expr, can change the
// current BB. Note that we ignore the value computed by the body, but don't
// allow an error.
if (!Body->codegen())
return nullptr;

// Emit the step value.
Value *StepVal = nullptr;
if (Step) {
StepVal = Step->codegen();
if (!StepVal)

return nullptr;
} else {
// If not specified, use 1.0.
StepVal = ConstantFP::get(TheContext, APFloat(1.0));

}

Value *NextVar = Builder.CreateFAdd(Variable, StepVal, "nextvar");

// Compute the end condition.
Value *EndCond = End->codegen();
if (!EndCond)
return nullptr;

// Convert condition to a bool by comparing equal to 0.0.
EndCond = Builder.CreateFCmpONE(
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EndCond, ConstantFP::get(TheContext, APFloat(0.0)), "loopcond");

// Create the "after loop" block and insert it.
BasicBlock *LoopEndBB = Builder.GetInsertBlock();
BasicBlock *AfterBB =

BasicBlock::Create(TheContext, "afterloop", TheFunction);

// Insert the conditional branch into the end of LoopEndBB.
Builder.CreateCondBr(EndCond, LoopBB, AfterBB);

// Any new code will be inserted in AfterBB.
Builder.SetInsertPoint(AfterBB);

// Add a new entry to the PHI node for the backedge.
Variable->addIncoming(NextVar, LoopEndBB);

// Restore the unshadowed variable.
if (OldVal)
NamedValues[VarName] = OldVal;

else
NamedValues.erase(VarName);

// for expr always returns 0.0.
return Constant::getNullValue(Type::getDoubleTy(TheContext));

}

Function *PrototypeAST::codegen() {
// Make the function type: double(double,double) etc.
std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(TheContext));
FunctionType *FT =

FunctionType::get(Type::getDoubleTy(TheContext), Doubles, false);

Function *F =
Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get());

// Set names for all arguments.
unsigned Idx = 0;
for (auto &Arg : F->args())
Arg.setName(Args[Idx++]);

return F;
}

Function *FunctionAST::codegen() {
// Transfer ownership of the prototype to the FunctionProtos map, but keep a
// reference to it for use below.
auto &P = *Proto;
FunctionProtos[Proto->getName()] = std::move(Proto);
Function *TheFunction = getFunction(P.getName());
if (!TheFunction)
return nullptr;

// If this is an operator, install it.
if (P.isBinaryOp())
BinopPrecedence[P.getOperatorName()] = P.getBinaryPrecedence();

// Create a new basic block to start insertion into.
BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction);
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Builder.SetInsertPoint(BB);

// Record the function arguments in the NamedValues map.
NamedValues.clear();
for (auto &Arg : TheFunction->args())
NamedValues[Arg.getName()] = &Arg;

if (Value *RetVal = Body->codegen()) {
// Finish off the function.
Builder.CreateRet(RetVal);

// Validate the generated code, checking for consistency.
verifyFunction(*TheFunction);

// Run the optimizer on the function.
TheFPM->run(*TheFunction);

return TheFunction;
}

// Error reading body, remove function.
TheFunction->eraseFromParent();

if (P.isBinaryOp())
BinopPrecedence.erase(Proto->getOperatorName());

return nullptr;
}

//===----------------------------------------------------------------------===//
// Top-Level parsing and JIT Driver
//===----------------------------------------------------------------------===//

static void InitializeModuleAndPassManager() {
// Open a new module.
TheModule = llvm::make_unique<Module>("my cool jit", TheContext);
TheModule->setDataLayout(TheJIT->getTargetMachine().createDataLayout());

// Create a new pass manager attached to it.
TheFPM = llvm::make_unique<legacy::FunctionPassManager>(TheModule.get());

// Do simple "peephole" optimizations and bit-twiddling optzns.
TheFPM->add(createInstructionCombiningPass());
// Reassociate expressions.
TheFPM->add(createReassociatePass());
// Eliminate Common SubExpressions.
TheFPM->add(createGVNPass());
// Simplify the control flow graph (deleting unreachable blocks, etc).
TheFPM->add(createCFGSimplificationPass());

TheFPM->doInitialization();
}

static void HandleDefinition() {
if (auto FnAST = ParseDefinition()) {
if (auto *FnIR = FnAST->codegen()) {
fprintf(stderr, "Read function definition:");
FnIR->dump();
TheJIT->addModule(std::move(TheModule));
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InitializeModuleAndPassManager();
}

} else {
// Skip token for error recovery.
getNextToken();

}
}

static void HandleExtern() {
if (auto ProtoAST = ParseExtern()) {
if (auto *FnIR = ProtoAST->codegen()) {
fprintf(stderr, "Read extern: ");
FnIR->dump();
FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST);

}
} else {
// Skip token for error recovery.
getNextToken();

}
}

static void HandleTopLevelExpression() {
// Evaluate a top-level expression into an anonymous function.
if (auto FnAST = ParseTopLevelExpr()) {
if (FnAST->codegen()) {

// JIT the module containing the anonymous expression, keeping a handle so
// we can free it later.
auto H = TheJIT->addModule(std::move(TheModule));
InitializeModuleAndPassManager();

// Search the JIT for the __anon_expr symbol.
auto ExprSymbol = TheJIT->findSymbol("__anon_expr");
assert(ExprSymbol && "Function not found");

// Get the symbol's address and cast it to the right type (takes no
// arguments, returns a double) so we can call it as a native function.
double (*FP)() = (double (*)())(intptr_t)ExprSymbol.getAddress();
fprintf(stderr, "Evaluated to %f\n", FP());

// Delete the anonymous expression module from the JIT.
TheJIT->removeModule(H);

}
} else {
// Skip token for error recovery.
getNextToken();

}
}

/// top ::= definition | external | expression | ';'
static void MainLoop() {
while (true) {
fprintf(stderr, "ready> ");
switch (CurTok) {
case tok_eof:
return;

case ';': // ignore top-level semicolons.
getNextToken();
break;
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case tok_def:
HandleDefinition();
break;

case tok_extern:
HandleExtern();
break;

default:
HandleTopLevelExpression();
break;

}
}

}

//===----------------------------------------------------------------------===//
// "Library" functions that can be "extern'd" from user code.
//===----------------------------------------------------------------------===//

/// putchard - putchar that takes a double and returns 0.
extern "C" double putchard(double X) {
fputc((char)X, stderr);
return 0;

}

/// printd - printf that takes a double prints it as "%f\n", returning 0.
extern "C" double printd(double X) {
fprintf(stderr, "%f\n", X);
return 0;

}

//===----------------------------------------------------------------------===//
// Main driver code.
//===----------------------------------------------------------------------===//

int main() {
InitializeNativeTarget();
InitializeNativeTargetAsmPrinter();
InitializeNativeTargetAsmParser();

// Install standard binary operators.
// 1 is lowest precedence.
BinopPrecedence['<'] = 10;
BinopPrecedence['+'] = 20;
BinopPrecedence['-'] = 20;
BinopPrecedence['*'] = 40; // highest.

// Prime the first token.
fprintf(stderr, "ready> ");
getNextToken();

TheJIT = llvm::make_unique<KaleidoscopeJIT>();

InitializeModuleAndPassManager();

// Run the main "interpreter loop" now.
MainLoop();

return 0;
}
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Next: Extending the language: mutable variables / SSA construction

Kaleidoscope: Extending the Language: Mutable Variables

• Chapter 7 Introduction

• Why is this a hard problem?

• Memory in LLVM

• Mutable Variables in Kaleidoscope

• Adjusting Existing Variables for Mutation

• New Assignment Operator

• User-defined Local Variables

• Full Code Listing

Chapter 7 Introduction

Welcome to Chapter 7 of the “Implementing a language with LLVM” tutorial. In chapters 1 through 6, we’ve built a
very respectable, albeit simple, functional programming language. In our journey, we learned some parsing techniques,
how to build and represent an AST, how to build LLVM IR, and how to optimize the resultant code as well as JIT
compile it.

While Kaleidoscope is interesting as a functional language, the fact that it is functional makes it “too easy” to generate
LLVM IR for it. In particular, a functional language makes it very easy to build LLVM IR directly in SSA form. Since
LLVM requires that the input code be in SSA form, this is a very nice property and it is often unclear to newcomers
how to generate code for an imperative language with mutable variables.

The short (and happy) summary of this chapter is that there is no need for your front-end to build SSA form: LLVM
provides highly tuned and well tested support for this, though the way it works is a bit unexpected for some.

Why is this a hard problem?

To understand why mutable variables cause complexities in SSA construction, consider this extremely simple C ex-
ample:

int G, H;
int test(_Bool Condition) {
int X;
if (Condition)
X = G;

else
X = H;

return X;
}

In this case, we have the variable “X”, whose value depends on the path executed in the program. Because there are
two different possible values for X before the return instruction, a PHI node is inserted to merge the two values. The
LLVM IR that we want for this example looks like this:
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@G = weak global i32 0 ; type of @G is i32*
@H = weak global i32 0 ; type of @H is i32*

define i32 @test(i1 %Condition) {
entry:

br i1 %Condition, label %cond_true, label %cond_false

cond_true:
%X.0 = load i32* @G
br label %cond_next

cond_false:
%X.1 = load i32* @H
br label %cond_next

cond_next:
%X.2 = phi i32 [ %X.1, %cond_false ], [ %X.0, %cond_true ]
ret i32 %X.2

}

In this example, the loads from the G and H global variables are explicit in the LLVM IR, and they live in the then/else
branches of the if statement (cond_true/cond_false). In order to merge the incoming values, the X.2 phi node in the
cond_next block selects the right value to use based on where control flow is coming from: if control flow comes from
the cond_false block, X.2 gets the value of X.1. Alternatively, if control flow comes from cond_true, it gets the value
of X.0. The intent of this chapter is not to explain the details of SSA form. For more information, see one of the many
online references.

The question for this article is “who places the phi nodes when lowering assignments to mutable variables?”. The issue
here is that LLVM requires that its IR be in SSA form: there is no “non-ssa” mode for it. However, SSA construction
requires non-trivial algorithms and data structures, so it is inconvenient and wasteful for every front-end to have to
reproduce this logic.

Memory in LLVM

The ‘trick’ here is that while LLVM does require all register values to be in SSA form, it does not require (or permit)
memory objects to be in SSA form. In the example above, note that the loads from G and H are direct accesses to
G and H: they are not renamed or versioned. This differs from some other compiler systems, which do try to version
memory objects. In LLVM, instead of encoding dataflow analysis of memory into the LLVM IR, it is handled with
Analysis Passes which are computed on demand.

With this in mind, the high-level idea is that we want to make a stack variable (which lives in memory, because it is
on the stack) for each mutable object in a function. To take advantage of this trick, we need to talk about how LLVM
represents stack variables.

In LLVM, all memory accesses are explicit with load/store instructions, and it is carefully designed not to have (or
need) an “address-of” operator. Notice how the type of the @G/@H global variables is actually “i32*” even though
the variable is defined as “i32”. What this means is that @G defines space for an i32 in the global data area, but its
name actually refers to the address for that space. Stack variables work the same way, except that instead of being
declared with global variable definitions, they are declared with the LLVM alloca instruction:

define i32 @example() {
entry:

%X = alloca i32 ; type of %X is i32*.
...
%tmp = load i32* %X ; load the stack value %X from the stack.
%tmp2 = add i32 %tmp, 1 ; increment it
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store i32 %tmp2, i32* %X ; store it back
...

This code shows an example of how you can declare and manipulate a stack variable in the LLVM IR. Stack memory
allocated with the alloca instruction is fully general: you can pass the address of the stack slot to functions, you can
store it in other variables, etc. In our example above, we could rewrite the example to use the alloca technique to avoid
using a PHI node:

@G = weak global i32 0 ; type of @G is i32*
@H = weak global i32 0 ; type of @H is i32*

define i32 @test(i1 %Condition) {
entry:

%X = alloca i32 ; type of %X is i32*.
br i1 %Condition, label %cond_true, label %cond_false

cond_true:
%X.0 = load i32* @G
store i32 %X.0, i32* %X ; Update X
br label %cond_next

cond_false:
%X.1 = load i32* @H
store i32 %X.1, i32* %X ; Update X
br label %cond_next

cond_next:
%X.2 = load i32* %X ; Read X
ret i32 %X.2

}

With this, we have discovered a way to handle arbitrary mutable variables without the need to create Phi nodes at all:

1. Each mutable variable becomes a stack allocation.

2. Each read of the variable becomes a load from the stack.

3. Each update of the variable becomes a store to the stack.

4. Taking the address of a variable just uses the stack address directly.

While this solution has solved our immediate problem, it introduced another one: we have now apparently introduced
a lot of stack traffic for very simple and common operations, a major performance problem. Fortunately for us, the
LLVM optimizer has a highly-tuned optimization pass named “mem2reg” that handles this case, promoting allocas
like this into SSA registers, inserting Phi nodes as appropriate. If you run this example through the pass, for example,
you’ll get:

$ llvm-as < example.ll | opt -mem2reg | llvm-dis
@G = weak global i32 0
@H = weak global i32 0

define i32 @test(i1 %Condition) {
entry:

br i1 %Condition, label %cond_true, label %cond_false

cond_true:
%X.0 = load i32* @G
br label %cond_next
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cond_false:
%X.1 = load i32* @H
br label %cond_next

cond_next:
%X.01 = phi i32 [ %X.1, %cond_false ], [ %X.0, %cond_true ]
ret i32 %X.01

}

The mem2reg pass implements the standard “iterated dominance frontier” algorithm for constructing SSA form and
has a number of optimizations that speed up (very common) degenerate cases. The mem2reg optimization pass is the
answer to dealing with mutable variables, and we highly recommend that you depend on it. Note that mem2reg only
works on variables in certain circumstances:

1. mem2reg is alloca-driven: it looks for allocas and if it can handle them, it promotes them. It does not apply to
global variables or heap allocations.

2. mem2reg only looks for alloca instructions in the entry block of the function. Being in the entry block guarantees
that the alloca is only executed once, which makes analysis simpler.

3. mem2reg only promotes allocas whose uses are direct loads and stores. If the address of the stack object is
passed to a function, or if any funny pointer arithmetic is involved, the alloca will not be promoted.

4. mem2reg only works on allocas of first class values (such as pointers, scalars and vectors), and only if the array
size of the allocation is 1 (or missing in the .ll file). mem2reg is not capable of promoting structs or arrays to
registers. Note that the “sroa” pass is more powerful and can promote structs, “unions”, and arrays in many
cases.

All of these properties are easy to satisfy for most imperative languages, and we’ll illustrate it below with Kaleido-
scope. The final question you may be asking is: should I bother with this nonsense for my front-end? Wouldn’t it be
better if I just did SSA construction directly, avoiding use of the mem2reg optimization pass? In short, we strongly
recommend that you use this technique for building SSA form, unless there is an extremely good reason not to. Using
this technique is:

• Proven and well tested: clang uses this technique for local mutable variables. As such, the most common clients
of LLVM are using this to handle a bulk of their variables. You can be sure that bugs are found fast and fixed
early.

• Extremely Fast: mem2reg has a number of special cases that make it fast in common cases as well as fully
general. For example, it has fast-paths for variables that are only used in a single block, variables that only have
one assignment point, good heuristics to avoid insertion of unneeded phi nodes, etc.

• Needed for debug info generation: Debug information in LLVM relies on having the address of the variable
exposed so that debug info can be attached to it. This technique dovetails very naturally with this style of debug
info.

If nothing else, this makes it much easier to get your front-end up and running, and is very simple to implement. Let’s
extend Kaleidoscope with mutable variables now!

Mutable Variables in Kaleidoscope

Now that we know the sort of problem we want to tackle, let’s see what this looks like in the context of our little
Kaleidoscope language. We’re going to add two features:

1. The ability to mutate variables with the ‘=’ operator.

2. The ability to define new variables.
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While the first item is really what this is about, we only have variables for incoming arguments as well as for induction
variables, and redefining those only goes so far :). Also, the ability to define new variables is a useful thing regardless
of whether you will be mutating them. Here’s a motivating example that shows how we could use these:

# Define ':' for sequencing: as a low-precedence operator that ignores operands
# and just returns the RHS.
def binary : 1 (x y) y;

# Recursive fib, we could do this before.
def fib(x)
if (x < 3) then
1

else
fib(x-1)+fib(x-2);

# Iterative fib.
def fibi(x)
var a = 1, b = 1, c in
(for i = 3, i < x in

c = a + b :
a = b :
b = c) :

b;

# Call it.
fibi(10);

In order to mutate variables, we have to change our existing variables to use the “alloca trick”. Once we have that,
we’ll add our new operator, then extend Kaleidoscope to support new variable definitions.

Adjusting Existing Variables for Mutation

The symbol table in Kaleidoscope is managed at code generation time by the ‘NamedValues‘ map. This map cur-
rently keeps track of the LLVM “Value*” that holds the double value for the named variable. In order to support
mutation, we need to change this slightly, so that NamedValues holds the memory location of the variable in ques-
tion. Note that this change is a refactoring: it changes the structure of the code, but does not (by itself) change the
behavior of the compiler. All of these changes are isolated in the Kaleidoscope code generator.

At this point in Kaleidoscope’s development, it only supports variables for two things: incoming arguments to func-
tions and the induction variable of ‘for’ loops. For consistency, we’ll allow mutation of these variables in addition to
other user-defined variables. This means that these will both need memory locations.

To start our transformation of Kaleidoscope, we’ll change the NamedValues map so that it maps to AllocaInst* instead
of Value*. Once we do this, the C++ compiler will tell us what parts of the code we need to update:

static std::map<std::string, AllocaInst*> NamedValues;

Also, since we will need to create these alloca’s, we’ll use a helper function that ensures that the allocas are created in
the entry block of the function:

/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
/// the function. This is used for mutable variables etc.
static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,

const std::string &VarName) {
IRBuilder<> TmpB(&TheFunction->getEntryBlock(),

TheFunction->getEntryBlock().begin());
return TmpB.CreateAlloca(Type::getDoubleTy(LLVMContext), 0,
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VarName.c_str());
}

This funny looking code creates an IRBuilder object that is pointing at the first instruction (.begin()) of the entry block.
It then creates an alloca with the expected name and returns it. Because all values in Kaleidoscope are doubles, there
is no need to pass in a type to use.

With this in place, the first functionality change we want to make is to variable references. In our new scheme,
variables live on the stack, so code generating a reference to them actually needs to produce a load from the stack slot:

Value *VariableExprAST::codegen() {
// Look this variable up in the function.
Value *V = NamedValues[Name];
if (!V)
return LogErrorV("Unknown variable name");

// Load the value.
return Builder.CreateLoad(V, Name.c_str());

}

As you can see, this is pretty straightforward. Now we need to update the things that define the variables to set up the
alloca. We’ll start with ForExprAST::codegen() (see the full code listing for the unabridged code):

Function *TheFunction = Builder.GetInsertBlock()->getParent();

// Create an alloca for the variable in the entry block.
AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);

// Emit the start code first, without 'variable' in scope.
Value *StartVal = Start->codegen();
if (!StartVal)

return nullptr;

// Store the value into the alloca.
Builder.CreateStore(StartVal, Alloca);
...

// Compute the end condition.
Value *EndCond = End->codegen();
if (!EndCond)

return nullptr;

// Reload, increment, and restore the alloca. This handles the case where
// the body of the loop mutates the variable.
Value *CurVar = Builder.CreateLoad(Alloca);
Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
Builder.CreateStore(NextVar, Alloca);
...

This code is virtually identical to the code before we allowed mutable variables. The big difference is that we no
longer have to construct a PHI node, and we use load/store to access the variable as needed.

To support mutable argument variables, we need to also make allocas for them. The code for this is also pretty simple:

/// CreateArgumentAllocas - Create an alloca for each argument and register the
/// argument in the symbol table so that references to it will succeed.
void PrototypeAST::CreateArgumentAllocas(Function *F) {

Function::arg_iterator AI = F->arg_begin();
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for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
// Create an alloca for this variable.
AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);

// Store the initial value into the alloca.
Builder.CreateStore(AI, Alloca);

// Add arguments to variable symbol table.
NamedValues[Args[Idx]] = Alloca;

}
}

For each argument, we make an alloca, store the input value to the function into the alloca, and register the alloca as
the memory location for the argument. This method gets invoked by FunctionAST::codegen() right after it
sets up the entry block for the function.

The final missing piece is adding the mem2reg pass, which allows us to get good codegen once again:

// Set up the optimizer pipeline. Start with registering info about how the
// target lays out data structures.
OurFPM.add(new DataLayout(*TheExecutionEngine->getDataLayout()));
// Promote allocas to registers.
OurFPM.add(createPromoteMemoryToRegisterPass());
// Do simple "peephole" optimizations and bit-twiddling optzns.
OurFPM.add(createInstructionCombiningPass());
// Reassociate expressions.
OurFPM.add(createReassociatePass());

It is interesting to see what the code looks like before and after the mem2reg optimization runs. For example, this is
the before/after code for our recursive fib function. Before the optimization:

define double @fib(double %x) {
entry:

%x1 = alloca double
store double %x, double* %x1
%x2 = load double* %x1
%cmptmp = fcmp ult double %x2, 3.000000e+00
%booltmp = uitofp i1 %cmptmp to double
%ifcond = fcmp one double %booltmp, 0.000000e+00
br i1 %ifcond, label %then, label %else

then: ; preds = %entry
br label %ifcont

else: ; preds = %entry
%x3 = load double* %x1
%subtmp = fsub double %x3, 1.000000e+00
%calltmp = call double @fib(double %subtmp)
%x4 = load double* %x1
%subtmp5 = fsub double %x4, 2.000000e+00
%calltmp6 = call double @fib(double %subtmp5)
%addtmp = fadd double %calltmp, %calltmp6
br label %ifcont

ifcont: ; preds = %else, %then
%iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ]
ret double %iftmp

}
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Here there is only one variable (x, the input argument) but you can still see the extremely simple-minded code gener-
ation strategy we are using. In the entry block, an alloca is created, and the initial input value is stored into it. Each
reference to the variable does a reload from the stack. Also, note that we didn’t modify the if/then/else expression, so
it still inserts a PHI node. While we could make an alloca for it, it is actually easier to create a PHI node for it, so we
still just make the PHI.

Here is the code after the mem2reg pass runs:

define double @fib(double %x) {
entry:

%cmptmp = fcmp ult double %x, 3.000000e+00
%booltmp = uitofp i1 %cmptmp to double
%ifcond = fcmp one double %booltmp, 0.000000e+00
br i1 %ifcond, label %then, label %else

then:
br label %ifcont

else:
%subtmp = fsub double %x, 1.000000e+00
%calltmp = call double @fib(double %subtmp)
%subtmp5 = fsub double %x, 2.000000e+00
%calltmp6 = call double @fib(double %subtmp5)
%addtmp = fadd double %calltmp, %calltmp6
br label %ifcont

ifcont: ; preds = %else, %then
%iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ]
ret double %iftmp

}

This is a trivial case for mem2reg, since there are no redefinitions of the variable. The point of showing this is to calm
your tension about inserting such blatent inefficiencies :).

After the rest of the optimizers run, we get:

define double @fib(double %x) {
entry:

%cmptmp = fcmp ult double %x, 3.000000e+00
%booltmp = uitofp i1 %cmptmp to double
%ifcond = fcmp ueq double %booltmp, 0.000000e+00
br i1 %ifcond, label %else, label %ifcont

else:
%subtmp = fsub double %x, 1.000000e+00
%calltmp = call double @fib(double %subtmp)
%subtmp5 = fsub double %x, 2.000000e+00
%calltmp6 = call double @fib(double %subtmp5)
%addtmp = fadd double %calltmp, %calltmp6
ret double %addtmp

ifcont:
ret double 1.000000e+00

}

Here we see that the simplifycfg pass decided to clone the return instruction into the end of the ‘else’ block. This
allowed it to eliminate some branches and the PHI node.

Now that all symbol table references are updated to use stack variables, we’ll add the assignment operator.
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New Assignment Operator

With our current framework, adding a new assignment operator is really simple. We will parse it just like any other
binary operator, but handle it internally (instead of allowing the user to define it). The first step is to set a precedence:

int main() {
// Install standard binary operators.
// 1 is lowest precedence.
BinopPrecedence['='] = 2;
BinopPrecedence['<'] = 10;
BinopPrecedence['+'] = 20;
BinopPrecedence['-'] = 20;

Now that the parser knows the precedence of the binary operator, it takes care of all the parsing and AST generation.
We just need to implement codegen for the assignment operator. This looks like:

Value *BinaryExprAST::codegen() {
// Special case '=' because we don't want to emit the LHS as an expression.
if (Op == '=') {
// Assignment requires the LHS to be an identifier.
VariableExprAST *LHSE = dynamic_cast<VariableExprAST*>(LHS.get());
if (!LHSE)

return LogErrorV("destination of '=' must be a variable");

Unlike the rest of the binary operators, our assignment operator doesn’t follow the “emit LHS, emit RHS, do compu-
tation” model. As such, it is handled as a special case before the other binary operators are handled. The other strange
thing is that it requires the LHS to be a variable. It is invalid to have “(x+1) = expr” - only things like “x = expr” are
allowed.

// Codegen the RHS.
Value *Val = RHS->codegen();
if (!Val)
return nullptr;

// Look up the name.
Value *Variable = NamedValues[LHSE->getName()];
if (!Variable)
return LogErrorV("Unknown variable name");

Builder.CreateStore(Val, Variable);
return Val;

}
...

Once we have the variable, codegen’ing the assignment is straightforward: we emit the RHS of the assignment, create
a store, and return the computed value. Returning a value allows for chained assignments like “X = (Y = Z)”.

Now that we have an assignment operator, we can mutate loop variables and arguments. For example, we can now run
code like this:

# Function to print a double.
extern printd(x);

# Define ':' for sequencing: as a low-precedence operator that ignores operands
# and just returns the RHS.
def binary : 1 (x y) y;

def test(x)
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printd(x) :
x = 4 :
printd(x);

test(123);

When run, this example prints “123” and then “4”, showing that we did actually mutate the value! Okay, we have now
officially implemented our goal: getting this to work requires SSA construction in the general case. However, to be
really useful, we want the ability to define our own local variables, let’s add this next!

User-defined Local Variables

Adding var/in is just like any other extension we made to Kaleidoscope: we extend the lexer, the parser, the AST and
the code generator. The first step for adding our new ‘var/in’ construct is to extend the lexer. As before, this is pretty
trivial, the code looks like this:

enum Token {
...
// var definition
tok_var = -13

...
}
...
static int gettok() {
...

if (IdentifierStr == "in")
return tok_in;

if (IdentifierStr == "binary")
return tok_binary;

if (IdentifierStr == "unary")
return tok_unary;

if (IdentifierStr == "var")
return tok_var;

return tok_identifier;
...

The next step is to define the AST node that we will construct. For var/in, it looks like this:

/// VarExprAST - Expression class for var/in
class VarExprAST : public ExprAST {
std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
std::unique_ptr<ExprAST> Body;

public:
VarExprAST(std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames,

std::unique_ptr<ExprAST> body)
: VarNames(std::move(VarNames)), Body(std::move(Body)) {}

virtual Value *codegen();
};

var/in allows a list of names to be defined all at once, and each name can optionally have an initializer value. As
such, we capture this information in the VarNames vector. Also, var/in has a body, this body is allowed to access the
variables defined by the var/in.

With this in place, we can define the parser pieces. The first thing we do is add it as a primary expression:
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/// primary
/// ::= identifierexpr
/// ::= numberexpr
/// ::= parenexpr
/// ::= ifexpr
/// ::= forexpr
/// ::= varexpr
static std::unique_ptr<ExprAST> ParsePrimary() {
switch (CurTok) {
default:
return LogError("unknown token when expecting an expression");

case tok_identifier:
return ParseIdentifierExpr();

case tok_number:
return ParseNumberExpr();

case '(':
return ParseParenExpr();

case tok_if:
return ParseIfExpr();

case tok_for:
return ParseForExpr();

case tok_var:
return ParseVarExpr();

}
}

Next we define ParseVarExpr:

/// varexpr ::= 'var' identifier ('=' expression)?
// (',' identifier ('=' expression)?)* 'in' expression
static std::unique_ptr<ExprAST> ParseVarExpr() {
getNextToken(); // eat the var.

std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;

// At least one variable name is required.
if (CurTok != tok_identifier)
return LogError("expected identifier after var");

The first part of this code parses the list of identifier/expr pairs into the local VarNames vector.

while (1) {
std::string Name = IdentifierStr;
getNextToken(); // eat identifier.

// Read the optional initializer.
std::unique_ptr<ExprAST> Init;
if (CurTok == '=') {
getNextToken(); // eat the '='.

Init = ParseExpression();
if (!Init) return nullptr;

}

VarNames.push_back(std::make_pair(Name, std::move(Init)));

// End of var list, exit loop.
if (CurTok != ',') break;
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getNextToken(); // eat the ','.

if (CurTok != tok_identifier)
return LogError("expected identifier list after var");

}

Once all the variables are parsed, we then parse the body and create the AST node:

// At this point, we have to have 'in'.
if (CurTok != tok_in)
return LogError("expected 'in' keyword after 'var'");

getNextToken(); // eat 'in'.

auto Body = ParseExpression();
if (!Body)
return nullptr;

return llvm::make_unique<VarExprAST>(std::move(VarNames),
std::move(Body));

}

Now that we can parse and represent the code, we need to support emission of LLVM IR for it. This code starts out
with:

Value *VarExprAST::codegen() {
std::vector<AllocaInst *> OldBindings;

Function *TheFunction = Builder.GetInsertBlock()->getParent();

// Register all variables and emit their initializer.
for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
const std::string &VarName = VarNames[i].first;
ExprAST *Init = VarNames[i].second.get();

Basically it loops over all the variables, installing them one at a time. For each variable we put into the symbol table,
we remember the previous value that we replace in OldBindings.

// Emit the initializer before adding the variable to scope, this prevents
// the initializer from referencing the variable itself, and permits stuff
// like this:
// var a = 1 in
// var a = a in ... # refers to outer 'a'.
Value *InitVal;
if (Init) {
InitVal = Init->codegen();
if (!InitVal)

return nullptr;
} else { // If not specified, use 0.0.
InitVal = ConstantFP::get(LLVMContext, APFloat(0.0));

}

AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
Builder.CreateStore(InitVal, Alloca);

// Remember the old variable binding so that we can restore the binding when
// we unrecurse.
OldBindings.push_back(NamedValues[VarName]);
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// Remember this binding.
NamedValues[VarName] = Alloca;

}

There are more comments here than code. The basic idea is that we emit the initializer, create the alloca, then update
the symbol table to point to it. Once all the variables are installed in the symbol table, we evaluate the body of the
var/in expression:

// Codegen the body, now that all vars are in scope.
Value *BodyVal = Body->codegen();
if (!BodyVal)

return nullptr;

Finally, before returning, we restore the previous variable bindings:

// Pop all our variables from scope.
for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
NamedValues[VarNames[i].first] = OldBindings[i];

// Return the body computation.
return BodyVal;

}

The end result of all of this is that we get properly scoped variable definitions, and we even (trivially) allow mutation
of them :).

With this, we completed what we set out to do. Our nice iterative fib example from the intro compiles and runs just
fine. The mem2reg pass optimizes all of our stack variables into SSA registers, inserting PHI nodes where needed,
and our front-end remains simple: no “iterated dominance frontier” computation anywhere in sight.

Full Code Listing

Here is the complete code listing for our running example, enhanced with mutable variables and var/in support. To
build this example, use:

# Compile
clang++ -g toy.cpp `llvm-config --cxxflags --ldflags --system-libs --libs core mcjit
→˓native` -O3 -o toy
# Run
./toy

Here is the code:

#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Verifier.h"
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#include "llvm/Support/TargetSelect.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVN.h"
#include "../include/KaleidoscopeJIT.h"
#include <cassert>
#include <cctype>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <map>
#include <memory>
#include <string>
#include <utility>
#include <vector>

using namespace llvm;
using namespace llvm::orc;

//===----------------------------------------------------------------------===//
// Lexer
//===----------------------------------------------------------------------===//

// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
// of these for known things.
enum Token {

tok_eof = -1,

// commands
tok_def = -2,
tok_extern = -3,

// primary
tok_identifier = -4,
tok_number = -5,

// control
tok_if = -6,
tok_then = -7,
tok_else = -8,
tok_for = -9,
tok_in = -10,

// operators
tok_binary = -11,
tok_unary = -12,

// var definition
tok_var = -13

};

static std::string IdentifierStr; // Filled in if tok_identifier
static double NumVal; // Filled in if tok_number

/// gettok - Return the next token from standard input.
static int gettok() {

static int LastChar = ' ';
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// Skip any whitespace.
while (isspace(LastChar))
LastChar = getchar();

if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
IdentifierStr = LastChar;
while (isalnum((LastChar = getchar())))

IdentifierStr += LastChar;

if (IdentifierStr == "def")
return tok_def;

if (IdentifierStr == "extern")
return tok_extern;

if (IdentifierStr == "if")
return tok_if;

if (IdentifierStr == "then")
return tok_then;

if (IdentifierStr == "else")
return tok_else;

if (IdentifierStr == "for")
return tok_for;

if (IdentifierStr == "in")
return tok_in;

if (IdentifierStr == "binary")
return tok_binary;

if (IdentifierStr == "unary")
return tok_unary;

if (IdentifierStr == "var")
return tok_var;

return tok_identifier;
}

if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
std::string NumStr;
do {

NumStr += LastChar;
LastChar = getchar();

} while (isdigit(LastChar) || LastChar == '.');

NumVal = strtod(NumStr.c_str(), nullptr);
return tok_number;

}

if (LastChar == '#') {
// Comment until end of line.
do

LastChar = getchar();
while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');

if (LastChar != EOF)
return gettok();

}

// Check for end of file. Don't eat the EOF.
if (LastChar == EOF)
return tok_eof;

// Otherwise, just return the character as its ascii value.
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int ThisChar = LastChar;
LastChar = getchar();
return ThisChar;

}

//===----------------------------------------------------------------------===//
// Abstract Syntax Tree (aka Parse Tree)
//===----------------------------------------------------------------------===//
namespace {
/// ExprAST - Base class for all expression nodes.
class ExprAST {
public:

virtual ~ExprAST() {}
virtual Value *codegen() = 0;

};

/// NumberExprAST - Expression class for numeric literals like "1.0".
class NumberExprAST : public ExprAST {
double Val;

public:
NumberExprAST(double Val) : Val(Val) {}
Value *codegen() override;

};

/// VariableExprAST - Expression class for referencing a variable, like "a".
class VariableExprAST : public ExprAST {
std::string Name;

public:
VariableExprAST(const std::string &Name) : Name(Name) {}
const std::string &getName() const { return Name; }
Value *codegen() override;

};

/// UnaryExprAST - Expression class for a unary operator.
class UnaryExprAST : public ExprAST {

char Opcode;
std::unique_ptr<ExprAST> Operand;

public:
UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)

: Opcode(Opcode), Operand(std::move(Operand)) {}
Value *codegen() override;

};

/// BinaryExprAST - Expression class for a binary operator.
class BinaryExprAST : public ExprAST {
char Op;
std::unique_ptr<ExprAST> LHS, RHS;

public:
BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,

std::unique_ptr<ExprAST> RHS)
: Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}

Value *codegen() override;
};
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/// CallExprAST - Expression class for function calls.
class CallExprAST : public ExprAST {

std::string Callee;
std::vector<std::unique_ptr<ExprAST>> Args;

public:
CallExprAST(const std::string &Callee,

std::vector<std::unique_ptr<ExprAST>> Args)
: Callee(Callee), Args(std::move(Args)) {}

Value *codegen() override;
};

/// IfExprAST - Expression class for if/then/else.
class IfExprAST : public ExprAST {

std::unique_ptr<ExprAST> Cond, Then, Else;

public:
IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,

std::unique_ptr<ExprAST> Else)
: Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}

Value *codegen() override;
};

/// ForExprAST - Expression class for for/in.
class ForExprAST : public ExprAST {
std::string VarName;
std::unique_ptr<ExprAST> Start, End, Step, Body;

public:
ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start,

std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
std::unique_ptr<ExprAST> Body)

: VarName(VarName), Start(std::move(Start)), End(std::move(End)),
Step(std::move(Step)), Body(std::move(Body)) {}

Value *codegen() override;
};

/// VarExprAST - Expression class for var/in
class VarExprAST : public ExprAST {
std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
std::unique_ptr<ExprAST> Body;

public:
VarExprAST(

std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames,
std::unique_ptr<ExprAST> Body)
: VarNames(std::move(VarNames)), Body(std::move(Body)) {}

Value *codegen() override;
};

/// PrototypeAST - This class represents the "prototype" for a function,
/// which captures its name, and its argument names (thus implicitly the number
/// of arguments the function takes), as well as if it is an operator.
class PrototypeAST {

std::string Name;
std::vector<std::string> Args;
bool IsOperator;
unsigned Precedence; // Precedence if a binary op.
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public:
PrototypeAST(const std::string &Name, std::vector<std::string> Args,

bool IsOperator = false, unsigned Prec = 0)
: Name(Name), Args(std::move(Args)), IsOperator(IsOperator),

Precedence(Prec) {}
Function *codegen();
const std::string &getName() const { return Name; }

bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
bool isBinaryOp() const { return IsOperator && Args.size() == 2; }

char getOperatorName() const {
assert(isUnaryOp() || isBinaryOp());
return Name[Name.size() - 1];

}

unsigned getBinaryPrecedence() const { return Precedence; }
};

/// FunctionAST - This class represents a function definition itself.
class FunctionAST {

std::unique_ptr<PrototypeAST> Proto;
std::unique_ptr<ExprAST> Body;

public:
FunctionAST(std::unique_ptr<PrototypeAST> Proto,

std::unique_ptr<ExprAST> Body)
: Proto(std::move(Proto)), Body(std::move(Body)) {}

Function *codegen();
};
} // end anonymous namespace

//===----------------------------------------------------------------------===//
// Parser
//===----------------------------------------------------------------------===//

/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
/// token the parser is looking at. getNextToken reads another token from the
/// lexer and updates CurTok with its results.
static int CurTok;
static int getNextToken() { return CurTok = gettok(); }

/// BinopPrecedence - This holds the precedence for each binary operator that is
/// defined.
static std::map<char, int> BinopPrecedence;

/// GetTokPrecedence - Get the precedence of the pending binary operator token.
static int GetTokPrecedence() {
if (!isascii(CurTok))
return -1;

// Make sure it's a declared binop.
int TokPrec = BinopPrecedence[CurTok];
if (TokPrec <= 0)
return -1;

return TokPrec;
}
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/// LogError* - These are little helper functions for error handling.
std::unique_ptr<ExprAST> LogError(const char *Str) {

fprintf(stderr, "Error: %s\n", Str);
return nullptr;

}

std::unique_ptr<PrototypeAST> LogErrorP(const char *Str) {
LogError(Str);
return nullptr;

}

static std::unique_ptr<ExprAST> ParseExpression();

/// numberexpr ::= number
static std::unique_ptr<ExprAST> ParseNumberExpr() {
auto Result = llvm::make_unique<NumberExprAST>(NumVal);
getNextToken(); // consume the number
return std::move(Result);

}

/// parenexpr ::= '(' expression ')'
static std::unique_ptr<ExprAST> ParseParenExpr() {

getNextToken(); // eat (.
auto V = ParseExpression();
if (!V)
return nullptr;

if (CurTok != ')')
return LogError("expected ')'");

getNextToken(); // eat ).
return V;

}

/// identifierexpr
/// ::= identifier
/// ::= identifier '(' expression* ')'
static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
std::string IdName = IdentifierStr;

getNextToken(); // eat identifier.

if (CurTok != '(') // Simple variable ref.
return llvm::make_unique<VariableExprAST>(IdName);

// Call.
getNextToken(); // eat (
std::vector<std::unique_ptr<ExprAST>> Args;
if (CurTok != ')') {
while (true) {

if (auto Arg = ParseExpression())
Args.push_back(std::move(Arg));

else
return nullptr;

if (CurTok == ')')
break;
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if (CurTok != ',')
return LogError("Expected ')' or ',' in argument list");

getNextToken();
}

}

// Eat the ')'.
getNextToken();

return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
}

/// ifexpr ::= 'if' expression 'then' expression 'else' expression
static std::unique_ptr<ExprAST> ParseIfExpr() {
getNextToken(); // eat the if.

// condition.
auto Cond = ParseExpression();
if (!Cond)
return nullptr;

if (CurTok != tok_then)
return LogError("expected then");

getNextToken(); // eat the then

auto Then = ParseExpression();
if (!Then)
return nullptr;

if (CurTok != tok_else)
return LogError("expected else");

getNextToken();

auto Else = ParseExpression();
if (!Else)
return nullptr;

return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
std::move(Else));

}

/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
static std::unique_ptr<ExprAST> ParseForExpr() {
getNextToken(); // eat the for.

if (CurTok != tok_identifier)
return LogError("expected identifier after for");

std::string IdName = IdentifierStr;
getNextToken(); // eat identifier.

if (CurTok != '=')
return LogError("expected '=' after for");

getNextToken(); // eat '='.

auto Start = ParseExpression();
if (!Start)
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return nullptr;
if (CurTok != ',')
return LogError("expected ',' after for start value");

getNextToken();

auto End = ParseExpression();
if (!End)
return nullptr;

// The step value is optional.
std::unique_ptr<ExprAST> Step;
if (CurTok == ',') {
getNextToken();
Step = ParseExpression();
if (!Step)

return nullptr;
}

if (CurTok != tok_in)
return LogError("expected 'in' after for");

getNextToken(); // eat 'in'.

auto Body = ParseExpression();
if (!Body)
return nullptr;

return llvm::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
std::move(Step), std::move(Body));

}

/// varexpr ::= 'var' identifier ('=' expression)?
// (',' identifier ('=' expression)?)* 'in' expression
static std::unique_ptr<ExprAST> ParseVarExpr() {
getNextToken(); // eat the var.

std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;

// At least one variable name is required.
if (CurTok != tok_identifier)
return LogError("expected identifier after var");

while (true) {
std::string Name = IdentifierStr;
getNextToken(); // eat identifier.

// Read the optional initializer.
std::unique_ptr<ExprAST> Init = nullptr;
if (CurTok == '=') {

getNextToken(); // eat the '='.

Init = ParseExpression();
if (!Init)

return nullptr;
}

VarNames.push_back(std::make_pair(Name, std::move(Init)));

// End of var list, exit loop.
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if (CurTok != ',')
break;

getNextToken(); // eat the ','.

if (CurTok != tok_identifier)
return LogError("expected identifier list after var");

}

// At this point, we have to have 'in'.
if (CurTok != tok_in)
return LogError("expected 'in' keyword after 'var'");

getNextToken(); // eat 'in'.

auto Body = ParseExpression();
if (!Body)
return nullptr;

return llvm::make_unique<VarExprAST>(std::move(VarNames), std::move(Body));
}

/// primary
/// ::= identifierexpr
/// ::= numberexpr
/// ::= parenexpr
/// ::= ifexpr
/// ::= forexpr
/// ::= varexpr
static std::unique_ptr<ExprAST> ParsePrimary() {
switch (CurTok) {
default:
return LogError("unknown token when expecting an expression");

case tok_identifier:
return ParseIdentifierExpr();

case tok_number:
return ParseNumberExpr();

case '(':
return ParseParenExpr();

case tok_if:
return ParseIfExpr();

case tok_for:
return ParseForExpr();

case tok_var:
return ParseVarExpr();

}
}

/// unary
/// ::= primary
/// ::= '!' unary
static std::unique_ptr<ExprAST> ParseUnary() {

// If the current token is not an operator, it must be a primary expr.
if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
return ParsePrimary();

// If this is a unary operator, read it.
int Opc = CurTok;
getNextToken();
if (auto Operand = ParseUnary())
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return llvm::make_unique<UnaryExprAST>(Opc, std::move(Operand));
return nullptr;

}

/// binoprhs
/// ::= ('+' unary)*
static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,

std::unique_ptr<ExprAST> LHS) {
// If this is a binop, find its precedence.
while (true) {
int TokPrec = GetTokPrecedence();

// If this is a binop that binds at least as tightly as the current binop,
// consume it, otherwise we are done.
if (TokPrec < ExprPrec)

return LHS;

// Okay, we know this is a binop.
int BinOp = CurTok;
getNextToken(); // eat binop

// Parse the unary expression after the binary operator.
auto RHS = ParseUnary();
if (!RHS)

return nullptr;

// If BinOp binds less tightly with RHS than the operator after RHS, let
// the pending operator take RHS as its LHS.
int NextPrec = GetTokPrecedence();
if (TokPrec < NextPrec) {

RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
if (!RHS)

return nullptr;
}

// Merge LHS/RHS.
LHS =

llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
}

}

/// expression
/// ::= unary binoprhs
///
static std::unique_ptr<ExprAST> ParseExpression() {
auto LHS = ParseUnary();
if (!LHS)
return nullptr;

return ParseBinOpRHS(0, std::move(LHS));
}

/// prototype
/// ::= id '(' id* ')'
/// ::= binary LETTER number? (id, id)
/// ::= unary LETTER (id)
static std::unique_ptr<PrototypeAST> ParsePrototype() {
std::string FnName;
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unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
unsigned BinaryPrecedence = 30;

switch (CurTok) {
default:
return LogErrorP("Expected function name in prototype");

case tok_identifier:
FnName = IdentifierStr;
Kind = 0;
getNextToken();
break;

case tok_unary:
getNextToken();
if (!isascii(CurTok))

return LogErrorP("Expected unary operator");
FnName = "unary";
FnName += (char)CurTok;
Kind = 1;
getNextToken();
break;

case tok_binary:
getNextToken();
if (!isascii(CurTok))

return LogErrorP("Expected binary operator");
FnName = "binary";
FnName += (char)CurTok;
Kind = 2;
getNextToken();

// Read the precedence if present.
if (CurTok == tok_number) {

if (NumVal < 1 || NumVal > 100)
return LogErrorP("Invalid precedecnce: must be 1..100");

BinaryPrecedence = (unsigned)NumVal;
getNextToken();

}
break;

}

if (CurTok != '(')
return LogErrorP("Expected '(' in prototype");

std::vector<std::string> ArgNames;
while (getNextToken() == tok_identifier)
ArgNames.push_back(IdentifierStr);

if (CurTok != ')')
return LogErrorP("Expected ')' in prototype");

// success.
getNextToken(); // eat ')'.

// Verify right number of names for operator.
if (Kind && ArgNames.size() != Kind)
return LogErrorP("Invalid number of operands for operator");

return llvm::make_unique<PrototypeAST>(FnName, ArgNames, Kind != 0,
BinaryPrecedence);
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}

/// definition ::= 'def' prototype expression
static std::unique_ptr<FunctionAST> ParseDefinition() {
getNextToken(); // eat def.
auto Proto = ParsePrototype();
if (!Proto)
return nullptr;

if (auto E = ParseExpression())
return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));

return nullptr;
}

/// toplevelexpr ::= expression
static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {

if (auto E = ParseExpression()) {
// Make an anonymous proto.
auto Proto = llvm::make_unique<PrototypeAST>("__anon_expr",

std::vector<std::string>());
return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));

}
return nullptr;

}

/// external ::= 'extern' prototype
static std::unique_ptr<PrototypeAST> ParseExtern() {

getNextToken(); // eat extern.
return ParsePrototype();

}

//===----------------------------------------------------------------------===//
// Code Generation
//===----------------------------------------------------------------------===//

static LLVMContext TheContext;
static IRBuilder<> Builder(TheContext);
static std::unique_ptr<Module> TheModule;
static std::map<std::string, AllocaInst *> NamedValues;
static std::unique_ptr<legacy::FunctionPassManager> TheFPM;
static std::unique_ptr<KaleidoscopeJIT> TheJIT;
static std::map<std::string, std::unique_ptr<PrototypeAST>> FunctionProtos;

Value *LogErrorV(const char *Str) {
LogError(Str);
return nullptr;

}

Function *getFunction(std::string Name) {
// First, see if the function has already been added to the current module.
if (auto *F = TheModule->getFunction(Name))
return F;

// If not, check whether we can codegen the declaration from some existing
// prototype.
auto FI = FunctionProtos.find(Name);
if (FI != FunctionProtos.end())
return FI->second->codegen();
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// If no existing prototype exists, return null.
return nullptr;

}

/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
/// the function. This is used for mutable variables etc.
static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,

const std::string &VarName) {
IRBuilder<> TmpB(&TheFunction->getEntryBlock(),

TheFunction->getEntryBlock().begin());
return TmpB.CreateAlloca(Type::getDoubleTy(TheContext), nullptr, VarName);

}

Value *NumberExprAST::codegen() {
return ConstantFP::get(TheContext, APFloat(Val));

}

Value *VariableExprAST::codegen() {
// Look this variable up in the function.
Value *V = NamedValues[Name];
if (!V)
return LogErrorV("Unknown variable name");

// Load the value.
return Builder.CreateLoad(V, Name.c_str());

}

Value *UnaryExprAST::codegen() {
Value *OperandV = Operand->codegen();
if (!OperandV)
return nullptr;

Function *F = getFunction(std::string("unary") + Opcode);
if (!F)
return LogErrorV("Unknown unary operator");

return Builder.CreateCall(F, OperandV, "unop");
}

Value *BinaryExprAST::codegen() {
// Special case '=' because we don't want to emit the LHS as an expression.
if (Op == '=') {
// Assignment requires the LHS to be an identifier.
// This assume we're building without RTTI because LLVM builds that way by
// default. If you build LLVM with RTTI this can be changed to a
// dynamic_cast for automatic error checking.
VariableExprAST *LHSE = static_cast<VariableExprAST *>(LHS.get());
if (!LHSE)

return LogErrorV("destination of '=' must be a variable");
// Codegen the RHS.
Value *Val = RHS->codegen();
if (!Val)

return nullptr;

// Look up the name.
Value *Variable = NamedValues[LHSE->getName()];
if (!Variable)
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return LogErrorV("Unknown variable name");

Builder.CreateStore(Val, Variable);
return Val;

}

Value *L = LHS->codegen();
Value *R = RHS->codegen();
if (!L || !R)
return nullptr;

switch (Op) {
case '+':
return Builder.CreateFAdd(L, R, "addtmp");

case '-':
return Builder.CreateFSub(L, R, "subtmp");

case '*':
return Builder.CreateFMul(L, R, "multmp");

case '<':
L = Builder.CreateFCmpULT(L, R, "cmptmp");
// Convert bool 0/1 to double 0.0 or 1.0
return Builder.CreateUIToFP(L, Type::getDoubleTy(TheContext), "booltmp");

default:
break;

}

// If it wasn't a builtin binary operator, it must be a user defined one. Emit
// a call to it.
Function *F = getFunction(std::string("binary") + Op);
assert(F && "binary operator not found!");

Value *Ops[] = {L, R};
return Builder.CreateCall(F, Ops, "binop");

}

Value *CallExprAST::codegen() {
// Look up the name in the global module table.
Function *CalleeF = getFunction(Callee);
if (!CalleeF)
return LogErrorV("Unknown function referenced");

// If argument mismatch error.
if (CalleeF->arg_size() != Args.size())
return LogErrorV("Incorrect # arguments passed");

std::vector<Value *> ArgsV;
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
ArgsV.push_back(Args[i]->codegen());
if (!ArgsV.back())

return nullptr;
}

return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
}

Value *IfExprAST::codegen() {
Value *CondV = Cond->codegen();
if (!CondV)
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return nullptr;

// Convert condition to a bool by comparing equal to 0.0.
CondV = Builder.CreateFCmpONE(

CondV, ConstantFP::get(TheContext, APFloat(0.0)), "ifcond");

Function *TheFunction = Builder.GetInsertBlock()->getParent();

// Create blocks for the then and else cases. Insert the 'then' block at the
// end of the function.
BasicBlock *ThenBB = BasicBlock::Create(TheContext, "then", TheFunction);
BasicBlock *ElseBB = BasicBlock::Create(TheContext, "else");
BasicBlock *MergeBB = BasicBlock::Create(TheContext, "ifcont");

Builder.CreateCondBr(CondV, ThenBB, ElseBB);

// Emit then value.
Builder.SetInsertPoint(ThenBB);

Value *ThenV = Then->codegen();
if (!ThenV)
return nullptr;

Builder.CreateBr(MergeBB);
// Codegen of 'Then' can change the current block, update ThenBB for the PHI.
ThenBB = Builder.GetInsertBlock();

// Emit else block.
TheFunction->getBasicBlockList().push_back(ElseBB);
Builder.SetInsertPoint(ElseBB);

Value *ElseV = Else->codegen();
if (!ElseV)
return nullptr;

Builder.CreateBr(MergeBB);
// Codegen of 'Else' can change the current block, update ElseBB for the PHI.
ElseBB = Builder.GetInsertBlock();

// Emit merge block.
TheFunction->getBasicBlockList().push_back(MergeBB);
Builder.SetInsertPoint(MergeBB);
PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(TheContext), 2, "iftmp");

PN->addIncoming(ThenV, ThenBB);
PN->addIncoming(ElseV, ElseBB);
return PN;

}

// Output for-loop as:
// var = alloca double
// ...
// start = startexpr
// store start -> var
// goto loop
// loop:
// ...
// bodyexpr
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// ...
// loopend:
// step = stepexpr
// endcond = endexpr
//
// curvar = load var
// nextvar = curvar + step
// store nextvar -> var
// br endcond, loop, endloop
// outloop:
Value *ForExprAST::codegen() {
Function *TheFunction = Builder.GetInsertBlock()->getParent();

// Create an alloca for the variable in the entry block.
AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);

// Emit the start code first, without 'variable' in scope.
Value *StartVal = Start->codegen();
if (!StartVal)
return nullptr;

// Store the value into the alloca.
Builder.CreateStore(StartVal, Alloca);

// Make the new basic block for the loop header, inserting after current
// block.
BasicBlock *LoopBB = BasicBlock::Create(TheContext, "loop", TheFunction);

// Insert an explicit fall through from the current block to the LoopBB.
Builder.CreateBr(LoopBB);

// Start insertion in LoopBB.
Builder.SetInsertPoint(LoopBB);

// Within the loop, the variable is defined equal to the PHI node. If it
// shadows an existing variable, we have to restore it, so save it now.
AllocaInst *OldVal = NamedValues[VarName];
NamedValues[VarName] = Alloca;

// Emit the body of the loop. This, like any other expr, can change the
// current BB. Note that we ignore the value computed by the body, but don't
// allow an error.
if (!Body->codegen())
return nullptr;

// Emit the step value.
Value *StepVal = nullptr;
if (Step) {
StepVal = Step->codegen();
if (!StepVal)

return nullptr;
} else {
// If not specified, use 1.0.
StepVal = ConstantFP::get(TheContext, APFloat(1.0));

}

// Compute the end condition.
Value *EndCond = End->codegen();
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if (!EndCond)
return nullptr;

// Reload, increment, and restore the alloca. This handles the case where
// the body of the loop mutates the variable.
Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
Builder.CreateStore(NextVar, Alloca);

// Convert condition to a bool by comparing equal to 0.0.
EndCond = Builder.CreateFCmpONE(

EndCond, ConstantFP::get(TheContext, APFloat(0.0)), "loopcond");

// Create the "after loop" block and insert it.
BasicBlock *AfterBB =

BasicBlock::Create(TheContext, "afterloop", TheFunction);

// Insert the conditional branch into the end of LoopEndBB.
Builder.CreateCondBr(EndCond, LoopBB, AfterBB);

// Any new code will be inserted in AfterBB.
Builder.SetInsertPoint(AfterBB);

// Restore the unshadowed variable.
if (OldVal)
NamedValues[VarName] = OldVal;

else
NamedValues.erase(VarName);

// for expr always returns 0.0.
return Constant::getNullValue(Type::getDoubleTy(TheContext));

}

Value *VarExprAST::codegen() {
std::vector<AllocaInst *> OldBindings;

Function *TheFunction = Builder.GetInsertBlock()->getParent();

// Register all variables and emit their initializer.
for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
const std::string &VarName = VarNames[i].first;
ExprAST *Init = VarNames[i].second.get();

// Emit the initializer before adding the variable to scope, this prevents
// the initializer from referencing the variable itself, and permits stuff
// like this:
// var a = 1 in
// var a = a in ... # refers to outer 'a'.
Value *InitVal;
if (Init) {

InitVal = Init->codegen();
if (!InitVal)

return nullptr;
} else { // If not specified, use 0.0.

InitVal = ConstantFP::get(TheContext, APFloat(0.0));
}

AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
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Builder.CreateStore(InitVal, Alloca);

// Remember the old variable binding so that we can restore the binding when
// we unrecurse.
OldBindings.push_back(NamedValues[VarName]);

// Remember this binding.
NamedValues[VarName] = Alloca;

}

// Codegen the body, now that all vars are in scope.
Value *BodyVal = Body->codegen();
if (!BodyVal)
return nullptr;

// Pop all our variables from scope.
for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
NamedValues[VarNames[i].first] = OldBindings[i];

// Return the body computation.
return BodyVal;

}

Function *PrototypeAST::codegen() {
// Make the function type: double(double,double) etc.
std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(TheContext));
FunctionType *FT =

FunctionType::get(Type::getDoubleTy(TheContext), Doubles, false);

Function *F =
Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get());

// Set names for all arguments.
unsigned Idx = 0;
for (auto &Arg : F->args())
Arg.setName(Args[Idx++]);

return F;
}

Function *FunctionAST::codegen() {
// Transfer ownership of the prototype to the FunctionProtos map, but keep a
// reference to it for use below.
auto &P = *Proto;
FunctionProtos[Proto->getName()] = std::move(Proto);
Function *TheFunction = getFunction(P.getName());
if (!TheFunction)
return nullptr;

// If this is an operator, install it.
if (P.isBinaryOp())
BinopPrecedence[P.getOperatorName()] = P.getBinaryPrecedence();

// Create a new basic block to start insertion into.
BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction);
Builder.SetInsertPoint(BB);

// Record the function arguments in the NamedValues map.
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NamedValues.clear();
for (auto &Arg : TheFunction->args()) {
// Create an alloca for this variable.
AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, Arg.getName());

// Store the initial value into the alloca.
Builder.CreateStore(&Arg, Alloca);

// Add arguments to variable symbol table.
NamedValues[Arg.getName()] = Alloca;

}

if (Value *RetVal = Body->codegen()) {
// Finish off the function.
Builder.CreateRet(RetVal);

// Validate the generated code, checking for consistency.
verifyFunction(*TheFunction);

// Run the optimizer on the function.
TheFPM->run(*TheFunction);

return TheFunction;
}

// Error reading body, remove function.
TheFunction->eraseFromParent();

if (P.isBinaryOp())
BinopPrecedence.erase(Proto->getOperatorName());

return nullptr;
}

//===----------------------------------------------------------------------===//
// Top-Level parsing and JIT Driver
//===----------------------------------------------------------------------===//

static void InitializeModuleAndPassManager() {
// Open a new module.
TheModule = llvm::make_unique<Module>("my cool jit", TheContext);
TheModule->setDataLayout(TheJIT->getTargetMachine().createDataLayout());

// Create a new pass manager attached to it.
TheFPM = llvm::make_unique<legacy::FunctionPassManager>(TheModule.get());

// Do simple "peephole" optimizations and bit-twiddling optzns.
TheFPM->add(createInstructionCombiningPass());
// Reassociate expressions.
TheFPM->add(createReassociatePass());
// Eliminate Common SubExpressions.
TheFPM->add(createGVNPass());
// Simplify the control flow graph (deleting unreachable blocks, etc).
TheFPM->add(createCFGSimplificationPass());

TheFPM->doInitialization();
}

static void HandleDefinition() {
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if (auto FnAST = ParseDefinition()) {
if (auto *FnIR = FnAST->codegen()) {
fprintf(stderr, "Read function definition:");
FnIR->dump();
TheJIT->addModule(std::move(TheModule));
InitializeModuleAndPassManager();

}
} else {
// Skip token for error recovery.
getNextToken();

}
}

static void HandleExtern() {
if (auto ProtoAST = ParseExtern()) {
if (auto *FnIR = ProtoAST->codegen()) {
fprintf(stderr, "Read extern: ");
FnIR->dump();
FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST);

}
} else {
// Skip token for error recovery.
getNextToken();

}
}

static void HandleTopLevelExpression() {
// Evaluate a top-level expression into an anonymous function.
if (auto FnAST = ParseTopLevelExpr()) {
if (FnAST->codegen()) {

// JIT the module containing the anonymous expression, keeping a handle so
// we can free it later.
auto H = TheJIT->addModule(std::move(TheModule));
InitializeModuleAndPassManager();

// Search the JIT for the __anon_expr symbol.
auto ExprSymbol = TheJIT->findSymbol("__anon_expr");
assert(ExprSymbol && "Function not found");

// Get the symbol's address and cast it to the right type (takes no
// arguments, returns a double) so we can call it as a native function.
double (*FP)() = (double (*)())(intptr_t)ExprSymbol.getAddress();
fprintf(stderr, "Evaluated to %f\n", FP());

// Delete the anonymous expression module from the JIT.
TheJIT->removeModule(H);

}
} else {
// Skip token for error recovery.
getNextToken();

}
}

/// top ::= definition | external | expression | ';'
static void MainLoop() {
while (true) {
fprintf(stderr, "ready> ");
switch (CurTok) {
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case tok_eof:
return;

case ';': // ignore top-level semicolons.
getNextToken();
break;

case tok_def:
HandleDefinition();
break;

case tok_extern:
HandleExtern();
break;

default:
HandleTopLevelExpression();
break;

}
}

}

//===----------------------------------------------------------------------===//
// "Library" functions that can be "extern'd" from user code.
//===----------------------------------------------------------------------===//

/// putchard - putchar that takes a double and returns 0.
extern "C" double putchard(double X) {
fputc((char)X, stderr);
return 0;

}

/// printd - printf that takes a double prints it as "%f\n", returning 0.
extern "C" double printd(double X) {
fprintf(stderr, "%f\n", X);
return 0;

}

//===----------------------------------------------------------------------===//
// Main driver code.
//===----------------------------------------------------------------------===//

int main() {
InitializeNativeTarget();
InitializeNativeTargetAsmPrinter();
InitializeNativeTargetAsmParser();

// Install standard binary operators.
// 1 is lowest precedence.
BinopPrecedence['='] = 2;
BinopPrecedence['<'] = 10;
BinopPrecedence['+'] = 20;
BinopPrecedence['-'] = 20;
BinopPrecedence['*'] = 40; // highest.

// Prime the first token.
fprintf(stderr, "ready> ");
getNextToken();

TheJIT = llvm::make_unique<KaleidoscopeJIT>();

InitializeModuleAndPassManager();
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// Run the main "interpreter loop" now.
MainLoop();

return 0;
}

Next: Compiling to Object Code

Kaleidoscope: Compiling to Object Code

• Chapter 8 Introduction

• Choosing a target

• Target Machine

• Configuring the Module

• Emit Object Code

• Putting It All Together

• Full Code Listing

Chapter 8 Introduction

Welcome to Chapter 8 of the “Implementing a language with LLVM” tutorial. This chapter describes how to compile
our language down to object files.

Choosing a target

LLVM has native support for cross-compilation. You can compile to the architecture of your current machine, or just
as easily compile for other architectures. In this tutorial, we’ll target the current machine.

To specify the architecture that you want to target, we use a string called a “target triple”. This takes the form
<arch><sub>-<vendor>-<sys>-<abi> (see the cross compilation docs).

As an example, we can see what clang thinks is our current target triple:

$ clang --version | grep Target
Target: x86_64-unknown-linux-gnu

Running this command may show something different on your machine as you might be using a different architecture
or operating system to me.

Fortunately, we don’t need to hard-code a target triple to target the current machine. LLVM provides
sys::getDefaultTargetTriple, which returns the target triple of the current machine.

auto TargetTriple = sys::getDefaultTargetTriple();

LLVM doesn’t require us to to link in all the target functionality. For example, if we’re just using the JIT, we don’t
need the assembly printers. Similarly, if we’re only targeting certain architectures, we can only link in the functionality
for those architectures.
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For this example, we’ll initialize all the targets for emitting object code.

InitializeAllTargetInfos();
InitializeAllTargets();
InitializeAllTargetMCs();
InitializeAllAsmParsers();
InitializeAllAsmPrinters();

We can now use our target triple to get a Target:

std::string Error;
auto Target = TargetRegistry::lookupTarget(TargetTriple, Error);

// Print an error and exit if we couldn't find the requested target.
// This generally occurs if we've forgotten to initialise the
// TargetRegistry or we have a bogus target triple.
if (!Target) {

errs() << Error;
return 1;

}

Target Machine

We will also need a TargetMachine. This class provides a complete machine description of the machine we’re
targeting. If we want to target a specific feature (such as SSE) or a specific CPU (such as Intel’s Sandylake), we do so
now.

To see which features and CPUs that LLVM knows about, we can use llc. For example, let’s look at x86:

$ llvm-as < /dev/null | llc -march=x86 -mattr=help
Available CPUs for this target:

amdfam10 - Select the amdfam10 processor.
athlon - Select the athlon processor.
athlon-4 - Select the athlon-4 processor.
...

Available features for this target:

16bit-mode - 16-bit mode (i8086).
32bit-mode - 32-bit mode (80386).
3dnow - Enable 3DNow! instructions.
3dnowa - Enable 3DNow! Athlon instructions.
...

For our example, we’ll use the generic CPU without any additional features, options or relocation model.

auto CPU = "generic";
auto Features = "";

TargetOptions opt;
auto RM = Optional<Reloc::Model>();
auto TargetMachine = Target->createTargetMachine(TargetTriple, CPU, Features, opt,
→˓RM);
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Configuring the Module

We’re now ready to configure our module, to specify the target and data layout. This isn’t strictly necessary, but the
frontend performance guide recommends this. Optimizations benefit from knowing about the target and data layout.

TheModule->setDataLayout(TargetMachine->createDataLayout());
TheModule->setTargetTriple(TargetTriple);

Emit Object Code

We’re ready to emit object code! Let’s define where we want to write our file to:

auto Filename = "output.o";
std::error_code EC;
raw_fd_ostream dest(Filename, EC, sys::fs::F_None);

if (EC) {
errs() << "Could not open file: " << EC.message();
return 1;

}

Finally, we define a pass that emits object code, then we run that pass:

legacy::PassManager pass;
auto FileType = TargetMachine::CGFT_ObjectFile;

if (TargetMachine->addPassesToEmitFile(pass, dest, FileType)) {
errs() << "TargetMachine can't emit a file of this type";
return 1;

}

pass.run(*TheModule);
dest.flush();

Putting It All Together

Does it work? Let’s give it a try. We need to compile our code, but note that the arguments to llvm-config are
different to the previous chapters.

$ clang++ -g -O3 toy.cpp `llvm-config --cxxflags --ldflags --system-libs --libs all` -
→˓o toy

Let’s run it, and define a simple average function. Press Ctrl-D when you’re done.

$ ./toy
ready> def average(x y) (x + y) * 0.5;
^D
Wrote output.o

We have an object file! To test it, let’s write a simple program and link it with our output. Here’s the source code:

#include <iostream>

extern "C" {
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double average(double, double);
}

int main() {
std::cout << "average of 3.0 and 4.0: " << average(3.0, 4.0) << std::endl;

}

We link our program to output.o and check the result is what we expected:

$ clang++ main.cpp output.o -o main
$ ./main
average of 3.0 and 4.0: 3.5

Full Code Listing

#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Transforms/Scalar.h"
#include <cctype>
#include <cstdio>
#include <cstdlib>
#include <map>
#include <memory>
#include <string>
#include <utility>
#include <vector>

using namespace llvm;
using namespace llvm::sys;

//===----------------------------------------------------------------------===//
// Lexer
//===----------------------------------------------------------------------===//

// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
// of these for known things.
enum Token {

tok_eof = -1,

// commands
tok_def = -2,
tok_extern = -3,
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// primary
tok_identifier = -4,
tok_number = -5,

// control
tok_if = -6,
tok_then = -7,
tok_else = -8,
tok_for = -9,
tok_in = -10,

// operators
tok_binary = -11,
tok_unary = -12,

// var definition
tok_var = -13

};

static std::string IdentifierStr; // Filled in if tok_identifier
static double NumVal; // Filled in if tok_number

/// gettok - Return the next token from standard input.
static int gettok() {

static int LastChar = ' ';

// Skip any whitespace.
while (isspace(LastChar))
LastChar = getchar();

if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
IdentifierStr = LastChar;
while (isalnum((LastChar = getchar())))

IdentifierStr += LastChar;

if (IdentifierStr == "def")
return tok_def;

if (IdentifierStr == "extern")
return tok_extern;

if (IdentifierStr == "if")
return tok_if;

if (IdentifierStr == "then")
return tok_then;

if (IdentifierStr == "else")
return tok_else;

if (IdentifierStr == "for")
return tok_for;

if (IdentifierStr == "in")
return tok_in;

if (IdentifierStr == "binary")
return tok_binary;

if (IdentifierStr == "unary")
return tok_unary;

if (IdentifierStr == "var")
return tok_var;

return tok_identifier;
}
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if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
std::string NumStr;
do {

NumStr += LastChar;
LastChar = getchar();

} while (isdigit(LastChar) || LastChar == '.');

NumVal = strtod(NumStr.c_str(), nullptr);
return tok_number;

}

if (LastChar == '#') {
// Comment until end of line.
do

LastChar = getchar();
while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');

if (LastChar != EOF)
return gettok();

}

// Check for end of file. Don't eat the EOF.
if (LastChar == EOF)
return tok_eof;

// Otherwise, just return the character as its ascii value.
int ThisChar = LastChar;
LastChar = getchar();
return ThisChar;

}

//===----------------------------------------------------------------------===//
// Abstract Syntax Tree (aka Parse Tree)
//===----------------------------------------------------------------------===//
namespace {
/// ExprAST - Base class for all expression nodes.
class ExprAST {
public:

virtual ~ExprAST() {}
virtual Value *codegen() = 0;

};

/// NumberExprAST - Expression class for numeric literals like "1.0".
class NumberExprAST : public ExprAST {
double Val;

public:
NumberExprAST(double Val) : Val(Val) {}
Value *codegen() override;

};

/// VariableExprAST - Expression class for referencing a variable, like "a".
class VariableExprAST : public ExprAST {
std::string Name;

public:
VariableExprAST(const std::string &Name) : Name(Name) {}
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const std::string &getName() const { return Name; }
Value *codegen() override;

};

/// UnaryExprAST - Expression class for a unary operator.
class UnaryExprAST : public ExprAST {

char Opcode;
std::unique_ptr<ExprAST> Operand;

public:
UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)

: Opcode(Opcode), Operand(std::move(Operand)) {}
Value *codegen() override;

};

/// BinaryExprAST - Expression class for a binary operator.
class BinaryExprAST : public ExprAST {
char Op;
std::unique_ptr<ExprAST> LHS, RHS;

public:
BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,

std::unique_ptr<ExprAST> RHS)
: Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}

Value *codegen() override;
};

/// CallExprAST - Expression class for function calls.
class CallExprAST : public ExprAST {
std::string Callee;
std::vector<std::unique_ptr<ExprAST>> Args;

public:
CallExprAST(const std::string &Callee,

std::vector<std::unique_ptr<ExprAST>> Args)
: Callee(Callee), Args(std::move(Args)) {}

Value *codegen() override;
};

/// IfExprAST - Expression class for if/then/else.
class IfExprAST : public ExprAST {

std::unique_ptr<ExprAST> Cond, Then, Else;

public:
IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,

std::unique_ptr<ExprAST> Else)
: Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}

Value *codegen() override;
};

/// ForExprAST - Expression class for for/in.
class ForExprAST : public ExprAST {
std::string VarName;
std::unique_ptr<ExprAST> Start, End, Step, Body;

public:
ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start,

std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
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std::unique_ptr<ExprAST> Body)
: VarName(VarName), Start(std::move(Start)), End(std::move(End)),

Step(std::move(Step)), Body(std::move(Body)) {}
Value *codegen() override;

};

/// VarExprAST - Expression class for var/in
class VarExprAST : public ExprAST {
std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
std::unique_ptr<ExprAST> Body;

public:
VarExprAST(

std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames,
std::unique_ptr<ExprAST> Body)
: VarNames(std::move(VarNames)), Body(std::move(Body)) {}

Value *codegen() override;
};

/// PrototypeAST - This class represents the "prototype" for a function,
/// which captures its name, and its argument names (thus implicitly the number
/// of arguments the function takes), as well as if it is an operator.
class PrototypeAST {
std::string Name;
std::vector<std::string> Args;
bool IsOperator;
unsigned Precedence; // Precedence if a binary op.

public:
PrototypeAST(const std::string &Name, std::vector<std::string> Args,

bool IsOperator = false, unsigned Prec = 0)
: Name(Name), Args(std::move(Args)), IsOperator(IsOperator),

Precedence(Prec) {}
Function *codegen();
const std::string &getName() const { return Name; }

bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
bool isBinaryOp() const { return IsOperator && Args.size() == 2; }

char getOperatorName() const {
assert(isUnaryOp() || isBinaryOp());
return Name[Name.size() - 1];

}

unsigned getBinaryPrecedence() const { return Precedence; }
};

/// FunctionAST - This class represents a function definition itself.
class FunctionAST {

std::unique_ptr<PrototypeAST> Proto;
std::unique_ptr<ExprAST> Body;

public:
FunctionAST(std::unique_ptr<PrototypeAST> Proto,

std::unique_ptr<ExprAST> Body)
: Proto(std::move(Proto)), Body(std::move(Body)) {}

Function *codegen();
};
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} // end anonymous namespace

//===----------------------------------------------------------------------===//
// Parser
//===----------------------------------------------------------------------===//

/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
/// token the parser is looking at. getNextToken reads another token from the
/// lexer and updates CurTok with its results.
static int CurTok;
static int getNextToken() { return CurTok = gettok(); }

/// BinopPrecedence - This holds the precedence for each binary operator that is
/// defined.
static std::map<char, int> BinopPrecedence;

/// GetTokPrecedence - Get the precedence of the pending binary operator token.
static int GetTokPrecedence() {

if (!isascii(CurTok))
return -1;

// Make sure it's a declared binop.
int TokPrec = BinopPrecedence[CurTok];
if (TokPrec <= 0)
return -1;

return TokPrec;
}

/// LogError* - These are little helper functions for error handling.
std::unique_ptr<ExprAST> LogError(const char *Str) {
fprintf(stderr, "Error: %s\n", Str);
return nullptr;

}

std::unique_ptr<PrototypeAST> LogErrorP(const char *Str) {
LogError(Str);
return nullptr;

}

static std::unique_ptr<ExprAST> ParseExpression();

/// numberexpr ::= number
static std::unique_ptr<ExprAST> ParseNumberExpr() {
auto Result = llvm::make_unique<NumberExprAST>(NumVal);
getNextToken(); // consume the number
return std::move(Result);

}

/// parenexpr ::= '(' expression ')'
static std::unique_ptr<ExprAST> ParseParenExpr() {

getNextToken(); // eat (.
auto V = ParseExpression();
if (!V)
return nullptr;

if (CurTok != ')')
return LogError("expected ')'");

getNextToken(); // eat ).
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return V;
}

/// identifierexpr
/// ::= identifier
/// ::= identifier '(' expression* ')'
static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
std::string IdName = IdentifierStr;

getNextToken(); // eat identifier.

if (CurTok != '(') // Simple variable ref.
return llvm::make_unique<VariableExprAST>(IdName);

// Call.
getNextToken(); // eat (
std::vector<std::unique_ptr<ExprAST>> Args;
if (CurTok != ')') {
while (true) {

if (auto Arg = ParseExpression())
Args.push_back(std::move(Arg));

else
return nullptr;

if (CurTok == ')')
break;

if (CurTok != ',')
return LogError("Expected ')' or ',' in argument list");

getNextToken();
}

}

// Eat the ')'.
getNextToken();

return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
}

/// ifexpr ::= 'if' expression 'then' expression 'else' expression
static std::unique_ptr<ExprAST> ParseIfExpr() {
getNextToken(); // eat the if.

// condition.
auto Cond = ParseExpression();
if (!Cond)
return nullptr;

if (CurTok != tok_then)
return LogError("expected then");

getNextToken(); // eat the then

auto Then = ParseExpression();
if (!Then)
return nullptr;

if (CurTok != tok_else)
return LogError("expected else");
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getNextToken();

auto Else = ParseExpression();
if (!Else)
return nullptr;

return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
std::move(Else));

}

/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
static std::unique_ptr<ExprAST> ParseForExpr() {
getNextToken(); // eat the for.

if (CurTok != tok_identifier)
return LogError("expected identifier after for");

std::string IdName = IdentifierStr;
getNextToken(); // eat identifier.

if (CurTok != '=')
return LogError("expected '=' after for");

getNextToken(); // eat '='.

auto Start = ParseExpression();
if (!Start)
return nullptr;

if (CurTok != ',')
return LogError("expected ',' after for start value");

getNextToken();

auto End = ParseExpression();
if (!End)
return nullptr;

// The step value is optional.
std::unique_ptr<ExprAST> Step;
if (CurTok == ',') {
getNextToken();
Step = ParseExpression();
if (!Step)

return nullptr;
}

if (CurTok != tok_in)
return LogError("expected 'in' after for");

getNextToken(); // eat 'in'.

auto Body = ParseExpression();
if (!Body)
return nullptr;

return llvm::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
std::move(Step), std::move(Body));

}

/// varexpr ::= 'var' identifier ('=' expression)?
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// (',' identifier ('=' expression)?)* 'in' expression
static std::unique_ptr<ExprAST> ParseVarExpr() {
getNextToken(); // eat the var.

std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;

// At least one variable name is required.
if (CurTok != tok_identifier)
return LogError("expected identifier after var");

while (true) {
std::string Name = IdentifierStr;
getNextToken(); // eat identifier.

// Read the optional initializer.
std::unique_ptr<ExprAST> Init = nullptr;
if (CurTok == '=') {

getNextToken(); // eat the '='.

Init = ParseExpression();
if (!Init)

return nullptr;
}

VarNames.push_back(std::make_pair(Name, std::move(Init)));

// End of var list, exit loop.
if (CurTok != ',')

break;
getNextToken(); // eat the ','.

if (CurTok != tok_identifier)
return LogError("expected identifier list after var");

}

// At this point, we have to have 'in'.
if (CurTok != tok_in)
return LogError("expected 'in' keyword after 'var'");

getNextToken(); // eat 'in'.

auto Body = ParseExpression();
if (!Body)
return nullptr;

return llvm::make_unique<VarExprAST>(std::move(VarNames), std::move(Body));
}

/// primary
/// ::= identifierexpr
/// ::= numberexpr
/// ::= parenexpr
/// ::= ifexpr
/// ::= forexpr
/// ::= varexpr
static std::unique_ptr<ExprAST> ParsePrimary() {
switch (CurTok) {
default:
return LogError("unknown token when expecting an expression");
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case tok_identifier:
return ParseIdentifierExpr();

case tok_number:
return ParseNumberExpr();

case '(':
return ParseParenExpr();

case tok_if:
return ParseIfExpr();

case tok_for:
return ParseForExpr();

case tok_var:
return ParseVarExpr();

}
}

/// unary
/// ::= primary
/// ::= '!' unary
static std::unique_ptr<ExprAST> ParseUnary() {

// If the current token is not an operator, it must be a primary expr.
if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
return ParsePrimary();

// If this is a unary operator, read it.
int Opc = CurTok;
getNextToken();
if (auto Operand = ParseUnary())
return llvm::make_unique<UnaryExprAST>(Opc, std::move(Operand));

return nullptr;
}

/// binoprhs
/// ::= ('+' unary)*
static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,

std::unique_ptr<ExprAST> LHS) {
// If this is a binop, find its precedence.
while (true) {
int TokPrec = GetTokPrecedence();

// If this is a binop that binds at least as tightly as the current binop,
// consume it, otherwise we are done.
if (TokPrec < ExprPrec)

return LHS;

// Okay, we know this is a binop.
int BinOp = CurTok;
getNextToken(); // eat binop

// Parse the unary expression after the binary operator.
auto RHS = ParseUnary();
if (!RHS)

return nullptr;

// If BinOp binds less tightly with RHS than the operator after RHS, let
// the pending operator take RHS as its LHS.
int NextPrec = GetTokPrecedence();
if (TokPrec < NextPrec) {

RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
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if (!RHS)
return nullptr;

}

// Merge LHS/RHS.
LHS =

llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
}

}

/// expression
/// ::= unary binoprhs
///
static std::unique_ptr<ExprAST> ParseExpression() {
auto LHS = ParseUnary();
if (!LHS)
return nullptr;

return ParseBinOpRHS(0, std::move(LHS));
}

/// prototype
/// ::= id '(' id* ')'
/// ::= binary LETTER number? (id, id)
/// ::= unary LETTER (id)
static std::unique_ptr<PrototypeAST> ParsePrototype() {
std::string FnName;

unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
unsigned BinaryPrecedence = 30;

switch (CurTok) {
default:
return LogErrorP("Expected function name in prototype");

case tok_identifier:
FnName = IdentifierStr;
Kind = 0;
getNextToken();
break;

case tok_unary:
getNextToken();
if (!isascii(CurTok))

return LogErrorP("Expected unary operator");
FnName = "unary";
FnName += (char)CurTok;
Kind = 1;
getNextToken();
break;

case tok_binary:
getNextToken();
if (!isascii(CurTok))

return LogErrorP("Expected binary operator");
FnName = "binary";
FnName += (char)CurTok;
Kind = 2;
getNextToken();

// Read the precedence if present.
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if (CurTok == tok_number) {
if (NumVal < 1 || NumVal > 100)

return LogErrorP("Invalid precedecnce: must be 1..100");
BinaryPrecedence = (unsigned)NumVal;
getNextToken();

}
break;

}

if (CurTok != '(')
return LogErrorP("Expected '(' in prototype");

std::vector<std::string> ArgNames;
while (getNextToken() == tok_identifier)
ArgNames.push_back(IdentifierStr);

if (CurTok != ')')
return LogErrorP("Expected ')' in prototype");

// success.
getNextToken(); // eat ')'.

// Verify right number of names for operator.
if (Kind && ArgNames.size() != Kind)
return LogErrorP("Invalid number of operands for operator");

return llvm::make_unique<PrototypeAST>(FnName, ArgNames, Kind != 0,
BinaryPrecedence);

}

/// definition ::= 'def' prototype expression
static std::unique_ptr<FunctionAST> ParseDefinition() {
getNextToken(); // eat def.
auto Proto = ParsePrototype();
if (!Proto)
return nullptr;

if (auto E = ParseExpression())
return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));

return nullptr;
}

/// toplevelexpr ::= expression
static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {

if (auto E = ParseExpression()) {
// Make an anonymous proto.
auto Proto = llvm::make_unique<PrototypeAST>("__anon_expr",

std::vector<std::string>());
return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));

}
return nullptr;

}

/// external ::= 'extern' prototype
static std::unique_ptr<PrototypeAST> ParseExtern() {

getNextToken(); // eat extern.
return ParsePrototype();

}
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//===----------------------------------------------------------------------===//
// Code Generation
//===----------------------------------------------------------------------===//

static LLVMContext TheContext;
static IRBuilder<> Builder(TheContext);
static std::unique_ptr<Module> TheModule;
static std::map<std::string, AllocaInst *> NamedValues;
static std::map<std::string, std::unique_ptr<PrototypeAST>> FunctionProtos;

Value *LogErrorV(const char *Str) {
LogError(Str);
return nullptr;

}

Function *getFunction(std::string Name) {
// First, see if the function has already been added to the current module.
if (auto *F = TheModule->getFunction(Name))
return F;

// If not, check whether we can codegen the declaration from some existing
// prototype.
auto FI = FunctionProtos.find(Name);
if (FI != FunctionProtos.end())
return FI->second->codegen();

// If no existing prototype exists, return null.
return nullptr;

}

/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
/// the function. This is used for mutable variables etc.
static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,

const std::string &VarName) {
IRBuilder<> TmpB(&TheFunction->getEntryBlock(),

TheFunction->getEntryBlock().begin());
return TmpB.CreateAlloca(Type::getDoubleTy(TheContext), nullptr, VarName);

}

Value *NumberExprAST::codegen() {
return ConstantFP::get(TheContext, APFloat(Val));

}

Value *VariableExprAST::codegen() {
// Look this variable up in the function.
Value *V = NamedValues[Name];
if (!V)
return LogErrorV("Unknown variable name");

// Load the value.
return Builder.CreateLoad(V, Name.c_str());

}

Value *UnaryExprAST::codegen() {
Value *OperandV = Operand->codegen();
if (!OperandV)
return nullptr;
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Function *F = getFunction(std::string("unary") + Opcode);
if (!F)
return LogErrorV("Unknown unary operator");

return Builder.CreateCall(F, OperandV, "unop");
}

Value *BinaryExprAST::codegen() {
// Special case '=' because we don't want to emit the LHS as an expression.
if (Op == '=') {
// Assignment requires the LHS to be an identifier.
// This assume we're building without RTTI because LLVM builds that way by
// default. If you build LLVM with RTTI this can be changed to a
// dynamic_cast for automatic error checking.
VariableExprAST *LHSE = static_cast<VariableExprAST *>(LHS.get());
if (!LHSE)

return LogErrorV("destination of '=' must be a variable");
// Codegen the RHS.
Value *Val = RHS->codegen();
if (!Val)

return nullptr;

// Look up the name.
Value *Variable = NamedValues[LHSE->getName()];
if (!Variable)

return LogErrorV("Unknown variable name");

Builder.CreateStore(Val, Variable);
return Val;

}

Value *L = LHS->codegen();
Value *R = RHS->codegen();
if (!L || !R)
return nullptr;

switch (Op) {
case '+':
return Builder.CreateFAdd(L, R, "addtmp");

case '-':
return Builder.CreateFSub(L, R, "subtmp");

case '*':
return Builder.CreateFMul(L, R, "multmp");

case '<':
L = Builder.CreateFCmpULT(L, R, "cmptmp");
// Convert bool 0/1 to double 0.0 or 1.0
return Builder.CreateUIToFP(L, Type::getDoubleTy(TheContext), "booltmp");

default:
break;

}

// If it wasn't a builtin binary operator, it must be a user defined one. Emit
// a call to it.
Function *F = getFunction(std::string("binary") + Op);
assert(F && "binary operator not found!");

Value *Ops[] = {L, R};
return Builder.CreateCall(F, Ops, "binop");
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}

Value *CallExprAST::codegen() {
// Look up the name in the global module table.
Function *CalleeF = getFunction(Callee);
if (!CalleeF)
return LogErrorV("Unknown function referenced");

// If argument mismatch error.
if (CalleeF->arg_size() != Args.size())
return LogErrorV("Incorrect # arguments passed");

std::vector<Value *> ArgsV;
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
ArgsV.push_back(Args[i]->codegen());
if (!ArgsV.back())

return nullptr;
}

return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
}

Value *IfExprAST::codegen() {
Value *CondV = Cond->codegen();
if (!CondV)
return nullptr;

// Convert condition to a bool by comparing equal to 0.0.
CondV = Builder.CreateFCmpONE(

CondV, ConstantFP::get(TheContext, APFloat(0.0)), "ifcond");

Function *TheFunction = Builder.GetInsertBlock()->getParent();

// Create blocks for the then and else cases. Insert the 'then' block at the
// end of the function.
BasicBlock *ThenBB = BasicBlock::Create(TheContext, "then", TheFunction);
BasicBlock *ElseBB = BasicBlock::Create(TheContext, "else");
BasicBlock *MergeBB = BasicBlock::Create(TheContext, "ifcont");

Builder.CreateCondBr(CondV, ThenBB, ElseBB);

// Emit then value.
Builder.SetInsertPoint(ThenBB);

Value *ThenV = Then->codegen();
if (!ThenV)
return nullptr;

Builder.CreateBr(MergeBB);
// Codegen of 'Then' can change the current block, update ThenBB for the PHI.
ThenBB = Builder.GetInsertBlock();

// Emit else block.
TheFunction->getBasicBlockList().push_back(ElseBB);
Builder.SetInsertPoint(ElseBB);

Value *ElseV = Else->codegen();
if (!ElseV)
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return nullptr;

Builder.CreateBr(MergeBB);
// Codegen of 'Else' can change the current block, update ElseBB for the PHI.
ElseBB = Builder.GetInsertBlock();

// Emit merge block.
TheFunction->getBasicBlockList().push_back(MergeBB);
Builder.SetInsertPoint(MergeBB);
PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(TheContext), 2, "iftmp");

PN->addIncoming(ThenV, ThenBB);
PN->addIncoming(ElseV, ElseBB);
return PN;

}

// Output for-loop as:
// var = alloca double
// ...
// start = startexpr
// store start -> var
// goto loop
// loop:
// ...
// bodyexpr
// ...
// loopend:
// step = stepexpr
// endcond = endexpr
//
// curvar = load var
// nextvar = curvar + step
// store nextvar -> var
// br endcond, loop, endloop
// outloop:
Value *ForExprAST::codegen() {
Function *TheFunction = Builder.GetInsertBlock()->getParent();

// Create an alloca for the variable in the entry block.
AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);

// Emit the start code first, without 'variable' in scope.
Value *StartVal = Start->codegen();
if (!StartVal)
return nullptr;

// Store the value into the alloca.
Builder.CreateStore(StartVal, Alloca);

// Make the new basic block for the loop header, inserting after current
// block.
BasicBlock *LoopBB = BasicBlock::Create(TheContext, "loop", TheFunction);

// Insert an explicit fall through from the current block to the LoopBB.
Builder.CreateBr(LoopBB);

// Start insertion in LoopBB.
Builder.SetInsertPoint(LoopBB);
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// Within the loop, the variable is defined equal to the PHI node. If it
// shadows an existing variable, we have to restore it, so save it now.
AllocaInst *OldVal = NamedValues[VarName];
NamedValues[VarName] = Alloca;

// Emit the body of the loop. This, like any other expr, can change the
// current BB. Note that we ignore the value computed by the body, but don't
// allow an error.
if (!Body->codegen())
return nullptr;

// Emit the step value.
Value *StepVal = nullptr;
if (Step) {
StepVal = Step->codegen();
if (!StepVal)

return nullptr;
} else {
// If not specified, use 1.0.
StepVal = ConstantFP::get(TheContext, APFloat(1.0));

}

// Compute the end condition.
Value *EndCond = End->codegen();
if (!EndCond)
return nullptr;

// Reload, increment, and restore the alloca. This handles the case where
// the body of the loop mutates the variable.
Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
Builder.CreateStore(NextVar, Alloca);

// Convert condition to a bool by comparing equal to 0.0.
EndCond = Builder.CreateFCmpONE(

EndCond, ConstantFP::get(TheContext, APFloat(0.0)), "loopcond");

// Create the "after loop" block and insert it.
BasicBlock *AfterBB =

BasicBlock::Create(TheContext, "afterloop", TheFunction);

// Insert the conditional branch into the end of LoopEndBB.
Builder.CreateCondBr(EndCond, LoopBB, AfterBB);

// Any new code will be inserted in AfterBB.
Builder.SetInsertPoint(AfterBB);

// Restore the unshadowed variable.
if (OldVal)
NamedValues[VarName] = OldVal;

else
NamedValues.erase(VarName);

// for expr always returns 0.0.
return Constant::getNullValue(Type::getDoubleTy(TheContext));

}
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Value *VarExprAST::codegen() {
std::vector<AllocaInst *> OldBindings;

Function *TheFunction = Builder.GetInsertBlock()->getParent();

// Register all variables and emit their initializer.
for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
const std::string &VarName = VarNames[i].first;
ExprAST *Init = VarNames[i].second.get();

// Emit the initializer before adding the variable to scope, this prevents
// the initializer from referencing the variable itself, and permits stuff
// like this:
// var a = 1 in
// var a = a in ... # refers to outer 'a'.
Value *InitVal;
if (Init) {

InitVal = Init->codegen();
if (!InitVal)

return nullptr;
} else { // If not specified, use 0.0.

InitVal = ConstantFP::get(TheContext, APFloat(0.0));
}

AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
Builder.CreateStore(InitVal, Alloca);

// Remember the old variable binding so that we can restore the binding when
// we unrecurse.
OldBindings.push_back(NamedValues[VarName]);

// Remember this binding.
NamedValues[VarName] = Alloca;

}

// Codegen the body, now that all vars are in scope.
Value *BodyVal = Body->codegen();
if (!BodyVal)
return nullptr;

// Pop all our variables from scope.
for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
NamedValues[VarNames[i].first] = OldBindings[i];

// Return the body computation.
return BodyVal;

}

Function *PrototypeAST::codegen() {
// Make the function type: double(double,double) etc.
std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(TheContext));
FunctionType *FT =

FunctionType::get(Type::getDoubleTy(TheContext), Doubles, false);

Function *F =
Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get());

// Set names for all arguments.
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unsigned Idx = 0;
for (auto &Arg : F->args())
Arg.setName(Args[Idx++]);

return F;
}

Function *FunctionAST::codegen() {
// Transfer ownership of the prototype to the FunctionProtos map, but keep a
// reference to it for use below.
auto &P = *Proto;
FunctionProtos[Proto->getName()] = std::move(Proto);
Function *TheFunction = getFunction(P.getName());
if (!TheFunction)
return nullptr;

// If this is an operator, install it.
if (P.isBinaryOp())
BinopPrecedence[P.getOperatorName()] = P.getBinaryPrecedence();

// Create a new basic block to start insertion into.
BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction);
Builder.SetInsertPoint(BB);

// Record the function arguments in the NamedValues map.
NamedValues.clear();
for (auto &Arg : TheFunction->args()) {
// Create an alloca for this variable.
AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, Arg.getName());

// Store the initial value into the alloca.
Builder.CreateStore(&Arg, Alloca);

// Add arguments to variable symbol table.
NamedValues[Arg.getName()] = Alloca;

}

if (Value *RetVal = Body->codegen()) {
// Finish off the function.
Builder.CreateRet(RetVal);

// Validate the generated code, checking for consistency.
verifyFunction(*TheFunction);

return TheFunction;
}

// Error reading body, remove function.
TheFunction->eraseFromParent();

if (P.isBinaryOp())
BinopPrecedence.erase(Proto->getOperatorName());

return nullptr;
}

//===----------------------------------------------------------------------===//
// Top-Level parsing and JIT Driver
//===----------------------------------------------------------------------===//
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static void InitializeModuleAndPassManager() {
// Open a new module.
TheModule = llvm::make_unique<Module>("my cool jit", TheContext);

}

static void HandleDefinition() {
if (auto FnAST = ParseDefinition()) {
if (auto *FnIR = FnAST->codegen()) {
fprintf(stderr, "Read function definition:");
FnIR->dump();

}
} else {
// Skip token for error recovery.
getNextToken();

}
}

static void HandleExtern() {
if (auto ProtoAST = ParseExtern()) {
if (auto *FnIR = ProtoAST->codegen()) {
fprintf(stderr, "Read extern: ");
FnIR->dump();
FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST);

}
} else {
// Skip token for error recovery.
getNextToken();

}
}

static void HandleTopLevelExpression() {
// Evaluate a top-level expression into an anonymous function.
if (auto FnAST = ParseTopLevelExpr()) {
FnAST->codegen();

} else {
// Skip token for error recovery.
getNextToken();

}
}

/// top ::= definition | external | expression | ';'
static void MainLoop() {

while (true) {
switch (CurTok) {
case tok_eof:
return;

case ';': // ignore top-level semicolons.
getNextToken();
break;

case tok_def:
HandleDefinition();
break;

case tok_extern:
HandleExtern();
break;

default:
HandleTopLevelExpression();
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break;
}

}
}

//===----------------------------------------------------------------------===//
// "Library" functions that can be "extern'd" from user code.
//===----------------------------------------------------------------------===//

/// putchard - putchar that takes a double and returns 0.
extern "C" double putchard(double X) {
fputc((char)X, stderr);
return 0;

}

/// printd - printf that takes a double prints it as "%f\n", returning 0.
extern "C" double printd(double X) {
fprintf(stderr, "%f\n", X);
return 0;

}

//===----------------------------------------------------------------------===//
// Main driver code.
//===----------------------------------------------------------------------===//

int main() {
// Install standard binary operators.
// 1 is lowest precedence.
BinopPrecedence['<'] = 10;
BinopPrecedence['+'] = 20;
BinopPrecedence['-'] = 20;
BinopPrecedence['*'] = 40; // highest.

// Prime the first token.
fprintf(stderr, "ready> ");
getNextToken();

InitializeModuleAndPassManager();

// Run the main "interpreter loop" now.
MainLoop();

// Initialize the target registry etc.
InitializeAllTargetInfos();
InitializeAllTargets();
InitializeAllTargetMCs();
InitializeAllAsmParsers();
InitializeAllAsmPrinters();

auto TargetTriple = sys::getDefaultTargetTriple();
TheModule->setTargetTriple(TargetTriple);

std::string Error;
auto Target = TargetRegistry::lookupTarget(TargetTriple, Error);

// Print an error and exit if we couldn't find the requested target.
// This generally occurs if we've forgotten to initialise the
// TargetRegistry or we have a bogus target triple.
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if (!Target) {
errs() << Error;
return 1;

}

auto CPU = "generic";
auto Features = "";

TargetOptions opt;
auto RM = Optional<Reloc::Model>();
auto TheTargetMachine =

Target->createTargetMachine(TargetTriple, CPU, Features, opt, RM);

TheModule->setDataLayout(TheTargetMachine->createDataLayout());

auto Filename = "output.o";
std::error_code EC;
raw_fd_ostream dest(Filename, EC, sys::fs::F_None);

if (EC) {
errs() << "Could not open file: " << EC.message();
return 1;

}

legacy::PassManager pass;
auto FileType = TargetMachine::CGFT_ObjectFile;

if (TheTargetMachine->addPassesToEmitFile(pass, dest, FileType)) {
errs() << "TheTargetMachine can't emit a file of this type";
return 1;

}

pass.run(*TheModule);
dest.flush();

outs() << "Wrote " << Filename << "\n";

return 0;
}

Next: Adding Debug Information

Kaleidoscope: Adding Debug Information

• Chapter 9 Introduction

• Why is this a hard problem?

• Ahead-of-Time Compilation Mode

• Compile Unit

• DWARF Emission Setup

• Functions

• Source Locations
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• Variables

• Full Code Listing

Chapter 9 Introduction

Welcome to Chapter 9 of the “Implementing a language with LLVM” tutorial. In chapters 1 through 8, we’ve built
a decent little programming language with functions and variables. What happens if something goes wrong though,
how do you debug your program?

Source level debugging uses formatted data that helps a debugger translate from binary and the state of the machine
back to the source that the programmer wrote. In LLVM we generally use a format called DWARF. DWARF is a
compact encoding that represents types, source locations, and variable locations.

The short summary of this chapter is that we’ll go through the various things you have to add to a programming
language to support debug info, and how you translate that into DWARF.

Caveat: For now we can’t debug via the JIT, so we’ll need to compile our program down to something small and
standalone. As part of this we’ll make a few modifications to the running of the language and how programs are
compiled. This means that we’ll have a source file with a simple program written in Kaleidoscope rather than the
interactive JIT. It does involve a limitation that we can only have one “top level” command at a time to reduce the
number of changes necessary.

Here’s the sample program we’ll be compiling:

def fib(x)
if x < 3 then
1

else
fib(x-1)+fib(x-2);

fib(10)

Why is this a hard problem?

Debug information is a hard problem for a few different reasons - mostly centered around optimized code. First,
optimization makes keeping source locations more difficult. In LLVM IR we keep the original source location for
each IR level instruction on the instruction. Optimization passes should keep the source locations for newly created
instructions, but merged instructions only get to keep a single location - this can cause jumping around when stepping
through optimized programs. Secondly, optimization can move variables in ways that are either optimized out, shared
in memory with other variables, or difficult to track. For the purposes of this tutorial we’re going to avoid optimization
(as you’ll see with one of the next sets of patches).

Ahead-of-Time Compilation Mode

To highlight only the aspects of adding debug information to a source language without needing to worry about the
complexities of JIT debugging we’re going to make a few changes to Kaleidoscope to support compiling the IR emitted
by the front end into a simple standalone program that you can execute, debug, and see results.

First we make our anonymous function that contains our top level statement be our “main”:

- auto Proto = llvm::make_unique<PrototypeAST>("", std::vector<std::string>());
+ auto Proto = llvm::make_unique<PrototypeAST>("main", std::vector<std::string>());
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just with the simple change of giving it a name.

Then we’re going to remove the command line code wherever it exists:

@@ -1129,7 +1129,6 @@ static void HandleTopLevelExpression() {
/// top ::= definition | external | expression | ';'
static void MainLoop() {
while (1) {

- fprintf(stderr, "ready> ");
switch (CurTok) {
case tok_eof:

return;
@@ -1184,7 +1183,6 @@ int main() {

BinopPrecedence['*'] = 40; // highest.

// Prime the first token.
- fprintf(stderr, "ready> ");

getNextToken();

Lastly we’re going to disable all of the optimization passes and the JIT so that the only thing that happens after we’re
done parsing and generating code is that the llvm IR goes to standard error:

@@ -1108,17 +1108,8 @@ static void HandleExtern() {
static void HandleTopLevelExpression() {
// Evaluate a top-level expression into an anonymous function.
if (auto FnAST = ParseTopLevelExpr()) {

- if (auto *FnIR = FnAST->codegen()) {
- // We're just doing this to make sure it executes.
- TheExecutionEngine->finalizeObject();
- // JIT the function, returning a function pointer.
- void *FPtr = TheExecutionEngine->getPointerToFunction(FnIR);
-
- // Cast it to the right type (takes no arguments, returns a double) so we
- // can call it as a native function.
- double (*FP)() = (double (*)())(intptr_t)FPtr;
- // Ignore the return value for this.
- (void)FP;
+ if (!F->codegen()) {
+ fprintf(stderr, "Error generating code for top level expr");

}
} else {

// Skip token for error recovery.
@@ -1439,11 +1459,11 @@ int main() {

// target lays out data structures.
TheModule->setDataLayout(TheExecutionEngine->getDataLayout());
OurFPM.add(new DataLayoutPass());

+#if 0
OurFPM.add(createBasicAliasAnalysisPass());
// Promote allocas to registers.
OurFPM.add(createPromoteMemoryToRegisterPass());

@@ -1218,7 +1210,7 @@ int main() {
OurFPM.add(createGVNPass());
// Simplify the control flow graph (deleting unreachable blocks, etc).
OurFPM.add(createCFGSimplificationPass());

-
+ #endif

OurFPM.doInitialization();

// Set the global so the code gen can use this.
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This relatively small set of changes get us to the point that we can compile our piece of Kaleidoscope language down
to an executable program via this command line:

Kaleidoscope-Ch9 < fib.ks | & clang -x ir -

which gives an a.out/a.exe in the current working directory.

Compile Unit

The top level container for a section of code in DWARF is a compile unit. This contains the type and function data for
an individual translation unit (read: one file of source code). So the first thing we need to do is construct one for our
fib.ks file.

DWARF Emission Setup

Similar to the IRBuilder class we have a DIBuilder class that helps in constructing debug metadata for an llvm IR
file. It corresponds 1:1 similarly to IRBuilder and llvm IR, but with nicer names. Using it does require that you be
more familiar with DWARF terminology than you needed to be with IRBuilder and Instruction names, but if
you read through the general documentation on the Metadata Format it should be a little more clear. We’ll be using
this class to construct all of our IR level descriptions. Construction for it takes a module so we need to construct it
shortly after we construct our module. We’ve left it as a global static variable to make it a bit easier to use.

Next we’re going to create a small container to cache some of our frequent data. The first will be our compile unit, but
we’ll also write a bit of code for our one type since we won’t have to worry about multiple typed expressions:

static DIBuilder *DBuilder;

struct DebugInfo {
DICompileUnit *TheCU;
DIType *DblTy;

DIType *getDoubleTy();
} KSDbgInfo;

DIType *DebugInfo::getDoubleTy() {
if (DblTy.isValid())
return DblTy;

DblTy = DBuilder->createBasicType("double", 64, 64, dwarf::DW_ATE_float);
return DblTy;

}

And then later on in main when we’re constructing our module:

DBuilder = new DIBuilder(*TheModule);

KSDbgInfo.TheCU = DBuilder->createCompileUnit(
dwarf::DW_LANG_C, "fib.ks", ".", "Kaleidoscope Compiler", 0, "", 0);

There are a couple of things to note here. First, while we’re producing a compile unit for a language called Kaleido-
scope we used the language constant for C. This is because a debugger wouldn’t necessarily understand the calling
conventions or default ABI for a language it doesn’t recognize and we follow the C ABI in our llvm code generation
so it’s the closest thing to accurate. This ensures we can actually call functions from the debugger and have them
execute. Secondly, you’ll see the “fib.ks” in the call to createCompileUnit. This is a default hard coded value
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since we’re using shell redirection to put our source into the Kaleidoscope compiler. In a usual front end you’d have
an input file name and it would go there.

One last thing as part of emitting debug information via DIBuilder is that we need to “finalize” the debug information.
The reasons are part of the underlying API for DIBuilder, but make sure you do this near the end of main:

DBuilder->finalize();

before you dump out the module.

Functions

Now that we have our Compile Unit and our source locations, we can add function definitions to the debug info.
So in PrototypeAST::codegen() we add a few lines of code to describe a context for our subprogram, in this
case the “File”, and the actual definition of the function itself.

So the context:

DIFile *Unit = DBuilder->createFile(KSDbgInfo.TheCU.getFilename(),
KSDbgInfo.TheCU.getDirectory());

giving us an DIFile and asking the Compile Unit we created above for the directory and filename where we are
currently. Then, for now, we use some source locations of 0 (since our AST doesn’t currently have source location
information) and construct our function definition:

DIScope *FContext = Unit;
unsigned LineNo = 0;
unsigned ScopeLine = 0;
DISubprogram *SP = DBuilder->createFunction(

FContext, Name, StringRef(), Unit, LineNo,
CreateFunctionType(Args.size(), Unit), false /* internal linkage */,
true /* definition */, ScopeLine, DINode::FlagPrototyped, false);

F->setSubprogram(SP);

and we now have an DISubprogram that contains a reference to all of our metadata for the function.

Source Locations

The most important thing for debug information is accurate source location - this makes it possible to map your source
code back. We have a problem though, Kaleidoscope really doesn’t have any source location information in the lexer
or parser so we’ll need to add it.

struct SourceLocation {
int Line;
int Col;

};
static SourceLocation CurLoc;
static SourceLocation LexLoc = {1, 0};

static int advance() {
int LastChar = getchar();

if (LastChar == '\n' || LastChar == '\r') {
LexLoc.Line++;
LexLoc.Col = 0;

} else
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LexLoc.Col++;
return LastChar;

}

In this set of code we’ve added some functionality on how to keep track of the line and column of the “source file”.
As we lex every token we set our current current “lexical location” to the assorted line and column for the beginning
of the token. We do this by overriding all of the previous calls to getchar() with our new advance() that keeps
track of the information and then we have added to all of our AST classes a source location:

class ExprAST {
SourceLocation Loc;

public:
ExprAST(SourceLocation Loc = CurLoc) : Loc(Loc) {}
virtual ~ExprAST() {}
virtual Value* codegen() = 0;
int getLine() const { return Loc.Line; }
int getCol() const { return Loc.Col; }
virtual raw_ostream &dump(raw_ostream &out, int ind) {

return out << ':' << getLine() << ':' << getCol() << '\n';
}

that we pass down through when we create a new expression:

LHS = llvm::make_unique<BinaryExprAST>(BinLoc, BinOp, std::move(LHS),
std::move(RHS));

giving us locations for each of our expressions and variables.

From this we can make sure to tell DIBuilder when we’re at a new source location so it can use that when we
generate the rest of our code and make sure that each instruction has source location information. We do this by
constructing another small function:

void DebugInfo::emitLocation(ExprAST *AST) {
DIScope *Scope;
if (LexicalBlocks.empty())
Scope = TheCU;

else
Scope = LexicalBlocks.back();

Builder.SetCurrentDebugLocation(
DebugLoc::get(AST->getLine(), AST->getCol(), Scope));

}

that both tells the main IRBuilder where we are, but also what scope we’re in. Since we’ve just created a function
above we can either be in the main file scope (like when we created our function), or now we can be in the function
scope we just created. To represent this we create a stack of scopes:

std::vector<DIScope *> LexicalBlocks;
std::map<const PrototypeAST *, DIScope *> FnScopeMap;

and keep a map of each function to the scope that it represents (an DISubprogram is also an DIScope).

Then we make sure to:

KSDbgInfo.emitLocation(this);

emit the location every time we start to generate code for a new AST, and also:
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KSDbgInfo.FnScopeMap[this] = SP;

store the scope (function) when we create it and use it:

KSDbgInfo.LexicalBlocks.push_back(&KSDbgInfo.FnScopeMap[Proto]);

when we start generating the code for each function.

also, don’t forget to pop the scope back off of your scope stack at the end of the code generation for the function:

// Pop off the lexical block for the function since we added it
// unconditionally.
KSDbgInfo.LexicalBlocks.pop_back();

Variables

Now that we have functions, we need to be able to print out the variables we have in scope. Let’s get our function argu-
ments set up so we can get decent backtraces and see how our functions are being called. It isn’t a lot of code, and we
generally handle it when we’re creating the argument allocas in PrototypeAST::CreateArgumentAllocas.

DIScope *Scope = KSDbgInfo.LexicalBlocks.back();
DIFile *Unit = DBuilder->createFile(KSDbgInfo.TheCU.getFilename(),

KSDbgInfo.TheCU.getDirectory());
DILocalVariable D = DBuilder->createParameterVariable(

Scope, Args[Idx], Idx + 1, Unit, Line, KSDbgInfo.getDoubleTy(), true);

DBuilder->insertDeclare(Alloca, D, DBuilder->createExpression(),
DebugLoc::get(Line, 0, Scope),
Builder.GetInsertBlock());

Here we’re doing a few things. First, we’re grabbing our current scope for the variable so we can say what range of
code our variable is valid through. Second, we’re creating the variable, giving it the scope, the name, source location,
type, and since it’s an argument, the argument index. Third, we create an lvm.dbg.declare call to indicate at the
IR level that we’ve got a variable in an alloca (and it gives a starting location for the variable), and setting a source
location for the beginning of the scope on the declare.

One interesting thing to note at this point is that various debuggers have assumptions based on how code and debug
information was generated for them in the past. In this case we need to do a little bit of a hack to avoid generating
line information for the function prologue so that the debugger knows to skip over those instructions when setting a
breakpoint. So in FunctionAST::CodeGen we add a couple of lines:

// Unset the location for the prologue emission (leading instructions with no
// location in a function are considered part of the prologue and the debugger
// will run past them when breaking on a function)
KSDbgInfo.emitLocation(nullptr);

and then emit a new location when we actually start generating code for the body of the function:

KSDbgInfo.emitLocation(Body);

With this we have enough debug information to set breakpoints in functions, print out argument variables, and call
functions. Not too bad for just a few simple lines of code!
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Full Code Listing

Here is the complete code listing for our running example, enhanced with debug information. To build this example,
use:

# Compile
clang++ -g toy.cpp `llvm-config --cxxflags --ldflags --system-libs --libs core mcjit
→˓native` -O3 -o toy
# Run
./toy

Here is the code:

#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Transforms/Scalar.h"
#include <cctype>
#include <cstdio>
#include <map>
#include <string>
#include <vector>
#include "../include/KaleidoscopeJIT.h"

using namespace llvm;
using namespace llvm::orc;

//===----------------------------------------------------------------------===//
// Lexer
//===----------------------------------------------------------------------===//

// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
// of these for known things.
enum Token {

tok_eof = -1,

// commands
tok_def = -2,
tok_extern = -3,

// primary
tok_identifier = -4,
tok_number = -5,

// control
tok_if = -6,
tok_then = -7,
tok_else = -8,
tok_for = -9,
tok_in = -10,
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// operators
tok_binary = -11,
tok_unary = -12,

// var definition
tok_var = -13

};

std::string getTokName(int Tok) {
switch (Tok) {
case tok_eof:
return "eof";

case tok_def:
return "def";

case tok_extern:
return "extern";

case tok_identifier:
return "identifier";

case tok_number:
return "number";

case tok_if:
return "if";

case tok_then:
return "then";

case tok_else:
return "else";

case tok_for:
return "for";

case tok_in:
return "in";

case tok_binary:
return "binary";

case tok_unary:
return "unary";

case tok_var:
return "var";

}
return std::string(1, (char)Tok);

}

namespace {
class PrototypeAST;
class ExprAST;
}
static LLVMContext TheContext;
static IRBuilder<> Builder(TheContext);
struct DebugInfo {
DICompileUnit *TheCU;
DIType *DblTy;
std::vector<DIScope *> LexicalBlocks;

void emitLocation(ExprAST *AST);
DIType *getDoubleTy();

} KSDbgInfo;

struct SourceLocation {
int Line;
int Col;
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};
static SourceLocation CurLoc;
static SourceLocation LexLoc = {1, 0};

static int advance() {
int LastChar = getchar();

if (LastChar == '\n' || LastChar == '\r') {
LexLoc.Line++;
LexLoc.Col = 0;

} else
LexLoc.Col++;

return LastChar;
}

static std::string IdentifierStr; // Filled in if tok_identifier
static double NumVal; // Filled in if tok_number

/// gettok - Return the next token from standard input.
static int gettok() {
static int LastChar = ' ';

// Skip any whitespace.
while (isspace(LastChar))
LastChar = advance();

CurLoc = LexLoc;

if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
IdentifierStr = LastChar;
while (isalnum((LastChar = advance())))

IdentifierStr += LastChar;

if (IdentifierStr == "def")
return tok_def;

if (IdentifierStr == "extern")
return tok_extern;

if (IdentifierStr == "if")
return tok_if;

if (IdentifierStr == "then")
return tok_then;

if (IdentifierStr == "else")
return tok_else;

if (IdentifierStr == "for")
return tok_for;

if (IdentifierStr == "in")
return tok_in;

if (IdentifierStr == "binary")
return tok_binary;

if (IdentifierStr == "unary")
return tok_unary;

if (IdentifierStr == "var")
return tok_var;

return tok_identifier;
}

if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
std::string NumStr;
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do {
NumStr += LastChar;
LastChar = advance();

} while (isdigit(LastChar) || LastChar == '.');

NumVal = strtod(NumStr.c_str(), nullptr);
return tok_number;

}

if (LastChar == '#') {
// Comment until end of line.
do

LastChar = advance();
while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');

if (LastChar != EOF)
return gettok();

}

// Check for end of file. Don't eat the EOF.
if (LastChar == EOF)
return tok_eof;

// Otherwise, just return the character as its ascii value.
int ThisChar = LastChar;
LastChar = advance();
return ThisChar;

}

//===----------------------------------------------------------------------===//
// Abstract Syntax Tree (aka Parse Tree)
//===----------------------------------------------------------------------===//
namespace {

raw_ostream &indent(raw_ostream &O, int size) {
return O << std::string(size, ' ');

}

/// ExprAST - Base class for all expression nodes.
class ExprAST {

SourceLocation Loc;

public:
ExprAST(SourceLocation Loc = CurLoc) : Loc(Loc) {}
virtual ~ExprAST() {}
virtual Value *codegen() = 0;
int getLine() const { return Loc.Line; }
int getCol() const { return Loc.Col; }
virtual raw_ostream &dump(raw_ostream &out, int ind) {
return out << ':' << getLine() << ':' << getCol() << '\n';

}
};

/// NumberExprAST - Expression class for numeric literals like "1.0".
class NumberExprAST : public ExprAST {
double Val;

public:
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NumberExprAST(double Val) : Val(Val) {}
raw_ostream &dump(raw_ostream &out, int ind) override {
return ExprAST::dump(out << Val, ind);

}
Value *codegen() override;

};

/// VariableExprAST - Expression class for referencing a variable, like "a".
class VariableExprAST : public ExprAST {
std::string Name;

public:
VariableExprAST(SourceLocation Loc, const std::string &Name)

: ExprAST(Loc), Name(Name) {}
const std::string &getName() const { return Name; }
Value *codegen() override;
raw_ostream &dump(raw_ostream &out, int ind) override {
return ExprAST::dump(out << Name, ind);

}
};

/// UnaryExprAST - Expression class for a unary operator.
class UnaryExprAST : public ExprAST {

char Opcode;
std::unique_ptr<ExprAST> Operand;

public:
UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)

: Opcode(Opcode), Operand(std::move(Operand)) {}
Value *codegen() override;
raw_ostream &dump(raw_ostream &out, int ind) override {
ExprAST::dump(out << "unary" << Opcode, ind);
Operand->dump(out, ind + 1);
return out;

}
};

/// BinaryExprAST - Expression class for a binary operator.
class BinaryExprAST : public ExprAST {
char Op;
std::unique_ptr<ExprAST> LHS, RHS;

public:
BinaryExprAST(SourceLocation Loc, char Op, std::unique_ptr<ExprAST> LHS,

std::unique_ptr<ExprAST> RHS)
: ExprAST(Loc), Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}

Value *codegen() override;
raw_ostream &dump(raw_ostream &out, int ind) override {
ExprAST::dump(out << "binary" << Op, ind);
LHS->dump(indent(out, ind) << "LHS:", ind + 1);
RHS->dump(indent(out, ind) << "RHS:", ind + 1);
return out;

}
};

/// CallExprAST - Expression class for function calls.
class CallExprAST : public ExprAST {

std::string Callee;
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std::vector<std::unique_ptr<ExprAST>> Args;

public:
CallExprAST(SourceLocation Loc, const std::string &Callee,

std::vector<std::unique_ptr<ExprAST>> Args)
: ExprAST(Loc), Callee(Callee), Args(std::move(Args)) {}

Value *codegen() override;
raw_ostream &dump(raw_ostream &out, int ind) override {
ExprAST::dump(out << "call " << Callee, ind);
for (const auto &Arg : Args)

Arg->dump(indent(out, ind + 1), ind + 1);
return out;

}
};

/// IfExprAST - Expression class for if/then/else.
class IfExprAST : public ExprAST {
std::unique_ptr<ExprAST> Cond, Then, Else;

public:
IfExprAST(SourceLocation Loc, std::unique_ptr<ExprAST> Cond,

std::unique_ptr<ExprAST> Then, std::unique_ptr<ExprAST> Else)
: ExprAST(Loc), Cond(std::move(Cond)), Then(std::move(Then)),

Else(std::move(Else)) {}
Value *codegen() override;
raw_ostream &dump(raw_ostream &out, int ind) override {
ExprAST::dump(out << "if", ind);
Cond->dump(indent(out, ind) << "Cond:", ind + 1);
Then->dump(indent(out, ind) << "Then:", ind + 1);
Else->dump(indent(out, ind) << "Else:", ind + 1);
return out;

}
};

/// ForExprAST - Expression class for for/in.
class ForExprAST : public ExprAST {
std::string VarName;
std::unique_ptr<ExprAST> Start, End, Step, Body;

public:
ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start,

std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
std::unique_ptr<ExprAST> Body)

: VarName(VarName), Start(std::move(Start)), End(std::move(End)),
Step(std::move(Step)), Body(std::move(Body)) {}

Value *codegen() override;
raw_ostream &dump(raw_ostream &out, int ind) override {
ExprAST::dump(out << "for", ind);
Start->dump(indent(out, ind) << "Cond:", ind + 1);
End->dump(indent(out, ind) << "End:", ind + 1);
Step->dump(indent(out, ind) << "Step:", ind + 1);
Body->dump(indent(out, ind) << "Body:", ind + 1);
return out;

}
};

/// VarExprAST - Expression class for var/in
class VarExprAST : public ExprAST {
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std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
std::unique_ptr<ExprAST> Body;

public:
VarExprAST(

std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames,
std::unique_ptr<ExprAST> Body)
: VarNames(std::move(VarNames)), Body(std::move(Body)) {}

Value *codegen() override;
raw_ostream &dump(raw_ostream &out, int ind) override {
ExprAST::dump(out << "var", ind);
for (const auto &NamedVar : VarNames)

NamedVar.second->dump(indent(out, ind) << NamedVar.first << ':', ind + 1);
Body->dump(indent(out, ind) << "Body:", ind + 1);
return out;

}
};

/// PrototypeAST - This class represents the "prototype" for a function,
/// which captures its name, and its argument names (thus implicitly the number
/// of arguments the function takes), as well as if it is an operator.
class PrototypeAST {

std::string Name;
std::vector<std::string> Args;
bool IsOperator;
unsigned Precedence; // Precedence if a binary op.
int Line;

public:
PrototypeAST(SourceLocation Loc, const std::string &Name,

std::vector<std::string> Args, bool IsOperator = false,
unsigned Prec = 0)

: Name(Name), Args(std::move(Args)), IsOperator(IsOperator),
Precedence(Prec), Line(Loc.Line) {}

Function *codegen();
const std::string &getName() const { return Name; }

bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
bool isBinaryOp() const { return IsOperator && Args.size() == 2; }

char getOperatorName() const {
assert(isUnaryOp() || isBinaryOp());
return Name[Name.size() - 1];

}

unsigned getBinaryPrecedence() const { return Precedence; }
int getLine() const { return Line; }

};

/// FunctionAST - This class represents a function definition itself.
class FunctionAST {
std::unique_ptr<PrototypeAST> Proto;
std::unique_ptr<ExprAST> Body;

public:
FunctionAST(std::unique_ptr<PrototypeAST> Proto,

std::unique_ptr<ExprAST> Body)
: Proto(std::move(Proto)), Body(std::move(Body)) {}
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Function *codegen();
raw_ostream &dump(raw_ostream &out, int ind) {
indent(out, ind) << "FunctionAST\n";
++ind;
indent(out, ind) << "Body:";
return Body ? Body->dump(out, ind) : out << "null\n";

}
};
} // end anonymous namespace

//===----------------------------------------------------------------------===//
// Parser
//===----------------------------------------------------------------------===//

/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
/// token the parser is looking at. getNextToken reads another token from the
/// lexer and updates CurTok with its results.
static int CurTok;
static int getNextToken() { return CurTok = gettok(); }

/// BinopPrecedence - This holds the precedence for each binary operator that is
/// defined.
static std::map<char, int> BinopPrecedence;

/// GetTokPrecedence - Get the precedence of the pending binary operator token.
static int GetTokPrecedence() {

if (!isascii(CurTok))
return -1;

// Make sure it's a declared binop.
int TokPrec = BinopPrecedence[CurTok];
if (TokPrec <= 0)
return -1;

return TokPrec;
}

/// LogError* - These are little helper functions for error handling.
std::unique_ptr<ExprAST> LogError(const char *Str) {
fprintf(stderr, "Error: %s\n", Str);
return nullptr;

}

std::unique_ptr<PrototypeAST> LogErrorP(const char *Str) {
LogError(Str);
return nullptr;

}

static std::unique_ptr<ExprAST> ParseExpression();

/// numberexpr ::= number
static std::unique_ptr<ExprAST> ParseNumberExpr() {
auto Result = llvm::make_unique<NumberExprAST>(NumVal);
getNextToken(); // consume the number
return std::move(Result);

}

/// parenexpr ::= '(' expression ')'
static std::unique_ptr<ExprAST> ParseParenExpr() {
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getNextToken(); // eat (.
auto V = ParseExpression();
if (!V)
return nullptr;

if (CurTok != ')')
return LogError("expected ')'");

getNextToken(); // eat ).
return V;

}

/// identifierexpr
/// ::= identifier
/// ::= identifier '(' expression* ')'
static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
std::string IdName = IdentifierStr;

SourceLocation LitLoc = CurLoc;

getNextToken(); // eat identifier.

if (CurTok != '(') // Simple variable ref.
return llvm::make_unique<VariableExprAST>(LitLoc, IdName);

// Call.
getNextToken(); // eat (
std::vector<std::unique_ptr<ExprAST>> Args;
if (CurTok != ')') {
while (1) {

if (auto Arg = ParseExpression())
Args.push_back(std::move(Arg));

else
return nullptr;

if (CurTok == ')')
break;

if (CurTok != ',')
return LogError("Expected ')' or ',' in argument list");

getNextToken();
}

}

// Eat the ')'.
getNextToken();

return llvm::make_unique<CallExprAST>(LitLoc, IdName, std::move(Args));
}

/// ifexpr ::= 'if' expression 'then' expression 'else' expression
static std::unique_ptr<ExprAST> ParseIfExpr() {
SourceLocation IfLoc = CurLoc;

getNextToken(); // eat the if.

// condition.
auto Cond = ParseExpression();
if (!Cond)
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return nullptr;

if (CurTok != tok_then)
return LogError("expected then");

getNextToken(); // eat the then

auto Then = ParseExpression();
if (!Then)
return nullptr;

if (CurTok != tok_else)
return LogError("expected else");

getNextToken();

auto Else = ParseExpression();
if (!Else)
return nullptr;

return llvm::make_unique<IfExprAST>(IfLoc, std::move(Cond), std::move(Then),
std::move(Else));

}

/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
static std::unique_ptr<ExprAST> ParseForExpr() {
getNextToken(); // eat the for.

if (CurTok != tok_identifier)
return LogError("expected identifier after for");

std::string IdName = IdentifierStr;
getNextToken(); // eat identifier.

if (CurTok != '=')
return LogError("expected '=' after for");

getNextToken(); // eat '='.

auto Start = ParseExpression();
if (!Start)
return nullptr;

if (CurTok != ',')
return LogError("expected ',' after for start value");

getNextToken();

auto End = ParseExpression();
if (!End)
return nullptr;

// The step value is optional.
std::unique_ptr<ExprAST> Step;
if (CurTok == ',') {
getNextToken();
Step = ParseExpression();
if (!Step)

return nullptr;
}

if (CurTok != tok_in)
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return LogError("expected 'in' after for");
getNextToken(); // eat 'in'.

auto Body = ParseExpression();
if (!Body)
return nullptr;

return llvm::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
std::move(Step), std::move(Body));

}

/// varexpr ::= 'var' identifier ('=' expression)?
// (',' identifier ('=' expression)?)* 'in' expression
static std::unique_ptr<ExprAST> ParseVarExpr() {
getNextToken(); // eat the var.

std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;

// At least one variable name is required.
if (CurTok != tok_identifier)
return LogError("expected identifier after var");

while (1) {
std::string Name = IdentifierStr;
getNextToken(); // eat identifier.

// Read the optional initializer.
std::unique_ptr<ExprAST> Init = nullptr;
if (CurTok == '=') {

getNextToken(); // eat the '='.

Init = ParseExpression();
if (!Init)

return nullptr;
}

VarNames.push_back(std::make_pair(Name, std::move(Init)));

// End of var list, exit loop.
if (CurTok != ',')

break;
getNextToken(); // eat the ','.

if (CurTok != tok_identifier)
return LogError("expected identifier list after var");

}

// At this point, we have to have 'in'.
if (CurTok != tok_in)
return LogError("expected 'in' keyword after 'var'");

getNextToken(); // eat 'in'.

auto Body = ParseExpression();
if (!Body)
return nullptr;

return llvm::make_unique<VarExprAST>(std::move(VarNames), std::move(Body));
}
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/// primary
/// ::= identifierexpr
/// ::= numberexpr
/// ::= parenexpr
/// ::= ifexpr
/// ::= forexpr
/// ::= varexpr
static std::unique_ptr<ExprAST> ParsePrimary() {
switch (CurTok) {
default:
return LogError("unknown token when expecting an expression");

case tok_identifier:
return ParseIdentifierExpr();

case tok_number:
return ParseNumberExpr();

case '(':
return ParseParenExpr();

case tok_if:
return ParseIfExpr();

case tok_for:
return ParseForExpr();

case tok_var:
return ParseVarExpr();

}
}

/// unary
/// ::= primary
/// ::= '!' unary
static std::unique_ptr<ExprAST> ParseUnary() {

// If the current token is not an operator, it must be a primary expr.
if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
return ParsePrimary();

// If this is a unary operator, read it.
int Opc = CurTok;
getNextToken();
if (auto Operand = ParseUnary())
return llvm::make_unique<UnaryExprAST>(Opc, std::move(Operand));

return nullptr;
}

/// binoprhs
/// ::= ('+' unary)*
static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,

std::unique_ptr<ExprAST> LHS) {
// If this is a binop, find its precedence.
while (1) {
int TokPrec = GetTokPrecedence();

// If this is a binop that binds at least as tightly as the current binop,
// consume it, otherwise we are done.
if (TokPrec < ExprPrec)

return LHS;

// Okay, we know this is a binop.
int BinOp = CurTok;
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SourceLocation BinLoc = CurLoc;
getNextToken(); // eat binop

// Parse the unary expression after the binary operator.
auto RHS = ParseUnary();
if (!RHS)

return nullptr;

// If BinOp binds less tightly with RHS than the operator after RHS, let
// the pending operator take RHS as its LHS.
int NextPrec = GetTokPrecedence();
if (TokPrec < NextPrec) {

RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
if (!RHS)

return nullptr;
}

// Merge LHS/RHS.
LHS = llvm::make_unique<BinaryExprAST>(BinLoc, BinOp, std::move(LHS),

std::move(RHS));
}

}

/// expression
/// ::= unary binoprhs
///
static std::unique_ptr<ExprAST> ParseExpression() {

auto LHS = ParseUnary();
if (!LHS)
return nullptr;

return ParseBinOpRHS(0, std::move(LHS));
}

/// prototype
/// ::= id '(' id* ')'
/// ::= binary LETTER number? (id, id)
/// ::= unary LETTER (id)
static std::unique_ptr<PrototypeAST> ParsePrototype() {
std::string FnName;

SourceLocation FnLoc = CurLoc;

unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
unsigned BinaryPrecedence = 30;

switch (CurTok) {
default:
return LogErrorP("Expected function name in prototype");

case tok_identifier:
FnName = IdentifierStr;
Kind = 0;
getNextToken();
break;

case tok_unary:
getNextToken();
if (!isascii(CurTok))

return LogErrorP("Expected unary operator");
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FnName = "unary";
FnName += (char)CurTok;
Kind = 1;
getNextToken();
break;

case tok_binary:
getNextToken();
if (!isascii(CurTok))

return LogErrorP("Expected binary operator");
FnName = "binary";
FnName += (char)CurTok;
Kind = 2;
getNextToken();

// Read the precedence if present.
if (CurTok == tok_number) {

if (NumVal < 1 || NumVal > 100)
return LogErrorP("Invalid precedecnce: must be 1..100");

BinaryPrecedence = (unsigned)NumVal;
getNextToken();

}
break;

}

if (CurTok != '(')
return LogErrorP("Expected '(' in prototype");

std::vector<std::string> ArgNames;
while (getNextToken() == tok_identifier)
ArgNames.push_back(IdentifierStr);

if (CurTok != ')')
return LogErrorP("Expected ')' in prototype");

// success.
getNextToken(); // eat ')'.

// Verify right number of names for operator.
if (Kind && ArgNames.size() != Kind)
return LogErrorP("Invalid number of operands for operator");

return llvm::make_unique<PrototypeAST>(FnLoc, FnName, ArgNames, Kind != 0,
BinaryPrecedence);

}

/// definition ::= 'def' prototype expression
static std::unique_ptr<FunctionAST> ParseDefinition() {
getNextToken(); // eat def.
auto Proto = ParsePrototype();
if (!Proto)
return nullptr;

if (auto E = ParseExpression())
return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));

return nullptr;
}

/// toplevelexpr ::= expression
static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
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SourceLocation FnLoc = CurLoc;
if (auto E = ParseExpression()) {
// Make an anonymous proto.
auto Proto = llvm::make_unique<PrototypeAST>(FnLoc, "__anon_expr",

std::vector<std::string>());
return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));

}
return nullptr;

}

/// external ::= 'extern' prototype
static std::unique_ptr<PrototypeAST> ParseExtern() {

getNextToken(); // eat extern.
return ParsePrototype();

}

//===----------------------------------------------------------------------===//
// Debug Info Support
//===----------------------------------------------------------------------===//

static std::unique_ptr<DIBuilder> DBuilder;

DIType *DebugInfo::getDoubleTy() {
if (DblTy)
return DblTy;

DblTy = DBuilder->createBasicType("double", 64, 64, dwarf::DW_ATE_float);
return DblTy;

}

void DebugInfo::emitLocation(ExprAST *AST) {
if (!AST)
return Builder.SetCurrentDebugLocation(DebugLoc());

DIScope *Scope;
if (LexicalBlocks.empty())
Scope = TheCU;

else
Scope = LexicalBlocks.back();

Builder.SetCurrentDebugLocation(
DebugLoc::get(AST->getLine(), AST->getCol(), Scope));

}

static DISubroutineType *CreateFunctionType(unsigned NumArgs, DIFile *Unit) {
SmallVector<Metadata *, 8> EltTys;
DIType *DblTy = KSDbgInfo.getDoubleTy();

// Add the result type.
EltTys.push_back(DblTy);

for (unsigned i = 0, e = NumArgs; i != e; ++i)
EltTys.push_back(DblTy);

return DBuilder->createSubroutineType(DBuilder->getOrCreateTypeArray(EltTys));
}

//===----------------------------------------------------------------------===//
// Code Generation
//===----------------------------------------------------------------------===//
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static std::unique_ptr<Module> TheModule;
static std::map<std::string, AllocaInst *> NamedValues;
static std::unique_ptr<KaleidoscopeJIT> TheJIT;
static std::map<std::string, std::unique_ptr<PrototypeAST>> FunctionProtos;

Value *LogErrorV(const char *Str) {
LogError(Str);
return nullptr;

}

Function *getFunction(std::string Name) {
// First, see if the function has already been added to the current module.
if (auto *F = TheModule->getFunction(Name))
return F;

// If not, check whether we can codegen the declaration from some existing
// prototype.
auto FI = FunctionProtos.find(Name);
if (FI != FunctionProtos.end())
return FI->second->codegen();

// If no existing prototype exists, return null.
return nullptr;

}

/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
/// the function. This is used for mutable variables etc.
static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,

const std::string &VarName) {
IRBuilder<> TmpB(&TheFunction->getEntryBlock(),

TheFunction->getEntryBlock().begin());
return TmpB.CreateAlloca(Type::getDoubleTy(TheContext), nullptr,

VarName.c_str());
}

Value *NumberExprAST::codegen() {
KSDbgInfo.emitLocation(this);
return ConstantFP::get(TheContext, APFloat(Val));

}

Value *VariableExprAST::codegen() {
// Look this variable up in the function.
Value *V = NamedValues[Name];
if (!V)
return LogErrorV("Unknown variable name");

KSDbgInfo.emitLocation(this);
// Load the value.
return Builder.CreateLoad(V, Name.c_str());

}

Value *UnaryExprAST::codegen() {
Value *OperandV = Operand->codegen();
if (!OperandV)

return nullptr;

Function *F = getFunction(std::string("unary") + Opcode);
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if (!F)
return LogErrorV("Unknown unary operator");

KSDbgInfo.emitLocation(this);
return Builder.CreateCall(F, OperandV, "unop");

}

Value *BinaryExprAST::codegen() {
KSDbgInfo.emitLocation(this);

// Special case '=' because we don't want to emit the LHS as an expression.
if (Op == '=') {
// Assignment requires the LHS to be an identifier.
// This assume we're building without RTTI because LLVM builds that way by
// default. If you build LLVM with RTTI this can be changed to a
// dynamic_cast for automatic error checking.
VariableExprAST *LHSE = static_cast<VariableExprAST *>(LHS.get());
if (!LHSE)

return LogErrorV("destination of '=' must be a variable");
// Codegen the RHS.
Value *Val = RHS->codegen();
if (!Val)

return nullptr;

// Look up the name.
Value *Variable = NamedValues[LHSE->getName()];
if (!Variable)

return LogErrorV("Unknown variable name");

Builder.CreateStore(Val, Variable);
return Val;

}

Value *L = LHS->codegen();
Value *R = RHS->codegen();
if (!L || !R)
return nullptr;

switch (Op) {
case '+':
return Builder.CreateFAdd(L, R, "addtmp");

case '-':
return Builder.CreateFSub(L, R, "subtmp");

case '*':
return Builder.CreateFMul(L, R, "multmp");

case '<':
L = Builder.CreateFCmpULT(L, R, "cmptmp");
// Convert bool 0/1 to double 0.0 or 1.0
return Builder.CreateUIToFP(L, Type::getDoubleTy(TheContext), "booltmp");

default:
break;

}

// If it wasn't a builtin binary operator, it must be a user defined one. Emit
// a call to it.
Function *F = getFunction(std::string("binary") + Op);
assert(F && "binary operator not found!");
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Value *Ops[] = {L, R};
return Builder.CreateCall(F, Ops, "binop");

}

Value *CallExprAST::codegen() {
KSDbgInfo.emitLocation(this);

// Look up the name in the global module table.
Function *CalleeF = getFunction(Callee);
if (!CalleeF)
return LogErrorV("Unknown function referenced");

// If argument mismatch error.
if (CalleeF->arg_size() != Args.size())
return LogErrorV("Incorrect # arguments passed");

std::vector<Value *> ArgsV;
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
ArgsV.push_back(Args[i]->codegen());
if (!ArgsV.back())

return nullptr;
}

return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
}

Value *IfExprAST::codegen() {
KSDbgInfo.emitLocation(this);

Value *CondV = Cond->codegen();
if (!CondV)
return nullptr;

// Convert condition to a bool by comparing equal to 0.0.
CondV = Builder.CreateFCmpONE(

CondV, ConstantFP::get(TheContext, APFloat(0.0)), "ifcond");

Function *TheFunction = Builder.GetInsertBlock()->getParent();

// Create blocks for the then and else cases. Insert the 'then' block at the
// end of the function.
BasicBlock *ThenBB = BasicBlock::Create(TheContext, "then", TheFunction);
BasicBlock *ElseBB = BasicBlock::Create(TheContext, "else");
BasicBlock *MergeBB = BasicBlock::Create(TheContext, "ifcont");

Builder.CreateCondBr(CondV, ThenBB, ElseBB);

// Emit then value.
Builder.SetInsertPoint(ThenBB);

Value *ThenV = Then->codegen();
if (!ThenV)

return nullptr;

Builder.CreateBr(MergeBB);
// Codegen of 'Then' can change the current block, update ThenBB for the PHI.
ThenBB = Builder.GetInsertBlock();
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// Emit else block.
TheFunction->getBasicBlockList().push_back(ElseBB);
Builder.SetInsertPoint(ElseBB);

Value *ElseV = Else->codegen();
if (!ElseV)
return nullptr;

Builder.CreateBr(MergeBB);
// Codegen of 'Else' can change the current block, update ElseBB for the PHI.
ElseBB = Builder.GetInsertBlock();

// Emit merge block.
TheFunction->getBasicBlockList().push_back(MergeBB);
Builder.SetInsertPoint(MergeBB);
PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(TheContext), 2, "iftmp");

PN->addIncoming(ThenV, ThenBB);
PN->addIncoming(ElseV, ElseBB);
return PN;

}

// Output for-loop as:
// var = alloca double
// ...
// start = startexpr
// store start -> var
// goto loop
// loop:
// ...
// bodyexpr
// ...
// loopend:
// step = stepexpr
// endcond = endexpr
//
// curvar = load var
// nextvar = curvar + step
// store nextvar -> var
// br endcond, loop, endloop
// outloop:
Value *ForExprAST::codegen() {
Function *TheFunction = Builder.GetInsertBlock()->getParent();

// Create an alloca for the variable in the entry block.
AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);

KSDbgInfo.emitLocation(this);

// Emit the start code first, without 'variable' in scope.
Value *StartVal = Start->codegen();
if (!StartVal)
return nullptr;

// Store the value into the alloca.
Builder.CreateStore(StartVal, Alloca);

// Make the new basic block for the loop header, inserting after current
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// block.
BasicBlock *LoopBB = BasicBlock::Create(TheContext, "loop", TheFunction);

// Insert an explicit fall through from the current block to the LoopBB.
Builder.CreateBr(LoopBB);

// Start insertion in LoopBB.
Builder.SetInsertPoint(LoopBB);

// Within the loop, the variable is defined equal to the PHI node. If it
// shadows an existing variable, we have to restore it, so save it now.
AllocaInst *OldVal = NamedValues[VarName];
NamedValues[VarName] = Alloca;

// Emit the body of the loop. This, like any other expr, can change the
// current BB. Note that we ignore the value computed by the body, but don't
// allow an error.
if (!Body->codegen())
return nullptr;

// Emit the step value.
Value *StepVal = nullptr;
if (Step) {
StepVal = Step->codegen();
if (!StepVal)

return nullptr;
} else {
// If not specified, use 1.0.
StepVal = ConstantFP::get(TheContext, APFloat(1.0));

}

// Compute the end condition.
Value *EndCond = End->codegen();
if (!EndCond)
return nullptr;

// Reload, increment, and restore the alloca. This handles the case where
// the body of the loop mutates the variable.
Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
Builder.CreateStore(NextVar, Alloca);

// Convert condition to a bool by comparing equal to 0.0.
EndCond = Builder.CreateFCmpONE(

EndCond, ConstantFP::get(TheContext, APFloat(0.0)), "loopcond");

// Create the "after loop" block and insert it.
BasicBlock *AfterBB =

BasicBlock::Create(TheContext, "afterloop", TheFunction);

// Insert the conditional branch into the end of LoopEndBB.
Builder.CreateCondBr(EndCond, LoopBB, AfterBB);

// Any new code will be inserted in AfterBB.
Builder.SetInsertPoint(AfterBB);

// Restore the unshadowed variable.
if (OldVal)
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NamedValues[VarName] = OldVal;
else
NamedValues.erase(VarName);

// for expr always returns 0.0.
return Constant::getNullValue(Type::getDoubleTy(TheContext));

}

Value *VarExprAST::codegen() {
std::vector<AllocaInst *> OldBindings;

Function *TheFunction = Builder.GetInsertBlock()->getParent();

// Register all variables and emit their initializer.
for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
const std::string &VarName = VarNames[i].first;
ExprAST *Init = VarNames[i].second.get();

// Emit the initializer before adding the variable to scope, this prevents
// the initializer from referencing the variable itself, and permits stuff
// like this:
// var a = 1 in
// var a = a in ... # refers to outer 'a'.
Value *InitVal;
if (Init) {

InitVal = Init->codegen();
if (!InitVal)

return nullptr;
} else { // If not specified, use 0.0.

InitVal = ConstantFP::get(TheContext, APFloat(0.0));
}

AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
Builder.CreateStore(InitVal, Alloca);

// Remember the old variable binding so that we can restore the binding when
// we unrecurse.
OldBindings.push_back(NamedValues[VarName]);

// Remember this binding.
NamedValues[VarName] = Alloca;

}

KSDbgInfo.emitLocation(this);

// Codegen the body, now that all vars are in scope.
Value *BodyVal = Body->codegen();
if (!BodyVal)
return nullptr;

// Pop all our variables from scope.
for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
NamedValues[VarNames[i].first] = OldBindings[i];

// Return the body computation.
return BodyVal;

}
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Function *PrototypeAST::codegen() {
// Make the function type: double(double,double) etc.
std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(TheContext));
FunctionType *FT =

FunctionType::get(Type::getDoubleTy(TheContext), Doubles, false);

Function *F =
Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get());

// Set names for all arguments.
unsigned Idx = 0;
for (auto &Arg : F->args())
Arg.setName(Args[Idx++]);

return F;
}

Function *FunctionAST::codegen() {
// Transfer ownership of the prototype to the FunctionProtos map, but keep a
// reference to it for use below.
auto &P = *Proto;
FunctionProtos[Proto->getName()] = std::move(Proto);
Function *TheFunction = getFunction(P.getName());
if (!TheFunction)
return nullptr;

// If this is an operator, install it.
if (P.isBinaryOp())
BinopPrecedence[P.getOperatorName()] = P.getBinaryPrecedence();

// Create a new basic block to start insertion into.
BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction);
Builder.SetInsertPoint(BB);

// Create a subprogram DIE for this function.
DIFile *Unit = DBuilder->createFile(KSDbgInfo.TheCU->getFilename(),

KSDbgInfo.TheCU->getDirectory());
DIScope *FContext = Unit;
unsigned LineNo = P.getLine();
unsigned ScopeLine = LineNo;
DISubprogram *SP = DBuilder->createFunction(

FContext, P.getName(), StringRef(), Unit, LineNo,
CreateFunctionType(TheFunction->arg_size(), Unit),
false /* internal linkage */, true /* definition */, ScopeLine,
DINode::FlagPrototyped, false);

TheFunction->setSubprogram(SP);

// Push the current scope.
KSDbgInfo.LexicalBlocks.push_back(SP);

// Unset the location for the prologue emission (leading instructions with no
// location in a function are considered part of the prologue and the debugger
// will run past them when breaking on a function)
KSDbgInfo.emitLocation(nullptr);

// Record the function arguments in the NamedValues map.
NamedValues.clear();
unsigned ArgIdx = 0;
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for (auto &Arg : TheFunction->args()) {
// Create an alloca for this variable.
AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, Arg.getName());

// Create a debug descriptor for the variable.
DILocalVariable *D = DBuilder->createParameterVariable(

SP, Arg.getName(), ++ArgIdx, Unit, LineNo, KSDbgInfo.getDoubleTy(),
true);

DBuilder->insertDeclare(Alloca, D, DBuilder->createExpression(),
DebugLoc::get(LineNo, 0, SP),
Builder.GetInsertBlock());

// Store the initial value into the alloca.
Builder.CreateStore(&Arg, Alloca);

// Add arguments to variable symbol table.
NamedValues[Arg.getName()] = Alloca;

}

KSDbgInfo.emitLocation(Body.get());

if (Value *RetVal = Body->codegen()) {
// Finish off the function.
Builder.CreateRet(RetVal);

// Pop off the lexical block for the function.
KSDbgInfo.LexicalBlocks.pop_back();

// Validate the generated code, checking for consistency.
verifyFunction(*TheFunction);

return TheFunction;
}

// Error reading body, remove function.
TheFunction->eraseFromParent();

if (P.isBinaryOp())
BinopPrecedence.erase(Proto->getOperatorName());

// Pop off the lexical block for the function since we added it
// unconditionally.
KSDbgInfo.LexicalBlocks.pop_back();

return nullptr;
}

//===----------------------------------------------------------------------===//
// Top-Level parsing and JIT Driver
//===----------------------------------------------------------------------===//

static void InitializeModule() {
// Open a new module.
TheModule = llvm::make_unique<Module>("my cool jit", TheContext);
TheModule->setDataLayout(TheJIT->getTargetMachine().createDataLayout());

}
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static void HandleDefinition() {
if (auto FnAST = ParseDefinition()) {
if (!FnAST->codegen())

fprintf(stderr, "Error reading function definition:");
} else {
// Skip token for error recovery.
getNextToken();

}
}

static void HandleExtern() {
if (auto ProtoAST = ParseExtern()) {
if (!ProtoAST->codegen())

fprintf(stderr, "Error reading extern");
else

FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST);
} else {
// Skip token for error recovery.
getNextToken();

}
}

static void HandleTopLevelExpression() {
// Evaluate a top-level expression into an anonymous function.
if (auto FnAST = ParseTopLevelExpr()) {
if (!FnAST->codegen()) {

fprintf(stderr, "Error generating code for top level expr");
}

} else {
// Skip token for error recovery.
getNextToken();

}
}

/// top ::= definition | external | expression | ';'
static void MainLoop() {
while (1) {
switch (CurTok) {
case tok_eof:
return;

case ';': // ignore top-level semicolons.
getNextToken();
break;

case tok_def:
HandleDefinition();
break;

case tok_extern:
HandleExtern();
break;

default:
HandleTopLevelExpression();
break;

}
}

}

//===----------------------------------------------------------------------===//
// "Library" functions that can be "extern'd" from user code.
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//===----------------------------------------------------------------------===//

/// putchard - putchar that takes a double and returns 0.
extern "C" double putchard(double X) {
fputc((char)X, stderr);
return 0;

}

/// printd - printf that takes a double prints it as "%f\n", returning 0.
extern "C" double printd(double X) {
fprintf(stderr, "%f\n", X);
return 0;

}

//===----------------------------------------------------------------------===//
// Main driver code.
//===----------------------------------------------------------------------===//

int main() {
InitializeNativeTarget();
InitializeNativeTargetAsmPrinter();
InitializeNativeTargetAsmParser();

// Install standard binary operators.
// 1 is lowest precedence.
BinopPrecedence['='] = 2;
BinopPrecedence['<'] = 10;
BinopPrecedence['+'] = 20;
BinopPrecedence['-'] = 20;
BinopPrecedence['*'] = 40; // highest.

// Prime the first token.
getNextToken();

TheJIT = llvm::make_unique<KaleidoscopeJIT>();

InitializeModule();

// Add the current debug info version into the module.
TheModule->addModuleFlag(Module::Warning, "Debug Info Version",

DEBUG_METADATA_VERSION);

// Darwin only supports dwarf2.
if (Triple(sys::getProcessTriple()).isOSDarwin())
TheModule->addModuleFlag(llvm::Module::Warning, "Dwarf Version", 2);

// Construct the DIBuilder, we do this here because we need the module.
DBuilder = llvm::make_unique<DIBuilder>(*TheModule);

// Create the compile unit for the module.
// Currently down as "fib.ks" as a filename since we're redirecting stdin
// but we'd like actual source locations.
KSDbgInfo.TheCU = DBuilder->createCompileUnit(

dwarf::DW_LANG_C, "fib.ks", ".", "Kaleidoscope Compiler", 0, "", 0);

// Run the main "interpreter loop" now.
MainLoop();
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// Finalize the debug info.
DBuilder->finalize();

// Print out all of the generated code.
TheModule->dump();

return 0;
}

Next: Conclusion and other useful LLVM tidbits

Kaleidoscope: Conclusion and other useful LLVM tidbits

• Tutorial Conclusion

• Properties of the LLVM IR

– Target Independence

– Safety Guarantees

– Language-Specific Optimizations

• Tips and Tricks

– Implementing portable offsetof/sizeof

– Garbage Collected Stack Frames

Tutorial Conclusion

Welcome to the final chapter of the “Implementing a language with LLVM” tutorial. In the course of this tutorial, we
have grown our little Kaleidoscope language from being a useless toy, to being a semi-interesting (but probably still
useless) toy. :)

It is interesting to see how far we’ve come, and how little code it has taken. We built the entire lexer, parser, AST,
code generator, an interactive run-loop (with a JIT!), and emitted debug information in standalone executables - all in
under 1000 lines of (non-comment/non-blank) code.

Our little language supports a couple of interesting features: it supports user defined binary and unary operators, it
uses JIT compilation for immediate evaluation, and it supports a few control flow constructs with SSA construction.

Part of the idea of this tutorial was to show you how easy and fun it can be to define, build, and play with languages.
Building a compiler need not be a scary or mystical process! Now that you’ve seen some of the basics, I strongly
encourage you to take the code and hack on it. For example, try adding:

• global variables - While global variables have questional value in modern software engineering, they are often
useful when putting together quick little hacks like the Kaleidoscope compiler itself. Fortunately, our current
setup makes it very easy to add global variables: just have value lookup check to see if an unresolved variable is
in the global variable symbol table before rejecting it. To create a new global variable, make an instance of the
LLVM GlobalVariable class.

• typed variables - Kaleidoscope currently only supports variables of type double. This gives the language a very
nice elegance, because only supporting one type means that you never have to specify types. Different languages
have different ways of handling this. The easiest way is to require the user to specify types for every variable
definition, and record the type of the variable in the symbol table along with its Value*.
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• arrays, structs, vectors, etc - Once you add types, you can start extending the type system in all sorts of
interesting ways. Simple arrays are very easy and are quite useful for many different applications. Adding them
is mostly an exercise in learning how the LLVM getelementptr instruction works: it is so nifty/unconventional,
it has its own FAQ!

• standard runtime - Our current language allows the user to access arbitrary external functions, and we use it
for things like “printd” and “putchard”. As you extend the language to add higher-level constructs, often these
constructs make the most sense if they are lowered to calls into a language-supplied runtime. For example, if
you add hash tables to the language, it would probably make sense to add the routines to a runtime, instead of
inlining them all the way.

• memory management - Currently we can only access the stack in Kaleidoscope. It would also be useful to be
able to allocate heap memory, either with calls to the standard libc malloc/free interface or with a garbage col-
lector. If you would like to use garbage collection, note that LLVM fully supports Accurate Garbage Collection
including algorithms that move objects and need to scan/update the stack.

• exception handling support - LLVM supports generation of zero cost exceptions which interoperate with code
compiled in other languages. You could also generate code by implicitly making every function return an error
value and checking it. You could also make explicit use of setjmp/longjmp. There are many different ways to
go here.

• object orientation, generics, database access, complex numbers, geometric programming, ... - Really, there
is no end of crazy features that you can add to the language.

• unusual domains - We’ve been talking about applying LLVM to a domain that many people are interested
in: building a compiler for a specific language. However, there are many other domains that can use compiler
technology that are not typically considered. For example, LLVM has been used to implement OpenGL graphics
acceleration, translate C++ code to ActionScript, and many other cute and clever things. Maybe you will be the
first to JIT compile a regular expression interpreter into native code with LLVM?

Have fun - try doing something crazy and unusual. Building a language like everyone else always has, is much less
fun than trying something a little crazy or off the wall and seeing how it turns out. If you get stuck or want to talk
about it, feel free to email the llvm-dev mailing list: it has lots of people who are interested in languages and are often
willing to help out.

Before we end this tutorial, I want to talk about some “tips and tricks” for generating LLVM IR. These are some of the
more subtle things that may not be obvious, but are very useful if you want to take advantage of LLVM’s capabilities.

Properties of the LLVM IR

We have a couple of common questions about code in the LLVM IR form - let’s just get these out of the way right
now, shall we?

Target Independence

Kaleidoscope is an example of a “portable language”: any program written in Kaleidoscope will work the same way
on any target that it runs on. Many other languages have this property, e.g. lisp, java, haskell, javascript, python, etc
(note that while these languages are portable, not all their libraries are).

One nice aspect of LLVM is that it is often capable of preserving target independence in the IR: you can take the
LLVM IR for a Kaleidoscope-compiled program and run it on any target that LLVM supports, even emitting C code
and compiling that on targets that LLVM doesn’t support natively. You can trivially tell that the Kaleidoscope compiler
generates target-independent code because it never queries for any target-specific information when generating code.

The fact that LLVM provides a compact, target-independent, representation for code gets a lot of people excited.
Unfortunately, these people are usually thinking about C or a language from the C family when they are asking
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questions about language portability. I say “unfortunately”, because there is really no way to make (fully general) C
code portable, other than shipping the source code around (and of course, C source code is not actually portable in
general either - ever port a really old application from 32- to 64-bits?).

The problem with C (again, in its full generality) is that it is heavily laden with target specific assumptions. As one
simple example, the preprocessor often destructively removes target-independence from the code when it processes
the input text:

#ifdef __i386__
int X = 1;

#else
int X = 42;

#endif

While it is possible to engineer more and more complex solutions to problems like this, it cannot be solved in full
generality in a way that is better than shipping the actual source code.

That said, there are interesting subsets of C that can be made portable. If you are willing to fix primitive types to a fixed
size (say int = 32-bits, and long = 64-bits), don’t care about ABI compatibility with existing binaries, and are willing
to give up some other minor features, you can have portable code. This can make sense for specialized domains such
as an in-kernel language.

Safety Guarantees

Many of the languages above are also “safe” languages: it is impossible for a program written in Java to corrupt its
address space and crash the process (assuming the JVM has no bugs). Safety is an interesting property that requires a
combination of language design, runtime support, and often operating system support.

It is certainly possible to implement a safe language in LLVM, but LLVM IR does not itself guarantee safety. The
LLVM IR allows unsafe pointer casts, use after free bugs, buffer over-runs, and a variety of other problems. Safety
needs to be implemented as a layer on top of LLVM and, conveniently, several groups have investigated this. Ask on
the llvm-dev mailing list if you are interested in more details.

Language-Specific Optimizations

One thing about LLVM that turns off many people is that it does not solve all the world’s problems in one system
(sorry ‘world hunger’, someone else will have to solve you some other day). One specific complaint is that people
perceive LLVM as being incapable of performing high-level language-specific optimization: LLVM “loses too much
information”.

Unfortunately, this is really not the place to give you a full and unified version of “Chris Lattner’s theory of compiler
design”. Instead, I’ll make a few observations:

First, you’re right that LLVM does lose information. For example, as of this writing, there is no way to distinguish
in the LLVM IR whether an SSA-value came from a C “int” or a C “long” on an ILP32 machine (other than debug
info). Both get compiled down to an ‘i32’ value and the information about what it came from is lost. The more general
issue here, is that the LLVM type system uses “structural equivalence” instead of “name equivalence”. Another place
this surprises people is if you have two types in a high-level language that have the same structure (e.g. two different
structs that have a single int field): these types will compile down into a single LLVM type and it will be impossible
to tell what it came from.

Second, while LLVM does lose information, LLVM is not a fixed target: we continue to enhance and improve it in
many different ways. In addition to adding new features (LLVM did not always support exceptions or debug info),
we also extend the IR to capture important information for optimization (e.g. whether an argument is sign or zero
extended, information about pointers aliasing, etc). Many of the enhancements are user-driven: people want LLVM to
include some specific feature, so they go ahead and extend it.
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Third, it is possible and easy to add language-specific optimizations, and you have a number of choices in how to
do it. As one trivial example, it is easy to add language-specific optimization passes that “know” things about code
compiled for a language. In the case of the C family, there is an optimization pass that “knows” about the standard
C library functions. If you call “exit(0)” in main(), it knows that it is safe to optimize that into “return 0;” because C
specifies what the ‘exit’ function does.

In addition to simple library knowledge, it is possible to embed a variety of other language-specific information into
the LLVM IR. If you have a specific need and run into a wall, please bring the topic up on the llvm-dev list. At the very
worst, you can always treat LLVM as if it were a “dumb code generator” and implement the high-level optimizations
you desire in your front-end, on the language-specific AST.

Tips and Tricks

There is a variety of useful tips and tricks that you come to know after working on/with LLVM that aren’t obvious at
first glance. Instead of letting everyone rediscover them, this section talks about some of these issues.

Implementing portable offsetof/sizeof

One interesting thing that comes up, if you are trying to keep the code generated by your compiler “target independent”,
is that you often need to know the size of some LLVM type or the offset of some field in an llvm structure. For example,
you might need to pass the size of a type into a function that allocates memory.

Unfortunately, this can vary widely across targets: for example the width of a pointer is trivially target-specific.
However, there is a clever way to use the getelementptr instruction that allows you to compute this in a portable way.

Garbage Collected Stack Frames

Some languages want to explicitly manage their stack frames, often so that they are garbage collected or to allow easy
implementation of closures. There are often better ways to implement these features than explicit stack frames, but
LLVM does support them, if you want. It requires your front-end to convert the code into Continuation Passing Style
and the use of tail calls (which LLVM also supports).

Kaleidoscope: Implementing a Language with LLVM in Objective Caml

Kaleidoscope: Tutorial Introduction and the Lexer

• Tutorial Introduction

• The Basic Language

• The Lexer

Tutorial Introduction

Welcome to the “Implementing a language with LLVM” tutorial. This tutorial runs through the implementation of a
simple language, showing how fun and easy it can be. This tutorial will get you up and started as well as help to build
a framework you can extend to other languages. The code in this tutorial can also be used as a playground to hack on
other LLVM specific things.
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The goal of this tutorial is to progressively unveil our language, describing how it is built up over time. This will let us
cover a fairly broad range of language design and LLVM-specific usage issues, showing and explaining the code for it
all along the way, without overwhelming you with tons of details up front.

It is useful to point out ahead of time that this tutorial is really about teaching compiler techniques and LLVM specif-
ically, not about teaching modern and sane software engineering principles. In practice, this means that we’ll take a
number of shortcuts to simplify the exposition. For example, the code leaks memory, uses global variables all over the
place, doesn’t use nice design patterns like visitors, etc... but it is very simple. If you dig in and use the code as a basis
for future projects, fixing these deficiencies shouldn’t be hard.

I’ve tried to put this tutorial together in a way that makes chapters easy to skip over if you are already familiar with or
are uninterested in the various pieces. The structure of the tutorial is:

• Chapter #1: Introduction to the Kaleidoscope language, and the definition of its Lexer - This shows where we are
going and the basic functionality that we want it to do. In order to make this tutorial maximally understandable
and hackable, we choose to implement everything in Objective Caml instead of using lexer and parser generators.
LLVM obviously works just fine with such tools, feel free to use one if you prefer.

• Chapter #2: Implementing a Parser and AST - With the lexer in place, we can talk about parsing techniques
and basic AST construction. This tutorial describes recursive descent parsing and operator precedence parsing.
Nothing in Chapters 1 or 2 is LLVM-specific, the code doesn’t even link in LLVM at this point. :)

• Chapter #3: Code generation to LLVM IR - With the AST ready, we can show off how easy generation of LLVM
IR really is.

• Chapter #4: Adding JIT and Optimizer Support - Because a lot of people are interested in using LLVM as a JIT,
we’ll dive right into it and show you the 3 lines it takes to add JIT support. LLVM is also useful in many other
ways, but this is one simple and “sexy” way to shows off its power. :)

• Chapter #5: Extending the Language: Control Flow - With the language up and running, we show how to extend
it with control flow operations (if/then/else and a ‘for’ loop). This gives us a chance to talk about simple SSA
construction and control flow.

• Chapter #6: Extending the Language: User-defined Operators - This is a silly but fun chapter that talks about
extending the language to let the user program define their own arbitrary unary and binary operators (with
assignable precedence!). This lets us build a significant piece of the “language” as library routines.

• Chapter #7: Extending the Language: Mutable Variables - This chapter talks about adding user-defined local
variables along with an assignment operator. The interesting part about this is how easy and trivial it is to
construct SSA form in LLVM: no, LLVM does not require your front-end to construct SSA form!

• Chapter #8: Conclusion and other useful LLVM tidbits - This chapter wraps up the series by talking about
potential ways to extend the language, but also includes a bunch of pointers to info about “special topics” like
adding garbage collection support, exceptions, debugging, support for “spaghetti stacks”, and a bunch of other
tips and tricks.

By the end of the tutorial, we’ll have written a bit less than 700 lines of non-comment, non-blank, lines of code. With
this small amount of code, we’ll have built up a very reasonable compiler for a non-trivial language including a hand-
written lexer, parser, AST, as well as code generation support with a JIT compiler. While other systems may have
interesting “hello world” tutorials, I think the breadth of this tutorial is a great testament to the strengths of LLVM and
why you should consider it if you’re interested in language or compiler design.

A note about this tutorial: we expect you to extend the language and play with it on your own. Take the code and go
crazy hacking away at it, compilers don’t need to be scary creatures - it can be a lot of fun to play with languages!

The Basic Language

This tutorial will be illustrated with a toy language that we’ll call “Kaleidoscope” (derived from “meaning beautiful,
form, and view”). Kaleidoscope is a procedural language that allows you to define functions, use conditionals, math,
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etc. Over the course of the tutorial, we’ll extend Kaleidoscope to support the if/then/else construct, a for loop, user
defined operators, JIT compilation with a simple command line interface, etc.

Because we want to keep things simple, the only datatype in Kaleidoscope is a 64-bit floating point type (aka ‘float’
in OCaml parlance). As such, all values are implicitly double precision and the language doesn’t require type decla-
rations. This gives the language a very nice and simple syntax. For example, the following simple example computes
Fibonacci numbers:

# Compute the x'th fibonacci number.
def fib(x)
if x < 3 then
1

else
fib(x-1)+fib(x-2)

# This expression will compute the 40th number.
fib(40)

We also allow Kaleidoscope to call into standard library functions (the LLVM JIT makes this completely trivial). This
means that you can use the ‘extern’ keyword to define a function before you use it (this is also useful for mutually
recursive functions). For example:

extern sin(arg);
extern cos(arg);
extern atan2(arg1 arg2);

atan2(sin(.4), cos(42))

A more interesting example is included in Chapter 6 where we write a little Kaleidoscope application that displays a
Mandelbrot Set at various levels of magnification.

Lets dive into the implementation of this language!

The Lexer

When it comes to implementing a language, the first thing needed is the ability to process a text file and recognize
what it says. The traditional way to do this is to use a “lexer” (aka ‘scanner’) to break the input up into “tokens”. Each
token returned by the lexer includes a token code and potentially some metadata (e.g. the numeric value of a number).
First, we define the possibilities:

(* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of

* these others for known things. *)
type token =

(* commands *)
| Def | Extern

(* primary *)
| Ident of string | Number of float

(* unknown *)
| Kwd of char

Each token returned by our lexer will be one of the token variant values. An unknown character like ‘+’ will be
returned as Token.Kwd '+'. If the curr token is an identifier, the value will be Token.Ident s. If the current
token is a numeric literal (like 1.0), the value will be Token.Number 1.0.
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The actual implementation of the lexer is a collection of functions driven by a function named Lexer.lex. The
Lexer.lex function is called to return the next token from standard input. We will use Camlp4 to simplify the
tokenization of the standard input. Its definition starts as:

(*===----------------------------------------------------------------------===

* Lexer

*===----------------------------------------------------------------------===*)

let rec lex = parser
(* Skip any whitespace. *)
| [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream

Lexer.lex works by recursing over a char Stream.t to read characters one at a time from the standard input.
It eats them as it recognizes them and stores them in in a Token.token variant. The first thing that it has to do is
ignore whitespace between tokens. This is accomplished with the recursive call above.

The next thing Lexer.lex needs to do is recognize identifiers and specific keywords like “def”. Kaleidoscope does
this with a pattern match and a helper function.

(* identifier: [a-zA-Z][a-zA-Z0-9] *)
| [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] ->

let buffer = Buffer.create 1 in
Buffer.add_char buffer c;
lex_ident buffer stream

...

and lex_ident buffer = parser
| [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] ->

Buffer.add_char buffer c;
lex_ident buffer stream

| [< stream=lex >] ->
match Buffer.contents buffer with
| "def" -> [< 'Token.Def; stream >]
| "extern" -> [< 'Token.Extern; stream >]
| id -> [< 'Token.Ident id; stream >]

Numeric values are similar:

(* number: [0-9.]+ *)
| [< ' ('0' .. '9' as c); stream >] ->

let buffer = Buffer.create 1 in
Buffer.add_char buffer c;
lex_number buffer stream

...

and lex_number buffer = parser
| [< ' ('0' .. '9' | '.' as c); stream >] ->

Buffer.add_char buffer c;
lex_number buffer stream

| [< stream=lex >] ->
[< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >]

This is all pretty straight-forward code for processing input. When reading a numeric value from input, we use the
ocaml float_of_string function to convert it to a numeric value that we store in Token.Number. Note that
this isn’t doing sufficient error checking: it will raise Failure if the string “1.23.45.67”. Feel free to extend it :).
Next we handle comments:
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(* Comment until end of line. *)
| [< ' ('#'); stream >] ->

lex_comment stream

...

and lex_comment = parser
| [< ' ('\n'); stream=lex >] -> stream
| [< 'c; e=lex_comment >] -> e
| [< >] -> [< >]

We handle comments by skipping to the end of the line and then return the next token. Finally, if the input doesn’t
match one of the above cases, it is either an operator character like ‘+’ or the end of the file. These are handled with
this code:

(* Otherwise, just return the character as its ascii value. *)
| [< 'c; stream >] ->

[< 'Token.Kwd c; lex stream >]

(* end of stream. *)
| [< >] -> [< >]

With this, we have the complete lexer for the basic Kaleidoscope language (the full code listing for the Lexer is
available in the next chapter of the tutorial). Next we’ll build a simple parser that uses this to build an Abstract Syntax
Tree. When we have that, we’ll include a driver so that you can use the lexer and parser together.

Next: Implementing a Parser and AST

Kaleidoscope: Implementing a Parser and AST

• Chapter 2 Introduction

• The Abstract Syntax Tree (AST)

• Parser Basics

• Basic Expression Parsing

• Binary Expression Parsing

• Parsing the Rest

• The Driver

• Conclusions

• Full Code Listing

Chapter 2 Introduction

Welcome to Chapter 2 of the “Implementing a language with LLVM in Objective Caml” tutorial. This chapter shows
you how to use the lexer, built in Chapter 1, to build a full parser for our Kaleidoscope language. Once we have a
parser, we’ll define and build an Abstract Syntax Tree (AST).

The parser we will build uses a combination of Recursive Descent Parsing and Operator-Precedence Parsing to parse
the Kaleidoscope language (the latter for binary expressions and the former for everything else). Before we get to
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parsing though, lets talk about the output of the parser: the Abstract Syntax Tree.

The Abstract Syntax Tree (AST)

The AST for a program captures its behavior in such a way that it is easy for later stages of the compiler (e.g. code
generation) to interpret. We basically want one object for each construct in the language, and the AST should closely
model the language. In Kaleidoscope, we have expressions, a prototype, and a function object. We’ll start with
expressions first:

(* expr - Base type for all expression nodes. *)
type expr =

(* variant for numeric literals like "1.0". *)
| Number of float

The code above shows the definition of the base ExprAST class and one subclass which we use for numeric literals.
The important thing to note about this code is that the Number variant captures the numeric value of the literal as an
instance variable. This allows later phases of the compiler to know what the stored numeric value is.

Right now we only create the AST, so there are no useful functions on them. It would be very easy to add a function
to pretty print the code, for example. Here are the other expression AST node definitions that we’ll use in the basic
form of the Kaleidoscope language:

(* variant for referencing a variable, like "a". *)
| Variable of string

(* variant for a binary operator. *)
| Binary of char * expr * expr

(* variant for function calls. *)
| Call of string * expr array

This is all (intentionally) rather straight-forward: variables capture the variable name, binary operators capture their
opcode (e.g. ‘+’), and calls capture a function name as well as a list of any argument expressions. One thing that is
nice about our AST is that it captures the language features without talking about the syntax of the language. Note
that there is no discussion about precedence of binary operators, lexical structure, etc.

For our basic language, these are all of the expression nodes we’ll define. Because it doesn’t have conditional control
flow, it isn’t Turing-complete; we’ll fix that in a later installment. The two things we need next are a way to talk about
the interface to a function, and a way to talk about functions themselves:

(* proto - This type represents the "prototype" for a function, which captures

* its name, and its argument names (thus implicitly the number of arguments the

* function takes). *)
type proto = Prototype of string * string array

(* func - This type represents a function definition itself. *)
type func = Function of proto * expr

In Kaleidoscope, functions are typed with just a count of their arguments. Since all values are double precision floating
point, the type of each argument doesn’t need to be stored anywhere. In a more aggressive and realistic language, the
“expr” variants would probably have a type field.

With this scaffolding, we can now talk about parsing expressions and function bodies in Kaleidoscope.

2.17. LLVM Tutorial: Table of Contents 557



LLVM Documentation, Release 3.9

Parser Basics

Now that we have an AST to build, we need to define the parser code to build it. The idea here is that we want to parse
something like “x+y” (which is returned as three tokens by the lexer) into an AST that could be generated with calls
like this:

let x = Variable "x" in
let y = Variable "y" in
let result = Binary ('+', x, y) in
...

The error handling routines make use of the builtin Stream.Failure and Stream.Error``s. ``Stream.
Failure is raised when the parser is unable to find any matching token in the first position of a pattern. Stream.
Error is raised when the first token matches, but the rest do not. The error recovery in our parser will not be the
best and is not particular user-friendly, but it will be enough for our tutorial. These exceptions make it easier to handle
errors in routines that have various return types.

With these basic types and exceptions, we can implement the first piece of our grammar: numeric literals.

Basic Expression Parsing

We start with numeric literals, because they are the simplest to process. For each production in our grammar, we’ll
define a function which parses that production. We call this class of expressions “primary” expressions, for reasons
that will become more clear later in the tutorial. In order to parse an arbitrary primary expression, we need to determine
what sort of expression it is. For numeric literals, we have:

(* primary

* ::= identifier

* ::= numberexpr

* ::= parenexpr *)
parse_primary = parser

(* numberexpr ::= number *)
| [< 'Token.Number n >] -> Ast.Number n

This routine is very simple: it expects to be called when the current token is a Token.Number token. It takes the
current number value, creates a Ast.Number node, advances the lexer to the next token, and finally returns.

There are some interesting aspects to this. The most important one is that this routine eats all of the tokens that
correspond to the production and returns the lexer buffer with the next token (which is not part of the grammar
production) ready to go. This is a fairly standard way to go for recursive descent parsers. For a better example, the
parenthesis operator is defined like this:

(* parenexpr ::= '(' expression ')' *)
| [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e

This function illustrates a number of interesting things about the parser:

1) It shows how we use the Stream.Error exception. When called, this function expects that the current token is a
‘(‘ token, but after parsing the subexpression, it is possible that there is no ‘)’ waiting. For example, if the user types
in “(4 x” instead of “(4)”, the parser should emit an error. Because errors can occur, the parser needs a way to indicate
that they happened. In our parser, we use the camlp4 shortcut syntax token ?? "parse error", where if the
token before the ?? does not match, then Stream.Error "parse error" will be raised.

2) Another interesting aspect of this function is that it uses recursion by calling Parser.parse_primary (we
will soon see that Parser.parse_primary can call Parser.parse_primary). This is powerful because it
allows us to handle recursive grammars, and keeps each production very simple. Note that parentheses do not cause
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construction of AST nodes themselves. While we could do it this way, the most important role of parentheses are to
guide the parser and provide grouping. Once the parser constructs the AST, parentheses are not needed.

The next simple production is for handling variable references and function calls:

(* identifierexpr

* ::= identifier

* ::= identifier '(' argumentexpr ')' *)
| [< 'Token.Ident id; stream >] ->

let rec parse_args accumulator = parser
| [< e=parse_expr; stream >] ->

begin parser
| [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e
| [< >] -> e :: accumulator

end stream
| [< >] -> accumulator

in
let rec parse_ident id = parser

(* Call. *)
| [< 'Token.Kwd '(';

args=parse_args [];
'Token.Kwd ')' ?? "expected ')'">] ->

Ast.Call (id, Array.of_list (List.rev args))

(* Simple variable ref. *)
| [< >] -> Ast.Variable id

in
parse_ident id stream

This routine follows the same style as the other routines. (It expects to be called if the current token is a Token.
Ident token). It also has recursion and error handling. One interesting aspect of this is that it uses look-ahead to
determine if the current identifier is a stand alone variable reference or if it is a function call expression. It handles this
by checking to see if the token after the identifier is a ‘(‘ token, constructing either a Ast.Variable or Ast.Call
node as appropriate.

We finish up by raising an exception if we received a token we didn’t expect:

| [< >] -> raise (Stream.Error "unknown token when expecting an expression.")

Now that basic expressions are handled, we need to handle binary expressions. They are a bit more complex.

Binary Expression Parsing

Binary expressions are significantly harder to parse because they are often ambiguous. For example, when given the
string “x+y*z”, the parser can choose to parse it as either “(x+y)*z” or “x+(y*z)”. With common definitions from
mathematics, we expect the later parse, because “*” (multiplication) has higher precedence than “+” (addition).

There are many ways to handle this, but an elegant and efficient way is to use Operator-Precedence Parsing. This
parsing technique uses the precedence of binary operators to guide recursion. To start with, we need a table of
precedences:

(* binop_precedence - This holds the precedence for each binary operator that is

* defined *)
let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10

(* precedence - Get the precedence of the pending binary operator token. *)
let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1
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...

let main () =
(* Install standard binary operators.

* 1 is the lowest precedence. *)
Hashtbl.add Parser.binop_precedence '<' 10;
Hashtbl.add Parser.binop_precedence '+' 20;
Hashtbl.add Parser.binop_precedence '-' 20;
Hashtbl.add Parser.binop_precedence '*' 40; (* highest. *)
...

For the basic form of Kaleidoscope, we will only support 4 binary operators (this can obviously be extended by you,
our brave and intrepid reader). The Parser.precedence function returns the precedence for the current token,
or -1 if the token is not a binary operator. Having a Hashtbl.t makes it easy to add new operators and makes it
clear that the algorithm doesn’t depend on the specific operators involved, but it would be easy enough to eliminate
the Hashtbl.t and do the comparisons in the Parser.precedence function. (Or just use a fixed-size array).

With the helper above defined, we can now start parsing binary expressions. The basic idea of operator precedence
parsing is to break down an expression with potentially ambiguous binary operators into pieces. Consider, for example,
the expression “a+b+(c+d)*e*f+g”. Operator precedence parsing considers this as a stream of primary expressions
separated by binary operators. As such, it will first parse the leading primary expression “a”, then it will see the pairs
[+, b] [+, (c+d)] [*, e] [*, f] and [+, g]. Note that because parentheses are primary expressions, the binary expression
parser doesn’t need to worry about nested subexpressions like (c+d) at all.

To start, an expression is a primary expression potentially followed by a sequence of [binop,primaryexpr] pairs:

(* expression

* ::= primary binoprhs *)
and parse_expr = parser
| [< lhs=parse_primary; stream >] -> parse_bin_rhs 0 lhs stream

Parser.parse_bin_rhs is the function that parses the sequence of pairs for us. It takes a precedence and a
pointer to an expression for the part that has been parsed so far. Note that “x” is a perfectly valid expression: As such,
“binoprhs” is allowed to be empty, in which case it returns the expression that is passed into it. In our example above,
the code passes the expression for “a” into Parser.parse_bin_rhs and the current token is “+”.

The precedence value passed into Parser.parse_bin_rhs indicates the minimal operator precedence that the
function is allowed to eat. For example, if the current pair stream is [+, x] and Parser.parse_bin_rhs is passed
in a precedence of 40, it will not consume any tokens (because the precedence of ‘+’ is only 20). With this in mind,
Parser.parse_bin_rhs starts with:

(* binoprhs

* ::= ('+' primary)* *)
and parse_bin_rhs expr_prec lhs stream =
match Stream.peek stream with
(* If this is a binop, find its precedence. *)
| Some (Token.Kwd c) when Hashtbl.mem binop_precedence c ->

let token_prec = precedence c in

(* If this is a binop that binds at least as tightly as the current binop,

* consume it, otherwise we are done. *)
if token_prec < expr_prec then lhs else begin

This code gets the precedence of the current token and checks to see if if is too low. Because we defined invalid tokens
to have a precedence of -1, this check implicitly knows that the pair-stream ends when the token stream runs out of
binary operators. If this check succeeds, we know that the token is a binary operator and that it will be included in this
expression:
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(* Eat the binop. *)
Stream.junk stream;

(* Parse the primary expression after the binary operator *)
let rhs = parse_primary stream in

(* Okay, we know this is a binop. *)
let rhs =
match Stream.peek stream with
| Some (Token.Kwd c2) ->

As such, this code eats (and remembers) the binary operator and then parses the primary expression that follows. This
builds up the whole pair, the first of which is [+, b] for the running example.

Now that we parsed the left-hand side of an expression and one pair of the RHS sequence, we have to decide which
way the expression associates. In particular, we could have “(a+b) binop unparsed” or “a + (b binop unparsed)”. To
determine this, we look ahead at “binop” to determine its precedence and compare it to BinOp’s precedence (which is
‘+’ in this case):

(* If BinOp binds less tightly with rhs than the operator after

* rhs, let the pending operator take rhs as its lhs. *)
let next_prec = precedence c2 in
if token_prec < next_prec

If the precedence of the binop to the right of “RHS” is lower or equal to the precedence of our current operator, then
we know that the parentheses associate as “(a+b) binop ...”. In our example, the current operator is “+” and the next
operator is “+”, we know that they have the same precedence. In this case we’ll create the AST node for “a+b”, and
then continue parsing:

... if body omitted ...
in

(* Merge lhs/rhs. *)
let lhs = Ast.Binary (c, lhs, rhs) in
parse_bin_rhs expr_prec lhs stream

end

In our example above, this will turn “a+b+” into “(a+b)” and execute the next iteration of the loop, with “+” as the
current token. The code above will eat, remember, and parse “(c+d)” as the primary expression, which makes the
current pair equal to [+, (c+d)]. It will then evaluate the ‘if’ conditional above with “*” as the binop to the right of the
primary. In this case, the precedence of “*” is higher than the precedence of “+” so the if condition will be entered.

The critical question left here is “how can the if condition parse the right hand side in full”? In particular, to build the
AST correctly for our example, it needs to get all of “(c+d)*e*f” as the RHS expression variable. The code to do this
is surprisingly simple (code from the above two blocks duplicated for context):

match Stream.peek stream with
| Some (Token.Kwd c2) ->

(* If BinOp binds less tightly with rhs than the operator after

* rhs, let the pending operator take rhs as its lhs. *)
if token_prec < precedence c2
then parse_bin_rhs (token_prec + 1) rhs stream
else rhs

| _ -> rhs
in

(* Merge lhs/rhs. *)
let lhs = Ast.Binary (c, lhs, rhs) in
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parse_bin_rhs expr_prec lhs stream
end

At this point, we know that the binary operator to the RHS of our primary has higher precedence than the binop we are
currently parsing. As such, we know that any sequence of pairs whose operators are all higher precedence than “+”
should be parsed together and returned as “RHS”. To do this, we recursively invoke the Parser.parse_bin_rhs
function specifying “token_prec+1” as the minimum precedence required for it to continue. In our example above,
this will cause it to return the AST node for “(c+d)*e*f” as RHS, which is then set as the RHS of the ‘+’ expression.

Finally, on the next iteration of the while loop, the “+g” piece is parsed and added to the AST. With this little bit of
code (14 non-trivial lines), we correctly handle fully general binary expression parsing in a very elegant way. This was
a whirlwind tour of this code, and it is somewhat subtle. I recommend running through it with a few tough examples
to see how it works.

This wraps up handling of expressions. At this point, we can point the parser at an arbitrary token stream and build
an expression from it, stopping at the first token that is not part of the expression. Next up we need to handle function
definitions, etc.

Parsing the Rest

The next thing missing is handling of function prototypes. In Kaleidoscope, these are used both for ‘extern’ function
declarations as well as function body definitions. The code to do this is straight-forward and not very interesting (once
you’ve survived expressions):

(* prototype

* ::= id '(' id* ')' *)
let parse_prototype =
let rec parse_args accumulator = parser
| [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e
| [< >] -> accumulator

in

parser
| [< 'Token.Ident id;

'Token.Kwd '(' ?? "expected '(' in prototype";
args=parse_args [];
'Token.Kwd ')' ?? "expected ')' in prototype" >] ->

(* success. *)
Ast.Prototype (id, Array.of_list (List.rev args))

| [< >] ->
raise (Stream.Error "expected function name in prototype")

Given this, a function definition is very simple, just a prototype plus an expression to implement the body:

(* definition ::= 'def' prototype expression *)
let parse_definition = parser
| [< 'Token.Def; p=parse_prototype; e=parse_expr >] ->

Ast.Function (p, e)

In addition, we support ‘extern’ to declare functions like ‘sin’ and ‘cos’ as well as to support forward declaration of
user functions. These ‘extern’s are just prototypes with no body:

(* external ::= 'extern' prototype *)
let parse_extern = parser
| [< 'Token.Extern; e=parse_prototype >] -> e
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Finally, we’ll also let the user type in arbitrary top-level expressions and evaluate them on the fly. We will handle this
by defining anonymous nullary (zero argument) functions for them:

(* toplevelexpr ::= expression *)
let parse_toplevel = parser
| [< e=parse_expr >] ->

(* Make an anonymous proto. *)
Ast.Function (Ast.Prototype ("", [||]), e)

Now that we have all the pieces, let’s build a little driver that will let us actually execute this code we’ve built!

The Driver

The driver for this simply invokes all of the parsing pieces with a top-level dispatch loop. There isn’t much interesting
here, so I’ll just include the top-level loop. See below for full code in the “Top-Level Parsing” section.

(* top ::= definition | external | expression | ';' *)
let rec main_loop stream =

match Stream.peek stream with
| None -> ()

(* ignore top-level semicolons. *)
| Some (Token.Kwd ';') ->

Stream.junk stream;
main_loop stream

| Some token ->
begin

try match token with
| Token.Def ->

ignore(Parser.parse_definition stream);
print_endline "parsed a function definition.";

| Token.Extern ->
ignore(Parser.parse_extern stream);
print_endline "parsed an extern.";

| _ ->
(* Evaluate a top-level expression into an anonymous function. *)
ignore(Parser.parse_toplevel stream);
print_endline "parsed a top-level expr";

with Stream.Error s ->
(* Skip token for error recovery. *)
Stream.junk stream;
print_endline s;

end;
print_string "ready> "; flush stdout;
main_loop stream

The most interesting part of this is that we ignore top-level semicolons. Why is this, you ask? The basic reason is
that if you type “4 + 5” at the command line, the parser doesn’t know whether that is the end of what you will type or
not. For example, on the next line you could type “def foo...” in which case 4+5 is the end of a top-level expression.
Alternatively you could type “* 6”, which would continue the expression. Having top-level semicolons allows you to
type “4+5;”, and the parser will know you are done.
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Conclusions

With just under 300 lines of commented code (240 lines of non-comment, non-blank code), we fully defined our min-
imal language, including a lexer, parser, and AST builder. With this done, the executable will validate Kaleidoscope
code and tell us if it is grammatically invalid. For example, here is a sample interaction:

$ ./toy.byte
ready> def foo(x y) x+foo(y, 4.0);
Parsed a function definition.
ready> def foo(x y) x+y y;
Parsed a function definition.
Parsed a top-level expr
ready> def foo(x y) x+y );
Parsed a function definition.
Error: unknown token when expecting an expression
ready> extern sin(a);
ready> Parsed an extern
ready> ^D
$

There is a lot of room for extension here. You can define new AST nodes, extend the language in many ways, etc. In
the next installment, we will describe how to generate LLVM Intermediate Representation (IR) from the AST.

Full Code Listing

Here is the complete code listing for this and the previous chapter. Note that it is fully self-contained: you don’t need
LLVM or any external libraries at all for this. (Besides the ocaml standard libraries, of course.) To build this, just
compile with:

# Compile
ocamlbuild toy.byte
# Run
./toy.byte

Here is the code:

_tags:

<{lexer,parser}.ml>: use_camlp4, pp(camlp4of)

token.ml:

(*===----------------------------------------------------------------------===

* Lexer Tokens

*===----------------------------------------------------------------------===*)

(* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of

* these others for known things. *)
type token =
(* commands *)
| Def | Extern

(* primary *)
| Ident of string | Number of float

(* unknown *)
| Kwd of char
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lexer.ml:

(*===----------------------------------------------------------------------===

* Lexer

*===----------------------------------------------------------------------===*)

let rec lex = parser
(* Skip any whitespace. *)
| [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream

(* identifier: [a-zA-Z][a-zA-Z0-9] *)
| [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] ->

let buffer = Buffer.create 1 in
Buffer.add_char buffer c;
lex_ident buffer stream

(* number: [0-9.]+ *)
| [< ' ('0' .. '9' as c); stream >] ->

let buffer = Buffer.create 1 in
Buffer.add_char buffer c;
lex_number buffer stream

(* Comment until end of line. *)
| [< ' ('#'); stream >] ->

lex_comment stream

(* Otherwise, just return the character as its ascii value. *)
| [< 'c; stream >] ->

[< 'Token.Kwd c; lex stream >]

(* end of stream. *)
| [< >] -> [< >]

and lex_number buffer = parser
| [< ' ('0' .. '9' | '.' as c); stream >] ->

Buffer.add_char buffer c;
lex_number buffer stream

| [< stream=lex >] ->
[< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >]

and lex_ident buffer = parser
| [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] ->

Buffer.add_char buffer c;
lex_ident buffer stream

| [< stream=lex >] ->
match Buffer.contents buffer with
| "def" -> [< 'Token.Def; stream >]
| "extern" -> [< 'Token.Extern; stream >]
| id -> [< 'Token.Ident id; stream >]

and lex_comment = parser
| [< ' ('\n'); stream=lex >] -> stream
| [< 'c; e=lex_comment >] -> e
| [< >] -> [< >]

ast.ml:
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(*===----------------------------------------------------------------------===

* Abstract Syntax Tree (aka Parse Tree)

*===----------------------------------------------------------------------===*)

(* expr - Base type for all expression nodes. *)
type expr =
(* variant for numeric literals like "1.0". *)
| Number of float

(* variant for referencing a variable, like "a". *)
| Variable of string

(* variant for a binary operator. *)
| Binary of char * expr * expr

(* variant for function calls. *)
| Call of string * expr array

(* proto - This type represents the "prototype" for a function, which captures

* its name, and its argument names (thus implicitly the number of arguments the

* function takes). *)
type proto = Prototype of string * string array

(* func - This type represents a function definition itself. *)
type func = Function of proto * expr

parser.ml:

(*===---------------------------------------------------------------------===

* Parser

*===---------------------------------------------------------------------===*)

(* binop_precedence - This holds the precedence for each binary operator that is

* defined *)
let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10

(* precedence - Get the precedence of the pending binary operator token. *)
let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1

(* primary

* ::= identifier

* ::= numberexpr

* ::= parenexpr *)
let rec parse_primary = parser
(* numberexpr ::= number *)
| [< 'Token.Number n >] -> Ast.Number n

(* parenexpr ::= '(' expression ')' *)
| [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e

(* identifierexpr

* ::= identifier

* ::= identifier '(' argumentexpr ')' *)
| [< 'Token.Ident id; stream >] ->

let rec parse_args accumulator = parser
| [< e=parse_expr; stream >] ->

begin parser
| [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e
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| [< >] -> e :: accumulator
end stream

| [< >] -> accumulator
in
let rec parse_ident id = parser
(* Call. *)
| [< 'Token.Kwd '(';

args=parse_args [];
'Token.Kwd ')' ?? "expected ')'">] ->

Ast.Call (id, Array.of_list (List.rev args))

(* Simple variable ref. *)
| [< >] -> Ast.Variable id

in
parse_ident id stream

| [< >] -> raise (Stream.Error "unknown token when expecting an expression.")

(* binoprhs

* ::= ('+' primary)* *)
and parse_bin_rhs expr_prec lhs stream =
match Stream.peek stream with
(* If this is a binop, find its precedence. *)
| Some (Token.Kwd c) when Hashtbl.mem binop_precedence c ->

let token_prec = precedence c in

(* If this is a binop that binds at least as tightly as the current binop,

* consume it, otherwise we are done. *)
if token_prec < expr_prec then lhs else begin
(* Eat the binop. *)
Stream.junk stream;

(* Parse the primary expression after the binary operator. *)
let rhs = parse_primary stream in

(* Okay, we know this is a binop. *)
let rhs =

match Stream.peek stream with
| Some (Token.Kwd c2) ->

(* If BinOp binds less tightly with rhs than the operator after

* rhs, let the pending operator take rhs as its lhs. *)
let next_prec = precedence c2 in
if token_prec < next_prec
then parse_bin_rhs (token_prec + 1) rhs stream
else rhs

| _ -> rhs
in

(* Merge lhs/rhs. *)
let lhs = Ast.Binary (c, lhs, rhs) in
parse_bin_rhs expr_prec lhs stream

end
| _ -> lhs

(* expression

* ::= primary binoprhs *)
and parse_expr = parser
| [< lhs=parse_primary; stream >] -> parse_bin_rhs 0 lhs stream
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(* prototype

* ::= id '(' id* ')' *)
let parse_prototype =
let rec parse_args accumulator = parser

| [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e
| [< >] -> accumulator

in

parser
| [< 'Token.Ident id;

'Token.Kwd '(' ?? "expected '(' in prototype";
args=parse_args [];
'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
(* success. *)
Ast.Prototype (id, Array.of_list (List.rev args))

| [< >] ->
raise (Stream.Error "expected function name in prototype")

(* definition ::= 'def' prototype expression *)
let parse_definition = parser
| [< 'Token.Def; p=parse_prototype; e=parse_expr >] ->

Ast.Function (p, e)

(* toplevelexpr ::= expression *)
let parse_toplevel = parser
| [< e=parse_expr >] ->

(* Make an anonymous proto. *)
Ast.Function (Ast.Prototype ("", [||]), e)

(* external ::= 'extern' prototype *)
let parse_extern = parser
| [< 'Token.Extern; e=parse_prototype >] -> e

toplevel.ml:

(*===----------------------------------------------------------------------===

* Top-Level parsing and JIT Driver

*===----------------------------------------------------------------------===*)

(* top ::= definition | external | expression | ';' *)
let rec main_loop stream =
match Stream.peek stream with
| None -> ()

(* ignore top-level semicolons. *)
| Some (Token.Kwd ';') ->

Stream.junk stream;
main_loop stream

| Some token ->
begin
try match token with
| Token.Def ->

ignore(Parser.parse_definition stream);
print_endline "parsed a function definition.";

| Token.Extern ->
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ignore(Parser.parse_extern stream);
print_endline "parsed an extern.";

| _ ->
(* Evaluate a top-level expression into an anonymous function. *)
ignore(Parser.parse_toplevel stream);
print_endline "parsed a top-level expr";

with Stream.Error s ->
(* Skip token for error recovery. *)
Stream.junk stream;
print_endline s;

end;
print_string "ready> "; flush stdout;
main_loop stream

toy.ml:

(*===----------------------------------------------------------------------===

* Main driver code.

*===----------------------------------------------------------------------===*)

let main () =
(* Install standard binary operators.

* 1 is the lowest precedence. *)
Hashtbl.add Parser.binop_precedence '<' 10;
Hashtbl.add Parser.binop_precedence '+' 20;
Hashtbl.add Parser.binop_precedence '-' 20;
Hashtbl.add Parser.binop_precedence '*' 40; (* highest. *)

(* Prime the first token. *)
print_string "ready> "; flush stdout;
let stream = Lexer.lex (Stream.of_channel stdin) in

(* Run the main "interpreter loop" now. *)
Toplevel.main_loop stream;

;;

main ()

Next: Implementing Code Generation to LLVM IR

Kaleidoscope: Code generation to LLVM IR

• Chapter 3 Introduction

• Code Generation Setup

• Expression Code Generation

• Function Code Generation

• Driver Changes and Closing Thoughts

• Full Code Listing
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Chapter 3 Introduction

Welcome to Chapter 3 of the “Implementing a language with LLVM” tutorial. This chapter shows you how to trans-
form the Abstract Syntax Tree, built in Chapter 2, into LLVM IR. This will teach you a little bit about how LLVM
does things, as well as demonstrate how easy it is to use. It’s much more work to build a lexer and parser than it is to
generate LLVM IR code. :)

Please note: the code in this chapter and later require LLVM 2.3 or LLVM SVN to work. LLVM 2.2 and before will
not work with it.

Code Generation Setup

In order to generate LLVM IR, we want some simple setup to get started. First we define virtual code generation
(codegen) methods in each AST class:

let rec codegen_expr = function
| Ast.Number n -> ...
| Ast.Variable name -> ...

The Codegen.codegen_expr function says to emit IR for that AST node along with all the things it depends on,
and they all return an LLVM Value object. “Value” is the class used to represent a “Static Single Assignment (SSA)
register” or “SSA value” in LLVM. The most distinct aspect of SSA values is that their value is computed as the related
instruction executes, and it does not get a new value until (and if) the instruction re-executes. In other words, there is
no way to “change” an SSA value. For more information, please read up on Static Single Assignment - the concepts
are really quite natural once you grok them.

The second thing we want is an “Error” exception like we used for the parser, which will be used to report errors found
during code generation (for example, use of an undeclared parameter):

exception Error of string

let context = global_context ()
let the_module = create_module context "my cool jit"
let builder = builder context
let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
let double_type = double_type context

The static variables will be used during code generation. Codgen.the_module is the LLVM construct that contains
all of the functions and global variables in a chunk of code. In many ways, it is the top-level structure that the LLVM
IR uses to contain code.

The Codegen.builder object is a helper object that makes it easy to generate LLVM instructions. Instances of the
IRBuilder class keep track of the current place to insert instructions and has methods to create new instructions.

The Codegen.named_values map keeps track of which values are defined in the current scope and what their
LLVM representation is. (In other words, it is a symbol table for the code). In this form of Kaleidoscope, the only
things that can be referenced are function parameters. As such, function parameters will be in this map when generating
code for their function body.

With these basics in place, we can start talking about how to generate code for each expression. Note that this assumes
that the Codgen.builder has been set up to generate code into something. For now, we’ll assume that this has
already been done, and we’ll just use it to emit code.
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Expression Code Generation

Generating LLVM code for expression nodes is very straightforward: less than 30 lines of commented code for all
four of our expression nodes. First we’ll do numeric literals:

| Ast.Number n -> const_float double_type n

In the LLVM IR, numeric constants are represented with the ConstantFP class, which holds the numeric value
in an APFloat internally (APFloat has the capability of holding floating point constants of Arbitrary Precision).
This code basically just creates and returns a ConstantFP. Note that in the LLVM IR that constants are all uniqued
together and shared. For this reason, the API uses “the foo::get(..)” idiom instead of “new foo(..)” or “foo::Create(..)”.

| Ast.Variable name ->
(try Hashtbl.find named_values name with

| Not_found -> raise (Error "unknown variable name"))

References to variables are also quite simple using LLVM. In the simple version of Kaleidoscope, we assume that the
variable has already been emitted somewhere and its value is available. In practice, the only values that can be in the
Codegen.named_values map are function arguments. This code simply checks to see that the specified name is
in the map (if not, an unknown variable is being referenced) and returns the value for it. In future chapters, we’ll add
support for loop induction variables in the symbol table, and for local variables.

| Ast.Binary (op, lhs, rhs) ->
let lhs_val = codegen_expr lhs in
let rhs_val = codegen_expr rhs in
begin

match op with
| '+' -> build_fadd lhs_val rhs_val "addtmp" builder
| '-' -> build_fsub lhs_val rhs_val "subtmp" builder
| '*' -> build_fmul lhs_val rhs_val "multmp" builder
| '<' ->

(* Convert bool 0/1 to double 0.0 or 1.0 *)
let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
build_uitofp i double_type "booltmp" builder

| _ -> raise (Error "invalid binary operator")
end

Binary operators start to get more interesting. The basic idea here is that we recursively emit code for the left-hand
side of the expression, then the right-hand side, then we compute the result of the binary expression. In this code, we
do a simple switch on the opcode to create the right LLVM instruction.

In the example above, the LLVM builder class is starting to show its value. IRBuilder knows where to insert the newly
created instruction, all you have to do is specify what instruction to create (e.g. with Llvm.create_add), which
operands to use (lhs and rhs here) and optionally provide a name for the generated instruction.

One nice thing about LLVM is that the name is just a hint. For instance, if the code above emits multiple “addtmp”
variables, LLVM will automatically provide each one with an increasing, unique numeric suffix. Local value names
for instructions are purely optional, but it makes it much easier to read the IR dumps.

LLVM instructions are constrained by strict rules: for example, the Left and Right operators of an add instruction must
have the same type, and the result type of the add must match the operand types. Because all values in Kaleidoscope
are doubles, this makes for very simple code for add, sub and mul.

On the other hand, LLVM specifies that the fcmp instruction always returns an ‘i1’ value (a one bit integer). The
problem with this is that Kaleidoscope wants the value to be a 0.0 or 1.0 value. In order to get these semantics, we
combine the fcmp instruction with a uitofp instruction. This instruction converts its input integer into a floating point
value by treating the input as an unsigned value. In contrast, if we used the sitofp instruction, the Kaleidoscope ‘<’
operator would return 0.0 and -1.0, depending on the input value.
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| Ast.Call (callee, args) ->
(* Look up the name in the module table. *)
let callee =

match lookup_function callee the_module with
| Some callee -> callee
| None -> raise (Error "unknown function referenced")

in
let params = params callee in

(* If argument mismatch error. *)
if Array.length params == Array.length args then () else
raise (Error "incorrect # arguments passed");

let args = Array.map codegen_expr args in
build_call callee args "calltmp" builder

Code generation for function calls is quite straightforward with LLVM. The code above initially does a function name
lookup in the LLVM Module’s symbol table. Recall that the LLVM Module is the container that holds all of the
functions we are JIT’ing. By giving each function the same name as what the user specifies, we can use the LLVM
symbol table to resolve function names for us.

Once we have the function to call, we recursively codegen each argument that is to be passed in, and create an LLVM
call instruction. Note that LLVM uses the native C calling conventions by default, allowing these calls to also call into
standard library functions like “sin” and “cos”, with no additional effort.

This wraps up our handling of the four basic expressions that we have so far in Kaleidoscope. Feel free to go in and add
some more. For example, by browsing the LLVM language reference you’ll find several other interesting instructions
that are really easy to plug into our basic framework.

Function Code Generation

Code generation for prototypes and functions must handle a number of details, which make their code less beautiful
than expression code generation, but allows us to illustrate some important points. First, lets talk about code generation
for prototypes: they are used both for function bodies and external function declarations. The code starts with:

let codegen_proto = function
| Ast.Prototype (name, args) ->

(* Make the function type: double(double,double) etc. *)
let doubles = Array.make (Array.length args) double_type in
let ft = function_type double_type doubles in
let f =
match lookup_function name the_module with

This code packs a lot of power into a few lines. Note first that this function returns a “Function*” instead of a “Value*”
(although at the moment they both are modeled by llvalue in ocaml). Because a “prototype” really talks about the
external interface for a function (not the value computed by an expression), it makes sense for it to return the LLVM
Function it corresponds to when codegen’d.

The call to Llvm.function_type creates the Llvm.llvalue that should be used for a given Prototype. Since
all function arguments in Kaleidoscope are of type double, the first line creates a vector of “N” LLVM double types. It
then uses the Llvm.function_type method to create a function type that takes “N” doubles as arguments, returns
one double as a result, and that is not vararg (that uses the function Llvm.var_arg_function_type). Note that
Types in LLVM are uniqued just like Constant‘s are, so you don’t “new” a type, you “get” it.

The final line above checks if the function has already been defined in Codegen.the_module. If not, we will
create it.
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| None -> declare_function name ft the_module

This indicates the type and name to use, as well as which module to insert into. By default we assume a function
has Llvm.Linkage.ExternalLinkage. “external linkage” means that the function may be defined outside the
current module and/or that it is callable by functions outside the module. The “name” passed in is the name the user
specified: this name is registered in “Codegen.the_module“s symbol table, which is used by the function call
code above.

In Kaleidoscope, I choose to allow redefinitions of functions in two cases: first, we want to allow ‘extern’ing a function
more than once, as long as the prototypes for the externs match (since all arguments have the same type, we just have
to check that the number of arguments match). Second, we want to allow ‘extern’ing a function and then defining a
body for it. This is useful when defining mutually recursive functions.

(* If 'f' conflicted, there was already something named 'name'. If it

* has a body, don't allow redefinition or reextern. *)
| Some f ->

(* If 'f' already has a body, reject this. *)
if Array.length (basic_blocks f) == 0 then () else

raise (Error "redefinition of function");

(* If 'f' took a different number of arguments, reject. *)
if Array.length (params f) == Array.length args then () else
raise (Error "redefinition of function with different # args");

f
in

In order to verify the logic above, we first check to see if the pre-existing function is “empty”. In this case, empty
means that it has no basic blocks in it, which means it has no body. If it has no body, it is a forward declaration. Since
we don’t allow anything after a full definition of the function, the code rejects this case. If the previous reference to a
function was an ‘extern’, we simply verify that the number of arguments for that definition and this one match up. If
not, we emit an error.

(* Set names for all arguments. *)
Array.iteri (fun i a ->

let n = args.(i) in
set_value_name n a;
Hashtbl.add named_values n a;

) (params f);
f

The last bit of code for prototypes loops over all of the arguments in the function, setting the name of the LLVM
Argument objects to match, and registering the arguments in the Codegen.named_values map for future use by
the Ast.Variable variant. Once this is set up, it returns the Function object to the caller. Note that we don’t check
for conflicting argument names here (e.g. “extern foo(a b a)”). Doing so would be very straight-forward with the
mechanics we have already used above.

let codegen_func = function
| Ast.Function (proto, body) ->

Hashtbl.clear named_values;
let the_function = codegen_proto proto in

Code generation for function definitions starts out simply enough: we just codegen the prototype (Proto) and verify
that it is ok. We then clear out the Codegen.named_values map to make sure that there isn’t anything in it from
the last function we compiled. Code generation of the prototype ensures that there is an LLVM Function object that is
ready to go for us.
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(* Create a new basic block to start insertion into. *)
let bb = append_block context "entry" the_function in
position_at_end bb builder;

try
let ret_val = codegen_expr body in

Now we get to the point where the Codegen.builder is set up. The first line creates a new basic block (named
“entry”), which is inserted into the_function. The second line then tells the builder that new instructions should
be inserted into the end of the new basic block. Basic blocks in LLVM are an important part of functions that define
the Control Flow Graph. Since we don’t have any control flow, our functions will only contain one block at this point.
We’ll fix this in Chapter 5 :).

let ret_val = codegen_expr body in

(* Finish off the function. *)
let _ = build_ret ret_val builder in

(* Validate the generated code, checking for consistency. *)
Llvm_analysis.assert_valid_function the_function;

the_function

Once the insertion point is set up, we call the Codegen.codegen_func method for the root expression of the
function. If no error happens, this emits code to compute the expression into the entry block and returns the value
that was computed. Assuming no error, we then create an LLVM ret instruction, which completes the function. Once
the function is built, we call Llvm_analysis.assert_valid_function, which is provided by LLVM. This
function does a variety of consistency checks on the generated code, to determine if our compiler is doing everything
right. Using this is important: it can catch a lot of bugs. Once the function is finished and validated, we return it.

with e ->
delete_function the_function;
raise e

The only piece left here is handling of the error case. For simplicity, we handle this by merely deleting the function
we produced with the Llvm.delete_function method. This allows the user to redefine a function that they
incorrectly typed in before: if we didn’t delete it, it would live in the symbol table, with a body, preventing future
redefinition.

This code does have a bug, though. Since the Codegen.codegen_proto can return a previously defined forward
declaration, our code can actually delete a forward declaration. There are a number of ways to fix this bug, see what
you can come up with! Here is a testcase:

extern foo(a b); # ok, defines foo.
def foo(a b) c; # error, 'c' is invalid.
def bar() foo(1, 2); # error, unknown function "foo"

Driver Changes and Closing Thoughts

For now, code generation to LLVM doesn’t really get us much, except that we can look at the pretty IR calls. The
sample code inserts calls to Codegen into the “Toplevel.main_loop”, and then dumps out the LLVM IR. This
gives a nice way to look at the LLVM IR for simple functions. For example:

ready> 4+5;
Read top-level expression:
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define double @""() {
entry:

%addtmp = fadd double 4.000000e+00, 5.000000e+00
ret double %addtmp

}

Note how the parser turns the top-level expression into anonymous functions for us. This will be handy when we
add JIT support in the next chapter. Also note that the code is very literally transcribed, no optimizations are being
performed. We will add optimizations explicitly in the next chapter.

ready> def foo(a b) a*a + 2*a*b + b*b;
Read function definition:
define double @foo(double %a, double %b) {
entry:

%multmp = fmul double %a, %a
%multmp1 = fmul double 2.000000e+00, %a
%multmp2 = fmul double %multmp1, %b
%addtmp = fadd double %multmp, %multmp2
%multmp3 = fmul double %b, %b
%addtmp4 = fadd double %addtmp, %multmp3
ret double %addtmp4

}

This shows some simple arithmetic. Notice the striking similarity to the LLVM builder calls that we use to create the
instructions.

ready> def bar(a) foo(a, 4.0) + bar(31337);
Read function definition:
define double @bar(double %a) {
entry:

%calltmp = call double @foo(double %a, double 4.000000e+00)
%calltmp1 = call double @bar(double 3.133700e+04)
%addtmp = fadd double %calltmp, %calltmp1
ret double %addtmp

}

This shows some function calls. Note that this function will take a long time to execute if you call it. In the future
we’ll add conditional control flow to actually make recursion useful :).

ready> extern cos(x);
Read extern:
declare double @cos(double)

ready> cos(1.234);
Read top-level expression:
define double @""() {
entry:

%calltmp = call double @cos(double 1.234000e+00)
ret double %calltmp

}

This shows an extern for the libm “cos” function, and a call to it.

ready> ^D
; ModuleID = 'my cool jit'

define double @""() {
entry:
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%addtmp = fadd double 4.000000e+00, 5.000000e+00
ret double %addtmp

}

define double @foo(double %a, double %b) {
entry:

%multmp = fmul double %a, %a
%multmp1 = fmul double 2.000000e+00, %a
%multmp2 = fmul double %multmp1, %b
%addtmp = fadd double %multmp, %multmp2
%multmp3 = fmul double %b, %b
%addtmp4 = fadd double %addtmp, %multmp3
ret double %addtmp4

}

define double @bar(double %a) {
entry:

%calltmp = call double @foo(double %a, double 4.000000e+00)
%calltmp1 = call double @bar(double 3.133700e+04)
%addtmp = fadd double %calltmp, %calltmp1
ret double %addtmp

}

declare double @cos(double)

define double @""() {
entry:

%calltmp = call double @cos(double 1.234000e+00)
ret double %calltmp

}

When you quit the current demo, it dumps out the IR for the entire module generated. Here you can see the big picture
with all the functions referencing each other.

This wraps up the third chapter of the Kaleidoscope tutorial. Up next, we’ll describe how to add JIT codegen and
optimizer support to this so we can actually start running code!

Full Code Listing

Here is the complete code listing for our running example, enhanced with the LLVM code generator. Because this uses
the LLVM libraries, we need to link them in. To do this, we use the llvm-config tool to inform our makefile/command
line about which options to use:

# Compile
ocamlbuild toy.byte
# Run
./toy.byte

Here is the code:

_tags:

<{lexer,parser}.ml>: use_camlp4, pp(camlp4of)
<*.{byte,native}>: g++, use_llvm, use_llvm_analysis

myocamlbuild.ml:
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open Ocamlbuild_plugin;;

ocaml_lib ~extern:true "llvm";;
ocaml_lib ~extern:true "llvm_analysis";;

flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"]);;

token.ml:

(*===----------------------------------------------------------------------===

* Lexer Tokens

*===----------------------------------------------------------------------===*)

(* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of

* these others for known things. *)
type token =
(* commands *)
| Def | Extern

(* primary *)
| Ident of string | Number of float

(* unknown *)
| Kwd of char

lexer.ml:

(*===----------------------------------------------------------------------===

* Lexer

*===----------------------------------------------------------------------===*)

let rec lex = parser
(* Skip any whitespace. *)
| [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream

(* identifier: [a-zA-Z][a-zA-Z0-9] *)
| [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] ->

let buffer = Buffer.create 1 in
Buffer.add_char buffer c;
lex_ident buffer stream

(* number: [0-9.]+ *)
| [< ' ('0' .. '9' as c); stream >] ->

let buffer = Buffer.create 1 in
Buffer.add_char buffer c;
lex_number buffer stream

(* Comment until end of line. *)
| [< ' ('#'); stream >] ->

lex_comment stream

(* Otherwise, just return the character as its ascii value. *)
| [< 'c; stream >] ->

[< 'Token.Kwd c; lex stream >]

(* end of stream. *)
| [< >] -> [< >]
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and lex_number buffer = parser
| [< ' ('0' .. '9' | '.' as c); stream >] ->

Buffer.add_char buffer c;
lex_number buffer stream

| [< stream=lex >] ->
[< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >]

and lex_ident buffer = parser
| [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] ->

Buffer.add_char buffer c;
lex_ident buffer stream

| [< stream=lex >] ->
match Buffer.contents buffer with
| "def" -> [< 'Token.Def; stream >]
| "extern" -> [< 'Token.Extern; stream >]
| id -> [< 'Token.Ident id; stream >]

and lex_comment = parser
| [< ' ('\n'); stream=lex >] -> stream
| [< 'c; e=lex_comment >] -> e
| [< >] -> [< >]

ast.ml:

(*===----------------------------------------------------------------------===

* Abstract Syntax Tree (aka Parse Tree)

*===----------------------------------------------------------------------===*)

(* expr - Base type for all expression nodes. *)
type expr =
(* variant for numeric literals like "1.0". *)
| Number of float

(* variant for referencing a variable, like "a". *)
| Variable of string

(* variant for a binary operator. *)
| Binary of char * expr * expr

(* variant for function calls. *)
| Call of string * expr array

(* proto - This type represents the "prototype" for a function, which captures

* its name, and its argument names (thus implicitly the number of arguments the

* function takes). *)
type proto = Prototype of string * string array

(* func - This type represents a function definition itself. *)
type func = Function of proto * expr

parser.ml:

(*===---------------------------------------------------------------------===

* Parser

*===---------------------------------------------------------------------===*)

(* binop_precedence - This holds the precedence for each binary operator that is

* defined *)
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let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10

(* precedence - Get the precedence of the pending binary operator token. *)
let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1

(* primary

* ::= identifier

* ::= numberexpr

* ::= parenexpr *)
let rec parse_primary = parser
(* numberexpr ::= number *)
| [< 'Token.Number n >] -> Ast.Number n

(* parenexpr ::= '(' expression ')' *)
| [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e

(* identifierexpr

* ::= identifier

* ::= identifier '(' argumentexpr ')' *)
| [< 'Token.Ident id; stream >] ->

let rec parse_args accumulator = parser
| [< e=parse_expr; stream >] ->

begin parser
| [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e
| [< >] -> e :: accumulator

end stream
| [< >] -> accumulator

in
let rec parse_ident id = parser
(* Call. *)
| [< 'Token.Kwd '(';

args=parse_args [];
'Token.Kwd ')' ?? "expected ')'">] ->

Ast.Call (id, Array.of_list (List.rev args))

(* Simple variable ref. *)
| [< >] -> Ast.Variable id

in
parse_ident id stream

| [< >] -> raise (Stream.Error "unknown token when expecting an expression.")

(* binoprhs

* ::= ('+' primary)* *)
and parse_bin_rhs expr_prec lhs stream =
match Stream.peek stream with
(* If this is a binop, find its precedence. *)
| Some (Token.Kwd c) when Hashtbl.mem binop_precedence c ->

let token_prec = precedence c in

(* If this is a binop that binds at least as tightly as the current binop,

* consume it, otherwise we are done. *)
if token_prec < expr_prec then lhs else begin
(* Eat the binop. *)
Stream.junk stream;

(* Parse the primary expression after the binary operator. *)
let rhs = parse_primary stream in
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(* Okay, we know this is a binop. *)
let rhs =
match Stream.peek stream with
| Some (Token.Kwd c2) ->

(* If BinOp binds less tightly with rhs than the operator after

* rhs, let the pending operator take rhs as its lhs. *)
let next_prec = precedence c2 in
if token_prec < next_prec
then parse_bin_rhs (token_prec + 1) rhs stream
else rhs

| _ -> rhs
in

(* Merge lhs/rhs. *)
let lhs = Ast.Binary (c, lhs, rhs) in
parse_bin_rhs expr_prec lhs stream

end
| _ -> lhs

(* expression

* ::= primary binoprhs *)
and parse_expr = parser
| [< lhs=parse_primary; stream >] -> parse_bin_rhs 0 lhs stream

(* prototype

* ::= id '(' id* ')' *)
let parse_prototype =
let rec parse_args accumulator = parser

| [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e
| [< >] -> accumulator

in

parser
| [< 'Token.Ident id;

'Token.Kwd '(' ?? "expected '(' in prototype";
args=parse_args [];
'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
(* success. *)
Ast.Prototype (id, Array.of_list (List.rev args))

| [< >] ->
raise (Stream.Error "expected function name in prototype")

(* definition ::= 'def' prototype expression *)
let parse_definition = parser
| [< 'Token.Def; p=parse_prototype; e=parse_expr >] ->

Ast.Function (p, e)

(* toplevelexpr ::= expression *)
let parse_toplevel = parser
| [< e=parse_expr >] ->

(* Make an anonymous proto. *)
Ast.Function (Ast.Prototype ("", [||]), e)

(* external ::= 'extern' prototype *)
let parse_extern = parser
| [< 'Token.Extern; e=parse_prototype >] -> e
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codegen.ml:

(*===----------------------------------------------------------------------===

* Code Generation

*===----------------------------------------------------------------------===*)

open Llvm

exception Error of string

let context = global_context ()
let the_module = create_module context "my cool jit"
let builder = builder context
let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
let double_type = double_type context

let rec codegen_expr = function
| Ast.Number n -> const_float double_type n
| Ast.Variable name ->

(try Hashtbl.find named_values name with
| Not_found -> raise (Error "unknown variable name"))

| Ast.Binary (op, lhs, rhs) ->
let lhs_val = codegen_expr lhs in
let rhs_val = codegen_expr rhs in
begin
match op with
| '+' -> build_add lhs_val rhs_val "addtmp" builder
| '-' -> build_sub lhs_val rhs_val "subtmp" builder
| '*' -> build_mul lhs_val rhs_val "multmp" builder
| '<' ->

(* Convert bool 0/1 to double 0.0 or 1.0 *)
let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
build_uitofp i double_type "booltmp" builder

| _ -> raise (Error "invalid binary operator")
end

| Ast.Call (callee, args) ->
(* Look up the name in the module table. *)
let callee =
match lookup_function callee the_module with
| Some callee -> callee
| None -> raise (Error "unknown function referenced")

in
let params = params callee in

(* If argument mismatch error. *)
if Array.length params == Array.length args then () else
raise (Error "incorrect # arguments passed");

let args = Array.map codegen_expr args in
build_call callee args "calltmp" builder

let codegen_proto = function
| Ast.Prototype (name, args) ->

(* Make the function type: double(double,double) etc. *)
let doubles = Array.make (Array.length args) double_type in
let ft = function_type double_type doubles in
let f =
match lookup_function name the_module with
| None -> declare_function name ft the_module
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(* If 'f' conflicted, there was already something named 'name'. If it

* has a body, don't allow redefinition or reextern. *)
| Some f ->

(* If 'f' already has a body, reject this. *)
if block_begin f <> At_end f then
raise (Error "redefinition of function");

(* If 'f' took a different number of arguments, reject. *)
if element_type (type_of f) <> ft then
raise (Error "redefinition of function with different # args");

f
in

(* Set names for all arguments. *)
Array.iteri (fun i a ->
let n = args.(i) in
set_value_name n a;
Hashtbl.add named_values n a;

) (params f);
f

let codegen_func = function
| Ast.Function (proto, body) ->

Hashtbl.clear named_values;
let the_function = codegen_proto proto in

(* Create a new basic block to start insertion into. *)
let bb = append_block context "entry" the_function in
position_at_end bb builder;

try
let ret_val = codegen_expr body in

(* Finish off the function. *)
let _ = build_ret ret_val builder in

(* Validate the generated code, checking for consistency. *)
Llvm_analysis.assert_valid_function the_function;

the_function
with e ->
delete_function the_function;
raise e

toplevel.ml:

(*===----------------------------------------------------------------------===

* Top-Level parsing and JIT Driver

*===----------------------------------------------------------------------===*)

open Llvm

(* top ::= definition | external | expression | ';' *)
let rec main_loop stream =
match Stream.peek stream with
| None -> ()

(* ignore top-level semicolons. *)
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| Some (Token.Kwd ';') ->
Stream.junk stream;
main_loop stream

| Some token ->
begin
try match token with
| Token.Def ->

let e = Parser.parse_definition stream in
print_endline "parsed a function definition.";
dump_value (Codegen.codegen_func e);

| Token.Extern ->
let e = Parser.parse_extern stream in
print_endline "parsed an extern.";
dump_value (Codegen.codegen_proto e);

| _ ->
(* Evaluate a top-level expression into an anonymous function. *)
let e = Parser.parse_toplevel stream in
print_endline "parsed a top-level expr";
dump_value (Codegen.codegen_func e);

with Stream.Error s | Codegen.Error s ->
(* Skip token for error recovery. *)
Stream.junk stream;
print_endline s;

end;
print_string "ready> "; flush stdout;
main_loop stream

toy.ml:

(*===----------------------------------------------------------------------===

* Main driver code.

*===----------------------------------------------------------------------===*)

open Llvm

let main () =
(* Install standard binary operators.

* 1 is the lowest precedence. *)
Hashtbl.add Parser.binop_precedence '<' 10;
Hashtbl.add Parser.binop_precedence '+' 20;
Hashtbl.add Parser.binop_precedence '-' 20;
Hashtbl.add Parser.binop_precedence '*' 40; (* highest. *)

(* Prime the first token. *)
print_string "ready> "; flush stdout;
let stream = Lexer.lex (Stream.of_channel stdin) in

(* Run the main "interpreter loop" now. *)
Toplevel.main_loop stream;

(* Print out all the generated code. *)
dump_module Codegen.the_module

;;

main ()

Next: Adding JIT and Optimizer Support
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Kaleidoscope: Adding JIT and Optimizer Support

• Chapter 4 Introduction

• Trivial Constant Folding

• LLVM Optimization Passes

• Adding a JIT Compiler

• Full Code Listing

Chapter 4 Introduction

Welcome to Chapter 4 of the “Implementing a language with LLVM” tutorial. Chapters 1-3 described the implemen-
tation of a simple language and added support for generating LLVM IR. This chapter describes two new techniques:
adding optimizer support to your language, and adding JIT compiler support. These additions will demonstrate how
to get nice, efficient code for the Kaleidoscope language.

Trivial Constant Folding

Note: the default IRBuilder now always includes the constant folding optimisations below.

Our demonstration for Chapter 3 is elegant and easy to extend. Unfortunately, it does not produce wonderful code.
For example, when compiling simple code, we don’t get obvious optimizations:

ready> def test(x) 1+2+x;
Read function definition:
define double @test(double %x) {
entry:

%addtmp = fadd double 1.000000e+00, 2.000000e+00
%addtmp1 = fadd double %addtmp, %x
ret double %addtmp1

}

This code is a very, very literal transcription of the AST built by parsing the input. As such, this transcription lacks
optimizations like constant folding (we’d like to get “add x, 3.0” in the example above) as well as other more
important optimizations. Constant folding, in particular, is a very common and very important optimization: so much
so that many language implementors implement constant folding support in their AST representation.

With LLVM, you don’t need this support in the AST. Since all calls to build LLVM IR go through the LLVM builder,
it would be nice if the builder itself checked to see if there was a constant folding opportunity when you call it. If so,
it could just do the constant fold and return the constant instead of creating an instruction. This is exactly what the
LLVMFoldingBuilder class does.

All we did was switch from LLVMBuilder to LLVMFoldingBuilder. Though we change no other code, we
now have all of our instructions implicitly constant folded without us having to do anything about it. For example, the
input above now compiles to:

ready> def test(x) 1+2+x;
Read function definition:
define double @test(double %x) {
entry:

%addtmp = fadd double 3.000000e+00, %x
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ret double %addtmp
}

Well, that was easy :). In practice, we recommend always using LLVMFoldingBuilder when generating code
like this. It has no “syntactic overhead” for its use (you don’t have to uglify your compiler with constant checks
everywhere) and it can dramatically reduce the amount of LLVM IR that is generated in some cases (particular for
languages with a macro preprocessor or that use a lot of constants).

On the other hand, the LLVMFoldingBuilder is limited by the fact that it does all of its analysis inline with the
code as it is built. If you take a slightly more complex example:

ready> def test(x) (1+2+x)*(x+(1+2));
ready> Read function definition:
define double @test(double %x) {
entry:

%addtmp = fadd double 3.000000e+00, %x
%addtmp1 = fadd double %x, 3.000000e+00
%multmp = fmul double %addtmp, %addtmp1
ret double %multmp

}

In this case, the LHS and RHS of the multiplication are the same value. We’d really like to see this generate “tmp =
x+3; result = tmp*tmp;” instead of computing “x*3” twice.

Unfortunately, no amount of local analysis will be able to detect and correct this. This requires two transformations:
reassociation of expressions (to make the add’s lexically identical) and Common Subexpression Elimination (CSE) to
delete the redundant add instruction. Fortunately, LLVM provides a broad range of optimizations that you can use, in
the form of “passes”.

LLVM Optimization Passes

LLVM provides many optimization passes, which do many different sorts of things and have different tradeoffs. Unlike
other systems, LLVM doesn’t hold to the mistaken notion that one set of optimizations is right for all languages and
for all situations. LLVM allows a compiler implementor to make complete decisions about what optimizations to use,
in which order, and in what situation.

As a concrete example, LLVM supports both “whole module” passes, which look across as large of body of code as
they can (often a whole file, but if run at link time, this can be a substantial portion of the whole program). It also
supports and includes “per-function” passes which just operate on a single function at a time, without looking at other
functions. For more information on passes and how they are run, see the How to Write a Pass document and the List
of LLVM Passes.

For Kaleidoscope, we are currently generating functions on the fly, one at a time, as the user types them in. We aren’t
shooting for the ultimate optimization experience in this setting, but we also want to catch the easy and quick stuff
where possible. As such, we will choose to run a few per-function optimizations as the user types the function in. If
we wanted to make a “static Kaleidoscope compiler”, we would use exactly the code we have now, except that we
would defer running the optimizer until the entire file has been parsed.

In order to get per-function optimizations going, we need to set up a Llvm.PassManager to hold and organize the
LLVM optimizations that we want to run. Once we have that, we can add a set of optimizations to run. The code looks
like this:

(* Create the JIT. *)
let the_execution_engine = ExecutionEngine.create Codegen.the_module in
let the_fpm = PassManager.create_function Codegen.the_module in
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(* Set up the optimizer pipeline. Start with registering info about how the

* target lays out data structures. *)
DataLayout.add (ExecutionEngine.target_data the_execution_engine) the_fpm;

(* Do simple "peephole" optimizations and bit-twiddling optzn. *)
add_instruction_combining the_fpm;

(* reassociate expressions. *)
add_reassociation the_fpm;

(* Eliminate Common SubExpressions. *)
add_gvn the_fpm;

(* Simplify the control flow graph (deleting unreachable blocks, etc). *)
add_cfg_simplification the_fpm;

ignore (PassManager.initialize the_fpm);

(* Run the main "interpreter loop" now. *)
Toplevel.main_loop the_fpm the_execution_engine stream;

The meat of the matter here, is the definition of “the_fpm”. It requires a pointer to the the_module to construct
itself. Once it is set up, we use a series of “add” calls to add a bunch of LLVM passes. The first pass is basically
boilerplate, it adds a pass so that later optimizations know how the data structures in the program are laid out. The
“the_execution_engine” variable is related to the JIT, which we will get to in the next section.

In this case, we choose to add 4 optimization passes. The passes we chose here are a pretty standard set of “cleanup”
optimizations that are useful for a wide variety of code. I won’t delve into what they do but, believe me, they are a
good starting place :).

Once the Llvm.PassManager. is set up, we need to make use of it. We do this by running it after our newly
created function is constructed (in Codegen.codegen_func), but before it is returned to the client:

let codegen_func the_fpm = function
...
try

let ret_val = codegen_expr body in

(* Finish off the function. *)
let _ = build_ret ret_val builder in

(* Validate the generated code, checking for consistency. *)
Llvm_analysis.assert_valid_function the_function;

(* Optimize the function. *)
let _ = PassManager.run_function the_function the_fpm in

the_function

As you can see, this is pretty straightforward. The the_fpm optimizes and updates the LLVM Function* in place,
improving (hopefully) its body. With this in place, we can try our test above again:

ready> def test(x) (1+2+x)*(x+(1+2));
ready> Read function definition:
define double @test(double %x) {
entry:

%addtmp = fadd double %x, 3.000000e+00
%multmp = fmul double %addtmp, %addtmp
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ret double %multmp
}

As expected, we now get our nicely optimized code, saving a floating point add instruction from every execution of
this function.

LLVM provides a wide variety of optimizations that can be used in certain circumstances. Some documentation about
the various passes is available, but it isn’t very complete. Another good source of ideas can come from looking at the
passes that Clang runs to get started. The “opt” tool allows you to experiment with passes from the command line,
so you can see if they do anything.

Now that we have reasonable code coming out of our front-end, lets talk about executing it!

Adding a JIT Compiler

Code that is available in LLVM IR can have a wide variety of tools applied to it. For example, you can run optimiza-
tions on it (as we did above), you can dump it out in textual or binary forms, you can compile the code to an assembly
file (.s) for some target, or you can JIT compile it. The nice thing about the LLVM IR representation is that it is the
“common currency” between many different parts of the compiler.

In this section, we’ll add JIT compiler support to our interpreter. The basic idea that we want for Kaleidoscope is to
have the user enter function bodies as they do now, but immediately evaluate the top-level expressions they type in.
For example, if they type in “1 + 2;”, we should evaluate and print out 3. If they define a function, they should be able
to call it from the command line.

In order to do this, we first declare and initialize the JIT. This is done by adding a global variable and a call in main:

...
let main () =
...
(* Create the JIT. *)
let the_execution_engine = ExecutionEngine.create Codegen.the_module in
...

This creates an abstract “Execution Engine” which can be either a JIT compiler or the LLVM interpreter. LLVM
will automatically pick a JIT compiler for you if one is available for your platform, otherwise it will fall back to the
interpreter.

Once the Llvm_executionengine.ExecutionEngine.t is created, the JIT is ready to be used. There are
a variety of APIs that are useful, but the simplest one is the “Llvm_executionengine.ExecutionEngine.
run_function” function. This method JIT compiles the specified LLVM Function and returns a function pointer
to the generated machine code. In our case, this means that we can change the code that parses a top-level expression
to look like this:

(* Evaluate a top-level expression into an anonymous function. *)
let e = Parser.parse_toplevel stream in
print_endline "parsed a top-level expr";
let the_function = Codegen.codegen_func the_fpm e in
dump_value the_function;

(* JIT the function, returning a function pointer. *)
let result = ExecutionEngine.run_function the_function [||]
the_execution_engine in

print_string "Evaluated to ";
print_float (GenericValue.as_float Codegen.double_type result);
print_newline ();
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Recall that we compile top-level expressions into a self-contained LLVM function that takes no arguments and returns
the computed double. Because the LLVM JIT compiler matches the native platform ABI, this means that you can just
cast the result pointer to a function pointer of that type and call it directly. This means, there is no difference between
JIT compiled code and native machine code that is statically linked into your application.

With just these two changes, lets see how Kaleidoscope works now!

ready> 4+5;
define double @""() {
entry:

ret double 9.000000e+00
}

Evaluated to 9.000000

Well this looks like it is basically working. The dump of the function shows the “no argument function that always
returns double” that we synthesize for each top level expression that is typed in. This demonstrates very basic func-
tionality, but can we do more?

ready> def testfunc(x y) x + y*2;
Read function definition:
define double @testfunc(double %x, double %y) {
entry:

%multmp = fmul double %y, 2.000000e+00
%addtmp = fadd double %multmp, %x
ret double %addtmp

}

ready> testfunc(4, 10);
define double @""() {
entry:

%calltmp = call double @testfunc(double 4.000000e+00, double 1.000000e+01)
ret double %calltmp

}

Evaluated to 24.000000

This illustrates that we can now call user code, but there is something a bit subtle going on here. Note that we only
invoke the JIT on the anonymous functions that call testfunc, but we never invoked it on testfunc itself. What actually
happened here is that the JIT scanned for all non-JIT’d functions transitively called from the anonymous function and
compiled all of them before returning from run_function.

The JIT provides a number of other more advanced interfaces for things like freeing allocated machine code, rejit’ing
functions to update them, etc. However, even with this simple code, we get some surprisingly powerful capabilities -
check this out (I removed the dump of the anonymous functions, you should get the idea by now :) :

ready> extern sin(x);
Read extern:
declare double @sin(double)

ready> extern cos(x);
Read extern:
declare double @cos(double)

ready> sin(1.0);
Evaluated to 0.841471

ready> def foo(x) sin(x)*sin(x) + cos(x)*cos(x);
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Read function definition:
define double @foo(double %x) {
entry:

%calltmp = call double @sin(double %x)
%multmp = fmul double %calltmp, %calltmp
%calltmp2 = call double @cos(double %x)
%multmp4 = fmul double %calltmp2, %calltmp2
%addtmp = fadd double %multmp, %multmp4
ret double %addtmp

}

ready> foo(4.0);
Evaluated to 1.000000

Whoa, how does the JIT know about sin and cos? The answer is surprisingly simple: in this example, the JIT started
execution of a function and got to a function call. It realized that the function was not yet JIT compiled and invoked the
standard set of routines to resolve the function. In this case, there is no body defined for the function, so the JIT ended
up calling “dlsym("sin")” on the Kaleidoscope process itself. Since “sin” is defined within the JIT’s address
space, it simply patches up calls in the module to call the libm version of sin directly.

The LLVM JIT provides a number of interfaces (look in the llvm_executionengine.mli file) for controlling
how unknown functions get resolved. It allows you to establish explicit mappings between IR objects and addresses
(useful for LLVM global variables that you want to map to static tables, for example), allows you to dynamically
decide on the fly based on the function name, and even allows you to have the JIT compile functions lazily the first
time they’re called.

One interesting application of this is that we can now extend the language by writing arbitrary C code to implement
operations. For example, if we add:

/* putchard - putchar that takes a double and returns 0. */
extern "C"
double putchard(double X) {
putchar((char)X);
return 0;

}

Now we can produce simple output to the console by using things like: “extern putchard(x);
putchard(120);”, which prints a lowercase ‘x’ on the console (120 is the ASCII code for ‘x’). Similar code
could be used to implement file I/O, console input, and many other capabilities in Kaleidoscope.

This completes the JIT and optimizer chapter of the Kaleidoscope tutorial. At this point, we can compile a non-Turing-
complete programming language, optimize and JIT compile it in a user-driven way. Next up we’ll look into extending
the language with control flow constructs, tackling some interesting LLVM IR issues along the way.

Full Code Listing

Here is the complete code listing for our running example, enhanced with the LLVM JIT and optimizer. To build this
example, use:

# Compile
ocamlbuild toy.byte
# Run
./toy.byte

Here is the code:

_tags:
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<{lexer,parser}.ml>: use_camlp4, pp(camlp4of)
<*.{byte,native}>: g++, use_llvm, use_llvm_analysis
<*.{byte,native}>: use_llvm_executionengine, use_llvm_target
<*.{byte,native}>: use_llvm_scalar_opts, use_bindings

myocamlbuild.ml:

open Ocamlbuild_plugin;;

ocaml_lib ~extern:true "llvm";;
ocaml_lib ~extern:true "llvm_analysis";;
ocaml_lib ~extern:true "llvm_executionengine";;
ocaml_lib ~extern:true "llvm_target";;
ocaml_lib ~extern:true "llvm_scalar_opts";;

flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"]);;
dep ["link"; "ocaml"; "use_bindings"] ["bindings.o"];;

token.ml:

(*===----------------------------------------------------------------------===

* Lexer Tokens

*===----------------------------------------------------------------------===*)

(* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of

* these others for known things. *)
type token =
(* commands *)
| Def | Extern

(* primary *)
| Ident of string | Number of float

(* unknown *)
| Kwd of char

lexer.ml:

(*===----------------------------------------------------------------------===

* Lexer

*===----------------------------------------------------------------------===*)

let rec lex = parser
(* Skip any whitespace. *)
| [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream

(* identifier: [a-zA-Z][a-zA-Z0-9] *)
| [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] ->

let buffer = Buffer.create 1 in
Buffer.add_char buffer c;
lex_ident buffer stream

(* number: [0-9.]+ *)
| [< ' ('0' .. '9' as c); stream >] ->

let buffer = Buffer.create 1 in
Buffer.add_char buffer c;
lex_number buffer stream
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(* Comment until end of line. *)
| [< ' ('#'); stream >] ->

lex_comment stream

(* Otherwise, just return the character as its ascii value. *)
| [< 'c; stream >] ->

[< 'Token.Kwd c; lex stream >]

(* end of stream. *)
| [< >] -> [< >]

and lex_number buffer = parser
| [< ' ('0' .. '9' | '.' as c); stream >] ->

Buffer.add_char buffer c;
lex_number buffer stream

| [< stream=lex >] ->
[< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >]

and lex_ident buffer = parser
| [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] ->

Buffer.add_char buffer c;
lex_ident buffer stream

| [< stream=lex >] ->
match Buffer.contents buffer with
| "def" -> [< 'Token.Def; stream >]
| "extern" -> [< 'Token.Extern; stream >]
| id -> [< 'Token.Ident id; stream >]

and lex_comment = parser
| [< ' ('\n'); stream=lex >] -> stream
| [< 'c; e=lex_comment >] -> e
| [< >] -> [< >]

ast.ml:

(*===----------------------------------------------------------------------===

* Abstract Syntax Tree (aka Parse Tree)

*===----------------------------------------------------------------------===*)

(* expr - Base type for all expression nodes. *)
type expr =
(* variant for numeric literals like "1.0". *)
| Number of float

(* variant for referencing a variable, like "a". *)
| Variable of string

(* variant for a binary operator. *)
| Binary of char * expr * expr

(* variant for function calls. *)
| Call of string * expr array

(* proto - This type represents the "prototype" for a function, which captures

* its name, and its argument names (thus implicitly the number of arguments the

* function takes). *)
type proto = Prototype of string * string array
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(* func - This type represents a function definition itself. *)
type func = Function of proto * expr

parser.ml:

(*===---------------------------------------------------------------------===

* Parser

*===---------------------------------------------------------------------===*)

(* binop_precedence - This holds the precedence for each binary operator that is

* defined *)
let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10

(* precedence - Get the precedence of the pending binary operator token. *)
let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1

(* primary

* ::= identifier

* ::= numberexpr

* ::= parenexpr *)
let rec parse_primary = parser
(* numberexpr ::= number *)
| [< 'Token.Number n >] -> Ast.Number n

(* parenexpr ::= '(' expression ')' *)
| [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e

(* identifierexpr

* ::= identifier

* ::= identifier '(' argumentexpr ')' *)
| [< 'Token.Ident id; stream >] ->

let rec parse_args accumulator = parser
| [< e=parse_expr; stream >] ->

begin parser
| [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e
| [< >] -> e :: accumulator

end stream
| [< >] -> accumulator

in
let rec parse_ident id = parser
(* Call. *)
| [< 'Token.Kwd '(';

args=parse_args [];
'Token.Kwd ')' ?? "expected ')'">] ->

Ast.Call (id, Array.of_list (List.rev args))

(* Simple variable ref. *)
| [< >] -> Ast.Variable id

in
parse_ident id stream

| [< >] -> raise (Stream.Error "unknown token when expecting an expression.")

(* binoprhs

* ::= ('+' primary)* *)
and parse_bin_rhs expr_prec lhs stream =
match Stream.peek stream with
(* If this is a binop, find its precedence. *)
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| Some (Token.Kwd c) when Hashtbl.mem binop_precedence c ->
let token_prec = precedence c in

(* If this is a binop that binds at least as tightly as the current binop,

* consume it, otherwise we are done. *)
if token_prec < expr_prec then lhs else begin
(* Eat the binop. *)
Stream.junk stream;

(* Parse the primary expression after the binary operator. *)
let rhs = parse_primary stream in

(* Okay, we know this is a binop. *)
let rhs =

match Stream.peek stream with
| Some (Token.Kwd c2) ->

(* If BinOp binds less tightly with rhs than the operator after

* rhs, let the pending operator take rhs as its lhs. *)
let next_prec = precedence c2 in
if token_prec < next_prec
then parse_bin_rhs (token_prec + 1) rhs stream
else rhs

| _ -> rhs
in

(* Merge lhs/rhs. *)
let lhs = Ast.Binary (c, lhs, rhs) in
parse_bin_rhs expr_prec lhs stream

end
| _ -> lhs

(* expression

* ::= primary binoprhs *)
and parse_expr = parser
| [< lhs=parse_primary; stream >] -> parse_bin_rhs 0 lhs stream

(* prototype

* ::= id '(' id* ')' *)
let parse_prototype =
let rec parse_args accumulator = parser

| [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e
| [< >] -> accumulator

in

parser
| [< 'Token.Ident id;

'Token.Kwd '(' ?? "expected '(' in prototype";
args=parse_args [];
'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
(* success. *)
Ast.Prototype (id, Array.of_list (List.rev args))

| [< >] ->
raise (Stream.Error "expected function name in prototype")

(* definition ::= 'def' prototype expression *)
let parse_definition = parser
| [< 'Token.Def; p=parse_prototype; e=parse_expr >] ->
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Ast.Function (p, e)

(* toplevelexpr ::= expression *)
let parse_toplevel = parser
| [< e=parse_expr >] ->

(* Make an anonymous proto. *)
Ast.Function (Ast.Prototype ("", [||]), e)

(* external ::= 'extern' prototype *)
let parse_extern = parser
| [< 'Token.Extern; e=parse_prototype >] -> e

codegen.ml:

(*===----------------------------------------------------------------------===

* Code Generation

*===----------------------------------------------------------------------===*)

open Llvm

exception Error of string

let context = global_context ()
let the_module = create_module context "my cool jit"
let builder = builder context
let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
let double_type = double_type context

let rec codegen_expr = function
| Ast.Number n -> const_float double_type n
| Ast.Variable name ->

(try Hashtbl.find named_values name with
| Not_found -> raise (Error "unknown variable name"))

| Ast.Binary (op, lhs, rhs) ->
let lhs_val = codegen_expr lhs in
let rhs_val = codegen_expr rhs in
begin
match op with
| '+' -> build_add lhs_val rhs_val "addtmp" builder
| '-' -> build_sub lhs_val rhs_val "subtmp" builder
| '*' -> build_mul lhs_val rhs_val "multmp" builder
| '<' ->

(* Convert bool 0/1 to double 0.0 or 1.0 *)
let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
build_uitofp i double_type "booltmp" builder

| _ -> raise (Error "invalid binary operator")
end

| Ast.Call (callee, args) ->
(* Look up the name in the module table. *)
let callee =
match lookup_function callee the_module with
| Some callee -> callee
| None -> raise (Error "unknown function referenced")

in
let params = params callee in

(* If argument mismatch error. *)
if Array.length params == Array.length args then () else
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raise (Error "incorrect # arguments passed");
let args = Array.map codegen_expr args in
build_call callee args "calltmp" builder

let codegen_proto = function
| Ast.Prototype (name, args) ->

(* Make the function type: double(double,double) etc. *)
let doubles = Array.make (Array.length args) double_type in
let ft = function_type double_type doubles in
let f =
match lookup_function name the_module with
| None -> declare_function name ft the_module

(* If 'f' conflicted, there was already something named 'name'. If it

* has a body, don't allow redefinition or reextern. *)
| Some f ->

(* If 'f' already has a body, reject this. *)
if block_begin f <> At_end f then
raise (Error "redefinition of function");

(* If 'f' took a different number of arguments, reject. *)
if element_type (type_of f) <> ft then
raise (Error "redefinition of function with different # args");

f
in

(* Set names for all arguments. *)
Array.iteri (fun i a ->
let n = args.(i) in
set_value_name n a;
Hashtbl.add named_values n a;

) (params f);
f

let codegen_func the_fpm = function
| Ast.Function (proto, body) ->

Hashtbl.clear named_values;
let the_function = codegen_proto proto in

(* Create a new basic block to start insertion into. *)
let bb = append_block context "entry" the_function in
position_at_end bb builder;

try
let ret_val = codegen_expr body in

(* Finish off the function. *)
let _ = build_ret ret_val builder in

(* Validate the generated code, checking for consistency. *)
Llvm_analysis.assert_valid_function the_function;

(* Optimize the function. *)
let _ = PassManager.run_function the_function the_fpm in

the_function
with e ->
delete_function the_function;
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raise e

toplevel.ml:

(*===----------------------------------------------------------------------===

* Top-Level parsing and JIT Driver

*===----------------------------------------------------------------------===*)

open Llvm
open Llvm_executionengine

(* top ::= definition | external | expression | ';' *)
let rec main_loop the_fpm the_execution_engine stream =
match Stream.peek stream with
| None -> ()

(* ignore top-level semicolons. *)
| Some (Token.Kwd ';') ->

Stream.junk stream;
main_loop the_fpm the_execution_engine stream

| Some token ->
begin
try match token with
| Token.Def ->

let e = Parser.parse_definition stream in
print_endline "parsed a function definition.";
dump_value (Codegen.codegen_func the_fpm e);

| Token.Extern ->
let e = Parser.parse_extern stream in
print_endline "parsed an extern.";
dump_value (Codegen.codegen_proto e);

| _ ->
(* Evaluate a top-level expression into an anonymous function. *)
let e = Parser.parse_toplevel stream in
print_endline "parsed a top-level expr";
let the_function = Codegen.codegen_func the_fpm e in
dump_value the_function;

(* JIT the function, returning a function pointer. *)
let result = ExecutionEngine.run_function the_function [||]

the_execution_engine in

print_string "Evaluated to ";
print_float (GenericValue.as_float Codegen.double_type result);
print_newline ();

with Stream.Error s | Codegen.Error s ->
(* Skip token for error recovery. *)
Stream.junk stream;
print_endline s;

end;
print_string "ready> "; flush stdout;
main_loop the_fpm the_execution_engine stream

toy.ml:

(*===----------------------------------------------------------------------===

* Main driver code.
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*===----------------------------------------------------------------------===*)

open Llvm
open Llvm_executionengine
open Llvm_target
open Llvm_scalar_opts

let main () =
ignore (initialize_native_target ());

(* Install standard binary operators.

* 1 is the lowest precedence. *)
Hashtbl.add Parser.binop_precedence '<' 10;
Hashtbl.add Parser.binop_precedence '+' 20;
Hashtbl.add Parser.binop_precedence '-' 20;
Hashtbl.add Parser.binop_precedence '*' 40; (* highest. *)

(* Prime the first token. *)
print_string "ready> "; flush stdout;
let stream = Lexer.lex (Stream.of_channel stdin) in

(* Create the JIT. *)
let the_execution_engine = ExecutionEngine.create Codegen.the_module in
let the_fpm = PassManager.create_function Codegen.the_module in

(* Set up the optimizer pipeline. Start with registering info about how the

* target lays out data structures. *)
DataLayout.add (ExecutionEngine.target_data the_execution_engine) the_fpm;

(* Do simple "peephole" optimizations and bit-twiddling optzn. *)
add_instruction_combination the_fpm;

(* reassociate expressions. *)
add_reassociation the_fpm;

(* Eliminate Common SubExpressions. *)
add_gvn the_fpm;

(* Simplify the control flow graph (deleting unreachable blocks, etc). *)
add_cfg_simplification the_fpm;

ignore (PassManager.initialize the_fpm);

(* Run the main "interpreter loop" now. *)
Toplevel.main_loop the_fpm the_execution_engine stream;

(* Print out all the generated code. *)
dump_module Codegen.the_module

;;

main ()

bindings.c

#include <stdio.h>

/* putchard - putchar that takes a double and returns 0. */
extern double putchard(double X) {
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putchar((char)X);
return 0;

}

Next: Extending the language: control flow

Kaleidoscope: Extending the Language: Control Flow

• Chapter 5 Introduction

• If/Then/Else

– Lexer Extensions for If/Then/Else

– AST Extensions for If/Then/Else

– Parser Extensions for If/Then/Else

– LLVM IR for If/Then/Else

– Code Generation for If/Then/Else

• ‘for’ Loop Expression

– Lexer Extensions for the ‘for’ Loop

– AST Extensions for the ‘for’ Loop

– Parser Extensions for the ‘for’ Loop

– LLVM IR for the ‘for’ Loop

– Code Generation for the ‘for’ Loop

• Full Code Listing

Chapter 5 Introduction

Welcome to Chapter 5 of the “Implementing a language with LLVM” tutorial. Parts 1-4 described the implementation
of the simple Kaleidoscope language and included support for generating LLVM IR, followed by optimizations and
a JIT compiler. Unfortunately, as presented, Kaleidoscope is mostly useless: it has no control flow other than call
and return. This means that you can’t have conditional branches in the code, significantly limiting its power. In this
episode of “build that compiler”, we’ll extend Kaleidoscope to have an if/then/else expression plus a simple ‘for’ loop.

If/Then/Else

Extending Kaleidoscope to support if/then/else is quite straightforward. It basically requires adding lexer support for
this “new” concept to the lexer, parser, AST, and LLVM code emitter. This example is nice, because it shows how
easy it is to “grow” a language over time, incrementally extending it as new ideas are discovered.

Before we get going on “how” we add this extension, lets talk about “what” we want. The basic idea is that we want
to be able to write this sort of thing:

def fib(x)
if x < 3 then
1
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else
fib(x-1)+fib(x-2);

In Kaleidoscope, every construct is an expression: there are no statements. As such, the if/then/else expression needs
to return a value like any other. Since we’re using a mostly functional form, we’ll have it evaluate its conditional, then
return the ‘then’ or ‘else’ value based on how the condition was resolved. This is very similar to the C ”?:” expression.

The semantics of the if/then/else expression is that it evaluates the condition to a boolean equality value: 0.0 is consid-
ered to be false and everything else is considered to be true. If the condition is true, the first subexpression is evaluated
and returned, if the condition is false, the second subexpression is evaluated and returned. Since Kaleidoscope allows
side-effects, this behavior is important to nail down.

Now that we know what we “want”, lets break this down into its constituent pieces.

Lexer Extensions for If/Then/Else

The lexer extensions are straightforward. First we add new variants for the relevant tokens:

(* control *)
| If | Then | Else | For | In

Once we have that, we recognize the new keywords in the lexer. This is pretty simple stuff:

...
match Buffer.contents buffer with
| "def" -> [< 'Token.Def; stream >]
| "extern" -> [< 'Token.Extern; stream >]
| "if" -> [< 'Token.If; stream >]
| "then" -> [< 'Token.Then; stream >]
| "else" -> [< 'Token.Else; stream >]
| "for" -> [< 'Token.For; stream >]
| "in" -> [< 'Token.In; stream >]
| id -> [< 'Token.Ident id; stream >]

AST Extensions for If/Then/Else

To represent the new expression we add a new AST variant for it:

type expr =
...
(* variant for if/then/else. *)
| If of expr * expr * expr

The AST variant just has pointers to the various subexpressions.

Parser Extensions for If/Then/Else

Now that we have the relevant tokens coming from the lexer and we have the AST node to build, our parsing logic is
relatively straightforward. First we define a new parsing function:

let rec parse_primary = parser
...
(* ifexpr ::= 'if' expr 'then' expr 'else' expr *)

2.17. LLVM Tutorial: Table of Contents 599



LLVM Documentation, Release 3.9

| [< 'Token.If; c=parse_expr;
'Token.Then ?? "expected 'then'"; t=parse_expr;
'Token.Else ?? "expected 'else'"; e=parse_expr >] ->

Ast.If (c, t, e)

Next we hook it up as a primary expression:

let rec parse_primary = parser
...
(* ifexpr ::= 'if' expr 'then' expr 'else' expr *)
| [< 'Token.If; c=parse_expr;

'Token.Then ?? "expected 'then'"; t=parse_expr;
'Token.Else ?? "expected 'else'"; e=parse_expr >] ->

Ast.If (c, t, e)

LLVM IR for If/Then/Else

Now that we have it parsing and building the AST, the final piece is adding LLVM code generation support. This is
the most interesting part of the if/then/else example, because this is where it starts to introduce new concepts. All of
the code above has been thoroughly described in previous chapters.

To motivate the code we want to produce, lets take a look at a simple example. Consider:

extern foo();
extern bar();
def baz(x) if x then foo() else bar();

If you disable optimizations, the code you’ll (soon) get from Kaleidoscope looks like this:

declare double @foo()

declare double @bar()

define double @baz(double %x) {
entry:

%ifcond = fcmp one double %x, 0.000000e+00
br i1 %ifcond, label %then, label %else

then: ; preds = %entry
%calltmp = call double @foo()
br label %ifcont

else: ; preds = %entry
%calltmp1 = call double @bar()
br label %ifcont

ifcont: ; preds = %else, %then
%iftmp = phi double [ %calltmp, %then ], [ %calltmp1, %else ]
ret double %iftmp

}

To visualize the control flow graph, you can use a nifty feature of the LLVM ‘opt‘ tool. If you put this LLVM IR into
“t.ll” and run “llvm-as < t.ll | opt -analyze -view-cfg”, a window will pop up and you’ll see this
graph:

Another way to get this is to call “Llvm_analysis.view_function_cfg f” or “Llvm_analysis.
view_function_cfg_only f” (where f is a “Function”) either by inserting actual calls into the code and
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Fig. 2.2: Example CFG
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recompiling or by calling these in the debugger. LLVM has many nice features for visualizing various graphs.

Getting back to the generated code, it is fairly simple: the entry block evaluates the conditional expression (“x” in our
case here) and compares the result to 0.0 with the “fcmp one” instruction (‘one’ is “Ordered and Not Equal”). Based
on the result of this expression, the code jumps to either the “then” or “else” blocks, which contain the expressions for
the true/false cases.

Once the then/else blocks are finished executing, they both branch back to the ‘ifcont’ block to execute the code that
happens after the if/then/else. In this case the only thing left to do is to return to the caller of the function. The question
then becomes: how does the code know which expression to return?

The answer to this question involves an important SSA operation: the Phi operation. If you’re not familiar with SSA,
the wikipedia article is a good introduction and there are various other introductions to it available on your favorite
search engine. The short version is that “execution” of the Phi operation requires “remembering” which block control
came from. The Phi operation takes on the value corresponding to the input control block. In this case, if control
comes in from the “then” block, it gets the value of “calltmp”. If control comes from the “else” block, it gets the value
of “calltmp1”.

At this point, you are probably starting to think “Oh no! This means my simple and elegant front-end will have to
start generating SSA form in order to use LLVM!”. Fortunately, this is not the case, and we strongly advise not
implementing an SSA construction algorithm in your front-end unless there is an amazingly good reason to do so.
In practice, there are two sorts of values that float around in code written for your average imperative programming
language that might need Phi nodes:

1. Code that involves user variables: x = 1; x = x + 1;

2. Values that are implicit in the structure of your AST, such as the Phi node in this case.

In Chapter 7 of this tutorial (“mutable variables”), we’ll talk about #1 in depth. For now, just believe me that you don’t
need SSA construction to handle this case. For #2, you have the choice of using the techniques that we will describe
for #1, or you can insert Phi nodes directly, if convenient. In this case, it is really really easy to generate the Phi node,
so we choose to do it directly.

Okay, enough of the motivation and overview, lets generate code!

Code Generation for If/Then/Else

In order to generate code for this, we implement the Codegen method for IfExprAST:

let rec codegen_expr = function
...
| Ast.If (cond, then_, else_) ->

let cond = codegen_expr cond in

(* Convert condition to a bool by comparing equal to 0.0 *)
let zero = const_float double_type 0.0 in
let cond_val = build_fcmp Fcmp.One cond zero "ifcond" builder in

This code is straightforward and similar to what we saw before. We emit the expression for the condition, then compare
that value to zero to get a truth value as a 1-bit (bool) value.

(* Grab the first block so that we might later add the conditional branch

* to it at the end of the function. *)
let start_bb = insertion_block builder in
let the_function = block_parent start_bb in

let then_bb = append_block context "then" the_function in
position_at_end then_bb builder;
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As opposed to the C++ tutorial, we have to build our basic blocks bottom up since we can’t have dangling BasicBlocks.
We start off by saving a pointer to the first block (which might not be the entry block), which we’ll need to build a
conditional branch later. We do this by asking the builder for the current BasicBlock. The fourth line gets the
current Function object that is being built. It gets this by the start_bb for its “parent” (the function it is currently
embedded into).

Once it has that, it creates one block. It is automatically appended into the function’s list of blocks.

(* Emit 'then' value. *)
position_at_end then_bb builder;
let then_val = codegen_expr then_ in

(* Codegen of 'then' can change the current block, update then_bb for the

* phi. We create a new name because one is used for the phi node, and the

* other is used for the conditional branch. *)
let new_then_bb = insertion_block builder in

We move the builder to start inserting into the “then” block. Strictly speaking, this call moves the insertion point to
be at the end of the specified block. However, since the “then” block is empty, it also starts out by inserting at the
beginning of the block. :)

Once the insertion point is set, we recursively codegen the “then” expression from the AST.

The final line here is quite subtle, but is very important. The basic issue is that when we create the Phi node in the
merge block, we need to set up the block/value pairs that indicate how the Phi will work. Importantly, the Phi node
expects to have an entry for each predecessor of the block in the CFG. Why then, are we getting the current block
when we just set it to ThenBB 5 lines above? The problem is that the “Then” expression may actually itself change the
block that the Builder is emitting into if, for example, it contains a nested “if/then/else” expression. Because calling
Codegen recursively could arbitrarily change the notion of the current block, we are required to get an up-to-date value
for code that will set up the Phi node.

(* Emit 'else' value. *)
let else_bb = append_block context "else" the_function in
position_at_end else_bb builder;
let else_val = codegen_expr else_ in

(* Codegen of 'else' can change the current block, update else_bb for the

* phi. *)
let new_else_bb = insertion_block builder in

Code generation for the ‘else’ block is basically identical to codegen for the ‘then’ block.

(* Emit merge block. *)
let merge_bb = append_block context "ifcont" the_function in
position_at_end merge_bb builder;
let incoming = [(then_val, new_then_bb); (else_val, new_else_bb)] in
let phi = build_phi incoming "iftmp" builder in

The first two lines here are now familiar: the first adds the “merge” block to the Function object. The second changes
the insertion point so that newly created code will go into the “merge” block. Once that is done, we need to create the
PHI node and set up the block/value pairs for the PHI.

(* Return to the start block to add the conditional branch. *)
position_at_end start_bb builder;
ignore (build_cond_br cond_val then_bb else_bb builder);

Once the blocks are created, we can emit the conditional branch that chooses between them. Note that creating new
blocks does not implicitly affect the IRBuilder, so it is still inserting into the block that the condition went into. This
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is why we needed to save the “start” block.

(* Set a unconditional branch at the end of the 'then' block and the

* 'else' block to the 'merge' block. *)
position_at_end new_then_bb builder; ignore (build_br merge_bb builder);
position_at_end new_else_bb builder; ignore (build_br merge_bb builder);

(* Finally, set the builder to the end of the merge block. *)
position_at_end merge_bb builder;

phi

To finish off the blocks, we create an unconditional branch to the merge block. One interesting (and very important)
aspect of the LLVM IR is that it requires all basic blocks to be “terminated” with a control flow instruction such as
return or branch. This means that all control flow, including fall throughs must be made explicit in the LLVM IR. If
you violate this rule, the verifier will emit an error.

Finally, the CodeGen function returns the phi node as the value computed by the if/then/else expression. In our
example above, this returned value will feed into the code for the top-level function, which will create the return
instruction.

Overall, we now have the ability to execute conditional code in Kaleidoscope. With this extension, Kaleidoscope is
a fairly complete language that can calculate a wide variety of numeric functions. Next up we’ll add another useful
expression that is familiar from non-functional languages...

‘for’ Loop Expression

Now that we know how to add basic control flow constructs to the language, we have the tools to add more powerful
things. Lets add something more aggressive, a ‘for’ expression:

extern putchard(char);
def printstar(n)
for i = 1, i < n, 1.0 in
putchard(42); # ascii 42 = '*'

# print 100 '*' characters
printstar(100);

This expression defines a new variable (“i” in this case) which iterates from a starting value, while the condition (“i
< n” in this case) is true, incrementing by an optional step value (“1.0” in this case). If the step value is omitted,
it defaults to 1.0. While the loop is true, it executes its body expression. Because we don’t have anything better to
return, we’ll just define the loop as always returning 0.0. In the future when we have mutable variables, it will get
more useful.

As before, lets talk about the changes that we need to Kaleidoscope to support this.

Lexer Extensions for the ‘for’ Loop

The lexer extensions are the same sort of thing as for if/then/else:

... in Token.token ...
(* control *)
| If | Then | Else
| For | In

... in Lexer.lex_ident...
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match Buffer.contents buffer with
| "def" -> [< 'Token.Def; stream >]
| "extern" -> [< 'Token.Extern; stream >]
| "if" -> [< 'Token.If; stream >]
| "then" -> [< 'Token.Then; stream >]
| "else" -> [< 'Token.Else; stream >]
| "for" -> [< 'Token.For; stream >]
| "in" -> [< 'Token.In; stream >]
| id -> [< 'Token.Ident id; stream >]

AST Extensions for the ‘for’ Loop

The AST variant is just as simple. It basically boils down to capturing the variable name and the constituent expressions
in the node.

type expr =
...
(* variant for for/in. *)
| For of string * expr * expr * expr option * expr

Parser Extensions for the ‘for’ Loop

The parser code is also fairly standard. The only interesting thing here is handling of the optional step value. The
parser code handles it by checking to see if the second comma is present. If not, it sets the step value to null in the
AST node:

let rec parse_primary = parser
...
(* forexpr

::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression *)
| [< 'Token.For;

'Token.Ident id ?? "expected identifier after for";
'Token.Kwd '=' ?? "expected '=' after for";
stream >] ->

begin parser
| [<

start=parse_expr;
'Token.Kwd ',' ?? "expected ',' after for";
end_=parse_expr;
stream >] ->

let step =
begin parser
| [< 'Token.Kwd ','; step=parse_expr >] -> Some step
| [< >] -> None
end stream

in
begin parser
| [< 'Token.In; body=parse_expr >] ->

Ast.For (id, start, end_, step, body)
| [< >] ->

raise (Stream.Error "expected 'in' after for")
end stream

| [< >] ->
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raise (Stream.Error "expected '=' after for")
end stream

LLVM IR for the ‘for’ Loop

Now we get to the good part: the LLVM IR we want to generate for this thing. With the simple example above, we
get this LLVM IR (note that this dump is generated with optimizations disabled for clarity):

declare double @putchard(double)

define double @printstar(double %n) {
entry:

; initial value = 1.0 (inlined into phi)
br label %loop

loop: ; preds = %loop, %entry
%i = phi double [ 1.000000e+00, %entry ], [ %nextvar, %loop ]

; body
%calltmp = call double @putchard(double 4.200000e+01)

; increment
%nextvar = fadd double %i, 1.000000e+00

; termination test
%cmptmp = fcmp ult double %i, %n
%booltmp = uitofp i1 %cmptmp to double
%loopcond = fcmp one double %booltmp, 0.000000e+00
br i1 %loopcond, label %loop, label %afterloop

afterloop: ; preds = %loop
; loop always returns 0.0

ret double 0.000000e+00
}

This loop contains all the same constructs we saw before: a phi node, several expressions, and some basic blocks. Lets
see how this fits together.

Code Generation for the ‘for’ Loop

The first part of Codegen is very simple: we just output the start expression for the loop value:

let rec codegen_expr = function
...
| Ast.For (var_name, start, end_, step, body) ->

(* Emit the start code first, without 'variable' in scope. *)
let start_val = codegen_expr start in

With this out of the way, the next step is to set up the LLVM basic block for the start of the loop body. In the case
above, the whole loop body is one block, but remember that the body code itself could consist of multiple blocks (e.g.
if it contains an if/then/else or a for/in expression).

(* Make the new basic block for the loop header, inserting after current

* block. *)
let preheader_bb = insertion_block builder in
let the_function = block_parent preheader_bb in
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let loop_bb = append_block context "loop" the_function in

(* Insert an explicit fall through from the current block to the

* loop_bb. *)
ignore (build_br loop_bb builder);

This code is similar to what we saw for if/then/else. Because we will need it to create the Phi node, we remember the
block that falls through into the loop. Once we have that, we create the actual block that starts the loop and create an
unconditional branch for the fall-through between the two blocks.

(* Start insertion in loop_bb. *)
position_at_end loop_bb builder;

(* Start the PHI node with an entry for start. *)
let variable = build_phi [(start_val, preheader_bb)] var_name builder in

Now that the “preheader” for the loop is set up, we switch to emitting code for the loop body. To begin with, we move
the insertion point and create the PHI node for the loop induction variable. Since we already know the incoming value
for the starting value, we add it to the Phi node. Note that the Phi will eventually get a second value for the backedge,
but we can’t set it up yet (because it doesn’t exist!).

(* Within the loop, the variable is defined equal to the PHI node. If it

* shadows an existing variable, we have to restore it, so save it

* now. *)
let old_val =
try Some (Hashtbl.find named_values var_name) with Not_found -> None

in
Hashtbl.add named_values var_name variable;

(* Emit the body of the loop. This, like any other expr, can change the

* current BB. Note that we ignore the value computed by the body, but

* don't allow an error *)
ignore (codegen_expr body);

Now the code starts to get more interesting. Our ‘for’ loop introduces a new variable to the symbol table. This means
that our symbol table can now contain either function arguments or loop variables. To handle this, before we codegen
the body of the loop, we add the loop variable as the current value for its name. Note that it is possible that there is a
variable of the same name in the outer scope. It would be easy to make this an error (emit an error and return null if
there is already an entry for VarName) but we choose to allow shadowing of variables. In order to handle this correctly,
we remember the Value that we are potentially shadowing in old_val (which will be None if there is no shadowed
variable).

Once the loop variable is set into the symbol table, the code recursively codegen’s the body. This allows the body to
use the loop variable: any references to it will naturally find it in the symbol table.

(* Emit the step value. *)
let step_val =
match step with
| Some step -> codegen_expr step
(* If not specified, use 1.0. *)
| None -> const_float double_type 1.0

in

let next_var = build_add variable step_val "nextvar" builder in

Now that the body is emitted, we compute the next value of the iteration variable by adding the step value, or 1.0 if it
isn’t present. ‘next_var‘ will be the value of the loop variable on the next iteration of the loop.
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(* Compute the end condition. *)
let end_cond = codegen_expr end_ in

(* Convert condition to a bool by comparing equal to 0.0. *)
let zero = const_float double_type 0.0 in
let end_cond = build_fcmp Fcmp.One end_cond zero "loopcond" builder in

Finally, we evaluate the exit value of the loop, to determine whether the loop should exit. This mirrors the condition
evaluation for the if/then/else statement.

(* Create the "after loop" block and insert it. *)
let loop_end_bb = insertion_block builder in
let after_bb = append_block context "afterloop" the_function in

(* Insert the conditional branch into the end of loop_end_bb. *)
ignore (build_cond_br end_cond loop_bb after_bb builder);

(* Any new code will be inserted in after_bb. *)
position_at_end after_bb builder;

With the code for the body of the loop complete, we just need to finish up the control flow for it. This code remembers
the end block (for the phi node), then creates the block for the loop exit (“afterloop”). Based on the value of the exit
condition, it creates a conditional branch that chooses between executing the loop again and exiting the loop. Any
future code is emitted in the “afterloop” block, so it sets the insertion position to it.

(* Add a new entry to the PHI node for the backedge. *)
add_incoming (next_var, loop_end_bb) variable;

(* Restore the unshadowed variable. *)
begin match old_val with
| Some old_val -> Hashtbl.add named_values var_name old_val
| None -> ()
end;

(* for expr always returns 0.0. *)
const_null double_type

The final code handles various cleanups: now that we have the “next_var” value, we can add the incoming value
to the loop PHI node. After that, we remove the loop variable from the symbol table, so that it isn’t in scope after
the for loop. Finally, code generation of the for loop always returns 0.0, so that is what we return from Codegen.
codegen_expr.

With this, we conclude the “adding control flow to Kaleidoscope” chapter of the tutorial. In this chapter we added two
control flow constructs, and used them to motivate a couple of aspects of the LLVM IR that are important for front-end
implementors to know. In the next chapter of our saga, we will get a bit crazier and add user-defined operators to our
poor innocent language.

Full Code Listing

Here is the complete code listing for our running example, enhanced with the if/then/else and for expressions.. To
build this example, use:

# Compile
ocamlbuild toy.byte
# Run
./toy.byte
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Here is the code:

_tags:

<{lexer,parser}.ml>: use_camlp4, pp(camlp4of)
<*.{byte,native}>: g++, use_llvm, use_llvm_analysis
<*.{byte,native}>: use_llvm_executionengine, use_llvm_target
<*.{byte,native}>: use_llvm_scalar_opts, use_bindings

myocamlbuild.ml:

open Ocamlbuild_plugin;;

ocaml_lib ~extern:true "llvm";;
ocaml_lib ~extern:true "llvm_analysis";;
ocaml_lib ~extern:true "llvm_executionengine";;
ocaml_lib ~extern:true "llvm_target";;
ocaml_lib ~extern:true "llvm_scalar_opts";;

flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"]);;
dep ["link"; "ocaml"; "use_bindings"] ["bindings.o"];;

token.ml:

(*===----------------------------------------------------------------------===

* Lexer Tokens

*===----------------------------------------------------------------------===*)

(* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of

* these others for known things. *)
type token =
(* commands *)
| Def | Extern

(* primary *)
| Ident of string | Number of float

(* unknown *)
| Kwd of char

(* control *)
| If | Then | Else
| For | In

lexer.ml:

(*===----------------------------------------------------------------------===

* Lexer

*===----------------------------------------------------------------------===*)

let rec lex = parser
(* Skip any whitespace. *)
| [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream

(* identifier: [a-zA-Z][a-zA-Z0-9] *)
| [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] ->

let buffer = Buffer.create 1 in
Buffer.add_char buffer c;
lex_ident buffer stream
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(* number: [0-9.]+ *)
| [< ' ('0' .. '9' as c); stream >] ->

let buffer = Buffer.create 1 in
Buffer.add_char buffer c;
lex_number buffer stream

(* Comment until end of line. *)
| [< ' ('#'); stream >] ->

lex_comment stream

(* Otherwise, just return the character as its ascii value. *)
| [< 'c; stream >] ->

[< 'Token.Kwd c; lex stream >]

(* end of stream. *)
| [< >] -> [< >]

and lex_number buffer = parser
| [< ' ('0' .. '9' | '.' as c); stream >] ->

Buffer.add_char buffer c;
lex_number buffer stream

| [< stream=lex >] ->
[< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >]

and lex_ident buffer = parser
| [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] ->

Buffer.add_char buffer c;
lex_ident buffer stream

| [< stream=lex >] ->
match Buffer.contents buffer with
| "def" -> [< 'Token.Def; stream >]
| "extern" -> [< 'Token.Extern; stream >]
| "if" -> [< 'Token.If; stream >]
| "then" -> [< 'Token.Then; stream >]
| "else" -> [< 'Token.Else; stream >]
| "for" -> [< 'Token.For; stream >]
| "in" -> [< 'Token.In; stream >]
| id -> [< 'Token.Ident id; stream >]

and lex_comment = parser
| [< ' ('\n'); stream=lex >] -> stream
| [< 'c; e=lex_comment >] -> e
| [< >] -> [< >]

ast.ml:

(*===----------------------------------------------------------------------===

* Abstract Syntax Tree (aka Parse Tree)

*===----------------------------------------------------------------------===*)

(* expr - Base type for all expression nodes. *)
type expr =
(* variant for numeric literals like "1.0". *)
| Number of float

(* variant for referencing a variable, like "a". *)
| Variable of string
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(* variant for a binary operator. *)
| Binary of char * expr * expr

(* variant for function calls. *)
| Call of string * expr array

(* variant for if/then/else. *)
| If of expr * expr * expr

(* variant for for/in. *)
| For of string * expr * expr * expr option * expr

(* proto - This type represents the "prototype" for a function, which captures

* its name, and its argument names (thus implicitly the number of arguments the

* function takes). *)
type proto = Prototype of string * string array

(* func - This type represents a function definition itself. *)
type func = Function of proto * expr

parser.ml:

(*===---------------------------------------------------------------------===

* Parser

*===---------------------------------------------------------------------===*)

(* binop_precedence - This holds the precedence for each binary operator that is

* defined *)
let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10

(* precedence - Get the precedence of the pending binary operator token. *)
let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1

(* primary

* ::= identifier

* ::= numberexpr

* ::= parenexpr

* ::= ifexpr

* ::= forexpr *)
let rec parse_primary = parser
(* numberexpr ::= number *)
| [< 'Token.Number n >] -> Ast.Number n

(* parenexpr ::= '(' expression ')' *)
| [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e

(* identifierexpr

* ::= identifier

* ::= identifier '(' argumentexpr ')' *)
| [< 'Token.Ident id; stream >] ->

let rec parse_args accumulator = parser
| [< e=parse_expr; stream >] ->

begin parser
| [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e
| [< >] -> e :: accumulator

end stream
| [< >] -> accumulator
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in
let rec parse_ident id = parser
(* Call. *)
| [< 'Token.Kwd '(';

args=parse_args [];
'Token.Kwd ')' ?? "expected ')'">] ->

Ast.Call (id, Array.of_list (List.rev args))

(* Simple variable ref. *)
| [< >] -> Ast.Variable id

in
parse_ident id stream

(* ifexpr ::= 'if' expr 'then' expr 'else' expr *)
| [< 'Token.If; c=parse_expr;

'Token.Then ?? "expected 'then'"; t=parse_expr;
'Token.Else ?? "expected 'else'"; e=parse_expr >] ->

Ast.If (c, t, e)

(* forexpr
::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression *)

| [< 'Token.For;
'Token.Ident id ?? "expected identifier after for";
'Token.Kwd '=' ?? "expected '=' after for";
stream >] ->

begin parser
| [<

start=parse_expr;
'Token.Kwd ',' ?? "expected ',' after for";
end_=parse_expr;
stream >] ->

let step =
begin parser
| [< 'Token.Kwd ','; step=parse_expr >] -> Some step
| [< >] -> None
end stream

in
begin parser
| [< 'Token.In; body=parse_expr >] ->

Ast.For (id, start, end_, step, body)
| [< >] ->

raise (Stream.Error "expected 'in' after for")
end stream

| [< >] ->
raise (Stream.Error "expected '=' after for")

end stream

| [< >] -> raise (Stream.Error "unknown token when expecting an expression.")

(* binoprhs

* ::= ('+' primary)* *)
and parse_bin_rhs expr_prec lhs stream =

match Stream.peek stream with
(* If this is a binop, find its precedence. *)
| Some (Token.Kwd c) when Hashtbl.mem binop_precedence c ->

let token_prec = precedence c in

(* If this is a binop that binds at least as tightly as the current binop,
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* consume it, otherwise we are done. *)
if token_prec < expr_prec then lhs else begin
(* Eat the binop. *)
Stream.junk stream;

(* Parse the primary expression after the binary operator. *)
let rhs = parse_primary stream in

(* Okay, we know this is a binop. *)
let rhs =

match Stream.peek stream with
| Some (Token.Kwd c2) ->

(* If BinOp binds less tightly with rhs than the operator after

* rhs, let the pending operator take rhs as its lhs. *)
let next_prec = precedence c2 in
if token_prec < next_prec
then parse_bin_rhs (token_prec + 1) rhs stream
else rhs

| _ -> rhs
in

(* Merge lhs/rhs. *)
let lhs = Ast.Binary (c, lhs, rhs) in
parse_bin_rhs expr_prec lhs stream

end
| _ -> lhs

(* expression

* ::= primary binoprhs *)
and parse_expr = parser
| [< lhs=parse_primary; stream >] -> parse_bin_rhs 0 lhs stream

(* prototype

* ::= id '(' id* ')' *)
let parse_prototype =
let rec parse_args accumulator = parser

| [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e
| [< >] -> accumulator

in

parser
| [< 'Token.Ident id;

'Token.Kwd '(' ?? "expected '(' in prototype";
args=parse_args [];
'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
(* success. *)
Ast.Prototype (id, Array.of_list (List.rev args))

| [< >] ->
raise (Stream.Error "expected function name in prototype")

(* definition ::= 'def' prototype expression *)
let parse_definition = parser
| [< 'Token.Def; p=parse_prototype; e=parse_expr >] ->

Ast.Function (p, e)

(* toplevelexpr ::= expression *)
let parse_toplevel = parser
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| [< e=parse_expr >] ->
(* Make an anonymous proto. *)
Ast.Function (Ast.Prototype ("", [||]), e)

(* external ::= 'extern' prototype *)
let parse_extern = parser
| [< 'Token.Extern; e=parse_prototype >] -> e

codegen.ml:

(*===----------------------------------------------------------------------===

* Code Generation

*===----------------------------------------------------------------------===*)

open Llvm

exception Error of string

let context = global_context ()
let the_module = create_module context "my cool jit"
let builder = builder context
let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
let double_type = double_type context

let rec codegen_expr = function
| Ast.Number n -> const_float double_type n
| Ast.Variable name ->

(try Hashtbl.find named_values name with
| Not_found -> raise (Error "unknown variable name"))

| Ast.Binary (op, lhs, rhs) ->
let lhs_val = codegen_expr lhs in
let rhs_val = codegen_expr rhs in
begin
match op with
| '+' -> build_add lhs_val rhs_val "addtmp" builder
| '-' -> build_sub lhs_val rhs_val "subtmp" builder
| '*' -> build_mul lhs_val rhs_val "multmp" builder
| '<' ->

(* Convert bool 0/1 to double 0.0 or 1.0 *)
let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
build_uitofp i double_type "booltmp" builder

| _ -> raise (Error "invalid binary operator")
end

| Ast.Call (callee, args) ->
(* Look up the name in the module table. *)
let callee =
match lookup_function callee the_module with
| Some callee -> callee
| None -> raise (Error "unknown function referenced")

in
let params = params callee in

(* If argument mismatch error. *)
if Array.length params == Array.length args then () else
raise (Error "incorrect # arguments passed");

let args = Array.map codegen_expr args in
build_call callee args "calltmp" builder

| Ast.If (cond, then_, else_) ->
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let cond = codegen_expr cond in

(* Convert condition to a bool by comparing equal to 0.0 *)
let zero = const_float double_type 0.0 in
let cond_val = build_fcmp Fcmp.One cond zero "ifcond" builder in

(* Grab the first block so that we might later add the conditional branch

* to it at the end of the function. *)
let start_bb = insertion_block builder in
let the_function = block_parent start_bb in

let then_bb = append_block context "then" the_function in

(* Emit 'then' value. *)
position_at_end then_bb builder;
let then_val = codegen_expr then_ in

(* Codegen of 'then' can change the current block, update then_bb for the

* phi. We create a new name because one is used for the phi node, and the

* other is used for the conditional branch. *)
let new_then_bb = insertion_block builder in

(* Emit 'else' value. *)
let else_bb = append_block context "else" the_function in
position_at_end else_bb builder;
let else_val = codegen_expr else_ in

(* Codegen of 'else' can change the current block, update else_bb for the

* phi. *)
let new_else_bb = insertion_block builder in

(* Emit merge block. *)
let merge_bb = append_block context "ifcont" the_function in
position_at_end merge_bb builder;
let incoming = [(then_val, new_then_bb); (else_val, new_else_bb)] in
let phi = build_phi incoming "iftmp" builder in

(* Return to the start block to add the conditional branch. *)
position_at_end start_bb builder;
ignore (build_cond_br cond_val then_bb else_bb builder);

(* Set a unconditional branch at the end of the 'then' block and the

* 'else' block to the 'merge' block. *)
position_at_end new_then_bb builder; ignore (build_br merge_bb builder);
position_at_end new_else_bb builder; ignore (build_br merge_bb builder);

(* Finally, set the builder to the end of the merge block. *)
position_at_end merge_bb builder;

phi
| Ast.For (var_name, start, end_, step, body) ->

(* Emit the start code first, without 'variable' in scope. *)
let start_val = codegen_expr start in

(* Make the new basic block for the loop header, inserting after current

* block. *)
let preheader_bb = insertion_block builder in
let the_function = block_parent preheader_bb in
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let loop_bb = append_block context "loop" the_function in

(* Insert an explicit fall through from the current block to the

* loop_bb. *)
ignore (build_br loop_bb builder);

(* Start insertion in loop_bb. *)
position_at_end loop_bb builder;

(* Start the PHI node with an entry for start. *)
let variable = build_phi [(start_val, preheader_bb)] var_name builder in

(* Within the loop, the variable is defined equal to the PHI node. If it

* shadows an existing variable, we have to restore it, so save it

* now. *)
let old_val =
try Some (Hashtbl.find named_values var_name) with Not_found -> None

in
Hashtbl.add named_values var_name variable;

(* Emit the body of the loop. This, like any other expr, can change the

* current BB. Note that we ignore the value computed by the body, but

* don't allow an error *)
ignore (codegen_expr body);

(* Emit the step value. *)
let step_val =
match step with
| Some step -> codegen_expr step
(* If not specified, use 1.0. *)
| None -> const_float double_type 1.0

in

let next_var = build_add variable step_val "nextvar" builder in

(* Compute the end condition. *)
let end_cond = codegen_expr end_ in

(* Convert condition to a bool by comparing equal to 0.0. *)
let zero = const_float double_type 0.0 in
let end_cond = build_fcmp Fcmp.One end_cond zero "loopcond" builder in

(* Create the "after loop" block and insert it. *)
let loop_end_bb = insertion_block builder in
let after_bb = append_block context "afterloop" the_function in

(* Insert the conditional branch into the end of loop_end_bb. *)
ignore (build_cond_br end_cond loop_bb after_bb builder);

(* Any new code will be inserted in after_bb. *)
position_at_end after_bb builder;

(* Add a new entry to the PHI node for the backedge. *)
add_incoming (next_var, loop_end_bb) variable;

(* Restore the unshadowed variable. *)
begin match old_val with
| Some old_val -> Hashtbl.add named_values var_name old_val
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| None -> ()
end;

(* for expr always returns 0.0. *)
const_null double_type

let codegen_proto = function
| Ast.Prototype (name, args) ->

(* Make the function type: double(double,double) etc. *)
let doubles = Array.make (Array.length args) double_type in
let ft = function_type double_type doubles in
let f =
match lookup_function name the_module with
| None -> declare_function name ft the_module

(* If 'f' conflicted, there was already something named 'name'. If it

* has a body, don't allow redefinition or reextern. *)
| Some f ->

(* If 'f' already has a body, reject this. *)
if block_begin f <> At_end f then
raise (Error "redefinition of function");

(* If 'f' took a different number of arguments, reject. *)
if element_type (type_of f) <> ft then
raise (Error "redefinition of function with different # args");

f
in

(* Set names for all arguments. *)
Array.iteri (fun i a ->
let n = args.(i) in
set_value_name n a;
Hashtbl.add named_values n a;

) (params f);
f

let codegen_func the_fpm = function
| Ast.Function (proto, body) ->

Hashtbl.clear named_values;
let the_function = codegen_proto proto in

(* Create a new basic block to start insertion into. *)
let bb = append_block context "entry" the_function in
position_at_end bb builder;

try
let ret_val = codegen_expr body in

(* Finish off the function. *)
let _ = build_ret ret_val builder in

(* Validate the generated code, checking for consistency. *)
Llvm_analysis.assert_valid_function the_function;

(* Optimize the function. *)
let _ = PassManager.run_function the_function the_fpm in

the_function
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with e ->
delete_function the_function;
raise e

toplevel.ml:

(*===----------------------------------------------------------------------===

* Top-Level parsing and JIT Driver

*===----------------------------------------------------------------------===*)

open Llvm
open Llvm_executionengine

(* top ::= definition | external | expression | ';' *)
let rec main_loop the_fpm the_execution_engine stream =
match Stream.peek stream with
| None -> ()

(* ignore top-level semicolons. *)
| Some (Token.Kwd ';') ->

Stream.junk stream;
main_loop the_fpm the_execution_engine stream

| Some token ->
begin
try match token with
| Token.Def ->

let e = Parser.parse_definition stream in
print_endline "parsed a function definition.";
dump_value (Codegen.codegen_func the_fpm e);

| Token.Extern ->
let e = Parser.parse_extern stream in
print_endline "parsed an extern.";
dump_value (Codegen.codegen_proto e);

| _ ->
(* Evaluate a top-level expression into an anonymous function. *)
let e = Parser.parse_toplevel stream in
print_endline "parsed a top-level expr";
let the_function = Codegen.codegen_func the_fpm e in
dump_value the_function;

(* JIT the function, returning a function pointer. *)
let result = ExecutionEngine.run_function the_function [||]

the_execution_engine in

print_string "Evaluated to ";
print_float (GenericValue.as_float Codegen.double_type result);
print_newline ();

with Stream.Error s | Codegen.Error s ->
(* Skip token for error recovery. *)
Stream.junk stream;
print_endline s;

end;
print_string "ready> "; flush stdout;
main_loop the_fpm the_execution_engine stream

toy.ml:
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(*===----------------------------------------------------------------------===

* Main driver code.

*===----------------------------------------------------------------------===*)

open Llvm
open Llvm_executionengine
open Llvm_target
open Llvm_scalar_opts

let main () =
ignore (initialize_native_target ());

(* Install standard binary operators.

* 1 is the lowest precedence. *)
Hashtbl.add Parser.binop_precedence '<' 10;
Hashtbl.add Parser.binop_precedence '+' 20;
Hashtbl.add Parser.binop_precedence '-' 20;
Hashtbl.add Parser.binop_precedence '*' 40; (* highest. *)

(* Prime the first token. *)
print_string "ready> "; flush stdout;
let stream = Lexer.lex (Stream.of_channel stdin) in

(* Create the JIT. *)
let the_execution_engine = ExecutionEngine.create Codegen.the_module in
let the_fpm = PassManager.create_function Codegen.the_module in

(* Set up the optimizer pipeline. Start with registering info about how the

* target lays out data structures. *)
DataLayout.add (ExecutionEngine.target_data the_execution_engine) the_fpm;

(* Do simple "peephole" optimizations and bit-twiddling optzn. *)
add_instruction_combination the_fpm;

(* reassociate expressions. *)
add_reassociation the_fpm;

(* Eliminate Common SubExpressions. *)
add_gvn the_fpm;

(* Simplify the control flow graph (deleting unreachable blocks, etc). *)
add_cfg_simplification the_fpm;

ignore (PassManager.initialize the_fpm);

(* Run the main "interpreter loop" now. *)
Toplevel.main_loop the_fpm the_execution_engine stream;

(* Print out all the generated code. *)
dump_module Codegen.the_module

;;

main ()

bindings.c

#include <stdio.h>

2.17. LLVM Tutorial: Table of Contents 619



LLVM Documentation, Release 3.9

/* putchard - putchar that takes a double and returns 0. */
extern double putchard(double X) {
putchar((char)X);
return 0;

}

Next: Extending the language: user-defined operators

Kaleidoscope: Extending the Language: User-defined Operators

• Chapter 6 Introduction

• User-defined Operators: the Idea

• User-defined Binary Operators

• User-defined Unary Operators

• Kicking the Tires

• Full Code Listing

Chapter 6 Introduction

Welcome to Chapter 6 of the “Implementing a language with LLVM” tutorial. At this point in our tutorial, we now
have a fully functional language that is fairly minimal, but also useful. There is still one big problem with it, however.
Our language doesn’t have many useful operators (like division, logical negation, or even any comparisons besides
less-than).

This chapter of the tutorial takes a wild digression into adding user-defined operators to the simple and beautiful
Kaleidoscope language. This digression now gives us a simple and ugly language in some ways, but also a powerful
one at the same time. One of the great things about creating your own language is that you get to decide what is good
or bad. In this tutorial we’ll assume that it is okay to use this as a way to show some interesting parsing techniques.

At the end of this tutorial, we’ll run through an example Kaleidoscope application that renders the Mandelbrot set.
This gives an example of what you can build with Kaleidoscope and its feature set.

User-defined Operators: the Idea

The “operator overloading” that we will add to Kaleidoscope is more general than languages like C++. In C++, you are
only allowed to redefine existing operators: you can’t programatically change the grammar, introduce new operators,
change precedence levels, etc. In this chapter, we will add this capability to Kaleidoscope, which will let the user
round out the set of operators that are supported.

The point of going into user-defined operators in a tutorial like this is to show the power and flexibility of using a hand-
written parser. Thus far, the parser we have been implementing uses recursive descent for most parts of the grammar
and operator precedence parsing for the expressions. See Chapter 2 for details. Without using operator precedence
parsing, it would be very difficult to allow the programmer to introduce new operators into the grammar: the grammar
is dynamically extensible as the JIT runs.

The two specific features we’ll add are programmable unary operators (right now, Kaleidoscope has no unary operators
at all) as well as binary operators. An example of this is:
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# Logical unary not.
def unary!(v)

if v then
0

else
1;

# Define > with the same precedence as <.
def binary> 10 (LHS RHS)

RHS < LHS;

# Binary "logical or", (note that it does not "short circuit")
def binary| 5 (LHS RHS)

if LHS then
1

else if RHS then
1

else
0;

# Define = with slightly lower precedence than relationals.
def binary= 9 (LHS RHS)

!(LHS < RHS | LHS > RHS);

Many languages aspire to being able to implement their standard runtime library in the language itself. In Kaleido-
scope, we can implement significant parts of the language in the library!

We will break down implementation of these features into two parts: implementing support for user-defined binary
operators and adding unary operators.

User-defined Binary Operators

Adding support for user-defined binary operators is pretty simple with our current framework. We’ll first add support
for the unary/binary keywords:

type token =
...
(* operators *)
| Binary | Unary

...

and lex_ident buffer = parser
...

| "for" -> [< 'Token.For; stream >]
| "in" -> [< 'Token.In; stream >]
| "binary" -> [< 'Token.Binary; stream >]
| "unary" -> [< 'Token.Unary; stream >]

This just adds lexer support for the unary and binary keywords, like we did in previous chapters. One nice thing about
our current AST, is that we represent binary operators with full generalisation by using their ASCII code as the opcode.
For our extended operators, we’ll use this same representation, so we don’t need any new AST or parser support.

On the other hand, we have to be able to represent the definitions of these new operators, in the “def binary| 5” part
of the function definition. In our grammar so far, the “name” for the function definition is parsed as the “prototype”
production and into the Ast.Prototype AST node. To represent our new user-defined operators as prototypes, we
have to extend the Ast.Prototype AST node like this:
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(* proto - This type represents the "prototype" for a function, which captures

* its name, and its argument names (thus implicitly the number of arguments the

* function takes). *)
type proto =

| Prototype of string * string array
| BinOpPrototype of string * string array * int

Basically, in addition to knowing a name for the prototype, we now keep track of whether it was an operator, and if it
was, what precedence level the operator is at. The precedence is only used for binary operators (as you’ll see below, it
just doesn’t apply for unary operators). Now that we have a way to represent the prototype for a user-defined operator,
we need to parse it:

(* prototype

* ::= id '(' id* ')'

* ::= binary LETTER number? (id, id)

* ::= unary LETTER number? (id) *)
let parse_prototype =
let rec parse_args accumulator = parser
| [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e
| [< >] -> accumulator

in
let parse_operator = parser
| [< 'Token.Unary >] -> "unary", 1
| [< 'Token.Binary >] -> "binary", 2

in
let parse_binary_precedence = parser
| [< 'Token.Number n >] -> int_of_float n
| [< >] -> 30

in
parser
| [< 'Token.Ident id;

'Token.Kwd '(' ?? "expected '(' in prototype";
args=parse_args [];
'Token.Kwd ')' ?? "expected ')' in prototype" >] ->

(* success. *)
Ast.Prototype (id, Array.of_list (List.rev args))

| [< (prefix, kind)=parse_operator;
'Token.Kwd op ?? "expected an operator";
(* Read the precedence if present. *)
binary_precedence=parse_binary_precedence;
'Token.Kwd '(' ?? "expected '(' in prototype";
args=parse_args [];

'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
let name = prefix ^ (String.make 1 op) in
let args = Array.of_list (List.rev args) in

(* Verify right number of arguments for operator. *)
if Array.length args != kind
then raise (Stream.Error "invalid number of operands for operator")
else

if kind == 1 then
Ast.Prototype (name, args)

else
Ast.BinOpPrototype (name, args, binary_precedence)

| [< >] ->
raise (Stream.Error "expected function name in prototype")

This is all fairly straightforward parsing code, and we have already seen a lot of similar code in the past. One interesting
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part about the code above is the couple lines that set up name for binary operators. This builds names like “binary@”
for a newly defined “@” operator. This then takes advantage of the fact that symbol names in the LLVM symbol table
are allowed to have any character in them, including embedded nul characters.

The next interesting thing to add, is codegen support for these binary operators. Given our current structure, this is a
simple addition of a default case for our existing binary operator node:

let codegen_expr = function
...
| Ast.Binary (op, lhs, rhs) ->

let lhs_val = codegen_expr lhs in
let rhs_val = codegen_expr rhs in
begin

match op with
| '+' -> build_add lhs_val rhs_val "addtmp" builder
| '-' -> build_sub lhs_val rhs_val "subtmp" builder
| '*' -> build_mul lhs_val rhs_val "multmp" builder
| '<' ->

(* Convert bool 0/1 to double 0.0 or 1.0 *)
let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
build_uitofp i double_type "booltmp" builder

| _ ->
(* If it wasn't a builtin binary operator, it must be a user defined

* one. Emit a call to it. *)
let callee = "binary" ^ (String.make 1 op) in
let callee =
match lookup_function callee the_module with
| Some callee -> callee
| None -> raise (Error "binary operator not found!")

in
build_call callee [|lhs_val; rhs_val|] "binop" builder

end

As you can see above, the new code is actually really simple. It just does a lookup for the appropriate operator in
the symbol table and generates a function call to it. Since user-defined operators are just built as normal functions
(because the “prototype” boils down to a function with the right name) everything falls into place.

The final piece of code we are missing, is a bit of top level magic:

let codegen_func the_fpm = function
| Ast.Function (proto, body) ->

Hashtbl.clear named_values;
let the_function = codegen_proto proto in

(* If this is an operator, install it. *)
begin match proto with
| Ast.BinOpPrototype (name, args, prec) ->

let op = name.[String.length name - 1] in
Hashtbl.add Parser.binop_precedence op prec;

| _ -> ()
end;

(* Create a new basic block to start insertion into. *)
let bb = append_block context "entry" the_function in
position_at_end bb builder;
...

Basically, before codegening a function, if it is a user-defined operator, we register it in the precedence table. This
allows the binary operator parsing logic we already have in place to handle it. Since we are working on a fully-general
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operator precedence parser, this is all we need to do to “extend the grammar”.

Now we have useful user-defined binary operators. This builds a lot on the previous framework we built for other
operators. Adding unary operators is a bit more challenging, because we don’t have any framework for it yet - lets see
what it takes.

User-defined Unary Operators

Since we don’t currently support unary operators in the Kaleidoscope language, we’ll need to add everything to support
them. Above, we added simple support for the ‘unary’ keyword to the lexer. In addition to that, we need an AST node:

type expr =
...
(* variant for a unary operator. *)
| Unary of char * expr
...

This AST node is very simple and obvious by now. It directly mirrors the binary operator AST node, except that it
only has one child. With this, we need to add the parsing logic. Parsing a unary operator is pretty simple: we’ll add a
new function to do it:

(* unary

* ::= primary

* ::= '!' unary *)
and parse_unary = parser
(* If this is a unary operator, read it. *)
| [< 'Token.Kwd op when op != '(' && op != ')'; operand=parse_expr >] ->

Ast.Unary (op, operand)

(* If the current token is not an operator, it must be a primary expr. *)
| [< stream >] -> parse_primary stream

The grammar we add is pretty straightforward here. If we see a unary operator when parsing a primary operator, we
eat the operator as a prefix and parse the remaining piece as another unary operator. This allows us to handle multiple
unary operators (e.g. ”!!x”). Note that unary operators can’t have ambiguous parses like binary operators can, so there
is no need for precedence information.

The problem with this function, is that we need to call ParseUnary from somewhere. To do this, we change previous
callers of ParsePrimary to call parse_unary instead:

(* binoprhs

* ::= ('+' primary)* *)
and parse_bin_rhs expr_prec lhs stream =

...
(* Parse the unary expression after the binary operator. *)
let rhs = parse_unary stream in
...

...

(* expression

* ::= primary binoprhs *)
and parse_expr = parser
| [< lhs=parse_unary; stream >] -> parse_bin_rhs 0 lhs stream

With these two simple changes, we are now able to parse unary operators and build the AST for them. Next up, we
need to add parser support for prototypes, to parse the unary operator prototype. We extend the binary operator code

624 Chapter 2. User Guides



LLVM Documentation, Release 3.9

above with:

(* prototype

* ::= id '(' id* ')'

* ::= binary LETTER number? (id, id)

* ::= unary LETTER number? (id) *)
let parse_prototype =
let rec parse_args accumulator = parser
| [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e
| [< >] -> accumulator

in
let parse_operator = parser
| [< 'Token.Unary >] -> "unary", 1
| [< 'Token.Binary >] -> "binary", 2

in
let parse_binary_precedence = parser
| [< 'Token.Number n >] -> int_of_float n
| [< >] -> 30

in
parser
| [< 'Token.Ident id;

'Token.Kwd '(' ?? "expected '(' in prototype";
args=parse_args [];
'Token.Kwd ')' ?? "expected ')' in prototype" >] ->

(* success. *)
Ast.Prototype (id, Array.of_list (List.rev args))

| [< (prefix, kind)=parse_operator;
'Token.Kwd op ?? "expected an operator";
(* Read the precedence if present. *)
binary_precedence=parse_binary_precedence;
'Token.Kwd '(' ?? "expected '(' in prototype";
args=parse_args [];

'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
let name = prefix ^ (String.make 1 op) in
let args = Array.of_list (List.rev args) in

(* Verify right number of arguments for operator. *)
if Array.length args != kind
then raise (Stream.Error "invalid number of operands for operator")
else

if kind == 1 then
Ast.Prototype (name, args)

else
Ast.BinOpPrototype (name, args, binary_precedence)

| [< >] ->
raise (Stream.Error "expected function name in prototype")

As with binary operators, we name unary operators with a name that includes the operator character. This assists us at
code generation time. Speaking of, the final piece we need to add is codegen support for unary operators. It looks like
this:

let rec codegen_expr = function
...
| Ast.Unary (op, operand) ->

let operand = codegen_expr operand in
let callee = "unary" ^ (String.make 1 op) in
let callee =
match lookup_function callee the_module with
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| Some callee -> callee
| None -> raise (Error "unknown unary operator")

in
build_call callee [|operand|] "unop" builder

This code is similar to, but simpler than, the code for binary operators. It is simpler primarily because it doesn’t need
to handle any predefined operators.

Kicking the Tires

It is somewhat hard to believe, but with a few simple extensions we’ve covered in the last chapters, we have grown a
real-ish language. With this, we can do a lot of interesting things, including I/O, math, and a bunch of other things. For
example, we can now add a nice sequencing operator (printd is defined to print out the specified value and a newline):

ready> extern printd(x);
Read extern: declare double @printd(double)
ready> def binary : 1 (x y) 0; # Low-precedence operator that ignores operands.
..
ready> printd(123) : printd(456) : printd(789);
123.000000
456.000000
789.000000
Evaluated to 0.000000

We can also define a bunch of other “primitive” operations, such as:

# Logical unary not.
def unary!(v)

if v then
0

else
1;

# Unary negate.
def unary-(v)

0-v;

# Define > with the same precedence as <.
def binary> 10 (LHS RHS)

RHS < LHS;

# Binary logical or, which does not short circuit.
def binary| 5 (LHS RHS)

if LHS then
1

else if RHS then
1

else
0;

# Binary logical and, which does not short circuit.
def binary& 6 (LHS RHS)

if !LHS then
0

else
!!RHS;
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# Define = with slightly lower precedence than relationals.
def binary = 9 (LHS RHS)

!(LHS < RHS | LHS > RHS);

Given the previous if/then/else support, we can also define interesting functions for I/O. For example, the following
prints out a character whose “density” reflects the value passed in: the lower the value, the denser the character:

ready>

extern putchard(char)
def printdensity(d)
if d > 8 then
putchard(32) # ' '

else if d > 4 then
putchard(46) # '.'

else if d > 2 then
putchard(43) # '+'

else
putchard(42); # '*'

...
ready> printdensity(1): printdensity(2): printdensity(3) :

printdensity(4): printdensity(5): printdensity(9): putchard(10);

*++..
Evaluated to 0.000000

Based on these simple primitive operations, we can start to define more interesting things. For example, here’s a little
function that solves for the number of iterations it takes a function in the complex plane to converge:

# determine whether the specific location diverges.
# Solve for z = z^2 + c in the complex plane.
def mandelconverger(real imag iters creal cimag)
if iters > 255 | (real*real + imag*imag > 4) then
iters

else
mandelconverger(real*real - imag*imag + creal,

2*real*imag + cimag,
iters+1, creal, cimag);

# return the number of iterations required for the iteration to escape
def mandelconverge(real imag)
mandelconverger(real, imag, 0, real, imag);

This “z = z2 + c” function is a beautiful little creature that is the basis for computation of the Mandelbrot Set. Our
mandelconverge function returns the number of iterations that it takes for a complex orbit to escape, saturating to
255. This is not a very useful function by itself, but if you plot its value over a two-dimensional plane, you can see the
Mandelbrot set. Given that we are limited to using putchard here, our amazing graphical output is limited, but we can
whip together something using the density plotter above:

# compute and plot the mandelbrot set with the specified 2 dimensional range
# info.
def mandelhelp(xmin xmax xstep ymin ymax ystep)
for y = ymin, y < ymax, ystep in (
(for x = xmin, x < xmax, xstep in

printdensity(mandelconverge(x,y)))
: putchard(10)

)
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# mandel - This is a convenient helper function for plotting the mandelbrot set
# from the specified position with the specified Magnification.
def mandel(realstart imagstart realmag imagmag)
mandelhelp(realstart, realstart+realmag*78, realmag,

imagstart, imagstart+imagmag*40, imagmag);

Given this, we can try plotting out the mandelbrot set! Lets try it out:

ready> mandel(-2.3, -1.3, 0.05, 0.07);

*******************************+++++++++++*************************************
*************************+++++++++++++++++++++++*******************************
**********************+++++++++++++++++++++++++++++****************************
*******************+++++++++++++++++++++.. ...++++++++*************************
*****************++++++++++++++++++++++.... ...+++++++++***********************
***************+++++++++++++++++++++++..... ...+++++++++*********************
**************+++++++++++++++++++++++.... ....+++++++++********************
*************++++++++++++++++++++++...... .....++++++++*******************
************+++++++++++++++++++++....... .......+++++++******************
***********+++++++++++++++++++.... ... .+++++++*****************
**********+++++++++++++++++....... .+++++++****************
*********++++++++++++++........... ...+++++++***************
********++++++++++++............ ...++++++++**************
********++++++++++... .......... .++++++++**************
*******+++++++++..... .+++++++++*************
*******++++++++...... ..+++++++++*************
*******++++++....... ..+++++++++*************
*******+++++...... ..+++++++++*************
*******.... .... ...+++++++++*************
*******.... . ...+++++++++*************
*******+++++...... ...+++++++++*************
*******++++++....... ..+++++++++*************
*******++++++++...... .+++++++++*************
*******+++++++++..... ..+++++++++*************
********++++++++++... .......... .++++++++**************
********++++++++++++............ ...++++++++**************
*********++++++++++++++.......... ...+++++++***************
**********++++++++++++++++........ .+++++++****************
**********++++++++++++++++++++.... ... ..+++++++****************
***********++++++++++++++++++++++....... .......++++++++*****************
************+++++++++++++++++++++++...... ......++++++++******************
**************+++++++++++++++++++++++.... ....++++++++********************
***************+++++++++++++++++++++++..... ...+++++++++*********************
*****************++++++++++++++++++++++.... ...++++++++***********************
*******************+++++++++++++++++++++......++++++++*************************
*********************++++++++++++++++++++++.++++++++***************************
*************************+++++++++++++++++++++++*******************************
******************************+++++++++++++************************************
*******************************************************************************
*******************************************************************************
*******************************************************************************
Evaluated to 0.000000
ready> mandel(-2, -1, 0.02, 0.04);

**************************+++++++++++++++++++++++++++++++++++++++++++++++++++++

***********************++++++++++++++++++++++++++++++++++++++++++++++++++++++++

*********************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++.

*******************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++...

*****************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++.....
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***************++++++++++++++++++++++++++++++++++++++++++++++++++++++++........

**************++++++++++++++++++++++++++++++++++++++++++++++++++++++...........

************+++++++++++++++++++++++++++++++++++++++++++++++++++++..............

***********++++++++++++++++++++++++++++++++++++++++++++++++++........ .

**********++++++++++++++++++++++++++++++++++++++++++++++.............

********+++++++++++++++++++++++++++++++++++++++++++..................

*******+++++++++++++++++++++++++++++++++++++++.......................

******+++++++++++++++++++++++++++++++++++...........................

*****++++++++++++++++++++++++++++++++............................

*****++++++++++++++++++++++++++++...............................

****++++++++++++++++++++++++++...... .........................

***++++++++++++++++++++++++......... ...... ...........

***++++++++++++++++++++++............

**+++++++++++++++++++++..............

**+++++++++++++++++++................

*++++++++++++++++++.................

*++++++++++++++++............ ...

*++++++++++++++..............

*+++....++++................

*.......... ...........

*
*.......... ...........

*+++....++++................

*++++++++++++++..............

*++++++++++++++++............ ...

*++++++++++++++++++.................

**+++++++++++++++++++................

**+++++++++++++++++++++..............

***++++++++++++++++++++++............

***++++++++++++++++++++++++......... ...... ...........

****++++++++++++++++++++++++++...... .........................

*****++++++++++++++++++++++++++++...............................

*****++++++++++++++++++++++++++++++++............................

******+++++++++++++++++++++++++++++++++++...........................

*******+++++++++++++++++++++++++++++++++++++++.......................

********+++++++++++++++++++++++++++++++++++++++++++..................
Evaluated to 0.000000
ready> mandel(-0.9, -1.4, 0.02, 0.03);

*******************************************************************************
*******************************************************************************
*******************************************************************************
**********+++++++++++++++++++++************************************************
*+++++++++++++++++++++++++++++++++++++++***************************************
+++++++++++++++++++++++++++++++++++++++++++++**********************************
++++++++++++++++++++++++++++++++++++++++++++++++++*****************************
++++++++++++++++++++++++++++++++++++++++++++++++++++++*************************
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++**********************
+++++++++++++++++++++++++++++++++.........++++++++++++++++++*******************
+++++++++++++++++++++++++++++++.... ......+++++++++++++++++++****************
+++++++++++++++++++++++++++++....... ........+++++++++++++++++++**************
++++++++++++++++++++++++++++........ ........++++++++++++++++++++************
+++++++++++++++++++++++++++......... .. ...+++++++++++++++++++++**********
++++++++++++++++++++++++++........... ....++++++++++++++++++++++********
++++++++++++++++++++++++............. .......++++++++++++++++++++++******
+++++++++++++++++++++++............. ........+++++++++++++++++++++++****
++++++++++++++++++++++........... ..........++++++++++++++++++++++***
++++++++++++++++++++........... .........++++++++++++++++++++++*
++++++++++++++++++............ ...........++++++++++++++++++++
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++++++++++++++++............... .............++++++++++++++++++
++++++++++++++................. ...............++++++++++++++++
++++++++++++.................. .................++++++++++++++
+++++++++.................. .................+++++++++++++
++++++........ . ......... ..++++++++++++
++............ ...... ....++++++++++
.............. ...++++++++++
.............. ....+++++++++
.............. .....++++++++
............. ......++++++++
........... .......++++++++
......... ........+++++++
......... ........+++++++
......... ....+++++++
........ ...+++++++
....... ...+++++++

....+++++++
.....+++++++
....+++++++
....+++++++
....+++++++

Evaluated to 0.000000
ready> ^D

At this point, you may be starting to realize that Kaleidoscope is a real and powerful language. It may not be self-
similar :), but it can be used to plot things that are!

With this, we conclude the “adding user-defined operators” chapter of the tutorial. We have successfully augmented
our language, adding the ability to extend the language in the library, and we have shown how this can be used to
build a simple but interesting end-user application in Kaleidoscope. At this point, Kaleidoscope can build a variety
of applications that are functional and can call functions with side-effects, but it can’t actually define and mutate a
variable itself.

Strikingly, variable mutation is an important feature of some languages, and it is not at all obvious how to add support
for mutable variables without having to add an “SSA construction” phase to your front-end. In the next chapter, we
will describe how you can add variable mutation without building SSA in your front-end.

Full Code Listing

Here is the complete code listing for our running example, enhanced with the if/then/else and for expressions.. To
build this example, use:

# Compile
ocamlbuild toy.byte
# Run
./toy.byte

Here is the code:

_tags:

<{lexer,parser}.ml>: use_camlp4, pp(camlp4of)
<*.{byte,native}>: g++, use_llvm, use_llvm_analysis
<*.{byte,native}>: use_llvm_executionengine, use_llvm_target
<*.{byte,native}>: use_llvm_scalar_opts, use_bindings

myocamlbuild.ml:
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open Ocamlbuild_plugin;;

ocaml_lib ~extern:true "llvm";;
ocaml_lib ~extern:true "llvm_analysis";;
ocaml_lib ~extern:true "llvm_executionengine";;
ocaml_lib ~extern:true "llvm_target";;
ocaml_lib ~extern:true "llvm_scalar_opts";;

flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"; A"-cclib"; A"-rdynamic"]);;
dep ["link"; "ocaml"; "use_bindings"] ["bindings.o"];;

token.ml:

(*===----------------------------------------------------------------------===

* Lexer Tokens

*===----------------------------------------------------------------------===*)

(* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of

* these others for known things. *)
type token =
(* commands *)
| Def | Extern

(* primary *)
| Ident of string | Number of float

(* unknown *)
| Kwd of char

(* control *)
| If | Then | Else
| For | In

(* operators *)
| Binary | Unary

lexer.ml:

(*===----------------------------------------------------------------------===

* Lexer

*===----------------------------------------------------------------------===*)

let rec lex = parser
(* Skip any whitespace. *)
| [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream

(* identifier: [a-zA-Z][a-zA-Z0-9] *)
| [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] ->

let buffer = Buffer.create 1 in
Buffer.add_char buffer c;
lex_ident buffer stream

(* number: [0-9.]+ *)
| [< ' ('0' .. '9' as c); stream >] ->

let buffer = Buffer.create 1 in
Buffer.add_char buffer c;
lex_number buffer stream
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(* Comment until end of line. *)
| [< ' ('#'); stream >] ->

lex_comment stream

(* Otherwise, just return the character as its ascii value. *)
| [< 'c; stream >] ->

[< 'Token.Kwd c; lex stream >]

(* end of stream. *)
| [< >] -> [< >]

and lex_number buffer = parser
| [< ' ('0' .. '9' | '.' as c); stream >] ->

Buffer.add_char buffer c;
lex_number buffer stream

| [< stream=lex >] ->
[< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >]

and lex_ident buffer = parser
| [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] ->

Buffer.add_char buffer c;
lex_ident buffer stream

| [< stream=lex >] ->
match Buffer.contents buffer with
| "def" -> [< 'Token.Def; stream >]
| "extern" -> [< 'Token.Extern; stream >]
| "if" -> [< 'Token.If; stream >]
| "then" -> [< 'Token.Then; stream >]
| "else" -> [< 'Token.Else; stream >]
| "for" -> [< 'Token.For; stream >]
| "in" -> [< 'Token.In; stream >]
| "binary" -> [< 'Token.Binary; stream >]
| "unary" -> [< 'Token.Unary; stream >]
| id -> [< 'Token.Ident id; stream >]

and lex_comment = parser
| [< ' ('\n'); stream=lex >] -> stream
| [< 'c; e=lex_comment >] -> e
| [< >] -> [< >]

ast.ml:

(*===----------------------------------------------------------------------===

* Abstract Syntax Tree (aka Parse Tree)

*===----------------------------------------------------------------------===*)

(* expr - Base type for all expression nodes. *)
type expr =
(* variant for numeric literals like "1.0". *)
| Number of float

(* variant for referencing a variable, like "a". *)
| Variable of string

(* variant for a unary operator. *)
| Unary of char * expr

(* variant for a binary operator. *)
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| Binary of char * expr * expr

(* variant for function calls. *)
| Call of string * expr array

(* variant for if/then/else. *)
| If of expr * expr * expr

(* variant for for/in. *)
| For of string * expr * expr * expr option * expr

(* proto - This type represents the "prototype" for a function, which captures

* its name, and its argument names (thus implicitly the number of arguments the

* function takes). *)
type proto =
| Prototype of string * string array
| BinOpPrototype of string * string array * int

(* func - This type represents a function definition itself. *)
type func = Function of proto * expr

parser.ml:

(*===---------------------------------------------------------------------===

* Parser

*===---------------------------------------------------------------------===*)

(* binop_precedence - This holds the precedence for each binary operator that is

* defined *)
let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10

(* precedence - Get the precedence of the pending binary operator token. *)
let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1

(* primary

* ::= identifier

* ::= numberexpr

* ::= parenexpr

* ::= ifexpr

* ::= forexpr *)
let rec parse_primary = parser
(* numberexpr ::= number *)
| [< 'Token.Number n >] -> Ast.Number n

(* parenexpr ::= '(' expression ')' *)
| [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e

(* identifierexpr

* ::= identifier

* ::= identifier '(' argumentexpr ')' *)
| [< 'Token.Ident id; stream >] ->

let rec parse_args accumulator = parser
| [< e=parse_expr; stream >] ->

begin parser
| [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e
| [< >] -> e :: accumulator

end stream
| [< >] -> accumulator
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in
let rec parse_ident id = parser
(* Call. *)
| [< 'Token.Kwd '(';

args=parse_args [];
'Token.Kwd ')' ?? "expected ')'">] ->

Ast.Call (id, Array.of_list (List.rev args))

(* Simple variable ref. *)
| [< >] -> Ast.Variable id

in
parse_ident id stream

(* ifexpr ::= 'if' expr 'then' expr 'else' expr *)
| [< 'Token.If; c=parse_expr;

'Token.Then ?? "expected 'then'"; t=parse_expr;
'Token.Else ?? "expected 'else'"; e=parse_expr >] ->

Ast.If (c, t, e)

(* forexpr
::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression *)

| [< 'Token.For;
'Token.Ident id ?? "expected identifier after for";
'Token.Kwd '=' ?? "expected '=' after for";
stream >] ->

begin parser
| [<

start=parse_expr;
'Token.Kwd ',' ?? "expected ',' after for";
end_=parse_expr;
stream >] ->

let step =
begin parser
| [< 'Token.Kwd ','; step=parse_expr >] -> Some step
| [< >] -> None
end stream

in
begin parser
| [< 'Token.In; body=parse_expr >] ->

Ast.For (id, start, end_, step, body)
| [< >] ->

raise (Stream.Error "expected 'in' after for")
end stream

| [< >] ->
raise (Stream.Error "expected '=' after for")

end stream

| [< >] -> raise (Stream.Error "unknown token when expecting an expression.")

(* unary

* ::= primary

* ::= '!' unary *)
and parse_unary = parser

(* If this is a unary operator, read it. *)
| [< 'Token.Kwd op when op != '(' && op != ')'; operand=parse_expr >] ->

Ast.Unary (op, operand)

(* If the current token is not an operator, it must be a primary expr. *)

634 Chapter 2. User Guides



LLVM Documentation, Release 3.9

| [< stream >] -> parse_primary stream

(* binoprhs

* ::= ('+' primary)* *)
and parse_bin_rhs expr_prec lhs stream =
match Stream.peek stream with
(* If this is a binop, find its precedence. *)
| Some (Token.Kwd c) when Hashtbl.mem binop_precedence c ->

let token_prec = precedence c in

(* If this is a binop that binds at least as tightly as the current binop,

* consume it, otherwise we are done. *)
if token_prec < expr_prec then lhs else begin
(* Eat the binop. *)
Stream.junk stream;

(* Parse the unary expression after the binary operator. *)
let rhs = parse_unary stream in

(* Okay, we know this is a binop. *)
let rhs =

match Stream.peek stream with
| Some (Token.Kwd c2) ->

(* If BinOp binds less tightly with rhs than the operator after

* rhs, let the pending operator take rhs as its lhs. *)
let next_prec = precedence c2 in
if token_prec < next_prec
then parse_bin_rhs (token_prec + 1) rhs stream
else rhs

| _ -> rhs
in

(* Merge lhs/rhs. *)
let lhs = Ast.Binary (c, lhs, rhs) in
parse_bin_rhs expr_prec lhs stream

end
| _ -> lhs

(* expression

* ::= primary binoprhs *)
and parse_expr = parser
| [< lhs=parse_unary; stream >] -> parse_bin_rhs 0 lhs stream

(* prototype

* ::= id '(' id* ')'

* ::= binary LETTER number? (id, id)

* ::= unary LETTER number? (id) *)
let parse_prototype =
let rec parse_args accumulator = parser
| [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e
| [< >] -> accumulator

in
let parse_operator = parser

| [< 'Token.Unary >] -> "unary", 1
| [< 'Token.Binary >] -> "binary", 2

in
let parse_binary_precedence = parser
| [< 'Token.Number n >] -> int_of_float n
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| [< >] -> 30
in
parser
| [< 'Token.Ident id;

'Token.Kwd '(' ?? "expected '(' in prototype";
args=parse_args [];
'Token.Kwd ')' ?? "expected ')' in prototype" >] ->

(* success. *)
Ast.Prototype (id, Array.of_list (List.rev args))

| [< (prefix, kind)=parse_operator;
'Token.Kwd op ?? "expected an operator";
(* Read the precedence if present. *)
binary_precedence=parse_binary_precedence;
'Token.Kwd '(' ?? "expected '(' in prototype";
args=parse_args [];

'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
let name = prefix ^ (String.make 1 op) in
let args = Array.of_list (List.rev args) in

(* Verify right number of arguments for operator. *)
if Array.length args != kind
then raise (Stream.Error "invalid number of operands for operator")
else
if kind == 1 then
Ast.Prototype (name, args)

else
Ast.BinOpPrototype (name, args, binary_precedence)

| [< >] ->
raise (Stream.Error "expected function name in prototype")

(* definition ::= 'def' prototype expression *)
let parse_definition = parser

| [< 'Token.Def; p=parse_prototype; e=parse_expr >] ->
Ast.Function (p, e)

(* toplevelexpr ::= expression *)
let parse_toplevel = parser

| [< e=parse_expr >] ->
(* Make an anonymous proto. *)
Ast.Function (Ast.Prototype ("", [||]), e)

(* external ::= 'extern' prototype *)
let parse_extern = parser

| [< 'Token.Extern; e=parse_prototype >] -> e

codegen.ml:

(*===----------------------------------------------------------------------===

* Code Generation

*===----------------------------------------------------------------------===*)

open Llvm

exception Error of string

let context = global_context ()
let the_module = create_module context "my cool jit"
let builder = builder context
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let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
let double_type = double_type context

let rec codegen_expr = function
| Ast.Number n -> const_float double_type n
| Ast.Variable name ->

(try Hashtbl.find named_values name with
| Not_found -> raise (Error "unknown variable name"))

| Ast.Unary (op, operand) ->
let operand = codegen_expr operand in
let callee = "unary" ^ (String.make 1 op) in
let callee =

match lookup_function callee the_module with
| Some callee -> callee
| None -> raise (Error "unknown unary operator")

in
build_call callee [|operand|] "unop" builder

| Ast.Binary (op, lhs, rhs) ->
let lhs_val = codegen_expr lhs in
let rhs_val = codegen_expr rhs in
begin
match op with
| '+' -> build_add lhs_val rhs_val "addtmp" builder
| '-' -> build_sub lhs_val rhs_val "subtmp" builder
| '*' -> build_mul lhs_val rhs_val "multmp" builder
| '<' ->

(* Convert bool 0/1 to double 0.0 or 1.0 *)
let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
build_uitofp i double_type "booltmp" builder

| _ ->
(* If it wasn't a builtin binary operator, it must be a user defined

* one. Emit a call to it. *)
let callee = "binary" ^ (String.make 1 op) in
let callee =

match lookup_function callee the_module with
| Some callee -> callee
| None -> raise (Error "binary operator not found!")

in
build_call callee [|lhs_val; rhs_val|] "binop" builder

end
| Ast.Call (callee, args) ->

(* Look up the name in the module table. *)
let callee =
match lookup_function callee the_module with
| Some callee -> callee
| None -> raise (Error "unknown function referenced")

in
let params = params callee in

(* If argument mismatch error. *)
if Array.length params == Array.length args then () else
raise (Error "incorrect # arguments passed");

let args = Array.map codegen_expr args in
build_call callee args "calltmp" builder

| Ast.If (cond, then_, else_) ->
let cond = codegen_expr cond in

(* Convert condition to a bool by comparing equal to 0.0 *)
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let zero = const_float double_type 0.0 in
let cond_val = build_fcmp Fcmp.One cond zero "ifcond" builder in

(* Grab the first block so that we might later add the conditional branch

* to it at the end of the function. *)
let start_bb = insertion_block builder in
let the_function = block_parent start_bb in

let then_bb = append_block context "then" the_function in

(* Emit 'then' value. *)
position_at_end then_bb builder;
let then_val = codegen_expr then_ in

(* Codegen of 'then' can change the current block, update then_bb for the

* phi. We create a new name because one is used for the phi node, and the

* other is used for the conditional branch. *)
let new_then_bb = insertion_block builder in

(* Emit 'else' value. *)
let else_bb = append_block context "else" the_function in
position_at_end else_bb builder;
let else_val = codegen_expr else_ in

(* Codegen of 'else' can change the current block, update else_bb for the

* phi. *)
let new_else_bb = insertion_block builder in

(* Emit merge block. *)
let merge_bb = append_block context "ifcont" the_function in
position_at_end merge_bb builder;
let incoming = [(then_val, new_then_bb); (else_val, new_else_bb)] in
let phi = build_phi incoming "iftmp" builder in

(* Return to the start block to add the conditional branch. *)
position_at_end start_bb builder;
ignore (build_cond_br cond_val then_bb else_bb builder);

(* Set a unconditional branch at the end of the 'then' block and the

* 'else' block to the 'merge' block. *)
position_at_end new_then_bb builder; ignore (build_br merge_bb builder);
position_at_end new_else_bb builder; ignore (build_br merge_bb builder);

(* Finally, set the builder to the end of the merge block. *)
position_at_end merge_bb builder;

phi
| Ast.For (var_name, start, end_, step, body) ->

(* Emit the start code first, without 'variable' in scope. *)
let start_val = codegen_expr start in

(* Make the new basic block for the loop header, inserting after current

* block. *)
let preheader_bb = insertion_block builder in
let the_function = block_parent preheader_bb in
let loop_bb = append_block context "loop" the_function in

(* Insert an explicit fall through from the current block to the
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* loop_bb. *)
ignore (build_br loop_bb builder);

(* Start insertion in loop_bb. *)
position_at_end loop_bb builder;

(* Start the PHI node with an entry for start. *)
let variable = build_phi [(start_val, preheader_bb)] var_name builder in

(* Within the loop, the variable is defined equal to the PHI node. If it

* shadows an existing variable, we have to restore it, so save it

* now. *)
let old_val =
try Some (Hashtbl.find named_values var_name) with Not_found -> None

in
Hashtbl.add named_values var_name variable;

(* Emit the body of the loop. This, like any other expr, can change the

* current BB. Note that we ignore the value computed by the body, but

* don't allow an error *)
ignore (codegen_expr body);

(* Emit the step value. *)
let step_val =
match step with
| Some step -> codegen_expr step
(* If not specified, use 1.0. *)
| None -> const_float double_type 1.0

in

let next_var = build_add variable step_val "nextvar" builder in

(* Compute the end condition. *)
let end_cond = codegen_expr end_ in

(* Convert condition to a bool by comparing equal to 0.0. *)
let zero = const_float double_type 0.0 in
let end_cond = build_fcmp Fcmp.One end_cond zero "loopcond" builder in

(* Create the "after loop" block and insert it. *)
let loop_end_bb = insertion_block builder in
let after_bb = append_block context "afterloop" the_function in

(* Insert the conditional branch into the end of loop_end_bb. *)
ignore (build_cond_br end_cond loop_bb after_bb builder);

(* Any new code will be inserted in after_bb. *)
position_at_end after_bb builder;

(* Add a new entry to the PHI node for the backedge. *)
add_incoming (next_var, loop_end_bb) variable;

(* Restore the unshadowed variable. *)
begin match old_val with
| Some old_val -> Hashtbl.add named_values var_name old_val
| None -> ()
end;
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(* for expr always returns 0.0. *)
const_null double_type

let codegen_proto = function
| Ast.Prototype (name, args) | Ast.BinOpPrototype (name, args, _) ->

(* Make the function type: double(double,double) etc. *)
let doubles = Array.make (Array.length args) double_type in
let ft = function_type double_type doubles in
let f =
match lookup_function name the_module with
| None -> declare_function name ft the_module

(* If 'f' conflicted, there was already something named 'name'. If it

* has a body, don't allow redefinition or reextern. *)
| Some f ->

(* If 'f' already has a body, reject this. *)
if block_begin f <> At_end f then
raise (Error "redefinition of function");

(* If 'f' took a different number of arguments, reject. *)
if element_type (type_of f) <> ft then
raise (Error "redefinition of function with different # args");

f
in

(* Set names for all arguments. *)
Array.iteri (fun i a ->
let n = args.(i) in
set_value_name n a;
Hashtbl.add named_values n a;

) (params f);
f

let codegen_func the_fpm = function
| Ast.Function (proto, body) ->

Hashtbl.clear named_values;
let the_function = codegen_proto proto in

(* If this is an operator, install it. *)
begin match proto with
| Ast.BinOpPrototype (name, args, prec) ->

let op = name.[String.length name - 1] in
Hashtbl.add Parser.binop_precedence op prec;

| _ -> ()
end;

(* Create a new basic block to start insertion into. *)
let bb = append_block context "entry" the_function in
position_at_end bb builder;

try
let ret_val = codegen_expr body in

(* Finish off the function. *)
let _ = build_ret ret_val builder in

(* Validate the generated code, checking for consistency. *)
Llvm_analysis.assert_valid_function the_function;
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(* Optimize the function. *)
let _ = PassManager.run_function the_function the_fpm in

the_function
with e ->
delete_function the_function;
raise e

toplevel.ml:

(*===----------------------------------------------------------------------===

* Top-Level parsing and JIT Driver

*===----------------------------------------------------------------------===*)

open Llvm
open Llvm_executionengine

(* top ::= definition | external | expression | ';' *)
let rec main_loop the_fpm the_execution_engine stream =
match Stream.peek stream with
| None -> ()

(* ignore top-level semicolons. *)
| Some (Token.Kwd ';') ->

Stream.junk stream;
main_loop the_fpm the_execution_engine stream

| Some token ->
begin
try match token with
| Token.Def ->

let e = Parser.parse_definition stream in
print_endline "parsed a function definition.";
dump_value (Codegen.codegen_func the_fpm e);

| Token.Extern ->
let e = Parser.parse_extern stream in
print_endline "parsed an extern.";
dump_value (Codegen.codegen_proto e);

| _ ->
(* Evaluate a top-level expression into an anonymous function. *)
let e = Parser.parse_toplevel stream in
print_endline "parsed a top-level expr";
let the_function = Codegen.codegen_func the_fpm e in
dump_value the_function;

(* JIT the function, returning a function pointer. *)
let result = ExecutionEngine.run_function the_function [||]

the_execution_engine in

print_string "Evaluated to ";
print_float (GenericValue.as_float Codegen.double_type result);
print_newline ();

with Stream.Error s | Codegen.Error s ->
(* Skip token for error recovery. *)
Stream.junk stream;
print_endline s;

end;
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print_string "ready> "; flush stdout;
main_loop the_fpm the_execution_engine stream

toy.ml:

(*===----------------------------------------------------------------------===

* Main driver code.

*===----------------------------------------------------------------------===*)

open Llvm
open Llvm_executionengine
open Llvm_target
open Llvm_scalar_opts

let main () =
ignore (initialize_native_target ());

(* Install standard binary operators.

* 1 is the lowest precedence. *)
Hashtbl.add Parser.binop_precedence '<' 10;
Hashtbl.add Parser.binop_precedence '+' 20;
Hashtbl.add Parser.binop_precedence '-' 20;
Hashtbl.add Parser.binop_precedence '*' 40; (* highest. *)

(* Prime the first token. *)
print_string "ready> "; flush stdout;
let stream = Lexer.lex (Stream.of_channel stdin) in

(* Create the JIT. *)
let the_execution_engine = ExecutionEngine.create Codegen.the_module in
let the_fpm = PassManager.create_function Codegen.the_module in

(* Set up the optimizer pipeline. Start with registering info about how the

* target lays out data structures. *)
DataLayout.add (ExecutionEngine.target_data the_execution_engine) the_fpm;

(* Do simple "peephole" optimizations and bit-twiddling optzn. *)
add_instruction_combination the_fpm;

(* reassociate expressions. *)
add_reassociation the_fpm;

(* Eliminate Common SubExpressions. *)
add_gvn the_fpm;

(* Simplify the control flow graph (deleting unreachable blocks, etc). *)
add_cfg_simplification the_fpm;

ignore (PassManager.initialize the_fpm);

(* Run the main "interpreter loop" now. *)
Toplevel.main_loop the_fpm the_execution_engine stream;

(* Print out all the generated code. *)
dump_module Codegen.the_module

;;

main ()

642 Chapter 2. User Guides



LLVM Documentation, Release 3.9

bindings.c

#include <stdio.h>

/* putchard - putchar that takes a double and returns 0. */
extern double putchard(double X) {
putchar((char)X);
return 0;

}

/* printd - printf that takes a double prints it as "%f\n", returning 0. */
extern double printd(double X) {
printf("%f\n", X);
return 0;

}

Next: Extending the language: mutable variables / SSA construction

Kaleidoscope: Extending the Language: Mutable Variables

• Chapter 7 Introduction

• Why is this a hard problem?

• Memory in LLVM

• Mutable Variables in Kaleidoscope

• Adjusting Existing Variables for Mutation

• New Assignment Operator

• User-defined Local Variables

• Full Code Listing

Chapter 7 Introduction

Welcome to Chapter 7 of the “Implementing a language with LLVM” tutorial. In chapters 1 through 6, we’ve built a
very respectable, albeit simple, functional programming language. In our journey, we learned some parsing techniques,
how to build and represent an AST, how to build LLVM IR, and how to optimize the resultant code as well as JIT
compile it.

While Kaleidoscope is interesting as a functional language, the fact that it is functional makes it “too easy” to generate
LLVM IR for it. In particular, a functional language makes it very easy to build LLVM IR directly in SSA form. Since
LLVM requires that the input code be in SSA form, this is a very nice property and it is often unclear to newcomers
how to generate code for an imperative language with mutable variables.

The short (and happy) summary of this chapter is that there is no need for your front-end to build SSA form: LLVM
provides highly tuned and well tested support for this, though the way it works is a bit unexpected for some.

Why is this a hard problem?

To understand why mutable variables cause complexities in SSA construction, consider this extremely simple C ex-
ample:
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int G, H;
int test(_Bool Condition) {
int X;
if (Condition)
X = G;

else
X = H;

return X;
}

In this case, we have the variable “X”, whose value depends on the path executed in the program. Because there are
two different possible values for X before the return instruction, a PHI node is inserted to merge the two values. The
LLVM IR that we want for this example looks like this:

@G = weak global i32 0 ; type of @G is i32*
@H = weak global i32 0 ; type of @H is i32*

define i32 @test(i1 %Condition) {
entry:

br i1 %Condition, label %cond_true, label %cond_false

cond_true:
%X.0 = load i32* @G
br label %cond_next

cond_false:
%X.1 = load i32* @H
br label %cond_next

cond_next:
%X.2 = phi i32 [ %X.1, %cond_false ], [ %X.0, %cond_true ]
ret i32 %X.2

}

In this example, the loads from the G and H global variables are explicit in the LLVM IR, and they live in the then/else
branches of the if statement (cond_true/cond_false). In order to merge the incoming values, the X.2 phi node in the
cond_next block selects the right value to use based on where control flow is coming from: if control flow comes from
the cond_false block, X.2 gets the value of X.1. Alternatively, if control flow comes from cond_true, it gets the value
of X.0. The intent of this chapter is not to explain the details of SSA form. For more information, see one of the many
online references.

The question for this article is “who places the phi nodes when lowering assignments to mutable variables?”. The issue
here is that LLVM requires that its IR be in SSA form: there is no “non-ssa” mode for it. However, SSA construction
requires non-trivial algorithms and data structures, so it is inconvenient and wasteful for every front-end to have to
reproduce this logic.

Memory in LLVM

The ‘trick’ here is that while LLVM does require all register values to be in SSA form, it does not require (or permit)
memory objects to be in SSA form. In the example above, note that the loads from G and H are direct accesses to
G and H: they are not renamed or versioned. This differs from some other compiler systems, which do try to version
memory objects. In LLVM, instead of encoding dataflow analysis of memory into the LLVM IR, it is handled with
Analysis Passes which are computed on demand.

With this in mind, the high-level idea is that we want to make a stack variable (which lives in memory, because it is
on the stack) for each mutable object in a function. To take advantage of this trick, we need to talk about how LLVM
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represents stack variables.

In LLVM, all memory accesses are explicit with load/store instructions, and it is carefully designed not to have (or
need) an “address-of” operator. Notice how the type of the @G/@H global variables is actually “i32*” even though
the variable is defined as “i32”. What this means is that @G defines space for an i32 in the global data area, but its
name actually refers to the address for that space. Stack variables work the same way, except that instead of being
declared with global variable definitions, they are declared with the LLVM alloca instruction:

define i32 @example() {
entry:

%X = alloca i32 ; type of %X is i32*.
...
%tmp = load i32* %X ; load the stack value %X from the stack.
%tmp2 = add i32 %tmp, 1 ; increment it
store i32 %tmp2, i32* %X ; store it back
...

This code shows an example of how you can declare and manipulate a stack variable in the LLVM IR. Stack memory
allocated with the alloca instruction is fully general: you can pass the address of the stack slot to functions, you can
store it in other variables, etc. In our example above, we could rewrite the example to use the alloca technique to avoid
using a PHI node:

@G = weak global i32 0 ; type of @G is i32*
@H = weak global i32 0 ; type of @H is i32*

define i32 @test(i1 %Condition) {
entry:

%X = alloca i32 ; type of %X is i32*.
br i1 %Condition, label %cond_true, label %cond_false

cond_true:
%X.0 = load i32* @G

store i32 %X.0, i32* %X ; Update X
br label %cond_next

cond_false:
%X.1 = load i32* @H

store i32 %X.1, i32* %X ; Update X
br label %cond_next

cond_next:
%X.2 = load i32* %X ; Read X
ret i32 %X.2

}

With this, we have discovered a way to handle arbitrary mutable variables without the need to create Phi nodes at all:

1. Each mutable variable becomes a stack allocation.

2. Each read of the variable becomes a load from the stack.

3. Each update of the variable becomes a store to the stack.

4. Taking the address of a variable just uses the stack address directly.

While this solution has solved our immediate problem, it introduced another one: we have now apparently introduced
a lot of stack traffic for very simple and common operations, a major performance problem. Fortunately for us, the
LLVM optimizer has a highly-tuned optimization pass named “mem2reg” that handles this case, promoting allocas
like this into SSA registers, inserting Phi nodes as appropriate. If you run this example through the pass, for example,
you’ll get:
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$ llvm-as < example.ll | opt -mem2reg | llvm-dis
@G = weak global i32 0
@H = weak global i32 0

define i32 @test(i1 %Condition) {
entry:

br i1 %Condition, label %cond_true, label %cond_false

cond_true:
%X.0 = load i32* @G
br label %cond_next

cond_false:
%X.1 = load i32* @H
br label %cond_next

cond_next:
%X.01 = phi i32 [ %X.1, %cond_false ], [ %X.0, %cond_true ]
ret i32 %X.01

}

The mem2reg pass implements the standard “iterated dominance frontier” algorithm for constructing SSA form and
has a number of optimizations that speed up (very common) degenerate cases. The mem2reg optimization pass is the
answer to dealing with mutable variables, and we highly recommend that you depend on it. Note that mem2reg only
works on variables in certain circumstances:

1. mem2reg is alloca-driven: it looks for allocas and if it can handle them, it promotes them. It does not apply to
global variables or heap allocations.

2. mem2reg only looks for alloca instructions in the entry block of the function. Being in the entry block guarantees
that the alloca is only executed once, which makes analysis simpler.

3. mem2reg only promotes allocas whose uses are direct loads and stores. If the address of the stack object is
passed to a function, or if any funny pointer arithmetic is involved, the alloca will not be promoted.

4. mem2reg only works on allocas of first class values (such as pointers, scalars and vectors), and only if the array
size of the allocation is 1 (or missing in the .ll file). mem2reg is not capable of promoting structs or arrays to
registers. Note that the “sroa” pass is more powerful and can promote structs, “unions”, and arrays in many
cases.

All of these properties are easy to satisfy for most imperative languages, and we’ll illustrate it below with Kaleido-
scope. The final question you may be asking is: should I bother with this nonsense for my front-end? Wouldn’t it be
better if I just did SSA construction directly, avoiding use of the mem2reg optimization pass? In short, we strongly
recommend that you use this technique for building SSA form, unless there is an extremely good reason not to. Using
this technique is:

• Proven and well tested: clang uses this technique for local mutable variables. As such, the most common clients
of LLVM are using this to handle a bulk of their variables. You can be sure that bugs are found fast and fixed
early.

• Extremely Fast: mem2reg has a number of special cases that make it fast in common cases as well as fully
general. For example, it has fast-paths for variables that are only used in a single block, variables that only have
one assignment point, good heuristics to avoid insertion of unneeded phi nodes, etc.

• Needed for debug info generation: Debug information in LLVM relies on having the address of the variable
exposed so that debug info can be attached to it. This technique dovetails very naturally with this style of debug
info.

If nothing else, this makes it much easier to get your front-end up and running, and is very simple to implement. Lets
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extend Kaleidoscope with mutable variables now!

Mutable Variables in Kaleidoscope

Now that we know the sort of problem we want to tackle, lets see what this looks like in the context of our little
Kaleidoscope language. We’re going to add two features:

1. The ability to mutate variables with the ‘=’ operator.

2. The ability to define new variables.

While the first item is really what this is about, we only have variables for incoming arguments as well as for induction
variables, and redefining those only goes so far :). Also, the ability to define new variables is a useful thing regardless
of whether you will be mutating them. Here’s a motivating example that shows how we could use these:

# Define ':' for sequencing: as a low-precedence operator that ignores operands
# and just returns the RHS.
def binary : 1 (x y) y;

# Recursive fib, we could do this before.
def fib(x)
if (x < 3) then
1

else
fib(x-1)+fib(x-2);

# Iterative fib.
def fibi(x)
var a = 1, b = 1, c in
(for i = 3, i < x in

c = a + b :
a = b :
b = c) :

b;

# Call it.
fibi(10);

In order to mutate variables, we have to change our existing variables to use the “alloca trick”. Once we have that,
we’ll add our new operator, then extend Kaleidoscope to support new variable definitions.

Adjusting Existing Variables for Mutation

The symbol table in Kaleidoscope is managed at code generation time by the ‘named_values‘ map. This map
currently keeps track of the LLVM “Value*” that holds the double value for the named variable. In order to support
mutation, we need to change this slightly, so that it named_values holds the memory location of the variable in
question. Note that this change is a refactoring: it changes the structure of the code, but does not (by itself) change the
behavior of the compiler. All of these changes are isolated in the Kaleidoscope code generator.

At this point in Kaleidoscope’s development, it only supports variables for two things: incoming arguments to func-
tions and the induction variable of ‘for’ loops. For consistency, we’ll allow mutation of these variables in addition to
other user-defined variables. This means that these will both need memory locations.

To start our transformation of Kaleidoscope, we’ll change the named_values map so that it maps to AllocaInst*
instead of Value*. Once we do this, the C++ compiler will tell us what parts of the code we need to update:
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Note: the ocaml bindings currently model both Value*‘s and AllocInst*‘s as Llvm.llvalue‘s, but this may
change in the future to be more type safe.

let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10

Also, since we will need to create these alloca’s, we’ll use a helper function that ensures that the allocas are created in
the entry block of the function:

(* Create an alloca instruction in the entry block of the function. This

* is used for mutable variables etc. *)
let create_entry_block_alloca the_function var_name =
let builder = builder_at (instr_begin (entry_block the_function)) in
build_alloca double_type var_name builder

This funny looking code creates an Llvm.llbuilder object that is pointing at the first instruction of the entry
block. It then creates an alloca with the expected name and returns it. Because all values in Kaleidoscope are doubles,
there is no need to pass in a type to use.

With this in place, the first functionality change we want to make is to variable references. In our new scheme,
variables live on the stack, so code generating a reference to them actually needs to produce a load from the stack slot:

let rec codegen_expr = function
...
| Ast.Variable name ->

let v = try Hashtbl.find named_values name with
| Not_found -> raise (Error "unknown variable name")

in
(* Load the value. *)
build_load v name builder

As you can see, this is pretty straightforward. Now we need to update the things that define the variables to set up the
alloca. We’ll start with codegen_expr Ast.For ... (see the full code listing for the unabridged code):

| Ast.For (var_name, start, end_, step, body) ->
let the_function = block_parent (insertion_block builder) in

(* Create an alloca for the variable in the entry block. *)
let alloca = create_entry_block_alloca the_function var_name in

(* Emit the start code first, without 'variable' in scope. *)
let start_val = codegen_expr start in

(* Store the value into the alloca. *)
ignore(build_store start_val alloca builder);

...

(* Within the loop, the variable is defined equal to the PHI node. If it

* shadows an existing variable, we have to restore it, so save it

* now. *)
let old_val =
try Some (Hashtbl.find named_values var_name) with Not_found -> None

in
Hashtbl.add named_values var_name alloca;

...

(* Compute the end condition. *)
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let end_cond = codegen_expr end_ in

(* Reload, increment, and restore the alloca. This handles the case where

* the body of the loop mutates the variable. *)
let cur_var = build_load alloca var_name builder in
let next_var = build_add cur_var step_val "nextvar" builder in
ignore(build_store next_var alloca builder);
...

This code is virtually identical to the code before we allowed mutable variables. The big difference is that we no
longer have to construct a PHI node, and we use load/store to access the variable as needed.

To support mutable argument variables, we need to also make allocas for them. The code for this is also pretty simple:

(* Create an alloca for each argument and register the argument in the symbol

* table so that references to it will succeed. *)
let create_argument_allocas the_function proto =
let args = match proto with
| Ast.Prototype (_, args) | Ast.BinOpPrototype (_, args, _) -> args

in
Array.iteri (fun i ai ->
let var_name = args.(i) in
(* Create an alloca for this variable. *)
let alloca = create_entry_block_alloca the_function var_name in

(* Store the initial value into the alloca. *)
ignore(build_store ai alloca builder);

(* Add arguments to variable symbol table. *)
Hashtbl.add named_values var_name alloca;

) (params the_function)

For each argument, we make an alloca, store the input value to the function into the alloca, and register the alloca as
the memory location for the argument. This method gets invoked by Codegen.codegen_func right after it sets
up the entry block for the function.

The final missing piece is adding the mem2reg pass, which allows us to get good codegen once again:

let main () =
...
let the_fpm = PassManager.create_function Codegen.the_module in

(* Set up the optimizer pipeline. Start with registering info about how the

* target lays out data structures. *)
DataLayout.add (ExecutionEngine.target_data the_execution_engine) the_fpm;

(* Promote allocas to registers. *)
add_memory_to_register_promotion the_fpm;

(* Do simple "peephole" optimizations and bit-twiddling optzn. *)
add_instruction_combining the_fpm;

(* reassociate expressions. *)
add_reassociation the_fpm;

It is interesting to see what the code looks like before and after the mem2reg optimization runs. For example, this is
the before/after code for our recursive fib function. Before the optimization:
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define double @fib(double %x) {
entry:

%x1 = alloca double
store double %x, double* %x1
%x2 = load double* %x1
%cmptmp = fcmp ult double %x2, 3.000000e+00
%booltmp = uitofp i1 %cmptmp to double
%ifcond = fcmp one double %booltmp, 0.000000e+00
br i1 %ifcond, label %then, label %else

then: ; preds = %entry
br label %ifcont

else: ; preds = %entry
%x3 = load double* %x1
%subtmp = fsub double %x3, 1.000000e+00
%calltmp = call double @fib(double %subtmp)
%x4 = load double* %x1
%subtmp5 = fsub double %x4, 2.000000e+00
%calltmp6 = call double @fib(double %subtmp5)
%addtmp = fadd double %calltmp, %calltmp6
br label %ifcont

ifcont: ; preds = %else, %then
%iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ]
ret double %iftmp

}

Here there is only one variable (x, the input argument) but you can still see the extremely simple-minded code gener-
ation strategy we are using. In the entry block, an alloca is created, and the initial input value is stored into it. Each
reference to the variable does a reload from the stack. Also, note that we didn’t modify the if/then/else expression, so
it still inserts a PHI node. While we could make an alloca for it, it is actually easier to create a PHI node for it, so we
still just make the PHI.

Here is the code after the mem2reg pass runs:

define double @fib(double %x) {
entry:

%cmptmp = fcmp ult double %x, 3.000000e+00
%booltmp = uitofp i1 %cmptmp to double
%ifcond = fcmp one double %booltmp, 0.000000e+00
br i1 %ifcond, label %then, label %else

then:
br label %ifcont

else:
%subtmp = fsub double %x, 1.000000e+00
%calltmp = call double @fib(double %subtmp)
%subtmp5 = fsub double %x, 2.000000e+00
%calltmp6 = call double @fib(double %subtmp5)
%addtmp = fadd double %calltmp, %calltmp6
br label %ifcont

ifcont: ; preds = %else, %then
%iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ]
ret double %iftmp

}
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This is a trivial case for mem2reg, since there are no redefinitions of the variable. The point of showing this is to calm
your tension about inserting such blatent inefficiencies :).

After the rest of the optimizers run, we get:

define double @fib(double %x) {
entry:

%cmptmp = fcmp ult double %x, 3.000000e+00
%booltmp = uitofp i1 %cmptmp to double
%ifcond = fcmp ueq double %booltmp, 0.000000e+00
br i1 %ifcond, label %else, label %ifcont

else:
%subtmp = fsub double %x, 1.000000e+00
%calltmp = call double @fib(double %subtmp)
%subtmp5 = fsub double %x, 2.000000e+00
%calltmp6 = call double @fib(double %subtmp5)
%addtmp = fadd double %calltmp, %calltmp6
ret double %addtmp

ifcont:
ret double 1.000000e+00

}

Here we see that the simplifycfg pass decided to clone the return instruction into the end of the ‘else’ block. This
allowed it to eliminate some branches and the PHI node.

Now that all symbol table references are updated to use stack variables, we’ll add the assignment operator.

New Assignment Operator

With our current framework, adding a new assignment operator is really simple. We will parse it just like any other
binary operator, but handle it internally (instead of allowing the user to define it). The first step is to set a precedence:

let main () =
(* Install standard binary operators.

* 1 is the lowest precedence. *)
Hashtbl.add Parser.binop_precedence '=' 2;
Hashtbl.add Parser.binop_precedence '<' 10;
Hashtbl.add Parser.binop_precedence '+' 20;
Hashtbl.add Parser.binop_precedence '-' 20;
...

Now that the parser knows the precedence of the binary operator, it takes care of all the parsing and AST generation.
We just need to implement codegen for the assignment operator. This looks like:

let rec codegen_expr = function
begin match op with
| '=' ->

(* Special case '=' because we don't want to emit the LHS as an

* expression. *)
let name =

match lhs with
| Ast.Variable name -> name
| _ -> raise (Error "destination of '=' must be a variable")

in
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Unlike the rest of the binary operators, our assignment operator doesn’t follow the “emit LHS, emit RHS, do compu-
tation” model. As such, it is handled as a special case before the other binary operators are handled. The other strange
thing is that it requires the LHS to be a variable. It is invalid to have “(x+1) = expr” - only things like “x = expr” are
allowed.

(* Codegen the rhs. *)
let val_ = codegen_expr rhs in

(* Lookup the name. *)
let variable = try Hashtbl.find named_values name with
| Not_found -> raise (Error "unknown variable name")
in
ignore(build_store val_ variable builder);
val_

| _ ->
...

Once we have the variable, codegen’ing the assignment is straightforward: we emit the RHS of the assignment, create
a store, and return the computed value. Returning a value allows for chained assignments like “X = (Y = Z)”.

Now that we have an assignment operator, we can mutate loop variables and arguments. For example, we can now run
code like this:

# Function to print a double.
extern printd(x);

# Define ':' for sequencing: as a low-precedence operator that ignores operands
# and just returns the RHS.
def binary : 1 (x y) y;

def test(x)
printd(x) :
x = 4 :
printd(x);

test(123);

When run, this example prints “123” and then “4”, showing that we did actually mutate the value! Okay, we have now
officially implemented our goal: getting this to work requires SSA construction in the general case. However, to be
really useful, we want the ability to define our own local variables, lets add this next!

User-defined Local Variables

Adding var/in is just like any other other extensions we made to Kaleidoscope: we extend the lexer, the parser, the
AST and the code generator. The first step for adding our new ‘var/in’ construct is to extend the lexer. As before, this
is pretty trivial, the code looks like this:

type token =
...
(* var definition *)
| Var

...

and lex_ident buffer = parser
...
| "in" -> [< 'Token.In; stream >]
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| "binary" -> [< 'Token.Binary; stream >]
| "unary" -> [< 'Token.Unary; stream >]
| "var" -> [< 'Token.Var; stream >]
...

The next step is to define the AST node that we will construct. For var/in, it looks like this:

type expr =
...
(* variant for var/in. *)
| Var of (string * expr option) array * expr
...

var/in allows a list of names to be defined all at once, and each name can optionally have an initializer value. As
such, we capture this information in the VarNames vector. Also, var/in has a body, this body is allowed to access the
variables defined by the var/in.

With this in place, we can define the parser pieces. The first thing we do is add it as a primary expression:

(* primary

* ::= identifier

* ::= numberexpr

* ::= parenexpr

* ::= ifexpr

* ::= forexpr

* ::= varexpr *)
let rec parse_primary = parser

...
(* varexpr

* ::= 'var' identifier ('=' expression?

* (',' identifier ('=' expression)?)* 'in' expression *)
| [< 'Token.Var;

(* At least one variable name is required. *)
'Token.Ident id ?? "expected identifier after var";
init=parse_var_init;
var_names=parse_var_names [(id, init)];
(* At this point, we have to have 'in'. *)
'Token.In ?? "expected 'in' keyword after 'var'";
body=parse_expr >] ->

Ast.Var (Array.of_list (List.rev var_names), body)

...

and parse_var_init = parser
(* read in the optional initializer. *)
| [< 'Token.Kwd '='; e=parse_expr >] -> Some e
| [< >] -> None

and parse_var_names accumulator = parser
| [< 'Token.Kwd ',';

'Token.Ident id ?? "expected identifier list after var";
init=parse_var_init;
e=parse_var_names ((id, init) :: accumulator) >] -> e

| [< >] -> accumulator

Now that we can parse and represent the code, we need to support emission of LLVM IR for it. This code starts out
with:
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let rec codegen_expr = function
...
| Ast.Var (var_names, body)

let old_bindings = ref [] in

let the_function = block_parent (insertion_block builder) in

(* Register all variables and emit their initializer. *)
Array.iter (fun (var_name, init) ->

Basically it loops over all the variables, installing them one at a time. For each variable we put into the symbol table,
we remember the previous value that we replace in OldBindings.

(* Emit the initializer before adding the variable to scope, this

* prevents the initializer from referencing the variable itself, and

* permits stuff like this:

* var a = 1 in

* var a = a in ... # refers to outer 'a'. *)
let init_val =
match init with
| Some init -> codegen_expr init
(* If not specified, use 0.0. *)
| None -> const_float double_type 0.0

in

let alloca = create_entry_block_alloca the_function var_name in
ignore(build_store init_val alloca builder);

(* Remember the old variable binding so that we can restore the binding

* when we unrecurse. *)

begin
try

let old_value = Hashtbl.find named_values var_name in
old_bindings := (var_name, old_value) :: !old_bindings;

with Not_found > ()
end;

(* Remember this binding. *)
Hashtbl.add named_values var_name alloca;

) var_names;

There are more comments here than code. The basic idea is that we emit the initializer, create the alloca, then update
the symbol table to point to it. Once all the variables are installed in the symbol table, we evaluate the body of the
var/in expression:

(* Codegen the body, now that all vars are in scope. *)
let body_val = codegen_expr body in

Finally, before returning, we restore the previous variable bindings:

(* Pop all our variables from scope. *)
List.iter (fun (var_name, old_value) ->
Hashtbl.add named_values var_name old_value

) !old_bindings;

(* Return the body computation. *)
body_val
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The end result of all of this is that we get properly scoped variable definitions, and we even (trivially) allow mutation
of them :).

With this, we completed what we set out to do. Our nice iterative fib example from the intro compiles and runs just
fine. The mem2reg pass optimizes all of our stack variables into SSA registers, inserting PHI nodes where needed,
and our front-end remains simple: no “iterated dominance frontier” computation anywhere in sight.

Full Code Listing

Here is the complete code listing for our running example, enhanced with mutable variables and var/in support. To
build this example, use:

# Compile
ocamlbuild toy.byte
# Run
./toy.byte

Here is the code:

_tags:

<{lexer,parser}.ml>: use_camlp4, pp(camlp4of)
<*.{byte,native}>: g++, use_llvm, use_llvm_analysis
<*.{byte,native}>: use_llvm_executionengine, use_llvm_target
<*.{byte,native}>: use_llvm_scalar_opts, use_bindings

myocamlbuild.ml:

open Ocamlbuild_plugin;;

ocaml_lib ~extern:true "llvm";;
ocaml_lib ~extern:true "llvm_analysis";;
ocaml_lib ~extern:true "llvm_executionengine";;
ocaml_lib ~extern:true "llvm_target";;
ocaml_lib ~extern:true "llvm_scalar_opts";;

flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"; A"-cclib"; A"-rdynamic"]);;
dep ["link"; "ocaml"; "use_bindings"] ["bindings.o"];;

token.ml:

(*===----------------------------------------------------------------------===

* Lexer Tokens

*===----------------------------------------------------------------------===*)

(* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of

* these others for known things. *)
type token =
(* commands *)
| Def | Extern

(* primary *)
| Ident of string | Number of float

(* unknown *)
| Kwd of char
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(* control *)
| If | Then | Else
| For | In

(* operators *)
| Binary | Unary

(* var definition *)
| Var

lexer.ml:

(*===----------------------------------------------------------------------===

* Lexer

*===----------------------------------------------------------------------===*)

let rec lex = parser
(* Skip any whitespace. *)
| [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream

(* identifier: [a-zA-Z][a-zA-Z0-9] *)
| [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] ->

let buffer = Buffer.create 1 in
Buffer.add_char buffer c;
lex_ident buffer stream

(* number: [0-9.]+ *)
| [< ' ('0' .. '9' as c); stream >] ->

let buffer = Buffer.create 1 in
Buffer.add_char buffer c;
lex_number buffer stream

(* Comment until end of line. *)
| [< ' ('#'); stream >] ->

lex_comment stream

(* Otherwise, just return the character as its ascii value. *)
| [< 'c; stream >] ->

[< 'Token.Kwd c; lex stream >]

(* end of stream. *)
| [< >] -> [< >]

and lex_number buffer = parser
| [< ' ('0' .. '9' | '.' as c); stream >] ->

Buffer.add_char buffer c;
lex_number buffer stream

| [< stream=lex >] ->
[< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >]

and lex_ident buffer = parser
| [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] ->

Buffer.add_char buffer c;
lex_ident buffer stream

| [< stream=lex >] ->
match Buffer.contents buffer with
| "def" -> [< 'Token.Def; stream >]
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| "extern" -> [< 'Token.Extern; stream >]
| "if" -> [< 'Token.If; stream >]
| "then" -> [< 'Token.Then; stream >]
| "else" -> [< 'Token.Else; stream >]
| "for" -> [< 'Token.For; stream >]
| "in" -> [< 'Token.In; stream >]
| "binary" -> [< 'Token.Binary; stream >]
| "unary" -> [< 'Token.Unary; stream >]
| "var" -> [< 'Token.Var; stream >]
| id -> [< 'Token.Ident id; stream >]

and lex_comment = parser
| [< ' ('\n'); stream=lex >] -> stream
| [< 'c; e=lex_comment >] -> e
| [< >] -> [< >]

ast.ml:

(*===----------------------------------------------------------------------===

* Abstract Syntax Tree (aka Parse Tree)

*===----------------------------------------------------------------------===*)

(* expr - Base type for all expression nodes. *)
type expr =
(* variant for numeric literals like "1.0". *)
| Number of float

(* variant for referencing a variable, like "a". *)
| Variable of string

(* variant for a unary operator. *)
| Unary of char * expr

(* variant for a binary operator. *)
| Binary of char * expr * expr

(* variant for function calls. *)
| Call of string * expr array

(* variant for if/then/else. *)
| If of expr * expr * expr

(* variant for for/in. *)
| For of string * expr * expr * expr option * expr

(* variant for var/in. *)
| Var of (string * expr option) array * expr

(* proto - This type represents the "prototype" for a function, which captures

* its name, and its argument names (thus implicitly the number of arguments the

* function takes). *)
type proto =
| Prototype of string * string array
| BinOpPrototype of string * string array * int

(* func - This type represents a function definition itself. *)
type func = Function of proto * expr
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parser.ml:

(*===---------------------------------------------------------------------===

* Parser

*===---------------------------------------------------------------------===*)

(* binop_precedence - This holds the precedence for each binary operator that is

* defined *)
let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10

(* precedence - Get the precedence of the pending binary operator token. *)
let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1

(* primary

* ::= identifier

* ::= numberexpr

* ::= parenexpr

* ::= ifexpr

* ::= forexpr

* ::= varexpr *)
let rec parse_primary = parser
(* numberexpr ::= number *)
| [< 'Token.Number n >] -> Ast.Number n

(* parenexpr ::= '(' expression ')' *)
| [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e

(* identifierexpr

* ::= identifier

* ::= identifier '(' argumentexpr ')' *)
| [< 'Token.Ident id; stream >] ->

let rec parse_args accumulator = parser
| [< e=parse_expr; stream >] ->

begin parser
| [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e
| [< >] -> e :: accumulator

end stream
| [< >] -> accumulator

in
let rec parse_ident id = parser
(* Call. *)
| [< 'Token.Kwd '(';

args=parse_args [];
'Token.Kwd ')' ?? "expected ')'">] ->

Ast.Call (id, Array.of_list (List.rev args))

(* Simple variable ref. *)
| [< >] -> Ast.Variable id

in
parse_ident id stream

(* ifexpr ::= 'if' expr 'then' expr 'else' expr *)
| [< 'Token.If; c=parse_expr;

'Token.Then ?? "expected 'then'"; t=parse_expr;
'Token.Else ?? "expected 'else'"; e=parse_expr >] ->

Ast.If (c, t, e)

(* forexpr
::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression *)
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| [< 'Token.For;
'Token.Ident id ?? "expected identifier after for";
'Token.Kwd '=' ?? "expected '=' after for";
stream >] ->

begin parser
| [<

start=parse_expr;
'Token.Kwd ',' ?? "expected ',' after for";
end_=parse_expr;
stream >] ->

let step =
begin parser
| [< 'Token.Kwd ','; step=parse_expr >] -> Some step
| [< >] -> None
end stream

in
begin parser
| [< 'Token.In; body=parse_expr >] ->

Ast.For (id, start, end_, step, body)
| [< >] ->

raise (Stream.Error "expected 'in' after for")
end stream

| [< >] ->
raise (Stream.Error "expected '=' after for")

end stream

(* varexpr

* ::= 'var' identifier ('=' expression?

* (',' identifier ('=' expression)?)* 'in' expression *)
| [< 'Token.Var;

(* At least one variable name is required. *)
'Token.Ident id ?? "expected identifier after var";
init=parse_var_init;
var_names=parse_var_names [(id, init)];
(* At this point, we have to have 'in'. *)
'Token.In ?? "expected 'in' keyword after 'var'";
body=parse_expr >] ->

Ast.Var (Array.of_list (List.rev var_names), body)

| [< >] -> raise (Stream.Error "unknown token when expecting an expression.")

(* unary

* ::= primary

* ::= '!' unary *)
and parse_unary = parser
(* If this is a unary operator, read it. *)
| [< 'Token.Kwd op when op != '(' && op != ')'; operand=parse_expr >] ->

Ast.Unary (op, operand)

(* If the current token is not an operator, it must be a primary expr. *)
| [< stream >] -> parse_primary stream

(* binoprhs

* ::= ('+' primary)* *)
and parse_bin_rhs expr_prec lhs stream =
match Stream.peek stream with
(* If this is a binop, find its precedence. *)
| Some (Token.Kwd c) when Hashtbl.mem binop_precedence c ->
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let token_prec = precedence c in

(* If this is a binop that binds at least as tightly as the current binop,

* consume it, otherwise we are done. *)
if token_prec < expr_prec then lhs else begin
(* Eat the binop. *)
Stream.junk stream;

(* Parse the primary expression after the binary operator. *)
let rhs = parse_unary stream in

(* Okay, we know this is a binop. *)
let rhs =

match Stream.peek stream with
| Some (Token.Kwd c2) ->

(* If BinOp binds less tightly with rhs than the operator after

* rhs, let the pending operator take rhs as its lhs. *)
let next_prec = precedence c2 in
if token_prec < next_prec
then parse_bin_rhs (token_prec + 1) rhs stream
else rhs

| _ -> rhs
in

(* Merge lhs/rhs. *)
let lhs = Ast.Binary (c, lhs, rhs) in
parse_bin_rhs expr_prec lhs stream

end
| _ -> lhs

and parse_var_init = parser
(* read in the optional initializer. *)
| [< 'Token.Kwd '='; e=parse_expr >] -> Some e
| [< >] -> None

and parse_var_names accumulator = parser
| [< 'Token.Kwd ',';

'Token.Ident id ?? "expected identifier list after var";
init=parse_var_init;
e=parse_var_names ((id, init) :: accumulator) >] -> e

| [< >] -> accumulator

(* expression

* ::= primary binoprhs *)
and parse_expr = parser
| [< lhs=parse_unary; stream >] -> parse_bin_rhs 0 lhs stream

(* prototype

* ::= id '(' id* ')'

* ::= binary LETTER number? (id, id)

* ::= unary LETTER number? (id) *)
let parse_prototype =
let rec parse_args accumulator = parser
| [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e
| [< >] -> accumulator

in
let parse_operator = parser

| [< 'Token.Unary >] -> "unary", 1
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| [< 'Token.Binary >] -> "binary", 2
in
let parse_binary_precedence = parser

| [< 'Token.Number n >] -> int_of_float n
| [< >] -> 30

in
parser
| [< 'Token.Ident id;

'Token.Kwd '(' ?? "expected '(' in prototype";
args=parse_args [];
'Token.Kwd ')' ?? "expected ')' in prototype" >] ->

(* success. *)
Ast.Prototype (id, Array.of_list (List.rev args))

| [< (prefix, kind)=parse_operator;
'Token.Kwd op ?? "expected an operator";
(* Read the precedence if present. *)
binary_precedence=parse_binary_precedence;
'Token.Kwd '(' ?? "expected '(' in prototype";
args=parse_args [];

'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
let name = prefix ^ (String.make 1 op) in
let args = Array.of_list (List.rev args) in

(* Verify right number of arguments for operator. *)
if Array.length args != kind
then raise (Stream.Error "invalid number of operands for operator")
else
if kind == 1 then
Ast.Prototype (name, args)

else
Ast.BinOpPrototype (name, args, binary_precedence)

| [< >] ->
raise (Stream.Error "expected function name in prototype")

(* definition ::= 'def' prototype expression *)
let parse_definition = parser

| [< 'Token.Def; p=parse_prototype; e=parse_expr >] ->
Ast.Function (p, e)

(* toplevelexpr ::= expression *)
let parse_toplevel = parser

| [< e=parse_expr >] ->
(* Make an anonymous proto. *)
Ast.Function (Ast.Prototype ("", [||]), e)

(* external ::= 'extern' prototype *)
let parse_extern = parser

| [< 'Token.Extern; e=parse_prototype >] -> e

codegen.ml:

(*===----------------------------------------------------------------------===

* Code Generation

*===----------------------------------------------------------------------===*)

open Llvm

exception Error of string
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let context = global_context ()
let the_module = create_module context "my cool jit"
let builder = builder context
let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
let double_type = double_type context

(* Create an alloca instruction in the entry block of the function. This

* is used for mutable variables etc. *)
let create_entry_block_alloca the_function var_name =
let builder = builder_at context (instr_begin (entry_block the_function)) in
build_alloca double_type var_name builder

let rec codegen_expr = function
| Ast.Number n -> const_float double_type n
| Ast.Variable name ->

let v = try Hashtbl.find named_values name with
| Not_found -> raise (Error "unknown variable name")

in
(* Load the value. *)
build_load v name builder

| Ast.Unary (op, operand) ->
let operand = codegen_expr operand in
let callee = "unary" ^ (String.make 1 op) in
let callee =
match lookup_function callee the_module with
| Some callee -> callee
| None -> raise (Error "unknown unary operator")

in
build_call callee [|operand|] "unop" builder

| Ast.Binary (op, lhs, rhs) ->
begin match op with
| '=' ->

(* Special case '=' because we don't want to emit the LHS as an

* expression. *)
let name =
match lhs with
| Ast.Variable name -> name
| _ -> raise (Error "destination of '=' must be a variable")

in

(* Codegen the rhs. *)
let val_ = codegen_expr rhs in

(* Lookup the name. *)
let variable = try Hashtbl.find named_values name with
| Not_found -> raise (Error "unknown variable name")
in
ignore(build_store val_ variable builder);
val_

| _ ->
let lhs_val = codegen_expr lhs in
let rhs_val = codegen_expr rhs in
begin
match op with
| '+' -> build_add lhs_val rhs_val "addtmp" builder
| '-' -> build_sub lhs_val rhs_val "subtmp" builder
| '*' -> build_mul lhs_val rhs_val "multmp" builder
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| '<' ->
(* Convert bool 0/1 to double 0.0 or 1.0 *)
let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
build_uitofp i double_type "booltmp" builder

| _ ->
(* If it wasn't a builtin binary operator, it must be a user

→˓defined

* one. Emit a call to it. *)
let callee = "binary" ^ (String.make 1 op) in
let callee =
match lookup_function callee the_module with
| Some callee -> callee
| None -> raise (Error "binary operator not found!")

in
build_call callee [|lhs_val; rhs_val|] "binop" builder

end
end

| Ast.Call (callee, args) ->
(* Look up the name in the module table. *)
let callee =
match lookup_function callee the_module with
| Some callee -> callee
| None -> raise (Error "unknown function referenced")

in
let params = params callee in

(* If argument mismatch error. *)
if Array.length params == Array.length args then () else
raise (Error "incorrect # arguments passed");

let args = Array.map codegen_expr args in
build_call callee args "calltmp" builder

| Ast.If (cond, then_, else_) ->
let cond = codegen_expr cond in

(* Convert condition to a bool by comparing equal to 0.0 *)
let zero = const_float double_type 0.0 in
let cond_val = build_fcmp Fcmp.One cond zero "ifcond" builder in

(* Grab the first block so that we might later add the conditional branch

* to it at the end of the function. *)
let start_bb = insertion_block builder in
let the_function = block_parent start_bb in

let then_bb = append_block context "then" the_function in

(* Emit 'then' value. *)
position_at_end then_bb builder;
let then_val = codegen_expr then_ in

(* Codegen of 'then' can change the current block, update then_bb for the

* phi. We create a new name because one is used for the phi node, and the

* other is used for the conditional branch. *)
let new_then_bb = insertion_block builder in

(* Emit 'else' value. *)
let else_bb = append_block context "else" the_function in
position_at_end else_bb builder;
let else_val = codegen_expr else_ in
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(* Codegen of 'else' can change the current block, update else_bb for the

* phi. *)
let new_else_bb = insertion_block builder in

(* Emit merge block. *)
let merge_bb = append_block context "ifcont" the_function in
position_at_end merge_bb builder;
let incoming = [(then_val, new_then_bb); (else_val, new_else_bb)] in
let phi = build_phi incoming "iftmp" builder in

(* Return to the start block to add the conditional branch. *)
position_at_end start_bb builder;
ignore (build_cond_br cond_val then_bb else_bb builder);

(* Set a unconditional branch at the end of the 'then' block and the

* 'else' block to the 'merge' block. *)
position_at_end new_then_bb builder; ignore (build_br merge_bb builder);
position_at_end new_else_bb builder; ignore (build_br merge_bb builder);

(* Finally, set the builder to the end of the merge block. *)
position_at_end merge_bb builder;

phi
| Ast.For (var_name, start, end_, step, body) ->

(* Output this as:

* var = alloca double

* ...

* start = startexpr

* store start -> var

* goto loop

* loop:

* ...

* bodyexpr

* ...

* loopend:

* step = stepexpr

* endcond = endexpr

*
* curvar = load var

* nextvar = curvar + step

* store nextvar -> var

* br endcond, loop, endloop

* outloop: *)

let the_function = block_parent (insertion_block builder) in

(* Create an alloca for the variable in the entry block. *)
let alloca = create_entry_block_alloca the_function var_name in

(* Emit the start code first, without 'variable' in scope. *)
let start_val = codegen_expr start in

(* Store the value into the alloca. *)
ignore(build_store start_val alloca builder);

(* Make the new basic block for the loop header, inserting after current

* block. *)

664 Chapter 2. User Guides



LLVM Documentation, Release 3.9

let loop_bb = append_block context "loop" the_function in

(* Insert an explicit fall through from the current block to the

* loop_bb. *)
ignore (build_br loop_bb builder);

(* Start insertion in loop_bb. *)
position_at_end loop_bb builder;

(* Within the loop, the variable is defined equal to the PHI node. If it

* shadows an existing variable, we have to restore it, so save it

* now. *)
let old_val =
try Some (Hashtbl.find named_values var_name) with Not_found -> None

in
Hashtbl.add named_values var_name alloca;

(* Emit the body of the loop. This, like any other expr, can change the

* current BB. Note that we ignore the value computed by the body, but

* don't allow an error *)
ignore (codegen_expr body);

(* Emit the step value. *)
let step_val =
match step with
| Some step -> codegen_expr step
(* If not specified, use 1.0. *)
| None -> const_float double_type 1.0

in

(* Compute the end condition. *)
let end_cond = codegen_expr end_ in

(* Reload, increment, and restore the alloca. This handles the case where

* the body of the loop mutates the variable. *)
let cur_var = build_load alloca var_name builder in
let next_var = build_add cur_var step_val "nextvar" builder in
ignore(build_store next_var alloca builder);

(* Convert condition to a bool by comparing equal to 0.0. *)
let zero = const_float double_type 0.0 in
let end_cond = build_fcmp Fcmp.One end_cond zero "loopcond" builder in

(* Create the "after loop" block and insert it. *)
let after_bb = append_block context "afterloop" the_function in

(* Insert the conditional branch into the end of loop_end_bb. *)
ignore (build_cond_br end_cond loop_bb after_bb builder);

(* Any new code will be inserted in after_bb. *)
position_at_end after_bb builder;

(* Restore the unshadowed variable. *)
begin match old_val with
| Some old_val -> Hashtbl.add named_values var_name old_val
| None -> ()
end;
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(* for expr always returns 0.0. *)
const_null double_type

| Ast.Var (var_names, body) ->
let old_bindings = ref [] in

let the_function = block_parent (insertion_block builder) in

(* Register all variables and emit their initializer. *)
Array.iter (fun (var_name, init) ->
(* Emit the initializer before adding the variable to scope, this

* prevents the initializer from referencing the variable itself, and

* permits stuff like this:

* var a = 1 in

* var a = a in ... # refers to outer 'a'. *)
let init_val =
match init with
| Some init -> codegen_expr init
(* If not specified, use 0.0. *)
| None -> const_float double_type 0.0

in

let alloca = create_entry_block_alloca the_function var_name in
ignore(build_store init_val alloca builder);

(* Remember the old variable binding so that we can restore the binding

* when we unrecurse. *)
begin
try
let old_value = Hashtbl.find named_values var_name in
old_bindings := (var_name, old_value) :: !old_bindings;

with Not_found -> ()
end;

(* Remember this binding. *)
Hashtbl.add named_values var_name alloca;

) var_names;

(* Codegen the body, now that all vars are in scope. *)
let body_val = codegen_expr body in

(* Pop all our variables from scope. *)
List.iter (fun (var_name, old_value) ->
Hashtbl.add named_values var_name old_value

) !old_bindings;

(* Return the body computation. *)
body_val

let codegen_proto = function
| Ast.Prototype (name, args) | Ast.BinOpPrototype (name, args, _) ->

(* Make the function type: double(double,double) etc. *)
let doubles = Array.make (Array.length args) double_type in
let ft = function_type double_type doubles in
let f =
match lookup_function name the_module with
| None -> declare_function name ft the_module

(* If 'f' conflicted, there was already something named 'name'. If it
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* has a body, don't allow redefinition or reextern. *)
| Some f ->

(* If 'f' already has a body, reject this. *)
if block_begin f <> At_end f then
raise (Error "redefinition of function");

(* If 'f' took a different number of arguments, reject. *)
if element_type (type_of f) <> ft then
raise (Error "redefinition of function with different # args");

f
in

(* Set names for all arguments. *)
Array.iteri (fun i a ->
let n = args.(i) in
set_value_name n a;
Hashtbl.add named_values n a;

) (params f);
f

(* Create an alloca for each argument and register the argument in the symbol

* table so that references to it will succeed. *)
let create_argument_allocas the_function proto =
let args = match proto with

| Ast.Prototype (_, args) | Ast.BinOpPrototype (_, args, _) -> args
in
Array.iteri (fun i ai ->

let var_name = args.(i) in
(* Create an alloca for this variable. *)
let alloca = create_entry_block_alloca the_function var_name in

(* Store the initial value into the alloca. *)
ignore(build_store ai alloca builder);

(* Add arguments to variable symbol table. *)
Hashtbl.add named_values var_name alloca;

) (params the_function)

let codegen_func the_fpm = function
| Ast.Function (proto, body) ->

Hashtbl.clear named_values;
let the_function = codegen_proto proto in

(* If this is an operator, install it. *)
begin match proto with
| Ast.BinOpPrototype (name, args, prec) ->

let op = name.[String.length name - 1] in
Hashtbl.add Parser.binop_precedence op prec;

| _ -> ()
end;

(* Create a new basic block to start insertion into. *)
let bb = append_block context "entry" the_function in
position_at_end bb builder;

try
(* Add all arguments to the symbol table and create their allocas. *)
create_argument_allocas the_function proto;
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let ret_val = codegen_expr body in

(* Finish off the function. *)
let _ = build_ret ret_val builder in

(* Validate the generated code, checking for consistency. *)
Llvm_analysis.assert_valid_function the_function;

(* Optimize the function. *)
let _ = PassManager.run_function the_function the_fpm in

the_function
with e ->
delete_function the_function;
raise e

toplevel.ml:

(*===----------------------------------------------------------------------===

* Top-Level parsing and JIT Driver

*===----------------------------------------------------------------------===*)

open Llvm
open Llvm_executionengine

(* top ::= definition | external | expression | ';' *)
let rec main_loop the_fpm the_execution_engine stream =
match Stream.peek stream with
| None -> ()

(* ignore top-level semicolons. *)
| Some (Token.Kwd ';') ->

Stream.junk stream;
main_loop the_fpm the_execution_engine stream

| Some token ->
begin
try match token with
| Token.Def ->

let e = Parser.parse_definition stream in
print_endline "parsed a function definition.";
dump_value (Codegen.codegen_func the_fpm e);

| Token.Extern ->
let e = Parser.parse_extern stream in
print_endline "parsed an extern.";
dump_value (Codegen.codegen_proto e);

| _ ->
(* Evaluate a top-level expression into an anonymous function. *)
let e = Parser.parse_toplevel stream in
print_endline "parsed a top-level expr";
let the_function = Codegen.codegen_func the_fpm e in
dump_value the_function;

(* JIT the function, returning a function pointer. *)
let result = ExecutionEngine.run_function the_function [||]

the_execution_engine in
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print_string "Evaluated to ";
print_float (GenericValue.as_float Codegen.double_type result);
print_newline ();

with Stream.Error s | Codegen.Error s ->
(* Skip token for error recovery. *)
Stream.junk stream;
print_endline s;

end;
print_string "ready> "; flush stdout;
main_loop the_fpm the_execution_engine stream

toy.ml:

(*===----------------------------------------------------------------------===

* Main driver code.

*===----------------------------------------------------------------------===*)

open Llvm
open Llvm_executionengine
open Llvm_target
open Llvm_scalar_opts

let main () =
ignore (initialize_native_target ());

(* Install standard binary operators.

* 1 is the lowest precedence. *)
Hashtbl.add Parser.binop_precedence '=' 2;
Hashtbl.add Parser.binop_precedence '<' 10;
Hashtbl.add Parser.binop_precedence '+' 20;
Hashtbl.add Parser.binop_precedence '-' 20;
Hashtbl.add Parser.binop_precedence '*' 40; (* highest. *)

(* Prime the first token. *)
print_string "ready> "; flush stdout;
let stream = Lexer.lex (Stream.of_channel stdin) in

(* Create the JIT. *)
let the_execution_engine = ExecutionEngine.create Codegen.the_module in
let the_fpm = PassManager.create_function Codegen.the_module in

(* Set up the optimizer pipeline. Start with registering info about how the

* target lays out data structures. *)
DataLayout.add (ExecutionEngine.target_data the_execution_engine) the_fpm;

(* Promote allocas to registers. *)
add_memory_to_register_promotion the_fpm;

(* Do simple "peephole" optimizations and bit-twiddling optzn. *)
add_instruction_combination the_fpm;

(* reassociate expressions. *)
add_reassociation the_fpm;

(* Eliminate Common SubExpressions. *)
add_gvn the_fpm;

(* Simplify the control flow graph (deleting unreachable blocks, etc). *)
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add_cfg_simplification the_fpm;

ignore (PassManager.initialize the_fpm);

(* Run the main "interpreter loop" now. *)
Toplevel.main_loop the_fpm the_execution_engine stream;

(* Print out all the generated code. *)
dump_module Codegen.the_module

;;

main ()

bindings.c

#include <stdio.h>

/* putchard - putchar that takes a double and returns 0. */
extern double putchard(double X) {
putchar((char)X);
return 0;

}

/* printd - printf that takes a double prints it as "%f\n", returning 0. */
extern double printd(double X) {
printf("%f\n", X);
return 0;

}

Next: Conclusion and other useful LLVM tidbits

Kaleidoscope: Conclusion and other useful LLVM tidbits

• Tutorial Conclusion

• Properties of the LLVM IR

– Target Independence

– Safety Guarantees

– Language-Specific Optimizations

• Tips and Tricks

– Implementing portable offsetof/sizeof

– Garbage Collected Stack Frames

Tutorial Conclusion

Welcome to the final chapter of the “Implementing a language with LLVM” tutorial. In the course of this tutorial, we
have grown our little Kaleidoscope language from being a useless toy, to being a semi-interesting (but probably still
useless) toy. :)
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It is interesting to see how far we’ve come, and how little code it has taken. We built the entire lexer, parser, AST, code
generator, and an interactive run-loop (with a JIT!) by-hand in under 700 lines of (non-comment/non-blank) code.

Our little language supports a couple of interesting features: it supports user defined binary and unary operators, it
uses JIT compilation for immediate evaluation, and it supports a few control flow constructs with SSA construction.

Part of the idea of this tutorial was to show you how easy and fun it can be to define, build, and play with languages.
Building a compiler need not be a scary or mystical process! Now that you’ve seen some of the basics, I strongly
encourage you to take the code and hack on it. For example, try adding:

• global variables - While global variables have questional value in modern software engineering, they are often
useful when putting together quick little hacks like the Kaleidoscope compiler itself. Fortunately, our current
setup makes it very easy to add global variables: just have value lookup check to see if an unresolved variable is
in the global variable symbol table before rejecting it. To create a new global variable, make an instance of the
LLVM GlobalVariable class.

• typed variables - Kaleidoscope currently only supports variables of type double. This gives the language a very
nice elegance, because only supporting one type means that you never have to specify types. Different languages
have different ways of handling this. The easiest way is to require the user to specify types for every variable
definition, and record the type of the variable in the symbol table along with its Value*.

• arrays, structs, vectors, etc - Once you add types, you can start extending the type system in all sorts of
interesting ways. Simple arrays are very easy and are quite useful for many different applications. Adding them
is mostly an exercise in learning how the LLVM getelementptr instruction works: it is so nifty/unconventional,
it has its own FAQ! If you add support for recursive types (e.g. linked lists), make sure to read the section in the
LLVM Programmer’s Manual that describes how to construct them.

• standard runtime - Our current language allows the user to access arbitrary external functions, and we use it
for things like “printd” and “putchard”. As you extend the language to add higher-level constructs, often these
constructs make the most sense if they are lowered to calls into a language-supplied runtime. For example, if
you add hash tables to the language, it would probably make sense to add the routines to a runtime, instead of
inlining them all the way.

• memory management - Currently we can only access the stack in Kaleidoscope. It would also be useful to be
able to allocate heap memory, either with calls to the standard libc malloc/free interface or with a garbage col-
lector. If you would like to use garbage collection, note that LLVM fully supports Accurate Garbage Collection
including algorithms that move objects and need to scan/update the stack.

• debugger support - LLVM supports generation of DWARF Debug info which is understood by common de-
buggers like GDB. Adding support for debug info is fairly straightforward. The best way to understand it is to
compile some C/C++ code with “clang -g -O0” and taking a look at what it produces.

• exception handling support - LLVM supports generation of zero cost exceptions which interoperate with code
compiled in other languages. You could also generate code by implicitly making every function return an error
value and checking it. You could also make explicit use of setjmp/longjmp. There are many different ways to
go here.

• object orientation, generics, database access, complex numbers, geometric programming, ... - Really, there
is no end of crazy features that you can add to the language.

• unusual domains - We’ve been talking about applying LLVM to a domain that many people are interested
in: building a compiler for a specific language. However, there are many other domains that can use compiler
technology that are not typically considered. For example, LLVM has been used to implement OpenGL graphics
acceleration, translate C++ code to ActionScript, and many other cute and clever things. Maybe you will be the
first to JIT compile a regular expression interpreter into native code with LLVM?

Have fun - try doing something crazy and unusual. Building a language like everyone else always has, is much less
fun than trying something a little crazy or off the wall and seeing how it turns out. If you get stuck or want to talk
about it, feel free to email the llvm-dev mailing list: it has lots of people who are interested in languages and are often
willing to help out.
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Before we end this tutorial, I want to talk about some “tips and tricks” for generating LLVM IR. These are some of the
more subtle things that may not be obvious, but are very useful if you want to take advantage of LLVM’s capabilities.

Properties of the LLVM IR

We have a couple common questions about code in the LLVM IR form - lets just get these out of the way right now,
shall we?

Target Independence

Kaleidoscope is an example of a “portable language”: any program written in Kaleidoscope will work the same way
on any target that it runs on. Many other languages have this property, e.g. lisp, java, haskell, javascript, python, etc
(note that while these languages are portable, not all their libraries are).

One nice aspect of LLVM is that it is often capable of preserving target independence in the IR: you can take the
LLVM IR for a Kaleidoscope-compiled program and run it on any target that LLVM supports, even emitting C code
and compiling that on targets that LLVM doesn’t support natively. You can trivially tell that the Kaleidoscope compiler
generates target-independent code because it never queries for any target-specific information when generating code.

The fact that LLVM provides a compact, target-independent, representation for code gets a lot of people excited.
Unfortunately, these people are usually thinking about C or a language from the C family when they are asking
questions about language portability. I say “unfortunately”, because there is really no way to make (fully general) C
code portable, other than shipping the source code around (and of course, C source code is not actually portable in
general either - ever port a really old application from 32- to 64-bits?).

The problem with C (again, in its full generality) is that it is heavily laden with target specific assumptions. As one
simple example, the preprocessor often destructively removes target-independence from the code when it processes
the input text:

#ifdef __i386__
int X = 1;

#else
int X = 42;

#endif

While it is possible to engineer more and more complex solutions to problems like this, it cannot be solved in full
generality in a way that is better than shipping the actual source code.

That said, there are interesting subsets of C that can be made portable. If you are willing to fix primitive types to a fixed
size (say int = 32-bits, and long = 64-bits), don’t care about ABI compatibility with existing binaries, and are willing
to give up some other minor features, you can have portable code. This can make sense for specialized domains such
as an in-kernel language.

Safety Guarantees

Many of the languages above are also “safe” languages: it is impossible for a program written in Java to corrupt its
address space and crash the process (assuming the JVM has no bugs). Safety is an interesting property that requires a
combination of language design, runtime support, and often operating system support.

It is certainly possible to implement a safe language in LLVM, but LLVM IR does not itself guarantee safety. The
LLVM IR allows unsafe pointer casts, use after free bugs, buffer over-runs, and a variety of other problems. Safety
needs to be implemented as a layer on top of LLVM and, conveniently, several groups have investigated this. Ask on
the llvm-dev mailing list if you are interested in more details.
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Language-Specific Optimizations

One thing about LLVM that turns off many people is that it does not solve all the world’s problems in one system
(sorry ‘world hunger’, someone else will have to solve you some other day). One specific complaint is that people
perceive LLVM as being incapable of performing high-level language-specific optimization: LLVM “loses too much
information”.

Unfortunately, this is really not the place to give you a full and unified version of “Chris Lattner’s theory of compiler
design”. Instead, I’ll make a few observations:

First, you’re right that LLVM does lose information. For example, as of this writing, there is no way to distinguish
in the LLVM IR whether an SSA-value came from a C “int” or a C “long” on an ILP32 machine (other than debug
info). Both get compiled down to an ‘i32’ value and the information about what it came from is lost. The more general
issue here, is that the LLVM type system uses “structural equivalence” instead of “name equivalence”. Another place
this surprises people is if you have two types in a high-level language that have the same structure (e.g. two different
structs that have a single int field): these types will compile down into a single LLVM type and it will be impossible
to tell what it came from.

Second, while LLVM does lose information, LLVM is not a fixed target: we continue to enhance and improve it in
many different ways. In addition to adding new features (LLVM did not always support exceptions or debug info),
we also extend the IR to capture important information for optimization (e.g. whether an argument is sign or zero
extended, information about pointers aliasing, etc). Many of the enhancements are user-driven: people want LLVM to
include some specific feature, so they go ahead and extend it.

Third, it is possible and easy to add language-specific optimizations, and you have a number of choices in how to
do it. As one trivial example, it is easy to add language-specific optimization passes that “know” things about code
compiled for a language. In the case of the C family, there is an optimization pass that “knows” about the standard
C library functions. If you call “exit(0)” in main(), it knows that it is safe to optimize that into “return 0;” because C
specifies what the ‘exit’ function does.

In addition to simple library knowledge, it is possible to embed a variety of other language-specific information into
the LLVM IR. If you have a specific need and run into a wall, please bring the topic up on the llvm-dev list. At the very
worst, you can always treat LLVM as if it were a “dumb code generator” and implement the high-level optimizations
you desire in your front-end, on the language-specific AST.

Tips and Tricks

There is a variety of useful tips and tricks that you come to know after working on/with LLVM that aren’t obvious at
first glance. Instead of letting everyone rediscover them, this section talks about some of these issues.

Implementing portable offsetof/sizeof

One interesting thing that comes up, if you are trying to keep the code generated by your compiler “target independent”,
is that you often need to know the size of some LLVM type or the offset of some field in an llvm structure. For example,
you might need to pass the size of a type into a function that allocates memory.

Unfortunately, this can vary widely across targets: for example the width of a pointer is trivially target-specific.
However, there is a clever way to use the getelementptr instruction that allows you to compute this in a portable way.

Garbage Collected Stack Frames

Some languages want to explicitly manage their stack frames, often so that they are garbage collected or to allow easy
implementation of closures. There are often better ways to implement these features than explicit stack frames, but
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LLVM does support them, if you want. It requires your front-end to convert the code into Continuation Passing Style
and the use of tail calls (which LLVM also supports).

Building a JIT in LLVM

Building a JIT: Starting out with KaleidoscopeJIT

• Chapter 1 Introduction

• JIT API Basics

• KaleidoscopeJIT

• Full Code Listing

Chapter 1 Introduction

Welcome to Chapter 1 of the “Building an ORC-based JIT in LLVM” tutorial. This tutorial runs through the imple-
mentation of a JIT compiler using LLVM’s On-Request-Compilation (ORC) APIs. It begins with a simplified version
of the KaleidoscopeJIT class used in the Implementing a language with LLVM tutorials and then introduces new
features like optimization, lazy compilation and remote execution.

The goal of this tutorial is to introduce you to LLVM’s ORC JIT APIs, show how these APIs interact with other parts
of LLVM, and to teach you how to recombine them to build a custom JIT that is suited to your use-case.

The structure of the tutorial is:

• Chapter #1: Investigate the simple KaleidoscopeJIT class. This will introduce some of the basic concepts of the
ORC JIT APIs, including the idea of an ORC Layer.

• Chapter #2: Extend the basic KaleidoscopeJIT by adding a new layer that will optimize IR and generated code.

• Chapter #3: Further extend the JIT by adding a Compile-On-Demand layer to lazily compile IR.

• Chapter #4: Improve the laziness of our JIT by replacing the Compile-On-Demand layer with a custom layer
that uses the ORC Compile Callbacks API directly to defer IR-generation until functions are called.

• Chapter #5: Add process isolation by JITing code into a remote process with reduced privileges using the JIT
Remote APIs.

To provide input for our JIT we will use the Kaleidoscope REPL from Chapter 7 of the “Implementing a language
in LLVM tutorial”, with one minor modification: We will remove the FunctionPassManager from the code for that
chapter and replace it with optimization support in our JIT class in Chapter #2.

Finally, a word on API generations: ORC is the 3rd generation of LLVM JIT API. It was preceded by MCJIT, and
before that by the (now deleted) legacy JIT. These tutorials don’t assume any experience with these earlier APIs, but
readers acquainted with them will see many familiar elements. Where appropriate we will make this connection with
the earlier APIs explicit to help people who are transitioning from them to ORC.

JIT API Basics

The purpose of a JIT compiler is to compile code “on-the-fly” as it is needed, rather than compiling whole programs
to disk ahead of time as a traditional compiler does. To support that aim our initial, bare-bones JIT API will be:

1. Handle addModule(Module &M) – Make the given IR module available for execution.
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2. JITSymbol findSymbol(const std::string &Name) – Search for pointers to symbols (functions or variables) that
have been added to the JIT.

3. void removeModule(Handle H) – Remove a module from the JIT, releasing any memory that had been used for
the compiled code.

A basic use-case for this API, executing the ‘main’ function from a module, will look like:

std::unique_ptr<Module> M = buildModule();
JIT J;
Handle H = J.addModule(*M);
int (*Main)(int, char*[]) =
(int(*)(int, char*[])J.findSymbol("main").getAddress();

int Result = Main();
J.removeModule(H);

The APIs that we build in these tutorials will all be variations on this simple theme. Behind the API we will refine the
implementation of the JIT to add support for optimization and lazy compilation. Eventually we will extend the API
itself to allow higher-level program representations (e.g. ASTs) to be added to the JIT.

KaleidoscopeJIT

In the previous section we described our API, now we examine a simple implementation of it: The KaleidoscopeJIT
class1 that was used in the Implementing a language with LLVM tutorials. We will use the REPL code from Chapter
7 of that tutorial to supply the input for our JIT: Each time the user enters an expression the REPL will add a new
IR module containing the code for that expression to the JIT. If the expression is a top-level expression like ‘1+1’ or
‘sin(x)’, the REPL will also use the findSymbol method of our JIT class find and execute the code for the expression,
and then use the removeModule method to remove the code again (since there’s no way to re-invoke an anonymous
expression). In later chapters of this tutorial we’ll modify the REPL to enable new interactions with our JIT class, but
for now we will take this setup for granted and focus our attention on the implementation of our JIT itself.

Our KaleidoscopeJIT class is defined in the KaleidoscopeJIT.h header. After the usual include guards and #includes2,
we get to the definition of our class:

#ifndef LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H
#define LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H

#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
#include "llvm/ExecutionEngine/Orc/CompileUtils.h"
#include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
#include "llvm/ExecutionEngine/Orc/LambdaResolver.h"
#include "llvm/ExecutionEngine/Orc/ObjectLinkingLayer.h"
#include "llvm/IR/Mangler.h"
#include "llvm/Support/DynamicLibrary.h"

1 Actually we use a cut-down version of KaleidoscopeJIT that makes a simplifying assumption: symbols cannot be re-defined. This will make
it impossible to re-define symbols in the REPL, but will make our symbol lookup logic simpler. Re-introducing support for symbol redefinition is
left as an exercise for the reader. (The KaleidoscopeJIT.h used in the original tutorials will be a helpful reference).

2

File Reason for inclusion
ExecutionEngine.h Access to the EngineBuilder::selectTarget method.
RTDyldMemoryManager.h Access to the RTDyldMemoryManager::getSymbolAddressInProcess method.
CompileUtils.h Provides the SimpleCompiler class.
IRCompileLayer.h Provides the IRCompileLayer class.
LambdaResolver.h Access the createLambdaResolver function, which provides easy construction of symbol resolvers.
ObjectLinkingLayer.h Provides the ObjectLinkingLayer class.
Mangler.h Provides the Mangler class for platform specific name-mangling.
DynamicLibrary.h Provides the DynamicLibrary class, which makes symbols in the host process searchable.
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namespace llvm {
namespace orc {

class KaleidoscopeJIT {
private:

std::unique_ptr<TargetMachine> TM;
const DataLayout DL;
ObjectLinkingLayer<> ObjectLayer;
IRCompileLayer<decltype(ObjectLayer)> CompileLayer;

public:

typedef decltype(CompileLayer)::ModuleSetHandleT ModuleHandleT;

Our class begins with four members: A TargetMachine, TM, which will be used to build our LLVM compiler instance;
A DataLayout, DL, which will be used for symbol mangling (more on that later), and two ORC layers: an ObjectLink-
ingLayer and a IRCompileLayer. We’ll be talking more about layers in the next chapter, but for now you can think of
them as analogous to LLVM Passes: they wrap up useful JIT utilities behind an easy to compose interface. The first
layer, ObjectLinkingLayer, is the foundation of our JIT: it takes in-memory object files produced by a compiler and
links them on the fly to make them executable. This JIT-on-top-of-a-linker design was introduced in MCJIT, however
the linker was hidden inside the MCJIT class. In ORC we expose the linker so that clients can access and configure
it directly if they need to. In this tutorial our ObjectLinkingLayer will just be used to support the next layer in our
stack: the IRCompileLayer, which will be responsible for taking LLVM IR, compiling it, and passing the resulting
in-memory object files down to the object linking layer below.

That’s it for member variables, after that we have a single typedef: ModuleHandle. This is the handle type that will
be returned from our JIT’s addModule method, and can be passed to the removeModule method to remove a module.
The IRCompileLayer class already provides a convenient handle type (IRCompileLayer::ModuleSetHandleT), so we
just alias our ModuleHandle to this.

KaleidoscopeJIT()
: TM(EngineBuilder().selectTarget()), DL(TM->createDataLayout()),

CompileLayer(ObjectLayer, SimpleCompiler(*TM)) {
llvm::sys::DynamicLibrary::LoadLibraryPermanently(nullptr);

}

TargetMachine &getTargetMachine() { return *TM; }

Next up we have our class constructor. We begin by initializing TM using the EngineBuilder::selectTarget helper
method, which constructs a TargetMachine for the current process. Next we use our newly created TargetMachine to
initialize DL, our DataLayout. Then we initialize our IRCompileLayer. Our IRCompile layer needs two things: (1)
A reference to our object linking layer, and (2) a compiler instance to use to perform the actual compilation from IR
to object files. We use the off-the-shelf SimpleCompiler instance for now. Finally, in the body of the constructor, we
call the DynamicLibrary::LoadLibraryPermanently method with a nullptr argument. Normally the LoadLibraryPer-
manently method is called with the path of a dynamic library to load, but when passed a null pointer it will ‘load’ the
host process itself, making its exported symbols available for execution.

ModuleHandle addModule(std::unique_ptr<Module> M) {
// Build our symbol resolver:
// Lambda 1: Look back into the JIT itself to find symbols that are part of
// the same "logical dylib".
// Lambda 2: Search for external symbols in the host process.
auto Resolver = createLambdaResolver(

[&](const std::string &Name) {
if (auto Sym = CompileLayer.findSymbol(Name, false))
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return Sym.toRuntimeDyldSymbol();
return RuntimeDyld::SymbolInfo(nullptr);

},
[](const std::string &S) {
if (auto SymAddr =

RTDyldMemoryManager::getSymbolAddressInProcess(Name))
return RuntimeDyld::SymbolInfo(SymAddr, JITSymbolFlags::Exported);

return RuntimeDyld::SymbolInfo(nullptr);
});

// Build a singlton module set to hold our module.
std::vector<std::unique_ptr<Module>> Ms;
Ms.push_back(std::move(M));

// Add the set to the JIT with the resolver we created above and a newly
// created SectionMemoryManager.
return CompileLayer.addModuleSet(std::move(Ms),

make_unique<SectionMemoryManager>(),
std::move(Resolver));

}

Now we come to the first of our JIT API methods: addModule. This method is responsible for adding IR to the JIT and
making it available for execution. In this initial implementation of our JIT we will make our modules “available for
execution” by adding them straight to the IRCompileLayer, which will immediately compile them. In later chapters
we will teach our JIT to be lazier and instead add the Modules to a “pending” list to be compiled if and when they are
first executed.

To add our module to the IRCompileLayer we need to supply two auxiliary objects (as well as the module itself): a
memory manager and a symbol resolver. The memory manager will be responsible for managing the memory allocated
to JIT’d machine code, setting memory permissions, and registering exception handling tables (if the JIT’d code uses
exceptions). For our memory manager we will use the SectionMemoryManager class: another off-the-shelf utility that
provides all the basic functionality we need. The second auxiliary class, the symbol resolver, is more interesting for
us. It exists to tell the JIT where to look when it encounters an external symbol in the module we are adding. External
symbols are any symbol not defined within the module itself, including calls to functions outside the JIT and calls to
functions defined in other modules that have already been added to the JIT. It may seem as though modules added to
the JIT should “know about one another” by default, but since we would still have to supply a symbol resolver for
references to code outside the JIT it turns out to be easier to just re-use this one mechanism for all symbol resolution.
This has the added benefit that the user has full control over the symbol resolution process. Should we search for
definitions within the JIT first, then fall back on external definitions? Or should we prefer external definitions where
available and only JIT code if we don’t already have an available implementation? By using a single symbol resolution
scheme we are free to choose whatever makes the most sense for any given use case.

Building a symbol resolver is made especially easy by the createLambdaResolver function. This function takes two
lambdas3 and returns a RuntimeDyld::SymbolResolver instance. The first lambda is used as the implementation of
the resolver’s findSymbolInLogicalDylib method, which searches for symbol definitions that should be thought of as
being part of the same “logical” dynamic library as this Module. If you are familiar with static linking: this means
that findSymbolInLogicalDylib should expose symbols with common linkage and hidden visibility. If all this sounds
foreign you can ignore the details and just remember that this is the first method that the linker will use to try to find
a symbol definition. If the findSymbolInLogicalDylib method returns a null result then the linker will call the second
symbol resolver method, called findSymbol, which searches for symbols that should be thought of as external to (but
visibile from) the module and its logical dylib. In this tutorial we will adopt the following simple scheme: All modules
added to the JIT will behave as if they were linked into a single, ever-growing logical dylib. To implement this our first
lambda (the one defining findSymbolInLogicalDylib) will just search for JIT’d code by calling the CompileLayer’s
findSymbol method. If we don’t find a symbol in the JIT itself we’ll fall back to our second lambda, which implements
findSymbol. This will use the RTDyldMemoyrManager::getSymbolAddressInProcess method to search for the symbol

3 Actually they don’t have to be lambdas, any object with a call operator will do, including plain old functions or std::functions.
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within the program itself. If we can’t find a symbol definition via either of these paths the JIT will refuse to accept our
module, returning a “symbol not found” error.

Now that we’ve built our symbol resolver we’re ready to add our module to the JIT. We do this by calling the Com-
pileLayer’s addModuleSet method4. Since we only have a single Module and addModuleSet expects a collection,
we will create a vector of modules and add our module as the only member. Since we have already typedef’d our
ModuleHandle type to be the same as the CompileLayer’s handle type, we can return the handle from addModuleSet
directly from our addModule method.

JITSymbol findSymbol(const std::string Name) {
std::string MangledName;
raw_string_ostream MangledNameStream(MangledName);
Mangler::getNameWithPrefix(MangledNameStream, Name, DL);
return CompileLayer.findSymbol(MangledNameStream.str(), true);

}

void removeModule(ModuleHandle H) {
CompileLayer.removeModuleSet(H);

}

Now that we can add code to our JIT, we need a way to find the symbols we’ve added to it. To do that we call the
findSymbol method on our IRCompileLayer, but with a twist: We have to mangle the name of the symbol we’re
searching for first. The reason for this is that the ORC JIT components use mangled symbols internally the same way
a static compiler and linker would, rather than using plain IR symbol names. The kind of mangling will depend on
the DataLayout, which in turn depends on the target platform. To allow us to remain portable and search based on the
un-mangled name, we just re-produce this mangling ourselves.

We now come to the last method in our JIT API: removeModule. This method is responsible for destructing the
MemoryManager and SymbolResolver that were added with a given module, freeing any resources they were using
in the process. In our Kaleidoscope demo we rely on this method to remove the module representing the most recent
top-level expression, preventing it from being treated as a duplicate definition when the next top-level expression is
entered. It is generally good to free any module that you know you won’t need to call further, just to free up the
resources dedicated to it. However, you don’t strictly need to do this: All resources will be cleaned up when your JIT
class is destructed, if the haven’t been freed before then.

This brings us to the end of Chapter 1 of Building a JIT. You now have a basic but fully functioning JIT stack that
you can use to take LLVM IR and make it executable within the context of your JIT process. In the next chapter we’ll
look at how to extend this JIT to produce better quality code, and in the process take a deeper look at the ORC layer
concept.

Next: Extending the KaleidoscopeJIT

Full Code Listing

Here is the complete code listing for our running example. To build this example, use:

# Compile
clang++ -g toy.cpp `llvm-config --cxxflags --ldflags --system-libs --libs core orc
→˓native` -O3 -o toy
# Run
./toy

Here is the code:

4 ORC layers accept sets of Modules, rather than individual ones, so that all Modules in the set could be co-located by the memory manager,
though this feature is not yet implemented.
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//===----- KaleidoscopeJIT.h - A simple JIT for Kaleidoscope ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Contains a simple JIT definition for use in the kaleidoscope tutorials.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H
#define LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H

#include "llvm/ADT/STLExtras.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/RuntimeDyld.h"
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include "llvm/ExecutionEngine/Orc/CompileUtils.h"
#include "llvm/ExecutionEngine/Orc/JITSymbol.h"
#include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
#include "llvm/ExecutionEngine/Orc/LambdaResolver.h"
#include "llvm/ExecutionEngine/Orc/ObjectLinkingLayer.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Mangler.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <memory>
#include <string>
#include <vector>

namespace llvm {
namespace orc {

class KaleidoscopeJIT {
private:
std::unique_ptr<TargetMachine> TM;
const DataLayout DL;
ObjectLinkingLayer<> ObjectLayer;
IRCompileLayer<decltype(ObjectLayer)> CompileLayer;

public:
typedef decltype(CompileLayer)::ModuleSetHandleT ModuleHandle;

KaleidoscopeJIT()
: TM(EngineBuilder().selectTarget()), DL(TM->createDataLayout()),

CompileLayer(ObjectLayer, SimpleCompiler(*TM)) {
llvm::sys::DynamicLibrary::LoadLibraryPermanently(nullptr);

}

TargetMachine &getTargetMachine() { return *TM; }

ModuleHandle addModule(std::unique_ptr<Module> M) {
// Build our symbol resolver:
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// Lambda 1: Look back into the JIT itself to find symbols that are part of
// the same "logical dylib".
// Lambda 2: Search for external symbols in the host process.
auto Resolver = createLambdaResolver(

[&](const std::string &Name) {
if (auto Sym = CompileLayer.findSymbol(Name, false))
return Sym.toRuntimeDyldSymbol();

return RuntimeDyld::SymbolInfo(nullptr);
},
[](const std::string &Name) {
if (auto SymAddr =

RTDyldMemoryManager::getSymbolAddressInProcess(Name))
return RuntimeDyld::SymbolInfo(SymAddr, JITSymbolFlags::Exported);

return RuntimeDyld::SymbolInfo(nullptr);
});

// Build a singlton module set to hold our module.
std::vector<std::unique_ptr<Module>> Ms;
Ms.push_back(std::move(M));

// Add the set to the JIT with the resolver we created above and a newly
// created SectionMemoryManager.
return CompileLayer.addModuleSet(std::move(Ms),

make_unique<SectionMemoryManager>(),
std::move(Resolver));

}

JITSymbol findSymbol(const std::string Name) {
std::string MangledName;
raw_string_ostream MangledNameStream(MangledName);
Mangler::getNameWithPrefix(MangledNameStream, Name, DL);
return CompileLayer.findSymbol(MangledNameStream.str(), true);

}

void removeModule(ModuleHandle H) {
CompileLayer.removeModuleSet(H);

}

};

} // end namespace orc
} // end namespace llvm

#endif // LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H

Building a JIT: Adding Optimizations – An introduction to ORC Layers

• Chapter 2 Introduction

• Optimizing Modules using the IRTransformLayer

• Full Code Listing

This tutorial is under active development. It is incomplete and details may change frequently. Nonetheless we
invite you to try it out as it stands, and we welcome any feedback.
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Chapter 2 Introduction

Welcome to Chapter 2 of the “Building an ORC-based JIT in LLVM” tutorial. In Chapter 1 of this series we exam-
ined a basic JIT class, KaleidoscopeJIT, that could take LLVM IR modules as input and produce executable code in
memory. KaleidoscopeJIT was able to do this with relatively little code by composing two off-the-shelf ORC layers:
IRCompileLayer and ObjectLinkingLayer, to do much of the heavy lifting.

In this layer we’ll learn more about the ORC layer concept by using a new layer, IRTransformLayer, to add IR
optimization support to KaleidoscopeJIT.

Optimizing Modules using the IRTransformLayer

In Chapter 4 of the “Implementing a language with LLVM” tutorial series the llvm FunctionPassManager is introduced
as a means for optimizing LLVM IR. Interested readers may read that chapter for details, but in short: to optimize
a Module we create an llvm::FunctionPassManager instance, configure it with a set of optimizations, then run the
PassManager on a Module to mutate it into a (hopefully) more optimized but semantically equivalent form. In the
original tutorial series the FunctionPassManager was created outside the KaleidoscopeJIT and modules were optimized
before being added to it. In this Chapter we will make optimization a phase of our JIT instead. For now this will provide
us a motivation to learn more about ORC layers, but in the long term making optimization part of our JIT will yield
an important benefit: When we begin lazily compiling code (i.e. deferring compilation of each function until the first
time it’s run), having optimization managed by our JIT will allow us to optimize lazily too, rather than having to do
all our optimization up-front.

To add optimization support to our JIT we will take the KaleidoscopeJIT from Chapter 1 and compose an ORC
IRTransformLayer on top. We will look at how the IRTransformLayer works in more detail below, but the interface
is simple: the constructor for this layer takes a reference to the layer below (as all layers do) plus an IR optimization
function that it will apply to each Module that is added via addModuleSet:

class KaleidoscopeJIT {
private:
std::unique_ptr<TargetMachine> TM;
const DataLayout DL;
ObjectLinkingLayer<> ObjectLayer;
IRCompileLayer<decltype(ObjectLayer)> CompileLayer;

typedef std::function<std::unique_ptr<Module>(std::unique_ptr<Module>)>
OptimizeFunction;

IRTransformLayer<decltype(CompileLayer), OptimizeFunction> OptimizeLayer;

public:
typedef decltype(OptimizeLayer)::ModuleSetHandleT ModuleHandle;

KaleidoscopeJIT()
: TM(EngineBuilder().selectTarget()), DL(TM->createDataLayout()),

CompileLayer(ObjectLayer, SimpleCompiler(*TM)),
OptimizeLayer(CompileLayer,

[this](std::unique_ptr<Module> M) {
return optimizeModule(std::move(M));

}) {
llvm::sys::DynamicLibrary::LoadLibraryPermanently(nullptr);

}

Our extended KaleidoscopeJIT class starts out the same as it did in Chapter 1, but after the CompileLayer we introduce
a typedef for our optimization function. In this case we use a std::function (a handy wrapper for “function-like”
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things) from a single unique_ptr<Module> input to a std::unique_ptr<Module> output. With our optimization function
typedef in place we can declare our OptimizeLayer, which sits on top of our CompileLayer.

To initialize our OptimizeLayer we pass it a reference to the CompileLayer below (standard practice for layers), and
we initialize the OptimizeFunction using a lambda that calls out to an “optimizeModule” function that we will define
below.

// ...
auto Resolver = createLambdaResolver(

[&](const std::string &Name) {
if (auto Sym = OptimizeLayer.findSymbol(Name, false))
return Sym.toRuntimeDyldSymbol();

return RuntimeDyld::SymbolInfo(nullptr);
},

// ...

// ...
return OptimizeLayer.addModuleSet(std::move(Ms),

make_unique<SectionMemoryManager>(),
std::move(Resolver));

// ...

// ...
return OptimizeLayer.findSymbol(MangledNameStream.str(), true);
// ...

// ...
OptimizeLayer.removeModuleSet(H);
// ...

Next we need to replace references to ‘CompileLayer’ with references to OptimizeLayer in our key methods: addMod-
ule, findSymbol, and removeModule. In addModule we need to be careful to replace both references: the findSymbol
call inside our resolver, and the call through to addModuleSet.

std::unique_ptr<Module> optimizeModule(std::unique_ptr<Module> M) {
// Create a function pass manager.
auto FPM = llvm::make_unique<legacy::FunctionPassManager>(M.get());

// Add some optimizations.
FPM->add(createInstructionCombiningPass());
FPM->add(createReassociatePass());
FPM->add(createGVNPass());
FPM->add(createCFGSimplificationPass());
FPM->doInitialization();

// Run the optimizations over all functions in the module being added to
// the JIT.
for (auto &F : *M)
FPM->run(F);

return M;
}

At the bottom of our JIT we add a private method to do the actual optimization: optimizeModule. This function
sets up a FunctionPassManager, adds some passes to it, runs it over every function in the module, and then returns the
mutated module. The specific optimizations are the same ones used in Chapter 4 of the “Implementing a language with
LLVM” tutorial series. Readers may visit that chapter for a more in-depth discussion of these, and of IR optimization
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in general.

And that’s it in terms of changes to KaleidoscopeJIT: When a module is added via addModule the OptimizeLayer will
call our optimizeModule function before passing the transformed module on to the CompileLayer below. Of course,
we could have called optimizeModule directly in our addModule function and not gone to the bother of using the
IRTransformLayer, but doing so gives us another opportunity to see how layers compose. It also provides a neat entry
point to the layer concept itself, because IRTransformLayer turns out to be one of the simplest implementations of the
layer concept that can be devised:

template <typename BaseLayerT, typename TransformFtor>
class IRTransformLayer {
public:

typedef typename BaseLayerT::ModuleSetHandleT ModuleSetHandleT;

IRTransformLayer(BaseLayerT &BaseLayer,
TransformFtor Transform = TransformFtor())

: BaseLayer(BaseLayer), Transform(std::move(Transform)) {}

template <typename ModuleSetT, typename MemoryManagerPtrT,
typename SymbolResolverPtrT>

ModuleSetHandleT addModuleSet(ModuleSetT Ms,
MemoryManagerPtrT MemMgr,
SymbolResolverPtrT Resolver) {

for (auto I = Ms.begin(), E = Ms.end(); I != E; ++I)

*I = Transform(std::move(*I));

return BaseLayer.addModuleSet(std::move(Ms), std::move(MemMgr),
std::move(Resolver));

}

void removeModuleSet(ModuleSetHandleT H) { BaseLayer.removeModuleSet(H); }

JITSymbol findSymbol(const std::string &Name, bool ExportedSymbolsOnly) {
return BaseLayer.findSymbol(Name, ExportedSymbolsOnly);

}

JITSymbol findSymbolIn(ModuleSetHandleT H, const std::string &Name,
bool ExportedSymbolsOnly) {

return BaseLayer.findSymbolIn(H, Name, ExportedSymbolsOnly);
}

void emitAndFinalize(ModuleSetHandleT H) {
BaseLayer.emitAndFinalize(H);

}

TransformFtor& getTransform() { return Transform; }

const TransformFtor& getTransform() const { return Transform; }

private:
BaseLayerT &BaseLayer;
TransformFtor Transform;

};

This is the whole definition of IRTransformLayer, from llvm/include/llvm/ExecutionEngine/Orc/
IRTransformLayer.h, stripped of its comments. It is a template class with two template arguments:
BaesLayerT and TransformFtor that provide the type of the base layer and the type of the “transform func-
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tor” (in our case a std::function) respectively. This class is concerned with two very simple jobs: (1) Running every
IR Module that is added with addModuleSet through the transform functor, and (2) conforming to the ORC layer
interface. The interface consists of one typedef and five methods:

Interface Description
Module-
SetHandleT

Provides a handle that can be used to identify a module set when calling findSymbolIn,
removeModuleSet, or emitAndFinalize.

addMod-
uleSet

Takes a given set of Modules and makes them “available for execution. This means that symbols in
those modules should be searchable via findSymbol and findSymbolIn, and the address of the
symbols should be read/writable (for data symbols), or executable (for function symbols) after
JITSymbol::getAddress() is called. Note: This means that addModuleSet doesn’t have to compile
(or do any other work) up-front. It can, like IRCompileLayer, act eagerly, but it can also simply
record the module and take no further action until somebody calls JITSymbol::getAddress(). In
IRTransformLayer’s case addModuleSet eagerly applies the transform functor to each module in
the set, then passes the resulting set of mutated modules down to the layer below.

remove-
ModuleSet

Removes a set of modules from the JIT. Code or data defined in these modules will no longer be
available, and the memory holding the JIT’d definitions will be freed.

findSym-
bol

Searches for the named symbol in all modules that have previously been added via addModuleSet
(and not yet removed by a call to removeModuleSet). In IRTransformLayer we just pass the query
on to the layer below. In our REPL this is our default way to search for function definitions.

findSym-
bolIn

Searches for the named symbol in the module set indicated by the given ModuleSetHandleT. This
is just an optimized search, better for lookup-speed when you know exactly a symbol definition
should be found. In IRTransformLayer we just pass this query on to the layer below. In our REPL
we use this method to search for functions representing top-level expressions, since we know
exactly where we’ll find them: in the top-level expression module we just added.

emitAnd-
Finalize

Forces all of the actions required to make the code and data in a module set (represented by a
ModuleSetHandleT) accessible. Behaves as if some symbol in the set had been searched for and
JITSymbol::getSymbolAddress called. This is rarely needed, but can be useful when dealing with
layers that usually behave lazily if the user wants to trigger early compilation (for example, to use
idle CPU time to eagerly compile code in the background).

This interface attempts to capture the natural operations of a JIT (with some wrinkles like emitAndFinalize for perfor-
mance), similar to the basic JIT API operations we identified in Chapter 1. Conforming to the layer concept allows
classes to compose neatly by implementing their behaviors in terms of the these same operations, carried out on the
layer below. For example, an eager layer (like IRTransformLayer) can implement addModuleSet by running each
module in the set through its transform up-front and immediately passing the result to the layer below. A lazy layer, by
contrast, could implement addModuleSet by squirreling away the modules doing no other up-front work, but applying
the transform (and calling addModuleSet on the layer below) when the client calls findSymbol instead. The JIT’d pro-
gram behavior will be the same either way, but these choices will have different performance characteristics: Doing
work eagerly means the JIT takes longer up-front, but proceeds smoothly once this is done. Deferring work allows the
JIT to get up-and-running quickly, but will force the JIT to pause and wait whenever some code or data is needed that
hasn’t already been processed.

Our current REPL is eager: Each function definition is optimized and compiled as soon as it’s typed in. If we were
to make the transform layer lazy (but not change things otherwise) we could defer optimization until the first time we
reference a function in a top-level expression (see if you can figure out why, then check out the answer below1). In
the next chapter, however we’ll introduce fully lazy compilation, in which function’s aren’t compiled until they’re first
called at run-time. At this point the trade-offs get much more interesting: the lazier we are, the quicker we can start
executing the first function, but the more often we’ll have to pause to compile newly encountered functions. If we only
code-gen lazily, but optimize eagerly, we’ll have a slow startup (which everything is optimized) but relatively short
pauses as each function just passes through code-gen. If we both optimize and code-gen lazily we can start executing
the first function more quickly, but we’ll have longer pauses as each function has to be both optimized and code-

1 When we add our top-level expression to the JIT, any calls to functions that we defined earlier will appear to the ObjectLinkingLayer as
external symbols. The ObjectLinkingLayer will call the SymbolResolver that we defined in addModuleSet, which in turn calls findSymbol on the
OptimizeLayer, at which point even a lazy transform layer will have to do its work.
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gen’d when it’s first executed. Things become even more interesting if we consider interproceedural optimizations
like inlining, which must be performed eagerly. These are complex trade-offs, and there is no one-size-fits all solution
to them, but by providing composable layers we leave the decisions to the person implementing the JIT, and make it
easy for them to experiment with different configurations.

Next: Adding Per-function Lazy Compilation

Full Code Listing

Here is the complete code listing for our running example with an IRTransformLayer added to enable optimization.
To build this example, use:

# Compile
clang++ -g toy.cpp `llvm-config --cxxflags --ldflags --system-libs --libs core orc
→˓native` -O3 -o toy
# Run
./toy

Here is the code:

//===----- KaleidoscopeJIT.h - A simple JIT for Kaleidoscope ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Contains a simple JIT definition for use in the kaleidoscope tutorials.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H
#define LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H

#include "llvm/ADT/STLExtras.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/RuntimeDyld.h"
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include "llvm/ExecutionEngine/Orc/CompileUtils.h"
#include "llvm/ExecutionEngine/Orc/JITSymbol.h"
#include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
#include "llvm/ExecutionEngine/Orc/IRTransformLayer.h"
#include "llvm/ExecutionEngine/Orc/LambdaResolver.h"
#include "llvm/ExecutionEngine/Orc/ObjectLinkingLayer.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Mangler.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <memory>
#include <string>
#include <vector>

namespace llvm {
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namespace orc {

class KaleidoscopeJIT {
private:
std::unique_ptr<TargetMachine> TM;
const DataLayout DL;
ObjectLinkingLayer<> ObjectLayer;
IRCompileLayer<decltype(ObjectLayer)> CompileLayer;

typedef std::function<std::unique_ptr<Module>(std::unique_ptr<Module>)>
OptimizeFunction;

IRTransformLayer<decltype(CompileLayer), OptimizeFunction> OptimizeLayer;

public:
typedef decltype(OptimizeLayer)::ModuleSetHandleT ModuleHandle;

KaleidoscopeJIT()
: TM(EngineBuilder().selectTarget()), DL(TM->createDataLayout()),

CompileLayer(ObjectLayer, SimpleCompiler(*TM)),
OptimizeLayer(CompileLayer,

[this](std::unique_ptr<Module> M) {
return optimizeModule(std::move(M));

}) {
llvm::sys::DynamicLibrary::LoadLibraryPermanently(nullptr);

}

TargetMachine &getTargetMachine() { return *TM; }

ModuleHandle addModule(std::unique_ptr<Module> M) {
// Build our symbol resolver:
// Lambda 1: Look back into the JIT itself to find symbols that are part of
// the same "logical dylib".
// Lambda 2: Search for external symbols in the host process.
auto Resolver = createLambdaResolver(

[&](const std::string &Name) {
if (auto Sym = OptimizeLayer.findSymbol(Name, false))

return Sym.toRuntimeDyldSymbol();
return RuntimeDyld::SymbolInfo(nullptr);

},
[](const std::string &Name) {
if (auto SymAddr =

RTDyldMemoryManager::getSymbolAddressInProcess(Name))
return RuntimeDyld::SymbolInfo(SymAddr, JITSymbolFlags::Exported);

return RuntimeDyld::SymbolInfo(nullptr);
});

// Build a singlton module set to hold our module.
std::vector<std::unique_ptr<Module>> Ms;
Ms.push_back(std::move(M));

// Add the set to the JIT with the resolver we created above and a newly
// created SectionMemoryManager.
return OptimizeLayer.addModuleSet(std::move(Ms),

make_unique<SectionMemoryManager>(),
std::move(Resolver));

}
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JITSymbol findSymbol(const std::string Name) {
std::string MangledName;
raw_string_ostream MangledNameStream(MangledName);
Mangler::getNameWithPrefix(MangledNameStream, Name, DL);
return OptimizeLayer.findSymbol(MangledNameStream.str(), true);

}

void removeModule(ModuleHandle H) {
OptimizeLayer.removeModuleSet(H);

}

private:

std::unique_ptr<Module> optimizeModule(std::unique_ptr<Module> M) {
// Create a function pass manager.
auto FPM = llvm::make_unique<legacy::FunctionPassManager>(M.get());

// Add some optimizations.
FPM->add(createInstructionCombiningPass());
FPM->add(createReassociatePass());
FPM->add(createGVNPass());
FPM->add(createCFGSimplificationPass());
FPM->doInitialization();

// Run the optimizations over all functions in the module being added to
// the JIT.
for (auto &F : *M)
FPM->run(F);

return M;
}

};

} // end namespace orc
} // end namespace llvm

#endif // LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H

Building a JIT: Per-function Lazy Compilation

• Chapter 3 Introduction

• Lazy Compilation

• Full Code Listing

This tutorial is under active development. It is incomplete and details may change frequently. Nonetheless we
invite you to try it out as it stands, and we welcome any feedback.
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Chapter 3 Introduction

Welcome to Chapter 3 of the “Building an ORC-based JIT in LLVM” tutorial. This chapter discusses lazy JITing and
shows you how to enable it by adding an ORC CompileOnDemand layer the JIT from Chapter 2.

Lazy Compilation

When we add a module to the KaleidoscopeJIT class described in Chapter 2 it is immediately optimized, compiled
and linked for us by the IRTransformLayer, IRCompileLayer and ObjectLinkingLayer respectively. This scheme,
where all the work to make a Module executable is done up front, is relatively simple to understand its performance
characteristics are easy to reason about. However, it will lead to very high startup times if the amount of code to be
compiled is large, and may also do a lot of unnecessary compilation if only a few compiled functions are ever called
at runtime. A truly “just-in-time” compiler should allow us to defer the compilation of any given function until the
moment that function is first called, improving launch times and eliminating redundant work. In fact, the ORC APIs
provide us with a layer to lazily compile LLVM IR: CompileOnDemandLayer.

The CompileOnDemandLayer conforms to the layer interface described in Chapter 2, but the addModuleSet method
behaves quite differently from the layers we have seen so far: rather than doing any work up front, it just constructs a
stub for each function in the module and arranges for the stub to trigger compilation of the actual function the first time
it is called. Because stub functions are very cheap to produce CompileOnDemand’s addModuleSet method runs very
quickly, reducing the time required to launch the first function to be executed, and saving us from doing any redundant
compilation. By conforming to the layer interface, CompileOnDemand can be easily added on top of our existing JIT
class. We just need a few changes:

...
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include "llvm/ExecutionEngine/Orc/CompileOnDemandLayer.h"
#include "llvm/ExecutionEngine/Orc/CompileUtils.h"
...

...
class KaleidoscopeJIT {
private:
std::unique_ptr<TargetMachine> TM;
const DataLayout DL;
std::unique_ptr<JITCompileCallbackManager> CompileCallbackManager;
ObjectLinkingLayer<> ObjectLayer;
IRCompileLayer<decltype(ObjectLayer)> CompileLayer;

typedef std::function<std::unique_ptr<Module>(std::unique_ptr<Module>)>
OptimizeFunction;

IRTransformLayer<decltype(CompileLayer), OptimizeFunction> OptimizeLayer;
CompileOnDemandLayer<decltype(OptimizeLayer)> CODLayer;

public:
typedef decltype(CODLayer)::ModuleSetHandleT ModuleHandle;

First we need to include the CompileOnDemandLayer.h header, then add two new members: a
std::unique_ptr<CompileCallbackManager> and a CompileOnDemandLayer, to our class. The CompileCallback-
Manager is a utility that enables us to create re-entry points into the compiler for functions that we want to lazily
compile. In the next chapter we’ll be looking at this class in detail, but for now we’ll be treating it as an opaque utility:
We just need to pass a reference to it into our new CompileOnDemandLayer, and the layer will do all the work of
setting up the callbacks using the callback manager we gave it.
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KaleidoscopeJIT()
: TM(EngineBuilder().selectTarget()), DL(TM->createDataLayout()),

CompileLayer(ObjectLayer, SimpleCompiler(*TM)),
OptimizeLayer(CompileLayer,

[this](std::unique_ptr<Module> M) {
return optimizeModule(std::move(M));

}),
CompileCallbackManager(

orc::createLocalCompileCallbackManager(TM->getTargetTriple(), 0)),
CODLayer(OptimizeLayer,

[this](Function &F) { return std::set<Function*>({&F}); },

*CompileCallbackManager,
orc::createLocalIndirectStubsManagerBuilder(
TM->getTargetTriple())) {

llvm::sys::DynamicLibrary::LoadLibraryPermanently(nullptr);
}

Next we have to update our constructor to initialize the new members. To create an appropriate compile callback
manager we use the createLocalCompileCallbackManager function, which takes a TargetMachine and a TargetAddress
to call if it receives a request to compile an unknown function. In our simple JIT this situation is unlikely to come up,
so we’ll cheat and just pass ‘0’ here. In a production quality JIT you could give the address of a function that throws
an exception in order to unwind the JIT’d code stack.

Now we can construct our CompileOnDemandLayer. Following the pattern from previous layers we start by passing
a reference to the next layer down in our stack – the OptimizeLayer. Next we need to supply a ‘partitioning func-
tion’: when a not-yet-compiled function is called, the CompileOnDemandLayer will call this function to ask us what
we would like to compile. At a minimum we need to compile the function being called (given by the argument to
the partitioning function), but we could also request that the CompileOnDemandLayer compile other functions that
are unconditionally called (or highly likely to be called) from the function being called. For KaleidoscopeJIT we’ll
keep it simple and just request compilation of the function that was called. Next we pass a reference to our Compile-
CallbackManager. Finally, we need to supply an “indirect stubs manager builder”. This is a function that constructs
IndirectStubManagers, which are in turn used to build the stubs for each module. The CompileOnDemandLayer will
call the indirect stub manager builder once for each call to addModuleSet, and use the resulting indirect stubs manager
to create stubs for all functions in all modules added. If/when the module set is removed from the JIT the indirect
stubs manager will be deleted, freeing any memory allocated to the stubs. We supply this function by using the
createLocalIndirectStubsManagerBuilder utility.

// ...
if (auto Sym = CODLayer.findSymbol(Name, false))

// ...
return CODLayer.addModuleSet(std::move(Ms),

make_unique<SectionMemoryManager>(),
std::move(Resolver));

// ...

// ...
return CODLayer.findSymbol(MangledNameStream.str(), true);
// ...

// ...
CODLayer.removeModuleSet(H);
// ...

Finally, we need to replace the references to OptimizeLayer in our addModule, findSymbol, and removeModule
methods. With that, we’re up and running.

To be done:
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** Discuss CompileCallbackManagers and IndirectStubManagers in more detail.**

Full Code Listing

Here is the complete code listing for our running example with a CompileOnDemand layer added to enable lazy
function-at-a-time compilation. To build this example, use:

# Compile
clang++ -g toy.cpp `llvm-config --cxxflags --ldflags --system-libs --libs core orc
→˓native` -O3 -o toy
# Run
./toy

Here is the code:

//===----- KaleidoscopeJIT.h - A simple JIT for Kaleidoscope ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Contains a simple JIT definition for use in the kaleidoscope tutorials.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H
#define LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H

#include "llvm/ADT/STLExtras.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/RuntimeDyld.h"
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include "llvm/ExecutionEngine/Orc/CompileOnDemandLayer.h"
#include "llvm/ExecutionEngine/Orc/CompileUtils.h"
#include "llvm/ExecutionEngine/Orc/JITSymbol.h"
#include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
#include "llvm/ExecutionEngine/Orc/IRTransformLayer.h"
#include "llvm/ExecutionEngine/Orc/LambdaResolver.h"
#include "llvm/ExecutionEngine/Orc/ObjectLinkingLayer.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Mangler.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <memory>
#include <string>
#include <vector>

namespace llvm {
namespace orc {

class KaleidoscopeJIT {
private:
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std::unique_ptr<TargetMachine> TM;
const DataLayout DL;
ObjectLinkingLayer<> ObjectLayer;
IRCompileLayer<decltype(ObjectLayer)> CompileLayer;

typedef std::function<std::unique_ptr<Module>(std::unique_ptr<Module>)>
OptimizeFunction;

IRTransformLayer<decltype(CompileLayer), OptimizeFunction> OptimizeLayer;

std::unique_ptr<JITCompileCallbackManager> CompileCallbackManager;
CompileOnDemandLayer<decltype(OptimizeLayer)> CODLayer;

public:
typedef decltype(CODLayer)::ModuleSetHandleT ModuleHandle;

KaleidoscopeJIT()
: TM(EngineBuilder().selectTarget()), DL(TM->createDataLayout()),

CompileLayer(ObjectLayer, SimpleCompiler(*TM)),
OptimizeLayer(CompileLayer,

[this](std::unique_ptr<Module> M) {
return optimizeModule(std::move(M));

}),
CompileCallbackManager(

orc::createLocalCompileCallbackManager(TM->getTargetTriple(), 0)),
CODLayer(OptimizeLayer,

[this](Function &F) { return std::set<Function*>({&F}); },

*CompileCallbackManager,
orc::createLocalIndirectStubsManagerBuilder(
TM->getTargetTriple())) {

llvm::sys::DynamicLibrary::LoadLibraryPermanently(nullptr);
}

TargetMachine &getTargetMachine() { return *TM; }

ModuleHandle addModule(std::unique_ptr<Module> M) {
// Build our symbol resolver:
// Lambda 1: Look back into the JIT itself to find symbols that are part of
// the same "logical dylib".
// Lambda 2: Search for external symbols in the host process.
auto Resolver = createLambdaResolver(

[&](const std::string &Name) {
if (auto Sym = CODLayer.findSymbol(Name, false))

return Sym.toRuntimeDyldSymbol();
return RuntimeDyld::SymbolInfo(nullptr);

},
[](const std::string &Name) {
if (auto SymAddr =

RTDyldMemoryManager::getSymbolAddressInProcess(Name))
return RuntimeDyld::SymbolInfo(SymAddr, JITSymbolFlags::Exported);

return RuntimeDyld::SymbolInfo(nullptr);
});

// Build a singlton module set to hold our module.
std::vector<std::unique_ptr<Module>> Ms;
Ms.push_back(std::move(M));

// Add the set to the JIT with the resolver we created above and a newly
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// created SectionMemoryManager.
return CODLayer.addModuleSet(std::move(Ms),

make_unique<SectionMemoryManager>(),
std::move(Resolver));

}

JITSymbol findSymbol(const std::string Name) {
std::string MangledName;
raw_string_ostream MangledNameStream(MangledName);
Mangler::getNameWithPrefix(MangledNameStream, Name, DL);
return CODLayer.findSymbol(MangledNameStream.str(), true);

}

void removeModule(ModuleHandle H) {
CODLayer.removeModuleSet(H);

}

private:

std::unique_ptr<Module> optimizeModule(std::unique_ptr<Module> M) {
// Create a function pass manager.
auto FPM = llvm::make_unique<legacy::FunctionPassManager>(M.get());

// Add some optimizations.
FPM->add(createInstructionCombiningPass());
FPM->add(createReassociatePass());
FPM->add(createGVNPass());
FPM->add(createCFGSimplificationPass());
FPM->doInitialization();

// Run the optimizations over all functions in the module being added to
// the JIT.
for (auto &F : *M)
FPM->run(F);

return M;
}

};

} // end namespace orc
} // end namespace llvm

#endif // LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H

Next: Extreme Laziness – Using Compile Callbacks to JIT directly from ASTs

Building a JIT: Extreme Laziness - Using Compile Callbacks to JIT from ASTs

• Chapter 4 Introduction

• Full Code Listing

This tutorial is under active development. It is incomplete and details may change frequently. Nonetheless we
invite you to try it out as it stands, and we welcome any feedback.
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Chapter 4 Introduction

Welcome to Chapter 4 of the “Building an ORC-based JIT in LLVM” tutorial. This chapter introduces the Compile
Callbacks and Indirect Stubs APIs and shows how they can be used to replace the CompileOnDemand layer from
Chapter 3 with a custom lazy-JITing scheme that JITs directly from Kaleidoscope ASTs.

To be done:

(1) Describe the drawbacks of JITing from IR (have to compile to IR first, which reduces the benefits of laziness).

(2) Describe CompileCallbackManagers and IndirectStubManagers in detail.

(3) Run through the implementation of addFunctionAST.

Full Code Listing

Here is the complete code listing for our running example that JITs lazily from Kaleidoscope ASTS. To build this
example, use:

# Compile
clang++ -g toy.cpp `llvm-config --cxxflags --ldflags --system-libs --libs core orc
→˓native` -O3 -o toy
# Run
./toy

Here is the code:

//===----- KaleidoscopeJIT.h - A simple JIT for Kaleidoscope ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Contains a simple JIT definition for use in the kaleidoscope tutorials.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H
#define LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H

#include "llvm/ADT/STLExtras.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/RuntimeDyld.h"
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include "llvm/ExecutionEngine/Orc/CompileOnDemandLayer.h"
#include "llvm/ExecutionEngine/Orc/CompileUtils.h"
#include "llvm/ExecutionEngine/Orc/JITSymbol.h"
#include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
#include "llvm/ExecutionEngine/Orc/IRTransformLayer.h"
#include "llvm/ExecutionEngine/Orc/LambdaResolver.h"
#include "llvm/ExecutionEngine/Orc/ObjectLinkingLayer.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Mangler.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/raw_ostream.h"
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#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <memory>
#include <string>
#include <vector>

class PrototypeAST;
class ExprAST;

/// FunctionAST - This class represents a function definition itself.
class FunctionAST {
std::unique_ptr<PrototypeAST> Proto;
std::unique_ptr<ExprAST> Body;

public:
FunctionAST(std::unique_ptr<PrototypeAST> Proto,

std::unique_ptr<ExprAST> Body)
: Proto(std::move(Proto)), Body(std::move(Body)) {}

const PrototypeAST& getProto() const;
const std::string& getName() const;
llvm::Function *codegen();

};

/// This will compile FnAST to IR, rename the function to add the given
/// suffix (needed to prevent a name-clash with the function's stub),
/// and then take ownership of the module that the function was compiled
/// into.
std::unique_ptr<llvm::Module>
irgenAndTakeOwnership(FunctionAST &FnAST, const std::string &Suffix);

namespace llvm {
namespace orc {

class KaleidoscopeJIT {
private:
std::unique_ptr<TargetMachine> TM;
const DataLayout DL;
ObjectLinkingLayer<> ObjectLayer;
IRCompileLayer<decltype(ObjectLayer)> CompileLayer;

typedef std::function<std::unique_ptr<Module>(std::unique_ptr<Module>)>
OptimizeFunction;

IRTransformLayer<decltype(CompileLayer), OptimizeFunction> OptimizeLayer;

std::unique_ptr<JITCompileCallbackManager> CompileCallbackMgr;
std::unique_ptr<IndirectStubsManager> IndirectStubsMgr;

public:
typedef decltype(OptimizeLayer)::ModuleSetHandleT ModuleHandle;

KaleidoscopeJIT()
: TM(EngineBuilder().selectTarget()),

DL(TM->createDataLayout()),
CompileLayer(ObjectLayer, SimpleCompiler(*TM)),
OptimizeLayer(CompileLayer,

[this](std::unique_ptr<Module> M) {
return optimizeModule(std::move(M));
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}),
CompileCallbackMgr(

orc::createLocalCompileCallbackManager(TM->getTargetTriple(), 0)) {
auto IndirectStubsMgrBuilder =

orc::createLocalIndirectStubsManagerBuilder(TM->getTargetTriple());
IndirectStubsMgr = IndirectStubsMgrBuilder();
llvm::sys::DynamicLibrary::LoadLibraryPermanently(nullptr);

}

TargetMachine &getTargetMachine() { return *TM; }

ModuleHandle addModule(std::unique_ptr<Module> M) {

// Build our symbol resolver:
// Lambda 1: Look back into the JIT itself to find symbols that are part of
// the same "logical dylib".
// Lambda 2: Search for external symbols in the host process.
auto Resolver = createLambdaResolver(

[&](const std::string &Name) {
if (auto Sym = IndirectStubsMgr->findStub(Name, false))

return Sym.toRuntimeDyldSymbol();
if (auto Sym = OptimizeLayer.findSymbol(Name, false))

return Sym.toRuntimeDyldSymbol();
return RuntimeDyld::SymbolInfo(nullptr);

},
[](const std::string &Name) {
if (auto SymAddr =

RTDyldMemoryManager::getSymbolAddressInProcess(Name))
return RuntimeDyld::SymbolInfo(SymAddr, JITSymbolFlags::Exported);

return RuntimeDyld::SymbolInfo(nullptr);
});

// Build a singlton module set to hold our module.
std::vector<std::unique_ptr<Module>> Ms;
Ms.push_back(std::move(M));

// Add the set to the JIT with the resolver we created above and a newly
// created SectionMemoryManager.
return OptimizeLayer.addModuleSet(std::move(Ms),

make_unique<SectionMemoryManager>(),
std::move(Resolver));

}

Error addFunctionAST(std::unique_ptr<FunctionAST> FnAST) {
// Create a CompileCallback - this is the re-entry point into the compiler
// for functions that haven't been compiled yet.
auto CCInfo = CompileCallbackMgr->getCompileCallback();

// Create an indirect stub. This serves as the functions "canonical
// definition" - an unchanging (constant address) entry point to the
// function implementation.
// Initially we point the stub's function-pointer at the compile callback
// that we just created. In the compile action for the callback (see below)
// we will update the stub's function pointer to point at the function
// implementation that we just implemented.
if (auto Err = IndirectStubsMgr->createStub(mangle(FnAST->getName()),

CCInfo.getAddress(),
JITSymbolFlags::Exported))
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return Err;

// Move ownership of FnAST to a shared pointer - C++11 lambdas don't support
// capture-by-move, which is be required for unique_ptr.
auto SharedFnAST = std::shared_ptr<FunctionAST>(std::move(FnAST));

// Set the action to compile our AST. This lambda will be run if/when
// execution hits the compile callback (via the stub).
//
// The steps to compile are:
// (1) IRGen the function.
// (2) Add the IR module to the JIT to make it executable like any other
// module.
// (3) Use findSymbol to get the address of the compiled function.
// (4) Update the stub pointer to point at the implementation so that
/// subsequent calls go directly to it and bypass the compiler.
// (5) Return the address of the implementation: this lambda will actually
// be run inside an attempted call to the function, and we need to
// continue on to the implementation to complete the attempted call.
// The JIT runtime (the resolver block) will use the return address of
// this function as the address to continue at once it has reset the
// CPU state to what it was immediately before the call.
CCInfo.setCompileAction(

[this, SharedFnAST]() {
auto M = irgenAndTakeOwnership(*SharedFnAST, "$impl");
addModule(std::move(M));
auto Sym = findSymbol(SharedFnAST->getName() + "$impl");
assert(Sym && "Couldn't find compiled function?");
TargetAddress SymAddr = Sym.getAddress();
if (auto Err =

IndirectStubsMgr->updatePointer(mangle(SharedFnAST->getName()),
SymAddr)) {

logAllUnhandledErrors(std::move(Err), errs(),
"Error updating function pointer: ");

exit(1);
}

return SymAddr;
});

return Error::success();
}

JITSymbol findSymbol(const std::string Name) {
return OptimizeLayer.findSymbol(mangle(Name), true);

}

void removeModule(ModuleHandle H) {
OptimizeLayer.removeModuleSet(H);

}

private:

std::string mangle(const std::string &Name) {
std::string MangledName;
raw_string_ostream MangledNameStream(MangledName);
Mangler::getNameWithPrefix(MangledNameStream, Name, DL);
return MangledNameStream.str();
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}

std::unique_ptr<Module> optimizeModule(std::unique_ptr<Module> M) {
// Create a function pass manager.
auto FPM = llvm::make_unique<legacy::FunctionPassManager>(M.get());

// Add some optimizations.
FPM->add(createInstructionCombiningPass());
FPM->add(createReassociatePass());
FPM->add(createGVNPass());
FPM->add(createCFGSimplificationPass());
FPM->doInitialization();

// Run the optimizations over all functions in the module being added to
// the JIT.
for (auto &F : *M)
FPM->run(F);

return M;
}

};

} // end namespace orc
} // end namespace llvm

#endif // LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H

Next: Remote-JITing – Process-isolation and laziness-at-a-distance

Building a JIT: Remote-JITing – Process Isolation and Laziness at a Distance

• Chapter 5 Introduction

• Full Code Listing

This tutorial is under active development. It is incomplete and details may change frequently. Nonetheless we
invite you to try it out as it stands, and we welcome any feedback.

Chapter 5 Introduction

Welcome to Chapter 5 of the “Building an ORC-based JIT in LLVM” tutorial. This chapter introduces the ORC
RemoteJIT Client/Server APIs and shows how to use them to build a JIT stack that will execute its code via a commu-
nications channel with a different process. This can be a separate process on the same machine, a process on a different
machine, or even a process on a different platform/architecture. The code builds on top of the lazy-AST-compiling JIT
stack from Chapter 4.

To be done – this is going to be a long one:

(1) Introduce channels, RPC, RemoteJIT Client and Server APIs

(2) Describe the client code in greater detail. Discuss modifications of the KaleidoscopeJIT class, and the REPL
itself.
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(3) Describe the server code.

(4) Describe how to run the demo.

Full Code Listing

Here is the complete code listing for our running example that JITs lazily from Kaleidoscope ASTS. To build this
example, use:

# Compile
clang++ -g toy.cpp `llvm-config --cxxflags --ldflags --system-libs --libs core orc
→˓native` -O3 -o toy
# Run
./toy

Here is the code for the modified KaleidoscopeJIT:

//===----- KaleidoscopeJIT.h - A simple JIT for Kaleidoscope ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Contains a simple JIT definition for use in the kaleidoscope tutorials.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H
#define LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H

#include "RemoteJITUtils.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/RuntimeDyld.h"
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include "llvm/ExecutionEngine/Orc/CompileOnDemandLayer.h"
#include "llvm/ExecutionEngine/Orc/CompileUtils.h"
#include "llvm/ExecutionEngine/Orc/JITSymbol.h"
#include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
#include "llvm/ExecutionEngine/Orc/IRTransformLayer.h"
#include "llvm/ExecutionEngine/Orc/LambdaResolver.h"
#include "llvm/ExecutionEngine/Orc/ObjectLinkingLayer.h"
#include "llvm/ExecutionEngine/Orc/OrcRemoteTargetClient.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Mangler.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <memory>
#include <string>
#include <vector>

class PrototypeAST;
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class ExprAST;

/// FunctionAST - This class represents a function definition itself.
class FunctionAST {

std::unique_ptr<PrototypeAST> Proto;
std::unique_ptr<ExprAST> Body;

public:
FunctionAST(std::unique_ptr<PrototypeAST> Proto,

std::unique_ptr<ExprAST> Body)
: Proto(std::move(Proto)), Body(std::move(Body)) {}

const PrototypeAST& getProto() const;
const std::string& getName() const;
llvm::Function *codegen();

};

/// This will compile FnAST to IR, rename the function to add the given
/// suffix (needed to prevent a name-clash with the function's stub),
/// and then take ownership of the module that the function was compiled
/// into.
std::unique_ptr<llvm::Module>
irgenAndTakeOwnership(FunctionAST &FnAST, const std::string &Suffix);

namespace llvm {
namespace orc {

// Typedef the remote-client API.
typedef remote::OrcRemoteTargetClient<FDRPCChannel> MyRemote;

class KaleidoscopeJIT {
private:
std::unique_ptr<TargetMachine> TM;
const DataLayout DL;
ObjectLinkingLayer<> ObjectLayer;
IRCompileLayer<decltype(ObjectLayer)> CompileLayer;

typedef std::function<std::unique_ptr<Module>(std::unique_ptr<Module>)>
OptimizeFunction;

IRTransformLayer<decltype(CompileLayer), OptimizeFunction> OptimizeLayer;

JITCompileCallbackManager *CompileCallbackMgr;
std::unique_ptr<IndirectStubsManager> IndirectStubsMgr;
MyRemote &Remote;

public:
typedef decltype(OptimizeLayer)::ModuleSetHandleT ModuleHandle;

KaleidoscopeJIT(MyRemote &Remote)
: TM(EngineBuilder().selectTarget()),

DL(TM->createDataLayout()),
CompileLayer(ObjectLayer, SimpleCompiler(*TM)),
OptimizeLayer(CompileLayer,

[this](std::unique_ptr<Module> M) {
return optimizeModule(std::move(M));

}),
Remote(Remote) {

auto CCMgrOrErr = Remote.enableCompileCallbacks(0);
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if (!CCMgrOrErr) {
logAllUnhandledErrors(CCMgrOrErr.takeError(), errs(),

"Error enabling remote compile callbacks:");
exit(1);

}
CompileCallbackMgr = &*CCMgrOrErr;
std::unique_ptr<MyRemote::RCIndirectStubsManager> ISM;
if (auto Err = Remote.createIndirectStubsManager(ISM)) {

logAllUnhandledErrors(std::move(Err), errs(),
"Error creating indirect stubs manager:");

exit(1);
}
IndirectStubsMgr = std::move(ISM);
llvm::sys::DynamicLibrary::LoadLibraryPermanently(nullptr);

}

TargetMachine &getTargetMachine() { return *TM; }

ModuleHandle addModule(std::unique_ptr<Module> M) {

// Build our symbol resolver:
// Lambda 1: Look back into the JIT itself to find symbols that are part of
// the same "logical dylib".
// Lambda 2: Search for external symbols in the host process.
auto Resolver = createLambdaResolver(

[&](const std::string &Name) {
if (auto Sym = IndirectStubsMgr->findStub(Name, false))

return Sym.toRuntimeDyldSymbol();
if (auto Sym = OptimizeLayer.findSymbol(Name, false))

return Sym.toRuntimeDyldSymbol();
return RuntimeDyld::SymbolInfo(nullptr);

},
[&](const std::string &Name) {
if (auto AddrOrErr = Remote.getSymbolAddress(Name))

return RuntimeDyld::SymbolInfo(*AddrOrErr,
JITSymbolFlags::Exported);

else {
logAllUnhandledErrors(AddrOrErr.takeError(), errs(),

"Error resolving remote symbol:");
exit(1);

}
return RuntimeDyld::SymbolInfo(nullptr);

});

std::unique_ptr<MyRemote::RCMemoryManager> MemMgr;
if (auto Err = Remote.createRemoteMemoryManager(MemMgr)) {
logAllUnhandledErrors(std::move(Err), errs(),

"Error creating remote memory manager:");
exit(1);

}

// Build a singlton module set to hold our module.
std::vector<std::unique_ptr<Module>> Ms;
Ms.push_back(std::move(M));

// Add the set to the JIT with the resolver we created above and a newly
// created SectionMemoryManager.
return OptimizeLayer.addModuleSet(std::move(Ms),
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std::move(MemMgr),
std::move(Resolver));

}

Error addFunctionAST(std::unique_ptr<FunctionAST> FnAST) {
// Create a CompileCallback - this is the re-entry point into the compiler
// for functions that haven't been compiled yet.
auto CCInfo = CompileCallbackMgr->getCompileCallback();

// Create an indirect stub. This serves as the functions "canonical
// definition" - an unchanging (constant address) entry point to the
// function implementation.
// Initially we point the stub's function-pointer at the compile callback
// that we just created. In the compile action for the callback (see below)
// we will update the stub's function pointer to point at the function
// implementation that we just implemented.
if (auto Err = IndirectStubsMgr->createStub(mangle(FnAST->getName()),

CCInfo.getAddress(),
JITSymbolFlags::Exported))

return Err;

// Move ownership of FnAST to a shared pointer - C++11 lambdas don't support
// capture-by-move, which is be required for unique_ptr.
auto SharedFnAST = std::shared_ptr<FunctionAST>(std::move(FnAST));

// Set the action to compile our AST. This lambda will be run if/when
// execution hits the compile callback (via the stub).
//
// The steps to compile are:
// (1) IRGen the function.
// (2) Add the IR module to the JIT to make it executable like any other
// module.
// (3) Use findSymbol to get the address of the compiled function.
// (4) Update the stub pointer to point at the implementation so that
/// subsequent calls go directly to it and bypass the compiler.
// (5) Return the address of the implementation: this lambda will actually
// be run inside an attempted call to the function, and we need to
// continue on to the implementation to complete the attempted call.
// The JIT runtime (the resolver block) will use the return address of
// this function as the address to continue at once it has reset the
// CPU state to what it was immediately before the call.
CCInfo.setCompileAction(

[this, SharedFnAST]() {
auto M = irgenAndTakeOwnership(*SharedFnAST, "$impl");
addModule(std::move(M));
auto Sym = findSymbol(SharedFnAST->getName() + "$impl");
assert(Sym && "Couldn't find compiled function?");
TargetAddress SymAddr = Sym.getAddress();
if (auto Err =

IndirectStubsMgr->updatePointer(mangle(SharedFnAST->getName()),
SymAddr)) {

logAllUnhandledErrors(std::move(Err), errs(),
"Error updating function pointer: ");

exit(1);
}

return SymAddr;
});
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return Error::success();
}

Error executeRemoteExpr(TargetAddress ExprAddr) {
return Remote.callVoidVoid(ExprAddr);

}

JITSymbol findSymbol(const std::string Name) {
return OptimizeLayer.findSymbol(mangle(Name), true);

}

void removeModule(ModuleHandle H) {
OptimizeLayer.removeModuleSet(H);

}

private:

std::string mangle(const std::string &Name) {
std::string MangledName;
raw_string_ostream MangledNameStream(MangledName);
Mangler::getNameWithPrefix(MangledNameStream, Name, DL);
return MangledNameStream.str();

}

std::unique_ptr<Module> optimizeModule(std::unique_ptr<Module> M) {
// Create a function pass manager.
auto FPM = llvm::make_unique<legacy::FunctionPassManager>(M.get());

// Add some optimizations.
FPM->add(createInstructionCombiningPass());
FPM->add(createReassociatePass());
FPM->add(createGVNPass());
FPM->add(createCFGSimplificationPass());
FPM->doInitialization();

// Run the optimizations over all functions in the module being added to
// the JIT.
for (auto &F : *M)
FPM->run(F);

return M;
}

};

} // end namespace orc
} // end namespace llvm

#endif // LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H

And the code for the JIT server:

#include "llvm/Support/CommandLine.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/ExecutionEngine/Orc/OrcRemoteTargetServer.h"
#include "llvm/ExecutionEngine/Orc/OrcABISupport.h"
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#include "../RemoteJITUtils.h"

#include <cstring>
#include <unistd.h>
#include <netinet/in.h>
#include <sys/socket.h>

using namespace llvm;
using namespace llvm::orc;

// Command line argument for TCP port.
cl::opt<uint32_t> Port("port",

cl::desc("TCP port to listen on"),
cl::init(20000));

ExitOnError ExitOnErr;

typedef int (*MainFun)(int, const char*[]);

template <typename NativePtrT>
NativePtrT MakeNative(uint64_t P) {

return reinterpret_cast<NativePtrT>(static_cast<uintptr_t>(P));
}

extern "C"
void printExprResult(double Val) {

printf("Expression evaluated to: %f\n", Val);
}

// --- LAZY COMPILE TEST ---
int main(int argc, char* argv[]) {

if (argc == 0)
ExitOnErr.setBanner("jit_server: ");

else
ExitOnErr.setBanner(std::string(argv[0]) + ": ");

// --- Initialize LLVM ---
cl::ParseCommandLineOptions(argc, argv, "LLVM lazy JIT example.\n");

InitializeNativeTarget();
InitializeNativeTargetAsmPrinter();
InitializeNativeTargetAsmParser();

if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr)) {
errs() << "Error loading program symbols.\n";
return 1;

}

// --- Initialize remote connection ---

int sockfd = socket(PF_INET, SOCK_STREAM, 0);
sockaddr_in servAddr, clientAddr;
socklen_t clientAddrLen = sizeof(clientAddr);
bzero(&servAddr, sizeof(servAddr));
servAddr.sin_family = PF_INET;
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servAddr.sin_family = INADDR_ANY;
servAddr.sin_port = htons(Port);

{
// avoid "Address already in use" error.
int yes=1;
if (setsockopt(sockfd,SOL_SOCKET,SO_REUSEADDR,&yes,sizeof(int)) == -1) {
errs() << "Error calling setsockopt.\n";
return 1;

}
}

if (bind(sockfd, reinterpret_cast<sockaddr*>(&servAddr),
sizeof(servAddr)) < 0) {

errs() << "Error on binding.\n";
return 1;

}
listen(sockfd, 1);
int newsockfd = accept(sockfd, reinterpret_cast<sockaddr*>(&clientAddr),

&clientAddrLen);

auto SymbolLookup =
[](const std::string &Name) {
return RTDyldMemoryManager::getSymbolAddressInProcess(Name);

};

auto RegisterEHFrames =
[](uint8_t *Addr, uint32_t Size) {

RTDyldMemoryManager::registerEHFramesInProcess(Addr, Size);
};

auto DeregisterEHFrames =
[](uint8_t *Addr, uint32_t Size) {

RTDyldMemoryManager::deregisterEHFramesInProcess(Addr, Size);
};

FDRPCChannel TCPChannel(newsockfd, newsockfd);
typedef remote::OrcRemoteTargetServer<FDRPCChannel, OrcX86_64_SysV> MyServerT;

MyServerT Server(TCPChannel, SymbolLookup, RegisterEHFrames, DeregisterEHFrames);

while (1) {
MyServerT::JITFuncId Id = MyServerT::InvalidId;
ExitOnErr(Server.startReceivingFunction(TCPChannel, (uint32_t&)Id));
switch (Id) {
case MyServerT::TerminateSessionId:
ExitOnErr(Server.handleTerminateSession());
return 0;

default:
ExitOnErr(Server.handleKnownFunction(Id));
break;

}
}

llvm_unreachable("Fell through server command loop.");
}
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External Tutorials

Tutorial: Creating an LLVM Backend for the Cpu0 Architecture A step-by-step tutorial for developing an
LLVM backend. Under active development at https://github.com/Jonathan2251/lbd (please contribute!).

Howto: Implementing LLVM Integrated Assembler A simple guide for how to implement an LLVM integrated
assembler for an architecture.

Advanced Topics

1. Writing an Optimization for LLVM

LLVM 3.9 Release Notes

• Introduction

• Non-comprehensive list of changes in this release

– GCC ABI Tag

– Changes to the LLVM IR

– Changes to LLVM’s IPO model

– Support for ThinLTO

– Changes to the ARM Targets

– Changes to the MIPS Target

– Changes to the PowerPC Target

– Changes to the X86 Target

– Changes to the AMDGPU Target

• External Open Source Projects Using LLVM 3.9

– LDC - the LLVM-based D compiler

• Additional Information

Introduction

This document contains the release notes for the LLVM Compiler Infrastructure, release 3.9. Here we describe the
status of LLVM, including major improvements from the previous release, improvements in various subprojects of
LLVM, and some of the current users of the code. All LLVM releases may be downloaded from the LLVM releases
web site.

For more information about LLVM, including information about the latest release, please check out the main LLVM
web site. If you have questions or comments, the LLVM Developer’s Mailing List is a good place to send them.
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Non-comprehensive list of changes in this release

• The LLVMContext gains a new runtime check (see LLVMContext::discardValueNames()) that can be set to
discard Value names (other than GlobalValue). This is intended to be used in release builds by clients that are
interested in saving CPU/memory as much as possible.

• There is no longer a “global context” available in LLVM, except for the C API.

• The autoconf build system has been removed in favor of CMake. LLVM 3.9 requires CMake 3.4.3 or later to
build. For information about using CMake please see the documentation on Building LLVM with CMake. For
information about the CMake language there is also a CMake Primer document available.

• C API functions LLVMParseBitcode, LLVMParseBitcodeInContext, LLVMGetBitcodeModuleInContext and
LLVMGetBitcodeModule having been removed. LLVMGetTargetMachineData has been removed (use
LLVMGetDataLayout instead).

• The C API function LLVMLinkModules has been removed.

• The C API function LLVMAddTargetData has been removed.

• The C API function LLVMGetDataLayout is deprecated in favor of LLVMGetDataLayoutStr.

• The C API enum LLVMAttribute and associated API is deprecated in favor of the new LLVMAttributeRef API.
The deprecated functions are LLVMAddFunctionAttr, LLVMAddTargetDependentFunctionAttr, LLVMRe-
moveFunctionAttr, LLVMGetFunctionAttr, LLVMAddAttribute, LLVMRemoveAttribute, LLVMGetAttribute,
LLVMAddInstrAttribute, LLVMRemoveInstrAttribute and LLVMSetInstrParamAlignment.

• TargetFrameLowering::eliminateCallFramePseudoInstr now returns an iterator to the next
instruction instead of void. Targets that previously did MBB.erase(I); return; now probably want
return MBB.erase(I);.

• SelectionDAGISel::Select now returns void. Out-of-tree targets will need to be updated to replace
the argument node and remove any dead nodes in cases where they currently return an SDNode * from this
interface.

• Added the MemorySSA analysis, which hopes to replace MemoryDependenceAnalysis. It should provide
higher-quality results than MemDep, and be algorithmically faster than MemDep. Currently, GVNHoist (which
is off by default) makes use of MemorySSA.

• The minimum density for lowering switches with jump tables has been reduced from 40% to 10% for functions
which are not marked optsize (that is, compiled with -Os).

GCC ABI Tag

Recently, many of the Linux distributions (e.g. Fedora, Debian, Ubuntu) have moved on to use the new GCC ABI to
work around C++11 incompatibilities in libstdc++. This caused incompatibility problems with other compilers (e.g.
Clang), which needed to be fixed, but due to the experimental nature of GCC’s own implementation, it took a long
time for it to land in LLVM (D18035 and D17567), not in time for the 3.8 release.

Those patches are now present in the 3.9.0 release and should be working in the majority of cases, as they have been
tested thoroughly. However, some bugs were filed in GCC and have not yet been fixed, so there may be corner cases not
covered by either GCC or Clang. Bug fixes to those problems should be reported in Bugzilla (either LLVM or GCC),
and patches to LLVM’s trunk are very likely to be back-ported to future 3.9.x releases (depends on how destructive it
is).

Unfortunately, these patches won’t be back-ported to 3.8.x or earlier, so we strongly recommend people to use 3.9.x
when GCC ABI cases are at stake.

For a more in-depth view of the issue, check our Bugzilla entry.
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Changes to the LLVM IR

• New intrinsics llvm.masked.load, llvm.masked.store, llvm.masked.gather and llvm.
masked.scatter were introduced to the LLVM IR to allow selective memory access for vector data types.

• The new notail attribute prevents optimization passes from adding tail or musttail markers to a call. It
is used to prevent tail call optimization from being performed on the call.

Changes to LLVM’s IPO model

LLVM no longer does inter-procedural analysis and optimization (except inlining) on functions with comdat linkage.
Doing IPO over such functions is unsound because the implementation the linker chooses at link-time may be dif-
ferently optimized than the one what was visible during optimization, and may have arbitrarily different observable
behavior. See PR26774 for more details.

Support for ThinLTO

LLVM now supports ThinLTO compilation, which can be invoked by compiling and linking with -flto=thin. The
gold linker plugin, as well as linkers that use the new ThinLTO API in libLTO (like ld64), will transparently execute
the ThinLTO backends in parallel threads. For more information on ThinLTO and the LLVM implementation, see the
ThinLTO blog post.

Changes to the ARM Targets

During this release the AArch64 backend has:

• Gained support for Qualcomm’s Kryo and Broadcom’s Vulcan CPUs, including scheduling models.

• Landed a scheduling model for Samsung’s Exynos M1.

• Seen a lot of work on GlobalISel.

• Learned a few more useful combines (fadd and fmul into fmadd, adjustments to the stack pointer for callee-save
stack memory and local stack memory etc).

• Gained support for the Swift calling convention.

• Switched to using SubtargetFeatures rather than testing for specific CPUs and to using TableGen for handling
system instruction operands.

• Like ARM, AArch64 is now using the TargetParser, so no more StringSwitches matching CPU, FPU or feature
names will be accepted in normal code.

• Clang can now self-host itself using LLD on AArch64.

• Gained a big batch of tests from Halide.

Furthermore, LLDB now supports AArch64 compact unwind tables, as used on iOS, tvos and watchos.

During this release the ARM target has:

• ARMv8.2-A can now be targeted directly via Clang flags.

• Adding preliminary support for Cortex-R8.

• LLDB can now parse EABI attributes for an ELF input.

• Initial ARM/Thumb support was added to LLD.

• The ExecutionEngine now supports COFF/ARM.
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• Swift calling convention was ported to ARM.

• A large number of codegen fixes around ARMv8, DSP, correct sub-target support, relocations, EABI, EHABI,
Windows on ARM, atomics..

• Improved assembler support for Linux/Android/Chromium sub-projects.

• Initial support for MUSL (libc) on ARM.

• Support for Thumb1 targets in libunwind.

• Gained a big batch of tests from Halide.

Changes to the MIPS Target

During this release the MIPS target has:

• Enabled the Integrated Assembler by default for all mips-* and mipsel-* triples.

• Significantly improved the Integrated Assembler support for the n64 ABI.

• Added the Clang frontend -mcompact-branches={never,optimal,always} option that controls
how LLVM generates compact branches for MIPS targets.

• Improved performance and code size for stack pointer adjustments in functions with large frames.

• Implemented many instructions from the microMIPS32R6 ISA and added CodeGen support for most of them.

• Added support for the triple used by Debian Stretch for little endian MIPS64, ie.
mips64el-linux-gnuabi64.

• Removed EABI which was neither tested nor properly supported.

• Gained the ability to self-host on MIPS32R6.

• Gained the ability to self-host on MIPS64R2 and MIPS64R6 when using the n64 ABI.

• Added support for the LA macro in PIC mode for o32.

• Added support for safestack in compiler-rt.

• Added support for the MIPS n64 ABI in LLD.

• Added LLD support for TLS relocations for both o32 and n64 MIPS ABIs.

The MIPS target has also fixed various bugs including the following notable fixes:

• Delay slots are no longer filled multiple times when either -save-temps or -via-file-asm are used.

• Updated n32 and n64 to follow the standard ELF conventions for label prefixes (.L), whereas o32 still uses its
own ($).

• Properly sign-extend values to GPR width for instructions that expect 32-bit values on 64-bit ISAs.

• Several fixes for the delay-slot filler pass, including correct forbidden-slot hazard handling.

• Fixed several errors caught by the machine verifier when turned on for MIPS.

• Fixed broken predicate for SELECT patterns in MIPS64.

• Fixed wrong truncation of memory address for LL/SC seqeuences in MIPS64.

• Fixed the o32, n32 and n64 handling of .cprestore directives when inside a .set noat region by the
Integrated Assembler.

• Fixed the ordering of HI/LO pairs in the relocation table.

• Fixed the generated ELF EFlags when Octeon is the target.
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Changes to the PowerPC Target

• Moved some optimizations from O3 to O2 (D18562)

• Enable sibling call optimization on ppc64 ELFv1/ELFv2 abi

Changes to the X86 Target

• LLVM now supports the Intel CPU codenamed Skylake Server with AVX-512 extensions using
-march=skylake-avx512. The switch enables the ISA extensions AVX-512{F, CD, VL, BW, DQ}.

• LLVM now supports the Intel CPU codenamed Knights Landing with AVX-512 extensions using
-march=knl. The switch enables the ISA extensions AVX-512{F, CD, ER, PF}.

• LLVM will now prefer PUSH instructions rather than %esp-relative MOV instructions for function calls at all
optimization levels greater than -O0. Previously this transformation only occurred at -Os.

Changes to the AMDGPU Target

• Added backend support for OpenGL shader image, buffer storage, atomic counter, and compute shader exten-
sions (supported since Mesa 12)

• Mesa 11.0.x is no longer supported

External Open Source Projects Using LLVM 3.9

An exciting aspect of LLVM is that it is used as an enabling technology for a lot of other language and tools projects.
This section lists some of the projects that have already been updated to work with LLVM 3.9.

LDC - the LLVM-based D compiler

D is a language with C-like syntax and static typing. It pragmatically combines efficiency, control, and modeling
power, with safety and programmer productivity. D supports powerful concepts like Compile-Time Function Exe-
cution (CTFE) and Template Meta-Programming, provides an innovative approach to concurrency and offers many
classical paradigms.

LDC uses the frontend from the reference compiler combined with LLVM as backend to produce efficient native code.
LDC targets x86/x86_64 systems like Linux, OS X, FreeBSD and Windows and also Linux on ARM and PowerPC
(32/64 bit). Ports to other architectures like AArch64 and MIPS64 are underway.

Additional Information

A wide variety of additional information is available on the LLVM web page, in particular in the documentation
section. The web page also contains versions of the API documentation which is up-to-date with the Subversion
version of the source code. You can access versions of these documents specific to this release by going into the
llvm/docs/ directory in the LLVM tree.

If you have any questions or comments about LLVM, please feel free to contact us via the mailing lists.

2.18. LLVM 3.9 Release Notes 709

http://dlang.org
http://wiki.dlang.org/LDC
http://llvm.org/
http://llvm.org/docs/
http://llvm.org/docs/#maillist


LLVM Documentation, Release 3.9

LLVM’s Analysis and Transform Passes

• Introduction

• Analysis Passes

– -aa-eval: Exhaustive Alias Analysis Precision Evaluator

– -basicaa: Basic Alias Analysis (stateless AA impl)

– -basiccg: Basic CallGraph Construction

– -count-aa: Count Alias Analysis Query Responses

– -da: Dependence Analysis

– -debug-aa: AA use debugger

– -domfrontier: Dominance Frontier Construction

– -domtree: Dominator Tree Construction

– -dot-callgraph: Print Call Graph to “dot” file

– -dot-cfg: Print CFG of function to “dot” file

– -dot-cfg-only: Print CFG of function to “dot” file (with no function bodies)

– -dot-dom: Print dominance tree of function to “dot” file

– -dot-dom-only: Print dominance tree of function to “dot” file (with no function bodies)

– -dot-postdom: Print postdominance tree of function to “dot” file

– -dot-postdom-only: Print postdominance tree of function to “dot” file (with no function bodies)

– -globalsmodref-aa: Simple mod/ref analysis for globals

– -instcount: Counts the various types of Instructions

– -intervals: Interval Partition Construction

– -iv-users: Induction Variable Users

– -lazy-value-info: Lazy Value Information Analysis

– -libcall-aa: LibCall Alias Analysis

– -lint: Statically lint-checks LLVM IR

– -loops: Natural Loop Information

– -memdep: Memory Dependence Analysis

– -module-debuginfo: Decodes module-level debug info

– -postdomfrontier: Post-Dominance Frontier Construction

– -postdomtree: Post-Dominator Tree Construction

– -print-alias-sets: Alias Set Printer

– -print-callgraph: Print a call graph

– -print-callgraph-sccs: Print SCCs of the Call Graph

– -print-cfg-sccs: Print SCCs of each function CFG
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– -print-dom-info: Dominator Info Printer

– -print-externalfnconstants: Print external fn callsites passed constants

– -print-function: Print function to stderr

– -print-module: Print module to stderr

– -print-used-types: Find Used Types

– -regions: Detect single entry single exit regions

– -scalar-evolution: Scalar Evolution Analysis

– -scev-aa: ScalarEvolution-based Alias Analysis

– -targetdata: Target Data Layout

• Transform Passes

– -adce: Aggressive Dead Code Elimination

– -always-inline: Inliner for always_inline functions

– -argpromotion: Promote ‘by reference’ arguments to scalars

– -bb-vectorize: Basic-Block Vectorization

– -block-placement: Profile Guided Basic Block Placement

– -break-crit-edges: Break critical edges in CFG

– -codegenprepare: Optimize for code generation

– -constmerge: Merge Duplicate Global Constants

– -constprop: Simple constant propagation

– -dce: Dead Code Elimination

– -deadargelim: Dead Argument Elimination

– -deadtypeelim: Dead Type Elimination

– -die: Dead Instruction Elimination

– -dse: Dead Store Elimination

– -functionattrs: Deduce function attributes

– -globaldce: Dead Global Elimination

– -globalopt: Global Variable Optimizer

– -gvn: Global Value Numbering

– -indvars: Canonicalize Induction Variables

– -inline: Function Integration/Inlining

– -instcombine: Combine redundant instructions

– -internalize: Internalize Global Symbols

– -ipconstprop: Interprocedural constant propagation

– -ipsccp: Interprocedural Sparse Conditional Constant Propagation

– -jump-threading: Jump Threading
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– -lcssa: Loop-Closed SSA Form Pass

– -licm: Loop Invariant Code Motion

– -loop-deletion: Delete dead loops

– -loop-extract: Extract loops into new functions

– -loop-extract-single: Extract at most one loop into a new function

– -loop-reduce: Loop Strength Reduction

– -loop-rotate: Rotate Loops

– -loop-simplify: Canonicalize natural loops

– -loop-unroll: Unroll loops

– -loop-unswitch: Unswitch loops

– -loweratomic: Lower atomic intrinsics to non-atomic form

– -lowerinvoke: Lower invokes to calls, for unwindless code generators

– -lowerswitch: Lower SwitchInsts to branches

– -mem2reg: Promote Memory to Register

– -memcpyopt: MemCpy Optimization

– -mergefunc: Merge Functions

– -mergereturn: Unify function exit nodes

– -partial-inliner: Partial Inliner

– -prune-eh: Remove unused exception handling info

– -reassociate: Reassociate expressions

– -reg2mem: Demote all values to stack slots

– -sroa: Scalar Replacement of Aggregates

– -sccp: Sparse Conditional Constant Propagation

– -simplifycfg: Simplify the CFG

– -sink: Code sinking

– -strip: Strip all symbols from a module

– -strip-dead-debug-info: Strip debug info for unused symbols

– -strip-dead-prototypes: Strip Unused Function Prototypes

– -strip-debug-declare: Strip all llvm.dbg.declare intrinsics

– -strip-nondebug: Strip all symbols, except dbg symbols, from a module

– -tailcallelim: Tail Call Elimination

• Utility Passes

– -deadarghaX0r: Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)

– -extract-blocks: Extract Basic Blocks From Module (for bugpoint use)

– -instnamer: Assign names to anonymous instructions
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– -verify: Module Verifier

– -view-cfg: View CFG of function

– -view-cfg-only: View CFG of function (with no function bodies)

– -view-dom: View dominance tree of function

– -view-dom-only: View dominance tree of function (with no function bodies)

– -view-postdom: View postdominance tree of function

– -view-postdom-only: View postdominance tree of function (with no function bodies)

Introduction

This document serves as a high level summary of the optimization features that LLVM provides. Optimizations are
implemented as Passes that traverse some portion of a program to either collect information or transform the program.
The table below divides the passes that LLVM provides into three categories. Analysis passes compute information
that other passes can use or for debugging or program visualization purposes. Transform passes can use (or invalidate)
the analysis passes. Transform passes all mutate the program in some way. Utility passes provides some utility but
don’t otherwise fit categorization. For example passes to extract functions to bitcode or write a module to bitcode are
neither analysis nor transform passes. The table of contents above provides a quick summary of each pass and links to
the more complete pass description later in the document.

Analysis Passes

This section describes the LLVM Analysis Passes.

-aa-eval: Exhaustive Alias Analysis Precision Evaluator

This is a simple N^2 alias analysis accuracy evaluator. Basically, for each function in the program, it simply queries
to see how the alias analysis implementation answers alias queries between each pair of pointers in the function.

This is inspired and adapted from code by: Naveen Neelakantam, Francesco Spadini, and Wojciech Stryjewski.

-basicaa: Basic Alias Analysis (stateless AA impl)

A basic alias analysis pass that implements identities (two different globals cannot alias, etc), but does no stateful
analysis.

-basiccg: Basic CallGraph Construction

Yet to be written.

-count-aa: Count Alias Analysis Query Responses

A pass which can be used to count how many alias queries are being made and how the alias analysis implementation
being used responds.
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-da: Dependence Analysis

Dependence analysis framework, which is used to detect dependences in memory accesses.

-debug-aa: AA use debugger

This simple pass checks alias analysis users to ensure that if they create a new value, they do not query AA without
informing it of the value. It acts as a shim over any other AA pass you want.

Yes keeping track of every value in the program is expensive, but this is a debugging pass.

-domfrontier: Dominance Frontier Construction

This pass is a simple dominator construction algorithm for finding forward dominator frontiers.

-domtree: Dominator Tree Construction

This pass is a simple dominator construction algorithm for finding forward dominators.

-dot-callgraph: Print Call Graph to “dot” file

This pass, only available in opt, prints the call graph into a .dot graph. This graph can then be processed with the
“dot” tool to convert it to postscript or some other suitable format.

-dot-cfg: Print CFG of function to “dot” file

This pass, only available in opt, prints the control flow graph into a .dot graph. This graph can then be processed
with the dot tool to convert it to postscript or some other suitable format.

-dot-cfg-only: Print CFG of function to “dot” file (with no function bodies)

This pass, only available in opt, prints the control flow graph into a .dot graph, omitting the function bodies. This
graph can then be processed with the dot tool to convert it to postscript or some other suitable format.

-dot-dom: Print dominance tree of function to “dot” file

This pass, only available in opt, prints the dominator tree into a .dot graph. This graph can then be processed with
the dot tool to convert it to postscript or some other suitable format.

-dot-dom-only: Print dominance tree of function to “dot” file (with no function bodies)

This pass, only available in opt, prints the dominator tree into a .dot graph, omitting the function bodies. This
graph can then be processed with the dot tool to convert it to postscript or some other suitable format.

-dot-postdom: Print postdominance tree of function to “dot” file

This pass, only available in opt, prints the post dominator tree into a .dot graph. This graph can then be processed
with the dot tool to convert it to postscript or some other suitable format.
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-dot-postdom-only: Print postdominance tree of function to “dot” file (with no function bodies)

This pass, only available in opt, prints the post dominator tree into a .dot graph, omitting the function bodies. This
graph can then be processed with the dot tool to convert it to postscript or some other suitable format.

-globalsmodref-aa: Simple mod/ref analysis for globals

This simple pass provides alias and mod/ref information for global values that do not have their address taken, and
keeps track of whether functions read or write memory (are “pure”). For this simple (but very common) case, we can
provide pretty accurate and useful information.

-instcount: Counts the various types of Instructions

This pass collects the count of all instructions and reports them.

-intervals: Interval Partition Construction

This analysis calculates and represents the interval partition of a function, or a preexisting interval partition.

In this way, the interval partition may be used to reduce a flow graph down to its degenerate single node interval
partition (unless it is irreducible).

-iv-users: Induction Variable Users

Bookkeeping for “interesting” users of expressions computed from induction variables.

-lazy-value-info: Lazy Value Information Analysis

Interface for lazy computation of value constraint information.

-libcall-aa: LibCall Alias Analysis

LibCall Alias Analysis.

-lint: Statically lint-checks LLVM IR

This pass statically checks for common and easily-identified constructs which produce undefined or likely unintended
behavior in LLVM IR.

It is not a guarantee of correctness, in two ways. First, it isn’t comprehensive. There are checks which could be done
statically which are not yet implemented. Some of these are indicated by TODO comments, but those aren’t compre-
hensive either. Second, many conditions cannot be checked statically. This pass does no dynamic instrumentation, so
it can’t check for all possible problems.

Another limitation is that it assumes all code will be executed. A store through a null pointer in a basic block which is
never reached is harmless, but this pass will warn about it anyway.

Optimization passes may make conditions that this pass checks for more or less obvious. If an optimization pass
appears to be introducing a warning, it may be that the optimization pass is merely exposing an existing condition in
the code.
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This code may be run before instcombine. In many cases, instcombine checks for the same kinds of things and turns
instructions with undefined behavior into unreachable (or equivalent). Because of this, this pass makes some effort to
look through bitcasts and so on.

-loops: Natural Loop Information

This analysis is used to identify natural loops and determine the loop depth of various nodes of the CFG. Note that the
loops identified may actually be several natural loops that share the same header node... not just a single natural loop.

-memdep: Memory Dependence Analysis

An analysis that determines, for a given memory operation, what preceding memory operations it depends on. It builds
on alias analysis information, and tries to provide a lazy, caching interface to a common kind of alias information query.

-module-debuginfo: Decodes module-level debug info

This pass decodes the debug info metadata in a module and prints in a (sufficiently-prepared-) human-readable form.

For example, run this pass from opt along with the -analyze option, and it’ll print to standard output.

-postdomfrontier: Post-Dominance Frontier Construction

This pass is a simple post-dominator construction algorithm for finding post-dominator frontiers.

-postdomtree: Post-Dominator Tree Construction

This pass is a simple post-dominator construction algorithm for finding post-dominators.

-print-alias-sets: Alias Set Printer

Yet to be written.

-print-callgraph: Print a call graph

This pass, only available in opt, prints the call graph to standard error in a human-readable form.

-print-callgraph-sccs: Print SCCs of the Call Graph

This pass, only available in opt, prints the SCCs of the call graph to standard error in a human-readable form.

-print-cfg-sccs: Print SCCs of each function CFG

This pass, only available in opt, printsthe SCCs of each function CFG to standard error in a human-readable fom.

-print-dom-info: Dominator Info Printer

Dominator Info Printer.
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-print-externalfnconstants: Print external fn callsites passed constants

This pass, only available in opt, prints out call sites to external functions that are called with constant arguments.
This can be useful when looking for standard library functions we should constant fold or handle in alias analyses.

-print-function: Print function to stderr

The PrintFunctionPass class is designed to be pipelined with other FunctionPasses, and prints out the
functions of the module as they are processed.

-print-module: Print module to stderr

This pass simply prints out the entire module when it is executed.

-print-used-types: Find Used Types

This pass is used to seek out all of the types in use by the program. Note that this analysis explicitly does not include
types only used by the symbol table.

-regions: Detect single entry single exit regions

The RegionInfo pass detects single entry single exit regions in a function, where a region is defined as any subgraph
that is connected to the remaining graph at only two spots. Furthermore, an hierarchical region tree is built.

-scalar-evolution: Scalar Evolution Analysis

The ScalarEvolution analysis can be used to analyze and catagorize scalar expressions in loops. It specializes
in recognizing general induction variables, representing them with the abstract and opaque SCEV class. Given this
analysis, trip counts of loops and other important properties can be obtained.

This analysis is primarily useful for induction variable substitution and strength reduction.

-scev-aa: ScalarEvolution-based Alias Analysis

Simple alias analysis implemented in terms of ScalarEvolution queries.

This differs from traditional loop dependence analysis in that it tests for dependencies within a single iteration of a
loop, rather than dependencies between different iterations.

ScalarEvolution has a more complete understanding of pointer arithmetic than BasicAliasAnalysis‘ col-
lection of ad-hoc analyses.

-targetdata: Target Data Layout

Provides other passes access to information on how the size and alignment required by the target ABI for various data
types.

Transform Passes

This section describes the LLVM Transform Passes.
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-adce: Aggressive Dead Code Elimination

ADCE aggressively tries to eliminate code. This pass is similar to DCE but it assumes that values are dead until proven
otherwise. This is similar to SCCP, except applied to the liveness of values.

-always-inline: Inliner for always_inline functions

A custom inliner that handles only functions that are marked as “always inline”.

-argpromotion: Promote ‘by reference’ arguments to scalars

This pass promotes “by reference” arguments to be “by value” arguments. In practice, this means looking for internal
functions that have pointer arguments. If it can prove, through the use of alias analysis, that an argument is only loaded,
then it can pass the value into the function instead of the address of the value. This can cause recursive simplification
of code and lead to the elimination of allocas (especially in C++ template code like the STL).

This pass also handles aggregate arguments that are passed into a function, scalarizing them if the elements of the
aggregate are only loaded. Note that it refuses to scalarize aggregates which would require passing in more than three
operands to the function, because passing thousands of operands for a large array or structure is unprofitable!

Note that this transformation could also be done for arguments that are only stored to (returning the value instead), but
does not currently. This case would be best handled when and if LLVM starts supporting multiple return values from
functions.

-bb-vectorize: Basic-Block Vectorization

This pass combines instructions inside basic blocks to form vector instructions. It iterates over each basic block, at-
tempting to pair compatible instructions, repeating this process until no additional pairs are selected for vectorization.
When the outputs of some pair of compatible instructions are used as inputs by some other pair of compatible instruc-
tions, those pairs are part of a potential vectorization chain. Instruction pairs are only fused into vector instructions
when they are part of a chain longer than some threshold length. Moreover, the pass attempts to find the best possible
chain for each pair of compatible instructions. These heuristics are intended to prevent vectorization in cases where it
would not yield a performance increase of the resulting code.

-block-placement: Profile Guided Basic Block Placement

This pass is a very simple profile guided basic block placement algorithm. The idea is to put frequently executed
blocks together at the start of the function and hopefully increase the number of fall-through conditional branches. If
there is no profile information for a particular function, this pass basically orders blocks in depth-first order.

-break-crit-edges: Break critical edges in CFG

Break all of the critical edges in the CFG by inserting a dummy basic block. It may be “required” by passes that cannot
deal with critical edges. This transformation obviously invalidates the CFG, but can update forward dominator (set,
immediate dominators, tree, and frontier) information.

-codegenprepare: Optimize for code generation

This pass munges the code in the input function to better prepare it for SelectionDAG-based code generation. This
works around limitations in its basic-block-at-a-time approach. It should eventually be removed.
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-constmerge: Merge Duplicate Global Constants

Merges duplicate global constants together into a single constant that is shared. This is useful because some passes
(i.e., TraceValues) insert a lot of string constants into the program, regardless of whether or not an existing string is
available.

-constprop: Simple constant propagation

This pass implements constant propagation and merging. It looks for instructions involving only constant operands
and replaces them with a constant value instead of an instruction. For example:

add i32 1, 2

becomes

i32 3

NOTE: this pass has a habit of making definitions be dead. It is a good idea to run a Dead Instruction Elimination pass
sometime after running this pass.

-dce: Dead Code Elimination

Dead code elimination is similar to dead instruction elimination, but it rechecks instructions that were used by removed
instructions to see if they are newly dead.

-deadargelim: Dead Argument Elimination

This pass deletes dead arguments from internal functions. Dead argument elimination removes arguments which are
directly dead, as well as arguments only passed into function calls as dead arguments of other functions. This pass
also deletes dead arguments in a similar way.

This pass is often useful as a cleanup pass to run after aggressive interprocedural passes, which add possibly-dead
arguments.

-deadtypeelim: Dead Type Elimination

This pass is used to cleanup the output of GCC. It eliminate names for types that are unused in the entire translation
unit, using the find used types pass.

-die: Dead Instruction Elimination

Dead instruction elimination performs a single pass over the function, removing instructions that are obviously dead.

-dse: Dead Store Elimination

A trivial dead store elimination that only considers basic-block local redundant stores.
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-functionattrs: Deduce function attributes

A simple interprocedural pass which walks the call-graph, looking for functions which do not access or only read
non-local memory, and marking them readnone/readonly. In addition, it marks function arguments (of pointer
type) “nocapture” if a call to the function does not create any copies of the pointer value that outlive the call. This
more or less means that the pointer is only dereferenced, and not returned from the function or stored in a global. This
pass is implemented as a bottom-up traversal of the call-graph.

-globaldce: Dead Global Elimination

This transform is designed to eliminate unreachable internal globals from the program. It uses an aggressive algorithm,
searching out globals that are known to be alive. After it finds all of the globals which are needed, it deletes whatever
is left over. This allows it to delete recursive chunks of the program which are unreachable.

-globalopt: Global Variable Optimizer

This pass transforms simple global variables that never have their address taken. If obviously true, it marks read/write
globals as constant, deletes variables only stored to, etc.

-gvn: Global Value Numbering

This pass performs global value numbering to eliminate fully and partially redundant instructions. It also performs
redundant load elimination.

-indvars: Canonicalize Induction Variables

This transformation analyzes and transforms the induction variables (and computations derived from them) into sim-
pler forms suitable for subsequent analysis and transformation.

This transformation makes the following changes to each loop with an identifiable induction variable:

• All loops are transformed to have a single canonical induction variable which starts at zero and steps by one.

• The canonical induction variable is guaranteed to be the first PHI node in the loop header block.

• Any pointer arithmetic recurrences are raised to use array subscripts.

If the trip count of a loop is computable, this pass also makes the following changes:

• The exit condition for the loop is canonicalized to compare the induction value against the exit value. This turns
loops like:

for (i = 7; i*i < 1000; ++i)

into

for (i = 0; i != 25; ++i)

• Any use outside of the loop of an expression derived from the indvar is changed to compute the derived value
outside of the loop, eliminating the dependence on the exit value of the induction variable. If the only purpose
of the loop is to compute the exit value of some derived expression, this transformation will make the loop dead.

This transformation should be followed by strength reduction after all of the desired loop transformations have been
performed. Additionally, on targets where it is profitable, the loop could be transformed to count down to zero (the
“do loop” optimization).
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-inline: Function Integration/Inlining

Bottom-up inlining of functions into callees.

-instcombine: Combine redundant instructions

Combine instructions to form fewer, simple instructions. This pass does not modify the CFG. This pass is where
algebraic simplification happens.

This pass combines things like:

%Y = add i32 %X, 1
%Z = add i32 %Y, 1

into:

%Z = add i32 %X, 2

This is a simple worklist driven algorithm.

This pass guarantees that the following canonicalizations are performed on the program:

1. If a binary operator has a constant operand, it is moved to the right-hand side.

2. Bitwise operators with constant operands are always grouped so that shifts are performed first, then ors, then
ands, then xors.

3. Compare instructions are converted from <, >, , or to = or if possible.

4. All cmp instructions on boolean values are replaced with logical operations.

5. add X, X is represented as mul X, 2 shl X, 1

6. Multiplies with a constant power-of-two argument are transformed into shifts.

7. . . . etc.

This pass can also simplify calls to specific well-known function calls (e.g. runtime library functions). For example, a
call exit(3) that occurs within the main() function can be transformed into simply return 3. Whether or not
library calls are simplified is controlled by the -functionattrs pass and LLVM’s knowledge of library calls on different
targets.

-internalize: Internalize Global Symbols

This pass loops over all of the functions in the input module, looking for a main function. If a main function is found,
all other functions and all global variables with initializers are marked as internal.

-ipconstprop: Interprocedural constant propagation

This pass implements an extremely simple interprocedural constant propagation pass. It could certainly be improved in
many different ways, like using a worklist. This pass makes arguments dead, but does not remove them. The existing
dead argument elimination pass should be run after this to clean up the mess.

-ipsccp: Interprocedural Sparse Conditional Constant Propagation

An interprocedural variant of Sparse Conditional Constant Propagation.
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-jump-threading: Jump Threading

Jump threading tries to find distinct threads of control flow running through a basic block. This pass looks at blocks
that have multiple predecessors and multiple successors. If one or more of the predecessors of the block can be
proven to always cause a jump to one of the successors, we forward the edge from the predecessor to the successor by
duplicating the contents of this block.

An example of when this can occur is code like this:

if () { ...
X = 4;

}
if (X < 3) {

In this case, the unconditional branch at the end of the first if can be revectored to the false side of the second if.

-lcssa: Loop-Closed SSA Form Pass

This pass transforms loops by placing phi nodes at the end of the loops for all values that are live across the loop
boundary. For example, it turns the left into the right code:

for (...) for (...)
if (c) if (c)

X1 = ... X1 = ...
else else

X2 = ... X2 = ...
X3 = phi(X1, X2) X3 = phi(X1, X2)

... = X3 + 4 X4 = phi(X3)
... = X4 + 4

This is still valid LLVM; the extra phi nodes are purely redundant, and will be trivially eliminated by InstCombine.
The major benefit of this transformation is that it makes many other loop optimizations, such as LoopUnswitching,
simpler.

-licm: Loop Invariant Code Motion

This pass performs loop invariant code motion, attempting to remove as much code from the body of a loop as possible.
It does this by either hoisting code into the preheader block, or by sinking code to the exit blocks if it is safe. This
pass also promotes must-aliased memory locations in the loop to live in registers, thus hoisting and sinking “invariant”
loads and stores.

This pass uses alias analysis for two purposes:

1. Moving loop invariant loads and calls out of loops. If we can determine that a load or call inside of a loop never
aliases anything stored to, we can hoist it or sink it like any other instruction.

2. Scalar Promotion of Memory. If there is a store instruction inside of the loop, we try to move the store to happen
AFTER the loop instead of inside of the loop. This can only happen if a few conditions are true:

(a) The pointer stored through is loop invariant.

(b) There are no stores or loads in the loop which may alias the pointer. There are no calls in the loop which
mod/ref the pointer.

If these conditions are true, we can promote the loads and stores in the loop of the pointer to use a temporary
alloca’d variable. We then use the mem2reg functionality to construct the appropriate SSA form for the variable.
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-loop-deletion: Delete dead loops

This file implements the Dead Loop Deletion Pass. This pass is responsible for eliminating loops with non-infinite
computable trip counts that have no side effects or volatile instructions, and do not contribute to the computation of
the function’s return value.

-loop-extract: Extract loops into new functions

A pass wrapper around the ExtractLoop() scalar transformation to extract each top-level loop into its own new
function. If the loop is the only loop in a given function, it is not touched. This is a pass most useful for debugging via
bugpoint.

-loop-extract-single: Extract at most one loop into a new function

Similar to Extract loops into new functions, this pass extracts one natural loop from the program into a function if it
can. This is used by bugpoint.

-loop-reduce: Loop Strength Reduction

This pass performs a strength reduction on array references inside loops that have as one or more of their components
the loop induction variable. This is accomplished by creating a new value to hold the initial value of the array access
for the first iteration, and then creating a new GEP instruction in the loop to increment the value by the appropriate
amount.

-loop-rotate: Rotate Loops

A simple loop rotation transformation.

-loop-simplify: Canonicalize natural loops

This pass performs several transformations to transform natural loops into a simpler form, which makes subsequent
analyses and transformations simpler and more effective.

Loop pre-header insertion guarantees that there is a single, non-critical entry edge from outside of the loop to the loop
header. This simplifies a number of analyses and transformations, such as LICM.

Loop exit-block insertion guarantees that all exit blocks from the loop (blocks which are outside of the loop that have
predecessors inside of the loop) only have predecessors from inside of the loop (and are thus dominated by the loop
header). This simplifies transformations such as store-sinking that are built into LICM.

This pass also guarantees that loops will have exactly one backedge.

Note that the simplifycfg pass will clean up blocks which are split out but end up being unnecessary, so usage of this
pass should not pessimize generated code.

This pass obviously modifies the CFG, but updates loop information and dominator information.

-loop-unroll: Unroll loops

This pass implements a simple loop unroller. It works best when loops have been canonicalized by the indvars pass,
allowing it to determine the trip counts of loops easily.
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-loop-unswitch: Unswitch loops

This pass transforms loops that contain branches on loop-invariant conditions to have multiple loops. For example, it
turns the left into the right code:

for (...) if (lic)
A for (...)
if (lic) A; B; C

B else
C for (...)

A; C

This can increase the size of the code exponentially (doubling it every time a loop is unswitched) so we only unswitch
if the resultant code will be smaller than a threshold.

This pass expects LICM to be run before it to hoist invariant conditions out of the loop, to make the unswitching
opportunity obvious.

-loweratomic: Lower atomic intrinsics to non-atomic form

This pass lowers atomic intrinsics to non-atomic form for use in a known non-preemptible environment.

The pass does not verify that the environment is non-preemptible (in general this would require knowledge of the
entire call graph of the program including any libraries which may not be available in bitcode form); it simply lowers
every atomic intrinsic.

-lowerinvoke: Lower invokes to calls, for unwindless code generators

This transformation is designed for use by code generators which do not yet support stack unwinding. This pass
converts invoke instructions to call instructions, so that any exception-handling landingpad blocks become
dead code (which can be removed by running the -simplifycfg pass afterwards).

-lowerswitch: Lower SwitchInsts to branches

Rewrites switch instructions with a sequence of branches, which allows targets to get away with not implementing the
switch instruction until it is convenient.

-mem2reg: Promote Memory to Register

This file promotes memory references to be register references. It promotes alloca instructions which only have loads
and stores as uses. An alloca is transformed by using dominator frontiers to place phi nodes, then traversing the
function in depth-first order to rewrite loads and stores as appropriate. This is just the standard SSA construction
algorithm to construct “pruned” SSA form.

-memcpyopt: MemCpy Optimization

This pass performs various transformations related to eliminating memcpy calls, or transforming sets of stores into
memsets.

724 Chapter 2. User Guides



LLVM Documentation, Release 3.9

-mergefunc: Merge Functions

This pass looks for equivalent functions that are mergable and folds them.

Total-ordering is introduced among the functions set: we define comparison that answers for every two functions
which of them is greater. It allows to arrange functions into the binary tree.

For every new function we check for equivalent in tree.

If equivalent exists we fold such functions. If both functions are overridable, we move the functionality into a new
internal function and leave two overridable thunks to it.

If there is no equivalent, then we add this function to tree.

Lookup routine has O(log(n)) complexity, while whole merging process has complexity of O(n*log(n)).

Read this article for more details.

-mergereturn: Unify function exit nodes

Ensure that functions have at most one ret instruction in them. Additionally, it keeps track of which node is the new
exit node of the CFG.

-partial-inliner: Partial Inliner

This pass performs partial inlining, typically by inlining an if statement that surrounds the body of the function.

-prune-eh: Remove unused exception handling info

This file implements a simple interprocedural pass which walks the call-graph, turning invoke instructions into call
instructions if and only if the callee cannot throw an exception. It implements this as a bottom-up traversal of the
call-graph.

-reassociate: Reassociate expressions

This pass reassociates commutative expressions in an order that is designed to promote better constant propagation,
GCSE, LICM, PRE, etc.

For example: 4 + (x + 5) x + (4 + 5)

In the implementation of this algorithm, constants are assigned rank = 0, function arguments are rank = 1, and other
values are assigned ranks corresponding to the reverse post order traversal of current function (starting at 2), which
effectively gives values in deep loops higher rank than values not in loops.

-reg2mem: Demote all values to stack slots

This file demotes all registers to memory references. It is intended to be the inverse of mem2reg. By converting to
load instructions, the only values live across basic blocks are alloca instructions and load instructions before
phi nodes. It is intended that this should make CFG hacking much easier. To make later hacking easier, the entry
block is split into two, such that all introduced alloca instructions (and nothing else) are in the entry block.
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-sroa: Scalar Replacement of Aggregates

The well-known scalar replacement of aggregates transformation. This transform breaks up alloca instructions of
aggregate type (structure or array) into individual alloca instructions for each member if possible. Then, if possible,
it transforms the individual alloca instructions into nice clean scalar SSA form.

-sccp: Sparse Conditional Constant Propagation

Sparse conditional constant propagation and merging, which can be summarized as:

• Assumes values are constant unless proven otherwise

• Assumes BasicBlocks are dead unless proven otherwise

• Proves values to be constant, and replaces them with constants

• Proves conditional branches to be unconditional

Note that this pass has a habit of making definitions be dead. It is a good idea to run a DCE pass sometime after
running this pass.

-simplifycfg: Simplify the CFG

Performs dead code elimination and basic block merging. Specifically:

• Removes basic blocks with no predecessors.

• Merges a basic block into its predecessor if there is only one and the predecessor only has one successor.

• Eliminates PHI nodes for basic blocks with a single predecessor.

• Eliminates a basic block that only contains an unconditional branch.

-sink: Code sinking

This pass moves instructions into successor blocks, when possible, so that they aren’t executed on paths where their
results aren’t needed.

-strip: Strip all symbols from a module

Performs code stripping. This transformation can delete:

• names for virtual registers

• symbols for internal globals and functions

• debug information

Note that this transformation makes code much less readable, so it should only be used in situations where the strip
utility would be used, such as reducing code size or making it harder to reverse engineer code.

-strip-dead-debug-info: Strip debug info for unused symbols

performs code stripping. this transformation can delete:

• names for virtual registers

• symbols for internal globals and functions
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• debug information

note that this transformation makes code much less readable, so it should only be used in situations where the strip
utility would be used, such as reducing code size or making it harder to reverse engineer code.

-strip-dead-prototypes: Strip Unused Function Prototypes

This pass loops over all of the functions in the input module, looking for dead declarations and removes them. Dead
declarations are declarations of functions for which no implementation is available (i.e., declarations for unused library
functions).

-strip-debug-declare: Strip all llvm.dbg.declare intrinsics

This pass implements code stripping. Specifically, it can delete:

1. names for virtual registers

2. symbols for internal globals and functions

3. debug information

Note that this transformation makes code much less readable, so it should only be used in situations where the ‘strip’
utility would be used, such as reducing code size or making it harder to reverse engineer code.

-strip-nondebug: Strip all symbols, except dbg symbols, from a module

This pass implements code stripping. Specifically, it can delete:

1. names for virtual registers

2. symbols for internal globals and functions

3. debug information

Note that this transformation makes code much less readable, so it should only be used in situations where the ‘strip’
utility would be used, such as reducing code size or making it harder to reverse engineer code.

-tailcallelim: Tail Call Elimination

This file transforms calls of the current function (self recursion) followed by a return instruction with a branch to the
entry of the function, creating a loop. This pass also implements the following extensions to the basic algorithm:

1. Trivial instructions between the call and return do not prevent the transformation from taking place, though
currently the analysis cannot support moving any really useful instructions (only dead ones).

2. This pass transforms functions that are prevented from being tail recursive by an associative expression to use
an accumulator variable, thus compiling the typical naive factorial or fib implementation into efficient code.

3. TRE is performed if the function returns void, if the return returns the result returned by the call, or if the
function returns a run-time constant on all exits from the function. It is possible, though unlikely, that the return
returns something else (like constant 0), and can still be TRE’d. It can be TRE’d if all other return instructions
in the function return the exact same value.

4. If it can prove that callees do not access theier caller stack frame, they are marked as eligible for tail call
elimination (by the code generator).
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Utility Passes

This section describes the LLVM Utility Passes.

-deadarghaX0r: Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)

Same as dead argument elimination, but deletes arguments to functions which are external. This is only for use by
bugpoint.

-extract-blocks: Extract Basic Blocks From Module (for bugpoint use)

This pass is used by bugpoint to extract all blocks from the module into their own functions.

-instnamer: Assign names to anonymous instructions

This is a little utility pass that gives instructions names, this is mostly useful when diffing the effect of an optimization
because deleting an unnamed instruction can change all other instruction numbering, making the diff very noisy.

-verify: Module Verifier

Verifies an LLVM IR code. This is useful to run after an optimization which is undergoing testing. Note that llvm-as
verifies its input before emitting bitcode, and also that malformed bitcode is likely to make LLVM crash. All language
front-ends are therefore encouraged to verify their output before performing optimizing transformations.

1. Both of a binary operator’s parameters are of the same type.

2. Verify that the indices of mem access instructions match other operands.

3. Verify that arithmetic and other things are only performed on first-class types. Verify that shifts and logicals
only happen on integrals f.e.

4. All of the constants in a switch statement are of the correct type.

5. The code is in valid SSA form.

6. It is illegal to put a label into any other type (like a structure) or to return one.

7. Only phi nodes can be self referential: %x = add i32 %x, %x is invalid.

8. PHI nodes must have an entry for each predecessor, with no extras.

9. PHI nodes must be the first thing in a basic block, all grouped together.

10. PHI nodes must have at least one entry.

11. All basic blocks should only end with terminator insts, not contain them.

12. The entry node to a function must not have predecessors.

13. All Instructions must be embedded into a basic block.

14. Functions cannot take a void-typed parameter.

15. Verify that a function’s argument list agrees with its declared type.

16. It is illegal to specify a name for a void value.

17. It is illegal to have an internal global value with no initializer.

18. It is illegal to have a ret instruction that returns a value that does not agree with the function return value type.
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19. Function call argument types match the function prototype.

20. All other things that are tested by asserts spread about the code.

Note that this does not provide full security verification (like Java), but instead just tries to ensure that code is well-
formed.

-view-cfg: View CFG of function

Displays the control flow graph using the GraphViz tool.

-view-cfg-only: View CFG of function (with no function bodies)

Displays the control flow graph using the GraphViz tool, but omitting function bodies.

-view-dom: View dominance tree of function

Displays the dominator tree using the GraphViz tool.

-view-dom-only: View dominance tree of function (with no function bodies)

Displays the dominator tree using the GraphViz tool, but omitting function bodies.

-view-postdom: View postdominance tree of function

Displays the post dominator tree using the GraphViz tool.

-view-postdom-only: View postdominance tree of function (with no function bodies)

Displays the post dominator tree using the GraphViz tool, but omitting function bodies.

YAML I/O

• Introduction to YAML

• Introduction to YAML I/O

• Error Handling

• Scalars

– Built-in types

– Unique types

– Hex types

– ScalarEnumerationTraits

– BitValue
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– Custom Scalar

– Block Scalars

• Mappings

– No Normalization

– Normalization

– Default values

– Order of Keys

– Tags

– Validation

– Flow Mapping

• Sequence

– Flow Sequence

– Utility Macros

• Document List

• User Context Data

• Output

• Input

Introduction to YAML

YAML is a human readable data serialization language. The full YAML language spec can be read at yaml.org.
The simplest form of yaml is just “scalars”, “mappings”, and “sequences”. A scalar is any number or string. The
pound/hash symbol (#) begins a comment line. A mapping is a set of key-value pairs where the key ends with a colon.
For example:

# a mapping
name: Tom
hat-size: 7

A sequence is a list of items where each item starts with a leading dash (‘-‘). For example:

# a sequence
- x86
- x86_64
- PowerPC

You can combine mappings and sequences by indenting. For example a sequence of mappings in which one of the
mapping values is itself a sequence:

# a sequence of mappings with one key's value being a sequence
- name: Tom

cpus:
- x86
- x86_64

- name: Bob
cpus:
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- x86
- name: Dan

cpus:
- PowerPC
- x86

Sometime sequences are known to be short and the one entry per line is too verbose, so YAML offers an alternate
syntax for sequences called a “Flow Sequence” in which you put comma separated sequence elements into square
brackets. The above example could then be simplified to :

# a sequence of mappings with one key's value being a flow sequence
- name: Tom

cpus: [ x86, x86_64 ]
- name: Bob

cpus: [ x86 ]
- name: Dan

cpus: [ PowerPC, x86 ]

Introduction to YAML I/O

The use of indenting makes the YAML easy for a human to read and understand, but having a program read and write
YAML involves a lot of tedious details. The YAML I/O library structures and simplifies reading and writing YAML
documents.

YAML I/O assumes you have some “native” data structures which you want to be able to dump as YAML and recreate
from YAML. The first step is to try writing example YAML for your data structures. You may find after looking at
possible YAML representations that a direct mapping of your data structures to YAML is not very readable. Often
the fields are not in the order that a human would find readable. Or the same information is replicated in multiple
locations, making it hard for a human to write such YAML correctly.

In relational database theory there is a design step called normalization in which you reorganize fields and tables.
The same considerations need to go into the design of your YAML encoding. But, you may not want to change your
existing native data structures. Therefore, when writing out YAML there may be a normalization step, and when
reading YAML there would be a corresponding denormalization step.

YAML I/O uses a non-invasive, traits based design. YAML I/O defines some abstract base templates. You special-
ize those templates on your data types. For instance, if you have an enumerated type FooBar you could specialize
ScalarEnumerationTraits on that type and define the enumeration() method:

using llvm::yaml::ScalarEnumerationTraits;
using llvm::yaml::IO;

template <>
struct ScalarEnumerationTraits<FooBar> {
static void enumeration(IO &io, FooBar &value) {
...
}

};

As with all YAML I/O template specializations, the ScalarEnumerationTraits is used for both reading and writing
YAML. That is, the mapping between in-memory enum values and the YAML string representation is only in one
place. This assures that the code for writing and parsing of YAML stays in sync.

To specify a YAML mappings, you define a specialization on llvm::yaml::MappingTraits. If your native data structure
happens to be a struct that is already normalized, then the specialization is simple. For example:
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using llvm::yaml::MappingTraits;
using llvm::yaml::IO;

template <>
struct MappingTraits<Person> {
static void mapping(IO &io, Person &info) {
io.mapRequired("name", info.name);
io.mapOptional("hat-size", info.hatSize);

}
};

A YAML sequence is automatically inferred if you data type has begin()/end() iterators and a push_back() method.
Therefore any of the STL containers (such as std::vector<>) will automatically translate to YAML sequences.

Once you have defined specializations for your data types, you can programmatically use YAML I/O to write a YAML
document:

using llvm::yaml::Output;

Person tom;
tom.name = "Tom";
tom.hatSize = 8;
Person dan;
dan.name = "Dan";
dan.hatSize = 7;
std::vector<Person> persons;
persons.push_back(tom);
persons.push_back(dan);

Output yout(llvm::outs());
yout << persons;

This would write the following:

- name: Tom
hat-size: 8

- name: Dan
hat-size: 7

And you can also read such YAML documents with the following code:

using llvm::yaml::Input;

typedef std::vector<Person> PersonList;
std::vector<PersonList> docs;

Input yin(document.getBuffer());
yin >> docs;

if ( yin.error() )
return;

// Process read document
for ( PersonList &pl : docs ) {

for ( Person &person : pl ) {
cout << "name=" << person.name;

}
}
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One other feature of YAML is the ability to define multiple documents in a single file. That is why reading YAML
produces a vector of your document type.

Error Handling

When parsing a YAML document, if the input does not match your schema (as expressed in your XxxTraits<> spe-
cializations). YAML I/O will print out an error message and your Input object’s error() method will return true. For
instance the following document:

- name: Tom
shoe-size: 12

- name: Dan
hat-size: 7

Has a key (shoe-size) that is not defined in the schema. YAML I/O will automatically generate this error:

YAML:2:2: error: unknown key 'shoe-size'
shoe-size: 12
^~~~~~~~~

Similar errors are produced for other input not conforming to the schema.

Scalars

YAML scalars are just strings (i.e. not a sequence or mapping). The YAML I/O library provides support for translating
between YAML scalars and specific C++ types.

Built-in types

The following types have built-in support in YAML I/O:

• bool

• float

• double

• StringRef

• std::string

• int64_t

• int32_t

• int16_t

• int8_t

• uint64_t

• uint32_t

• uint16_t

• uint8_t

That is, you can use those types in fields of MappingTraits or as element type in sequence. When reading, YAML I/O
will validate that the string found is convertible to that type and error out if not.
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Unique types

Given that YAML I/O is trait based, the selection of how to convert your data to YAML is based on the type of your
data. But in C++ type matching, typedefs do not generate unique type names. That means if you have two typedefs of
unsigned int, to YAML I/O both types look exactly like unsigned int. To facilitate make unique type names, YAML
I/O provides a macro which is used like a typedef on built-in types, but expands to create a class with conversion
operators to and from the base type. For example:

LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyFooFlags)
LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyBarFlags)

This generates two classes MyFooFlags and MyBarFlags which you can use in your native data structures instead of
uint32_t. They are implicitly converted to and from uint32_t. The point of creating these unique types is that you can
now specify traits on them to get different YAML conversions.

Hex types

An example use of a unique type is that YAML I/O provides fixed sized unsigned integers that are written with YAML
I/O as hexadecimal instead of the decimal format used by the built-in integer types:

• Hex64

• Hex32

• Hex16

• Hex8

You can use llvm::yaml::Hex32 instead of uint32_t and the only different will be that when YAML I/O writes out that
type it will be formatted in hexadecimal.

ScalarEnumerationTraits

YAML I/O supports translating between in-memory enumerations and a set of string values in YAML documents. This
is done by specializing ScalarEnumerationTraits<> on your enumeration type and define a enumeration() method. For
instance, suppose you had an enumeration of CPUs and a struct with it as a field:

enum CPUs {
cpu_x86_64 = 5,
cpu_x86 = 7,
cpu_PowerPC = 8

};

struct Info {
CPUs cpu;
uint32_t flags;

};

To support reading and writing of this enumeration, you can define a ScalarEnumerationTraits specialization on CPUs,
which can then be used as a field type:

using llvm::yaml::ScalarEnumerationTraits;
using llvm::yaml::MappingTraits;
using llvm::yaml::IO;

template <>
struct ScalarEnumerationTraits<CPUs> {
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static void enumeration(IO &io, CPUs &value) {
io.enumCase(value, "x86_64", cpu_x86_64);
io.enumCase(value, "x86", cpu_x86);
io.enumCase(value, "PowerPC", cpu_PowerPC);

}
};

template <>
struct MappingTraits<Info> {

static void mapping(IO &io, Info &info) {
io.mapRequired("cpu", info.cpu);
io.mapOptional("flags", info.flags, 0);

}
};

When reading YAML, if the string found does not match any of the strings specified by enumCase() methods, an error
is automatically generated. When writing YAML, if the value being written does not match any of the values specified
by the enumCase() methods, a runtime assertion is triggered.

BitValue

Another common data structure in C++ is a field where each bit has a unique meaning. This is often used in a “flags”
field. YAML I/O has support for converting such fields to a flow sequence. For instance suppose you had the following
bit flags defined:

enum {
flagsPointy = 1
flagsHollow = 2
flagsFlat = 4
flagsRound = 8

};

LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyFlags)

To support reading and writing of MyFlags, you specialize ScalarBitSetTraits<> on MyFlags and provide the bit values
and their names.

using llvm::yaml::ScalarBitSetTraits;
using llvm::yaml::MappingTraits;
using llvm::yaml::IO;

template <>
struct ScalarBitSetTraits<MyFlags> {
static void bitset(IO &io, MyFlags &value) {
io.bitSetCase(value, "hollow", flagHollow);
io.bitSetCase(value, "flat", flagFlat);
io.bitSetCase(value, "round", flagRound);
io.bitSetCase(value, "pointy", flagPointy);

}
};

struct Info {
StringRef name;
MyFlags flags;

};
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template <>
struct MappingTraits<Info> {
static void mapping(IO &io, Info& info) {
io.mapRequired("name", info.name);
io.mapRequired("flags", info.flags);

}
};

With the above, YAML I/O (when writing) will test mask each value in the bitset trait against the flags field, and each
that matches will cause the corresponding string to be added to the flow sequence. The opposite is done when reading
and any unknown string values will result in a error. With the above schema, a same valid YAML document is:

name: Tom
flags: [ pointy, flat ]

Sometimes a “flags” field might contains an enumeration part defined by a bit-mask.

enum {
flagsFeatureA = 1,
flagsFeatureB = 2,
flagsFeatureC = 4,

flagsCPUMask = 24,

flagsCPU1 = 8,
flagsCPU2 = 16

};

To support reading and writing such fields, you need to use the maskedBitSet() method and provide the bit values,
their names and the enumeration mask.

template <>
struct ScalarBitSetTraits<MyFlags> {
static void bitset(IO &io, MyFlags &value) {
io.bitSetCase(value, "featureA", flagsFeatureA);
io.bitSetCase(value, "featureB", flagsFeatureB);
io.bitSetCase(value, "featureC", flagsFeatureC);
io.maskedBitSetCase(value, "CPU1", flagsCPU1, flagsCPUMask);
io.maskedBitSetCase(value, "CPU2", flagsCPU2, flagsCPUMask);

}
};

YAML I/O (when writing) will apply the enumeration mask to the flags field, and compare the result and values from
the bitset. As in case of a regular bitset, each that matches will cause the corresponding string to be added to the flow
sequence.

Custom Scalar

Sometimes for readability a scalar needs to be formatted in a custom way. For instance your internal data structure
may use a integer for time (seconds since some epoch), but in YAML it would be much nicer to express that integer
in some time format (e.g. 4-May-2012 10:30pm). YAML I/O has a way to support custom formatting and parsing
of scalar types by specializing ScalarTraits<> on your data type. When writing, YAML I/O will provide the native
type and your specialization must create a temporary llvm::StringRef. When reading, YAML I/O will provide an
llvm::StringRef of scalar and your specialization must convert that to your native data type. An outline of a custom
scalar type looks like:
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using llvm::yaml::ScalarTraits;
using llvm::yaml::IO;

template <>
struct ScalarTraits<MyCustomType> {
static void output(const MyCustomType &value, void*,

llvm::raw_ostream &out) {
out << value; // do custom formatting here

}
static StringRef input(StringRef scalar, void*, MyCustomType &value) {
// do custom parsing here. Return the empty string on success,
// or an error message on failure.
return StringRef();

}
// Determine if this scalar needs quotes.
static bool mustQuote(StringRef) { return true; }

};

Block Scalars

YAML block scalars are string literals that are represented in YAML using the literal block notation, just like the
example shown below:

text: |
First line
Second line

The YAML I/O library provides support for translating between YAML block scalars and specific C++ types by
allowing you to specialize BlockScalarTraits<> on your data type. The library doesn’t provide any built-in support for
block scalar I/O for types like std::string and llvm::StringRef as they are already supported by YAML I/O and use the
ordinary scalar notation by default.

BlockScalarTraits specializations are very similar to the ScalarTraits specialization - YAML I/O will provide the
native type and your specialization must create a temporary llvm::StringRef when writing, and it will also provide an
llvm::StringRef that has the value of that block scalar and your specialization must convert that to your native data
type when reading. An example of a custom type with an appropriate specialization of BlockScalarTraits is shown
below:

using llvm::yaml::BlockScalarTraits;
using llvm::yaml::IO;

struct MyStringType {
std::string Str;

};

template <>
struct BlockScalarTraits<MyStringType> {

static void output(const MyStringType &Value, void *Ctxt,
llvm::raw_ostream &OS) {

OS << Value.Str;
}

static StringRef input(StringRef Scalar, void *Ctxt,
MyStringType &Value) {

Value.Str = Scalar.str();
return StringRef();
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}
};

Mappings

To be translated to or from a YAML mapping for your type T you must specialize llvm::yaml::MappingTraits on T and
implement the “void mapping(IO &io, T&)” method. If your native data structures use pointers to a class everywhere,
you can specialize on the class pointer. Examples:

using llvm::yaml::MappingTraits;
using llvm::yaml::IO;

// Example of struct Foo which is used by value
template <>
struct MappingTraits<Foo> {
static void mapping(IO &io, Foo &foo) {
io.mapOptional("size", foo.size);

...
}

};

// Example of struct Bar which is natively always a pointer
template <>
struct MappingTraits<Bar*> {

static void mapping(IO &io, Bar *&bar) {
io.mapOptional("size", bar->size);

...
}

};

No Normalization

The mapping() method is responsible, if needed, for normalizing and denormalizing. In a simple case where the native
data structure requires no normalization, the mapping method just uses mapOptional() or mapRequired() to bind the
struct’s fields to YAML key names. For example:

using llvm::yaml::MappingTraits;
using llvm::yaml::IO;

template <>
struct MappingTraits<Person> {
static void mapping(IO &io, Person &info) {
io.mapRequired("name", info.name);
io.mapOptional("hat-size", info.hatSize);

}
};

Normalization

When [de]normalization is required, the mapping() method needs a way to access normalized values as fields. To help
with this, there is a template MappingNormalization<> which you can then use to automatically do the normalization
and denormalization. The template is used to create a local variable in your mapping() method which contains the
normalized keys.
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Suppose you have native data type Polar which specifies a position in polar coordinates (distance, angle):

struct Polar {
float distance;
float angle;

};

but you’ve decided the normalized YAML for should be in x,y coordinates. That is, you want the yaml to look like:

x: 10.3
y: -4.7

You can support this by defining a MappingTraits that normalizes the polar coordinates to x,y coordinates when writing
YAML and denormalizes x,y coordinates into polar when reading YAML.

using llvm::yaml::MappingTraits;
using llvm::yaml::IO;

template <>
struct MappingTraits<Polar> {

class NormalizedPolar {
public:
NormalizedPolar(IO &io)

: x(0.0), y(0.0) {
}
NormalizedPolar(IO &, Polar &polar)

: x(polar.distance * cos(polar.angle)),
y(polar.distance * sin(polar.angle)) {

}
Polar denormalize(IO &) {

return Polar(sqrt(x*x+y*y), arctan(x,y));
}

float x;
float y;

};

static void mapping(IO &io, Polar &polar) {
MappingNormalization<NormalizedPolar, Polar> keys(io, polar);

io.mapRequired("x", keys->x);
io.mapRequired("y", keys->y);

}
};

When writing YAML, the local variable “keys” will be a stack allocated instance of NormalizedPolar, constructed
from the supplied polar object which initializes it x and y fields. The mapRequired() methods then write out the x and
y values as key/value pairs.

When reading YAML, the local variable “keys” will be a stack allocated instance of NormalizedPolar, constructed by
the empty constructor. The mapRequired methods will find the matching key in the YAML document and fill in the
x and y fields of the NormalizedPolar object keys. At the end of the mapping() method when the local keys variable
goes out of scope, the denormalize() method will automatically be called to convert the read values back to polar
coordinates, and then assigned back to the second parameter to mapping().

In some cases, the normalized class may be a subclass of the native type and could be returned by the denormalize()
method, except that the temporary normalized instance is stack allocated. In these cases, the utility template Map-
pingNormalizationHeap<> can be used instead. It just like MappingNormalization<> except that it heap allocates the
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normalized object when reading YAML. It never destroys the normalized object. The denormalize() method can this
return “this”.

Default values

Within a mapping() method, calls to io.mapRequired() mean that that key is required to exist when parsing YAML
documents, otherwise YAML I/O will issue an error.

On the other hand, keys registered with io.mapOptional() are allowed to not exist in the YAML document being read.
So what value is put in the field for those optional keys? There are two steps to how those optional fields are filled
in. First, the second parameter to the mapping() method is a reference to a native class. That native class must have a
default constructor. Whatever value the default constructor initially sets for an optional field will be that field’s value.
Second, the mapOptional() method has an optional third parameter. If provided it is the value that mapOptional()
should set that field to if the YAML document does not have that key.

There is one important difference between those two ways (default constructor and third parameter to mapOptional).
When YAML I/O generates a YAML document, if the mapOptional() third parameter is used, if the actual value being
written is the same as (using ==) the default value, then that key/value is not written.

Order of Keys

When writing out a YAML document, the keys are written in the order that the calls to mapRequired()/mapOptional()
are made in the mapping() method. This gives you a chance to write the fields in an order that a human reader of the
YAML document would find natural. This may be different that the order of the fields in the native class.

When reading in a YAML document, the keys in the document can be in any order, but they are processed in the order
that the calls to mapRequired()/mapOptional() are made in the mapping() method. That enables some interesting
functionality. For instance, if the first field bound is the cpu and the second field bound is flags, and the flags are cpu
specific, you can programmatically switch how the flags are converted to and from YAML based on the cpu. This
works for both reading and writing. For example:

using llvm::yaml::MappingTraits;
using llvm::yaml::IO;

struct Info {
CPUs cpu;
uint32_t flags;

};

template <>
struct MappingTraits<Info> {
static void mapping(IO &io, Info &info) {
io.mapRequired("cpu", info.cpu);
// flags must come after cpu for this to work when reading yaml
if ( info.cpu == cpu_x86_64 )

io.mapRequired("flags", *(My86_64Flags*)info.flags);
else

io.mapRequired("flags", *(My86Flags*)info.flags);
}

};

Tags

The YAML syntax supports tags as a way to specify the type of a node before it is parsed. This allows dynamic types
of nodes. But the YAML I/O model uses static typing, so there are limits to how you can use tags with the YAML
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I/O model. Recently, we added support to YAML I/O for checking/setting the optional tag on a map. Using this
functionality it is even possbile to support different mappings, as long as they are convertable.

To check a tag, inside your mapping() method you can use io.mapTag() to specify what the tag should be. This will
also add that tag when writing yaml.

Validation

Sometimes in a yaml map, each key/value pair is valid, but the combination is not. This is similar to something having
no syntax errors, but still having semantic errors. To support semantic level checking, YAML I/O allows an optional
validate() method in a MappingTraits template specialization.

When parsing yaml, the validate() method is call after all key/values in the map have been processed. Any
error message returned by the validate() method during input will be printed just a like a syntax error would be
printed. When writing yaml, the validate() method is called before the yaml key/values are written. Any error
during output will trigger an assert() because it is a programming error to have invalid struct values.

using llvm::yaml::MappingTraits;
using llvm::yaml::IO;

struct Stuff {
...

};

template <>
struct MappingTraits<Stuff> {

static void mapping(IO &io, Stuff &stuff) {
...
}
static StringRef validate(IO &io, Stuff &stuff) {
// Look at all fields in 'stuff' and if there
// are any bad values return a string describing
// the error. Otherwise return an empty string.
return StringRef();

}
};

Flow Mapping

A YAML “flow mapping” is a mapping that uses the inline notation (e.g { x: 1, y: 0 } ) when written to YAML. To
specify that a type should be written in YAML using flow mapping, your MappingTraits specialization should add
“static const bool flow = true;”. For instance:

using llvm::yaml::MappingTraits;
using llvm::yaml::IO;

struct Stuff {
...

};

template <>
struct MappingTraits<Stuff> {

static void mapping(IO &io, Stuff &stuff) {
...

}
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static const bool flow = true;
}

Flow mappings are subject to line wrapping according to the Output object configuration.

Sequence

To be translated to or from a YAML sequence for your type T you must specialize llvm::yaml::SequenceTraits on
T and implement two methods: size_t size(IO &io, T&) and T::value_type& element(IO &io,
T&, size_t indx). For example:

template <>
struct SequenceTraits<MySeq> {
static size_t size(IO &io, MySeq &list) { ... }
static MySeqEl &element(IO &io, MySeq &list, size_t index) { ... }

};

The size() method returns how many elements are currently in your sequence. The element() method returns a ref-
erence to the i’th element in the sequence. When parsing YAML, the element() method may be called with an index
one bigger than the current size. Your element() method should allocate space for one more element (using default
constructor if element is a C++ object) and returns a reference to that new allocated space.

Flow Sequence

A YAML “flow sequence” is a sequence that when written to YAML it uses the inline notation (e.g [ foo, bar ] ). To
specify that a sequence type should be written in YAML as a flow sequence, your SequenceTraits specialization should
add “static const bool flow = true;”. For instance:

template <>
struct SequenceTraits<MyList> {
static size_t size(IO &io, MyList &list) { ... }
static MyListEl &element(IO &io, MyList &list, size_t index) { ... }

// The existence of this member causes YAML I/O to use a flow sequence
static const bool flow = true;

};

With the above, if you used MyList as the data type in your native data structures, then when converted to YAML, a
flow sequence of integers will be used (e.g. [ 10, -3, 4 ]).

Flow sequences are subject to line wrapping according to the Output object configuration.

Utility Macros

Since a common source of sequences is std::vector<>, YAML I/O provides macros:
LLVM_YAML_IS_SEQUENCE_VECTOR() and LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR() which
can be used to easily specify SequenceTraits<> on a std::vector type. YAML I/O does not partial specialize
SequenceTraits on std::vector<> because that would force all vectors to be sequences. An example use of the macros:

std::vector<MyType1>;
std::vector<MyType2>;
LLVM_YAML_IS_SEQUENCE_VECTOR(MyType1)
LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(MyType2)
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Document List

YAML allows you to define multiple “documents” in a single YAML file. Each new document starts with a left aligned
“—” token. The end of all documents is denoted with a left aligned ”...” token. Many users of YAML will never have
need for multiple documents. The top level node in their YAML schema will be a mapping or sequence. For those
cases, the following is not needed. But for cases where you do want multiple documents, you can specify a trait for
you document list type. The trait has the same methods as SequenceTraits but is named DocumentListTraits. For
example:

template <>
struct DocumentListTraits<MyDocList> {
static size_t size(IO &io, MyDocList &list) { ... }
static MyDocType element(IO &io, MyDocList &list, size_t index) { ... }

};

User Context Data

When an llvm::yaml::Input or llvm::yaml::Output object is created their constructors take an optional “context” pa-
rameter. This is a pointer to whatever state information you might need.

For instance, in a previous example we showed how the conversion type for a flags field could be determined at runtime
based on the value of another field in the mapping. But what if an inner mapping needs to know some field value of an
outer mapping? That is where the “context” parameter comes in. You can set values in the context in the outer map’s
mapping() method and retrieve those values in the inner map’s mapping() method.

The context value is just a void*. All your traits which use the context and operate on your native data types, need to
agree what the context value actually is. It could be a pointer to an object or struct which your various traits use to
shared context sensitive information.

Output

The llvm::yaml::Output class is used to generate a YAML document from your in-memory data structures, using traits
defined on your data types. To instantiate an Output object you need an llvm::raw_ostream, an optional context pointer
and an optional wrapping column:

class Output : public IO {
public:

Output(llvm::raw_ostream &, void *context = NULL, int WrapColumn = 70);

Once you have an Output object, you can use the C++ stream operator on it to write your native data as YAML. One
thing to recall is that a YAML file can contain multiple “documents”. If the top level data structure you are streaming
as YAML is a mapping, scalar, or sequence, then Output assumes you are generating one document and wraps the
mapping output with “---” and trailing “...”.

The WrapColumn parameter will cause the flow mappings and sequences to line-wrap when they go over the supplied
column. Pass 0 to completely suppress the wrapping.

using llvm::yaml::Output;

void dumpMyMapDoc(const MyMapType &info) {
Output yout(llvm::outs());
yout << info;

}

The above could produce output like:
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---
name: Tom
hat-size: 7
...

On the other hand, if the top level data structure you are streaming as YAML has a DocumentListTraits specialization,
then Output walks through each element of your DocumentList and generates a “—” before the start of each element
and ends with a ”...”.

using llvm::yaml::Output;

void dumpMyMapDoc(const MyDocListType &docList) {
Output yout(llvm::outs());
yout << docList;

}

The above could produce output like:

---
name: Tom
hat-size: 7
---
name: Tom
shoe-size: 11
...

Input

The llvm::yaml::Input class is used to parse YAML document(s) into your native data structures. To instantiate an
Input object you need a StringRef to the entire YAML file, and optionally a context pointer:

class Input : public IO {
public:

Input(StringRef inputContent, void *context=NULL);

Once you have an Input object, you can use the C++ stream operator to read the document(s). If you expect there might
be multiple YAML documents in one file, you’ll need to specialize DocumentListTraits on a list of your document
type and stream in that document list type. Otherwise you can just stream in the document type. Also, you can check
if there was any syntax errors in the YAML be calling the error() method on the Input object. For example:

// Reading a single document
using llvm::yaml::Input;

Input yin(mb.getBuffer());

// Parse the YAML file
MyDocType theDoc;
yin >> theDoc;

// Check for error
if ( yin.error() )

return;

// Reading multiple documents in one file
using llvm::yaml::Input;
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LLVM_YAML_IS_DOCUMENT_LIST_VECTOR(std::vector<MyDocType>)

Input yin(mb.getBuffer());

// Parse the YAML file
std::vector<MyDocType> theDocList;
yin >> theDocList;

// Check for error
if ( yin.error() )

return;

The Often Misunderstood GEP Instruction

• Introduction

• Address Computation

– What is the first index of the GEP instruction?

– Why is the extra 0 index required?

– What is dereferenced by GEP?

– Why don’t GEP x,0,0,1 and GEP x,1 alias?

– Why do GEP x,1,0,0 and GEP x,1 alias?

– Can GEP index into vector elements?

– What effect do address spaces have on GEPs?

– How is GEP different from ptrtoint, arithmetic, and inttoptr?

– I’m writing a backend for a target which needs custom lowering for GEP. How do I do this?

– How does VLA addressing work with GEPs?

• Rules

– What happens if an array index is out of bounds?

– Can array indices be negative?

– Can I compare two values computed with GEPs?

– Can I do GEP with a different pointer type than the type of the underlying object?

– Can I cast an object’s address to integer and add it to null?

– Can I compute the distance between two objects, and add that value to one address to compute the other
address?

– Can I do type-based alias analysis on LLVM IR?

– What happens if a GEP computation overflows?

– How can I tell if my front-end is following the rules?

• Rationale

2.21. The Often Misunderstood GEP Instruction 745



LLVM Documentation, Release 3.9

– Why is GEP designed this way?

– Why do struct member indices always use i32?

– What’s an uglygep?

• Summary

Introduction

This document seeks to dispel the mystery and confusion surrounding LLVM’s GetElementPtr (GEP) instruction.
Questions about the wily GEP instruction are probably the most frequently occurring questions once a developer gets
down to coding with LLVM. Here we lay out the sources of confusion and show that the GEP instruction is really
quite simple.

Address Computation

When people are first confronted with the GEP instruction, they tend to relate it to known concepts from other pro-
gramming paradigms, most notably C array indexing and field selection. GEP closely resembles C array indexing and
field selection, however it is a little different and this leads to the following questions.

What is the first index of the GEP instruction?

Quick answer: The index stepping through the first operand.

The confusion with the first index usually arises from thinking about the GetElementPtr instruction as if it was a C
index operator. They aren’t the same. For example, when we write, in “C”:

AType *Foo;
...
X = &Foo->F;

it is natural to think that there is only one index, the selection of the field F. However, in this example, Foo is a pointer.
That pointer must be indexed explicitly in LLVM. C, on the other hand, indices through it transparently. To arrive at
the same address location as the C code, you would provide the GEP instruction with two index operands. The first
operand indexes through the pointer; the second operand indexes the field F of the structure, just as if you wrote:

X = &Foo[0].F;

Sometimes this question gets rephrased as:

Why is it okay to index through the first pointer, but subsequent pointers won’t be dereferenced?

The answer is simply because memory does not have to be accessed to perform the computation. The first operand
to the GEP instruction must be a value of a pointer type. The value of the pointer is provided directly to the GEP
instruction as an operand without any need for accessing memory. It must, therefore be indexed and requires an index
operand. Consider this example:

struct munger_struct {
int f1;
int f2;

};
void munge(struct munger_struct *P) {

P[0].f1 = P[1].f1 + P[2].f2;
}
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...
munger_struct Array[3];
...
munge(Array);

In this “C” example, the front end compiler (Clang) will generate three GEP instructions for the three indices through
“P” in the assignment statement. The function argument P will be the first operand of each of these GEP instruc-
tions. The second operand indexes through that pointer. The third operand will be the field offset into the struct
munger_struct type, for either the f1 or f2 field. So, in LLVM assembly the munge function looks like:

void %munge(%struct.munger_struct* %P) {
entry:

%tmp = getelementptr %struct.munger_struct, %struct.munger_struct* %P, i32 1, i32 0
%tmp = load i32* %tmp
%tmp6 = getelementptr %struct.munger_struct, %struct.munger_struct* %P, i32 2, i32 1
%tmp7 = load i32* %tmp6
%tmp8 = add i32 %tmp7, %tmp
%tmp9 = getelementptr %struct.munger_struct, %struct.munger_struct* %P, i32 0, i32 0
store i32 %tmp8, i32* %tmp9
ret void

}

In each case the first operand is the pointer through which the GEP instruction starts. The same is true whether the
first operand is an argument, allocated memory, or a global variable.

To make this clear, let’s consider a more obtuse example:

%MyVar = uninitialized global i32
...
%idx1 = getelementptr i32, i32* %MyVar, i64 0
%idx2 = getelementptr i32, i32* %MyVar, i64 1
%idx3 = getelementptr i32, i32* %MyVar, i64 2

These GEP instructions are simply making address computations from the base address of MyVar. They compute, as
follows (using C syntax):

idx1 = (char*) &MyVar + 0
idx2 = (char*) &MyVar + 4
idx3 = (char*) &MyVar + 8

Since the type i32 is known to be four bytes long, the indices 0, 1 and 2 translate into memory offsets of 0, 4, and 8,
respectively. No memory is accessed to make these computations because the address of %MyVar is passed directly
to the GEP instructions.

The obtuse part of this example is in the cases of %idx2 and %idx3. They result in the computation of addresses that
point to memory past the end of the %MyVar global, which is only one i32 long, not three i32s long. While this
is legal in LLVM, it is inadvisable because any load or store with the pointer that results from these GEP instructions
would produce undefined results.

Why is the extra 0 index required?

Quick answer: there are no superfluous indices.

This question arises most often when the GEP instruction is applied to a global variable which is always a pointer
type. For example, consider this:
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%MyStruct = uninitialized global { float*, i32 }
...
%idx = getelementptr { float*, i32 }, { float*, i32 }* %MyStruct, i64 0, i32 1

The GEP above yields an i32* by indexing the i32 typed field of the structure %MyStruct. When people first
look at it, they wonder why the i64 0 index is needed. However, a closer inspection of how globals and GEPs work
reveals the need. Becoming aware of the following facts will dispel the confusion:

1. The type of %MyStruct is not { float*, i32 } but rather { float*, i32 }*. That is, %MyStruct
is a pointer to a structure containing a pointer to a float and an i32.

2. Point #1 is evidenced by noticing the type of the first operand of the GEP instruction (%MyStruct) which is {
float*, i32 }*.

3. The first index, i64 0 is required to step over the global variable %MyStruct. Since the first argument to the
GEP instruction must always be a value of pointer type, the first index steps through that pointer. A value of 0
means 0 elements offset from that pointer.

4. The second index, i32 1 selects the second field of the structure (the i32).

What is dereferenced by GEP?

Quick answer: nothing.

The GetElementPtr instruction dereferences nothing. That is, it doesn’t access memory in any way. That’s what the
Load and Store instructions are for. GEP is only involved in the computation of addresses. For example, consider this:

%MyVar = uninitialized global { [40 x i32 ]* }
...
%idx = getelementptr { [40 x i32]* }, { [40 x i32]* }* %MyVar, i64 0, i32 0, i64 0,
→˓i64 17

In this example, we have a global variable, %MyVar that is a pointer to a structure containing a pointer to an array
of 40 ints. The GEP instruction seems to be accessing the 18th integer of the structure’s array of ints. However,
this is actually an illegal GEP instruction. It won’t compile. The reason is that the pointer in the structure must be
dereferenced in order to index into the array of 40 ints. Since the GEP instruction never accesses memory, it is illegal.

In order to access the 18th integer in the array, you would need to do the following:

%idx = getelementptr { [40 x i32]* }, { [40 x i32]* }* %, i64 0, i32 0
%arr = load [40 x i32]** %idx
%idx = getelementptr [40 x i32], [40 x i32]* %arr, i64 0, i64 17

In this case, we have to load the pointer in the structure with a load instruction before we can index into the array. If
the example was changed to:

%MyVar = uninitialized global { [40 x i32 ] }
...
%idx = getelementptr { [40 x i32] }, { [40 x i32] }*, i64 0, i32 0, i64 17

then everything works fine. In this case, the structure does not contain a pointer and the GEP instruction can index
through the global variable, into the first field of the structure and access the 18th i32 in the array there.

Why don’t GEP x,0,0,1 and GEP x,1 alias?

Quick Answer: They compute different address locations.
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If you look at the first indices in these GEP instructions you find that they are different (0 and 1), therefore the address
computation diverges with that index. Consider this example:

%MyVar = global { [10 x i32] }
%idx1 = getelementptr { [10 x i32] }, { [10 x i32] }* %MyVar, i64 0, i32 0, i64 1
%idx2 = getelementptr { [10 x i32] }, { [10 x i32] }* %MyVar, i64 1

In this example, idx1 computes the address of the second integer in the array that is in the structure in %MyVar, that
is MyVar+4. The type of idx1 is i32*. However, idx2 computes the address of the next structure after %MyVar.
The type of idx2 is { [10 x i32] }* and its value is equivalent to MyVar + 40 because it indexes past the
ten 4-byte integers in MyVar. Obviously, in such a situation, the pointers don’t alias.

Why do GEP x,1,0,0 and GEP x,1 alias?

Quick Answer: They compute the same address location.

These two GEP instructions will compute the same address because indexing through the 0th element does not change
the address. However, it does change the type. Consider this example:

%MyVar = global { [10 x i32] }
%idx1 = getelementptr { [10 x i32] }, { [10 x i32] }* %MyVar, i64 1, i32 0, i64 0
%idx2 = getelementptr { [10 x i32] }, { [10 x i32] }* %MyVar, i64 1

In this example, the value of %idx1 is %MyVar+40 and its type is i32*. The value of %idx2 is also MyVar+40
but its type is { [10 x i32] }*.

Can GEP index into vector elements?

This hasn’t always been forcefully disallowed, though it’s not recommended. It leads to awkward special cases in the
optimizers, and fundamental inconsistency in the IR. In the future, it will probably be outright disallowed.

What effect do address spaces have on GEPs?

None, except that the address space qualifier on the first operand pointer type always matches the address space
qualifier on the result type.

How is GEP different from ptrtoint, arithmetic, and inttoptr?

It’s very similar; there are only subtle differences.

With ptrtoint, you have to pick an integer type. One approach is to pick i64; this is safe on everything LLVM supports
(LLVM internally assumes pointers are never wider than 64 bits in many places), and the optimizer will actually
narrow the i64 arithmetic down to the actual pointer size on targets which don’t support 64-bit arithmetic in most
cases. However, there are some cases where it doesn’t do this. With GEP you can avoid this problem.

Also, GEP carries additional pointer aliasing rules. It’s invalid to take a GEP from one object, address into a different
separately allocated object, and dereference it. IR producers (front-ends) must follow this rule, and consumers (opti-
mizers, specifically alias analysis) benefit from being able to rely on it. See the Rules section for more information.

And, GEP is more concise in common cases.

However, for the underlying integer computation implied, there is no difference.
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I’m writing a backend for a target which needs custom lowering for GEP. How do I do this?

You don’t. The integer computation implied by a GEP is target-independent. Typically what you’ll need to do is make
your backend pattern-match expressions trees involving ADD, MUL, etc., which are what GEP is lowered into. This
has the advantage of letting your code work correctly in more cases.

GEP does use target-dependent parameters for the size and layout of data types, which targets can customize.

If you require support for addressing units which are not 8 bits, you’ll need to fix a lot of code in the backend, with
GEP lowering being only a small piece of the overall picture.

How does VLA addressing work with GEPs?

GEPs don’t natively support VLAs. LLVM’s type system is entirely static, and GEP address computations are guided
by an LLVM type.

VLA indices can be implemented as linearized indices. For example, an expression like X[a][b][c], must be
effectively lowered into a form like X[a*m+b*n+c], so that it appears to the GEP as a single-dimensional array
reference.

This means if you want to write an analysis which understands array indices and you want to support VLAs, your
code will have to be prepared to reverse-engineer the linearization. One way to solve this problem is to use the
ScalarEvolution library, which always presents VLA and non-VLA indexing in the same manner.

Rules

What happens if an array index is out of bounds?

There are two senses in which an array index can be out of bounds.

First, there’s the array type which comes from the (static) type of the first operand to the GEP. Indices greater than the
number of elements in the corresponding static array type are valid. There is no problem with out of bounds indices
in this sense. Indexing into an array only depends on the size of the array element, not the number of elements.

A common example of how this is used is arrays where the size is not known. It’s common to use array types with zero
length to represent these. The fact that the static type says there are zero elements is irrelevant; it’s perfectly valid to
compute arbitrary element indices, as the computation only depends on the size of the array element, not the number
of elements. Note that zero-sized arrays are not a special case here.

This sense is unconnected with inbounds keyword. The inbounds keyword is designed to describe low-level
pointer arithmetic overflow conditions, rather than high-level array indexing rules.

Analysis passes which wish to understand array indexing should not assume that the static array type bounds are
respected.

The second sense of being out of bounds is computing an address that’s beyond the actual underlying allocated object.

With the inbounds keyword, the result value of the GEP is undefined if the address is outside the actual underlying
allocated object and not the address one-past-the-end.

Without the inbounds keyword, there are no restrictions on computing out-of-bounds addresses. Obviously, per-
forming a load or a store requires an address of allocated and sufficiently aligned memory. But the GEP itself is only
concerned with computing addresses.

Can array indices be negative?

Yes. This is basically a special case of array indices being out of bounds.
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Can I compare two values computed with GEPs?

Yes. If both addresses are within the same allocated object, or one-past-the-end, you’ll get the comparison result you
expect. If either is outside of it, integer arithmetic wrapping may occur, so the comparison may not be meaningful.

Can I do GEP with a different pointer type than the type of the underlying object?

Yes. There are no restrictions on bitcasting a pointer value to an arbitrary pointer type. The types in a GEP serve only
to define the parameters for the underlying integer computation. They need not correspond with the actual type of the
underlying object.

Furthermore, loads and stores don’t have to use the same types as the type of the underlying object. Types in this
context serve only to specify memory size and alignment. Beyond that there are merely a hint to the optimizer
indicating how the value will likely be used.

Can I cast an object’s address to integer and add it to null?

You can compute an address that way, but if you use GEP to do the add, you can’t use that pointer to actually access
the object, unless the object is managed outside of LLVM.

The underlying integer computation is sufficiently defined; null has a defined value — zero — and you can add
whatever value you want to it.

However, it’s invalid to access (load from or store to) an LLVM-aware object with such a pointer. This includes
GlobalVariables, Allocas, and objects pointed to by noalias pointers.

If you really need this functionality, you can do the arithmetic with explicit integer instructions, and use inttoptr to
convert the result to an address. Most of GEP’s special aliasing rules do not apply to pointers computed from ptrtoint,
arithmetic, and inttoptr sequences.

Can I compute the distance between two objects, and add that value to one address to compute the
other address?

As with arithmetic on null, you can use GEP to compute an address that way, but you can’t use that pointer to actually
access the object if you do, unless the object is managed outside of LLVM.

Also as above, ptrtoint and inttoptr provide an alternative way to do this which do not have this restriction.

Can I do type-based alias analysis on LLVM IR?

You can’t do type-based alias analysis using LLVM’s built-in type system, because LLVM has no restrictions on
mixing types in addressing, loads or stores.

LLVM’s type-based alias analysis pass uses metadata to describe a different type system (such as the C type system),
and performs type-based aliasing on top of that. Further details are in the language reference.

What happens if a GEP computation overflows?

If the GEP lacks the inbounds keyword, the value is the result from evaluating the implied two’s complement
integer computation. However, since there’s no guarantee of where an object will be allocated in the address space,
such values have limited meaning.

If the GEP has the inbounds keyword, the result value is undefined (a “trap value”) if the GEP overflows (i.e. wraps
around the end of the address space).
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As such, there are some ramifications of this for inbounds GEPs: scales implied by array/vector/pointer indices are
always known to be “nsw” since they are signed values that are scaled by the element size. These values are also
allowed to be negative (e.g. “gep i32 *%P, i32 -1”) but the pointer itself is logically treated as an unsigned
value. This means that GEPs have an asymmetric relation between the pointer base (which is treated as unsigned) and
the offset applied to it (which is treated as signed). The result of the additions within the offset calculation cannot have
signed overflow, but when applied to the base pointer, there can be signed overflow.

How can I tell if my front-end is following the rules?

There is currently no checker for the getelementptr rules. Currently, the only way to do this is to manually check each
place in your front-end where GetElementPtr operators are created.

It’s not possible to write a checker which could find all rule violations statically. It would be possible to write a checker
which works by instrumenting the code with dynamic checks though. Alternatively, it would be possible to write a
static checker which catches a subset of possible problems. However, no such checker exists today.

Rationale

Why is GEP designed this way?

The design of GEP has the following goals, in rough unofficial order of priority:

• Support C, C-like languages, and languages which can be conceptually lowered into C (this covers a lot).

• Support optimizations such as those that are common in C compilers. In particular, GEP is a cornerstone of
LLVM’s pointer aliasing model.

• Provide a consistent method for computing addresses so that address computations don’t need to be a part of
load and store instructions in the IR.

• Support non-C-like languages, to the extent that it doesn’t interfere with other goals.

• Minimize target-specific information in the IR.

Why do struct member indices always use i32?

The specific type i32 is probably just a historical artifact, however it’s wide enough for all practical purposes, so there’s
been no need to change it. It doesn’t necessarily imply i32 address arithmetic; it’s just an identifier which identifies
a field in a struct. Requiring that all struct indices be the same reduces the range of possibilities for cases where two
GEPs are effectively the same but have distinct operand types.

What’s an uglygep?

Some LLVM optimizers operate on GEPs by internally lowering them into more primitive integer expressions, which
allows them to be combined with other integer expressions and/or split into multiple separate integer expressions.
If they’ve made non-trivial changes, translating back into LLVM IR can involve reverse-engineering the structure
of the addressing in order to fit it into the static type of the original first operand. It isn’t always possibly to fully
reconstruct this structure; sometimes the underlying addressing doesn’t correspond with the static type at all. In such
cases the optimizer instead will emit a GEP with the base pointer casted to a simple address-unit pointer, using the
name “uglygep”. This isn’t pretty, but it’s just as valid, and it’s sufficient to preserve the pointer aliasing guarantees
that GEP provides.
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Summary

In summary, here’s some things to always remember about the GetElementPtr instruction:

1. The GEP instruction never accesses memory, it only provides pointer computations.

2. The first operand to the GEP instruction is always a pointer and it must be indexed.

3. There are no superfluous indices for the GEP instruction.

4. Trailing zero indices are superfluous for pointer aliasing, but not for the types of the pointers.

5. Leading zero indices are not superfluous for pointer aliasing nor the types of the pointers.
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Abstract

The intended audience of this document is developers of language frontends targeting LLVM IR. This document is
home to a collection of tips on how to generate IR that optimizes well.

IR Best Practices

As with any optimizer, LLVM has its strengths and weaknesses. In some cases, surprisingly small changes in the
source IR can have a large effect on the generated code.
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Beyond the specific items on the list below, it’s worth noting that the most mature frontend for LLVM is Clang. As
a result, the further your IR gets from what Clang might emit, the less likely it is to be effectively optimized. It can
often be useful to write a quick C program with the semantics you’re trying to model and see what decisions Clang’s
IRGen makes about what IR to emit. Studying Clang’s CodeGen directory can also be a good source of ideas. Note
that Clang and LLVM are explicitly version locked so you’ll need to make sure you’re using a Clang built from the
same svn revision or release as the LLVM library you’re using. As always, it’s strongly recommended that you track
tip of tree development, particularly during bring up of a new project.

The Basics

1. Make sure that your Modules contain both a data layout specification and target triple. Without these pieces, non
of the target specific optimization will be enabled. This can have a major effect on the generated code quality.

2. For each function or global emitted, use the most private linkage type possible (private, internal or linkonce_odr
preferably). Doing so will make LLVM’s inter-procedural optimizations much more effective.

3. Avoid high in-degree basic blocks (e.g. basic blocks with dozens or hundreds of predecessors). Among other
issues, the register allocator is known to perform badly with confronted with such structures. The only exception
to this guidance is that a unified return block with high in-degree is fine.

Use of allocas

An alloca instruction can be used to represent a function scoped stack slot, but can also represent dynamic frame
expansion. When representing function scoped variables or locations, placing alloca instructions at the beginning of
the entry block should be preferred. In particular, place them before any call instructions. Call instructions might get
inlined and replaced with multiple basic blocks. The end result is that a following alloca instruction would no longer
be in the entry basic block afterward.

The SROA (Scalar Replacement Of Aggregates) and Mem2Reg passes only attempt to eliminate alloca instructions
that are in the entry basic block. Given SSA is the canonical form expected by much of the optimizer; if allocas can
not be eliminated by Mem2Reg or SROA, the optimizer is likely to be less effective than it could be.

Avoid loads and stores of large aggregate type

LLVM currently does not optimize well loads and stores of large aggregate types (i.e. structs and arrays). As an
alternative, consider loading individual fields from memory.

Aggregates that are smaller than the largest (performant) load or store instruction supported by the targeted hardware
are well supported. These can be an effective way to represent collections of small packed fields.

Prefer zext over sext when legal

On some architectures (X86_64 is one), sign extension can involve an extra instruction whereas zero extension can be
folded into a load. LLVM will try to replace a sext with a zext when it can be proven safe, but if you have information
in your source language about the range of a integer value, it can be profitable to use a zext rather than a sext.

Alternatively, you can specify the range of the value using metadata and LLVM can do the sext to zext conversion for
you.
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Zext GEP indices to machine register width

Internally, LLVM often promotes the width of GEP indices to machine register width. When it does so, it will default
to using sign extension (sext) operations for safety. If your source language provides information about the range of
the index, you may wish to manually extend indices to machine register width using a zext instruction.

When to specify alignment

LLVM will always generate correct code if you don’t specify alignment, but may generate inefficient code. For
example, if you are targeting MIPS (or older ARM ISAs) then the hardware does not handle unaligned loads and
stores, and so you will enter a trap-and-emulate path if you do a load or store with lower-than-natural alignment. To
avoid this, LLVM will emit a slower sequence of loads, shifts and masks (or load-right + load-left on MIPS) for all
cases where the load / store does not have a sufficiently high alignment in the IR.

The alignment is used to guarantee the alignment on allocas and globals, though in most cases this is unnecessary (most
targets have a sufficiently high default alignment that they’ll be fine). It is also used to provide a contract to the back
end saying ‘either this load/store has this alignment, or it is undefined behavior’. This means that the back end is free
to emit instructions that rely on that alignment (and mid-level optimizers are free to perform transforms that require
that alignment). For x86, it doesn’t make much difference, as almost all instructions are alignment-independent. For
MIPS, it can make a big difference.

Note that if your loads and stores are atomic, the backend will be unable to lower an under aligned access into a
sequence of natively aligned accesses. As a result, alignment is mandatory for atomic loads and stores.

Other Things to Consider

1. Use ptrtoint/inttoptr sparingly (they interfere with pointer aliasing analysis), prefer GEPs

2. Prefer globals over inttoptr of a constant address - this gives you dereferencability information. In MCJIT, use
getSymbolAddress to provide actual address.

3. Be wary of ordered and atomic memory operations. They are hard to optimize and may not be well optimized
by the current optimizer. Depending on your source language, you may consider using fences instead.

4. If calling a function which is known to throw an exception (unwind), use an invoke with a normal destination
which contains an unreachable instruction. This form conveys to the optimizer that the call returns abnormally.
For an invoke which neither returns normally or requires unwind code in the current function, you can use a
noreturn call instruction if desired. This is generally not required because the optimizer will convert an invoke
with an unreachable unwind destination to a call instruction.

5. Use profile metadata to indicate statically known cold paths, even if dynamic profiling information is not avail-
able. This can make a large difference in code placement and thus the performance of tight loops.

6. When generating code for loops, try to avoid terminating the header block of the loop earlier than necessary.
If the terminator of the loop header block is a loop exiting conditional branch, the effectiveness of LICM will
be limited for loads not in the header. (This is due to the fact that LLVM may not know such a load is safe to
speculatively execute and thus can’t lift an otherwise loop invariant load unless it can prove the exiting condition
is not taken.) It can be profitable, in some cases, to emit such instructions into the header even if they are not
used along a rarely executed path that exits the loop. This guidance specifically does not apply if the condition
which terminates the loop header is itself invariant, or can be easily discharged by inspecting the loop index
variables.

7. In hot loops, consider duplicating instructions from small basic blocks which end in highly predictable termina-
tors into their successor blocks. If a hot successor block contains instructions which can be vectorized with the
duplicated ones, this can provide a noticeable throughput improvement. Note that this is not always profitable
and does involve a potentially large increase in code size.
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8. When checking a value against a constant, emit the check using a consistent comparison type. The GVN pass
will optimize redundant equalities even if the type of comparison is inverted, but GVN only runs late in the
pipeline. As a result, you may miss the opportunity to run other important optimizations. Improvements to
EarlyCSE to remove this issue are tracked in Bug 23333.

9. Avoid using arithmetic intrinsics unless you are required by your source language specification to emit a partic-
ular code sequence. The optimizer is quite good at reasoning about general control flow and arithmetic, it is not
anywhere near as strong at reasoning about the various intrinsics. If profitable for code generation purposes, the
optimizer will likely form the intrinsics itself late in the optimization pipeline. It is very rarely profitable to emit
these directly in the language frontend. This item explicitly includes the use of the overflow intrinsics.

10. Avoid using the assume intrinsic until you’ve established that a) there’s no other way to express the given fact
and b) that fact is critical for optimization purposes. Assumes are a great prototyping mechanism, but they can
have negative effects on both compile time and optimization effectiveness. The former is fixable with enough
effort, but the later is fairly fundamental to their designed purpose.

Describing Language Specific Properties

When translating a source language to LLVM, finding ways to express concepts and guarantees available in your
source language which are not natively provided by LLVM IR will greatly improve LLVM’s ability to optimize your
code. As an example, C/C++’s ability to mark every add as “no signed wrap (nsw)” goes a long way to assisting the
optimizer in reasoning about loop induction variables and thus generating more optimal code for loops.

The LLVM LangRef includes a number of mechanisms for annotating the IR with additional semantic information. It
is strongly recommended that you become highly familiar with this document. The list below is intended to highlight
a couple of items of particular interest, but is by no means exhaustive.

Restricted Operation Semantics

1. Add nsw/nuw flags as appropriate. Reasoning about overflow is generally hard for an optimizer so providing
these facts from the frontend can be very impactful.

2. Use fast-math flags on floating point operations if legal. If you don’t need strict IEEE floating point semantics,
there are a number of additional optimizations that can be performed. This can be highly impactful for floating
point intensive computations.

Describing Aliasing Properties

1. Add noalias/align/dereferenceable/nonnull to function arguments and return values as appropriate

2. Use pointer aliasing metadata, especially tbaa metadata, to communicate otherwise-non-deducible pointer alias-
ing facts

3. Use inbounds on geps. This can help to disambiguate some aliasing queries.

Modeling Memory Effects

1. Mark functions as readnone/readonly/argmemonly or noreturn/nounwind when known. The optimizer will try
to infer these flags, but may not always be able to. Manual annotations are particularly important for external
functions that the optimizer can not analyze.

2. Use the lifetime.start/lifetime.end and invariant.start/invariant.end intrinsics where possible. Common profitable
uses are for stack like data structures (thus allowing dead store elimination) and for describing life times of
allocas (thus allowing smaller stack sizes).
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3. Mark invariant locations using !invariant.load and TBAA’s constant flags

Pass Ordering

One of the most common mistakes made by new language frontend projects is to use the existing -O2 or -O3 pass
pipelines as is. These pass pipelines make a good starting point for an optimizing compiler for any language, but they
have been carefully tuned for C and C++, not your target language. You will almost certainly need to use a custom
pass order to achieve optimal performance. A couple specific suggestions:

1. For languages with numerous rarely executed guard conditions (e.g. null checks, type checks, range checks)
consider adding an extra execution or two of LoopUnswith and LICM to your pass order. The standard pass
order, which is tuned for C and C++ applications, may not be sufficient to remove all dischargeable checks from
loops.

2. If you language uses range checks, consider using the IRCE pass. It is not currently part of the standard pass
order.

3. A useful sanity check to run is to run your optimized IR back through the -O2 pipeline again. If you see
noticeable improvement in the resulting IR, you likely need to adjust your pass order.

I Still Can’t Find What I’m Looking For

If you didn’t find what you were looking for above, consider proposing an piece of metadata which provides the
optimization hint you need. Such extensions are relatively common and are generally well received by the community.
You will need to ensure that your proposal is sufficiently general so that it benefits others if you wish to contribute it
upstream.

You should also consider describing the problem you’re facing on llvm-dev and asking for advice. It’s entirely possible
someone has encountered your problem before and can give good advice. If there are multiple interested parties, that
also increases the chances that a metadata extension would be well received by the community as a whole.

Adding to this document

If you run across a case that you feel deserves to be covered here, please send a patch to llvm-commits for review.

If you have questions on these items, please direct them to llvm-dev. The more relevant context you are able to give
to your question, the more likely it is to be answered.

MCJIT Design and Implementation

Introduction

This document describes the internal workings of the MCJIT execution engine and the RuntimeDyld component. It is
intended as a high level overview of the implementation, showing the flow and interactions of objects throughout the
code generation and dynamic loading process.

Engine Creation

In most cases, an EngineBuilder object is used to create an instance of the MCJIT execution engine. The EngineBuilder
takes an llvm::Module object as an argument to its constructor. The client may then set various options that we control
the later be passed along to the MCJIT engine, including the selection of MCJIT as the engine type to be created. Of
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particular interest is the EngineBuilder::setMCJITMemoryManager function. If the client does not explicitly create a
memory manager at this time, a default memory manager (specifically SectionMemoryManager) will be created when
the MCJIT engine is instantiated.

Once the options have been set, a client calls EngineBuilder::create to create an instance of the MCJIT engine. If the
client does not use the form of this function that takes a TargetMachine as a parameter, a new TargetMachine will be
created based on the target triple associated with the Module that was used to create the EngineBuilder.

EngineBuilder::create will call the static MCJIT::createJIT function, passing in its pointers to the module, memory
manager and target machine objects, all of which will subsequently be owned by the MCJIT object.

The MCJIT class has a member variable, Dyld, which contains an instance of the RuntimeDyld wrapper class. This
member will be used for communications between MCJIT and the actual RuntimeDyldImpl object that gets created
when an object is loaded.

Upon creation, MCJIT holds a pointer to the Module object that it received from EngineBuilder but it does not im-
mediately generate code for this module. Code generation is deferred until either the MCJIT::finalizeObject method
is called explicitly or a function such as MCJIT::getPointerToFunction is called which requires the code to have been
generated.
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Code Generation

When code generation is triggered, as described above, MCJIT will first attempt to retrieve an object image from its
ObjectCache member, if one has been set. If a cached object image cannot be retrieved, MCJIT will call its emitObject
method. MCJIT::emitObject uses a local PassManager instance and creates a new ObjectBufferStream instance, both
of which it passes to TargetMachine::addPassesToEmitMC before calling PassManager::run on the Module with which
it was created.

The PassManager::run call causes the MC code generation mechanisms to emit a complete relocatable binary object
image (either in either ELF or MachO format, depending on the target) into the ObjectBufferStream object, which is
flushed to complete the process. If an ObjectCache is being used, the image will be passed to the ObjectCache here.

At this point, the ObjectBufferStream contains the raw object image. Before the code can be executed, the code
and data sections from this image must be loaded into suitable memory, relocations must be applied and memory
permission and code cache invalidation (if required) must be completed.

Object Loading

Once an object image has been obtained, either through code generation or having been retrieved from an ObjectCache,
it is passed to RuntimeDyld to be loaded. The RuntimeDyld wrapper class examines the object to determine its file
format and creates an instance of either RuntimeDyldELF or RuntimeDyldMachO (both of which derive from the
RuntimeDyldImpl base class) and calls the RuntimeDyldImpl::loadObject method to perform that actual loading.

2.23. MCJIT Design and Implementation 759



LLVM Documentation, Release 3.9

RuntimeDyldImpl::loadObject begins by creating an ObjectImage instance from the ObjectBuffer it received. Objec-
tImage, which wraps the ObjectFile class, is a helper class which parses the binary object image and provides access
to the information contained in the format-specific headers, including section, symbol and relocation information.

RuntimeDyldImpl::loadObject then iterates through the symbols in the image. Information about common symbols is
collected for later use. For each function or data symbol, the associated section is loaded into memory and the symbol
is stored in a symbol table map data structure. When the iteration is complete, a section is emitted for the common
symbols.

Next, RuntimeDyldImpl::loadObject iterates through the sections in the object image and for each section iterates
through the relocations for that sections. For each relocation, it calls the format-specific processRelocationRef method,
which will examine the relocation and store it in one of two data structures, a section-based relocation list map and an
external symbol relocation map.
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When RuntimeDyldImpl::loadObject returns, all of the code and data sections for the object will have been loaded
into memory allocated by the memory manager and relocation information will have been prepared, but the relocations
have not yet been applied and the generated code is still not ready to be executed.

[Currently (as of August 2013) the MCJIT engine will immediately apply relocations when loadObject completes.
However, this shouldn’t be happening. Because the code may have been generated for a remote target, the client should
be given a chance to re-map the section addresses before relocations are applied. It is possible to apply relocations
multiple times, but in the case where addresses are to be re-mapped, this first application is wasted effort.]
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Address Remapping

At any time after initial code has been generated and before finalizeObject is called, the client can remap the address
of sections in the object. Typically this is done because the code was generated for an external process and is being
mapped into that process’ address space. The client remaps the section address by calling MCJIT::mapSectionAddress.
This should happen before the section memory is copied to its new location.

When MCJIT::mapSectionAddress is called, MCJIT passes the call on to RuntimeDyldImpl (via its Dyld member).
RuntimeDyldImpl stores the new address in an internal data structure but does not update the code at this time, since
other sections are likely to change.

When the client is finished remapping section addresses, it will call MCJIT::finalizeObject to complete the remapping
process.

Final Preparations

When MCJIT::finalizeObject is called, MCJIT calls RuntimeDyld::resolveRelocations. This function will attempt to
locate any external symbols and then apply all relocations for the object.

External symbols are resolved by calling the memory manager’s getPointerToNamedFunction method. The memory
manager will return the address of the requested symbol in the target address space. (Note, this may not be a valid
pointer in the host process.) RuntimeDyld will then iterate through the list of relocations it has stored which are asso-
ciated with this symbol and invoke the resolveRelocation method which, through an format-specific implementation,
will apply the relocation to the loaded section memory.

Next, RuntimeDyld::resolveRelocations iterates through the list of sections and for each section iterates through a list
of relocations that have been saved which reference that symbol and call resolveRelocation for each entry in this list.
The relocation list here is a list of relocations for which the symbol associated with the relocation is located in the
section associated with the list. Each of these locations will have a target location at which the relocation will be
applied that is likely located in a different section.
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Once relocations have been applied as described above, MCJIT calls RuntimeDyld::getEHFrameSection, and if a non-
zero result is returned passes the section data to the memory manager’s registerEHFrames method. This allows the
memory manager to call any desired target-specific functions, such as registering the EH frame information with a
debugger.

Finally, MCJIT calls the memory manager’s finalizeMemory method. In this method, the memory manager will
invalidate the target code cache, if necessary, and apply final permissions to the memory pages it has allocated for
code and data memory.

LLVM Community Code of Conduct

Note: This document is currently a DRAFT document while it is being discussed by the community.

The LLVM community has always worked to be a welcoming and respectful community, and we want to ensure that
doesn’t change as we grow and evolve. To that end, we have a few ground rules that we ask people to adhere to:

• be friendly and patient,

• be welcoming,

• be considerate,
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• be respectful,

• be careful in the words that you choose and be kind to others, and

• when we disagree, try to understand why.

This isn’t an exhaustive list of things that you can’t do. Rather, take it in the spirit in which it’s intended - a guide to
make it easier to communicate and participate in the community.

This code of conduct applies to all spaces managed by the LLVM project or The LLVM Foundation. This includes
IRC channels, mailing lists, bug trackers, LLVM events such as the developer meetings and socials, and any other
forums created by the project that the community uses for communication. It applies to all of your communication
and conduct in these spaces, including emails, chats, things you say, slides, videos, posters, signs, or even t-shirts you
display in these spaces. In addition, violations of this code outside these spaces may, in rare cases, affect a person’s
ability to participate within them, when the conduct amounts to an egregious violation of this code.

If you believe someone is violating the code of conduct, we ask that you report it by emailing conduct@llvm.org. For
more details please see our Reporting Guide.

• Be friendly and patient.

• Be welcoming. We strive to be a community that welcomes and supports people of all backgrounds and iden-
tities. This includes, but is not limited to members of any race, ethnicity, culture, national origin, colour,
immigration status, social and economic class, educational level, sex, sexual orientation, gender identity and
expression, age, size, family status, political belief, religion or lack thereof, and mental and physical ability.

• Be considerate. Your work will be used by other people, and you in turn will depend on the work of others.
Any decision you take will affect users and colleagues, and you should take those consequences into account.
Remember that we’re a world-wide community, so you might not be communicating in someone else’s primary
language.

• Be respectful. Not all of us will agree all the time, but disagreement is no excuse for poor behavior and
poor manners. We might all experience some frustration now and then, but we cannot allow that frustration to
turn into a personal attack. It’s important to remember that a community where people feel uncomfortable or
threatened is not a productive one. Members of the LLVM community should be respectful when dealing with
other members as well as with people outside the LLVM community.

• Be careful in the words that you choose and be kind to others. Do not insult or put down other participants.
Harassment and other exclusionary behavior aren’t acceptable. This includes, but is not limited to:

– Violent threats or language directed against another person.

– Discriminatory jokes and language.

– Posting sexually explicit or violent material.

– Posting (or threatening to post) other people’s personally identifying information (“doxing”).

– Personal insults, especially those using racist or sexist terms.

– Unwelcome sexual attention.

– Advocating for, or encouraging, any of the above behavior.

In general, if someone asks you to stop, then stop. Persisting in such behavior after being asked to stop is
considered harassment.

• When we disagree, try to understand why. Disagreements, both social and technical, happen all the time
and LLVM is no exception. It is important that we resolve disagreements and differing views constructively.
Remember that we’re different. The strength of LLVM comes from its varied community, people from a wide
range of backgrounds. Different people have different perspectives on issues. Being unable to understand why
someone holds a viewpoint doesn’t mean that they’re wrong. Don’t forget that it is human to err and blaming
each other doesn’t get us anywhere. Instead, focus on helping to resolve issues and learning from mistakes.
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Questions?

If you have questions, please feel free to contact the LLVM Foundation Code of Conduct Advisory Committee by
emailing conduct@llvm.org.

(This text is based on the Django Project Code of Conduct, which is in turn based on wording from the Speak Up!
project.)
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Introduction

This document contains the user guides and the internals of compiling CUDA C/C++ with LLVM. It is aimed at
both users who want to compile CUDA with LLVM and developers who want to improve LLVM for GPUs. This
document assumes a basic familiarity with CUDA. Information about CUDA programming can be found in the CUDA
programming guide.

How to Build LLVM with CUDA Support

CUDA support is still in development and works the best in the trunk version of LLVM. Below is a quick summary of
downloading and building the trunk version. Consult the Getting Started page for more details on setting up LLVM.

1. Checkout LLVM

$ cd where-you-want-llvm-to-live
$ svn co http://llvm.org/svn/llvm-project/llvm/trunk llvm

2. Checkout Clang

$ cd where-you-want-llvm-to-live
$ cd llvm/tools
$ svn co http://llvm.org/svn/llvm-project/cfe/trunk clang

3. Configure and build LLVM and Clang
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$ cd where-you-want-llvm-to-live
$ mkdir build
$ cd build
$ cmake [options] ..
$ make

How to Compile CUDA C/C++ with LLVM

We assume you have installed the CUDA driver and runtime. Consult the NVIDIA CUDA installation guide if you
have not.

Suppose you want to compile and run the following CUDA program (axpy.cu) which multiplies a float array by
a float scalar (AXPY).

#include <iostream>

__global__ void axpy(float a, float* x, float* y) {
y[threadIdx.x] = a * x[threadIdx.x];

}

int main(int argc, char* argv[]) {
const int kDataLen = 4;

float a = 2.0f;
float host_x[kDataLen] = {1.0f, 2.0f, 3.0f, 4.0f};
float host_y[kDataLen];

// Copy input data to device.
float* device_x;
float* device_y;
cudaMalloc(&device_x, kDataLen * sizeof(float));
cudaMalloc(&device_y, kDataLen * sizeof(float));
cudaMemcpy(device_x, host_x, kDataLen * sizeof(float),

cudaMemcpyHostToDevice);

// Launch the kernel.
axpy<<<1, kDataLen>>>(a, device_x, device_y);

// Copy output data to host.
cudaDeviceSynchronize();
cudaMemcpy(host_y, device_y, kDataLen * sizeof(float),

cudaMemcpyDeviceToHost);

// Print the results.
for (int i = 0; i < kDataLen; ++i) {
std::cout << "y[" << i << "] = " << host_y[i] << "\n";

}

cudaDeviceReset();
return 0;

}

The command line for compilation is similar to what you would use for C++.

$ clang++ axpy.cu -o axpy --cuda-gpu-arch=<GPU arch> \
-L<CUDA install path>/<lib64 or lib> \
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-lcudart_static -ldl -lrt -pthread
$ ./axpy
y[0] = 2
y[1] = 4
y[2] = 6
y[3] = 8

<CUDA install path> is the root directory where you installed CUDA SDK, typically /usr/local/cuda.
<GPU arch> is the compute capability of your GPU. For example, if you want to run your program on a GPU with
compute capability of 3.5, you should specify --cuda-gpu-arch=sm_35.

Detecting clang vs NVCC

Although clang’s CUDA implementation is largely compatible with NVCC’s, you may still want to detect when you’re
compiling CUDA code specifically with clang.

This is tricky, because NVCC may invoke clang as part of its own compilation process! For example, NVCC uses the
host compiler’s preprocessor when compiling for device code, and that host compiler may in fact be clang.

When clang is actually compiling CUDA code – rather than being used as a subtool of NVCC’s – it defines the
__CUDA__ macro. __CUDA_ARCH__ is defined only in device mode (but will be defined if NVCC is using clang
as a preprocessor). So you can use the following incantations to detect clang CUDA compilation, in host and device
modes:

#if defined(__clang__) && defined(__CUDA__) && !defined(__CUDA_ARCH__)
// clang compiling CUDA code, host mode.

#endif

#if defined(__clang__) && defined(__CUDA__) && defined(__CUDA_ARCH__)
// clang compiling CUDA code, device mode.

#endif

Both clang and nvcc define __CUDACC__ during CUDA compilation. You can detect NVCC specifically by looking
for __NVCC__.

Flags that control numerical code

If you’re using GPUs, you probably care about making numerical code run fast. GPU hardware allows for more
control over numerical operations than most CPUs, but this results in more compiler options for you to juggle.

Flags you may wish to tweak include:

• -ffp-contract={on,off,fast} (defaults to fast on host and device when compiling CUDA) Controls
whether the compiler emits fused multiply-add operations.

– off: never emit fma operations, and prevent ptxas from fusing multiply and add instructions.

– on: fuse multiplies and adds within a single statement, but never across statements (C11 semantics).
Prevent ptxas from fusing other multiplies and adds.

– fast: fuse multiplies and adds wherever profitable, even across statements. Doesn’t prevent ptxas from
fusing additional multiplies and adds.

Fused multiply-add instructions can be much faster than the unfused equivalents, but because the intermediate
result in an fma is not rounded, this flag can affect numerical code.
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• -fcuda-flush-denormals-to-zero (default: off) When this is enabled, floating point operations may
flush denormal inputs and/or outputs to 0. Operations on denormal numbers are often much slower than the
same operations on normal numbers.

• -fcuda-approx-transcendentals (default: off) When this is enabled, the compiler may emit calls
to faster, approximate versions of transcendental functions, instead of using the slower, fully IEEE-compliant
versions. For example, this flag allows clang to emit the ptx sin.approx.f32 instruction.

This is implied by -ffast-math.

Optimizations

CPU and GPU have different design philosophies and architectures. For example, a typical CPU has branch prediction,
out-of-order execution, and is superscalar, whereas a typical GPU has none of these. Due to such differences, an
optimization pipeline well-tuned for CPUs may be not suitable for GPUs.

LLVM performs several general and CUDA-specific optimizations for GPUs. The list below shows some of the
more important optimizations for GPUs. Most of them have been upstreamed to lib/Transforms/Scalar and
lib/Target/NVPTX. A few of them have not been upstreamed due to lack of a customizable target-independent
optimization pipeline.

• Straight-line scalar optimizations. These optimizations reduce redundancy in straight-line code. Details can
be found in the design document for straight-line scalar optimizations.

• Inferring memory spaces. This optimization infers the memory space of an address so that the backend can
emit faster special loads and stores from it.

• Aggressive loop unrooling and function inlining. Loop unrolling and function inlining need to be more
aggressive for GPUs than for CPUs because control flow transfer in GPU is more expensive. They also
promote other optimizations such as constant propagation and SROA which sometimes speed up code
by over 10x. An empirical inline threshold for GPUs is 1100. This configuration has yet to be up-
streamed with a target-specific optimization pipeline. LLVM also provides loop unrolling pragmas and
__attribute__((always_inline)) for programmers to force unrolling and inling.

• Aggressive speculative execution. This transformation is mainly for promoting straight-line scalar optimiza-
tions which are most effective on code along dominator paths.

• Memory-space alias analysis. This alias analysis infers that two pointers in different special memory spaces
do not alias. It has yet to be integrated to the new alias analysis infrastructure; the new infrastructure does not
run target-specific alias analysis.

• Bypassing 64-bit divides. An existing optimization enabled in the NVPTX backend. 64-bit integer divides are
much slower than 32-bit ones on NVIDIA GPUs due to lack of a divide unit. Many of the 64-bit divides in our
benchmarks have a divisor and dividend which fit in 32-bits at runtime. This optimization provides a fast path
for this common case.

Publication

gpucc: An Open-Source GPGPU Compiler
Jingyue Wu, Artem Belevich, Eli Bendersky, Mark Heffernan, Chris Leary, Jacques Pienaar, Bjarke Roune, Rob
Springer, Xuetian Weng, Robert Hundt
Proceedings of the 2016 International Symposium on Code Generation and Optimization (CGO 2016)
Slides for the CGO talk
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Tutorial

CGO 2016 gpucc tutorial

Obtaining Help

To obtain help on LLVM in general and its CUDA support, see the LLVM community.

Reporting Guide

Note: This document is currently a DRAFT document while it is being discussed by the community.

If you believe someone is violating the code of conduct you can always report it to the LLVM Foundation Code of
Conduct Advisory Committee by emailing conduct@llvm.org. All reports will be kept confidential. This isn’t a
public list and only members of the advisory committee will receive the report.

If you believe anyone is in physical danger, please notify appropriate law enforcement first. If you are unsure what
law enforcement agency is appropriate, please include this in your report and we will attempt to notify them.

If the violation occurs at an event such as a Developer Meeting and requires immediate attention, you can also reach
out to any of the event organizers or staff. Event organizers and staff will be prepared to handle the incident and able to
help. If you cannot find one of the organizers, the venue staff can locate one for you. We will also post detailed contact
information for specific events as part of each events’ information. In person reports will still be kept confidential
exactly as above, but also feel free to (anonymously if needed) email conduct@llvm.org.

Note: The LLVM community has long handled inappropriate behavior on its own, using both private communication
and public responses. Nothing in this document is intended to discourage this self enforcement of community norms.
Instead, the mechanisms described here are intended to supplement any self enforcement within the community. They
provide avenues for handling severe cases or cases where the reporting party does not wish to respond directly for any
reason.

Filing a report

Reports can be as formal or informal as needed for the situation at hand. If possible, please include as much information
as you can. If you feel comfortable, please consider including:

• Your contact info (so we can get in touch with you if we need to follow up).

• Names (real, nicknames, or pseudonyms) of any individuals involved. If there were other witnesses besides you,
please try to include them as well.

• When and where the incident occurred. Please be as specific as possible.

• Your account of what occurred. If there is a publicly available record (e.g. a mailing list archive or a public IRC
logger) please include a link.

• Any extra context you believe existed for the incident.

• If you believe this incident is ongoing.

• Any other information you believe we should have.
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What happens after you file a report?

You will receive an email from the advisory committee acknowledging receipt within 24 hours (and we will aim to
respond much quicker than that).

The advisory committee will immediately meet to review the incident and try to determine:

• What happened and who was involved.

• Whether this event constitutes a code of conduct violation.

• Whether this is an ongoing situation, or if there is a threat to anyone’s physical safety.

If this is determined to be an ongoing incident or a threat to physical safety, the working groups’ immediate priority
will be to protect everyone involved. This means we may delay an “official” response until we believe that the situation
has ended and that everyone is physically safe.

The working group will try to contact other parties involved or witnessing the event to gain clarity on what happened
and understand any different perspectives.

Once the advisory committee has a complete account of the events they will make a decision as to how to respond.
Responses may include:

• Nothing, if we determine no violation occurred or it has already been appropriately resolved.

• Providing either moderation or mediation to ongoing interactions (where appropriate, safe, and desired by both
parties).

• A private reprimand from the working group to the individuals involved.

• An imposed vacation (i.e. asking someone to “take a week off” from a mailing list or IRC).

• A public reprimand.

• A permanent or temporary ban from some or all LLVM spaces (mailing lists, IRC, etc.)

• Involvement of relevant law enforcement if appropriate.

If the situation is not resolved within one week, we’ll respond within one week to the original reporter with an update
and explanation.

Once we’ve determined our response, we will separately contact the original reporter and other individuals to let them
know what actions (if any) we’ll be taking. We will take into account feedback from the individuals involved on the
appropriateness of our response, but we don’t guarantee we’ll act on it.

After any incident, the advisory committee will make a report on the situation to the LLVM Foundation board. The
board may choose to make a public statement about the incident. If that’s the case, the identities of anyone involved
will remain confidential unless instructed by those inviduals otherwise.

Appealing

Only permanent resolutions (such as bans) or requests for public actions may be appealed. To appeal a decision of the
working group, contact the LLVM Foundation board at board@llvm.org with your appeal and the board will review
the case.

In general, it is not appropriate to appeal a particular decision on a public mailing list. Doing so would involve dis-
closure of information which whould be confidential. Disclosing this kind of information publicly may be considered
a separate and (potentially) more serious violation of the Code of Conduct. This is not meant to limit discussion of
the Code of Conduct, the advisory board itself, or the appropriateness of responses in general, but please refrain from
mentioning specific facts about cases without the explicit permission of all parties involved.
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Members of the Code of Conduct Advisory Committee

The members serving on the advisory committee are listed here with contact information in case you are more com-
fortable talking directly to a specific member of the committee.

Note: FIXME: When we form the initial advisory committee, the members names and private contact info need to be
added here.

(This text is based on the Django Project Code of Conduct, which is in turn based on wording from the Speak Up!
project.)

Getting Started with the LLVM System Discusses how to get up and running quickly with the LLVM infrastructure.
Everything from unpacking and compilation of the distribution to execution of some tools.

Building LLVM with CMake An addendum to the main Getting Started guide for those using the CMake build sys-
tem.

How To Build On ARM Notes on building and testing LLVM/Clang on ARM.

How To Cross-Compile Clang/LLVM using Clang/LLVM Notes on cross-building and testing LLVM/Clang.

Getting Started with the LLVM System using Microsoft Visual Studio An addendum to the main Getting Started
guide for those using Visual Studio on Windows.

LLVM Tutorial: Table of Contents Tutorials about using LLVM. Includes a tutorial about making a custom language
with LLVM.

LLVM Command Guide A reference manual for the LLVM command line utilities (“man” pages for LLVM tools).

LLVM’s Analysis and Transform Passes A list of optimizations and analyses implemented in LLVM.

Frequently Asked Questions (FAQ) A list of common questions and problems and their solutions.

Release notes for the current release This describes new features, known bugs, and other limitations.

How to submit an LLVM bug report Instructions for properly submitting information about any bugs you run into in
the LLVM system.

Sphinx Quickstart Template A template + tutorial for writing new Sphinx documentation. It is meant to be read in
source form.

LLVM Testing Infrastructure Guide A reference manual for using the LLVM testing infrastructure.

How to build the C, C++, ObjC, and ObjC++ front end Instructions for building the clang front-end from source.

The LLVM Lexicon Definition of acronyms, terms and concepts used in LLVM.

How To Add Your Build Configuration To LLVM Buildbot Infrastructure Instructions for adding new builder to
LLVM buildbot master.

YAML I/O A reference guide for using LLVM’s YAML I/O library.

The Often Misunderstood GEP Instruction Answers to some very frequent questions about LLVM’s most frequently
misunderstood instruction.

Performance Tips for Frontend Authors A collection of tips for frontend authors on how to generate IR which LLVM
is able to effectively optimize.
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CHAPTER 3

Programming Documentation

For developers of applications which use LLVM as a library.

LLVM Atomic Instructions and Concurrency Guide

• Introduction

• Optimization outside atomic

• Atomic instructions

• Atomic orderings

– NotAtomic

– Unordered

– Monotonic

– Acquire

– Release

– AcquireRelease

– SequentiallyConsistent

• Atomics and IR optimization

• Atomics and Codegen

• Libcalls: __atomic_*

• Libcalls: __sync_*
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Introduction

LLVM supports instructions which are well-defined in the presence of threads and asynchronous signals.

The atomic instructions are designed specifically to provide readable IR and optimized code generation for the follow-
ing:

• The C++11 <atomic> header. (C++11 draft available here.) (C11 draft available here.)

• Proper semantics for Java-style memory, for both volatile and regular shared variables. (Java Specification)

• gcc-compatible __sync_* builtins. (Description)

• Other scenarios with atomic semantics, including static variables with non-trivial constructors in C++.

Atomic and volatile in the IR are orthogonal; “volatile” is the C/C++ volatile, which ensures that every volatile load
and store happens and is performed in the stated order. A couple examples: if a SequentiallyConsistent store is
immediately followed by another SequentiallyConsistent store to the same address, the first store can be erased. This
transformation is not allowed for a pair of volatile stores. On the other hand, a non-volatile non-atomic load can be
moved across a volatile load freely, but not an Acquire load.

This document is intended to provide a guide to anyone either writing a frontend for LLVM or working on optimization
passes for LLVM with a guide for how to deal with instructions with special semantics in the presence of concurrency.
This is not intended to be a precise guide to the semantics; the details can get extremely complicated and unreadable,
and are not usually necessary.

Optimization outside atomic

The basic 'load' and 'store' allow a variety of optimizations, but can lead to undefined results in a concurrent
environment; see NotAtomic. This section specifically goes into the one optimizer restriction which applies in con-
current environments, which gets a bit more of an extended description because any optimization dealing with stores
needs to be aware of it.

From the optimizer’s point of view, the rule is that if there are not any instructions with atomic ordering involved,
concurrency does not matter, with one exception: if a variable might be visible to another thread or signal handler, a
store cannot be inserted along a path where it might not execute otherwise. Take the following example:

/* C code, for readability; run through clang -O2 -S -emit-llvm to get
equivalent IR */

int x;
void f(int* a) {
for (int i = 0; i < 100; i++) {
if (a[i])

x += 1;
}

}

The following is equivalent in non-concurrent situations:

int x;
void f(int* a) {
int xtemp = x;
for (int i = 0; i < 100; i++) {
if (a[i])

xtemp += 1;
}
x = xtemp;

}
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However, LLVM is not allowed to transform the former to the latter: it could indirectly introduce undefined behavior if
another thread can access x at the same time. (This example is particularly of interest because before the concurrency
model was implemented, LLVM would perform this transformation.)

Note that speculative loads are allowed; a load which is part of a race returns undef, but does not have undefined
behavior.

Atomic instructions

For cases where simple loads and stores are not sufficient, LLVM provides various atomic instructions. The exact
guarantees provided depend on the ordering; see Atomic orderings.

load atomic and store atomic provide the same basic functionality as non-atomic loads and stores, but pro-
vide additional guarantees in situations where threads and signals are involved.

cmpxchg and atomicrmw are essentially like an atomic load followed by an atomic store (where the store is condi-
tional for cmpxchg), but no other memory operation can happen on any thread between the load and store.

A fence provides Acquire and/or Release ordering which is not part of another operation; it is normally used along
with Monotonic memory operations. A Monotonic load followed by an Acquire fence is roughly equivalent to an
Acquire load, and a Monotonic store following a Release fence is roughly equivalent to a Release store. Sequentially-
Consistent fences behave as both an Acquire and a Release fence, and offer some additional complicated guarantees,
see the C++11 standard for details.

Frontends generating atomic instructions generally need to be aware of the target to some degree; atomic instructions
are guaranteed to be lock-free, and therefore an instruction which is wider than the target natively supports can be
impossible to generate.

Atomic orderings

In order to achieve a balance between performance and necessary guarantees, there are six levels of atomicity. They
are listed in order of strength; each level includes all the guarantees of the previous level except for Acquire/Release.
(See also LangRef Ordering.)

NotAtomic

NotAtomic is the obvious, a load or store which is not atomic. (This isn’t really a level of atomicity, but is listed here
for comparison.) This is essentially a regular load or store. If there is a race on a given memory location, loads from
that location return undef.

Relevant standard This is intended to match shared variables in C/C++, and to be used in any other context where
memory access is necessary, and a race is impossible. (The precise definition is in LangRef Memory Model.)

Notes for frontends The rule is essentially that all memory accessed with basic loads and stores by multiple threads
should be protected by a lock or other synchronization; otherwise, you are likely to run into undefined behavior.
If your frontend is for a “safe” language like Java, use Unordered to load and store any shared variable. Note
that NotAtomic volatile loads and stores are not properly atomic; do not try to use them as a substitute. (Per the
C/C++ standards, volatile does provide some limited guarantees around asynchronous signals, but atomics are
generally a better solution.)

Notes for optimizers Introducing loads to shared variables along a codepath where they would not otherwise exist is
allowed; introducing stores to shared variables is not. See Optimization outside atomic.

Notes for code generation The one interesting restriction here is that it is not allowed to write to bytes outside of the
bytes relevant to a store. This is mostly relevant to unaligned stores: it is not allowed in general to convert an
unaligned store into two aligned stores of the same width as the unaligned store. Backends are also expected to
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generate an i8 store as an i8 store, and not an instruction which writes to surrounding bytes. (If you are writing
a backend for an architecture which cannot satisfy these restrictions and cares about concurrency, please send
an email to llvm-dev.)

Unordered

Unordered is the lowest level of atomicity. It essentially guarantees that races produce somewhat sane results instead
of having undefined behavior. It also guarantees the operation to be lock-free, so it does not depend on the data being
part of a special atomic structure or depend on a separate per-process global lock. Note that code generation will fail
for unsupported atomic operations; if you need such an operation, use explicit locking.

Relevant standard This is intended to match the Java memory model for shared variables.

Notes for frontends This cannot be used for synchronization, but is useful for Java and other “safe” languages which
need to guarantee that the generated code never exhibits undefined behavior. Note that this guarantee is cheap on
common platforms for loads of a native width, but can be expensive or unavailable for wider loads, like a 64-bit
store on ARM. (A frontend for Java or other “safe” languages would normally split a 64-bit store on ARM into
two 32-bit unordered stores.)

Notes for optimizers In terms of the optimizer, this prohibits any transformation that transforms a single load into
multiple loads, transforms a store into multiple stores, narrows a store, or stores a value which would not be
stored otherwise. Some examples of unsafe optimizations are narrowing an assignment into a bitfield, rema-
terializing a load, and turning loads and stores into a memcpy call. Reordering unordered operations is safe,
though, and optimizers should take advantage of that because unordered operations are common in languages
that need them.

Notes for code generation These operations are required to be atomic in the sense that if you use unordered loads and
unordered stores, a load cannot see a value which was never stored. A normal load or store instruction is usually
sufficient, but note that an unordered load or store cannot be split into multiple instructions (or an instruction
which does multiple memory operations, like LDRD on ARM without LPAE, or not naturally-aligned LDRD on
LPAE ARM).

Monotonic

Monotonic is the weakest level of atomicity that can be used in synchronization primitives, although it does not provide
any general synchronization. It essentially guarantees that if you take all the operations affecting a specific address, a
consistent ordering exists.

Relevant standard This corresponds to the C++11/C11 memory_order_relaxed; see those standards for the
exact definition.

Notes for frontends If you are writing a frontend which uses this directly, use with caution. The guarantees in terms
of synchronization are very weak, so make sure these are only used in a pattern which you know is correct.
Generally, these would either be used for atomic operations which do not protect other memory (like an atomic
counter), or along with a fence.

Notes for optimizers In terms of the optimizer, this can be treated as a read+write on the relevant memory location
(and alias analysis will take advantage of that). In addition, it is legal to reorder non-atomic and Unordered
loads around Monotonic loads. CSE/DSE and a few other optimizations are allowed, but Monotonic operations
are unlikely to be used in ways which would make those optimizations useful.

Notes for code generation Code generation is essentially the same as that for unordered for loads and stores. No
fences are required. cmpxchg and atomicrmw are required to appear as a single operation.
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Acquire

Acquire provides a barrier of the sort necessary to acquire a lock to access other memory with normal loads and stores.

Relevant standard This corresponds to the C++11/C11 memory_order_acquire. It should also be used for
C++11/C11 memory_order_consume.

Notes for frontends If you are writing a frontend which uses this directly, use with caution. Acquire only provides a
semantic guarantee when paired with a Release operation.

Notes for optimizers Optimizers not aware of atomics can treat this like a nothrow call. It is also possible to move
stores from before an Acquire load or read-modify-write operation to after it, and move non-Acquire loads from
before an Acquire operation to after it.

Notes for code generation Architectures with weak memory ordering (essentially everything relevant today except
x86 and SPARC) require some sort of fence to maintain the Acquire semantics. The precise fences required
varies widely by architecture, but for a simple implementation, most architectures provide a barrier which is
strong enough for everything (dmb on ARM, sync on PowerPC, etc.). Putting such a fence after the equivalent
Monotonic operation is sufficient to maintain Acquire semantics for a memory operation.

Release

Release is similar to Acquire, but with a barrier of the sort necessary to release a lock.

Relevant standard This corresponds to the C++11/C11 memory_order_release.

Notes for frontends If you are writing a frontend which uses this directly, use with caution. Release only provides a
semantic guarantee when paired with a Acquire operation.

Notes for optimizers Optimizers not aware of atomics can treat this like a nothrow call. It is also possible to move
loads from after a Release store or read-modify-write operation to before it, and move non-Release stores from
after an Release operation to before it.

Notes for code generation See the section on Acquire; a fence before the relevant operation is usually sufficient for
Release. Note that a store-store fence is not sufficient to implement Release semantics; store-store fences are
generally not exposed to IR because they are extremely difficult to use correctly.

AcquireRelease

AcquireRelease (acq_rel in IR) provides both an Acquire and a Release barrier (for fences and operations which
both read and write memory).

Relevant standard This corresponds to the C++11/C11 memory_order_acq_rel.

Notes for frontends If you are writing a frontend which uses this directly, use with caution. Acquire only provides a
semantic guarantee when paired with a Release operation, and vice versa.

Notes for optimizers In general, optimizers should treat this like a nothrow call; the possible optimizations are usu-
ally not interesting.

Notes for code generation This operation has Acquire and Release semantics; see the sections on Acquire and Re-
lease.

SequentiallyConsistent

SequentiallyConsistent (seq_cst in IR) provides Acquire semantics for loads and Release semantics for stores.
Additionally, it guarantees that a total ordering exists between all SequentiallyConsistent operations.
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Relevant standard This corresponds to the C++11/C11 memory_order_seq_cst, Java volatile, and the gcc-
compatible __sync_* builtins which do not specify otherwise.

Notes for frontends If a frontend is exposing atomic operations, these are much easier to reason about for the pro-
grammer than other kinds of operations, and using them is generally a practical performance tradeoff.

Notes for optimizers Optimizers not aware of atomics can treat this like a nothrow call. For SequentiallyConsis-
tent loads and stores, the same reorderings are allowed as for Acquire loads and Release stores, except that
SequentiallyConsistent operations may not be reordered.

Notes for code generation SequentiallyConsistent loads minimally require the same barriers as Acquire operations
and SequentiallyConsistent stores require Release barriers. Additionally, the code generator must enforce or-
dering between SequentiallyConsistent stores followed by SequentiallyConsistent loads. This is usually done
by emitting either a full fence before the loads or a full fence after the stores; which is preferred varies by
architecture.

Atomics and IR optimization

Predicates for optimizer writers to query:

• isSimple(): A load or store which is not volatile or atomic. This is what, for example, memcpyopt would
check for operations it might transform.

• isUnordered(): A load or store which is not volatile and at most Unordered. This would be checked, for
example, by LICM before hoisting an operation.

• mayReadFromMemory()/mayWriteToMemory(): Existing predicate, but note that they return true for
any operation which is volatile or at least Monotonic.

• isStrongerThan / isAtLeastOrStrongerThan: These are predicates on orderings. They can be use-
ful for passes that are aware of atomics, for example to do DSE across a single atomic access, but not across a
release-acquire pair (see MemoryDependencyAnalysis for an example of this)

• Alias analysis: Note that AA will return ModRef for anything Acquire or Release, and for the address accessed
by any Monotonic operation.

To support optimizing around atomic operations, make sure you are using the right predicates; everything should work
if that is done. If your pass should optimize some atomic operations (Unordered operations in particular), make sure
it doesn’t replace an atomic load or store with a non-atomic operation.

Some examples of how optimizations interact with various kinds of atomic operations:

• memcpyopt: An atomic operation cannot be optimized into part of a memcpy/memset, including unordered
loads/stores. It can pull operations across some atomic operations.

• LICM: Unordered loads/stores can be moved out of a loop. It just treats monotonic operations like a read+write
to a memory location, and anything stricter than that like a nothrow call.

• DSE: Unordered stores can be DSE’ed like normal stores. Monotonic stores can be DSE’ed in some cases, but
it’s tricky to reason about, and not especially important. It is possible in some case for DSE to operate across a
stronger atomic operation, but it is fairly tricky. DSE delegates this reasoning to MemoryDependencyAnalysis
(which is also used by other passes like GVN).

• Folding a load: Any atomic load from a constant global can be constant-folded, because it cannot be observed.
Similar reasoning allows sroa with atomic loads and stores.
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Atomics and Codegen

Atomic operations are represented in the SelectionDAG with ATOMIC_* opcodes. On architectures which use barrier
instructions for all atomic ordering (like ARM), appropriate fences can be emitted by the AtomicExpand Codegen
pass if setInsertFencesForAtomic() was used.

The MachineMemOperand for all atomic operations is currently marked as volatile; this is not correct in the IR sense
of volatile, but CodeGen handles anything marked volatile very conservatively. This should get fixed at some point.

One very important property of the atomic operations is that if your backend supports any inline lock-free atomic
operations of a given size, you should support ALL operations of that size in a lock-free manner.

When the target implements atomic cmpxchg or LL/SC instructions (as most do) this is trivial: all the other operations
can be implemented on top of those primitives. However, on many older CPUs (e.g. ARMv5, SparcV8, Intel 80386)
there are atomic load and store instructions, but no cmpxchg or LL/SC. As it is invalid to implement atomic
load using the native instruction, but cmpxchg using a library call to a function that uses a mutex, atomic load
must also expand to a library call on such architectures, so that it can remain atomic with regards to a simultaneous
cmpxchg, by using the same mutex.

AtomicExpandPass can help with that: it will expand all atomic operations to the proper __atomic_* libcalls for
any size above the maximum set by setMaxAtomicSizeInBitsSupported (which defaults to 0).

On x86, all atomic loads generate a MOV. SequentiallyConsistent stores generate an XCHG, other stores generate a MOV.
SequentiallyConsistent fences generate an MFENCE, other fences do not cause any code to be generated. cmpxchg
uses the LOCK CMPXCHG instruction. atomicrmw xchg uses XCHG, atomicrmw add and atomicrmw sub
use XADD, and all other atomicrmw operations generate a loop with LOCK CMPXCHG. Depending on the users of
the result, some atomicrmw operations can be translated into operations like LOCK AND, but that does not work in
general.

On ARM (before v8), MIPS, and many other RISC architectures, Acquire, Release, and SequentiallyConsistent se-
mantics require barrier instructions for every such operation. Loads and stores generate normal instructions. cmpxchg
and atomicrmw can be represented using a loop with LL/SC-style instructions which take some sort of exclusive
lock on a cache line (LDREX and STREX on ARM, etc.).

It is often easiest for backends to use AtomicExpandPass to lower some of the atomic constructs. Here are some
lowerings it can do:

• cmpxchg -> loop with load-linked/store-conditional by overriding shouldExpandAtomicCmpXchgInIR(),
emitLoadLinked(), emitStoreConditional()

• large loads/stores -> ll-sc/cmpxchg by overriding shouldExpandAtomicStoreInIR()/shouldExpandAtomicLoadInIR()

• strong atomic accesses -> monotonic accesses + fences by overriding
shouldInsertFencesForAtomic(), emitLeadingFence(), and emitTrailingFence()

• atomic rmw -> loop with cmpxchg or load-linked/store-conditional by overriding
expandAtomicRMWInIR()

• expansion to __atomic_* libcalls for unsupported sizes.

For an example of all of these, look at the ARM backend.

Libcalls: __atomic_*

There are two kinds of atomic library calls that are generated by LLVM. Please note that both sets of library functions
somewhat confusingly share the names of builtin functions defined by clang. Despite this, the library functions are not
directly related to the builtins: it is not the case that __atomic_* builtins lower to __atomic_* library calls and
__sync_* builtins lower to __sync_* library calls.
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The first set of library functions are named __atomic_*. This set has been “standardized” by GCC, and is described
below. (See also GCC’s documentation)

LLVM’s AtomicExpandPass will translate atomic operations on data sizes above
MaxAtomicSizeInBitsSupported into calls to these functions.

There are four generic functions, which can be called with data of any size or alignment:

void __atomic_load(size_t size, void *ptr, void *ret, int ordering)
void __atomic_store(size_t size, void *ptr, void *val, int ordering)
void __atomic_exchange(size_t size, void *ptr, void *val, void *ret, int ordering)
bool __atomic_compare_exchange(size_t size, void *ptr, void *expected, void *desired,
→˓int success_order, int failure_order)

There are also size-specialized versions of the above functions, which can only be used with naturally-aligned pointers
of the appropriate size. In the signatures below, “N” is one of 1, 2, 4, 8, and 16, and “iN” is the appropriate integer
type of that size; if no such integer type exists, the specialization cannot be used:

iN __atomic_load_N(iN *ptr, iN val, int ordering)
void __atomic_store_N(iN *ptr, iN val, int ordering)
iN __atomic_exchange_N(iN *ptr, iN val, int ordering)
bool __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired, int success_order,
→˓ int failure_order)

Finally there are some read-modify-write functions, which are only available in the size-specific variants (any other
sizes use a __atomic_compare_exchange loop):

iN __atomic_fetch_add_N(iN *ptr, iN val, int ordering)
iN __atomic_fetch_sub_N(iN *ptr, iN val, int ordering)
iN __atomic_fetch_and_N(iN *ptr, iN val, int ordering)
iN __atomic_fetch_or_N(iN *ptr, iN val, int ordering)
iN __atomic_fetch_xor_N(iN *ptr, iN val, int ordering)
iN __atomic_fetch_nand_N(iN *ptr, iN val, int ordering)

This set of library functions have some interesting implementation requirements to take note of:

• They support all sizes and alignments – including those which cannot be implemented natively on any existing
hardware. Therefore, they will certainly use mutexes in for some sizes/alignments.

• As a consequence, they cannot be shipped in a statically linked compiler-support library, as they have state
which must be shared amongst all DSOs loaded in the program. They must be provided in a shared library used
by all objects.

• The set of atomic sizes supported lock-free must be a superset of the sizes any compiler can emit. That is: if a
new compiler introduces support for inline-lock-free atomics of size N, the __atomic_* functions must also
have a lock-free implementation for size N. This is a requirement so that code produced by an old compiler
(which will have called the __atomic_* function) interoperates with code produced by the new compiler
(which will use native the atomic instruction).

Note that it’s possible to write an entirely target-independent implementation of these library functions by using the
compiler atomic builtins themselves to implement the operations on naturally-aligned pointers of supported sizes, and
a generic mutex implementation otherwise.

Libcalls: __sync_*

Some targets or OS/target combinations can support lock-free atomics, but for various reasons, it is not practical to
emit the instructions inline.

There’s two typical examples of this.
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Some CPUs support multiple instruction sets which can be swiched back and forth on function-call boundaries. For
example, MIPS supports the MIPS16 ISA, which has a smaller instruction encoding than the usual MIPS32 ISA. ARM,
similarly, has the Thumb ISA. In MIPS16 and earlier versions of Thumb, the atomic instructions are not encodable.
However, those instructions are available via a function call to a function with the longer encoding.

Additionally, a few OS/target pairs provide kernel-supported lock-free atomics. ARM/Linux is an example of this:
the kernel provides a function which on older CPUs contains a “magically-restartable” atomic sequence (which looks
atomic so long as there’s only one CPU), and contains actual atomic instructions on newer multicore models. This
sort of functionality can typically be provided on any architecture, if all CPUs which are missing atomic compare-and-
swap support are uniprocessor (no SMP). This is almost always the case. The only common architecture without that
property is SPARC – SPARCV8 SMP systems were common, yet it doesn’t support any sort of compare-and-swap
operation.

In either of these cases, the Target in LLVM can claim support for atomics of an appropriate size, and then implement
some subset of the operations via libcalls to a __sync_* function. Such functions must not use locks in their
implementation, because unlike the __atomic_* routines used by AtomicExpandPass, these may be mixed-and-
matched with native instructions by the target lowering.

Further, these routines do not need to be shared, as they are stateless. So, there is no issue with having multiple copies
included in one binary. Thus, typically these routines are implemented by the statically-linked compiler runtime
support library.

LLVM will emit a call to an appropriate __sync_* routine if the target ISelLowering code has set the corresponding
ATOMIC_CMPXCHG, ATOMIC_SWAP, or ATOMIC_LOAD_* operation to “Expand”, and if it has opted-into the
availability of those library functions via a call to initSyncLibcalls().

The full set of functions that may be called by LLVM is (for N being 1, 2, 4, 8, or 16):

iN __sync_val_compare_and_swap_N(iN *ptr, iN expected, iN desired)
iN __sync_lock_test_and_set_N(iN *ptr, iN val)
iN __sync_fetch_and_add_N(iN *ptr, iN val)
iN __sync_fetch_and_sub_N(iN *ptr, iN val)
iN __sync_fetch_and_and_N(iN *ptr, iN val)
iN __sync_fetch_and_or_N(iN *ptr, iN val)
iN __sync_fetch_and_xor_N(iN *ptr, iN val)
iN __sync_fetch_and_nand_N(iN *ptr, iN val)
iN __sync_fetch_and_max_N(iN *ptr, iN val)
iN __sync_fetch_and_umax_N(iN *ptr, iN val)
iN __sync_fetch_and_min_N(iN *ptr, iN val)
iN __sync_fetch_and_umin_N(iN *ptr, iN val)

This list doesn’t include any function for atomic load or store; all known architectures support atomic loads and stores
directly (possibly by emitting a fence on either side of a normal load or store.)

There’s also, somewhat separately, the possibility to lower ATOMIC_FENCE to __sync_synchronize().
This may happen or not happen independent of all the above, controlled purely by
setOperationAction(ISD::ATOMIC_FENCE, ...).

LLVM Coding Standards

• Introduction

• Languages, Libraries, and Standards

– C++ Standard Versions
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– C++ Standard Library

– Supported C++11 Language and Library Features

– Other Languages

• Mechanical Source Issues

– Source Code Formatting

* Commenting

· File Headers

· Class overviews

· Method information

* Comment Formatting

* Doxygen Use in Documentation Comments

* #include Style

* Source Code Width

* Use Spaces Instead of Tabs

* Indent Code Consistently

· Format Lambdas Like Blocks Of Code

· Braced Initializer Lists

– Language and Compiler Issues

* Treat Compiler Warnings Like Errors

* Write Portable Code

* Do not use RTTI or Exceptions

* Do not use Static Constructors

* Use of class and struct Keywords

* Do not use Braced Initializer Lists to Call a Constructor

* Use auto Type Deduction to Make Code More Readable

* Beware unnecessary copies with auto

• Style Issues

– The High-Level Issues

* A Public Header File is a Module

* #include as Little as Possible

* Keep “Internal” Headers Private

* Use Early Exits and continue to Simplify Code

* Don’t use else after a return

* Turn Predicate Loops into Predicate Functions

– The Low-Level Issues
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* Name Types, Functions, Variables, and Enumerators Properly

* Assert Liberally

* Do Not Use using namespace std

* Provide a Virtual Method Anchor for Classes in Headers

* Don’t use default labels in fully covered switches over enumerations

* Don’t evaluate end() every time through a loop

* #include <iostream> is Forbidden

* Use raw_ostream

* Avoid std::endl

* Don’t use inline when defining a function in a class definition

– Microscopic Details

* Spaces Before Parentheses

* Prefer Preincrement

* Namespace Indentation

* Anonymous Namespaces

• See Also

Introduction

This document attempts to describe a few coding standards that are being used in the LLVM source tree. Although
no coding standards should be regarded as absolute requirements to be followed in all instances, coding standards are
particularly important for large-scale code bases that follow a library-based design (like LLVM).

While this document may provide guidance for some mechanical formatting issues, whitespace, or other “microscopic
details”, these are not fixed standards. Always follow the golden rule:

If you are extending, enhancing, or bug fixing already implemented code, use the style that is already
being used so that the source is uniform and easy to follow.

Note that some code bases (e.g. libc++) have really good reasons to deviate from the coding standards. In the case
of libc++, this is because the naming and other conventions are dictated by the C++ standard. If you think there is a
specific good reason to deviate from the standards here, please bring it up on the LLVM-dev mailing list.

There are some conventions that are not uniformly followed in the code base (e.g. the naming convention). This is
because they are relatively new, and a lot of code was written before they were put in place. Our long term goal is for
the entire codebase to follow the convention, but we explicitly do not want patches that do large-scale reformating of
existing code. On the other hand, it is reasonable to rename the methods of a class if you’re about to change it in some
other way. Just do the reformating as a separate commit from the functionality change.

The ultimate goal of these guidelines is to increase the readability and maintainability of our common source base. If
you have suggestions for topics to be included, please mail them to Chris.

Languages, Libraries, and Standards

Most source code in LLVM and other LLVM projects using these coding standards is C++ code. There are some
places where C code is used either due to environment restrictions, historical restrictions, or due to third-party source
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code imported into the tree. Generally, our preference is for standards conforming, modern, and portable C++ code as
the implementation language of choice.

C++ Standard Versions

LLVM, Clang, and LLD are currently written using C++11 conforming code, although we restrict ourselves to features
which are available in the major toolchains supported as host compilers. The LLDB project is even more aggressive
in the set of host compilers supported and thus uses still more features. Regardless of the supported features, code is
expected to (when reasonable) be standard, portable, and modern C++11 code. We avoid unnecessary vendor-specific
extensions, etc.

C++ Standard Library

Use the C++ standard library facilities whenever they are available for a particular task. LLVM and related projects
emphasize and rely on the standard library facilities for as much as possible. Common support libraries providing func-
tionality missing from the standard library for which there are standard interfaces or active work on adding standard
interfaces will often be implemented in the LLVM namespace following the expected standard interface.

There are some exceptions such as the standard I/O streams library which are avoided. Also, there is much more
detailed information on these subjects in the LLVM Programmer’s Manual.

Supported C++11 Language and Library Features

While LLVM, Clang, and LLD use C++11, not all features are available in all of the toolchains which we support. The
set of features supported for use in LLVM is the intersection of those supported in MSVC 2013, GCC 4.7, and Clang
3.1. The ultimate definition of this set is what build bots with those respective toolchains accept. Don’t argue with the
build bots. However, we have some guidance below to help you know what to expect.

Each toolchain provides a good reference for what it accepts:

• Clang: http://clang.llvm.org/cxx_status.html

• GCC: http://gcc.gnu.org/projects/cxx0x.html

• MSVC: http://msdn.microsoft.com/en-us/library/hh567368.aspx

In most cases, the MSVC list will be the dominating factor. Here is a summary of the features that are expected to
work. Features not on this list are unlikely to be supported by our host compilers.

• Rvalue references: N2118

– But not Rvalue references for *this or member qualifiers (N2439)

• Static assert: N1720

• auto type deduction: N1984, N1737

• Trailing return types: N2541

• Lambdas: N2927

– But not lambdas with default arguments.

• decltype: N2343

• Nested closing right angle brackets: N1757

• Extern templates: N1987

• nullptr: N2431
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• Strongly-typed and forward declarable enums: N2347, N2764

• Local and unnamed types as template arguments: N2657

• Range-based for-loop: N2930

– But {} are required around inner do {} while() loops. As a result, {} are required around function-
like macros inside range-based for loops.

• override and final: N2928, N3206, N3272

• Atomic operations and the C++11 memory model: N2429

• Variadic templates: N2242

• Explicit conversion operators: N2437

• Defaulted and deleted functions: N2346

– But not defaulted move constructors or move assignment operators, MSVC 2013 cannot synthesize them.

• Initializer lists: N2627

• Delegating constructors: N1986

• Default member initializers (non-static data member initializers): N2756

– Only use these for scalar members that would otherwise be left uninitialized. Non-scalar members gener-
ally have appropriate default constructors, and MSVC 2013 has problems when braced initializer lists are
involved.

The supported features in the C++11 standard libraries are less well tracked, but also much greater. Most of the
standard libraries implement most of C++11’s library. The most likely lowest common denominator is Linux support.
For libc++, the support is just poorly tested and undocumented but expected to be largely complete. YMMV. For
libstdc++, the support is documented in detail in the libstdc++ manual. There are some very minor missing facilities
that are unlikely to be common problems, and there are a few larger gaps that are worth being aware of:

• Not all of the type traits are implemented

• No regular expression library.

• While most of the atomics library is well implemented, the fences are missing. Fortunately, they are rarely
needed.

• The locale support is incomplete.

Other than these areas you should assume the standard library is available and working as expected until some build
bot tells you otherwise. If you’re in an uncertain area of one of the above points, but you cannot test on a Linux system,
your best approach is to minimize your use of these features, and watch the Linux build bots to find out if your usage
triggered a bug. For example, if you hit a type trait which doesn’t work we can then add support to LLVM’s traits
header to emulate it.

Other Languages

Any code written in the Go programming language is not subject to the formatting rules below. Instead, we adopt the
formatting rules enforced by the gofmt tool.

Go code should strive to be idiomatic. Two good sets of guidelines for what this means are Effective Go and Go Code
Review Comments.
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Mechanical Source Issues

Source Code Formatting

Commenting

Comments are one critical part of readability and maintainability. Everyone knows they should comment their code,
and so should you. When writing comments, write them as English prose, which means they should use proper
capitalization, punctuation, etc. Aim to describe what the code is trying to do and why, not how it does it at a micro
level. Here are a few critical things to document:

File Headers

Every source file should have a header on it that describes the basic purpose of the file. If a file does not have a header,
it should not be checked into the tree. The standard header looks like this:

//===-- llvm/Instruction.h - Instruction class definition -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file contains the declaration of the Instruction class, which is the
/// base class for all of the VM instructions.
///
//===----------------------------------------------------------------------===//

A few things to note about this particular format: The “-*- C++ -*-” string on the first line is there to tell Emacs
that the source file is a C++ file, not a C file (Emacs assumes .h files are C files by default).

Note: This tag is not necessary in .cpp files. The name of the file is also on the first line, along with a very short
description of the purpose of the file. This is important when printing out code and flipping though lots of pages.

The next section in the file is a concise note that defines the license that the file is released under. This makes it
perfectly clear what terms the source code can be distributed under and should not be modified in any way.

The main body is a doxygen comment (identified by the /// comment marker instead of the usual //) describing
the purpose of the file. The first sentence or a passage beginning with \brief is used as an abstract. Any additional
information should be separated by a blank line. If an algorithm is being implemented or something tricky is going
on, a reference to the paper where it is published should be included, as well as any notes or gotchas in the code to
watch out for.

Class overviews

Classes are one fundamental part of a good object oriented design. As such, a class definition should have a comment
block that explains what the class is used for and how it works. Every non-trivial class is expected to have a doxygen
comment block.
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Method information

Methods defined in a class (as well as any global functions) should also be documented properly. A quick note about
what it does and a description of the borderline behaviour is all that is necessary here (unless something particularly
tricky or insidious is going on). The hope is that people can figure out how to use your interfaces without reading the
code itself.

Good things to talk about here are what happens when something unexpected happens: does the method return null?
Abort? Format your hard disk?

Comment Formatting

In general, prefer C++ style comments (// for normal comments, /// for doxygen documentation comments).
They take less space, require less typing, don’t have nesting problems, etc. There are a few cases when it is useful to
use C style (/* */) comments however:

1. When writing C code: Obviously if you are writing C code, use C style comments.

2. When writing a header file that may be #included by a C source file.

3. When writing a source file that is used by a tool that only accepts C style comments.

To comment out a large block of code, use #if 0 and #endif. These nest properly and are better behaved in general
than C style comments.

Doxygen Use in Documentation Comments

Use the \file command to turn the standard file header into a file-level comment.

Include descriptive paragraphs for all public interfaces (public classes, member and non-member functions). Don’t
just restate the information that can be inferred from the API name. The first sentence or a paragraph beginning with
\brief is used as an abstract. Put detailed discussion into separate paragraphs.

To refer to parameter names inside a paragraph, use the \p name command. Don’t use the \arg name command
since it starts a new paragraph that contains documentation for the parameter.

Wrap non-inline code examples in \code ... \endcode.

To document a function parameter, start a new paragraph with the \param name command. If the parameter is
used as an out or an in/out parameter, use the \param [out] name or \param [in,out] name command,
respectively.

To describe function return value, start a new paragraph with the \returns command.

A minimal documentation comment:

/// Sets the xyzzy property to \p Baz.
void setXyzzy(bool Baz);

A documentation comment that uses all Doxygen features in a preferred way:

/// \brief Does foo and bar.
///
/// Does not do foo the usual way if \p Baz is true.
///
/// Typical usage:
/// \code
/// fooBar(false, "quux", Res);
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/// \endcode
///
/// \param Quux kind of foo to do.
/// \param [out] Result filled with bar sequence on foo success.
///
/// \returns true on success.
bool fooBar(bool Baz, StringRef Quux, std::vector<int> &Result);

Don’t duplicate the documentation comment in the header file and in the implementation file. Put the documentation
comments for public APIs into the header file. Documentation comments for private APIs can go to the implementation
file. In any case, implementation files can include additional comments (not necessarily in Doxygen markup) to explain
implementation details as needed.

Don’t duplicate function or class name at the beginning of the comment. For humans it is obvious which function or
class is being documented; automatic documentation processing tools are smart enough to bind the comment to the
correct declaration.

Wrong:

// In Something.h:

/// Something - An abstraction for some complicated thing.
class Something {
public:

/// fooBar - Does foo and bar.
void fooBar();

};

// In Something.cpp:

/// fooBar - Does foo and bar.
void Something::fooBar() { ... }

Correct:

// In Something.h:

/// An abstraction for some complicated thing.
class Something {
public:

/// Does foo and bar.
void fooBar();

};

// In Something.cpp:

// Builds a B-tree in order to do foo. See paper by...
void Something::fooBar() { ... }

It is not required to use additional Doxygen features, but sometimes it might be a good idea to do so.

Consider:

• adding comments to any narrow namespace containing a collection of related functions or types;

• using top-level groups to organize a collection of related functions at namespace scope where the grouping is
smaller than the namespace;

• using member groups and additional comments attached to member groups to organize within a class.
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For example:

class Something {
/// \name Functions that do Foo.
/// @{
void fooBar();
void fooBaz();
/// @}
...

};

#include Style

Immediately after the header file comment (and include guards if working on a header file), the minimal list of #in-
cludes required by the file should be listed. We prefer these #includes to be listed in this order:

1. Main Module Header

2. Local/Private Headers

3. llvm/...

4. System #includes

and each category should be sorted lexicographically by the full path.

The Main Module Header file applies to .cpp files which implement an interface defined by a .h file. This
#include should always be included first regardless of where it lives on the file system. By including a header
file first in the .cpp files that implement the interfaces, we ensure that the header does not have any hidden depen-
dencies which are not explicitly #included in the header, but should be. It is also a form of documentation in the
.cpp file to indicate where the interfaces it implements are defined.

Source Code Width

Write your code to fit within 80 columns of text. This helps those of us who like to print out code and look at your
code in an xterm without resizing it.

The longer answer is that there must be some limit to the width of the code in order to reasonably allow developers to
have multiple files side-by-side in windows on a modest display. If you are going to pick a width limit, it is somewhat
arbitrary but you might as well pick something standard. Going with 90 columns (for example) instead of 80 columns
wouldn’t add any significant value and would be detrimental to printing out code. Also many other projects have
standardized on 80 columns, so some people have already configured their editors for it (vs something else, like 90
columns).

This is one of many contentious issues in coding standards, but it is not up for debate.

Use Spaces Instead of Tabs

In all cases, prefer spaces to tabs in source files. People have different preferred indentation levels, and different styles
of indentation that they like; this is fine. What isn’t fine is that different editors/viewers expand tabs out to different
tab stops. This can cause your code to look completely unreadable, and it is not worth dealing with.

As always, follow the Golden Rule above: follow the style of existing code if you are modifying and extending it. If
you like four spaces of indentation, DO NOT do that in the middle of a chunk of code with two spaces of indentation.
Also, do not reindent a whole source file: it makes for incredible diffs that are absolutely worthless.
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Indent Code Consistently

Okay, in your first year of programming you were told that indentation is important. If you didn’t believe and inter-
nalize this then, now is the time. Just do it. With the introduction of C++11, there are some new formatting challenges
that merit some suggestions to help have consistent, maintainable, and tool-friendly formatting and indentation.

Format Lambdas Like Blocks Of Code

When formatting a multi-line lambda, format it like a block of code, that’s what it is. If there is only one multi-line
lambda in a statement, and there are no expressions lexically after it in the statement, drop the indent to the standard
two space indent for a block of code, as if it were an if-block opened by the preceding part of the statement:

std::sort(foo.begin(), foo.end(), [&](Foo a, Foo b) -> bool {
if (a.blah < b.blah)
return true;

if (a.baz < b.baz)
return true;

return a.bam < b.bam;
});

To take best advantage of this formatting, if you are designing an API which accepts a continuation or single callable
argument (be it a functor, or a std::function), it should be the last argument if at all possible.

If there are multiple multi-line lambdas in a statement, or there is anything interesting after the lambda in the statement,
indent the block two spaces from the indent of the []:

dyn_switch(V->stripPointerCasts(),
[] (PHINode *PN) {

// process phis...
},
[] (SelectInst *SI) {

// process selects...
},
[] (LoadInst *LI) {

// process loads...
},
[] (AllocaInst *AI) {

// process allocas...
});

Braced Initializer Lists

With C++11, there are significantly more uses of braced lists to perform initialization. These allow you to easily
construct aggregate temporaries in expressions among other niceness. They now have a natural way of ending up
nested within each other and within function calls in order to build up aggregates (such as option structs) from local
variables. To make matters worse, we also have many more uses of braces in an expression context that are not
performing initialization.

The historically common formatting of braced initialization of aggregate variables does not mix cleanly with deep
nesting, general expression contexts, function arguments, and lambdas. We suggest new code use a simple rule for
formatting braced initialization lists: act as-if the braces were parentheses in a function call. The formatting rules
exactly match those already well understood for formatting nested function calls. Examples:
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foo({a, b, c}, {1, 2, 3});

llvm::Constant *Mask[] = {
llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0),
llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1),
llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2)};

This formatting scheme also makes it particularly easy to get predictable, consistent, and automatic formatting with
tools like Clang Format.

Language and Compiler Issues

Treat Compiler Warnings Like Errors

If your code has compiler warnings in it, something is wrong — you aren’t casting values correctly, you have “ques-
tionable” constructs in your code, or you are doing something legitimately wrong. Compiler warnings can cover up
legitimate errors in output and make dealing with a translation unit difficult.

It is not possible to prevent all warnings from all compilers, nor is it desirable. Instead, pick a standard compiler (like
gcc) that provides a good thorough set of warnings, and stick to it. At least in the case of gcc, it is possible to work
around any spurious errors by changing the syntax of the code slightly. For example, a warning that annoys me occurs
when I write code like this:

if (V = getValue()) {
...

}

gcc will warn me that I probably want to use the == operator, and that I probably mistyped it. In most cases, I haven’t,
and I really don’t want the spurious errors. To fix this particular problem, I rewrite the code like this:

if ((V = getValue())) {
...

}

which shuts gcc up. Any gcc warning that annoys you can be fixed by massaging the code appropriately.

Write Portable Code

In almost all cases, it is possible and within reason to write completely portable code. If there are cases where it isn’t
possible to write portable code, isolate it behind a well defined (and well documented) interface.

In practice, this means that you shouldn’t assume much about the host compiler (and Visual Studio tends to be the
lowest common denominator). If advanced features are used, they should only be an implementation detail of a library
which has a simple exposed API, and preferably be buried in libSystem.

Do not use RTTI or Exceptions

In an effort to reduce code and executable size, LLVM does not use RTTI (e.g. dynamic_cast<>;) or exceptions.
These two language features violate the general C++ principle of “you only pay for what you use”, causing executable
bloat even if exceptions are never used in the code base, or if RTTI is never used for a class. Because of this, we turn
them off globally in the code.
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That said, LLVM does make extensive use of a hand-rolled form of RTTI that use templates like isa<>, cast<>, and
dyn_cast<>. This form of RTTI is opt-in and can be added to any class. It is also substantially more efficient than
dynamic_cast<>.

Do not use Static Constructors

Static constructors and destructors (e.g. global variables whose types have a constructor or destructor) should not be
added to the code base, and should be removed wherever possible. Besides well known problems where the order of
initialization is undefined between globals in different source files, the entire concept of static constructors is at odds
with the common use case of LLVM as a library linked into a larger application.

Consider the use of LLVM as a JIT linked into another application (perhaps for OpenGL, custom languages, shaders
in movies, etc). Due to the design of static constructors, they must be executed at startup time of the entire application,
regardless of whether or how LLVM is used in that larger application. There are two problems with this:

• The time to run the static constructors impacts startup time of applications — a critical time for GUI apps,
among others.

• The static constructors cause the app to pull many extra pages of memory off the disk: both the code for the
constructor in each .o file and the small amount of data that gets touched. In addition, touched/dirty pages put
more pressure on the VM system on low-memory machines.

We would really like for there to be zero cost for linking in an additional LLVM target or other library into an applica-
tion, but static constructors violate this goal.

That said, LLVM unfortunately does contain static constructors. It would be a great project for someone to purge all
static constructors from LLVM, and then enable the -Wglobal-constructors warning flag (when building with
Clang) to ensure we do not regress in the future.

Use of class and struct Keywords

In C++, the class and struct keywords can be used almost interchangeably. The only difference is when they are
used to declare a class: class makes all members private by default while struct makes all members public by
default.

Unfortunately, not all compilers follow the rules and some will generate different symbols based on whether class
or struct was used to declare the symbol (e.g., MSVC). This can lead to problems at link time.

• All declarations and definitions of a given class or struct must use the same keyword. For example:

class Foo;

// Breaks mangling in MSVC.
struct Foo { int Data; };

• As a rule of thumb, struct should be kept to structures where all members are declared public.

// Foo feels like a class... this is strange.
struct Foo {
private:
int Data;

public:
Foo() : Data(0) { }
int getData() const { return Data; }
void setData(int D) { Data = D; }

};
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// Bar isn't POD, but it does look like a struct.
struct Bar {
int Data;
Bar() : Data(0) { }

};

Do not use Braced Initializer Lists to Call a Constructor

In C++11 there is a “generalized initialization syntax” which allows calling constructors using braced initializer lists.
Do not use these to call constructors with any interesting logic or if you care that you’re calling some particular
constructor. Those should look like function calls using parentheses rather than like aggregate initialization. Similarly,
if you need to explicitly name the type and call its constructor to create a temporary, don’t use a braced initializer
list. Instead, use a braced initializer list (without any type for temporaries) when doing aggregate initialization or
something notionally equivalent. Examples:

class Foo {
public:

// Construct a Foo by reading data from the disk in the whizbang format, ...
Foo(std::string filename);

// Construct a Foo by looking up the Nth element of some global data ...
Foo(int N);

// ...
};

// The Foo constructor call is very deliberate, no braces.
std::fill(foo.begin(), foo.end(), Foo("name"));

// The pair is just being constructed like an aggregate, use braces.
bar_map.insert({my_key, my_value});

If you use a braced initializer list when initializing a variable, use an equals before the open curly brace:

int data[] = {0, 1, 2, 3};

Use auto Type Deduction to Make Code More Readable

Some are advocating a policy of “almost always auto” in C++11, however LLVM uses a more moderate stance. Use
auto if and only if it makes the code more readable or easier to maintain. Don’t “almost always” use auto, but
do use auto with initializers like cast<Foo>(...) or other places where the type is already obvious from the
context. Another time when auto works well for these purposes is when the type would have been abstracted away
anyways, often behind a container’s typedef such as std::vector<T>::iterator.

Beware unnecessary copies with auto

The convenience of auto makes it easy to forget that its default behavior is a copy. Particularly in range-based for
loops, careless copies are expensive.

As a rule of thumb, use auto & unless you need to copy the result, and use auto * when copying pointers.
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// Typically there's no reason to copy.
for (const auto &Val : Container) { observe(Val); }
for (auto &Val : Container) { Val.change(); }

// Remove the reference if you really want a new copy.
for (auto Val : Container) { Val.change(); saveSomewhere(Val); }

// Copy pointers, but make it clear that they're pointers.
for (const auto *Ptr : Container) { observe(*Ptr); }
for (auto *Ptr : Container) { Ptr->change(); }

Style Issues

The High-Level Issues

A Public Header File is a Module

C++ doesn’t do too well in the modularity department. There is no real encapsulation or data hiding (unless you use
expensive protocol classes), but it is what we have to work with. When you write a public header file (in the LLVM
source tree, they live in the top level “include” directory), you are defining a module of functionality.

Ideally, modules should be completely independent of each other, and their header files should only #include the
absolute minimum number of headers possible. A module is not just a class, a function, or a namespace: it’s a
collection of these that defines an interface. This interface may be several functions, classes, or data structures, but the
important issue is how they work together.

In general, a module should be implemented by one or more .cpp files. Each of these .cpp files should include
the header that defines their interface first. This ensures that all of the dependences of the module header have been
properly added to the module header itself, and are not implicit. System headers should be included after user headers
for a translation unit.

#include as Little as Possible

#include hurts compile time performance. Don’t do it unless you have to, especially in header files.

But wait! Sometimes you need to have the definition of a class to use it, or to inherit from it. In these cases go ahead
and #include that header file. Be aware however that there are many cases where you don’t need to have the full
definition of a class. If you are using a pointer or reference to a class, you don’t need the header file. If you are simply
returning a class instance from a prototyped function or method, you don’t need it. In fact, for most cases, you simply
don’t need the definition of a class. And not #includeing speeds up compilation.

It is easy to try to go too overboard on this recommendation, however. You must include all of the header files that
you are using — you can include them either directly or indirectly through another header file. To make sure that you
don’t accidentally forget to include a header file in your module header, make sure to include your module header first
in the implementation file (as mentioned above). This way there won’t be any hidden dependencies that you’ll find out
about later.

Keep “Internal” Headers Private

Many modules have a complex implementation that causes them to use more than one implementation (.cpp) file. It
is often tempting to put the internal communication interface (helper classes, extra functions, etc) in the public module
header file. Don’t do this!
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If you really need to do something like this, put a private header file in the same directory as the source files, and
include it locally. This ensures that your private interface remains private and undisturbed by outsiders.

Note: It’s okay to put extra implementation methods in a public class itself. Just make them private (or protected)
and all is well.

Use Early Exits and continue to Simplify Code

When reading code, keep in mind how much state and how many previous decisions have to be remembered by the
reader to understand a block of code. Aim to reduce indentation where possible when it doesn’t make it more difficult
to understand the code. One great way to do this is by making use of early exits and the continue keyword in long
loops. As an example of using an early exit from a function, consider this “bad” code:

Value *doSomething(Instruction *I) {
if (!isa<TerminatorInst>(I) &&

I->hasOneUse() && doOtherThing(I)) {
... some long code ....

}

return 0;
}

This code has several problems if the body of the 'if' is large. When you’re looking at the top of the function,
it isn’t immediately clear that this only does interesting things with non-terminator instructions, and only applies to
things with the other predicates. Second, it is relatively difficult to describe (in comments) why these predicates are
important because the if statement makes it difficult to lay out the comments. Third, when you’re deep within the
body of the code, it is indented an extra level. Finally, when reading the top of the function, it isn’t clear what the
result is if the predicate isn’t true; you have to read to the end of the function to know that it returns null.

It is much preferred to format the code like this:

Value *doSomething(Instruction *I) {
// Terminators never need 'something' done to them because ...
if (isa<TerminatorInst>(I))
return 0;

// We conservatively avoid transforming instructions with multiple uses
// because goats like cheese.
if (!I->hasOneUse())
return 0;

// This is really just here for example.
if (!doOtherThing(I))
return 0;

... some long code ....
}

This fixes these problems. A similar problem frequently happens in for loops. A silly example is something like this:

for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(II)) {
Value *LHS = BO->getOperand(0);
Value *RHS = BO->getOperand(1);
if (LHS != RHS) {
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...
}

}
}

When you have very, very small loops, this sort of structure is fine. But if it exceeds more than 10-15 lines, it becomes
difficult for people to read and understand at a glance. The problem with this sort of code is that it gets very nested
very quickly. Meaning that the reader of the code has to keep a lot of context in their brain to remember what is going
immediately on in the loop, because they don’t know if/when the if conditions will have elses etc. It is strongly
preferred to structure the loop like this:

for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
BinaryOperator *BO = dyn_cast<BinaryOperator>(II);
if (!BO) continue;

Value *LHS = BO->getOperand(0);
Value *RHS = BO->getOperand(1);
if (LHS == RHS) continue;

...
}

This has all the benefits of using early exits for functions: it reduces nesting of the loop, it makes it easier to describe
why the conditions are true, and it makes it obvious to the reader that there is no else coming up that they have to
push context into their brain for. If a loop is large, this can be a big understandability win.

Don’t use else after a return

For similar reasons above (reduction of indentation and easier reading), please do not use 'else' or 'else if'
after something that interrupts control flow — like return, break, continue, goto, etc. For example, this is
bad:

case 'J': {
if (Signed) {
Type = Context.getsigjmp_bufType();
if (Type.isNull()) {

Error = ASTContext::GE_Missing_sigjmp_buf;
return QualType();

} else {
break;

}
} else {
Type = Context.getjmp_bufType();
if (Type.isNull()) {

Error = ASTContext::GE_Missing_jmp_buf;
return QualType();

} else {
break;

}
}

}

It is better to write it like this:

case 'J':
if (Signed) {
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Type = Context.getsigjmp_bufType();
if (Type.isNull()) {

Error = ASTContext::GE_Missing_sigjmp_buf;
return QualType();

}
} else {
Type = Context.getjmp_bufType();
if (Type.isNull()) {

Error = ASTContext::GE_Missing_jmp_buf;
return QualType();

}
}
break;

Or better yet (in this case) as:

case 'J':
if (Signed)
Type = Context.getsigjmp_bufType();

else
Type = Context.getjmp_bufType();

if (Type.isNull()) {
Error = Signed ? ASTContext::GE_Missing_sigjmp_buf :

ASTContext::GE_Missing_jmp_buf;
return QualType();

}
break;

The idea is to reduce indentation and the amount of code you have to keep track of when reading the code.

Turn Predicate Loops into Predicate Functions

It is very common to write small loops that just compute a boolean value. There are a number of ways that people
commonly write these, but an example of this sort of thing is:

bool FoundFoo = false;
for (unsigned I = 0, E = BarList.size(); I != E; ++I)
if (BarList[I]->isFoo()) {
FoundFoo = true;
break;

}

if (FoundFoo) {
...

}

This sort of code is awkward to write, and is almost always a bad sign. Instead of this sort of loop, we strongly prefer
to use a predicate function (which may be static) that uses early exits to compute the predicate. We prefer the code to
be structured like this:

/// \returns true if the specified list has an element that is a foo.
static bool containsFoo(const std::vector<Bar*> &List) {
for (unsigned I = 0, E = List.size(); I != E; ++I)
if (List[I]->isFoo())

return true;

3.2. LLVM Coding Standards 797



LLVM Documentation, Release 3.9

return false;
}
...

if (containsFoo(BarList)) {
...

}

There are many reasons for doing this: it reduces indentation and factors out code which can often be shared by other
code that checks for the same predicate. More importantly, it forces you to pick a name for the function, and forces you
to write a comment for it. In this silly example, this doesn’t add much value. However, if the condition is complex, this
can make it a lot easier for the reader to understand the code that queries for this predicate. Instead of being faced with
the in-line details of how we check to see if the BarList contains a foo, we can trust the function name and continue
reading with better locality.

The Low-Level Issues

Name Types, Functions, Variables, and Enumerators Properly

Poorly-chosen names can mislead the reader and cause bugs. We cannot stress enough how important it is to use
descriptive names. Pick names that match the semantics and role of the underlying entities, within reason. Avoid
abbreviations unless they are well known. After picking a good name, make sure to use consistent capitalization for
the name, as inconsistency requires clients to either memorize the APIs or to look it up to find the exact spelling.

In general, names should be in camel case (e.g. TextFileReader and isLValue()). Different kinds of declara-
tions have different rules:

• Type names (including classes, structs, enums, typedefs, etc) should be nouns and start with an upper-case letter
(e.g. TextFileReader).

• Variable names should be nouns (as they represent state). The name should be camel case, and start with an
upper case letter (e.g. Leader or Boats).

• Function names should be verb phrases (as they represent actions), and command-like function should be
imperative. The name should be camel case, and start with a lower case letter (e.g. openFile() or isFoo()).

• Enum declarations (e.g. enum Foo {...}) are types, so they should follow the naming conventions for
types. A common use for enums is as a discriminator for a union, or an indicator of a subclass. When an enum
is used for something like this, it should have a Kind suffix (e.g. ValueKind).

• Enumerators (e.g. enum { Foo, Bar }) and public member variables should start with an upper-case
letter, just like types. Unless the enumerators are defined in their own small namespace or inside a class, enu-
merators should have a prefix corresponding to the enum declaration name. For example, enum ValueKind
{ ... }; may contain enumerators like VK_Argument, VK_BasicBlock, etc. Enumerators that are just
convenience constants are exempt from the requirement for a prefix. For instance:

enum {
MaxSize = 42,
Density = 12

};

As an exception, classes that mimic STL classes can have member names in STL’s style of lower-case words separated
by underscores (e.g. begin(), push_back(), and empty()). Classes that provide multiple iterators should add
a singular prefix to begin() and end() (e.g. global_begin() and use_begin()).

Here are some examples of good and bad names:
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class VehicleMaker {
...
Factory<Tire> F; // Bad -- abbreviation and non-descriptive.
Factory<Tire> Factory; // Better.
Factory<Tire> TireFactory; // Even better -- if VehicleMaker has more than one

// kind of factories.
};

Vehicle MakeVehicle(VehicleType Type) {
VehicleMaker M; // Might be OK if having a short life-span.
Tire Tmp1 = M.makeTire(); // Bad -- 'Tmp1' provides no information.
Light Headlight = M.makeLight("head"); // Good -- descriptive.
...

}

Assert Liberally

Use the “assert” macro to its fullest. Check all of your preconditions and assumptions, you never know when a bug
(not necessarily even yours) might be caught early by an assertion, which reduces debugging time dramatically. The
“<cassert>” header file is probably already included by the header files you are using, so it doesn’t cost anything
to use it.

To further assist with debugging, make sure to put some kind of error message in the assertion statement, which is
printed if the assertion is tripped. This helps the poor debugger make sense of why an assertion is being made and
enforced, and hopefully what to do about it. Here is one complete example:

inline Value *getOperand(unsigned I) {
assert(I < Operands.size() && "getOperand() out of range!");
return Operands[I];

}

Here are more examples:

assert(Ty->isPointerType() && "Can't allocate a non-pointer type!");

assert((Opcode == Shl || Opcode == Shr) && "ShiftInst Opcode invalid!");

assert(idx < getNumSuccessors() && "Successor # out of range!");

assert(V1.getType() == V2.getType() && "Constant types must be identical!");

assert(isa<PHINode>(Succ->front()) && "Only works on PHId BBs!");

You get the idea.

In the past, asserts were used to indicate a piece of code that should not be reached. These were typically of the form:

assert(0 && "Invalid radix for integer literal");

This has a few issues, the main one being that some compilers might not understand the assertion, or warn about a
missing return in builds where assertions are compiled out.

Today, we have something much better: llvm_unreachable:

llvm_unreachable("Invalid radix for integer literal");
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When assertions are enabled, this will print the message if it’s ever reached and then exit the program. When assertions
are disabled (i.e. in release builds), llvm_unreachable becomes a hint to compilers to skip generating code for
this branch. If the compiler does not support this, it will fall back to the “abort” implementation.

Another issue is that values used only by assertions will produce an “unused value” warning when assertions are
disabled. For example, this code will warn:

unsigned Size = V.size();
assert(Size > 42 && "Vector smaller than it should be");

bool NewToSet = Myset.insert(Value);
assert(NewToSet && "The value shouldn't be in the set yet");

These are two interesting different cases. In the first case, the call to V.size() is only useful for the assert, and we
don’t want it executed when assertions are disabled. Code like this should move the call into the assert itself. In the
second case, the side effects of the call must happen whether the assert is enabled or not. In this case, the value should
be cast to void to disable the warning. To be specific, it is preferred to write the code like this:

assert(V.size() > 42 && "Vector smaller than it should be");

bool NewToSet = Myset.insert(Value); (void)NewToSet;
assert(NewToSet && "The value shouldn't be in the set yet");

Do Not Use using namespace std

In LLVM, we prefer to explicitly prefix all identifiers from the standard namespace with an “std::” prefix, rather
than rely on “using namespace std;”.

In header files, adding a 'using namespace XXX' directive pollutes the namespace of any source file that
#includes the header. This is clearly a bad thing.

In implementation files (e.g. .cpp files), the rule is more of a stylistic rule, but is still important. Basically, using
explicit namespace prefixes makes the code clearer, because it is immediately obvious what facilities are being used
and where they are coming from. And more portable, because namespace clashes cannot occur between LLVM code
and other namespaces. The portability rule is important because different standard library implementations expose
different symbols (potentially ones they shouldn’t), and future revisions to the C++ standard will add more symbols to
the std namespace. As such, we never use 'using namespace std;' in LLVM.

The exception to the general rule (i.e. it’s not an exception for the std namespace) is for implementation files. For
example, all of the code in the LLVM project implements code that lives in the ‘llvm’ namespace. As such, it is
ok, and actually clearer, for the .cpp files to have a 'using namespace llvm;' directive at the top, after the
#includes. This reduces indentation in the body of the file for source editors that indent based on braces, and
keeps the conceptual context cleaner. The general form of this rule is that any .cpp file that implements code in any
namespace may use that namespace (and its parents’), but should not use any others.

Provide a Virtual Method Anchor for Classes in Headers

If a class is defined in a header file and has a vtable (either it has virtual methods or it derives from classes with virtual
methods), it must always have at least one out-of-line virtual method in the class. Without this, the compiler will copy
the vtable and RTTI into every .o file that #includes the header, bloating .o file sizes and increasing link times.
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Don’t use default labels in fully covered switches over enumerations

-Wswitch warns if a switch, without a default label, over an enumeration does not cover every enumeration value. If
you write a default label on a fully covered switch over an enumeration then the -Wswitch warning won’t fire when
new elements are added to that enumeration. To help avoid adding these kinds of defaults, Clang has the warning
-Wcovered-switch-default which is off by default but turned on when building LLVM with a version of
Clang that supports the warning.

A knock-on effect of this stylistic requirement is that when building LLVM with GCC you may get warnings related
to “control may reach end of non-void function” if you return from each case of a covered switch-over-enum because
GCC assumes that the enum expression may take any representable value, not just those of individual enumerators. To
suppress this warning, use llvm_unreachable after the switch.

Don’t evaluate end() every time through a loop

Because C++ doesn’t have a standard “foreach” loop (though it can be emulated with macros and may be coming in
C++‘0x) we end up writing a lot of loops that manually iterate from begin to end on a variety of containers or through
other data structures. One common mistake is to write a loop in this style:

BasicBlock *BB = ...
for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I)
... use I ...

The problem with this construct is that it evaluates “BB->end()” every time through the loop. Instead of writing the
loop like this, we strongly prefer loops to be written so that they evaluate it once before the loop starts. A convenient
way to do this is like so:

BasicBlock *BB = ...
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
... use I ...

The observant may quickly point out that these two loops may have different semantics: if the container (a basic block
in this case) is being mutated, then “BB->end()” may change its value every time through the loop and the second
loop may not in fact be correct. If you actually do depend on this behavior, please write the loop in the first form and
add a comment indicating that you did it intentionally.

Why do we prefer the second form (when correct)? Writing the loop in the first form has two problems. First it may
be less efficient than evaluating it at the start of the loop. In this case, the cost is probably minor — a few extra loads
every time through the loop. However, if the base expression is more complex, then the cost can rise quickly. I’ve
seen loops where the end expression was actually something like: “SomeMap[X]->end()” and map lookups really
aren’t cheap. By writing it in the second form consistently, you eliminate the issue entirely and don’t even have to
think about it.

The second (even bigger) issue is that writing the loop in the first form hints to the reader that the loop is mutating the
container (a fact that a comment would handily confirm!). If you write the loop in the second form, it is immediately
obvious without even looking at the body of the loop that the container isn’t being modified, which makes it easier to
read the code and understand what it does.

While the second form of the loop is a few extra keystrokes, we do strongly prefer it.

#include <iostream> is Forbidden

The use of #include <iostream> in library files is hereby forbidden, because many common implementations
transparently inject a static constructor into every translation unit that includes it.
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Note that using the other stream headers (<sstream> for example) is not problematic in this regard — just
<iostream>. However, raw_ostream provides various APIs that are better performing for almost every use
than std::ostream style APIs.

Note: New code should always use raw_ostream for writing, or the llvm::MemoryBuffer API for reading files.

Use raw_ostream

LLVM includes a lightweight, simple, and efficient stream implementation in llvm/Support/raw_ostream.h,
which provides all of the common features of std::ostream. All new code should use raw_ostream instead of
ostream.

Unlike std::ostream, raw_ostream is not a template and can be forward declared as class raw_ostream.
Public headers should generally not include the raw_ostream header, but use forward declarations and constant
references to raw_ostream instances.

Avoid std::endl

The std::endl modifier, when used with iostreams outputs a newline to the output stream specified. In addition
to doing this, however, it also flushes the output stream. In other words, these are equivalent:

std::cout << std::endl;
std::cout << '\n' << std::flush;

Most of the time, you probably have no reason to flush the output stream, so it’s better to use a literal '\n'.

Don’t use inline when defining a function in a class definition

A member function defined in a class definition is implicitly inline, so don’t put the inline keyword in this case.

Don’t:

class Foo {
public:

inline void bar() {
// ...

}
};

Do:

class Foo {
public:

void bar() {
// ...

}
};

Microscopic Details

This section describes preferred low-level formatting guidelines along with reasoning on why we prefer them.
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Spaces Before Parentheses

We prefer to put a space before an open parenthesis only in control flow statements, but not in normal function call
expressions and function-like macros. For example, this is good:

if (X) ...
for (I = 0; I != 100; ++I) ...
while (LLVMRocks) ...

somefunc(42);
assert(3 != 4 && "laws of math are failing me");

A = foo(42, 92) + bar(X);

and this is bad:

if(X) ...
for(I = 0; I != 100; ++I) ...
while(LLVMRocks) ...

somefunc (42);
assert (3 != 4 && "laws of math are failing me");

A = foo (42, 92) + bar (X);

The reason for doing this is not completely arbitrary. This style makes control flow operators stand out more, and
makes expressions flow better. The function call operator binds very tightly as a postfix operator. Putting a space after
a function name (as in the last example) makes it appear that the code might bind the arguments of the left-hand-side
of a binary operator with the argument list of a function and the name of the right side. More specifically, it is easy to
misread the “A” example as:

A = foo ((42, 92) + bar) (X);

when skimming through the code. By avoiding a space in a function, we avoid this misinterpretation.

Prefer Preincrement

Hard fast rule: Preincrement (++X) may be no slower than postincrement (X++) and could very well be a lot faster
than it. Use preincrementation whenever possible.

The semantics of postincrement include making a copy of the value being incremented, returning it, and then prein-
crementing the “work value”. For primitive types, this isn’t a big deal. But for iterators, it can be a huge issue (for
example, some iterators contains stack and set objects in them... copying an iterator could invoke the copy ctor’s of
these as well). In general, get in the habit of always using preincrement, and you won’t have a problem.

Namespace Indentation

In general, we strive to reduce indentation wherever possible. This is useful because we want code to fit into 80
columns without wrapping horribly, but also because it makes it easier to understand the code. To facilitate this and
avoid some insanely deep nesting on occasion, don’t indent namespaces. If it helps readability, feel free to add a
comment indicating what namespace is being closed by a }. For example:

namespace llvm {
namespace knowledge {
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/// This class represents things that Smith can have an intimate
/// understanding of and contains the data associated with it.
class Grokable {
...
public:

explicit Grokable() { ... }
virtual ~Grokable() = 0;

...

};

} // end namespace knowledge
} // end namespace llvm

Feel free to skip the closing comment when the namespace being closed is obvious for any reason. For example, the
outer-most namespace in a header file is rarely a source of confusion. But namespaces both anonymous and named in
source files that are being closed half way through the file probably could use clarification.

Anonymous Namespaces

After talking about namespaces in general, you may be wondering about anonymous namespaces in particular. Anony-
mous namespaces are a great language feature that tells the C++ compiler that the contents of the namespace are only
visible within the current translation unit, allowing more aggressive optimization and eliminating the possibility of
symbol name collisions. Anonymous namespaces are to C++ as “static” is to C functions and global variables. While
“static” is available in C++, anonymous namespaces are more general: they can make entire classes private to a
file.

The problem with anonymous namespaces is that they naturally want to encourage indentation of their body, and they
reduce locality of reference: if you see a random function definition in a C++ file, it is easy to see if it is marked static,
but seeing if it is in an anonymous namespace requires scanning a big chunk of the file.

Because of this, we have a simple guideline: make anonymous namespaces as small as possible, and only use them
for class declarations. For example, this is good:

namespace {
class StringSort {
...
public:

StringSort(...)
bool operator<(const char *RHS) const;

};
} // end anonymous namespace

static void runHelper() {
...

}

bool StringSort::operator<(const char *RHS) const {
...

}

This is bad:
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namespace {

class StringSort {
...
public:

StringSort(...)
bool operator<(const char *RHS) const;

};

void runHelper() {
...

}

bool StringSort::operator<(const char *RHS) const {
...

}

} // end anonymous namespace

This is bad specifically because if you’re looking at “runHelper” in the middle of a large C++ file, that you have
no immediate way to tell if it is local to the file. When it is marked static explicitly, this is immediately obvious. Also,
there is no reason to enclose the definition of “operator<” in the namespace just because it was declared there.

See Also

A lot of these comments and recommendations have been culled from other sources. Two particularly important books
for our work are:

1. Effective C++ by Scott Meyers. Also interesting and useful are “More Effective C++” and “Effective STL” by
the same author.

2. Large-Scale C++ Software Design by John Lakos

If you get some free time, and you haven’t read them: do so, you might learn something.

CommandLine 2.0 Library Manual

• Introduction

• Quick Start Guide

– Boolean Arguments

– Argument Aliases

– Selecting an alternative from a set of possibilities

– Named Alternatives

– Parsing a list of options

– Collecting options as a set of flags

– Adding freeform text to help output

– Grouping options into categories
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• Reference Guide

– Positional Arguments

* Specifying positional options with hyphens

* Determining absolute position with getPosition()

* The cl::ConsumeAfter modifier

– Internal vs External Storage

– Option Attributes

– Option Modifiers

* Hiding an option from -help output

* Controlling the number of occurrences required and allowed

* Controlling whether or not a value must be specified

* Controlling other formatting options

* Miscellaneous option modifiers

* Response files

– Top-Level Classes and Functions

* The cl::getRegisteredOptions function

* The cl::ParseCommandLineOptions function

* The cl::ParseEnvironmentOptions function

* The cl::SetVersionPrinter function

* The cl::opt class

* The cl::list class

* The cl::bits class

* The cl::alias class

* The cl::extrahelp class

* The cl::OptionCategory class

– Builtin parsers

• Extension Guide

– Writing a custom parser

– Exploiting external storage

– Dynamically adding command line options

Introduction

This document describes the CommandLine argument processing library. It will show you how to use it, and what
it can do. The CommandLine library uses a declarative approach to specifying the command line options that your
program takes. By default, these options declarations implicitly hold the value parsed for the option declared (of
course this can be changed).
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Although there are a lot of command line argument parsing libraries out there in many different languages, none of
them fit well with what I needed. By looking at the features and problems of other libraries, I designed the Comman-
dLine library to have the following features:

1. Speed: The CommandLine library is very quick and uses little resources. The parsing time of the library is
directly proportional to the number of arguments parsed, not the number of options recognized. Additionally,
command line argument values are captured transparently into user defined global variables, which can be
accessed like any other variable (and with the same performance).

2. Type Safe: As a user of CommandLine, you don’t have to worry about remembering the type of arguments that
you want (is it an int? a string? a bool? an enum?) and keep casting it around. Not only does this help prevent
error prone constructs, it also leads to dramatically cleaner source code.

3. No subclasses required: To use CommandLine, you instantiate variables that correspond to the arguments that
you would like to capture, you don’t subclass a parser. This means that you don’t have to write any boilerplate
code.

4. Globally accessible: Libraries can specify command line arguments that are automatically enabled in any tool
that links to the library. This is possible because the application doesn’t have to keep a list of arguments to pass
to the parser. This also makes supporting dynamically loaded options trivial.

5. Cleaner: CommandLine supports enum and other types directly, meaning that there is less error and more
security built into the library. You don’t have to worry about whether your integral command line argument
accidentally got assigned a value that is not valid for your enum type.

6. Powerful: The CommandLine library supports many different types of arguments, from simple boolean flags to
scalars arguments (strings, integers, enums, doubles), to lists of arguments. This is possible because Comman-
dLine is...

7. Extensible: It is very simple to add a new argument type to CommandLine. Simply specify the parser that you
want to use with the command line option when you declare it. Custom parsers are no problem.

8. Labor Saving: The CommandLine library cuts down on the amount of grunt work that you, the user, have to do.
For example, it automatically provides a -help option that shows the available command line options for your
tool. Additionally, it does most of the basic correctness checking for you.

9. Capable: The CommandLine library can handle lots of different forms of options often found in real programs.
For example, positional arguments, ls style grouping options (to allow processing ‘ls -lad‘ naturally), ld
style prefix options (to parse ‘-lmalloc -L/usr/lib‘), and interpreter style options.

This document will hopefully let you jump in and start using CommandLine in your utility quickly and painlessly.
Additionally it should be a simple reference manual to figure out how stuff works.

Quick Start Guide

This section of the manual runs through a simple CommandLine’ification of a basic compiler tool. This is intended
to show you how to jump into using the CommandLine library in your own program, and show you some of the cool
things it can do.

To start out, you need to include the CommandLine header file into your program:

#include "llvm/Support/CommandLine.h"

Additionally, you need to add this as the first line of your main program:

int main(int argc, char **argv) {
cl::ParseCommandLineOptions(argc, argv);
...

}
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... which actually parses the arguments and fills in the variable declarations.

Now that you are ready to support command line arguments, we need to tell the system which ones we want, and what
type of arguments they are. The CommandLine library uses a declarative syntax to model command line arguments
with the global variable declarations that capture the parsed values. This means that for every command line option
that you would like to support, there should be a global variable declaration to capture the result. For example, in a
compiler, we would like to support the Unix-standard ‘-o <filename>‘ option to specify where to put the output.
With the CommandLine library, this is represented like this:

cl::opt<string> OutputFilename("o", cl::desc("Specify output filename"), cl::value_
→˓desc("filename"));

This declares a global variable “OutputFilename” that is used to capture the result of the “o” argument (first
parameter). We specify that this is a simple scalar option by using the “cl::opt” template (as opposed to the
“cl::list” template), and tell the CommandLine library that the data type that we are parsing is a string.

The second and third parameters (which are optional) are used to specify what to output for the “-help” option. In
this case, we get a line that looks like this:

USAGE: compiler [options]

OPTIONS:
-help - display available options (-help-hidden for more)
-o <filename> - Specify output filename

Because we specified that the command line option should parse using the string data type, the variable declared is
automatically usable as a real string in all contexts that a normal C++ string object may be used. For example:

...
std::ofstream Output(OutputFilename.c_str());
if (Output.good()) ...
...

There are many different options that you can use to customize the command line option handling library, but the above
example shows the general interface to these options. The options can be specified in any order, and are specified with
helper functions like cl::desc(...), so there are no positional dependencies to remember. The available options are
discussed in detail in the Reference Guide.

Continuing the example, we would like to have our compiler take an input filename as well as an output filename, but
we do not want the input filename to be specified with a hyphen (ie, not -filename.c). To support this style of
argument, the CommandLine library allows for positional arguments to be specified for the program. These positional
arguments are filled with command line parameters that are not in option form. We use this feature like this:

cl::opt<string> InputFilename(cl::Positional, cl::desc("<input file>"), cl::init("-
→˓"));

This declaration indicates that the first positional argument should be treated as the input filename. Here we use the
cl::init option to specify an initial value for the command line option, which is used if the option is not specified (if
you do not specify a cl::init modifier for an option, then the default constructor for the data type is used to initialize
the value). Command line options default to being optional, so if we would like to require that the user always specify
an input filename, we would add the cl::Required flag, and we could eliminate the cl::init modifier, like this:

cl::opt<string> InputFilename(cl::Positional, cl::desc("<input file>"), cl::Required);

Again, the CommandLine library does not require the options to be specified in any particular order, so the above
declaration is equivalent to:
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cl::opt<string> InputFilename(cl::Positional, cl::Required, cl::desc("<input file>"));

By simply adding the cl::Required flag, the CommandLine library will automatically issue an error if the argument
is not specified, which shifts all of the command line option verification code out of your application into the library.
This is just one example of how using flags can alter the default behaviour of the library, on a per-option basis. By
adding one of the declarations above, the -help option synopsis is now extended to:

USAGE: compiler [options] <input file>

OPTIONS:
-help - display available options (-help-hidden for more)
-o <filename> - Specify output filename

... indicating that an input filename is expected.

Boolean Arguments

In addition to input and output filenames, we would like the compiler example to support three boolean flags: “-f”
to force writing binary output to a terminal, “--quiet” to enable quiet mode, and “-q” for backwards compatibility
with some of our users. We can support these by declaring options of boolean type like this:

cl::opt<bool> Force ("f", cl::desc("Enable binary output on terminals"));
cl::opt<bool> Quiet ("quiet", cl::desc("Don't print informational messages"));
cl::opt<bool> Quiet2("q", cl::desc("Don't print informational messages"), cl::Hidden);

This does what you would expect: it declares three boolean variables (“Force”, “Quiet”, and “Quiet2”) to rec-
ognize these options. Note that the “-q” option is specified with the “cl::Hidden” flag. This modifier prevents it from
being shown by the standard “-help” output (note that it is still shown in the “-help-hidden” output).

The CommandLine library uses a different parser for different data types. For example, in the string case, the argument
passed to the option is copied literally into the content of the string variable... we obviously cannot do that in the
boolean case, however, so we must use a smarter parser. In the case of the boolean parser, it allows no options (in
which case it assigns the value of true to the variable), or it allows the values “true” or “false” to be specified,
allowing any of the following inputs:

compiler -f # No value, 'Force' == true
compiler -f=true # Value specified, 'Force' == true
compiler -f=TRUE # Value specified, 'Force' == true
compiler -f=FALSE # Value specified, 'Force' == false

... you get the idea. The bool parser just turns the string values into boolean values, and rejects things like ‘compiler
-f=foo‘. Similarly, the float, double, and int parsers work like you would expect, using the ‘strtol‘ and ‘strtod‘
C library calls to parse the string value into the specified data type.

With the declarations above, “compiler -help” emits this:

USAGE: compiler [options] <input file>

OPTIONS:
-f - Enable binary output on terminals
-o - Override output filename
-quiet - Don't print informational messages
-help - display available options (-help-hidden for more)

and “compiler -help-hidden” prints this:
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USAGE: compiler [options] <input file>

OPTIONS:
-f - Enable binary output on terminals
-o - Override output filename
-q - Don't print informational messages
-quiet - Don't print informational messages
-help - display available options (-help-hidden for more)

This brief example has shown you how to use the ‘cl::opt‘ class to parse simple scalar command line arguments.
In addition to simple scalar arguments, the CommandLine library also provides primitives to support CommandLine
option aliases, and lists of options.

Argument Aliases

So far, the example works well, except for the fact that we need to check the quiet condition like this now:

...
if (!Quiet && !Quiet2) printInformationalMessage(...);

...

... which is a real pain! Instead of defining two values for the same condition, we can use the “cl::alias” class to make
the “-q” option an alias for the “-quiet” option, instead of providing a value itself:

cl::opt<bool> Force ("f", cl::desc("Overwrite output files"));
cl::opt<bool> Quiet ("quiet", cl::desc("Don't print informational messages"));
cl::alias QuietA("q", cl::desc("Alias for -quiet"), cl::aliasopt(Quiet));

The third line (which is the only one we modified from above) defines a “-q” alias that updates the “Quiet” variable
(as specified by the cl::aliasopt modifier) whenever it is specified. Because aliases do not hold state, the only thing
the program has to query is the Quiet variable now. Another nice feature of aliases is that they automatically hide
themselves from the -help output (although, again, they are still visible in the -help-hidden output).

Now the application code can simply use:

...
if (!Quiet) printInformationalMessage(...);

...

... which is much nicer! The “cl::alias” can be used to specify an alternative name for any variable type, and has many
uses.

Selecting an alternative from a set of possibilities

So far we have seen how the CommandLine library handles builtin types like std::string, bool and int, but
how does it handle things it doesn’t know about, like enums or ‘int*‘s?

The answer is that it uses a table-driven generic parser (unless you specify your own parser, as described in the
Extension Guide). This parser maps literal strings to whatever type is required, and requires you to tell it what this
mapping should be.

Let’s say that we would like to add four optimization levels to our optimizer, using the standard flags “-g”, “-O0”,
“-O1”, and “-O2”. We could easily implement this with boolean options like above, but there are several problems
with this strategy:

810 Chapter 3. Programming Documentation



LLVM Documentation, Release 3.9

1. A user could specify more than one of the options at a time, for example, “compiler -O3 -O2”. The
CommandLine library would not be able to catch this erroneous input for us.

2. We would have to test 4 different variables to see which ones are set.

3. This doesn’t map to the numeric levels that we want... so we cannot easily see if some level >= “-O1” is
enabled.

To cope with these problems, we can use an enum value, and have the CommandLine library fill it in with the appro-
priate level directly, which is used like this:

enum OptLevel {
g, O1, O2, O3

};

cl::opt<OptLevel> OptimizationLevel(cl::desc("Choose optimization level:"),
cl::values(
clEnumVal(g , "No optimizations, enable debugging"),
clEnumVal(O1, "Enable trivial optimizations"),
clEnumVal(O2, "Enable default optimizations"),
clEnumVal(O3, "Enable expensive optimizations"),

clEnumValEnd));

...
if (OptimizationLevel >= O2) doPartialRedundancyElimination(...);

...

This declaration defines a variable “OptimizationLevel” of the “OptLevel” enum type. This variable can be
assigned any of the values that are listed in the declaration (Note that the declaration list must be terminated with the
“clEnumValEnd” argument!). The CommandLine library enforces that the user can only specify one of the options,
and it ensure that only valid enum values can be specified. The “clEnumVal” macros ensure that the command line
arguments matched the enum values. With this option added, our help output now is:

USAGE: compiler [options] <input file>

OPTIONS:
Choose optimization level:
-g - No optimizations, enable debugging
-O1 - Enable trivial optimizations
-O2 - Enable default optimizations
-O3 - Enable expensive optimizations

-f - Enable binary output on terminals
-help - display available options (-help-hidden for more)
-o <filename> - Specify output filename
-quiet - Don't print informational messages

In this case, it is sort of awkward that flag names correspond directly to enum names, because we probably don’t want
a enum definition named “g” in our program. Because of this, we can alternatively write this example like this:

enum OptLevel {
Debug, O1, O2, O3

};

cl::opt<OptLevel> OptimizationLevel(cl::desc("Choose optimization level:"),
cl::values(
clEnumValN(Debug, "g", "No optimizations, enable debugging"),
clEnumVal(O1 , "Enable trivial optimizations"),
clEnumVal(O2 , "Enable default optimizations"),
clEnumVal(O3 , "Enable expensive optimizations"),
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clEnumValEnd));

...
if (OptimizationLevel == Debug) outputDebugInfo(...);

...

By using the “clEnumValN” macro instead of “clEnumVal”, we can directly specify the name that the flag should
get. In general a direct mapping is nice, but sometimes you can’t or don’t want to preserve the mapping, which is
when you would use it.

Named Alternatives

Another useful argument form is a named alternative style. We shall use this style in our compiler to specify different
debug levels that can be used. Instead of each debug level being its own switch, we want to support the following
options, of which only one can be specified at a time: “--debug-level=none”, “--debug-level=quick”,
“--debug-level=detailed”. To do this, we use the exact same format as our optimization level flags, but we
also specify an option name. For this case, the code looks like this:

enum DebugLev {
nodebuginfo, quick, detailed

};

// Enable Debug Options to be specified on the command line
cl::opt<DebugLev> DebugLevel("debug_level", cl::desc("Set the debugging level:"),

cl::values(
clEnumValN(nodebuginfo, "none", "disable debug information"),
clEnumVal(quick, "enable quick debug information"),
clEnumVal(detailed, "enable detailed debug information"),

clEnumValEnd));

This definition defines an enumerated command line variable of type “enum DebugLev”, which works exactly the
same way as before. The difference here is just the interface exposed to the user of your program and the help output
by the “-help” option:

USAGE: compiler [options] <input file>

OPTIONS:
Choose optimization level:
-g - No optimizations, enable debugging
-O1 - Enable trivial optimizations
-O2 - Enable default optimizations
-O3 - Enable expensive optimizations

-debug_level - Set the debugging level:
=none - disable debug information
=quick - enable quick debug information
=detailed - enable detailed debug information

-f - Enable binary output on terminals
-help - display available options (-help-hidden for more)
-o <filename> - Specify output filename
-quiet - Don't print informational messages

Again, the only structural difference between the debug level declaration and the optimization level declaration is
that the debug level declaration includes an option name ("debug_level"), which automatically changes how the
library processes the argument. The CommandLine library supports both forms so that you can choose the form most
appropriate for your application.
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Parsing a list of options

Now that we have the standard run-of-the-mill argument types out of the way, lets get a little wild and crazy. Lets
say that we want our optimizer to accept a list of optimizations to perform, allowing duplicates. For example, we
might want to run: “compiler -dce -constprop -inline -dce -strip”. In this case, the order of the
arguments and the number of appearances is very important. This is what the “cl::list” template is for. First, start
by defining an enum of the optimizations that you would like to perform:

enum Opts {
// 'inline' is a C++ keyword, so name it 'inlining'
dce, constprop, inlining, strip

};

Then define your “cl::list” variable:

cl::list<Opts> OptimizationList(cl::desc("Available Optimizations:"),
cl::values(
clEnumVal(dce , "Dead Code Elimination"),
clEnumVal(constprop , "Constant Propagation"),

clEnumValN(inlining, "inline", "Procedure Integration"),
clEnumVal(strip , "Strip Symbols"),

clEnumValEnd));

This defines a variable that is conceptually of the type “std::vector<enum Opts>”. Thus, you can access it
with standard vector methods:

for (unsigned i = 0; i != OptimizationList.size(); ++i)
switch (OptimizationList[i])

...

... to iterate through the list of options specified.

Note that the “cl::list” template is completely general and may be used with any data types or other arguments
that you can use with the “cl::opt” template. One especially useful way to use a list is to capture all of the positional
arguments together if there may be more than one specified. In the case of a linker, for example, the linker takes several
‘.o‘ files, and needs to capture them into a list. This is naturally specified as:

...
cl::list<std::string> InputFilenames(cl::Positional, cl::desc("<Input files>"),
→˓cl::OneOrMore);
...

This variable works just like a “vector<string>” object. As such, accessing the list is simple, just like above. In
this example, we used the cl::OneOrMore modifier to inform the CommandLine library that it is an error if the user
does not specify any .o files on our command line. Again, this just reduces the amount of checking we have to do.

Collecting options as a set of flags

Instead of collecting sets of options in a list, it is also possible to gather information for enum values in a bit vector.
The representation used by the cl::bits class is an unsigned integer. An enum value is represented by a 0/1 in the
enum’s ordinal value bit position. 1 indicating that the enum was specified, 0 otherwise. As each specified value is
parsed, the resulting enum’s bit is set in the option’s bit vector:

bits |= 1 << (unsigned)enum;

Options that are specified multiple times are redundant. Any instances after the first are discarded.
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Reworking the above list example, we could replace cl::list with cl::bits:

cl::bits<Opts> OptimizationBits(cl::desc("Available Optimizations:"),
cl::values(
clEnumVal(dce , "Dead Code Elimination"),
clEnumVal(constprop , "Constant Propagation"),

clEnumValN(inlining, "inline", "Procedure Integration"),
clEnumVal(strip , "Strip Symbols"),

clEnumValEnd));

To test to see if constprop was specified, we can use the cl:bits::isSet function:

if (OptimizationBits.isSet(constprop)) {
...

}

It’s also possible to get the raw bit vector using the cl::bits::getBits function:

unsigned bits = OptimizationBits.getBits();

Finally, if external storage is used, then the location specified must be of type unsigned. In all other ways a cl::bits
option is equivalent to a cl::list option.

Adding freeform text to help output

As our program grows and becomes more mature, we may decide to put summary information about what it does
into the help output. The help output is styled to look similar to a Unix man page, providing concise information
about a program. Unix man pages, however often have a description about what the program does. To add this
to your CommandLine program, simply pass a third argument to the cl::ParseCommandLineOptions call in main.
This additional argument is then printed as the overview information for your program, allowing you to include any
additional information that you want. For example:

int main(int argc, char **argv) {
cl::ParseCommandLineOptions(argc, argv, " CommandLine compiler example\n\n"

" This program blah blah blah...\n");
...

}

would yield the help output:

**OVERVIEW: CommandLine compiler example

This program blah blah blah...**

USAGE: compiler [options] <input file>

OPTIONS:
...
-help - display available options (-help-hidden for more)
-o <filename> - Specify output filename

Grouping options into categories

If our program has a large number of options it may become difficult for users of our tool to navigate the output
of -help. To alleviate this problem we can put our options into categories. This can be done by declaring option
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categories (cl::OptionCategory objects) and then placing our options into these categories using the cl::cat option
attribute. For example:

cl::OptionCategory StageSelectionCat("Stage Selection Options",
"These control which stages are run.");

cl::opt<bool> Preprocessor("E",cl::desc("Run preprocessor stage."),
cl::cat(StageSelectionCat));

cl::opt<bool> NoLink("c",cl::desc("Run all stages except linking."),
cl::cat(StageSelectionCat));

The output of -help will become categorized if an option category is declared. The output looks something like

OVERVIEW: This is a small program to demo the LLVM CommandLine API
USAGE: Sample [options]

OPTIONS:

General options:

-help - Display available options (-help-hidden for more)
-help-list - Display list of available options (-help-list-hidden for

→˓more)

Stage Selection Options:
These control which stages are run.

-E - Run preprocessor stage.
-c - Run all stages except linking.

In addition to the behaviour of -help changing when an option category is declared, the command line option
-help-list becomes visible which will print the command line options as uncategorized list.

Note that Options that are not explicitly categorized will be placed in the cl::GeneralCategory category.

Reference Guide

Now that you know the basics of how to use the CommandLine library, this section will give you the detailed infor-
mation you need to tune how command line options work, as well as information on more “advanced” command line
option processing capabilities.

Positional Arguments

Positional arguments are those arguments that are not named, and are not specified with a hyphen. Positional arguments
should be used when an option is specified by its position alone. For example, the standard Unix grep tool takes a
regular expression argument, and an optional filename to search through (which defaults to standard input if a filename
is not specified). Using the CommandLine library, this would be specified as:

cl::opt<string> Regex (cl::Positional, cl::desc("<regular expression>"),
→˓cl::Required);
cl::opt<string> Filename(cl::Positional, cl::desc("<input file>"), cl::init("-"));

Given these two option declarations, the -help output for our grep replacement would look like this:
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USAGE: spiffygrep [options] <regular expression> <input file>

OPTIONS:
-help - display available options (-help-hidden for more)

... and the resultant program could be used just like the standard grep tool.

Positional arguments are sorted by their order of construction. This means that command line options will be ordered
according to how they are listed in a .cpp file, but will not have an ordering defined if the positional arguments are
defined in multiple .cpp files. The fix for this problem is simply to define all of your positional arguments in one .cpp
file.

Specifying positional options with hyphens

Sometimes you may want to specify a value to your positional argument that starts with a hyphen (for example,
searching for ‘-foo‘ in a file). At first, you will have trouble doing this, because it will try to find an argument named
‘-foo‘, and will fail (and single quotes will not save you). Note that the system grep has the same problem:

$ spiffygrep '-foo' test.txt
Unknown command line argument '-foo'. Try: spiffygrep -help'

$ grep '-foo' test.txt
grep: illegal option -- f
grep: illegal option -- o
grep: illegal option -- o
Usage: grep -hblcnsviw pattern file . . .

The solution for this problem is the same for both your tool and the system version: use the ‘--‘ marker. When the
user specifies ‘--‘ on the command line, it is telling the program that all options after the ‘--‘ should be treated as
positional arguments, not options. Thus, we can use it like this:

$ spiffygrep -- -foo test.txt
...output...

Determining absolute position with getPosition()

Sometimes an option can affect or modify the meaning of another option. For example, consider gcc‘s -x LANG
option. This tells gcc to ignore the suffix of subsequent positional arguments and force the file to be interpreted as if
it contained source code in language LANG. In order to handle this properly, you need to know the absolute position of
each argument, especially those in lists, so their interaction(s) can be applied correctly. This is also useful for options
like -llibname which is actually a positional argument that starts with a dash.

So, generally, the problem is that you have two cl::list variables that interact in some way. To ensure the correct
interaction, you can use the cl::list::getPosition(optnum) method. This method returns the absolute
position (as found on the command line) of the optnum item in the cl::list.

The idiom for usage is like this:

static cl::list<std::string> Files(cl::Positional, cl::OneOrMore);
static cl::list<std::string> Libraries("l", cl::ZeroOrMore);

int main(int argc, char**argv) {
// ...
std::vector<std::string>::iterator fileIt = Files.begin();
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std::vector<std::string>::iterator libIt = Libraries.begin();
unsigned libPos = 0, filePos = 0;
while ( 1 ) {
if ( libIt != Libraries.end() )

libPos = Libraries.getPosition( libIt - Libraries.begin() );
else

libPos = 0;
if ( fileIt != Files.end() )

filePos = Files.getPosition( fileIt - Files.begin() );
else

filePos = 0;

if ( filePos != 0 && (libPos == 0 || filePos < libPos) ) {
// Source File Is next
++fileIt;

}
else if ( libPos != 0 && (filePos == 0 || libPos < filePos) ) {

// Library is next
++libIt;

}
else

break; // we're done with the list
}

}

Note that, for compatibility reasons, the cl::opt also supports an unsigned getPosition() option that will
provide the absolute position of that option. You can apply the same approach as above with a cl::opt and a
cl::list option as you can with two lists.

The cl::ConsumeAfter modifier

The cl::ConsumeAfter formatting option is used to construct programs that use “interpreter style” option pro-
cessing. With this style of option processing, all arguments specified after the last positional argument are treated as
special interpreter arguments that are not interpreted by the command line argument.

As a concrete example, lets say we are developing a replacement for the standard Unix Bourne shell (/bin/sh).
To run /bin/sh, first you specify options to the shell itself (like -x which turns on trace output), then you specify
the name of the script to run, then you specify arguments to the script. These arguments to the script are parsed
by the Bourne shell command line option processor, but are not interpreted as options to the shell itself. Using the
CommandLine library, we would specify this as:

cl::opt<string> Script(cl::Positional, cl::desc("<input script>"), cl::init("-"));
cl::list<string> Argv(cl::ConsumeAfter, cl::desc("<program arguments>..."));
cl::opt<bool> Trace("x", cl::desc("Enable trace output"));

which automatically provides the help output:

USAGE: spiffysh [options] <input script> <program arguments>...

OPTIONS:
-help - display available options (-help-hidden for more)
-x - Enable trace output

At runtime, if we run our new shell replacement as `spiffysh -x test.sh -a -x -y bar‘, the Trace
variable will be set to true, the Script variable will be set to “test.sh”, and the Argv list will contain ["-a",
"-x", "-y", "bar"], because they were specified after the last positional argument (which is the script name).
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There are several limitations to when cl::ConsumeAfter options can be specified. For example, only one
cl::ConsumeAfter can be specified per program, there must be at least one positional argument specified, there
must not be any cl::list positional arguments, and the cl::ConsumeAfter option should be a cl::list option.

Internal vs External Storage

By default, all command line options automatically hold the value that they parse from the command line. This is very
convenient in the common case, especially when combined with the ability to define command line options in the files
that use them. This is called the internal storage model.

Sometimes, however, it is nice to separate the command line option processing code from the storage of the value
parsed. For example, lets say that we have a ‘-debug‘ option that we would like to use to enable debug information
across the entire body of our program. In this case, the boolean value controlling the debug code should be globally
accessible (in a header file, for example) yet the command line option processing code should not be exposed to all of
these clients (requiring lots of .cpp files to #include CommandLine.h).

To do this, set up your .h file with your option, like this for example:

// DebugFlag.h - Get access to the '-debug' command line option
//

// DebugFlag - This boolean is set to true if the '-debug' command line option
// is specified. This should probably not be referenced directly, instead, use
// the DEBUG macro below.
//
extern bool DebugFlag;

// DEBUG macro - This macro should be used by code to emit debug information.
// In the '-debug' option is specified on the command line, and if this is a
// debug build, then the code specified as the option to the macro will be
// executed. Otherwise it will not be.
#ifdef NDEBUG
#define DEBUG(X)
#else
#define DEBUG(X) do { if (DebugFlag) { X; } } while (0)
#endif

This allows clients to blissfully use the DEBUG() macro, or the DebugFlag explicitly if they want to. Now we just
need to be able to set the DebugFlag boolean when the option is set. To do this, we pass an additional argument to
our command line argument processor, and we specify where to fill in with the cl::location attribute:

bool DebugFlag; // the actual value
static cl::opt<bool, true> // The parser
Debug("debug", cl::desc("Enable debug output"), cl::Hidden, cl::location(DebugFlag));

In the above example, we specify “true” as the second argument to the cl::opt template, indicating that the tem-
plate should not maintain a copy of the value itself. In addition to this, we specify the cl::location attribute, so that
DebugFlag is automatically set.

Option Attributes

This section describes the basic attributes that you can specify on options.

• The option name attribute (which is required for all options, except positional options) specifies what the option
name is. This option is specified in simple double quotes:
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cl::opt<bool> Quiet("quiet");

• The cl::desc attribute specifies a description for the option to be shown in the -help output for the program.
This attribute supports multi-line descriptions with lines separated by ‘n’.

• The cl::value_desc attribute specifies a string that can be used to fine tune the -help output for a command
line option. Look here for an example.

• The cl::init attribute specifies an initial value for a scalar option. If this attribute is not specified then the
command line option value defaults to the value created by the default constructor for the type.

Warning: If you specify both cl::init and cl::location for an option, you must specify cl::location first,
so that when the command-line parser sees cl::init, it knows where to put the initial value. (You will get an
error at runtime if you don’t put them in the right order.)

• The cl::location attribute where to store the value for a parsed command line option if using external storage.
See the section on Internal vs External Storage for more information.

• The cl::aliasopt attribute specifies which option a cl::alias option is an alias for.

• The cl::values attribute specifies the string-to-value mapping to be used by the generic parser. It takes a clEnum-
ValEnd terminated list of (option, value, description) triplets that specify the option name, the value mapped
to, and the description shown in the -help for the tool. Because the generic parser is used most frequently with
enum values, two macros are often useful:

1. The clEnumVal macro is used as a nice simple way to specify a triplet for an enum. This macro automati-
cally makes the option name be the same as the enum name. The first option to the macro is the enum, the
second is the description for the command line option.

2. The clEnumValN macro is used to specify macro options where the option name doesn’t equal the enum
name. For this macro, the first argument is the enum value, the second is the flag name, and the second is
the description.

You will get a compile time error if you try to use cl::values with a parser that does not support it.

• The cl::multi_val attribute specifies that this option takes has multiple values (example: -sectalign
segname sectname sectvalue). This attribute takes one unsigned argument - the number of values
for the option. This attribute is valid only on cl::list options (and will fail with compile error if you try to
use it with other option types). It is allowed to use all of the usual modifiers on multi-valued options (besides
cl::ValueDisallowed, obviously).

• The cl::cat attribute specifies the option category that the option belongs to. The category should be a
cl::OptionCategory object.

Option Modifiers

Option modifiers are the flags and expressions that you pass into the constructors for cl::opt and cl::list. These modi-
fiers give you the ability to tweak how options are parsed and how -help output is generated to fit your application
well.

These options fall into five main categories:

1. Hiding an option from -help output

2. Controlling the number of occurrences required and allowed

3. Controlling whether or not a value must be specified
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4. Controlling other formatting options

5. Miscellaneous option modifiers

It is not possible to specify two options from the same category (you’ll get a runtime error) to a single option, except
for options in the miscellaneous category. The CommandLine library specifies defaults for all of these settings that are
the most useful in practice and the most common, which mean that you usually shouldn’t have to worry about these.

Hiding an option from -help output

The cl::NotHidden, cl::Hidden, and cl::ReallyHidden modifiers are used to control whether or not an
option appears in the -help and -help-hidden output for the compiled program:

• The cl::NotHidden modifier (which is the default for cl::opt and cl::list options) indicates the option is to
appear in both help listings.

• The cl::Hidden modifier (which is the default for cl::alias options) indicates that the option should not appear
in the -help output, but should appear in the -help-hidden output.

• The cl::ReallyHidden modifier indicates that the option should not appear in any help output.

Controlling the number of occurrences required and allowed

This group of options is used to control how many time an option is allowed (or required) to be specified on the
command line of your program. Specifying a value for this setting allows the CommandLine library to do error
checking for you.

The allowed values for this option group are:

• The cl::Optional modifier (which is the default for the cl::opt and cl::alias classes) indicates that your program
will allow either zero or one occurrence of the option to be specified.

• The cl::ZeroOrMore modifier (which is the default for the cl::list class) indicates that your program will allow
the option to be specified zero or more times.

• The cl::Required modifier indicates that the specified option must be specified exactly one time.

• The cl::OneOrMore modifier indicates that the option must be specified at least one time.

• The cl::ConsumeAfter modifier is described in the Positional arguments section.

If an option is not specified, then the value of the option is equal to the value specified by the cl::init attribute. If the
cl::init attribute is not specified, the option value is initialized with the default constructor for the data type.

If an option is specified multiple times for an option of the cl::opt class, only the last value will be retained.

Controlling whether or not a value must be specified

This group of options is used to control whether or not the option allows a value to be present. In the case of the
CommandLine library, a value is either specified with an equal sign (e.g. ‘-index-depth=17‘) or as a trailing
string (e.g. ‘-o a.out‘).

The allowed values for this option group are:

• The cl::ValueOptional modifier (which is the default for bool typed options) specifies that it is acceptable to
have a value, or not. A boolean argument can be enabled just by appearing on the command line, or it can have an
explicit ‘-foo=true‘. If an option is specified with this mode, it is illegal for the value to be provided without
the equal sign. Therefore ‘-foo true‘ is illegal. To get this behavior, you must use the cl::ValueRequired
modifier.
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• The cl::ValueRequired modifier (which is the default for all other types except for unnamed alternatives using
the generic parser) specifies that a value must be provided. This mode informs the command line library that
if an option is not provides with an equal sign, that the next argument provided must be the value. This allows
things like ‘-o a.out‘ to work.

• The cl::ValueDisallowed modifier (which is the default for unnamed alternatives using the generic parser)
indicates that it is a runtime error for the user to specify a value. This can be provided to disallow users from
providing options to boolean options (like ‘-foo=true‘).

In general, the default values for this option group work just like you would want them to. As mentioned above,
you can specify the cl::ValueDisallowed modifier to a boolean argument to restrict your command line parser. These
options are mostly useful when extending the library.

Controlling other formatting options

The formatting option group is used to specify that the command line option has special abilities and is otherwise
different from other command line arguments. As usual, you can only specify one of these arguments at most.

• The cl::NormalFormatting modifier (which is the default all options) specifies that this option is “normal”.

• The cl::Positional modifier specifies that this is a positional argument that does not have a command line option
associated with it. See the Positional Arguments section for more information.

• The cl::ConsumeAfter modifier specifies that this option is used to capture “interpreter style” arguments. See
this section for more information.

• The cl::Prefix modifier specifies that this option prefixes its value. With ‘Prefix’ options, the equal sign does
not separate the value from the option name specified. Instead, the value is everything after the prefix, including
any equal sign if present. This is useful for processing odd arguments like -lmalloc and -L/usr/lib in a
linker tool or -DNAME=value in a compiler tool. Here, the ‘l‘, ‘D‘ and ‘L‘ options are normal string (or list)
options, that have the cl::Prefix modifier added to allow the CommandLine library to recognize them. Note that
cl::Prefix options must not have the cl::ValueDisallowed modifier specified.

• The cl::Grouping modifier is used to implement Unix-style tools (like ls) that have lots of single letter argu-
ments, but only require a single dash. For example, the ‘ls -labF‘ command actually enables four different
options, all of which are single letters. Note that cl::Grouping options cannot have values.

The CommandLine library does not restrict how you use the cl::Prefix or cl::Grouping modifiers, but it is possible
to specify ambiguous argument settings. Thus, it is possible to have multiple letter options that are prefix or grouping
options, and they will still work as designed.

To do this, the CommandLine library uses a greedy algorithm to parse the input option into (potentially multiple)
prefix and grouping options. The strategy basically looks like this:

parse(string OrigInput) {

1. string input = OrigInput;
2. if (isOption(input)) return getOption(input).parse(); // Normal option
3. while (!isOption(input) && !input.empty()) input.pop_back(); // Remove the last
→˓letter
4. if (input.empty()) return error(); // No matching option
5. if (getOption(input).isPrefix())

return getOption(input).parse(input);
6. while (!input.empty()) { // Must be grouping options

getOption(input).parse();
OrigInput.erase(OrigInput.begin(), OrigInput.begin()+input.length());
input = OrigInput;
while (!isOption(input) && !input.empty()) input.pop_back();

}
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7. if (!OrigInput.empty()) error();

}

Miscellaneous option modifiers

The miscellaneous option modifiers are the only flags where you can specify more than one flag from the set: they are
not mutually exclusive. These flags specify boolean properties that modify the option.

• The cl::CommaSeparated modifier indicates that any commas specified for an option’s value should be used to
split the value up into multiple values for the option. For example, these two options are equivalent when
cl::CommaSeparated is specified: “-foo=a -foo=b -foo=c” and “-foo=a,b,c”. This option
only makes sense to be used in a case where the option is allowed to accept one or more values (i.e. it is a
cl::list option).

• The cl::PositionalEatsArgs modifier (which only applies to positional arguments, and only makes sense for
lists) indicates that positional argument should consume any strings after it (including strings that start with
a “-”) up until another recognized positional argument. For example, if you have two “eating” positional ar-
guments, “pos1” and “pos2”, the string “-pos1 -foo -bar baz -pos2 -bork” would cause the
“-foo -bar -baz” strings to be applied to the “-pos1” option and the “-bork” string to be applied to the
“-pos2” option.

• The cl::Sink modifier is used to handle unknown options. If there is at least one option with cl::Sink
modifier specified, the parser passes unrecognized option strings to it as values instead of signaling an error. As
with cl::CommaSeparated, this modifier only makes sense with a cl::list option.

So far, these are the only three miscellaneous option modifiers.

Response files

Some systems, such as certain variants of Microsoft Windows and some older Unices have a relatively low limit on
command-line length. It is therefore customary to use the so-called ‘response files’ to circumvent this restriction.
These files are mentioned on the command-line (using the “@file”) syntax. The program reads these files and inserts
the contents into argv, thereby working around the command-line length limits. Response files are enabled by an
optional fourth argument to cl::ParseEnvironmentOptions and cl::ParseCommandLineOptions.

Top-Level Classes and Functions

Despite all of the built-in flexibility, the CommandLine option library really only consists of one function
cl::ParseCommandLineOptions) and three main classes: cl::opt, cl::list, and cl::alias. This section describes these
three classes in detail.

The cl::getRegisteredOptions function

The cl::getRegisteredOptions function is designed to give a programmer access to declared non-
positional command line options so that how they appear in -help can be modified prior to calling
cl::ParseCommandLineOptions. Note this method should not be called during any static initialisation because it
cannot be guaranteed that all options will have been initialised. Hence it should be called from main.

This function can be used to gain access to options declared in libraries that the tool writter may not have direct access
to.
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The function retrieves a StringMap that maps the option string (e.g. -help) to an Option*.

Here is an example of how the function could be used:

using namespace llvm;
int main(int argc, char **argv) {
cl::OptionCategory AnotherCategory("Some options");

StringMap<cl::Option*> Map;
cl::getRegisteredOptions(Map);

//Unhide useful option and put it in a different category
assert(Map.count("print-all-options") > 0);
Map["print-all-options"]->setHiddenFlag(cl::NotHidden);
Map["print-all-options"]->setCategory(AnotherCategory);

//Hide an option we don't want to see
assert(Map.count("enable-no-infs-fp-math") > 0);
Map["enable-no-infs-fp-math"]->setHiddenFlag(cl::Hidden);

//Change --version to --show-version
assert(Map.count("version") > 0);
Map["version"]->setArgStr("show-version");

//Change --help description
assert(Map.count("help") > 0);
Map["help"]->setDescription("Shows help");

cl::ParseCommandLineOptions(argc, argv, "This is a small program to demo the LLVM
→˓CommandLine API");
...

}

The cl::ParseCommandLineOptions function

The cl::ParseCommandLineOptions function is designed to be called directly from main, and is used to fill
in the values of all of the command line option variables once argc and argv are available.

The cl::ParseCommandLineOptions function requires two parameters (argc and argv), but may also take
an optional third parameter which holds additional extra text to emit when the -help option is invoked, and a fourth
boolean parameter that enables response files.

The cl::ParseEnvironmentOptions function

The cl::ParseEnvironmentOptions function has mostly the same effects as cl::ParseCommandLineOptions,
except that it is designed to take values for options from an environment variable, for those cases in which reading
the command line is not convenient or desired. It fills in the values of all the command line option variables just like
cl::ParseCommandLineOptions does.

It takes four parameters: the name of the program (since argv may not be available, it can’t just look in argv[0]),
the name of the environment variable to examine, the optional additional extra text to emit when the -help option is
invoked, and the boolean switch that controls whether response files should be read.

cl::ParseEnvironmentOptions will break the environment variable’s value up into words and then pro-
cess them using cl::ParseCommandLineOptions. Note: Currently cl::ParseEnvironmentOptions does not
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support quoting, so an environment variable containing -option "foo bar" will be parsed as three words,
-option, "foo, and bar", which is different from what you would get from the shell with the same input.

The cl::SetVersionPrinter function

The cl::SetVersionPrinter function is designed to be called directly from main and before
cl::ParseCommandLineOptions. Its use is optional. It simply arranges for a function to be called in re-
sponse to the --version option instead of having the CommandLine library print out the usual version string for
LLVM. This is useful for programs that are not part of LLVM but wish to use the CommandLine facilities. Such
programs should just define a small function that takes no arguments and returns void and that prints out whatever
version information is appropriate for the program. Pass the address of that function to cl::SetVersionPrinter
to arrange for it to be called when the --version option is given by the user.

The cl::opt class

The cl::opt class is the class used to represent scalar command line options, and is the one used most of the time.
It is a templated class which can take up to three arguments (all except for the first have default values though):

namespace cl {
template <class DataType, bool ExternalStorage = false,

class ParserClass = parser<DataType> >
class opt;

}

The first template argument specifies what underlying data type the command line argument is, and is used to select
a default parser implementation. The second template argument is used to specify whether the option should contain
the storage for the option (the default) or whether external storage should be used to contain the value parsed for the
option (see Internal vs External Storage for more information).

The third template argument specifies which parser to use. The default value selects an instantiation of the parser
class based on the underlying data type of the option. In general, this default works well for most applications, so this
option is only used when using a custom parser.

The cl::list class

The cl::list class is the class used to represent a list of command line options. It too is a templated class which
can take up to three arguments:

namespace cl {
template <class DataType, class Storage = bool,

class ParserClass = parser<DataType> >
class list;

}

This class works the exact same as the cl::opt class, except that the second argument is the type of the external storage,
not a boolean value. For this class, the marker type ‘bool‘ is used to indicate that internal storage should be used.

The cl::bits class

The cl::bits class is the class used to represent a list of command line options in the form of a bit vector. It is also
a templated class which can take up to three arguments:
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namespace cl {
template <class DataType, class Storage = bool,

class ParserClass = parser<DataType> >
class bits;

}

This class works the exact same as the cl::list class, except that the second argument must be of type unsigned if
external storage is used.

The cl::alias class

The cl::alias class is a nontemplated class that is used to form aliases for other arguments.

namespace cl {
class alias;

}

The cl::aliasopt attribute should be used to specify which option this is an alias for. Alias arguments default to being
cl::Hidden, and use the aliased options parser to do the conversion from string to data.

The cl::extrahelp class

The cl::extrahelp class is a nontemplated class that allows extra help text to be printed out for the -help option.

namespace cl {
struct extrahelp;

}

To use the extrahelp, simply construct one with a const char* parameter to the constructor. The text passed to the
constructor will be printed at the bottom of the help message, verbatim. Note that multiple cl::extrahelp can be
used, but this practice is discouraged. If your tool needs to print additional help information, put all that help into a
single cl::extrahelp instance.

For example:

cl::extrahelp("\nADDITIONAL HELP:\n\n This is the extra help\n");

The cl::OptionCategory class

The cl::OptionCategory class is a simple class for declaring option categories.

namespace cl {
class OptionCategory;

}

An option category must have a name and optionally a description which are passed to the constructor as const
char*.

Note that declaring an option category and associating it with an option before parsing options (e.g. statically) will
change the output of -help from uncategorized to categorized. If an option category is declared but not associated
with an option then it will be hidden from the output of -help but will be shown in the output of -help-hidden.
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Builtin parsers

Parsers control how the string value taken from the command line is translated into a typed value, suitable for use in a
C++ program. By default, the CommandLine library uses an instance of parser<type> if the command line option
specifies that it uses values of type ‘type‘. Because of this, custom option processing is specified with specializations
of the ‘parser‘ class.

The CommandLine library provides the following builtin parser specializations, which are sufficient for most applica-
tions. It can, however, also be extended to work with new data types and new ways of interpreting the same data. See
the Writing a Custom Parser for more details on this type of library extension.

• The generic parser<t> parser can be used to map strings values to any data type, through the use of the
cl::values property, which specifies the mapping information. The most common use of this parser is for parsing
enum values, which allows you to use the CommandLine library for all of the error checking to make sure that
only valid enum values are specified (as opposed to accepting arbitrary strings). Despite this, however, the
generic parser class can be used for any data type.

• The parser<bool> specialization is used to convert boolean strings to a boolean value. Currently accepted
strings are “true”, “TRUE”, “True”, “1”, “false”, “FALSE”, “False”, and “0”.

• The parser<boolOrDefault> specialization is used for cases where the value is boolean, but we also need
to know whether the option was specified at all. boolOrDefault is an enum with 3 values, BOU_UNSET,
BOU_TRUE and BOU_FALSE. This parser accepts the same strings as ‘‘parser<bool>‘‘.

• The parser<string> specialization simply stores the parsed string into the string value specified. No conversion
or modification of the data is performed.

• The parser<int> specialization uses the C strtol function to parse the string input. As such, it will accept
a decimal number (with an optional ‘+’ or ‘-‘ prefix) which must start with a non-zero digit. It accepts octal
numbers, which are identified with a ‘0‘ prefix digit, and hexadecimal numbers with a prefix of ‘0x‘ or ‘0X‘.

• The parser<double> and parser<float> specializations use the standard C strtod function to convert float-
ing point strings into floating point values. As such, a broad range of string formats is supported, including
exponential notation (ex: 1.7e15) and properly supports locales.

Extension Guide

Although the CommandLine library has a lot of functionality built into it already (as discussed previously), one of its
true strengths lie in its extensibility. This section discusses how the CommandLine library works under the covers and
illustrates how to do some simple, common, extensions.

Writing a custom parser

One of the simplest and most common extensions is the use of a custom parser. As discussed previously, parsers
are the portion of the CommandLine library that turns string input from the user into a particular parsed data type,
validating the input in the process.

There are two ways to use a new parser:

1. Specialize the cl::parser template for your custom data type.

This approach has the advantage that users of your custom data type will automatically use your custom parser
whenever they define an option with a value type of your data type. The disadvantage of this approach is that it
doesn’t work if your fundamental data type is something that is already supported.

2. Write an independent class, using it explicitly from options that need it.
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This approach works well in situations where you would line to parse an option using special syntax for a not-
very-special data-type. The drawback of this approach is that users of your parser have to be aware that they are
using your parser instead of the builtin ones.

To guide the discussion, we will discuss a custom parser that accepts file sizes, specified with an optional unit after the
numeric size. For example, we would like to parse “102kb”, “41M”, “1G” into the appropriate integer value. In this
case, the underlying data type we want to parse into is ‘unsigned‘. We choose approach #2 above because we don’t
want to make this the default for all unsigned options.

To start out, we declare our new FileSizeParser class:

struct FileSizeParser : public cl::parser<unsigned> {
// parse - Return true on error.
bool parse(cl::Option &O, StringRef ArgName, const std::string &ArgValue,

unsigned &Val);
};

Our new class inherits from the cl::parser template class to fill in the default, boiler plate code for us. We give
it the data type that we parse into, the last argument to the parse method, so that clients of our custom parser know
what object type to pass in to the parse method. (Here we declare that we parse into ‘unsigned‘ variables.)

For most purposes, the only method that must be implemented in a custom parser is the parse method. The parse
method is called whenever the option is invoked, passing in the option itself, the option name, the string to parse, and
a reference to a return value. If the string to parse is not well-formed, the parser should output an error message and
return true. Otherwise it should return false and set ‘Val‘ to the parsed value. In our example, we implement parse
as:

bool FileSizeParser::parse(cl::Option &O, StringRef ArgName,
const std::string &Arg, unsigned &Val) {

const char *ArgStart = Arg.c_str();
char *End;

// Parse integer part, leaving 'End' pointing to the first non-integer char
Val = (unsigned)strtol(ArgStart, &End, 0);

while (1) {
switch (*End++) {
case 0: return false; // No error
case 'i': // Ignore the 'i' in KiB if people use that
case 'b': case 'B': // Ignore B suffix
break;

case 'g': case 'G': Val *= 1024*1024*1024; break;
case 'm': case 'M': Val *= 1024*1024; break;
case 'k': case 'K': Val *= 1024; break;

default:
// Print an error message if unrecognized character!
return O.error("'" + Arg + "' value invalid for file size argument!");

}
}

}

This function implements a very simple parser for the kinds of strings we are interested in. Although it has some holes
(it allows “123KKK” for example), it is good enough for this example. Note that we use the option itself to print out
the error message (the error method always returns true) in order to get a nice error message (shown below). Now
that we have our parser class, we can use it like this:
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static cl::opt<unsigned, false, FileSizeParser>
MFS("max-file-size", cl::desc("Maximum file size to accept"),

cl::value_desc("size"));

Which adds this to the output of our program:

OPTIONS:
-help - display available options (-help-hidden for more)
...
-max-file-size=<size> - Maximum file size to accept

And we can test that our parse works correctly now (the test program just prints out the max-file-size argument value):

$ ./test
MFS: 0
$ ./test -max-file-size=123MB
MFS: 128974848
$ ./test -max-file-size=3G
MFS: 3221225472
$ ./test -max-file-size=dog
-max-file-size option: 'dog' value invalid for file size argument!

It looks like it works. The error message that we get is nice and helpful, and we seem to accept reasonable file sizes.
This wraps up the “custom parser” tutorial.

Exploiting external storage

Several of the LLVM libraries define static cl::opt instances that will automatically be included in any pro-
gram that links with that library. This is a feature. However, sometimes it is necessary to know the value of the
command line option outside of the library. In these cases the library does or should provide an external stor-
age location that is accessible to users of the library. Examples of this include the llvm::DebugFlag exported
by the lib/Support/Debug.cpp file and the llvm::TimePassesIsEnabled flag exported by the lib/
VMCore/PassManager.cpp file.

Dynamically adding command line options

Architecture & Platform Information for Compiler Writers

• Hardware

– AArch64 & ARM

– Itanium (ia64)

– MIPS

– PowerPC

* IBM - Official manuals and docs

* Other documents, collections, notes

– AMDGPU
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– SPARC

– SystemZ

– X86

– XCore

– Other relevant lists

• ABI

– Linux

– OS X

– Windows

• NVPTX

• Miscellaneous Resources

Note: This document is a work-in-progress. Additions and clarifications are welcome.

Hardware

AArch64 & ARM

• ARMv8-A Architecture Reference Manual (authentication required, free sign-up). This document covers both
AArch64 and ARM instructions

• ARMv7-M Architecture Reference Manual <http://infocenter.arm.com/help/topic/com.arm.doc.ddi0403e.b/
index.html>‘_ (authentication required, free sign-up). This covers the Thumb2-only microcontrollers

• ARMv6-M Architecture Reference Manual <http://infocenter.arm.com/help/topic/com.arm.doc.ddi0419c/index.
html>_ (authentication required, free sign-up). This covers the Thumb1-only microcontrollers

• ARM C Language Extensions

• AArch32 ABI Addenda and Errata

Itanium (ia64)

• Itanium documentation

MIPS

• MIPS Processor Architecture

• MIPS 64-bit ELF Object File Specification

PowerPC

IBM - Official manuals and docs

• Power Instruction Set Architecture, Versions 2.03 through 2.06 (authentication required, free sign-up)
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• PowerPC Compiler Writer’s Guide

• Intro to PowerPC Architecture

• PowerPC Processor Manuals (embedded)

• Various IBM specifications and white papers

• IBM AIX/5L for POWER Assembly Reference

Other documents, collections, notes

• PowerPC ABI documents

• PowerPC64 alignment of long doubles (from GCC)

• Long branch stubs for powerpc64-linux (from binutils)

AMDGPU

• AMD R6xx shader ISA

• AMD R7xx shader ISA

• AMD Evergreen shader ISA

• AMD Cayman/Trinity shader ISA

• AMD Southern Islands Series ISA

• AMD Sea Islands Series ISA

• AMD GPU Programming Guide

• AMD Compute Resources

SPARC

• SPARC standards

• SPARC V9 ABI

• SPARC V8 ABI

SystemZ

• z/Architecture Principles of Operation (registration required, free sign-up)

X86

• AMD processor manuals

• Intel 64 and IA-32 manuals

• Intel Itanium documentation

• X86 and X86-64 SysV psABI

• Calling conventions for different C++ compilers and operating systems
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XCore

• The XMOS XS1 Architecture (ISA)

• Tools Development Guide (includes ABI)

Other relevant lists

• GCC reading list

ABI

• System V Application Binary Interface

• Itanium C++ ABI

Linux

• Linux extensions to gabi

• PowerPC 64-bit ELF ABI Supplement

• Procedure Call Standard for the AArch64 Architecture

• ELF for the ARM Architecture

• ELF for the ARM 64-bit Architecture (AArch64)

• System z ELF ABI Supplement

OS X

• Mach-O Runtime Architecture

• Notes on Mach-O ABI

Windows

• Microsoft PE/COFF Specification

NVPTX

• CUDA Documentation includes the PTX ISA and Driver API documentation

Miscellaneous Resources

• Executable File Format library

• GCC prefetch project page has a good survey of the prefetching capabilities of a variety of modern processors.
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Extending LLVM: Adding instructions, intrinsics, types, etc.

Introduction and Warning

During the course of using LLVM, you may wish to customize it for your research project or for experimentation. At
this point, you may realize that you need to add something to LLVM, whether it be a new fundamental type, a new
intrinsic function, or a whole new instruction.

When you come to this realization, stop and think. Do you really need to extend LLVM? Is it a new fundamental
capability that LLVM does not support at its current incarnation or can it be synthesized from already pre-existing
LLVM elements? If you are not sure, ask on the LLVM-dev list. The reason is that extending LLVM will get involved
as you need to update all the different passes that you intend to use with your extension, and there are many LLVM
analyses and transformations, so it may be quite a bit of work.

Adding an intrinsic function is far easier than adding an instruction, and is transparent to optimization passes. If
your added functionality can be expressed as a function call, an intrinsic function is the method of choice for LLVM
extension.

Before you invest a significant amount of effort into a non-trivial extension, ask on the list if what you are looking to
do can be done with already-existing infrastructure, or if maybe someone else is already working on it. You will save
yourself a lot of time and effort by doing so.

Adding a new intrinsic function

Adding a new intrinsic function to LLVM is much easier than adding a new instruction. Almost all extensions to
LLVM should start as an intrinsic function and then be turned into an instruction if warranted.

1. llvm/docs/LangRef.html:

Document the intrinsic. Decide whether it is code generator specific and what the restrictions are. Talk to other
people about it so that you are sure it’s a good idea.

2. llvm/include/llvm/IR/Intrinsics*.td:

Add an entry for your intrinsic. Describe its memory access characteristics for optimization (this controls
whether it will be DCE’d, CSE’d, etc). Note that any intrinsic using one of the llvm_any*_ty types for an
argument or return type will be deemed by tblgen as overloaded and the corresponding suffix will be required
on the intrinsic’s name.

3. llvm/lib/Analysis/ConstantFolding.cpp:

If it is possible to constant fold your intrinsic, add support to it in the canConstantFoldCallTo and
ConstantFoldCall functions.

4. llvm/test/*:

Add test cases for your test cases to the test suite

Once the intrinsic has been added to the system, you must add code generator support for it. Generally you must do
the following steps:

Add support to the .td file for the target(s) of your choice in lib/Target/*/*.td.

This is usually a matter of adding a pattern to the .td file that matches the intrinsic, though it may obviously
require adding the instructions you want to generate as well. There are lots of examples in the PowerPC
and X86 backend to follow.
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Adding a new SelectionDAG node

As with intrinsics, adding a new SelectionDAG node to LLVM is much easier than adding a new instruction. New
nodes are often added to help represent instructions common to many targets. These nodes often map to an LLVM
instruction (add, sub) or intrinsic (byteswap, population count). In other cases, new nodes have been added to allow
many targets to perform a common task (converting between floating point and integer representation) or capture more
complicated behavior in a single node (rotate).

1. include/llvm/CodeGen/ISDOpcodes.h:

Add an enum value for the new SelectionDAG node.

2. lib/CodeGen/SelectionDAG/SelectionDAG.cpp:

Add code to print the node to getOperationName. If your new node can be evaluated at compile time
when given constant arguments (such as an add of a constant with another constant), find the getNode
method that takes the appropriate number of arguments, and add a case for your node to the switch state-
ment that performs constant folding for nodes that take the same number of arguments as your new node.

3. lib/CodeGen/SelectionDAG/LegalizeDAG.cpp:

Add code to legalize, promote, and expand the node as necessary. At a minimum, you will need to add a case
statement for your node in LegalizeOp which calls LegalizeOp on the node’s operands, and returns a new
node if any of the operands changed as a result of being legalized. It is likely that not all targets supported
by the SelectionDAG framework will natively support the new node. In this case, you must also add code in
your node’s case statement in LegalizeOp to Expand your node into simpler, legal operations. The case for
ISD::UREM for expanding a remainder into a divide, multiply, and a subtract is a good example.

4. lib/CodeGen/SelectionDAG/LegalizeDAG.cpp:

If targets may support the new node being added only at certain sizes, you will also need to add code to
your node’s case statement in LegalizeOp to Promote your node’s operands to a larger size, and per-
form the correct operation. You will also need to add code to PromoteOp to do this as well. For a good
example, see ISD::BSWAP, which promotes its operand to a wider size, performs the byteswap, and then
shifts the correct bytes right to emulate the narrower byteswap in the wider type.

5. lib/CodeGen/SelectionDAG/LegalizeDAG.cpp:

Add a case for your node in ExpandOp to teach the legalizer how to perform the action represented by the new
node on a value that has been split into high and low halves. This case will be used to support your node with a
64 bit operand on a 32 bit target.

6. lib/CodeGen/SelectionDAG/DAGCombiner.cpp:

If your node can be combined with itself, or other existing nodes in a peephole-like fashion, add a visit func-
tion for it, and call that function from. There are several good examples for simple combines you can do;
visitFABS and visitSRL are good starting places.

7. lib/Target/PowerPC/PPCISelLowering.cpp:

Each target has an implementation of the TargetLowering class, usually in its own file (although some
targets include it in the same file as the DAGToDAGISel). The default behavior for a target is to assume that
your new node is legal for all types that are legal for that target. If this target does not natively support your
node, then tell the target to either Promote it (if it is supported at a larger type) or Expand it. This will cause the
code you wrote in LegalizeOp above to decompose your new node into other legal nodes for this target.

8. lib/Target/TargetSelectionDAG.td:

Most current targets supported by LLVM generate code using the DAGToDAG method, where SelectionDAG
nodes are pattern matched to target-specific nodes, which represent individual instructions. In order for the
targets to match an instruction to your new node, you must add a def for that node to the list in this file, with the
appropriate type constraints. Look at add, bswap, and fadd for examples.
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9. lib/Target/PowerPC/PPCInstrInfo.td:

Each target has a tablegen file that describes the target’s instruction set. For targets that use the DAGToDAG
instruction selection framework, add a pattern for your new node that uses one or more target nodes. Docu-
mentation for this is a bit sparse right now, but there are several decent examples. See the patterns for rotl in
PPCInstrInfo.td.

10. TODO: document complex patterns.

11. llvm/test/CodeGen/*:

Add test cases for your new node to the test suite. llvm/test/CodeGen/X86/bswap.ll is a good exam-
ple.

Adding a new instruction

Warning: Adding instructions changes the bitcode format, and it will take some effort to maintain compatibility
with the previous version. Only add an instruction if it is absolutely necessary.

1. llvm/include/llvm/IR/Instruction.def:

add a number for your instruction and an enum name

2. llvm/include/llvm/IR/Instructions.h:

add a definition for the class that will represent your instruction

3. llvm/include/llvm/IR/InstVisitor.h:

add a prototype for a visitor to your new instruction type

4. llvm/lib/AsmParser/LLLexer.cpp:

add a new token to parse your instruction from assembly text file

5. llvm/lib/AsmParser/LLParser.cpp:

add the grammar on how your instruction can be read and what it will construct as a result

6. llvm/lib/Bitcode/Reader/BitcodeReader.cpp:

add a case for your instruction and how it will be parsed from bitcode

7. llvm/lib/Bitcode/Writer/BitcodeWriter.cpp:

add a case for your instruction and how it will be parsed from bitcode

8. llvm/lib/IR/Instruction.cpp:

add a case for how your instruction will be printed out to assembly

9. llvm/lib/IR/Instructions.cpp:

implement the class you defined in llvm/include/llvm/Instructions.h

10. Test your instruction

11. llvm/lib/Target/*:

add support for your instruction to code generators, or add a lowering pass.

12. llvm/test/*:

add your test cases to the test suite.
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Also, you need to implement (or modify) any analyses or passes that you want to understand this new instruction.

Adding a new type

Warning: Adding new types changes the bitcode format, and will break compatibility with currently-existing
LLVM installations. Only add new types if it is absolutely necessary.

Adding a fundamental type

1. llvm/include/llvm/IR/Type.h:

add enum for the new type; add static Type* for this type

2. llvm/lib/IR/Type.cpp and llvm/lib/IR/ValueTypes.cpp:

add mapping from TypeID => Type*; initialize the static Type*

3. llvm/llvm/llvm-c/Core.cpp:

add enum LLVMTypeKind and modify LLVMTypeKind LLVMGetTypeKind(LLVMTypeRef Ty) for
the new type

4. llvm/include/llvm/IR/TypeBuilder.h:

add new class to represent new type in the hierarchy

5. llvm/lib/AsmParser/LLLexer.cpp:

add ability to parse in the type from text assembly

6. llvm/lib/AsmParser/LLParser.cpp:

add a token for that type

7. llvm/lib/Bitcode/Writer/BitcodeWriter.cpp:

modify static void WriteTypeTable(const ValueEnumerator &VE,
BitstreamWriter &Stream) to serialize your type

8. llvm/lib/Bitcode/Reader/BitcodeReader.cpp:

modify bool BitcodeReader::ParseTypeType() to read your data type

9. include/llvm/Bitcode/LLVMBitCodes.h:

add enum TypeCodes for the new type

Adding a derived type

1. llvm/include/llvm/IR/Type.h:

add enum for the new type; add a forward declaration of the type also

2. llvm/include/llvm/IR/DerivedTypes.h:

add new class to represent new class in the hierarchy; add forward declaration to the TypeMap value type

3. llvm/lib/IR/Type.cpp and llvm/lib/IR/ValueTypes.cpp:

add support for derived type, notably enum TypeID and is, get methods.
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4. llvm/llvm/llvm-c/Core.cpp:

add enum LLVMTypeKind and modify LLVMTypeKind LLVMGetTypeKind(LLVMTypeRef Ty) for the new type

5. llvm/include/llvm/IR/TypeBuilder.h:

add new class to represent new class in the hierarchy

6. llvm/lib/AsmParser/LLLexer.cpp:

modify lltok::Kind LLLexer::LexIdentifier() to add ability to parse in the type from text as-
sembly

7. llvm/lib/Bitcode/Writer/BitcodeWriter.cpp:

modify static void WriteTypeTable(const ValueEnumerator &VE,
BitstreamWriter &Stream) to serialize your type

8. llvm/lib/Bitcode/Reader/BitcodeReader.cpp:

modify bool BitcodeReader::ParseTypeType() to read your data type

9. include/llvm/Bitcode/LLVMBitCodes.h:

add enum TypeCodes for the new type

10. llvm/lib/IR/AsmWriter.cpp:

modify void TypePrinting::print(Type *Ty, raw_ostream &OS) to output the new derived
type

How to set up LLVM-style RTTI for your class hierarchy

Contents

• How to set up LLVM-style RTTI for your class hierarchy

– Background

– Basic Setup

– Concrete Bases and Deeper Hierarchies

* A Bug to be Aware Of

* The Contract of classof

– Rules of Thumb

Background

LLVM avoids using C++’s built in RTTI. Instead, it pervasively uses its own hand-rolled form of RTTI which is much
more efficient and flexible, although it requires a bit more work from you as a class author.

A description of how to use LLVM-style RTTI from a client’s perspective is given in the Programmer’s Manual. This
document, in contrast, discusses the steps you need to take as a class hierarchy author to make LLVM-style RTTI
available to your clients.

Before diving in, make sure that you are familiar with the Object Oriented Programming concept of “is-a”.
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Basic Setup

This section describes how to set up the most basic form of LLVM-style RTTI (which is sufficient for 99.9% of the
cases). We will set up LLVM-style RTTI for this class hierarchy:

class Shape {
public:

Shape() {}
virtual double computeArea() = 0;

};

class Square : public Shape {
double SideLength;

public:
Square(double S) : SideLength(S) {}
double computeArea() override;

};

class Circle : public Shape {
double Radius;

public:
Circle(double R) : Radius(R) {}
double computeArea() override;

};

The most basic working setup for LLVM-style RTTI requires the following steps:

1. In the header where you declare Shape, you will want to #include "llvm/Support/Casting.h",
which declares LLVM’s RTTI templates. That way your clients don’t even have to think about it.

#include "llvm/Support/Casting.h"

2. In the base class, introduce an enum which discriminates all of the different concrete classes in the hierarchy,
and stash the enum value somewhere in the base class.

Here is the code after introducing this change:

class Shape {
public:
+ /// Discriminator for LLVM-style RTTI (dyn_cast<> et al.)
+ enum ShapeKind {
+ SK_Square,
+ SK_Circle
+ };
+private:
+ const ShapeKind Kind;
+public:
+ ShapeKind getKind() const { return Kind; }
+

Shape() {}
virtual double computeArea() = 0;

};

You will usually want to keep the Kind member encapsulated and private, but let the enum ShapeKind be
public along with providing a getKind() method. This is convenient for clients so that they can do a switch
over the enum.

A common naming convention is that these enums are “kind”s, to avoid ambiguity with the words “type” or
“class” which have overloaded meanings in many contexts within LLVM. Sometimes there will be a natural
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name for it, like “opcode”. Don’t bikeshed over this; when in doubt use Kind.

You might wonder why the Kind enum doesn’t have an entry for Shape. The reason for this is that since
Shape is abstract (computeArea() = 0;), you will never actually have non-derived instances of exactly
that class (only subclasses). See Concrete Bases and Deeper Hierarchies for information on how to deal with
non-abstract bases. It’s worth mentioning here that unlike dynamic_cast<>, LLVM-style RTTI can be used
(and is often used) for classes that don’t have v-tables.

3. Next, you need to make sure that the Kind gets initialized to the value corresponding to the dynamic type of
the class. Typically, you will want to have it be an argument to the constructor of the base class, and then pass
in the respective XXXKind from subclass constructors.

Here is the code after that change:

class Shape {
public:

/// Discriminator for LLVM-style RTTI (dyn_cast<> et al.)
enum ShapeKind {

SK_Square,
SK_Circle

};
private:

const ShapeKind Kind;
public:
ShapeKind getKind() const { return Kind; }

- Shape() {}
+ Shape(ShapeKind K) : Kind(K) {}

virtual double computeArea() = 0;
};

class Square : public Shape {
double SideLength;

public:
- Square(double S) : SideLength(S) {}
+ Square(double S) : Shape(SK_Square), SideLength(S) {}

double computeArea() override;
};

class Circle : public Shape {
double Radius;

public:
- Circle(double R) : Radius(R) {}
+ Circle(double R) : Shape(SK_Circle), Radius(R) {}

double computeArea() override;
};

4. Finally, you need to inform LLVM’s RTTI templates how to dynamically determine the type of a class (i.e.
whether the isa<>/dyn_cast<> should succeed). The default “99.9% of use cases” way to accomplish this
is through a small static member function classof. In order to have proper context for an explanation, we
will display this code first, and then below describe each part:

class Shape {
public:

/// Discriminator for LLVM-style RTTI (dyn_cast<> et al.)
enum ShapeKind {

SK_Square,
SK_Circle

};
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private:
const ShapeKind Kind;

public:
ShapeKind getKind() const { return Kind; }

Shape(ShapeKind K) : Kind(K) {}
virtual double computeArea() = 0;

};

class Square : public Shape {
double SideLength;

public:
Square(double S) : Shape(SK_Square), SideLength(S) {}
double computeArea() override;

+
+ static bool classof(const Shape *S) {
+ return S->getKind() == SK_Square;
+ }
};

class Circle : public Shape {
double Radius;

public:
Circle(double R) : Shape(SK_Circle), Radius(R) {}
double computeArea() override;

+
+ static bool classof(const Shape *S) {
+ return S->getKind() == SK_Circle;
+ }
};

The job of classof is to dynamically determine whether an object of a base class is in fact of a particular
derived class. In order to downcast a type Base to a type Derived, there needs to be a classof in Derived
which will accept an object of type Base.

To be concrete, consider the following code:

Shape *S = ...;
if (isa<Circle>(S)) {
/* do something ... */

}

The code of the isa<> test in this code will eventually boil down—after template instantiation and some other
machinery—to a check roughly like Circle::classof(S). For more information, see The Contract of
classof .

The argument to classof should always be an ancestor class because the implementation has logic to allow
and optimize away upcasts/up-isa<>‘s automatically. It is as though every class Foo automatically has a
classof like:

class Foo {
[...]
template <class T>
static bool classof(const T *,

::std::enable_if<
::std::is_base_of<Foo, T>::value

>::type* = 0) { return true; }
[...]
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};

Note that this is the reason that we did not need to introduce a classof into Shape: all relevant classes derive
from Shape, and Shape itself is abstract (has no entry in the Kind enum), so this notional inferred classof
is all we need. See Concrete Bases and Deeper Hierarchies for more information about how to extend this
example to more general hierarchies.

Although for this small example setting up LLVM-style RTTI seems like a lot of “boilerplate”, if your classes are
doing anything interesting then this will end up being a tiny fraction of the code.

Concrete Bases and Deeper Hierarchies

For concrete bases (i.e. non-abstract interior nodes of the inheritance tree), the Kind check inside classof needs to
be a bit more complicated. The situation differs from the example above in that

• Since the class is concrete, it must itself have an entry in the Kind enum because it is possible to have objects
with this class as a dynamic type.

• Since the class has children, the check inside classof must take them into account.

Say that SpecialSquare and OtherSpecialSquare derive from Square, and so ShapeKind becomes:

enum ShapeKind {
SK_Square,

+ SK_SpecialSquare,
+ SK_OtherSpecialSquare,

SK_Circle
}

Then in Square, we would need to modify the classof like so:

- static bool classof(const Shape *S) {
- return S->getKind() == SK_Square;
- }
+ static bool classof(const Shape *S) {
+ return S->getKind() >= SK_Square &&
+ S->getKind() <= SK_OtherSpecialSquare;
+ }

The reason that we need to test a range like this instead of just equality is that both SpecialSquare and
OtherSpecialSquare “is-a” Square, and so classof needs to return true for them.

This approach can be made to scale to arbitrarily deep hierarchies. The trick is that you arrange the enum values so
that they correspond to a preorder traversal of the class hierarchy tree. With that arrangement, all subclass tests can be
done with two comparisons as shown above. If you just list the class hierarchy like a list of bullet points, you’ll get the
ordering right:

| Shape
| Square
| SpecialSquare
| OtherSpecialSquare

| Circle

840 Chapter 3. Programming Documentation



LLVM Documentation, Release 3.9

A Bug to be Aware Of

The example just given opens the door to bugs where the classofs are not updated to match the Kind enum when
adding (or removing) classes to (from) the hierarchy.

Continuing the example above, suppose we add a SomewhatSpecialSquare as a subclass of Square, and update
the ShapeKind enum like so:

enum ShapeKind {
SK_Square,
SK_SpecialSquare,
SK_OtherSpecialSquare,

+ SK_SomewhatSpecialSquare,
SK_Circle

}

Now, suppose that we forget to update Square::classof(), so it still looks like:

static bool classof(const Shape *S) {
// BUG: Returns false when S->getKind() == SK_SomewhatSpecialSquare,
// even though SomewhatSpecialSquare "is a" Square.
return S->getKind() >= SK_Square &&

S->getKind() <= SK_OtherSpecialSquare;
}

As the comment indicates, this code contains a bug. A straightforward and non-clever way to avoid this is to introduce
an explicit SK_LastSquare entry in the enum when adding the first subclass(es). For example, we could rewrite
the example at the beginning of Concrete Bases and Deeper Hierarchies as:

enum ShapeKind {
SK_Square,

+ SK_SpecialSquare,
+ SK_OtherSpecialSquare,
+ SK_LastSquare,

SK_Circle
}

...
// Square::classof()
- static bool classof(const Shape *S) {
- return S->getKind() == SK_Square;
- }
+ static bool classof(const Shape *S) {
+ return S->getKind() >= SK_Square &&
+ S->getKind() <= SK_LastSquare;
+ }

Then, adding new subclasses is easy:

enum ShapeKind {
SK_Square,
SK_SpecialSquare,
SK_OtherSpecialSquare,

+ SK_SomewhatSpecialSquare,
SK_LastSquare,
SK_Circle

}

Notice that Square::classof does not need to be changed.
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The Contract of classof

To be more precise, let classof be inside a class C. Then the contract for classof is “return true if the dynamic
type of the argument is-a C”. As long as your implementation fulfills this contract, you can tweak and optimize it as
much as you want.

For example, LLVM-style RTTI can work fine in the presence of multiple-inheritance by defining an appropriate
classof. An example of this in practice is Decl vs. DeclContext inside Clang. The Decl hierarchy is done very
similarly to the example setup demonstrated in this tutorial. The key part is how to then incorporate DeclContext:
all that is needed is in bool DeclContext::classof(const Decl *), which asks the question “Given a
Decl, how can I determine if it is-a DeclContext?”. It answers this with a simple switch over the set of Decl
“kinds”, and returning true for ones that are known to be DeclContext‘s.

Rules of Thumb

1. The Kind enum should have one entry per concrete class, ordered according to a preorder traversal of the
inheritance tree.

2. The argument to classof should be a const Base *, where Base is some ancestor in the inheritance
hierarchy. The argument should never be a derived class or the class itself: the template machinery for isa<>
already handles this case and optimizes it.

3. For each class in the hierarchy that has no children, implement a classof that checks only against its Kind.

4. For each class in the hierarchy that has children, implement a classof that checks a range of the first child’s
Kind and the last child’s Kind.

LLVM Programmer’s Manual

• Introduction

• General Information

– The C++ Standard Template Library

– Other useful references

• Important and useful LLVM APIs

– The isa<>, cast<> and dyn_cast<> templates

– Passing strings (the StringRef and Twine classes)

* The StringRef class

* The Twine class

– Error handling

* Programmatic Errors

* Recoverable Errors

– Passing functions and other callable objects

* Function template

* The function_ref class template

842 Chapter 3. Programming Documentation

http://clang.llvm.org/doxygen/classclang_1_1Decl.html
http://clang.llvm.org/doxygen/classclang_1_1DeclContext.html


LLVM Documentation, Release 3.9

– The DEBUG() macro and -debug option

* Fine grained debug info with DEBUG_TYPE and the -debug-only option

– The Statistic class & -stats option

– Viewing graphs while debugging code

• Picking the Right Data Structure for a Task

– Sequential Containers (std::vector, std::list, etc)

* llvm/ADT/ArrayRef.h

* Fixed Size Arrays

* Heap Allocated Arrays

* llvm/ADT/TinyPtrVector.h

* llvm/ADT/SmallVector.h

* <vector>

* <deque>

* <list>

* llvm/ADT/ilist.h

* llvm/ADT/PackedVector.h

* ilist_traits

* iplist

* llvm/ADT/ilist_node.h

* Sentinels

* Other Sequential Container options

– String-like containers

* llvm/ADT/StringRef.h

* llvm/ADT/Twine.h

* llvm/ADT/SmallString.h

* std::string

– Set-Like Containers (std::set, SmallSet, SetVector, etc)

* A sorted ‘vector’

* llvm/ADT/SmallSet.h

* llvm/ADT/SmallPtrSet.h

* llvm/ADT/StringSet.h

* llvm/ADT/DenseSet.h

* llvm/ADT/SparseSet.h

* llvm/ADT/SparseMultiSet.h

* llvm/ADT/FoldingSet.h

3.7. LLVM Programmer’s Manual 843



LLVM Documentation, Release 3.9

* <set>

* llvm/ADT/SetVector.h

* llvm/ADT/UniqueVector.h

* llvm/ADT/ImmutableSet.h

* Other Set-Like Container Options

– Map-Like Containers (std::map, DenseMap, etc)

* A sorted ‘vector’

* llvm/ADT/StringMap.h

* llvm/ADT/IndexedMap.h

* llvm/ADT/DenseMap.h

* llvm/IR/ValueMap.h

* llvm/ADT/IntervalMap.h

* <map>

* llvm/ADT/MapVector.h

* llvm/ADT/IntEqClasses.h

* llvm/ADT/ImmutableMap.h

* Other Map-Like Container Options

– Bit storage containers (BitVector, SparseBitVector)

* BitVector

* SmallBitVector

* SparseBitVector

• Helpful Hints for Common Operations

– Basic Inspection and Traversal Routines

* Iterating over the BasicBlock in a Function

* Iterating over the Instruction in a BasicBlock

* Iterating over the Instruction in a Function

* Turning an iterator into a class pointer (and vice-versa)

* Finding call sites: a slightly more complex example

* Treating calls and invokes the same way

* Iterating over def-use & use-def chains

* Iterating over predecessors & successors of blocks

– Making simple changes

* Creating and inserting new Instructions

* Deleting Instructions

* Replacing an Instruction with another Value

· Replacing individual instructions

844 Chapter 3. Programming Documentation



LLVM Documentation, Release 3.9

· Deleting Instructions

· Replacing multiple uses of Users and Values

* Deleting GlobalVariables
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– Lazy Initialization with ManagedStatic

– Achieving Isolation with LLVMContext

– Threads and the JIT

• Advanced Topics

– The ValueSymbolTable class
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– The Function class

* Important Public Members of the Function

– The GlobalVariable class

* Important Public Members of the GlobalVariable class

– The BasicBlock class

* Important Public Members of the BasicBlock class

– The Argument class

Warning: This is always a work in progress.

Introduction

This document is meant to highlight some of the important classes and interfaces available in the LLVM source-base.
This manual is not intended to explain what LLVM is, how it works, and what LLVM code looks like. It assumes that
you know the basics of LLVM and are interested in writing transformations or otherwise analyzing or manipulating
the code.

This document should get you oriented so that you can find your way in the continuously growing source code that
makes up the LLVM infrastructure. Note that this manual is not intended to serve as a replacement for reading the
source code, so if you think there should be a method in one of these classes to do something, but it’s not listed, check
the source. Links to the doxygen sources are provided to make this as easy as possible.

The first section of this document describes general information that is useful to know when working in the LLVM
infrastructure, and the second describes the Core LLVM classes. In the future this manual will be extended with
information describing how to use extension libraries, such as dominator information, CFG traversal routines, and
useful utilities like the InstVisitor (doxygen) template.

General Information

This section contains general information that is useful if you are working in the LLVM source-base, but that isn’t
specific to any particular API.

The C++ Standard Template Library

LLVM makes heavy use of the C++ Standard Template Library (STL), perhaps much more than you are used to,
or have seen before. Because of this, you might want to do a little background reading in the techniques used and
capabilities of the library. There are many good pages that discuss the STL, and several books on the subject that you
can get, so it will not be discussed in this document.

Here are some useful links:

1. cppreference.com - an excellent reference for the STL and other parts of the standard C++ library.

2. C++ In a Nutshell - This is an O’Reilly book in the making. It has a decent Standard Library Reference that
rivals Dinkumware’s, and is unfortunately no longer free since the book has been published.

3. C++ Frequently Asked Questions.

4. SGI’s STL Programmer’s Guide - Contains a useful Introduction to the STL.
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5. Bjarne Stroustrup’s C++ Page.

6. Bruce Eckel’s Thinking in C++, 2nd ed. Volume 2 Revision 4.0 (even better, get the book).

You are also encouraged to take a look at the LLVM Coding Standards guide which focuses on how to write maintain-
able code more than where to put your curly braces.

Other useful references

1. Using static and shared libraries across platforms

Important and useful LLVM APIs

Here we highlight some LLVM APIs that are generally useful and good to know about when writing transformations.

The isa<>, cast<> and dyn_cast<> templates

The LLVM source-base makes extensive use of a custom form of RTTI. These templates have many similarities to
the C++ dynamic_cast<> operator, but they don’t have some drawbacks (primarily stemming from the fact that
dynamic_cast<> only works on classes that have a v-table). Because they are used so often, you must know what
they do and how they work. All of these templates are defined in the llvm/Support/Casting.h (doxygen) file
(note that you very rarely have to include this file directly).

isa<>: The isa<> operator works exactly like the Java “instanceof” operator. It returns true or false depending
on whether a reference or pointer points to an instance of the specified class. This can be very useful for
constraint checking of various sorts (example below).

cast<>: The cast<> operator is a “checked cast” operation. It converts a pointer or reference from a base class to
a derived class, causing an assertion failure if it is not really an instance of the right type. This should be used in
cases where you have some information that makes you believe that something is of the right type. An example
of the isa<> and cast<> template is:

static bool isLoopInvariant(const Value *V, const Loop *L) {
if (isa<Constant>(V) || isa<Argument>(V) || isa<GlobalValue>(V))

return true;

// Otherwise, it must be an instruction...
return !L->contains(cast<Instruction>(V)->getParent());

}

Note that you should not use an isa<> test followed by a cast<>, for that use the dyn_cast<> operator.

dyn_cast<>: The dyn_cast<> operator is a “checking cast” operation. It checks to see if the operand is of the
specified type, and if so, returns a pointer to it (this operator does not work with references). If the operand
is not of the correct type, a null pointer is returned. Thus, this works very much like the dynamic_cast<>
operator in C++, and should be used in the same circumstances. Typically, the dyn_cast<> operator is used
in an if statement or some other flow control statement like this:

if (AllocationInst *AI = dyn_cast<AllocationInst>(Val)) {
// ...

}

This form of the if statement effectively combines together a call to isa<> and a call to cast<> into one
statement, which is very convenient.
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Note that the dyn_cast<> operator, like C++’s dynamic_cast<> or Java’s instanceof operator, can
be abused. In particular, you should not use big chained if/then/else blocks to check for lots of different
variants of classes. If you find yourself wanting to do this, it is much cleaner and more efficient to use the
InstVisitor class to dispatch over the instruction type directly.

cast_or_null<>: The cast_or_null<> operator works just like the cast<> operator, except that it allows
for a null pointer as an argument (which it then propagates). This can sometimes be useful, allowing you to
combine several null checks into one.

dyn_cast_or_null<>: The dyn_cast_or_null<> operator works just like the dyn_cast<> operator, ex-
cept that it allows for a null pointer as an argument (which it then propagates). This can sometimes be useful,
allowing you to combine several null checks into one.

These five templates can be used with any classes, whether they have a v-table or not. If you want to add support for
these templates, see the document How to set up LLVM-style RTTI for your class hierarchy

Passing strings (the StringRef and Twine classes)

Although LLVM generally does not do much string manipulation, we do have several important APIs which take
strings. Two important examples are the Value class – which has names for instructions, functions, etc. – and the
StringMap class which is used extensively in LLVM and Clang.

These are generic classes, and they need to be able to accept strings which may have embedded null characters.
Therefore, they cannot simply take a const char *, and taking a const std::string& requires clients to
perform a heap allocation which is usually unnecessary. Instead, many LLVM APIs use a StringRef or a const
Twine& for passing strings efficiently.

The StringRef class

The StringRef data type represents a reference to a constant string (a character array and a length) and supports the
common operations available on std::string, but does not require heap allocation.

It can be implicitly constructed using a C style null-terminated string, an std::string, or explicitly with a character
pointer and length. For example, the StringRef find function is declared as:

iterator find(StringRef Key);

and clients can call it using any one of:

Map.find("foo"); // Lookup "foo"
Map.find(std::string("bar")); // Lookup "bar"
Map.find(StringRef("\0baz", 4)); // Lookup "\0baz"

Similarly, APIs which need to return a string may return a StringRef instance, which can be used directly or
converted to an std::string using the str member function. See llvm/ADT/StringRef.h (doxygen) for
more information.

You should rarely use the StringRef class directly, because it contains pointers to external memory it is not gener-
ally safe to store an instance of the class (unless you know that the external storage will not be freed). StringRef is
small and pervasive enough in LLVM that it should always be passed by value.

The Twine class

The Twine (doxygen) class is an efficient way for APIs to accept concatenated strings. For example, a common
LLVM paradigm is to name one instruction based on the name of another instruction with a suffix, for example:
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New = CmpInst::Create(..., SO->getName() + ".cmp");

The Twine class is effectively a lightweight rope which points to temporary (stack allocated) objects. Twines can be
implicitly constructed as the result of the plus operator applied to strings (i.e., a C strings, an std::string, or a
StringRef). The twine delays the actual concatenation of strings until it is actually required, at which point it can
be efficiently rendered directly into a character array. This avoids unnecessary heap allocation involved in constructing
the temporary results of string concatenation. See llvm/ADT/Twine.h (doxygen) and here for more information.

As with a StringRef, Twine objects point to external memory and should almost never be stored or mentioned
directly. They are intended solely for use when defining a function which should be able to efficiently accept concate-
nated strings.

Error handling

Proper error handling helps us identify bugs in our code, and helps end-users understand errors in their tool usage. Er-
rors fall into two broad categories: programmatic and recoverable, with different strategies for handling and reporting.

Programmatic Errors

Programmatic errors are violations of program invariants or API contracts, and represent bugs within the program
itself. Our aim is to document invariants, and to abort quickly at the point of failure (providing some basic diagnostic)
when invariants are broken at runtime.

The fundamental tools for handling programmatic errors are assertions and the llvm_unreachable function. Assertions
are used to express invariant conditions, and should include a message describing the invariant:

assert(isPhysReg(R) && "All virt regs should have been allocated already.");

The llvm_unreachable function can be used to document areas of control flow that should never be entered if the
program invariants hold:

enum { Foo, Bar, Baz } X = foo();

switch (X) {
case Foo: /* Handle Foo */; break;
case Bar: /* Handle Bar */; break;
default:
llvm_unreachable("X should be Foo or Bar here");

}

Recoverable Errors

Recoverable errors represent an error in the program’s environment, for example a resource failure (a missing file, a
dropped network connection, etc.), or malformed input. These errors should be detected and communicated to a level
of the program where they can be handled appropriately. Handling the error may be as simple as reporting the issue to
the user, or it may involve attempts at recovery.

Recoverable errors are modeled using LLVM’s Error scheme. This scheme represents errors using function return
values, similar to classic C integer error codes, or C++’s std::error_code. However, the Error class is actually
a lightweight wrapper for user-defined error types, allowing arbitrary information to be attached to describe the error.
This is similar to the way C++ exceptions allow throwing of user-defined types.

Success values are created by calling Error::success():
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Error foo() {
// Do something.
// Return success.
return Error::success();

}

Success values are very cheap to construct and return - they have minimal impact on program performance.

Failure values are constructed using make_error<T>, where T is any class that inherits from the ErrorInfo utility:

class MyError : public ErrorInfo<MyError> {
public:

MyError(std::string Msg) : Msg(Msg) {}
void log(OStream &OS) const override { OS << "MyError - " << Msg; }
static char ID;

private:
std::string Msg;

};

char MyError::ID = 0; // In MyError.cpp

Error bar() {
if (checkErrorCondition)
return make_error<MyError>("Error condition detected");

// No error - proceed with bar.

// Return success value.
return Error::success();

}

Error values can be implicitly converted to bool: true for error, false for success, enabling the following idiom:

Error mayFail();

Error foo() {
if (auto Err = mayFail())
return Err;

// Success! We can proceed.
...

For functions that can fail but need to return a value the Expected<T> utility can be used. Values of this type can
be constructed with either a T, or a Error. Expected<T> values are also implicitly convertible to boolean, but with
the opposite convention to Error: true for success, false for error. If success, the T value can be accessed via the
dereference operator. If failure, the Error value can be extracted using the takeError() method. Idiomatic usage
looks like:

Expected<float> parseAndSquareRoot(IStream &IS) {
float f;
OS >> f;
if (f < 0)
return make_error<FloatingPointError>(...);

return sqrt(f);
}

Error foo(IStream &IS) {
if (auto SqrtOrErr = parseAndSquartRoot(IS)) {
float Sqrt = *SqrtOrErr;
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// ...
} else
return SqrtOrErr.takeError();

}

All Error instances, whether success or failure, must be either checked or moved from (via std::move or a return)
before they are destructed. Accidentally discarding an unchecked error will cause a program abort at the point where
the unchecked value’s destructor is run, making it easy to identify and fix violations of this rule.

Success values are considered checked once they have been tested (by invoking the boolean conversion operator):

if (auto Err = canFail(...))
return Err; // Failure value - move error to caller.

// Safe to continue: Err was checked.

In contrast, the following code will always cause an abort, regardless of the return value of foo:

canFail();
// Program will always abort here, even if canFail() returns Success, since
// the value is not checked.

Failure values are considered checked once a handler for the error type has been activated:

auto Err = canFail(...);
if (auto Err2 =

handleErrors(std::move(Err),
[](std::unique_ptr<MyError> M) {
// Try to handle 'M'. If successful, return a success value from
// the handler.
if (tryToHandle(M))

return Error::success();

// We failed to handle 'M' - return it from the handler.
// This value will be passed back from catchErrors and
// wind up in Err2, where it will be returned from this function.
return Error(std::move(M));

})))
return Err2;

More information on Error and its related utilities can be found in the Error.h header file.

Passing functions and other callable objects

Sometimes you may want a function to be passed a callback object. In order to support lambda expressions and other
function objects, you should not use the traditional C approach of taking a function pointer and an opaque cookie:

void takeCallback(bool (*Callback)(Function *, void *), void *Cookie);

Instead, use one of the following approaches:

Function template

If you don’t mind putting the definition of your function into a header file, make it a function template that is templated
on the callable type.
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template<typename Callable>
void takeCallback(Callable Callback) {

Callback(1, 2, 3);
}

The function_ref class template

The function_ref (doxygen) class template represents a reference to a callable object, templated over the type of
the callable. This is a good choice for passing a callback to a function, if you don’t need to hold onto the callback after
the function returns. In this way, function_ref is to std::function as StringRef is to std::string.

function_ref<Ret(Param1, Param2, ...)> can be implicitly constructed from any callable object that
can be called with arguments of type Param1, Param2, ..., and returns a value that can be converted to type Ret.
For example:

void visitBasicBlocks(Function *F, function_ref<bool (BasicBlock*)> Callback) {
for (BasicBlock &BB : *F)
if (Callback(&BB))

return;
}

can be called using:

visitBasicBlocks(F, [&](BasicBlock *BB) {
if (process(BB))
return isEmpty(BB);

return false;
});

Note that a function_ref object contains pointers to external memory, so it is not generally safe to store an
instance of the class (unless you know that the external storage will not be freed). If you need this ability, consider
using std::function. function_ref is small enough that it should always be passed by value.

The DEBUG() macro and -debug option

Often when working on your pass you will put a bunch of debugging printouts and other code into your pass. After
you get it working, you want to remove it, but you may need it again in the future (to work out new bugs that you run
across).

Naturally, because of this, you don’t want to delete the debug printouts, but you don’t want them to always be noisy.
A standard compromise is to comment them out, allowing you to enable them if you need them in the future.

The llvm/Support/Debug.h (doxygen) file provides a macro named DEBUG() that is a much nicer solution to
this problem. Basically, you can put arbitrary code into the argument of the DEBUG macro, and it is only executed if
‘opt‘ (or any other tool) is run with the ‘-debug‘ command line argument:

DEBUG(errs() << "I am here!\n");

Then you can run your pass like this:

$ opt < a.bc > /dev/null -mypass
<no output>
$ opt < a.bc > /dev/null -mypass -debug
I am here!
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Using the DEBUG()macro instead of a home-brewed solution allows you to not have to create “yet another” command
line option for the debug output for your pass. Note that DEBUG() macros are disabled for non-asserts builds, so they
do not cause a performance impact at all (for the same reason, they should also not contain side-effects!).

One additional nice thing about the DEBUG() macro is that you can enable or disable it directly in gdb. Just use
“set DebugFlag=0” or “set DebugFlag=1” from the gdb if the program is running. If the program hasn’t
been started yet, you can always just run it with -debug.

Fine grained debug info with DEBUG_TYPE and the -debug-only option

Sometimes you may find yourself in a situation where enabling -debug just turns on too much information (such as
when working on the code generator). If you want to enable debug information with more fine-grained control, you
should define the DEBUG_TYPE macro and use the -debug-only option as follows:

#define DEBUG_TYPE "foo"
DEBUG(errs() << "'foo' debug type\n");
#undef DEBUG_TYPE
#define DEBUG_TYPE "bar"
DEBUG(errs() << "'bar' debug type\n"));
#undef DEBUG_TYPE

Then you can run your pass like this:

$ opt < a.bc > /dev/null -mypass
<no output>
$ opt < a.bc > /dev/null -mypass -debug
'foo' debug type
'bar' debug type
$ opt < a.bc > /dev/null -mypass -debug-only=foo
'foo' debug type
$ opt < a.bc > /dev/null -mypass -debug-only=bar
'bar' debug type
$ opt < a.bc > /dev/null -mypass -debug-only=foo,bar
'foo' debug type
'bar' debug type

Of course, in practice, you should only set DEBUG_TYPE at the top of a file, to specify the debug type for the
entire module. Be careful that you only do this after including Debug.h and not around any #include of headers.
Also, you should use names more meaningful than “foo” and “bar”, because there is no system in place to en-
sure that names do not conflict. If two different modules use the same string, they will all be turned on when the
name is specified. This allows, for example, all debug information for instruction scheduling to be enabled with
-debug-only=InstrSched, even if the source lives in multiple files. The name must not include a comma (,) as
that is used to separate the arguments of the -debug-only option.

For performance reasons, -debug-only is not available in optimized build (--enable-optimized) of LLVM.

The DEBUG_WITH_TYPE macro is also available for situations where you would like to set DEBUG_TYPE, but only
for one specific DEBUG statement. It takes an additional first parameter, which is the type to use. For example, the
preceding example could be written as:

DEBUG_WITH_TYPE("foo", errs() << "'foo' debug type\n");
DEBUG_WITH_TYPE("bar", errs() << "'bar' debug type\n"));
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The Statistic class & -stats option

The llvm/ADT/Statistic.h (doxygen) file provides a class named Statistic that is used as a unified way
to keep track of what the LLVM compiler is doing and how effective various optimizations are. It is useful to see what
optimizations are contributing to making a particular program run faster.

Often you may run your pass on some big program, and you’re interested to see how many times it makes a certain
transformation. Although you can do this with hand inspection, or some ad-hoc method, this is a real pain and not
very useful for big programs. Using the Statistic class makes it very easy to keep track of this information, and
the calculated information is presented in a uniform manner with the rest of the passes being executed.

There are many examples of Statistic uses, but the basics of using it are as follows:

1. Define your statistic like this:

#define DEBUG_TYPE "mypassname" // This goes before any #includes.
STATISTIC(NumXForms, "The # of times I did stuff");

The STATISTIC macro defines a static variable, whose name is specified by the first argument. The pass
name is taken from the DEBUG_TYPE macro, and the description is taken from the second argument. The
variable defined (“NumXForms” in this case) acts like an unsigned integer.

1. Whenever you make a transformation, bump the counter:

++NumXForms; // I did stuff!

That’s all you have to do. To get ‘opt‘ to print out the statistics gathered, use the ‘-stats‘ option:

$ opt -stats -mypassname < program.bc > /dev/null
... statistics output ...

Note that in order to use the ‘-stats‘ option, LLVM must be compiled with assertions enabled.

When running opt on a C file from the SPEC benchmark suite, it gives a report that looks like this:

7646 bitcodewriter - Number of normal instructions
725 bitcodewriter - Number of oversized instructions

129996 bitcodewriter - Number of bitcode bytes written
2817 raise - Number of insts DCEd or constprop'd
3213 raise - Number of cast-of-self removed
5046 raise - Number of expression trees converted
75 raise - Number of other getelementptr's formed

138 raise - Number of load/store peepholes
42 deadtypeelim - Number of unused typenames removed from symtab

392 funcresolve - Number of varargs functions resolved
27 globaldce - Number of global variables removed
2 adce - Number of basic blocks removed

134 cee - Number of branches revectored
49 cee - Number of setcc instruction eliminated

532 gcse - Number of loads removed
2919 gcse - Number of instructions removed
86 indvars - Number of canonical indvars added
87 indvars - Number of aux indvars removed
25 instcombine - Number of dead inst eliminate

434 instcombine - Number of insts combined
248 licm - Number of load insts hoisted
1298 licm - Number of insts hoisted to a loop pre-header

3 licm - Number of insts hoisted to multiple loop preds (bad, no loop
→˓pre-header)
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75 mem2reg - Number of alloca's promoted
1444 cfgsimplify - Number of blocks simplified

Obviously, with so many optimizations, having a unified framework for this stuff is very nice. Making your pass fit
well into the framework makes it more maintainable and useful.

Viewing graphs while debugging code

Several of the important data structures in LLVM are graphs: for example CFGs made out of LLVM BasicBlocks,
CFGs made out of LLVM MachineBasicBlocks, and Instruction Selection DAGs. In many cases, while debugging
various parts of the compiler, it is nice to instantly visualize these graphs.

LLVM provides several callbacks that are available in a debug build to do exactly that. If you call the
Function::viewCFG() method, for example, the current LLVM tool will pop up a window containing
the CFG for the function where each basic block is a node in the graph, and each node contains the in-
structions in the block. Similarly, there also exists Function::viewCFGOnly() (does not include the in-
structions), the MachineFunction::viewCFG() and MachineFunction::viewCFGOnly(), and the
SelectionDAG::viewGraph() methods. Within GDB, for example, you can usually use something like call
DAG.viewGraph() to pop up a window. Alternatively, you can sprinkle calls to these functions in your code in
places you want to debug.

Getting this to work requires a small amount of setup. On Unix systems with X11, install the graphviz toolkit, and
make sure ‘dot’ and ‘gv’ are in your path. If you are running on Mac OS X, download and install the Mac OS X
Graphviz program and add /Applications/Graphviz.app/Contents/MacOS/ (or wherever you install it)
to your path. The programs need not be present when configuring, building or running LLVM and can simply be
installed when needed during an active debug session.

SelectionDAG has been extended to make it easier to locate interesting nodes in large complex graphs. From gdb, if
you call DAG.setGraphColor(node, "color"), then the next call DAG.viewGraph() would high-
light the node in the specified color (choices of colors can be found at colors.) More complex node attributes can be pro-
vided with call DAG.setGraphAttrs(node, "attributes") (choices can be found at Graph attributes.)
If you want to restart and clear all the current graph attributes, then you can call DAG.clearGraphAttrs().

Note that graph visualization features are compiled out of Release builds to reduce file size. This means that you need
a Debug+Asserts or Release+Asserts build to use these features.

Picking the Right Data Structure for a Task

LLVM has a plethora of data structures in the llvm/ADT/ directory, and we commonly use STL data structures. This
section describes the trade-offs you should consider when you pick one.

The first step is a choose your own adventure: do you want a sequential container, a set-like container, or a map-like
container? The most important thing when choosing a container is the algorithmic properties of how you plan to access
the container. Based on that, you should use:

• a map-like container if you need efficient look-up of a value based on another value. Map-like containers also
support efficient queries for containment (whether a key is in the map). Map-like containers generally do not
support efficient reverse mapping (values to keys). If you need that, use two maps. Some map-like containers
also support efficient iteration through the keys in sorted order. Map-like containers are the most expensive sort,
only use them if you need one of these capabilities.

• a set-like container if you need to put a bunch of stuff into a container that automatically eliminates duplicates.
Some set-like containers support efficient iteration through the elements in sorted order. Set-like containers are
more expensive than sequential containers.
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• a sequential container provides the most efficient way to add elements and keeps track of the order they are
added to the collection. They permit duplicates and support efficient iteration, but do not support efficient
look-up based on a key.

• a string container is a specialized sequential container or reference structure that is used for character or byte
arrays.

• a bit container provides an efficient way to store and perform set operations on sets of numeric id’s, while
automatically eliminating duplicates. Bit containers require a maximum of 1 bit for each identifier you want to
store.

Once the proper category of container is determined, you can fine tune the memory use, constant factors, and cache
behaviors of access by intelligently picking a member of the category. Note that constant factors and cache behavior
can be a big deal. If you have a vector that usually only contains a few elements (but could contain many), for example,
it’s much better to use SmallVector than vector. Doing so avoids (relatively) expensive malloc/free calls, which dwarf
the cost of adding the elements to the container.

Sequential Containers (std::vector, std::list, etc)

There are a variety of sequential containers available for you, based on your needs. Pick the first in this section that
will do what you want.

llvm/ADT/ArrayRef.h

The llvm::ArrayRef class is the preferred class to use in an interface that accepts a sequential list of elements
in memory and just reads from them. By taking an ArrayRef, the API can be passed a fixed size array, an
std::vector, an llvm::SmallVector and anything else that is contiguous in memory.

Fixed Size Arrays

Fixed size arrays are very simple and very fast. They are good if you know exactly how many elements you have, or
you have a (low) upper bound on how many you have.

Heap Allocated Arrays

Heap allocated arrays (new[] + delete[]) are also simple. They are good if the number of elements is variable,
if you know how many elements you will need before the array is allocated, and if the array is usually large (if not,
consider a SmallVector). The cost of a heap allocated array is the cost of the new/delete (aka malloc/free). Also note
that if you are allocating an array of a type with a constructor, the constructor and destructors will be run for every
element in the array (re-sizable vectors only construct those elements actually used).

llvm/ADT/TinyPtrVector.h

TinyPtrVector<Type> is a highly specialized collection class that is optimized to avoid allocation in the case
when a vector has zero or one elements. It has two major restrictions: 1) it can only hold values of pointer type, and
2) it cannot hold a null pointer.

Since this container is highly specialized, it is rarely used.
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llvm/ADT/SmallVector.h

SmallVector<Type, N> is a simple class that looks and smells just like vector<Type>: it supports efficient
iteration, lays out elements in memory order (so you can do pointer arithmetic between elements), supports efficient
push_back/pop_back operations, supports efficient random access to its elements, etc.

The advantage of SmallVector is that it allocates space for some number of elements (N) in the object itself. Because
of this, if the SmallVector is dynamically smaller than N, no malloc is performed. This can be a big win in cases where
the malloc/free call is far more expensive than the code that fiddles around with the elements.

This is good for vectors that are “usually small” (e.g. the number of predecessors/successors of a block is usually less
than 8). On the other hand, this makes the size of the SmallVector itself large, so you don’t want to allocate lots of
them (doing so will waste a lot of space). As such, SmallVectors are most useful when on the stack.

SmallVector also provides a nice portable and efficient replacement for alloca.

Note: Prefer to use SmallVectorImpl<T> as a parameter type.

In APIs that don’t care about the “small size” (most?), prefer to use the SmallVectorImpl<T> class, which is
basically just the “vector header” (and methods) without the elements allocated after it. Note that SmallVector<T,
N> inherits from SmallVectorImpl<T> so the conversion is implicit and costs nothing. E.g.

// BAD: Clients cannot pass e.g. SmallVector<Foo, 4>.
hardcodedSmallSize(SmallVector<Foo, 2> &Out);
// GOOD: Clients can pass any SmallVector<Foo, N>.
allowsAnySmallSize(SmallVectorImpl<Foo> &Out);

void someFunc() {
SmallVector<Foo, 8> Vec;
hardcodedSmallSize(Vec); // Error.
allowsAnySmallSize(Vec); // Works.

}

Even though it has “Impl” in the name, this is so widely used that it really isn’t “private to the implementation”
anymore. A name like SmallVectorHeader would be more appropriate.

<vector>

std::vector is well loved and respected. It is useful when SmallVector isn’t: when the size of the vector is often
large (thus the small optimization will rarely be a benefit) or if you will be allocating many instances of the vector
itself (which would waste space for elements that aren’t in the container). vector is also useful when interfacing with
code that expects vectors :).

One worthwhile note about std::vector: avoid code like this:

for ( ... ) {
std::vector<foo> V;
// make use of V.

}

Instead, write this as:

std::vector<foo> V;
for ( ... ) {

// make use of V.

3.7. LLVM Programmer’s Manual 857



LLVM Documentation, Release 3.9

V.clear();
}

Doing so will save (at least) one heap allocation and free per iteration of the loop.

<deque>

std::deque is, in some senses, a generalized version of std::vector. Like std::vector, it provides con-
stant time random access and other similar properties, but it also provides efficient access to the front of the list. It
does not guarantee continuity of elements within memory.

In exchange for this extra flexibility, std::deque has significantly higher constant factor costs than
std::vector. If possible, use std::vector or something cheaper.

<list>

std::list is an extremely inefficient class that is rarely useful. It performs a heap allocation for every element
inserted into it, thus having an extremely high constant factor, particularly for small data types. std::list also
only supports bidirectional iteration, not random access iteration.

In exchange for this high cost, std::list supports efficient access to both ends of the list (like std::deque, but unlike
std::vector or SmallVector). In addition, the iterator invalidation characteristics of std::list are stronger than
that of a vector class: inserting or removing an element into the list does not invalidate iterator or pointers to other
elements in the list.

llvm/ADT/ilist.h

ilist<T> implements an ‘intrusive’ doubly-linked list. It is intrusive, because it requires the element to store and
provide access to the prev/next pointers for the list.

ilist has the same drawbacks as std::list, and additionally requires an ilist_traits implementation for
the element type, but it provides some novel characteristics. In particular, it can efficiently store polymorphic objects,
the traits class is informed when an element is inserted or removed from the list, and ilists are guaranteed to support
a constant-time splice operation.

These properties are exactly what we want for things like Instructions and basic blocks, which is why these are
implemented with ilists.

Related classes of interest are explained in the following subsections:

• ilist_traits

• iplist

• llvm/ADT/ilist_node.h

• Sentinels

llvm/ADT/PackedVector.h

Useful for storing a vector of values using only a few number of bits for each value. Apart from the standard operations
of a vector-like container, it can also perform an ‘or’ set operation.

For example:
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enum State {
None = 0x0,
FirstCondition = 0x1,
SecondCondition = 0x2,
Both = 0x3

};

State get() {
PackedVector<State, 2> Vec1;
Vec1.push_back(FirstCondition);

PackedVector<State, 2> Vec2;
Vec2.push_back(SecondCondition);

Vec1 |= Vec2;
return Vec1[0]; // returns 'Both'.

}

ilist_traits

ilist_traits<T> is ilist<T>‘s customization mechanism. iplist<T> (and consequently ilist<T>) pub-
licly derive from this traits class.

iplist

iplist<T> is ilist<T>‘s base and as such supports a slightly narrower interface. Notably, inserters from T& are
absent.

ilist_traits<T> is a public base of this class and can be used for a wide variety of customizations.

llvm/ADT/ilist_node.h

ilist_node<T> implements the forward and backward links that are expected by the ilist<T> (and analogous
containers) in the default manner.

ilist_node<T>s are meant to be embedded in the node type T, usually T publicly derives from ilist_node<T>.

Sentinels

ilists have another specialty that must be considered. To be a good citizen in the C++ ecosystem, it needs to support
the standard container operations, such as begin and end iterators, etc. Also, the operator--must work correctly
on the end iterator in the case of non-empty ilists.

The only sensible solution to this problem is to allocate a so-called sentinel along with the intrusive list, which serves
as the end iterator, providing the back-link to the last element. However conforming to the C++ convention it is illegal
to operator++ beyond the sentinel and it also must not be dereferenced.

These constraints allow for some implementation freedom to the ilist how to allocate and store the sentinel. The
corresponding policy is dictated by ilist_traits<T>. By default a T gets heap-allocated whenever the need for
a sentinel arises.
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While the default policy is sufficient in most cases, it may break down when T does not provide a default constructor.
Also, in the case of many instances of ilists, the memory overhead of the associated sentinels is wasted. To alleviate
the situation with numerous and voluminous T-sentinels, sometimes a trick is employed, leading to ghostly sentinels.

Ghostly sentinels are obtained by specially-crafted ilist_traits<T> which superpose the sentinel with the
ilist instance in memory. Pointer arithmetic is used to obtain the sentinel, which is relative to the ilist‘s this
pointer. The ilist is augmented by an extra pointer, which serves as the back-link of the sentinel. This is the only
field in the ghostly sentinel which can be legally accessed.

Other Sequential Container options

Other STL containers are available, such as std::string.

There are also various STL adapter classes such as std::queue, std::priority_queue, std::stack, etc.
These provide simplified access to an underlying container but don’t affect the cost of the container itself.

String-like containers

There are a variety of ways to pass around and use strings in C and C++, and LLVM adds a few new options to choose
from. Pick the first option on this list that will do what you need, they are ordered according to their relative cost.

Note that it is generally preferred to not pass strings around as const char*‘s. These have a number of prob-
lems, including the fact that they cannot represent embedded nul (“0”) characters, and do not have a length available
efficiently. The general replacement for ‘const char*‘ is StringRef.

For more information on choosing string containers for APIs, please see Passing Strings.

llvm/ADT/StringRef.h

The StringRef class is a simple value class that contains a pointer to a character and a length, and is quite related
to the ArrayRef class (but specialized for arrays of characters). Because StringRef carries a length with it, it safely
handles strings with embedded nul characters in it, getting the length does not require a strlen call, and it even has very
convenient APIs for slicing and dicing the character range that it represents.

StringRef is ideal for passing simple strings around that are known to be live, either because they are C string literals,
std::string, a C array, or a SmallVector. Each of these cases has an efficient implicit conversion to StringRef, which
doesn’t result in a dynamic strlen being executed.

StringRef has a few major limitations which make more powerful string containers useful:

1. You cannot directly convert a StringRef to a ‘const char*’ because there is no way to add a trailing nul (unlike
the .c_str() method on various stronger classes).

2. StringRef doesn’t own or keep alive the underlying string bytes. As such it can easily lead to dangling pointers,
and is not suitable for embedding in datastructures in most cases (instead, use an std::string or something like
that).

3. For the same reason, StringRef cannot be used as the return value of a method if the method “computes” the
result string. Instead, use std::string.

4. StringRef’s do not allow you to mutate the pointed-to string bytes and it doesn’t allow you to insert or remove
bytes from the range. For editing operations like this, it interoperates with the Twine class.

Because of its strengths and limitations, it is very common for a function to take a StringRef and for a method on an
object to return a StringRef that points into some string that it owns.
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llvm/ADT/Twine.h

The Twine class is used as an intermediary datatype for APIs that want to take a string that can be constructed inline
with a series of concatenations. Twine works by forming recursive instances of the Twine datatype (a simple value
object) on the stack as temporary objects, linking them together into a tree which is then linearized when the Twine is
consumed. Twine is only safe to use as the argument to a function, and should always be a const reference, e.g.:

void foo(const Twine &T);
...
StringRef X = ...
unsigned i = ...
foo(X + "." + Twine(i));

This example forms a string like “blarg.42” by concatenating the values together, and does not form intermediate
strings containing “blarg” or “blarg.”.

Because Twine is constructed with temporary objects on the stack, and because these instances are destroyed at the
end of the current statement, it is an inherently dangerous API. For example, this simple variant contains undefined
behavior and will probably crash:

void foo(const Twine &T);
...
StringRef X = ...
unsigned i = ...
const Twine &Tmp = X + "." + Twine(i);
foo(Tmp);

... because the temporaries are destroyed before the call. That said, Twine’s are much more efficient than intermediate
std::string temporaries, and they work really well with StringRef. Just be aware of their limitations.

llvm/ADT/SmallString.h

SmallString is a subclass of SmallVector that adds some convenience APIs like += that takes StringRef’s. SmallString
avoids allocating memory in the case when the preallocated space is enough to hold its data, and it calls back to general
heap allocation when required. Since it owns its data, it is very safe to use and supports full mutation of the string.

Like SmallVector’s, the big downside to SmallString is their sizeof. While they are optimized for small strings, they
themselves are not particularly small. This means that they work great for temporary scratch buffers on the stack, but
should not generally be put into the heap: it is very rare to see a SmallString as the member of a frequently-allocated
heap data structure or returned by-value.

std::string

The standard C++ std::string class is a very general class that (like SmallString) owns its underlying data.
sizeof(std::string) is very reasonable so it can be embedded into heap data structures and returned by-value. On
the other hand, std::string is highly inefficient for inline editing (e.g. concatenating a bunch of stuff together) and
because it is provided by the standard library, its performance characteristics depend a lot of the host standard library
(e.g. libc++ and MSVC provide a highly optimized string class, GCC contains a really slow implementation).

The major disadvantage of std::string is that almost every operation that makes them larger can allocate memory,
which is slow. As such, it is better to use SmallVector or Twine as a scratch buffer, but then use std::string to persist
the result.
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Set-Like Containers (std::set, SmallSet, SetVector, etc)

Set-like containers are useful when you need to canonicalize multiple values into a single representation. There are
several different choices for how to do this, providing various trade-offs.

A sorted ‘vector’

If you intend to insert a lot of elements, then do a lot of queries, a great approach is to use a vector (or other sequential
container) with std::sort+std::unique to remove duplicates. This approach works really well if your usage pattern has
these two distinct phases (insert then query), and can be coupled with a good choice of sequential container.

This combination provides the several nice properties: the result data is contiguous in memory (good for cache lo-
cality), has few allocations, is easy to address (iterators in the final vector are just indices or pointers), and can be
efficiently queried with a standard binary search (e.g. std::lower_bound; if you want the whole range of ele-
ments comparing equal, use std::equal_range).

llvm/ADT/SmallSet.h

If you have a set-like data structure that is usually small and whose elements are reasonably small, a
SmallSet<Type, N> is a good choice. This set has space for N elements in place (thus, if the set is dynami-
cally smaller than N, no malloc traffic is required) and accesses them with a simple linear search. When the set grows
beyond N elements, it allocates a more expensive representation that guarantees efficient access (for most types, it falls
back to std::set, but for pointers it uses something far better, SmallPtrSet.

The magic of this class is that it handles small sets extremely efficiently, but gracefully handles extremely large sets
without loss of efficiency. The drawback is that the interface is quite small: it supports insertion, queries and erasing,
but does not support iteration.

llvm/ADT/SmallPtrSet.h

SmallPtrSet has all the advantages of SmallSet (and a SmallSet of pointers is transparently implemented
with a SmallPtrSet), but also supports iterators. If more than N insertions are performed, a single quadrati-
cally probed hash table is allocated and grows as needed, providing extremely efficient access (constant time inser-
tion/deleting/queries with low constant factors) and is very stingy with malloc traffic.

Note that, unlike std::set, the iterators of SmallPtrSet are invalidated whenever an insertion occurs. Also, the
values visited by the iterators are not visited in sorted order.

llvm/ADT/StringSet.h

StringSet is a thin wrapper around StringMap<char>, and it allows efficient storage and retrieval of unique strings.

Functionally analogous to SmallSet<StringRef>, StringSet also supports iteration. (The iterator derefer-
ences to a StringMapEntry<char>, so you need to call i->getKey() to access the item of the StringSet.) On
the other hand, StringSet doesn’t support range-insertion and copy-construction, which SmallSet and SmallPtrSet
do support.

llvm/ADT/DenseSet.h

DenseSet is a simple quadratically probed hash table. It excels at supporting small values: it uses a single allocation
to hold all of the pairs that are currently inserted in the set. DenseSet is a great way to unique small values that are not
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simple pointers (use SmallPtrSet for pointers). Note that DenseSet has the same requirements for the value type that
DenseMap has.

llvm/ADT/SparseSet.h

SparseSet holds a small number of objects identified by unsigned keys of moderate size. It uses a lot of memory,
but provides operations that are almost as fast as a vector. Typical keys are physical registers, virtual registers, or
numbered basic blocks.

SparseSet is useful for algorithms that need very fast clear/find/insert/erase and fast iteration over small sets. It is not
intended for building composite data structures.

llvm/ADT/SparseMultiSet.h

SparseMultiSet adds multiset behavior to SparseSet, while retaining SparseSet’s desirable attributes. Like SparseSet,
it typically uses a lot of memory, but provides operations that are almost as fast as a vector. Typical keys are physical
registers, virtual registers, or numbered basic blocks.

SparseMultiSet is useful for algorithms that need very fast clear/find/insert/erase of the entire collection, and iteration
over sets of elements sharing a key. It is often a more efficient choice than using composite data structures (e.g.
vector-of-vectors, map-of-vectors). It is not intended for building composite data structures.

llvm/ADT/FoldingSet.h

FoldingSet is an aggregate class that is really good at uniquing expensive-to-create or polymorphic objects. It is a
combination of a chained hash table with intrusive links (uniqued objects are required to inherit from FoldingSetNode)
that uses SmallVector as part of its ID process.

Consider a case where you want to implement a “getOrCreateFoo” method for a complex object (for example, a node
in the code generator). The client has a description of what it wants to generate (it knows the opcode and all the
operands), but we don’t want to ‘new’ a node, then try inserting it into a set only to find out it already exists, at which
point we would have to delete it and return the node that already exists.

To support this style of client, FoldingSet perform a query with a FoldingSetNodeID (which wraps SmallVector) that
can be used to describe the element that we want to query for. The query either returns the element matching the ID
or it returns an opaque ID that indicates where insertion should take place. Construction of the ID usually does not
require heap traffic.

Because FoldingSet uses intrusive links, it can support polymorphic objects in the set (for example, you can have
SDNode instances mixed with LoadSDNodes). Because the elements are individually allocated, pointers to the ele-
ments are stable: inserting or removing elements does not invalidate any pointers to other elements.

<set>

std::set is a reasonable all-around set class, which is decent at many things but great at nothing. std::set allocates
memory for each element inserted (thus it is very malloc intensive) and typically stores three pointers per element in
the set (thus adding a large amount of per-element space overhead). It offers guaranteed log(n) performance, which
is not particularly fast from a complexity standpoint (particularly if the elements of the set are expensive to compare,
like strings), and has extremely high constant factors for lookup, insertion and removal.

The advantages of std::set are that its iterators are stable (deleting or inserting an element from the set does not affect
iterators or pointers to other elements) and that iteration over the set is guaranteed to be in sorted order. If the elements
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in the set are large, then the relative overhead of the pointers and malloc traffic is not a big deal, but if the elements of
the set are small, std::set is almost never a good choice.

llvm/ADT/SetVector.h

LLVM’s SetVector<Type> is an adapter class that combines your choice of a set-like container along with a
Sequential Container The important property that this provides is efficient insertion with uniquing (duplicate elements
are ignored) with iteration support. It implements this by inserting elements into both a set-like container and the
sequential container, using the set-like container for uniquing and the sequential container for iteration.

The difference between SetVector and other sets is that the order of iteration is guaranteed to match the order of
insertion into the SetVector. This property is really important for things like sets of pointers. Because pointer values
are non-deterministic (e.g. vary across runs of the program on different machines), iterating over the pointers in the
set will not be in a well-defined order.

The drawback of SetVector is that it requires twice as much space as a normal set and has the sum of constant
factors from the set-like container and the sequential container that it uses. Use it only if you need to iterate over the
elements in a deterministic order. SetVector is also expensive to delete elements out of (linear time), unless you use
its “pop_back” method, which is faster.

SetVector is an adapter class that defaults to using std::vector and a size 16 SmallSet for the underlying
containers, so it is quite expensive. However, "llvm/ADT/SetVector.h" also provides a SmallSetVector
class, which defaults to using a SmallVector and SmallSet of a specified size. If you use this, and if your sets
are dynamically smaller than N, you will save a lot of heap traffic.

llvm/ADT/UniqueVector.h

UniqueVector is similar to SetVector but it retains a unique ID for each element inserted into the set. It internally
contains a map and a vector, and it assigns a unique ID for each value inserted into the set.

UniqueVector is very expensive: its cost is the sum of the cost of maintaining both the map and vector, it has high
complexity, high constant factors, and produces a lot of malloc traffic. It should be avoided.

llvm/ADT/ImmutableSet.h

ImmutableSet is an immutable (functional) set implementation based on an AVL tree. Adding or removing elements
is done through a Factory object and results in the creation of a new ImmutableSet object. If an ImmutableSet already
exists with the given contents, then the existing one is returned; equality is compared with a FoldingSetNodeID. The
time and space complexity of add or remove operations is logarithmic in the size of the original set.

There is no method for returning an element of the set, you can only check for membership.

Other Set-Like Container Options

The STL provides several other options, such as std::multiset and the various “hash_set” like containers (whether
from C++ TR1 or from the SGI library). We never use hash_set and unordered_set because they are generally very
expensive (each insertion requires a malloc) and very non-portable.

std::multiset is useful if you’re not interested in elimination of duplicates, but has all the drawbacks of std::set. A
sorted vector (where you don’t delete duplicate entries) or some other approach is almost always better.
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Map-Like Containers (std::map, DenseMap, etc)

Map-like containers are useful when you want to associate data to a key. As usual, there are a lot of different ways to
do this. :)

A sorted ‘vector’

If your usage pattern follows a strict insert-then-query approach, you can trivially use the same approach as sorted
vectors for set-like containers. The only difference is that your query function (which uses std::lower_bound to get
efficient log(n) lookup) should only compare the key, not both the key and value. This yields the same advantages as
sorted vectors for sets.

llvm/ADT/StringMap.h

Strings are commonly used as keys in maps, and they are difficult to support efficiently: they are variable length,
inefficient to hash and compare when long, expensive to copy, etc. StringMap is a specialized container designed to
cope with these issues. It supports mapping an arbitrary range of bytes to an arbitrary other object.

The StringMap implementation uses a quadratically-probed hash table, where the buckets store a pointer to the heap
allocated entries (and some other stuff). The entries in the map must be heap allocated because the strings are variable
length. The string data (key) and the element object (value) are stored in the same allocation with the string data
immediately after the element object. This container guarantees the “(char*)(&Value+1)” points to the key
string for a value.

The StringMap is very fast for several reasons: quadratic probing is very cache efficient for lookups, the hash value
of strings in buckets is not recomputed when looking up an element, StringMap rarely has to touch the memory for
unrelated objects when looking up a value (even when hash collisions happen), hash table growth does not recompute
the hash values for strings already in the table, and each pair in the map is store in a single allocation (the string data
is stored in the same allocation as the Value of a pair).

StringMap also provides query methods that take byte ranges, so it only ever copies a string if a value is inserted into
the table.

StringMap iteratation order, however, is not guaranteed to be deterministic, so any uses which require that should
instead use a std::map.

llvm/ADT/IndexedMap.h

IndexedMap is a specialized container for mapping small dense integers (or values that can be mapped to small dense
integers) to some other type. It is internally implemented as a vector with a mapping function that maps the keys to
the dense integer range.

This is useful for cases like virtual registers in the LLVM code generator: they have a dense mapping that is offset by
a compile-time constant (the first virtual register ID).

llvm/ADT/DenseMap.h

DenseMap is a simple quadratically probed hash table. It excels at supporting small keys and values: it uses a single
allocation to hold all of the pairs that are currently inserted in the map. DenseMap is a great way to map pointers to
pointers, or map other small types to each other.

There are several aspects of DenseMap that you should be aware of, however. The iterators in a DenseMap are
invalidated whenever an insertion occurs, unlike map. Also, because DenseMap allocates space for a large number of
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key/value pairs (it starts with 64 by default), it will waste a lot of space if your keys or values are large. Finally, you
must implement a partial specialization of DenseMapInfo for the key that you want, if it isn’t already supported. This
is required to tell DenseMap about two special marker values (which can never be inserted into the map) that it needs
internally.

DenseMap’s find_as() method supports lookup operations using an alternate key type. This is useful in cases where
the normal key type is expensive to construct, but cheap to compare against. The DenseMapInfo is responsible for
defining the appropriate comparison and hashing methods for each alternate key type used.

llvm/IR/ValueMap.h

ValueMap is a wrapper around a DenseMap mapping Value*s (or subclasses) to another type. When a Value is
deleted or RAUW’ed, ValueMap will update itself so the new version of the key is mapped to the same value, just as
if the key were a WeakVH. You can configure exactly how this happens, and what else happens on these two events,
by passing a Config parameter to the ValueMap template.

llvm/ADT/IntervalMap.h

IntervalMap is a compact map for small keys and values. It maps key intervals instead of single keys, and it will
automatically coalesce adjacent intervals. When the map only contains a few intervals, they are stored in the map
object itself to avoid allocations.

The IntervalMap iterators are quite big, so they should not be passed around as STL iterators. The heavyweight
iterators allow a smaller data structure.

<map>

std::map has similar characteristics to std::set: it uses a single allocation per pair inserted into the map, it offers log(n)
lookup with an extremely large constant factor, imposes a space penalty of 3 pointers per pair in the map, etc.

std::map is most useful when your keys or values are very large, if you need to iterate over the collection in sorted
order, or if you need stable iterators into the map (i.e. they don’t get invalidated if an insertion or deletion of another
element takes place).

llvm/ADT/MapVector.h

MapVector<KeyT,ValueT> provides a subset of the DenseMap interface. The main difference is that the iteration
order is guaranteed to be the insertion order, making it an easy (but somewhat expensive) solution for non-deterministic
iteration over maps of pointers.

It is implemented by mapping from key to an index in a vector of key,value pairs. This provides fast lookup and
iteration, but has two main drawbacks: the key is stored twice and removing elements takes linear time. If it is
necessary to remove elements, it’s best to remove them in bulk using remove_if().

llvm/ADT/IntEqClasses.h

IntEqClasses provides a compact representation of equivalence classes of small integers. Initially, each integer in the
range 0..n-1 has its own equivalence class. Classes can be joined by passing two class representatives to the join(a, b)
method. Two integers are in the same class when findLeader() returns the same representative.
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Once all equivalence classes are formed, the map can be compressed so each integer 0..n-1 maps to an equivalence
class number in the range 0..m-1, where m is the total number of equivalence classes. The map must be uncompressed
before it can be edited again.

llvm/ADT/ImmutableMap.h

ImmutableMap is an immutable (functional) map implementation based on an AVL tree. Adding or removing elements
is done through a Factory object and results in the creation of a new ImmutableMap object. If an ImmutableMap
already exists with the given key set, then the existing one is returned; equality is compared with a FoldingSetNodeID.
The time and space complexity of add or remove operations is logarithmic in the size of the original map.

Other Map-Like Container Options

The STL provides several other options, such as std::multimap and the various “hash_map” like containers (whether
from C++ TR1 or from the SGI library). We never use hash_set and unordered_set because they are generally very
expensive (each insertion requires a malloc) and very non-portable.

std::multimap is useful if you want to map a key to multiple values, but has all the drawbacks of std::map. A sorted
vector or some other approach is almost always better.

Bit storage containers (BitVector, SparseBitVector)

Unlike the other containers, there are only two bit storage containers, and choosing when to use each is relatively
straightforward.

One additional option is std::vector<bool>: we discourage its use for two reasons 1) the implementation in
many common compilers (e.g. commonly available versions of GCC) is extremely inefficient and 2) the C++ standards
committee is likely to deprecate this container and/or change it significantly somehow. In any case, please don’t use it.

BitVector

The BitVector container provides a dynamic size set of bits for manipulation. It supports individual bit setting/testing,
as well as set operations. The set operations take time O(size of bitvector), but operations are performed one word at a
time, instead of one bit at a time. This makes the BitVector very fast for set operations compared to other containers.
Use the BitVector when you expect the number of set bits to be high (i.e. a dense set).

SmallBitVector

The SmallBitVector container provides the same interface as BitVector, but it is optimized for the case where only a
small number of bits, less than 25 or so, are needed. It also transparently supports larger bit counts, but slightly less
efficiently than a plain BitVector, so SmallBitVector should only be used when larger counts are rare.

At this time, SmallBitVector does not support set operations (and, or, xor), and its operator[] does not provide an
assignable lvalue.

SparseBitVector

The SparseBitVector container is much like BitVector, with one major difference: Only the bits that are set, are stored.
This makes the SparseBitVector much more space efficient than BitVector when the set is sparse, as well as making
set operations O(number of set bits) instead of O(size of universe). The downside to the SparseBitVector is that
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setting and testing of random bits is O(N), and on large SparseBitVectors, this can be slower than BitVector. In our
implementation, setting or testing bits in sorted order (either forwards or reverse) is O(1) worst case. Testing and
setting bits within 128 bits (depends on size) of the current bit is also O(1). As a general statement, testing/setting bits
in a SparseBitVector is O(distance away from last set bit).

Helpful Hints for Common Operations

This section describes how to perform some very simple transformations of LLVM code. This is meant to give
examples of common idioms used, showing the practical side of LLVM transformations.

Because this is a “how-to” section, you should also read about the main classes that you will be working with. The
Core LLVM Class Hierarchy Reference contains details and descriptions of the main classes that you should know
about.

Basic Inspection and Traversal Routines

The LLVM compiler infrastructure have many different data structures that may be traversed. Following the example
of the C++ standard template library, the techniques used to traverse these various data structures are all basically the
same. For a enumerable sequence of values, the XXXbegin() function (or method) returns an iterator to the start of
the sequence, the XXXend() function returns an iterator pointing to one past the last valid element of the sequence,
and there is some XXXiterator data type that is common between the two operations.

Because the pattern for iteration is common across many different aspects of the program representation, the standard
template library algorithms may be used on them, and it is easier to remember how to iterate. First we show a few
common examples of the data structures that need to be traversed. Other data structures are traversed in very similar
ways.

Iterating over the BasicBlock in a Function

It’s quite common to have a Function instance that you’d like to transform in some way; in particular, you’d
like to manipulate its BasicBlocks. To facilitate this, you’ll need to iterate over all of the BasicBlocks that
constitute the Function. The following is an example that prints the name of a BasicBlock and the number of
Instructions it contains:

// func is a pointer to a Function instance
for (Function::iterator i = func->begin(), e = func->end(); i != e; ++i)
// Print out the name of the basic block if it has one, and then the
// number of instructions that it contains
errs() << "Basic block (name=" << i->getName() << ") has "

<< i->size() << " instructions.\n";

Note that i can be used as if it were a pointer for the purposes of invoking member functions of the Instruction
class. This is because the indirection operator is overloaded for the iterator classes. In the above code, the expression
i->size() is exactly equivalent to (*i).size() just like you’d expect.

Iterating over the Instruction in a BasicBlock

Just like when dealing with BasicBlocks in Functions, it’s easy to iterate over the individual instructions that
make up BasicBlocks. Here’s a code snippet that prints out each instruction in a BasicBlock:
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// blk is a pointer to a BasicBlock instance
for (BasicBlock::iterator i = blk->begin(), e = blk->end(); i != e; ++i)

// The next statement works since operator<<(ostream&,...)
// is overloaded for Instruction&
errs() << *i << "\n";

However, this isn’t really the best way to print out the contents of a BasicBlock! Since the ostream operators are
overloaded for virtually anything you’ll care about, you could have just invoked the print routine on the basic block
itself: errs() << *blk << "\n";.

Iterating over the Instruction in a Function

If you’re finding that you commonly iterate over a Function‘s BasicBlocks and then that BasicBlock‘s
Instructions, InstIterator should be used instead. You’ll need to include llvm/IR/InstIterator.h
(doxygen) and then instantiate InstIterators explicitly in your code. Here’s a small example that shows how to
dump all instructions in a function to the standard error stream:

#include "llvm/IR/InstIterator.h"

// F is a pointer to a Function instance
for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
errs() << *I << "\n";

Easy, isn’t it? You can also use InstIterators to fill a work list with its initial contents. For example, if you
wanted to initialize a work list to contain all instructions in a Function F, all you would need to do is something
like:

std::set<Instruction*> worklist;
// or better yet, SmallPtrSet<Instruction*, 64> worklist;

for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
worklist.insert(&*I);

The STL set worklist would now contain all instructions in the Function pointed to by F.

Turning an iterator into a class pointer (and vice-versa)

Sometimes, it’ll be useful to grab a reference (or pointer) to a class instance when all you’ve got at hand is an it-
erator. Well, extracting a reference or a pointer from an iterator is very straight-forward. Assuming that i is a
BasicBlock::iterator and j is a BasicBlock::const_iterator:

Instruction& inst = *i; // Grab reference to instruction reference
Instruction* pinst = &*i; // Grab pointer to instruction reference
const Instruction& inst = *j;

However, the iterators you’ll be working with in the LLVM framework are special: they will automatically convert
to a ptr-to-instance type whenever they need to. Instead of dereferencing the iterator and then taking the address of
the result, you can simply assign the iterator to the proper pointer type and you get the dereference and address-of
operation as a result of the assignment (behind the scenes, this is a result of overloading casting mechanisms). Thus
the second line of the last example,

Instruction *pinst = &*i;

is semantically equivalent to
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Instruction *pinst = i;

It’s also possible to turn a class pointer into the corresponding iterator, and this is a constant time operation (very
efficient). The following code snippet illustrates use of the conversion constructors provided by LLVM iterators. By
using these, you can explicitly grab the iterator of something without actually obtaining it via iteration over some
structure:

void printNextInstruction(Instruction* inst) {
BasicBlock::iterator it(inst);
++it; // After this line, it refers to the instruction after *inst
if (it != inst->getParent()->end()) errs() << *it << "\n";

}

Unfortunately, these implicit conversions come at a cost; they prevent these iterators from conforming to standard
iterator conventions, and thus from being usable with standard algorithms and containers. For example, they prevent
the following code, where B is a BasicBlock, from compiling:

llvm::SmallVector<llvm::Instruction *, 16>(B->begin(), B->end());

Because of this, these implicit conversions may be removed some day, and operator* changed to return a pointer
instead of a reference.

Finding call sites: a slightly more complex example

Say that you’re writing a FunctionPass and would like to count all the locations in the entire module (that is, across
every Function) where a certain function (i.e., some Function *) is already in scope. As you’ll learn later, you
may want to use an InstVisitor to accomplish this in a much more straight-forward manner, but this example will
allow us to explore how you’d do it if you didn’t have InstVisitor around. In pseudo-code, this is what we want
to do:

initialize callCounter to zero
for each Function f in the Module

for each BasicBlock b in f
for each Instruction i in b

if (i is a CallInst and calls the given function)
increment callCounter

And the actual code is (remember, because we’re writing a FunctionPass, our FunctionPass-derived class
simply has to override the runOnFunction method):

Function* targetFunc = ...;

class OurFunctionPass : public FunctionPass {
public:
OurFunctionPass(): callCounter(0) { }

virtual runOnFunction(Function& F) {
for (Function::iterator b = F.begin(), be = F.end(); b != be; ++b) {
for (BasicBlock::iterator i = b->begin(), ie = b->end(); i != ie; ++i) {
if (CallInst* callInst = dyn_cast<CallInst>(&*i)) {
// We know we've encountered a call instruction, so we
// need to determine if it's a call to the
// function pointed to by m_func or not.
if (callInst->getCalledFunction() == targetFunc)
++callCounter;
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}
}

}
}

private:
unsigned callCounter;

};

Treating calls and invokes the same way

You may have noticed that the previous example was a bit oversimplified in that it did not deal with call sites gen-
erated by ‘invoke’ instructions. In this, and in other situations, you may find that you want to treat CallInsts
and InvokeInsts the same way, even though their most-specific common base class is Instruction, which
includes lots of less closely-related things. For these cases, LLVM provides a handy wrapper class called CallSite
(doxygen) It is essentially a wrapper around an Instruction pointer, with some methods that provide functionality
common to CallInsts and InvokeInsts.

This class has “value semantics”: it should be passed by value, not by reference and it should not be dynamically
allocated or deallocated using operator new or operator delete. It is efficiently copyable, assignable and
constructable, with costs equivalents to that of a bare pointer. If you look at its definition, it has only a single pointer
member.

Iterating over def-use & use-def chains

Frequently, we might have an instance of the Value class (doxygen) and we want to determine which User s use
the Value. The list of all Users of a particular Value is called a def-use chain. For example, let’s say we have
a Function* named F to a particular function foo. Finding all of the instructions that use foo is as simple as
iterating over the def-use chain of F:

Function *F = ...;

for (User *U : F->users()) {
if (Instruction *Inst = dyn_cast<Instruction>(U)) {
errs() << "F is used in instruction:\n";
errs() << *Inst << "\n";

}

Alternatively, it’s common to have an instance of the User Class (doxygen) and need to know what Values are
used by it. The list of all Values used by a User is known as a use-def chain. Instances of class Instruction
are common User s, so we might want to iterate over all of the values that a particular instruction uses (that is, the
operands of the particular Instruction):

Instruction *pi = ...;

for (Use &U : pi->operands()) {
Value *v = U.get();
// ...

}

Declaring objects as const is an important tool of enforcing mutation free algorithms (such as analyses,
etc.). For this purpose above iterators come in constant flavors as Value::const_use_iterator and
Value::const_op_iterator. They automatically arise when calling use/op_begin() on const
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Value*s or const User*s respectively. Upon dereferencing, they return const Use*s. Otherwise the above
patterns remain unchanged.

Iterating over predecessors & successors of blocks

Iterating over the predecessors and successors of a block is quite easy with the routines defined in "llvm/IR/CFG.
h". Just use code like this to iterate over all predecessors of BB:

#include "llvm/Support/CFG.h"
BasicBlock *BB = ...;

for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
BasicBlock *Pred = *PI;
// ...

}

Similarly, to iterate over successors use succ_iterator/succ_begin/succ_end.

Making simple changes

There are some primitive transformation operations present in the LLVM infrastructure that are worth knowing about.
When performing transformations, it’s fairly common to manipulate the contents of basic blocks. This section de-
scribes some of the common methods for doing so and gives example code.

Creating and inserting new Instructions

Instantiating Instructions

Creation of Instructions is straight-forward: simply call the constructor for the kind of instruction to instantiate
and provide the necessary parameters. For example, an AllocaInst only requires a (const-ptr-to) Type. Thus:

AllocaInst* ai = new AllocaInst(Type::Int32Ty);

will create an AllocaInst instance that represents the allocation of one integer in the current stack frame, at run
time. Each Instruction subclass is likely to have varying default parameters which change the semantics of the
instruction, so refer to the doxygen documentation for the subclass of Instruction that you’re interested in instantiating.

Naming values

It is very useful to name the values of instructions when you’re able to, as this facilitates the debugging of your transfor-
mations. If you end up looking at generated LLVM machine code, you definitely want to have logical names associated
with the results of instructions! By supplying a value for the Name (default) parameter of the Instruction con-
structor, you associate a logical name with the result of the instruction’s execution at run time. For example, say that
I’m writing a transformation that dynamically allocates space for an integer on the stack, and that integer is going to
be used as some kind of index by some other code. To accomplish this, I place an AllocaInst at the first point in
the first BasicBlock of some Function, and I’m intending to use it within the same Function. I might do:

AllocaInst* pa = new AllocaInst(Type::Int32Ty, 0, "indexLoc");

where indexLoc is now the logical name of the instruction’s execution value, which is a pointer to an integer on the
run time stack.

Inserting instructions
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There are essentially three ways to insert an Instruction into an existing sequence of instructions that form a
BasicBlock:

• Insertion into an explicit instruction list

Given a BasicBlock* pb, an Instruction* pi within that BasicBlock, and a newly-created in-
struction we wish to insert before *pi, we do the following:

BasicBlock *pb = ...;
Instruction *pi = ...;
Instruction *newInst = new Instruction(...);

pb->getInstList().insert(pi, newInst); // Inserts newInst before pi in pb

Appending to the end of a BasicBlock is so common that the Instruction class and Instruction-
derived classes provide constructors which take a pointer to a BasicBlock to be appended to. For example
code that looked like:

BasicBlock *pb = ...;
Instruction *newInst = new Instruction(...);

pb->getInstList().push_back(newInst); // Appends newInst to pb

becomes:

BasicBlock *pb = ...;
Instruction *newInst = new Instruction(..., pb);

which is much cleaner, especially if you are creating long instruction streams.

• Insertion into an implicit instruction list

Instruction instances that are already in BasicBlocks are implicitly associated with an existing instruc-
tion list: the instruction list of the enclosing basic block. Thus, we could have accomplished the same thing as
the above code without being given a BasicBlock by doing:

Instruction *pi = ...;
Instruction *newInst = new Instruction(...);

pi->getParent()->getInstList().insert(pi, newInst);

In fact, this sequence of steps occurs so frequently that the Instruction class and Instruction-derived
classes provide constructors which take (as a default parameter) a pointer to an Instruction which the
newly-created Instruction should precede. That is, Instruction constructors are capable of inserting
the newly-created instance into the BasicBlock of a provided instruction, immediately before that instruction.
Using an Instruction constructor with a insertBefore (default) parameter, the above code becomes:

Instruction* pi = ...;
Instruction* newInst = new Instruction(..., pi);

which is much cleaner, especially if you’re creating a lot of instructions and adding them to BasicBlocks.

• Insertion using an instance of IRBuilder

Inserting several Instructions can be quite laborious using the previous methods. The IRBuilder is a
convenience class that can be used to add several instructions to the end of a BasicBlock or before a particular
Instruction. It also supports constant folding and renaming named registers (see IRBuilder‘s template
arguments).
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The example below demonstrates a very simple use of the IRBuilder where three instructions are inserted
before the instruction pi. The first two instructions are Call instructions and third instruction multiplies the
return value of the two calls.

Instruction *pi = ...;
IRBuilder<> Builder(pi);
CallInst* callOne = Builder.CreateCall(...);
CallInst* callTwo = Builder.CreateCall(...);
Value* result = Builder.CreateMul(callOne, callTwo);

The example below is similar to the above example except that the created IRBuilder inserts instructions at
the end of the BasicBlock pb.

BasicBlock *pb = ...;
IRBuilder<> Builder(pb);
CallInst* callOne = Builder.CreateCall(...);
CallInst* callTwo = Builder.CreateCall(...);
Value* result = Builder.CreateMul(callOne, callTwo);

See Kaleidoscope: Code generation to LLVM IR for a practical use of the IRBuilder.

Deleting Instructions

Deleting an instruction from an existing sequence of instructions that form a BasicBlock is very straight-forward: just
call the instruction’s eraseFromParent() method. For example:

Instruction *I = .. ;
I->eraseFromParent();

This unlinks the instruction from its containing basic block and deletes it. If you’d just like to unlink the instruction
from its containing basic block but not delete it, you can use the removeFromParent() method.

Replacing an Instruction with another Value

Replacing individual instructions

Including “llvm/Transforms/Utils/BasicBlockUtils.h” permits use of two very useful replace functions:
ReplaceInstWithValue and ReplaceInstWithInst.

Deleting Instructions

• ReplaceInstWithValue

This function replaces all uses of a given instruction with a value, and then removes the original instruction. The
following example illustrates the replacement of the result of a particular AllocaInst that allocates memory
for a single integer with a null pointer to an integer.

AllocaInst* instToReplace = ...;
BasicBlock::iterator ii(instToReplace);

ReplaceInstWithValue(instToReplace->getParent()->getInstList(), ii,

→˓Constant::getNullValue(PointerType::getUnqual(Type::Int32Ty)));
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• ReplaceInstWithInst

This function replaces a particular instruction with another instruction, inserting the new instruction into the
basic block at the location where the old instruction was, and replacing any uses of the old instruction with the
new instruction. The following example illustrates the replacement of one AllocaInst with another.

AllocaInst* instToReplace = ...;
BasicBlock::iterator ii(instToReplace);

ReplaceInstWithInst(instToReplace->getParent()->getInstList(), ii,
new AllocaInst(Type::Int32Ty, 0, "ptrToReplacedInt"));

Replacing multiple uses of Users and Values

You can use Value::replaceAllUsesWith and User::replaceUsesOfWith to change more than one
use at a time. See the doxygen documentation for the Value Class and User Class, respectively, for more information.

Deleting GlobalVariables

Deleting a global variable from a module is just as easy as deleting an Instruction. First, you must have a pointer to
the global variable that you wish to delete. You use this pointer to erase it from its parent, the module. For example:

GlobalVariable *GV = .. ;

GV->eraseFromParent();

How to Create Types

In generating IR, you may need some complex types. If you know these types statically, you
can use TypeBuilder<...>::get(), defined in llvm/Support/TypeBuilder.h, to retrieve them.
TypeBuilder has two forms depending on whether you’re building types for cross-compilation or native library
use. TypeBuilder<T, true> requires that T be independent of the host environment, meaning that it’s built
out of types from the llvm::types (doxygen) namespace and pointers, functions, arrays, etc. built of those.
TypeBuilder<T, false> additionally allows native C types whose size may depend on the host compiler. For
example,

FunctionType *ft = TypeBuilder<types::i<8>(types::i<32>*), true>::get();

is easier to read and write than the equivalent

std::vector<const Type*> params;
params.push_back(PointerType::getUnqual(Type::Int32Ty));
FunctionType *ft = FunctionType::get(Type::Int8Ty, params, false);

See the class comment for more details.

Threads and LLVM

This section describes the interaction of the LLVM APIs with multithreading, both on the part of client applications,
and in the JIT, in the hosted application.
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Note that LLVM’s support for multithreading is still relatively young. Up through version 2.5, the execution of
threaded hosted applications was supported, but not threaded client access to the APIs. While this use case is now
supported, clients must adhere to the guidelines specified below to ensure proper operation in multithreaded mode.

Note that, on Unix-like platforms, LLVM requires the presence of GCC’s atomic intrinsics in order to support threaded
operation. If you need a multhreading-capable LLVM on a platform without a suitably modern system compiler,
consider compiling LLVM and LLVM-GCC in single-threaded mode, and using the resultant compiler to build a copy
of LLVM with multithreading support.

Ending Execution with llvm_shutdown()

When you are done using the LLVM APIs, you should call llvm_shutdown() to deallocate memory used for
internal structures.

Lazy Initialization with ManagedStatic

ManagedStatic is a utility class in LLVM used to implement static initialization of static resources, such as the
global type tables. In a single-threaded environment, it implements a simple lazy initialization scheme. When LLVM
is compiled with support for multi-threading, however, it uses double-checked locking to implement thread-safe lazy
initialization.

Achieving Isolation with LLVMContext

LLVMContext is an opaque class in the LLVM API which clients can use to operate multiple, isolated instances of
LLVM concurrently within the same address space. For instance, in a hypothetical compile-server, the compilation of
an individual translation unit is conceptually independent from all the others, and it would be desirable to be able to
compile incoming translation units concurrently on independent server threads. Fortunately, LLVMContext exists to
enable just this kind of scenario!

Conceptually, LLVMContext provides isolation. Every LLVM entity (Modules, Values, Types, Constants,
etc.) in LLVM’s in-memory IR belongs to an LLVMContext. Entities in different contexts cannot interact with
each other: Modules in different contexts cannot be linked together, Functions cannot be added to Modules in
different contexts, etc. What this means is that is is safe to compile on multiple threads simultaneously, as long as no
two threads operate on entities within the same context.

In practice, very few places in the API require the explicit specification of a LLVMContext, other than the Type
creation/lookup APIs. Because every Type carries a reference to its owning context, most other entities can determine
what context they belong to by looking at their own Type. If you are adding new entities to LLVM IR, please try to
maintain this interface design.

Threads and the JIT

LLVM’s “eager” JIT compiler is safe to use in threaded programs. Multiple threads can call
ExecutionEngine::getPointerToFunction() or ExecutionEngine::runFunction() concur-
rently, and multiple threads can run code output by the JIT concurrently. The user must still ensure that only one
thread accesses IR in a given LLVMContext while another thread might be modifying it. One way to do that is
to always hold the JIT lock while accessing IR outside the JIT (the JIT modifies the IR by adding CallbackVHs).
Another way is to only call getPointerToFunction() from the LLVMContext‘s thread.

When the JIT is configured to compile lazily (using ExecutionEngine::DisableLazyCompilation(false)),
there is currently a race condition in updating call sites after a function is lazily-jitted. It’s still possible to use the lazy
JIT in a threaded program if you ensure that only one thread at a time can call any particular lazy stub and that the JIT
lock guards any IR access, but we suggest using only the eager JIT in threaded programs.
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Advanced Topics

This section describes some of the advanced or obscure API’s that most clients do not need to be aware of. These
API’s tend manage the inner workings of the LLVM system, and only need to be accessed in unusual circumstances.

The ValueSymbolTable class

The ValueSymbolTable (doxygen) class provides a symbol table that the Function and Module classes use for
naming value definitions. The symbol table can provide a name for any Value.

Note that the SymbolTable class should not be directly accessed by most clients. It should only be used when
iteration over the symbol table names themselves are required, which is very special purpose. Note that not all LLVM
Values have names, and those without names (i.e. they have an empty name) do not exist in the symbol table.

Symbol tables support iteration over the values in the symbol table with begin/end/iterator and supports
querying to see if a specific name is in the symbol table (with lookup). The ValueSymbolTable class exposes
no public mutator methods, instead, simply call setName on a value, which will autoinsert it into the appropriate
symbol table.

The User and owned Use classes’ memory layout

The User (doxygen) class provides a basis for expressing the ownership of User towards other Value instances. The
Use (doxygen) helper class is employed to do the bookkeeping and to facilitate O(1) addition and removal.

Interaction and relationship between User and Use objects

A subclass of User can choose between incorporating its Use objects or refer to them out-of-line by means of a
pointer. A mixed variant (some Use s inline others hung off) is impractical and breaks the invariant that the Use
objects belonging to the same User form a contiguous array.

We have 2 different layouts in the User (sub)classes:

• Layout a)

The Use object(s) are inside (resp. at fixed offset) of the User object and there are a fixed number of them.

• Layout b)

The Use object(s) are referenced by a pointer to an array from the User object and there may be a variable
number of them.

As of v2.4 each layout still possesses a direct pointer to the start of the array of Uses. Though not mandatory for
layout a), we stick to this redundancy for the sake of simplicity. The User object also stores the number of Use
objects it has. (Theoretically this information can also be calculated given the scheme presented below.)

Special forms of allocation operators (operator new) enforce the following memory layouts:

• Layout a) is modelled by prepending the User object by the Use[] array.

...---.---.---.---.-------...
| P | P | P | P | User

'''---'---'---'---'-------'''

• Layout b) is modelled by pointing at the Use[] array.
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.-------...
| User
'-------'''

|
v
.---.---.---.---...
| P | P | P | P |
'---'---'---'---'''

(In the above figures ‘P‘ stands for the Use** that is stored in each Use object in the member Use::Prev )

The waymarking algorithm

Since the Use objects are deprived of the direct (back)pointer to their User objects, there must be a fast and exact
method to recover it. This is accomplished by the following scheme:

A bit-encoding in the 2 LSBits (least significant bits) of the Use::Prev allows to find the start of the User object:

• 00 — binary digit 0

• 01 — binary digit 1

• 10 — stop and calculate (s)

• 11 — full stop (S)

Given a Use*, all we have to do is to walk till we get a stop and we either have a User immediately behind or we
have to walk to the next stop picking up digits and calculating the offset:

.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.----------------
| 1 | s | 1 | 0 | 1 | 0 | s | 1 | 1 | 0 | s | 1 | 1 | s | 1 | S | User (or User*)
'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'----------------

|+15 |+10 |+6 |+3 |+1
| | | | | __>
| | | | __________>
| | | ______________________>
| | ______________________________________>
| __________________________________________________________>

Only the significant number of bits need to be stored between the stops, so that the worst case is 20 memory accesses
when there are 1000 Use objects associated with a User.

Reference implementation

The following literate Haskell fragment demonstrates the concept:

> import Test.QuickCheck
>
> digits :: Int -> [Char] -> [Char]
> digits 0 acc = '0' : acc
> digits 1 acc = '1' : acc
> digits n acc = digits (n `div` 2) $ digits (n `mod` 2) acc
>
> dist :: Int -> [Char] -> [Char]
> dist 0 [] = ['S']
> dist 0 acc = acc
> dist 1 acc = let r = dist 0 acc in 's' : digits (length r) r
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> dist n acc = dist (n - 1) $ dist 1 acc
>
> takeLast n ss = reverse $ take n $ reverse ss
>
> test = takeLast 40 $ dist 20 []
>

Printing <test> gives: "1s100000s11010s10100s1111s1010s110s11s1S"

The reverse algorithm computes the length of the string just by examining a certain prefix:

> pref :: [Char] -> Int
> pref "S" = 1
> pref ('s':'1':rest) = decode 2 1 rest
> pref (_:rest) = 1 + pref rest
>
> decode walk acc ('0':rest) = decode (walk + 1) (acc * 2) rest
> decode walk acc ('1':rest) = decode (walk + 1) (acc * 2 + 1) rest
> decode walk acc _ = walk + acc
>

Now, as expected, printing <pref test> gives 40.

We can quickCheck this with following property:

> testcase = dist 2000 []
> testcaseLength = length testcase
>
> identityProp n = n > 0 && n <= testcaseLength ==> length arr == pref arr
> where arr = takeLast n testcase
>

As expected <quickCheck identityProp> gives:

*Main> quickCheck identityProp
OK, passed 100 tests.

Let’s be a bit more exhaustive:

>
> deepCheck p = check (defaultConfig { configMaxTest = 500 }) p
>

And here is the result of <deepCheck identityProp>:

*Main> deepCheck identityProp
OK, passed 500 tests.

Tagging considerations

To maintain the invariant that the 2 LSBits of each Use** in Use never change after being set up, setters of
Use::Prev must re-tag the new Use** on every modification. Accordingly getters must strip the tag bits.

For layout b) instead of the User we find a pointer (User* with LSBit set). Following this pointer brings us to
the User. A portable trick ensures that the first bytes of User (if interpreted as a pointer) never has the LSBit set.
(Portability is relying on the fact that all known compilers place the vptr in the first word of the instances.)
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Designing Type Hiercharies and Polymorphic Interfaces

There are two different design patterns that tend to result in the use of virtual dispatch for methods in a type hierarchy
in C++ programs. The first is a genuine type hierarchy where different types in the hierarchy model a specific subset
of the functionality and semantics, and these types nest strictly within each other. Good examples of this can be seen
in the Value or Type type hierarchies.

A second is the desire to dispatch dynamically across a collection of polymorphic interface implementations. This
latter use case can be modeled with virtual dispatch and inheritance by defining an abstract interface base class which
all implementations derive from and override. However, this implementation strategy forces an “is-a” relationship to
exist that is not actually meaningful. There is often not some nested hierarchy of useful generalizations which code
might interact with and move up and down. Instead, there is a singular interface which is dispatched across a range of
implementations.

The preferred implementation strategy for the second use case is that of generic programming (sometimes called
“compile-time duck typing” or “static polymorphism”). For example, a template over some type parameter T can be
instantiated across any particular implementation that conforms to the interface or concept. A good example here is the
highly generic properties of any type which models a node in a directed graph. LLVM models these primarily through
templates and generic programming. Such templates include the LoopInfoBase and DominatorTreeBase.
When this type of polymorphism truly needs dynamic dispatch you can generalize it using a technique called
concept-based polymorphism. This pattern emulates the interfaces and behaviors of templates using a very limited
form of virtual dispatch for type erasure inside its implementation. You can find examples of this technique in the
PassManager.h system, and there is a more detailed introduction to it by Sean Parent in several of his talks and
papers:

1. Inheritance Is The Base Class of Evil - The GoingNative 2013 talk describing this technique, and probably the
best place to start.

2. Value Semantics and Concepts-based Polymorphism - The C++Now! 2012 talk describing this technique in
more detail.

3. Sean Parent’s Papers and Presentations - A Github project full of links to slides, video, and sometimes code.

When deciding between creating a type hierarchy (with either tagged or virtual dispatch) and using templates or
concepts-based polymorphism, consider whether there is some refinement of an abstract base class which is a se-
mantically meaningful type on an interface boundary. If anything more refined than the root abstract interface is
meaningless to talk about as a partial extension of the semantic model, then your use case likely fits better with
polymorphism and you should avoid using virtual dispatch. However, there may be some exigent circumstances that
require one technique or the other to be used.

If you do need to introduce a type hierarchy, we prefer to use explicitly closed type hierarchies with manual tagged
dispatch and/or RTTI rather than the open inheritance model and virtual dispatch that is more common in C++ code.
This is because LLVM rarely encourages library consumers to extend its core types, and leverages the closed and
tag-dispatched nature of its hierarchies to generate significantly more efficient code. We have also found that a large
amount of our usage of type hierarchies fits better with tag-based pattern matching rather than dynamic dispatch across
a common interface. Within LLVM we have built custom helpers to facilitate this design. See this document’s section
on isa and dyn_cast and our detailed document which describes how you can implement this pattern for use with the
LLVM helpers.

ABI Breaking Checks

Checks and asserts that alter the LLVM C++ ABI are predicated on the prepro-
cessor symbol LLVM_ENABLE_ABI_BREAKING_CHECKS – LLVM libraries built with
LLVM_ENABLE_ABI_BREAKING_CHECKS are not ABI compatible LLVM libraries built without it defined.
By default, turning on assertions also turns on LLVM_ENABLE_ABI_BREAKING_CHECKS so a default +Asserts
build is not ABI compatible with a default -Asserts build. Clients that want ABI compatibility between +Asserts and

880 Chapter 3. Programming Documentation

http://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
http://www.youtube.com/watch?v=_BpMYeUFXv8
http://github.com/sean-parent/sean-parent.github.com/wiki/Papers-and-Presentations


LLVM Documentation, Release 3.9

-Asserts builds should use the CMake or autoconf build systems to set LLVM_ENABLE_ABI_BREAKING_CHECKS
independently of LLVM_ENABLE_ASSERTIONS.

The Core LLVM Class Hierarchy Reference

#include "llvm/IR/Type.h"

header source: Type.h

doxygen info: Type Clases

The Core LLVM classes are the primary means of representing the program being inspected or transformed. The core
LLVM classes are defined in header files in the include/llvm/IR directory, and implemented in the lib/IR
directory. It’s worth noting that, for historical reasons, this library is called libLLVMCore.so, not libLLVMIR.
so as you might expect.

The Type class and Derived Types

Type is a superclass of all type classes. Every Value has a Type. Type cannot be instantiated directly but only
through its subclasses. Certain primitive types (VoidType, LabelType, FloatType and DoubleType) have
hidden subclasses. They are hidden because they offer no useful functionality beyond what the Type class offers
except to distinguish themselves from other subclasses of Type.

All other types are subclasses of DerivedType. Types can be named, but this is not a requirement. There exists
exactly one instance of a given shape at any one time. This allows type equality to be performed with address equality
of the Type Instance. That is, given two Type* values, the types are identical if the pointers are identical.

Important Public Methods

• bool isIntegerTy() const: Returns true for any integer type.

• bool isFloatingPointTy(): Return true if this is one of the five floating point types.

• bool isSized(): Return true if the type has known size. Things that don’t have a size are abstract types,
labels and void.

Important Derived Types

IntegerType Subclass of DerivedType that represents integer types of any bit width. Any bit width between
IntegerType::MIN_INT_BITS (1) and IntegerType::MAX_INT_BITS (~8 million) can be repre-
sented.

• static const IntegerType* get(unsigned NumBits): get an integer type of a specific bit
width.

• unsigned getBitWidth() const: Get the bit width of an integer type.

SequentialType This is subclassed by ArrayType, PointerType and VectorType.

• const Type * getElementType() const: Returns the type of each of the elements in the se-
quential type.

ArrayType This is a subclass of SequentialType and defines the interface for array types.

• unsigned getNumElements() const: Returns the number of elements in the array.

PointerType Subclass of SequentialType for pointer types.
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VectorType Subclass of SequentialType for vector types. A vector type is similar to an ArrayType but is distin-
guished because it is a first class type whereas ArrayType is not. Vector types are used for vector operations and
are usually small vectors of an integer or floating point type.

StructType Subclass of DerivedTypes for struct types.

FunctionType Subclass of DerivedTypes for function types.

• bool isVarArg() const: Returns true if it’s a vararg function.

• const Type * getReturnType() const: Returns the return type of the function.

• const Type * getParamType (unsigned i): Returns the type of the ith parameter.

• const unsigned getNumParams() const: Returns the number of formal parameters.

The Module class

#include "llvm/IR/Module.h"

header source: Module.h

doxygen info: Module Class

The Module class represents the top level structure present in LLVM programs. An LLVM module is effectively
either a translation unit of the original program or a combination of several translation units merged by the linker.
The Module class keeps track of a list of Functions, a list of GlobalVariables, and a SymbolTable. Additionally, it
contains a few helpful member functions that try to make common operations easy.

Important Public Members of the Module class

• Module::Module(std::string name = "")

Constructing a Module is easy. You can optionally provide a name for it (probably based on the name of the
translation unit).

• Module::iterator - Typedef for function list iterator
Module::const_iterator - Typedef for const_iterator.
begin(), end(), size(), empty()

These are forwarding methods that make it easy to access the contents of a Module object’s Function list.

• Module::FunctionListType &getFunctionList()

Returns the list of Functions. This is necessary to use when you need to update the list or perform a complex
action that doesn’t have a forwarding method.

• Module::global_iterator - Typedef for global variable list iterator
Module::const_global_iterator - Typedef for const_iterator.
global_begin(), global_end(), global_size(), global_empty()

These are forwarding methods that make it easy to access the contents of a Module object’s GlobalVariable
list.

• Module::GlobalListType &getGlobalList()

Returns the list of GlobalVariables. This is necessary to use when you need to update the list or perform a
complex action that doesn’t have a forwarding method.
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• SymbolTable *getSymbolTable()

Return a reference to the SymbolTable for this Module.

• Function *getFunction(StringRef Name) const

Look up the specified function in the Module SymbolTable. If it does not exist, return null.

• Function *getOrInsertFunction(const std::string &Name, const FunctionType

*T)

Look up the specified function in the Module SymbolTable. If it does not exist, add an external declaration for
the function and return it.

• std::string getTypeName(const Type *Ty)

If there is at least one entry in the SymbolTable for the specified Type, return it. Otherwise return the empty
string.

• bool addTypeName(const std::string &Name, const Type *Ty)

Insert an entry in the SymbolTable mapping Name to Ty. If there is already an entry for this name, true is
returned and the SymbolTable is not modified.

The Value class

#include "llvm/IR/Value.h"

header source: Value.h

doxygen info: Value Class

The Value class is the most important class in the LLVM Source base. It represents a typed value that may be used
(among other things) as an operand to an instruction. There are many different types of Values, such as Constants,
Arguments. Even Instructions and Functions are Values.

A particular Value may be used many times in the LLVM representation for a program. For example, an incoming
argument to a function (represented with an instance of the Argument class) is “used” by every instruction in the
function that references the argument. To keep track of this relationship, the Value class keeps a list of all of the
Users that is using it (the User class is a base class for all nodes in the LLVM graph that can refer to Values). This
use list is how LLVM represents def-use information in the program, and is accessible through the use_* methods,
shown below.

Because LLVM is a typed representation, every LLVM Value is typed, and this Type is available through the
getType() method. In addition, all LLVM values can be named. The “name” of the Value is a symbolic string
printed in the LLVM code:

%foo = add i32 1, 2

The name of this instruction is “foo”. NOTE that the name of any value may be missing (an empty string), so names
should ONLY be used for debugging (making the source code easier to read, debugging printouts), they should not be
used to keep track of values or map between them. For this purpose, use a std::map of pointers to the Value itself
instead.

One important aspect of LLVM is that there is no distinction between an SSA variable and the operation that produces
it. Because of this, any reference to the value produced by an instruction (or the value available as an incoming
argument, for example) is represented as a direct pointer to the instance of the class that represents this value. Although
this may take some getting used to, it simplifies the representation and makes it easier to manipulate.
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Important Public Members of the Value class

• Value::use_iterator - Typedef for iterator over the use-list
Value::const_use_iterator - Typedef for const_iterator over the use-list
unsigned use_size() - Returns the number of users of the value.
bool use_empty() - Returns true if there are no users.
use_iterator use_begin() - Get an iterator to the start of the use-list.
use_iterator use_end() - Get an iterator to the end of the use-list.
User *use_back() - Returns the last element in the list.

These methods are the interface to access the def-use information in LLVM. As with all other iterators in LLVM,
the naming conventions follow the conventions defined by the STL.

• Type *getType() const This method returns the Type of the Value.

• bool hasName() const

std::string getName() const

void setName(const std::string &Name)

This family of methods is used to access and assign a name to a Value, be aware of the precaution above.

• void replaceAllUsesWith(Value *V)

This method traverses the use list of a Value changing all Users of the current value to refer to “V” instead.
For example, if you detect that an instruction always produces a constant value (for example through constant
folding), you can replace all uses of the instruction with the constant like this:

Inst->replaceAllUsesWith(ConstVal);

The User class

#include "llvm/IR/User.h"

header source: User.h

doxygen info: User Class

Superclass: Value

The User class is the common base class of all LLVM nodes that may refer to Values. It exposes a list of “Operands”
that are all of the Values that the User is referring to. The User class itself is a subclass of Value.

The operands of a User point directly to the LLVM Value that it refers to. Because LLVM uses Static Single
Assignment (SSA) form, there can only be one definition referred to, allowing this direct connection. This connection
provides the use-def information in LLVM.

Important Public Members of the User class

The User class exposes the operand list in two ways: through an index access interface and through an iterator based
interface.

• Value *getOperand(unsigned i)

unsigned getNumOperands()

These two methods expose the operands of the User in a convenient form for direct access.

• User::op_iterator - Typedef for iterator over the operand list
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op_iterator op_begin() - Get an iterator to the start of the operand list.
op_iterator op_end() - Get an iterator to the end of the operand list.

Together, these methods make up the iterator based interface to the operands of a User.

The Instruction class

#include "llvm/IR/Instruction.h"

header source: Instruction.h

doxygen info: Instruction Class

Superclasses: User, Value

The Instruction class is the common base class for all LLVM instructions. It provides only a few methods, but is
a very commonly used class. The primary data tracked by the Instruction class itself is the opcode (instruction
type) and the parent BasicBlock the Instruction is embedded into. To represent a specific type of instruction, one
of many subclasses of Instruction are used.

Because the Instruction class subclasses the User class, its operands can be accessed in the same way as for other
Users (with the getOperand()/getNumOperands() and op_begin()/op_end() methods). An important
file for the Instruction class is the llvm/Instruction.def file. This file contains some meta-data about the
various different types of instructions in LLVM. It describes the enum values that are used as opcodes (for example
Instruction::Add and Instruction::ICmp), as well as the concrete sub-classes of Instruction that
implement the instruction (for example BinaryOperator and CmpInst). Unfortunately, the use of macros in this file
confuses doxygen, so these enum values don’t show up correctly in the doxygen output.

Important Subclasses of the Instruction class

• BinaryOperator

This subclasses represents all two operand instructions whose operands must be the same type, except for the
comparison instructions.

• CastInst This subclass is the parent of the 12 casting instructions. It provides common operations on cast
instructions.

• CmpInst

This subclass respresents the two comparison instructions, ICmpInst (integer opreands), and FCmpInst (floating
point operands).

• TerminatorInst

This subclass is the parent of all terminator instructions (those which can terminate a block).

Important Public Members of the Instruction class

• BasicBlock *getParent()

Returns the BasicBlock that this Instruction is embedded into.

• bool mayWriteToMemory()

Returns true if the instruction writes to memory, i.e. it is a call, free, invoke, or store.

• unsigned getOpcode()

Returns the opcode for the Instruction.
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• Instruction *clone() const

Returns another instance of the specified instruction, identical in all ways to the original except that the instruc-
tion has no parent (i.e. it’s not embedded into a BasicBlock), and it has no name.

The Constant class and subclasses

Constant represents a base class for different types of constants. It is subclassed by ConstantInt, ConstantArray, etc.
for representing the various types of Constants. GlobalValue is also a subclass, which represents the address of a
global variable or function.

Important Subclasses of Constant

• ConstantInt : This subclass of Constant represents an integer constant of any width.

– const APInt& getValue() const: Returns the underlying value of this constant, an APInt value.

– int64_t getSExtValue() const: Converts the underlying APInt value to an int64_t via sign
extension. If the value (not the bit width) of the APInt is too large to fit in an int64_t, an assertion will
result. For this reason, use of this method is discouraged.

– uint64_t getZExtValue() const: Converts the underlying APInt value to a uint64_t via zero
extension. IF the value (not the bit width) of the APInt is too large to fit in a uint64_t, an assertion will
result. For this reason, use of this method is discouraged.

– static ConstantInt* get(const APInt& Val): Returns the ConstantInt object that repre-
sents the value provided by Val. The type is implied as the IntegerType that corresponds to the bit width
of Val.

– static ConstantInt* get(const Type *Ty, uint64_t Val): Returns the ConstantInt
object that represents the value provided by Val for integer type Ty.

• ConstantFP : This class represents a floating point constant.

– double getValue() const: Returns the underlying value of this constant.

• ConstantArray : This represents a constant array.

– const std::vector<Use> &getValues() const: Returns a vector of component constants
that makeup this array.

• ConstantStruct : This represents a constant struct.

– const std::vector<Use> &getValues() const: Returns a vector of component constants
that makeup this array.

• GlobalValue : This represents either a global variable or a function. In either case, the value is a constant fixed
address (after linking).

The GlobalValue class

#include "llvm/IR/GlobalValue.h"

header source: GlobalValue.h

doxygen info: GlobalValue Class

Superclasses: Constant, User, Value
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Global values ( GlobalVariables or Functions) are the only LLVM values that are visible in the bodies of all Functions.
Because they are visible at global scope, they are also subject to linking with other globals defined in different trans-
lation units. To control the linking process, GlobalValues know their linkage rules. Specifically, GlobalValues
know whether they have internal or external linkage, as defined by the LinkageTypes enumeration.

If a GlobalValue has internal linkage (equivalent to being static in C), it is not visible to code outside the
current translation unit, and does not participate in linking. If it has external linkage, it is visible to external code, and
does participate in linking. In addition to linkage information, GlobalValues keep track of which Module they are
currently part of.

Because GlobalValues are memory objects, they are always referred to by their address. As such, the Type of a
global is always a pointer to its contents. It is important to remember this when using the GetElementPtrInst
instruction because this pointer must be dereferenced first. For example, if you have a GlobalVariable (a subclass
of GlobalValue) that is an array of 24 ints, type [24 x i32], then the GlobalVariable is a pointer to that
array. Although the address of the first element of this array and the value of the GlobalVariable are the same,
they have different types. The GlobalVariable‘s type is [24 x i32]. The first element’s type is i32. Because
of this, accessing a global value requires you to dereference the pointer with GetElementPtrInst first, then its
elements can be accessed. This is explained in the LLVM Language Reference Manual.

Important Public Members of the GlobalValue class

• bool hasInternalLinkage() const

bool hasExternalLinkage() const

void setInternalLinkage(bool HasInternalLinkage)

These methods manipulate the linkage characteristics of the GlobalValue.

• Module *getParent()

This returns the Module that the GlobalValue is currently embedded into.

The Function class

#include "llvm/IR/Function.h"

header source: Function.h

doxygen info: Function Class

Superclasses: GlobalValue, Constant, User, Value

The Function class represents a single procedure in LLVM. It is actually one of the more complex classes in the
LLVM hierarchy because it must keep track of a large amount of data. The Function class keeps track of a list of
BasicBlocks, a list of formal Arguments, and a SymbolTable.

The list of BasicBlocks is the most commonly used part of Function objects. The list imposes an implicit ordering
of the blocks in the function, which indicate how the code will be laid out by the backend. Additionally, the first
BasicBlock is the implicit entry node for the Function. It is not legal in LLVM to explicitly branch to this initial
block. There are no implicit exit nodes, and in fact there may be multiple exit nodes from a single Function. If the
BasicBlock list is empty, this indicates that the Function is actually a function declaration: the actual body of the
function hasn’t been linked in yet.

In addition to a list of BasicBlocks, the Function class also keeps track of the list of formal Arguments that the
function receives. This container manages the lifetime of the Argument nodes, just like the BasicBlock list does for
the BasicBlocks.
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The SymbolTable is a very rarely used LLVM feature that is only used when you have to look up a value by name.
Aside from that, the SymbolTable is used internally to make sure that there are not conflicts between the names of
Instructions, BasicBlocks, or Arguments in the function body.

Note that Function is a GlobalValue and therefore also a Constant. The value of the function is its address (after
linking) which is guaranteed to be constant.

Important Public Members of the Function

• Function(const FunctionType *Ty, LinkageTypes Linkage, const std::string
&N = "", Module* Parent = 0)

Constructor used when you need to create new Functions to add the program. The constructor must specify
the type of the function to create and what type of linkage the function should have. The FunctionType argument
specifies the formal arguments and return value for the function. The same FunctionType value can be used to
create multiple functions. The Parent argument specifies the Module in which the function is defined. If this
argument is provided, the function will automatically be inserted into that module’s list of functions.

• bool isDeclaration()

Return whether or not the Function has a body defined. If the function is “external”, it does not have a body,
and thus must be resolved by linking with a function defined in a different translation unit.

• Function::iterator - Typedef for basic block list iterator
Function::const_iterator - Typedef for const_iterator.
begin(), end(), size(), empty()

These are forwarding methods that make it easy to access the contents of a Function object’s BasicBlock list.

• Function::BasicBlockListType &getBasicBlockList()

Returns the list of BasicBlocks. This is necessary to use when you need to update the list or perform a complex
action that doesn’t have a forwarding method.

• Function::arg_iterator - Typedef for the argument list iterator
Function::const_arg_iterator - Typedef for const_iterator.
arg_begin(), arg_end(), arg_size(), arg_empty()

These are forwarding methods that make it easy to access the contents of a Function object’s Argument list.

• Function::ArgumentListType &getArgumentList()

Returns the list of Argument. This is necessary to use when you need to update the list or perform a complex
action that doesn’t have a forwarding method.

• BasicBlock &getEntryBlock()

Returns the entry BasicBlock for the function. Because the entry block for the function is always the first
block, this returns the first block of the Function.

• Type *getReturnType()

FunctionType *getFunctionType()

This traverses the Type of the Function and returns the return type of the function, or the FunctionType of the
actual function.

• SymbolTable *getSymbolTable()

Return a pointer to the SymbolTable for this Function.
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The GlobalVariable class

#include "llvm/IR/GlobalVariable.h"

header source: GlobalVariable.h

doxygen info: GlobalVariable Class

Superclasses: GlobalValue, Constant, User, Value

Global variables are represented with the (surprise surprise) GlobalVariable class. Like functions,
GlobalVariables are also subclasses of GlobalValue, and as such are always referenced by their address (global
values must live in memory, so their “name” refers to their constant address). See GlobalValue for more on this. Global
variables may have an initial value (which must be a Constant), and if they have an initializer, they may be marked as
“constant” themselves (indicating that their contents never change at runtime).

Important Public Members of the GlobalVariable class

• GlobalVariable(const Type *Ty, bool isConstant, LinkageTypes &Linkage,
Constant *Initializer = 0, const std::string &Name = "", Module* Parent =
0)

Create a new global variable of the specified type. If isConstant is true then the global variable will be
marked as unchanging for the program. The Linkage parameter specifies the type of linkage (internal, external,
weak, linkonce, appending) for the variable. If the linkage is InternalLinkage, WeakAnyLinkage, WeakODR-
Linkage, LinkOnceAnyLinkage or LinkOnceODRLinkage, then the resultant global variable will have internal
linkage. AppendingLinkage concatenates together all instances (in different translation units) of the variable
into a single variable but is only applicable to arrays. See the LLVM Language Reference for further details on
linkage types. Optionally an initializer, a name, and the module to put the variable into may be specified for the
global variable as well.

• bool isConstant() const

Returns true if this is a global variable that is known not to be modified at runtime.

• bool hasInitializer()

Returns true if this GlobalVariable has an intializer.

• Constant *getInitializer()

Returns the initial value for a GlobalVariable. It is not legal to call this method if there is no initializer.

The BasicBlock class

#include "llvm/IR/BasicBlock.h"

header source: BasicBlock.h

doxygen info: BasicBlock Class

Superclass: Value

This class represents a single entry single exit section of the code, commonly known as a basic block by the compiler
community. The BasicBlock class maintains a list of Instructions, which form the body of the block. Matching
the language definition, the last element of this list of instructions is always a terminator instruction (a subclass of the
TerminatorInst class).

In addition to tracking the list of instructions that make up the block, the BasicBlock class also keeps track of the
Function that it is embedded into.
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Note that BasicBlocks themselves are Values, because they are referenced by instructions like branches and can go
in the switch tables. BasicBlocks have type label.

Important Public Members of the BasicBlock class

• BasicBlock(const std::string &Name = "", Function *Parent = 0)

The BasicBlock constructor is used to create new basic blocks for insertion into a function. The constructor
optionally takes a name for the new block, and a Function to insert it into. If the Parent parameter is speci-
fied, the new BasicBlock is automatically inserted at the end of the specified Function, if not specified, the
BasicBlock must be manually inserted into the Function.

• BasicBlock::iterator - Typedef for instruction list iterator
BasicBlock::const_iterator - Typedef for const_iterator.
begin(), end(), front(), back(), size(), empty() STL-style functions for accessing the
instruction list.

These methods and typedefs are forwarding functions that have the same semantics as the standard library
methods of the same names. These methods expose the underlying instruction list of a basic block in a way that
is easy to manipulate. To get the full complement of container operations (including operations to update the
list), you must use the getInstList() method.

• BasicBlock::InstListType &getInstList()

This method is used to get access to the underlying container that actually holds the Instructions. This method
must be used when there isn’t a forwarding function in the BasicBlock class for the operation that you would
like to perform. Because there are no forwarding functions for “updating” operations, you need to use this if
you want to update the contents of a BasicBlock.

• Function *getParent()

Returns a pointer to Function the block is embedded into, or a null pointer if it is homeless.

• TerminatorInst *getTerminator()

Returns a pointer to the terminator instruction that appears at the end of the BasicBlock. If there is no
terminator instruction, or if the last instruction in the block is not a terminator, then a null pointer is returned.

The Argument class

This subclass of Value defines the interface for incoming formal arguments to a function. A Function maintains a list
of its formal arguments. An argument has a pointer to the parent Function.

LLVM Extensions

• Introduction

• General Assembly Syntax

– C99-style Hexadecimal Floating-point Constants

• Machine-specific Assembly Syntax

– X86/COFF-Dependent
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* Relocations

* .linkonce Directive

* .section Directive

– ELF-Dependent

* .section Directive

• Target Specific Behaviour

– Windows on ARM

* Stack Probe Emission

* Variable Length Arrays

Introduction

This document describes extensions to tools and formats LLVM seeks compatibility with.

General Assembly Syntax

C99-style Hexadecimal Floating-point Constants

LLVM’s assemblers allow floating-point constants to be written in C99’s hexadecimal format instead of decimal if
desired.

.section .data

.float 0x1c2.2ap3

Machine-specific Assembly Syntax

X86/COFF-Dependent

Relocations

The following additional relocation types are supported:

@IMGREL (AT&T syntax only) generates an image-relative relocation that corresponds to the COFF relocation types
IMAGE_REL_I386_DIR32NB (32-bit) or IMAGE_REL_AMD64_ADDR32NB (64-bit).

.text
fun:

mov foo@IMGREL(%ebx, %ecx, 4), %eax

.section .pdata
.long fun@IMGREL
.long (fun@imgrel + 0x3F)
.long $unwind$fun@imgrel

.secrel32 generates a relocation that corresponds to the COFF relocation types IMAGE_REL_I386_SECREL (32-bit)
or IMAGE_REL_AMD64_SECREL (64-bit).
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.secidx relocation generates an index of the section that contains the target. It corresponds to the COFF relocation
types IMAGE_REL_I386_SECTION (32-bit) or IMAGE_REL_AMD64_SECTION (64-bit).

.section .debug$S,"rn"
.long 4
.long 242
.long 40
.secrel32 _function_name
.secidx _function_name
...

.linkonce Directive

Syntax:

.linkonce [ comdat type ]

Supported COMDAT types:

discard Discards duplicate sections with the same COMDAT symbol. This is the default if no type is specified.

one_only If the symbol is defined multiple times, the linker issues an error.

same_size Duplicates are discarded, but the linker issues an error if any have different sizes.

same_contents Duplicates are discarded, but the linker issues an error if any duplicates do not have exactly the
same content.

largest Links the largest section from among the duplicates.

newest Links the newest section from among the duplicates.

.section .text$foo

.linkonce
...

.section Directive

MC supports passing the information in .linkonce at the end of .section. For example, these two codes are
equivalent

.section secName, "dr", discard, "Symbol1"

.globl Symbol1
Symbol1:
.long 1

.section secName, "dr"

.linkonce discard

.globl Symbol1
Symbol1:
.long 1

Note that in the combined form the COMDAT symbol is explicit. This extension exists to support multiple sections
with the same name in different COMDATs:
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.section secName, "dr", discard, "Symbol1"

.globl Symbol1
Symbol1:
.long 1

.section secName, "dr", discard, "Symbol2"

.globl Symbol2
Symbol2:
.long 1

In addition to the types allowed with .linkonce, .section also accepts associative. The meaning is that the
section is linked if a certain other COMDAT section is linked. This other section is indicated by the comdat symbol in
this directive. It can be any symbol defined in the associated section, but is usually the associated section’s comdat.

The following restrictions apply to the associated section:

1. It must be a COMDAT section.

2. It cannot be another associative COMDAT section.

In the following example the symobl sym is the comdat symbol of .foo and .bar is associated to .foo.

.section .foo,"bw",discard, "sym"

.section .bar,"rd",associative, "sym"

ELF-Dependent

.section Directive

In order to support creating multiple sections with the same name and comdat, it is possible to add an unique number
at the end of the .seciton directive. For example, the following code creates two sections named .text.

.section .text,"ax",@progbits,unique,1
nop

.section .text,"ax",@progbits,unique,2
nop

The unique number is not present in the resulting object at all. It is just used in the assembler to differentiate the
sections.

Target Specific Behaviour

Windows on ARM

Stack Probe Emission

The reference implementation (Microsoft Visual Studio 2012) emits stack probes in the following fashion:

movw r4, #constant
bl __chkstk
sub.w sp, sp, r4
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However, this has the limitation of 32 MiB (±16MiB). In order to accommodate larger binaries, LLVM supports the
use of -mcode-model=large to allow a 4GiB range via a slight deviation. It will generate an indirect jump as
follows:

movw r4, #constant
movw r12, :lower16:__chkstk
movt r12, :upper16:__chkstk
blx r12
sub.w sp, sp, r4

Variable Length Arrays

The reference implementation (Microsoft Visual Studio 2012) does not permit the emission of Variable Length Arrays
(VLAs).

The Windows ARM Itanium ABI extends the base ABI by adding support for emitting a dynamic stack allocation.
When emitting a variable stack allocation, a call to __chkstk is emitted unconditionally to ensure that guard pages
are setup properly. The emission of this stack probe emission is handled similar to the standard stack probe emission.

The MSVC environment does not emit code for VLAs currently.

libFuzzer – a library for coverage-guided fuzz testing.

• Introduction

• Versions

• Getting Started

• Options

• Output

• Examples

• Advanced features

• Developing libFuzzer

• Fuzzing components of LLVM

• FAQ

• Trophies

Introduction

LibFuzzer is a library for in-process, coverage-guided, evolutionary fuzzing of other libraries.

LibFuzzer is similar in concept to American Fuzzy Lop (AFL), but it performs all of its fuzzing inside a single process.
This in-process fuzzing can be more restrictive and fragile, but is potentially much faster as there is no overhead for
process start-up.

The fuzzer is linked with the library under test, and feeds fuzzed inputs to the library via a specific fuzzing entrypoint
(aka “target function”); the fuzzer then tracks which areas of the code are reached, and generates mutations on the
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corpus of input data in order to maximize the code coverage. The code coverage information for libFuzzer is provided
by LLVM’s SanitizerCoverage instrumentation.

Contact: libfuzzer(#)googlegroups.com

Versions

LibFuzzer is under active development so a current (or at least very recent) version of Clang is the only supported
variant.

(If building Clang from trunk is too time-consuming or difficult, then the Clang binaries that the Chromium developers
build are likely to be fairly recent:

mkdir TMP_CLANG
cd TMP_CLANG
git clone https://chromium.googlesource.com/chromium/src/tools/clang
cd ..
TMP_CLANG/clang/scripts/update.py

This installs the Clang binary as ./third_party/llvm-build/Release+Asserts/bin/clang)

The libFuzzer code resides in the LLVM repository, and requires a recent Clang compiler to build (and is used to
fuzz various parts of LLVM itself ). However the fuzzer itself does not (and should not) depend on any part of LLVM
infrastructure and can be used for other projects without requiring the rest of LLVM.

Getting Started

• Building

• Corpus

• Running

• Parallel Fuzzing

Building

The first step for using libFuzzer on a library is to implement a fuzzing target function that accepts a sequence of bytes,
like this:

// fuzz_target.cc
extern "C" int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) {
DoSomethingInterestingWithMyAPI(Data, Size);
return 0; // Non-zero return values are reserved for future use.

}

Next, build the libFuzzer library as a static archive, without any sanitizer options. Note that the libFuzzer library
contains the main() function:

svn co http://llvm.org/svn/llvm-project/llvm/trunk/lib/Fuzzer
# Alternative: get libFuzzer from a dedicated git mirror:
# git clone https://chromium.googlesource.com/chromium/llvm-project/llvm/lib/Fuzzer
clang++ -c -g -O2 -std=c++11 Fuzzer/*.cpp -IFuzzer
ar ruv libFuzzer.a Fuzzer*.o
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Then build the fuzzing target function and the library under test using the SanitizerCoverage option, which instruments
the code so that the fuzzer can retrieve code coverage information (to guide the fuzzing). Linking with the libFuzzer
code then gives an fuzzer executable.

You should also enable one or more of the sanitizers, which help to expose latent bugs by making incorrect behavior
generate errors at runtime:

• AddressSanitizer (ASAN) detects memory access errors. Use -fsanitize=address.

• UndefinedBehaviorSanitizer (UBSAN) detects the use of various features of C/C++ that are explicitly listed
as resulting in undefined behavior. Use -fsanitize=undefined -fno-sanitize-recover=undefined or any individual
UBSAN check, e.g. -fsanitize=signed-integer-overflow -fno-sanitize-recover=undefined. You may combine
ASAN and UBSAN in one build.

• MemorySanitizer (MSAN) detects uninitialized reads: code whose behavior relies on memory contents that
have not been initialized to a specific value. Use -fsanitize=memory. MSAN can not be combined with other
sanirizers and should be used as a seprate build.

Finally, link with libFuzzer.a:

clang -fsanitize-coverage=edge -fsanitize=address your_lib.cc fuzz_target.cc
→˓libFuzzer.a -o my_fuzzer

Corpus

Coverage-guided fuzzers like libFuzzer rely on a corpus of sample inputs for the code under test. This corpus should
ideally be seeded with a varied collection of valid and invalid inputs for the code under test; for example, for a graphics
library the initial corpus might hold a variety of different small PNG/JPG/GIF files. The fuzzer generates random
mutations based around the sample inputs in the current corpus. If a mutation triggers execution of a previously-
uncovered path in the code under test, then that mutation is saved to the corpus for future variations.

LibFuzzer will work without any initial seeds, but will be less efficient if the library under test accepts complex,
structured inputs.

The corpus can also act as a sanity/regression check, to confirm that the fuzzing entrypoint still works and that all of
the sample inputs run through the code under test without problems.

If you have a large corpus (either generated by fuzzing or acquired by other means) you may want to minimize it while
still preserving the full coverage. One way to do that is to use the -merge=1 flag:

mkdir NEW_CORPUS_DIR # Store minimized corpus here.
./my_fuzzer -merge=1 NEW_CORPUS_DIR FULL_CORPUS_DIR

You may use the same flag to add more interesting items to an existing corpus. Only the inputs that trigger new
coverage will be added to the first corpus.

./my_fuzzer -merge=1 CURRENT_CORPUS_DIR NEW_POTENTIALLY_INTERESTING_INPUTS_DIR

Running

To run the fuzzer, first create a Corpus directory that holds the initial “seed” sample inputs:

mkdir CORPUS_DIR
cp /some/input/samples/* CORPUS_DIR

Then run the fuzzer on the corpus directory:
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./my_fuzzer CORPUS_DIR # -max_len=1000 -jobs=20 ...

As the fuzzer discovers new interesting test cases (i.e. test cases that trigger coverage of new paths through the code
under test), those test cases will be added to the corpus directory.

By default, the fuzzing process will continue indefinitely – at least until a bug is found. Any crashes or sanitizer
failures will be reported as usual, stopping the fuzzing process, and the particular input that triggered the bug will be
written to disk (typically as crash-<sha1>, leak-<sha1>, or timeout-<sha1>).

Parallel Fuzzing

Each libFuzzer process is single-threaded, unless the library under test starts its own threads. However, it is possible
to run multiple libFuzzer processes in parallel with a shared corpus directory; this has the advantage that any new
inputs found by one fuzzer process will be available to the other fuzzer processes (unless you disable this with the
-reload=0 option).

This is primarily controlled by the -jobs=N option, which indicates that that N fuzzing jobs should be run to com-
pletion (i.e. until a bug is found or time/iteration limits are reached). These jobs will be run across a set of worker
processes, by default using half of the available CPU cores; the count of worker processes can be overridden by the
-workers=N option. For example, running with -jobs=30 on a 12-core machine would run 6 workers by default,
with each worker averaging 5 bugs by completion of the entire process.

Options

To run the fuzzer, pass zero or more corpus directories as command line arguments. The fuzzer will read test inputs
from each of these corpus directories, and any new test inputs that are generated will be written back to the first corpus
directory:

./fuzzer [-flag1=val1 [-flag2=val2 ...] ] [dir1 [dir2 ...] ]

If a list of files (rather than directories) are passed to the fuzzer program, then it will re-run those files as test inputs
but will not perform any fuzzing. In this mode the fuzzer binary can be used as a regression test (e.g. on a continuous
integration system) to check the target function and saved inputs still work.

The most important command line options are:

-help Print help message.

-seed Random seed. If 0 (the default), the seed is generated.

-runs Number of individual test runs, -1 (the default) to run indefinitely.

-max_len Maximum length of a test input. If 0 (the default), libFuzzer tries to guess a good value based on the
corpus (and reports it).

-timeout Timeout in seconds, default 1200. If an input takes longer than this timeout, the process is treated as a
failure case.

-rss_limit_mb Memory usage limit in Mb, default 2048. Use 0 to disable the limit. If an input requires more
than this amount of RSS memory to execute, the process is treated as a failure case. The limit is checked in a
separate thread every second. If running w/o ASAN/MSAN, you may use ‘ulimit -v’ instead.

-timeout_exitcode Exit code (default 77) to emit when terminating due to timeout, when
-abort_on_timeout is not set.

-max_total_time If positive, indicates the maximum total time in seconds to run the fuzzer. If 0 (the default),
run indefinitely.
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-merge If set to 1, any corpus inputs from the 2nd, 3rd etc. corpus directories that trigger new code coverage will
be merged into the first corpus directory. Defaults to 0. This flag can be used to minimize a corpus.

-reload If set to 1 (the default), the corpus directory is re-read periodically to check for new inputs; this allows
detection of new inputs that were discovered by other fuzzing processes.

-jobs Number of fuzzing jobs to run to completion. Default value is 0, which runs a single fuzzing process until
completion. If the value is >= 1, then this number of jobs performing fuzzing are run, in a collection of parallel
separate worker processes; each such worker process has its stdout/stderr redirected to fuzz-<JOB>.
log.

-workers Number of simultaneous worker processes to run the fuzzing jobs to completion in. If 0 (the default),
min(jobs, NumberOfCpuCores()/2) is used.

-dict Provide a dictionary of input keywords; see Dictionaries.

-use_counters Use coverage counters to generate approximate counts of how often code blocks are hit; defaults
to 1.

-use_traces Use instruction traces (experimental, defaults to 0); see Data-flow-guided fuzzing.

-only_ascii If 1, generate only ASCII (isprint``+``isspace) inputs. Defaults to 0.

-artifact_prefix Provide a prefix to use when saving fuzzing artifacts (crash, timeout, or slow inputs) as
$(artifact_prefix)file. Defaults to empty.

-exact_artifact_path Ignored if empty (the default). If non-empty, write the single artifact on failure (crash,
timeout) as $(exact_artifact_path). This overrides -artifact_prefix and will not use checksum
in the file name. Do not use the same path for several parallel processes.

-print_final_stats If 1, print statistics at exit. Defaults to 0.

-detect-leaks If 1 (default) and if LeakSanitizer is enabled try to detect memory leaks during fuzzing (i.e. not
only at shut down).

-close_fd_mask Indicate output streams to close at startup. Be careful, this will remove diagnostic output from
target code (e.g. messages on assert failure).

• 0 (default): close neither stdout nor stderr

• 1 : close stdout

• 2 : close stderr

• 3 : close both stdout and stderr.

For the full list of flags run the fuzzer binary with -help=1.

Output

During operation the fuzzer prints information to stderr, for example:

INFO: Seed: 3338750330
Loaded 1024/1211 files from corpus/
INFO: -max_len is not provided, using 64
#0 READ units: 1211 exec/s: 0
#1211 INITED cov: 2575 bits: 8855 indir: 5 units: 830 exec/s: 1211
#1422 NEW cov: 2580 bits: 8860 indir: 5 units: 831 exec/s: 1422 L: 21 MS: 1
→˓ShuffleBytes-
#1688 NEW cov: 2581 bits: 8865 indir: 5 units: 832 exec/s: 1688 L: 19 MS: 2
→˓EraseByte-CrossOver-
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#1734 NEW cov: 2583 bits: 8879 indir: 5 units: 833 exec/s: 1734 L: 27 MS: 3
→˓ChangeBit-EraseByte-ShuffleBytes-
...

The early parts of the output include information about the fuzzer options and configuration, including the current
random seed (in the Seed: line; this can be overridden with the -seed=N flag).

Further output lines have the form of an event code and statistics. The possible event codes are:

READ The fuzzer has read in all of the provided input samples from the corpus directories.

INITED The fuzzer has completed initialization, which includes running each of the initial input samples through
the code under test.

NEW The fuzzer has created a test input that covers new areas of the code under test. This input will be saved to the
primary corpus directory.

pulse The fuzzer has generated 2n inputs (generated periodically to reassure the user that the fuzzer is still working).

DONE The fuzzer has completed operation because it has reached the specified iteration limit (-runs) or time limit
(-max_total_time).

MIN<n> The fuzzer is minimizing the combination of input corpus directories into a single unified corpus (due to the
-merge command line option).

RELOAD The fuzzer is performing a periodic reload of inputs from the corpus directory; this allows it to discover any
inputs discovered by other fuzzer processes (see Parallel Fuzzing).

Each output line also reports the following statistics (when non-zero):

cov: Total number of code blocks or edges covered by the executing the current corpus.

bits: Rough measure of the number of code blocks or edges covered, and how often; only valid if the fuzzer is run
with -use_counters=1.

indir: Number of distinct function caller-callee pairs executed with the current corpus; only valid if the code under
test was built with -fsanitize-coverage=indirect-calls.

units: Number of entries in the current input corpus.

exec/s: Number of fuzzer iterations per second.

For NEW events, the output line also includes information about the mutation operation that produced the new input:

L: Size of the new input in bytes.

MS: <n> <operations> Count and list of the mutation operations used to generate the input.

Examples

• Toy example

• PCRE2

• Heartbleed

Toy example

A simple function that does something interesting if it receives the input “HI!”:
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cat << EOF > test_fuzzer.cc
#include <stdint.h>
#include <stddef.h>
extern "C" int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) {

if (size > 0 && data[0] == 'H')
if (size > 1 && data[1] == 'I')

if (size > 2 && data[2] == '!')
__builtin_trap();

return 0;
}
EOF
# Build test_fuzzer.cc with asan and link against libFuzzer.a
clang++ -fsanitize=address -fsanitize-coverage=edge test_fuzzer.cc libFuzzer.a
# Run the fuzzer with no corpus.
./a.out

You should get an error pretty quickly:

#0 READ units: 1 exec/s: 0
#1 INITED cov: 3 units: 1 exec/s: 0
#2 NEW cov: 5 units: 2 exec/s: 0 L: 64 MS: 0
#19237 NEW cov: 9 units: 3 exec/s: 0 L: 64 MS: 0
#20595 NEW cov: 10 units: 4 exec/s: 0 L: 1 MS: 4 ChangeASCIIInt-ShuffleBytes-
→˓ChangeByte-CrossOver-
#34574 NEW cov: 13 units: 5 exec/s: 0 L: 2 MS: 3 ShuffleBytes-CrossOver-ChangeBit-
#34807 NEW cov: 15 units: 6 exec/s: 0 L: 3 MS: 1 CrossOver-
==31511== ERROR: libFuzzer: deadly signal
...
artifact_prefix='./'; Test unit written to ./crash-
→˓b13e8756b13a00cf168300179061fb4b91fefbed

PCRE2

Here we show how to use libFuzzer on something real, yet simple: pcre2:

COV_FLAGS=" -fsanitize-coverage=edge,indirect-calls,8bit-counters"
# Get PCRE2
wget ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/pcre2-10.20.tar.gz
tar xf pcre2-10.20.tar.gz
# Build PCRE2 with AddressSanitizer and coverage; requires autotools.
(cd pcre2-10.20; ./autogen.sh; CC="clang -fsanitize=address $COV_FLAGS" ./configure --
→˓prefix=`pwd`/../inst && make -j && make install)
# Build the fuzzing target function that does something interesting with PCRE2.
cat << EOF > pcre_fuzzer.cc
#include <string.h>
#include <stdint.h>
#include "pcre2posix.h"
extern "C" int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) {

if (size < 1) return 0;
char *str = new char[size+1];
memcpy(str, data, size);
str[size] = 0;
regex_t preg;
if (0 == regcomp(&preg, str, 0)) {
regexec(&preg, str, 0, 0, 0);
regfree(&preg);
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}
delete [] str;
return 0;

}
EOF
clang++ -g -fsanitize=address $COV_FLAGS -c -std=c++11 -I inst/include/ pcre_fuzzer.
→˓cc
# Link.
clang++ -g -fsanitize=address -Wl,--whole-archive inst/lib/*.a -Wl,-no-whole-archive
→˓libFuzzer.a pcre_fuzzer.o -o pcre_fuzzer

This will give you a binary of the fuzzer, called pcre_fuzzer. Now, create a directory that will hold the test corpus:

mkdir -p CORPUS

For simple input languages like regular expressions this is all you need. For more complicated/structured inputs, the
fuzzer works much more efficiently if you can populate the corpus directory with a variety of valid and invalid inputs
for the code under test. Now run the fuzzer with the corpus directory as the only parameter:

./pcre_fuzzer ./CORPUS

Initially, you will see Output like this:

INFO: Seed: 2938818941
INFO: -max_len is not provided, using 64
INFO: A corpus is not provided, starting from an empty corpus
#0 READ units: 1 exec/s: 0
#1 INITED cov: 3 bits: 3 units: 1 exec/s: 0
#2 NEW cov: 176 bits: 176 indir: 3 units: 2 exec/s: 0 L: 64 MS: 0
#8 NEW cov: 176 bits: 179 indir: 3 units: 3 exec/s: 0 L: 63 MS: 2 ChangeByte-
→˓EraseByte-
...
#14004 NEW cov: 1500 bits: 4536 indir: 5 units: 406 exec/s: 0 L: 54 MS: 3
→˓ChangeBit-ChangeBit-CrossOver-

Now, interrupt the fuzzer and run it again the same way. You will see:

INFO: Seed: 3398349082
INFO: -max_len is not provided, using 64
#0 READ units: 405 exec/s: 0
#405 INITED cov: 1499 bits: 4535 indir: 5 units: 286 exec/s: 0
#587 NEW cov: 1499 bits: 4540 indir: 5 units: 287 exec/s: 0 L: 52 MS: 2
→˓InsertByte-EraseByte-
#667 NEW cov: 1501 bits: 4542 indir: 5 units: 288 exec/s: 0 L: 39 MS: 2 ChangeBit-
→˓InsertByte-
#672 NEW cov: 1501 bits: 4543 indir: 5 units: 289 exec/s: 0 L: 15 MS: 2
→˓ChangeASCIIInt-ChangeBit-
#739 NEW cov: 1501 bits: 4544 indir: 5 units: 290 exec/s: 0 L: 64 MS: 4
→˓ShuffleBytes-ChangeASCIIInt-InsertByte-ChangeBit-
...

On the second execution the fuzzer has a non-empty input corpus (405 items). As the first step, the fuzzer minimized
this corpus (the INITED line) to produce 286 interesting items, omitting inputs that do not hit any additional code.

(Aside: although the fuzzer only saves new inputs that hit additional code, this does not mean that the corpus as a
whole is kept minimized. For example, if an input hitting A-B-C then an input that hits A-B-C-D are generated, they
will both be saved, even though the latter subsumes the former.)
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You may run N independent fuzzer jobs in parallel on M CPUs:

N=100; M=4; ./pcre_fuzzer ./CORPUS -jobs=$N -workers=$M

By default (-reload=1) the fuzzer processes will periodically scan the corpus directory and reload any new tests.
This way the test inputs found by one process will be picked up by all others.

If -workers=$M is not supplied, min($N,NumberOfCpuCore/2) will be used.

Heartbleed

Remember Heartbleed? As it was recently shown, fuzzing with AddressSanitizer can find Heartbleed. Indeed, here
are the step-by-step instructions to find Heartbleed with libFuzzer:

wget https://www.openssl.org/source/openssl-1.0.1f.tar.gz
tar xf openssl-1.0.1f.tar.gz
COV_FLAGS="-fsanitize-coverage=edge,indirect-calls" # -fsanitize-coverage=8bit-
→˓counters
(cd openssl-1.0.1f/ && ./config &&

make -j 32 CC="clang -g -fsanitize=address $COV_FLAGS")
# Get and build libFuzzer
svn co http://llvm.org/svn/llvm-project/llvm/trunk/lib/Fuzzer
clang -c -g -O2 -std=c++11 Fuzzer/*.cpp -IFuzzer
# Get examples of key/pem files.
git clone https://github.com/hannob/selftls
cp selftls/server* . -v
cat << EOF > handshake-fuzz.cc
#include <openssl/ssl.h>
#include <openssl/err.h>
#include <assert.h>
#include <stdint.h>
#include <stddef.h>

SSL_CTX *sctx;
int Init() {

SSL_library_init();
SSL_load_error_strings();
ERR_load_BIO_strings();
OpenSSL_add_all_algorithms();
assert (sctx = SSL_CTX_new(TLSv1_method()));
assert (SSL_CTX_use_certificate_file(sctx, "server.pem", SSL_FILETYPE_PEM));
assert (SSL_CTX_use_PrivateKey_file(sctx, "server.key", SSL_FILETYPE_PEM));
return 0;

}
extern "C" int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) {

static int unused = Init();
SSL *server = SSL_new(sctx);
BIO *sinbio = BIO_new(BIO_s_mem());
BIO *soutbio = BIO_new(BIO_s_mem());
SSL_set_bio(server, sinbio, soutbio);
SSL_set_accept_state(server);
BIO_write(sinbio, Data, Size);
SSL_do_handshake(server);
SSL_free(server);
return 0;

}
EOF
# Build the fuzzer.

902 Chapter 3. Programming Documentation

http://en.wikipedia.org/wiki/Heartbleed
https://blog.hboeck.de/archives/868-How-Heartbleed-couldve-been-found.html
http://clang.llvm.org/docs/AddressSanitizer.html


LLVM Documentation, Release 3.9

clang++ -g handshake-fuzz.cc -fsanitize=address \
openssl-1.0.1f/libssl.a openssl-1.0.1f/libcrypto.a Fuzzer*.o

# Run 20 independent fuzzer jobs.
./a.out -jobs=20 -workers=20

Voila:

#1048576 pulse cov 3424 bits 0 units 9 exec/s 24385
=================================================================
==17488==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x629000004748 at
→˓pc 0x00000048c979 bp 0x7fffe3e864f0 sp 0x7fffe3e85ca8
READ of size 60731 at 0x629000004748 thread T0

#0 0x48c978 in __asan_memcpy
#1 0x4db504 in tls1_process_heartbeat openssl-1.0.1f/ssl/t1_lib.c:2586:3
#2 0x580be3 in ssl3_read_bytes openssl-1.0.1f/ssl/s3_pkt.c:1092:4

Note: a similar fuzzer is now a part of the BoringSSL source tree.

Advanced features

• Dictionaries

• Data-flow-guided fuzzing

• Fuzzer-friendly build mode

• AFL compatibility

• How good is my fuzzer?

• User-supplied mutators

• Startup initialization

• Leaks

Dictionaries

LibFuzzer supports user-supplied dictionaries with input language keywords or other interesting byte sequences (e.g.
multi-byte magic values). Use -dict=DICTIONARY_FILE. For some input languages using a dictionary may
significantly improve the search speed. The dictionary syntax is similar to that used by AFL for its -x option:

# Lines starting with '#' and empty lines are ignored.

# Adds "blah" (w/o quotes) to the dictionary.
kw1="blah"
# Use \\ for backslash and \" for quotes.
kw2="\"ac\\dc\""
# Use \xAB for hex values
kw3="\xF7\xF8"
# the name of the keyword followed by '=' may be omitted:
"foo\x0Abar"
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Data-flow-guided fuzzing

EXPERIMENTAL. With an additional compiler flag -fsanitize-coverage=trace-cmp (see SanitizerCover-
ageTraceDataFlow) and extra run-time flag -use_traces=1 the fuzzer will try to apply data-flow-guided fuzzing.
That is, the fuzzer will record the inputs to comparison instructions, switch statements, and several libc functions
(memcmp, strcmp, strncmp, etc). It will later use those recorded inputs during mutations.

This mode can be combined with DataFlowSanitizer to achieve better sensitivity.

Fuzzer-friendly build mode

Sometimes the code under test is not fuzzing-friendly. Examples:

• The target code uses a PRNG seeded e.g. by system time and thus two consequent invocations may potentially
execute different code paths even if the end result will be the same. This will cause a fuzzer to treat two similar
inputs as significantly different and it will blow up the test corpus. E.g. libxml uses rand() inside its hash
table.

• The target code uses checksums to protect from invalid inputs. E.g. png checks CRC for every chunk.

In many cases it makes sense to build a special fuzzing-friendly build with certain fuzzing-unfriendly
features disabled. We propose to use a common build macro for all such cases for consistency:
FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION.

void MyInitPRNG() {
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION

// In fuzzing mode the behavior of the code should be deterministic.
srand(0);

#else
srand(time(0));

#endif
}

AFL compatibility

LibFuzzer can be used together with AFL on the same test corpus. Both fuzzers expect the test corpus to reside in a
directory, one file per input. You can run both fuzzers on the same corpus, one after another:

./afl-fuzz -i testcase_dir -o findings_dir /path/to/program @@

./llvm-fuzz testcase_dir findings_dir # Will write new tests to testcase_dir

Periodically restart both fuzzers so that they can use each other’s findings. Currently, there is no simple way to run
both fuzzing engines in parallel while sharing the same corpus dir.

You may also use AFL on your target function LLVMFuzzerTestOneInput: see an example here.

How good is my fuzzer?

Once you implement your target function LLVMFuzzerTestOneInput and fuzz it to death, you will want to know
whether the function or the corpus can be improved further. One easy to use metric is, of course, code coverage. You
can get the coverage for your corpus like this:

ASAN_OPTIONS=coverage=1:html_cov_report=1 ./fuzzer CORPUS_DIR -runs=0
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This will run all tests in the CORPUS_DIR but will not perform any fuzzing. At the end of the process it will dump a
single html file with coverage information. See SanitizerCoverage for details.

You may also use other ways to visualize coverage, e.g. using Clang coverage, but those will require you to rebuild
the code with different compiler flags.

User-supplied mutators

LibFuzzer allows to use custom (user-supplied) mutators, see FuzzerInterface.h

Startup initialization

If the library being tested needs to be initialized, there are several options.

The simplest way is to have a statically initialized global object inside LLVMFuzzerTestOneInput (or in global scope
if that works for you):

extern "C" int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) {
static bool Initialized = DoInitialization();
...

Alternatively, you may define an optional init function and it will receive the program arguments that you can read and
modify. Do this only if you realy need to access argv/argc.

extern "C" int LLVMFuzzerInitialize(int *argc, char ***argv) {
ReadAndMaybeModify(argc, argv);
return 0;

}

Leaks

Binaries built with AddressSanitizer or LeakSanitizer will try to detect memory leaks at the process shutdown. For
in-process fuzzing this is inconvenient since the fuzzer needs to report a leak with a reproducer as soon as the leaky
mutation is found. However, running full leak detection after every mutation is expensive.

By default (-detect_leaks=1) libFuzzer will count the number of malloc and free calls when executing every
mutation. If the numbers don’t match (which by itself doesn’t mean there is a leak) libFuzzer will invoke the more
expensive LeakSanitizer pass and if the actual leak is found, it will be reported with the reproducer and the process
will exit.

If your target has massive leaks and the leak detection is disabled you will eventually run out of RAM (see the
-rss_limit_mb flag).

Developing libFuzzer

Building libFuzzer as a part of LLVM project and running its test requires fresh clang as the host compiler and special
CMake configuration:

cmake -GNinja -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DLLVM_USE_
→˓SANITIZER=Address -DLLVM_USE_SANITIZE_COVERAGE=YES -DCMAKE_BUILD_TYPE=Release -
→˓DLLVM_ENABLE_ASSERTIONS=ON /path/to/llvm
ninja check-fuzzer
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Fuzzing components of LLVM

• clang-format-fuzzer

• clang-fuzzer

• llvm-as-fuzzer

• llvm-mc-fuzzer

• Buildbot

To build any of the LLVM fuzz targets use the build instructions above.

clang-format-fuzzer

The inputs are random pieces of C++-like text.

ninja clang-format-fuzzer
mkdir CORPUS_DIR
./bin/clang-format-fuzzer CORPUS_DIR

Optionally build other kinds of binaries (ASan+Debug, MSan, UBSan, etc).

Tracking bug: https://llvm.org/bugs/show_bug.cgi?id=23052

clang-fuzzer

The behavior is very similar to clang-format-fuzzer.

Tracking bug: https://llvm.org/bugs/show_bug.cgi?id=23057

llvm-as-fuzzer

Tracking bug: https://llvm.org/bugs/show_bug.cgi?id=24639

llvm-mc-fuzzer

This tool fuzzes the MC layer. Currently it is only able to fuzz the disassembler but it is hoped that assembly, and
round-trip verification will be added in future.

When run in dissassembly mode, the inputs are opcodes to be disassembled. The fuzzer will consume as many
instructions as possible and will stop when it finds an invalid instruction or runs out of data.

Please note that the command line interface differs slightly from that of other fuzzers. The fuzzer arguments should
follow --fuzzer-args and should have a single dash, while other arguments control the operation mode and target
in a similar manner to llvm-mc and should have two dashes. For example:

llvm-mc-fuzzer --triple=aarch64-linux-gnu --disassemble --fuzzer-args -max_len=4 -
→˓jobs=10
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Buildbot

A buildbot continuously runs the above fuzzers for LLVM components, with results shown at http://lab.llvm.org:
8011/builders/sanitizer-x86_64-linux-fuzzer .

FAQ

Q. Why doesn’t libFuzzer use any of the LLVM support?

There are two reasons.

First, we want this library to be used outside of the LLVM without users having to build the rest of LLVM. This may
sound unconvincing for many LLVM folks, but in practice the need for building the whole LLVM frightens many
potential users – and we want more users to use this code.

Second, there is a subtle technical reason not to rely on the rest of LLVM, or any other large body of code (maybe not
even STL). When coverage instrumentation is enabled, it will also instrument the LLVM support code which will blow
up the coverage set of the process (since the fuzzer is in-process). In other words, by using more external dependencies
we will slow down the fuzzer while the main reason for it to exist is extreme speed.

Q. What about Windows then? The fuzzer contains code that does not build on Windows.

Volunteers are welcome.

Q. When this Fuzzer is not a good solution for a problem?

• If the test inputs are validated by the target library and the validator asserts/crashes on invalid inputs, in-process
fuzzing is not applicable.

• Bugs in the target library may accumulate without being detected. E.g. a memory corruption that goes unde-
tected at first and then leads to a crash while testing another input. This is why it is highly recommended to run
this in-process fuzzer with all sanitizers to detect most bugs on the spot.

• It is harder to protect the in-process fuzzer from excessive memory consumption and infinite loops in the target
library (still possible).

• The target library should not have significant global state that is not reset between the runs.

• Many interesting target libraries are not designed in a way that supports the in-process fuzzer interface (e.g.
require a file path instead of a byte array).

• If a single test run takes a considerable fraction of a second (or more) the speed benefit from the in-process
fuzzer is negligible.

• If the target library runs persistent threads (that outlive execution of one test) the fuzzing results will be unreli-
able.

Q. So, what exactly this Fuzzer is good for?

This Fuzzer might be a good choice for testing libraries that have relatively small inputs, each input takes < 10ms to
run, and the library code is not expected to crash on invalid inputs. Examples: regular expression matchers, text or
binary format parsers, compression, network, crypto.

3.9. libFuzzer – a library for coverage-guided fuzz testing. 907
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Trophies

• GLIBC: https://sourceware.org/glibc/wiki/FuzzingLibc

• MUSL LIBC: [1] [2]

• pugixml

• PCRE: Search for “LLVM fuzzer” in http://vcs.pcre.org/pcre2/code/trunk/ChangeLog?view=markup; also in
bugzilla

• ICU

• Freetype

• Harfbuzz

• SQLite

• Python

• OpenSSL/BoringSSL: [1] [2] [3] [4] [5] [6]

• Libxml2 and [HT206167] (CVE-2015-5312, CVE-2015-7500, CVE-2015-7942)

• Linux Kernel’s BPF verifier

• Capstone: [1] [2]

• file:[1] [2] [3] [4]

• Radare2: [1]

• gRPC: [1] [2] [3] [4] [5] [6]

• WOFF2: [1]

• LLVM: Clang, Clang-format, libc++, llvm-as, Disassembler: http://reviews.llvm.org/rL247405, http://reviews.
llvm.org/rL247414, http://reviews.llvm.org/rL247416, http://reviews.llvm.org/rL247417, http://reviews.llvm.
org/rL247420, http://reviews.llvm.org/rL247422.

Scudo Hardened Allocator

• Introduction

• Design

• Usage

Introduction

The Scudo Hardened Allocator is a user-mode allocator based on LLVM Sanitizer’s CombinedAllocator, which aims
at providing additional mitigations against heap based vulnerabilities, while maintaining good performance.

The name “Scudo” has been retained from the initial implementation (Escudo meaning Shield in Spanish and Por-
tuguese).
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Design

Chunk Header

Every chunk of heap memory will be preceded by a chunk header. This has two purposes, the first one being to store
various information about the chunk, the second one being to detect potential heap overflows. In order to achieve this,
the header will be checksumed, involving the pointer to the chunk itself and a global secret. Any corruption of the
header will be detected when said header is accessed, and the process terminated.

The following information is stored in the header:

• the 16-bit checksum;

• the user requested size for that chunk, which is necessary for reallocation purposes;

• the state of the chunk (available, allocated or quarantined);

• the allocation type (malloc, new, new[] or memalign), to detect potential mismatches in the allocation APIs
used;

• whether or not the chunk is offseted (ie: if the chunk beginning is different than the backend allocation begin-
ning, which is most often the case with some aligned allocations);

• the associated offset;

• a 16-bit salt.

On x64, which is currently the only architecture supported, the header fits within 16-bytes, which works nicely with
the minimum alignment requirements.

The checksum is computed as a CRC32 (requiring the SSE 4.2 instruction set) of the global secret, the chunk pointer
itself, and the 16 bytes of header with the checksum field zeroed out.

The header is atomically loaded and stored to prevent races (this requires platform support such as the cmpxchg16b
instruction). This is important as two consecutive chunks could belong to different threads. We also want to avoid any
type of double fetches of information located in the header, and use local copies of the header for this purpose.

Delayed Freelist

A delayed freelist allows us to not return a chunk directly to the backend, but to keep it aside for a while. Once a
criterion is met, the delayed freelist is emptied, and the quarantined chunks are returned to the backend. This helps
mitigate use-after-free vulnerabilities by reducing the determinism of the allocation and deallocation patterns.

This feature is using the Sanitizer’s Quarantine as its base, and the amount of memory that it can hold is configurable
by the user (see the Options section below).

Randomness

It is important for the allocator to not make use of fixed addresses. We use the dynamic base option for the SizeClas-
sAllocator, allowing us to benefit from the randomness of mmap.

Usage

Library

The allocator static library can be built from the LLVM build tree thanks to the “scudo” CMake rule. The associated
tests can be exercised thanks to the “check-scudo” CMake rule.

3.10. Scudo Hardened Allocator 909
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Linking the static library to your project can require the use of the “whole-archive” linker flag (or equivalent), depend-
ing on your linker. Additional flags might also be necessary.

Your linked binary should now make use of the Scudo allocation and deallocation functions.

Options

Several aspects of the allocator can be configured through environment options, following the usual ASan options
syntax, through the variable SCUDO_OPTIONS.

For example: SCUDO_OPTIONS=”DeleteSizeMismatch=1:QuarantineSizeMb=16”.

The following options are available:

• QuarantineSizeMb (integer, defaults to 64): the size (in Mb) of quarantine used to delay the actual deallocation
of chunks. Lower value may reduce memory usage but decrease the effectiveness of the mitigation; a negative
value will fallback to a default of 64Mb;

• ThreadLocalQuarantineSizeKb (integer, default to 1024): the size (in Kb) of per-thread cache used to offload
the global quarantine. Lower value may reduce memory usage but might increase the contention on the global
quarantine.

• DeallocationTypeMismatch (boolean, defaults to true): whether or not we report errors on malloc/delete,
new/free, new/delete[], etc;

• DeleteSizeMismatch (boolean, defaults to true): whether or not we report errors on mismatch between size of
new and delete;

• ZeroContents (boolean, defaults to false): whether or not we zero chunk contents on allocation and deallocation.

LLVM Language Reference Manual Defines the LLVM intermediate representation and the assembly form of the
different nodes.

LLVM Atomic Instructions and Concurrency Guide Information about LLVM’s concurrency model.

LLVM Programmer’s Manual Introduction to the general layout of the LLVM sourcebase, important classes and
APIs, and some tips & tricks.

LLVM Extensions LLVM-specific extensions to tools and formats LLVM seeks compatibility with.

CommandLine 2.0 Library Manual Provides information on using the command line parsing library.

LLVM Coding Standards Details the LLVM coding standards and provides useful information on writing efficient
C++ code.

How to set up LLVM-style RTTI for your class hierarchy How to make isa<>, dyn_cast<>, etc. available for
clients of your class hierarchy.

Extending LLVM: Adding instructions, intrinsics, types, etc. Look here to see how to add instructions and intrinsics
to LLVM.

Doxygen generated documentation (classes) (tarball)

Documentation for Go bindings

ViewVC Repository Browser

Architecture & Platform Information for Compiler Writers A list of helpful links for compiler writers.

libFuzzer – a library for coverage-guided fuzz testing. A library for writing in-process guided fuzzers.

Scudo Hardened Allocator A library that implements a security-hardened malloc().
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CHAPTER 4

Subsystem Documentation

For API clients and LLVM developers.

LLVM Alias Analysis Infrastructure

• Introduction

• AliasAnalysis Class Overview

– Representation of Pointers

– The alias method

* Must, May, and No Alias Responses

– The getModRefInfo methods

– Other useful AliasAnalysis methods

* The pointsToConstantMemory method

* The doesNotAccessMemory and onlyReadsMemory methods

• Writing a new AliasAnalysis Implementation

– Different Pass styles

– Required initialization calls

– Required methods to override

– Interfaces which may be specified

– AliasAnalysis chaining behavior

– Updating analysis results for transformations
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* The deleteValue method

* The copyValue method

* The replaceWithNewValue method

* The addEscapingUse method

– Efficiency Issues

– Limitations

• Using alias analysis results

– Using the MemoryDependenceAnalysis Pass

– Using the AliasSetTracker class

* The AliasSetTracker implementation

– Using the AliasAnalysis interface directly

• Existing alias analysis implementations and clients

– Available AliasAnalysis implementations

* The -no-aa pass

* The -basicaa pass

* The -globalsmodref-aa pass

* The -steens-aa pass

* The -ds-aa pass

* The -scev-aa pass

– Alias analysis driven transformations

* The -adce pass

* The -licm pass

* The -argpromotion pass

* The -gvn, -memcpyopt, and -dse passes

– Clients for debugging and evaluation of implementations

* The -print-alias-sets pass

* The -count-aa pass

* The -aa-eval pass

• Memory Dependence Analysis

Introduction

Alias Analysis (aka Pointer Analysis) is a class of techniques which attempt to determine whether or not two pointers
ever can point to the same object in memory. There are many different algorithms for alias analysis and many different
ways of classifying them: flow-sensitive vs. flow-insensitive, context-sensitive vs. context-insensitive, field-sensitive
vs. field-insensitive, unification-based vs. subset-based, etc. Traditionally, alias analyses respond to a query with a
Must, May, or No alias response, indicating that two pointers always point to the same object, might point to the same
object, or are known to never point to the same object.
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The LLVM AliasAnalysis class is the primary interface used by clients and implementations of alias analyses in the
LLVM system. This class is the common interface between clients of alias analysis information and the implementa-
tions providing it, and is designed to support a wide range of implementations and clients (but currently all clients are
assumed to be flow-insensitive). In addition to simple alias analysis information, this class exposes Mod/Ref infor-
mation from those implementations which can provide it, allowing for powerful analyses and transformations to work
well together.

This document contains information necessary to successfully implement this interface, use it, and to test both sides.
It also explains some of the finer points about what exactly results mean.

AliasAnalysis Class Overview

The AliasAnalysis class defines the interface that the various alias analysis implementations should support. This class
exports two important enums: AliasResult and ModRefResult which represent the result of an alias query or
a mod/ref query, respectively.

The AliasAnalysis interface exposes information about memory, represented in several different ways. In par-
ticular, memory objects are represented as a starting address and size, and function calls are represented as the actual
call or invoke instructions that performs the call. The AliasAnalysis interface also exposes some helper
methods which allow you to get mod/ref information for arbitrary instructions.

All AliasAnalysis interfaces require that in queries involving multiple values, values which are not constants are
all defined within the same function.

Representation of Pointers

Most importantly, the AliasAnalysis class provides several methods which are used to query whether or not
two memory objects alias, whether function calls can modify or read a memory object, etc. For all of these queries,
memory objects are represented as a pair of their starting address (a symbolic LLVM Value*) and a static size.

Representing memory objects as a starting address and a size is critically important for correct Alias Analyses. For
example, consider this (silly, but possible) C code:

int i;
char C[2];
char A[10];
/* ... */
for (i = 0; i != 10; ++i) {
C[0] = A[i]; /* One byte store */
C[1] = A[9-i]; /* One byte store */

}

In this case, the basicaa pass will disambiguate the stores to C[0] and C[1] because they are accesses to two
distinct locations one byte apart, and the accesses are each one byte. In this case, the Loop Invariant Code Motion
(LICM) pass can use store motion to remove the stores from the loop. In constrast, the following code:

int i;
char C[2];
char A[10];
/* ... */
for (i = 0; i != 10; ++i) {
((short*)C)[0] = A[i]; /* Two byte store! */
C[1] = A[9-i]; /* One byte store */

}

4.1. LLVM Alias Analysis Infrastructure 913

http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html
http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html


LLVM Documentation, Release 3.9

In this case, the two stores to C do alias each other, because the access to the &C[0] element is a two byte access. If
size information wasn’t available in the query, even the first case would have to conservatively assume that the accesses
alias.

The alias method

The alias method is the primary interface used to determine whether or not two memory objects alias each other. It
takes two memory objects as input and returns MustAlias, PartialAlias, MayAlias, or NoAlias as appropriate.

Like all AliasAnalysis interfaces, the alias method requires that either the two pointer values be defined within
the same function, or at least one of the values is a constant.

Must, May, and No Alias Responses

The NoAlias response may be used when there is never an immediate dependence between any memory reference
based on one pointer and any memory reference based the other. The most obvious example is when the two pointers
point to non-overlapping memory ranges. Another is when the two pointers are only ever used for reading memory.
Another is when the memory is freed and reallocated between accesses through one pointer and accesses through the
other — in this case, there is a dependence, but it’s mediated by the free and reallocation.

As an exception to this is with the noalias keyword; the “irrelevant” dependencies are ignored.

The MayAlias response is used whenever the two pointers might refer to the same object.

The PartialAlias response is used when the two memory objects are known to be overlapping in some way, but
do not start at the same address.

The MustAlias response may only be returned if the two memory objects are guaranteed to always start at exactly
the same location. A MustAlias response implies that the pointers compare equal.

The getModRefInfo methods

The getModRefInfo methods return information about whether the execution of an instruction can read or modify
a memory location. Mod/Ref information is always conservative: if an instruction might read or write a location,
ModRef is returned.

The AliasAnalysis class also provides a getModRefInfo method for testing dependencies between function
calls. This method takes two call sites (CS1 & CS2), returns NoModRef if neither call writes to memory read or
written by the other, Ref if CS1 reads memory written by CS2, Mod if CS1 writes to memory read or written by CS2,
or ModRef if CS1 might read or write memory written to by CS2. Note that this relation is not commutative.

Other useful AliasAnalysis methods

Several other tidbits of information are often collected by various alias analysis implementations and can be put to
good use by various clients.

The pointsToConstantMemory method

The pointsToConstantMemory method returns true if and only if the analysis can prove that the pointer only
points to unchanging memory locations (functions, constant global variables, and the null pointer). This information
can be used to refine mod/ref information: it is impossible for an unchanging memory location to be modified.
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The doesNotAccessMemory and onlyReadsMemory methods

These methods are used to provide very simple mod/ref information for function calls. The
doesNotAccessMemory method returns true for a function if the analysis can prove that the function never reads
or writes to memory, or if the function only reads from constant memory. Functions with this property are side-effect
free and only depend on their input arguments, allowing them to be eliminated if they form common subexpressions
or be hoisted out of loops. Many common functions behave this way (e.g., sin and cos) but many others do not
(e.g., acos, which modifies the errno variable).

The onlyReadsMemory method returns true for a function if analysis can prove that (at most) the function only
reads from non-volatile memory. Functions with this property are side-effect free, only depending on their input
arguments and the state of memory when they are called. This property allows calls to these functions to be eliminated
and moved around, as long as there is no store instruction that changes the contents of memory. Note that all functions
that satisfy the doesNotAccessMemory method also satisfy onlyReadsMemory.

Writing a new AliasAnalysis Implementation

Writing a new alias analysis implementation for LLVM is quite straight-forward. There are already several implemen-
tations that you can use for examples, and the following information should help fill in any details. For a examples,
take a look at the various alias analysis implementations included with LLVM.

Different Pass styles

The first step to determining what type of LLVM pass you need to use for your Alias Analysis. As is the case with most
other analyses and transformations, the answer should be fairly obvious from what type of problem you are trying to
solve:

1. If you require interprocedural analysis, it should be a Pass.

2. If you are a function-local analysis, subclass FunctionPass.

3. If you don’t need to look at the program at all, subclass ImmutablePass.

In addition to the pass that you subclass, you should also inherit from the AliasAnalysis interface, of course, and
use the RegisterAnalysisGroup template to register as an implementation of AliasAnalysis.

Required initialization calls

Your subclass of AliasAnalysis is required to invoke two methods on the AliasAnalysis base
class: getAnalysisUsage and InitializeAliasAnalysis. In particular, your implementation of
getAnalysisUsage should explicitly call into the AliasAnalysis::getAnalysisUsage method in ad-
dition to doing any declaring any pass dependencies your pass has. Thus you should have something like this:

void getAnalysisUsage(AnalysisUsage &AU) const {
AliasAnalysis::getAnalysisUsage(AU);
// declare your dependencies here.

}

Additionally, your must invoke the InitializeAliasAnalysis method from your analysis run method (run
for a Pass, runOnFunction for a FunctionPass, or InitializePass for an ImmutablePass). For
example (as part of a Pass):

bool run(Module &M) {
InitializeAliasAnalysis(this);
// Perform analysis here...
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return false;
}

Required methods to override

You must override the getAdjustedAnalysisPointer method on all subclasses of AliasAnalysis. An
example implementation of this method would look like:

void *getAdjustedAnalysisPointer(const void* ID) override {
if (ID == &AliasAnalysis::ID)
return (AliasAnalysis*)this;

return this;
}

Interfaces which may be specified

All of the AliasAnalysis virtual methods default to providing chaining to another alias analysis implementation, which
ends up returning conservatively correct information (returning “May” Alias and “Mod/Ref” for alias and mod/ref
queries respectively). Depending on the capabilities of the analysis you are implementing, you just override the
interfaces you can improve.

AliasAnalysis chaining behavior

With only one special exception (the -no-aa pass) every alias analysis pass chains to another alias analysis imple-
mentation (for example, the user can specify “-basicaa -ds-aa -licm” to get the maximum benefit from both
alias analyses). The alias analysis class automatically takes care of most of this for methods that you don’t override.
For methods that you do override, in code paths that return a conservative MayAlias or Mod/Ref result, simply return
whatever the superclass computes. For example:

AliasResult alias(const Value *V1, unsigned V1Size,
const Value *V2, unsigned V2Size) {

if (...)
return NoAlias;

...

// Couldn't determine a must or no-alias result.
return AliasAnalysis::alias(V1, V1Size, V2, V2Size);

}

In addition to analysis queries, you must make sure to unconditionally pass LLVM update notification methods to the
superclass as well if you override them, which allows all alias analyses in a change to be updated.

Updating analysis results for transformations

Alias analysis information is initially computed for a static snapshot of the program, but clients will use this informa-
tion to make transformations to the code. All but the most trivial forms of alias analysis will need to have their analysis
results updated to reflect the changes made by these transformations.

The AliasAnalysis interface exposes four methods which are used to communicate program changes from the
clients to the analysis implementations. Various alias analysis implementations should use these methods to ensure
that their internal data structures are kept up-to-date as the program changes (for example, when an instruction is
deleted), and clients of alias analysis must be sure to call these interfaces appropriately.
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The deleteValue method

The deleteValue method is called by transformations when they remove an instruction or any other value from the
program (including values that do not use pointers). Typically alias analyses keep data structures that have entries for
each value in the program. When this method is called, they should remove any entries for the specified value, if they
exist.

The copyValue method

The copyValue method is used when a new value is introduced into the program. There is no way to introduce a
value into the program that did not exist before (this doesn’t make sense for a safe compiler transformation), so this
is the only way to introduce a new value. This method indicates that the new value has exactly the same properties as
the value being copied.

The replaceWithNewValue method

This method is a simple helper method that is provided to make clients easier to use. It is implemented by copying
the old analysis information to the new value, then deleting the old value. This method cannot be overridden by alias
analysis implementations.

The addEscapingUse method

The addEscapingUse method is used when the uses of a pointer value have changed in ways that may invalidate
precomputed analysis information. Implementations may either use this callback to provide conservative responses
for points whose uses have change since analysis time, or may recompute some or all of their internal state to continue
providing accurate responses.

In general, any new use of a pointer value is considered an escaping use, and must be reported through this callback,
except for the uses below:

• A bitcast or getelementptr of the pointer

• A store through the pointer (but not a store of the pointer)

• A load through the pointer

Efficiency Issues

From the LLVM perspective, the only thing you need to do to provide an efficient alias analysis is to make sure that
alias analysis queries are serviced quickly. The actual calculation of the alias analysis results (the “run” method) is
only performed once, but many (perhaps duplicate) queries may be performed. Because of this, try to move as much
computation to the run method as possible (within reason).

Limitations

The AliasAnalysis infrastructure has several limitations which make writing a new AliasAnalysis implementation
difficult.

There is no way to override the default alias analysis. It would be very useful to be able to do something like “opt
-my-aa -O2” and have it use -my-aa for all passes which need AliasAnalysis, but there is currently no support for
that, short of changing the source code and recompiling. Similarly, there is also no way of setting a chain of analyses
as the default.
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There is no way for transform passes to declare that they preserve AliasAnalysis implementations. The
AliasAnalysis interface includes deleteValue and copyValue methods which are intended to allow a pass
to keep an AliasAnalysis consistent, however there’s no way for a pass to declare in its getAnalysisUsage that it
does so. Some passes attempt to use AU.addPreserved<AliasAnalysis>, however this doesn’t actually have
any effect.

AliasAnalysisCounter (-count-aa) are implemented as ModulePass classes, so if your alias analysis uses
FunctionPass, it won’t be able to use these utilities. If you try to use them, the pass manager will silently route
alias analysis queries directly to BasicAliasAnalysis instead.

Similarly, the opt -p option introduces ModulePass passes between each pass, which prevents the use of
FunctionPass alias analysis passes.

The AliasAnalysis API does have functions for notifying implementations when values are deleted or copied,
however these aren’t sufficient. There are many other ways that LLVM IR can be modified which could be relevant to
AliasAnalysis implementations which can not be expressed.

The AliasAnalysisDebugger utility seems to suggest that AliasAnalysis implementations can expect that
they will be informed of any relevant Value before it appears in an alias query. However, popular clients such as GVN
don’t support this, and are known to trigger errors when run with the AliasAnalysisDebugger.

Due to several of the above limitations, the most obvious use for the AliasAnalysisCounter utility, collecting
stats on all alias queries in a compilation, doesn’t work, even if the AliasAnalysis implementations don’t use
FunctionPass. There’s no way to set a default, much less a default sequence, and there’s no way to preserve it.

The AliasSetTracker class (which is used by LICM) makes a non-deterministic number of alias queries. This can
cause stats collected by AliasAnalysisCounter to have fluctuations among identical runs, for example. Another
consequence is that debugging techniques involving pausing execution after a predetermined number of queries can
be unreliable.

Many alias queries can be reformulated in terms of other alias queries. When multiple AliasAnalysis queries are
chained together, it would make sense to start those queries from the beginning of the chain, with care taken to avoid
infinite looping, however currently an implementation which wants to do this can only start such queries from itself.

Using alias analysis results

There are several different ways to use alias analysis results. In order of preference, these are:

Using the MemoryDependenceAnalysis Pass

The memdep pass uses alias analysis to provide high-level dependence information about memory-using instructions.
This will tell you which store feeds into a load, for example. It uses caching and other techniques to be efficient, and
is used by Dead Store Elimination, GVN, and memcpy optimizations.

Using the AliasSetTracker class

Many transformations need information about alias sets that are active in some scope, rather than information about
pairwise aliasing. The AliasSetTracker class is used to efficiently build these Alias Sets from the pairwise alias analysis
information provided by the AliasAnalysis interface.

First you initialize the AliasSetTracker by using the “add” methods to add information about various potentially
aliasing instructions in the scope you are interested in. Once all of the alias sets are completed, your pass should
simply iterate through the constructed alias sets, using the AliasSetTracker begin()/end() methods.
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The AliasSets formed by the AliasSetTracker are guaranteed to be disjoint, calculate mod/ref information
and volatility for the set, and keep track of whether or not all of the pointers in the set are Must aliases. The AliasSet-
Tracker also makes sure that sets are properly folded due to call instructions, and can provide a list of pointers in each
set.

As an example user of this, the Loop Invariant Code Motion pass uses AliasSetTrackers to calculate alias sets
for each loop nest. If an AliasSet in a loop is not modified, then all load instructions from that set may be hoisted
out of the loop. If any alias sets are stored to and are must alias sets, then the stores may be sunk to outside of the
loop, promoting the memory location to a register for the duration of the loop nest. Both of these transformations only
apply if the pointer argument is loop-invariant.

The AliasSetTracker implementation

The AliasSetTracker class is implemented to be as efficient as possible. It uses the union-find algorithm to efficiently
merge AliasSets when a pointer is inserted into the AliasSetTracker that aliases multiple sets. The primary data
structure is a hash table mapping pointers to the AliasSet they are in.

The AliasSetTracker class must maintain a list of all of the LLVM Value*s that are in each AliasSet. Since the
hash table already has entries for each LLVM Value* of interest, the AliasesSets thread the linked list through these
hash-table nodes to avoid having to allocate memory unnecessarily, and to make merging alias sets extremely efficient
(the linked list merge is constant time).

You shouldn’t need to understand these details if you are just a client of the AliasSetTracker, but if you look at the
code, hopefully this brief description will help make sense of why things are designed the way they are.

Using the AliasAnalysis interface directly

If neither of these utility class are what your pass needs, you should use the interfaces exposed by the
AliasAnalysis class directly. Try to use the higher-level methods when possible (e.g., use mod/ref information
instead of the alias method directly if possible) to get the best precision and efficiency.

Existing alias analysis implementations and clients

If you’re going to be working with the LLVM alias analysis infrastructure, you should know what clients and imple-
mentations of alias analysis are available. In particular, if you are implementing an alias analysis, you should be aware
of the the clients that are useful for monitoring and evaluating different implementations.

Available AliasAnalysis implementations

This section lists the various implementations of the AliasAnalysis interface. With the exception of the -no-aa
implementation, all of these chain to other alias analysis implementations.

The -no-aa pass

The -no-aa pass is just like what it sounds: an alias analysis that never returns any useful information. This pass can
be useful if you think that alias analysis is doing something wrong and are trying to narrow down a problem.
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The -basicaa pass

The -basicaa pass is an aggressive local analysis that knows many important facts:

• Distinct globals, stack allocations, and heap allocations can never alias.

• Globals, stack allocations, and heap allocations never alias the null pointer.

• Different fields of a structure do not alias.

• Indexes into arrays with statically differing subscripts cannot alias.

• Many common standard C library functions never access memory or only read memory.

• Pointers that obviously point to constant globals “pointToConstantMemory”.

• Function calls can not modify or references stack allocations if they never escape from the function that allocates
them (a common case for automatic arrays).

The -globalsmodref-aa pass

This pass implements a simple context-sensitive mod/ref and alias analysis for internal global variables that don’t
“have their address taken”. If a global does not have its address taken, the pass knows that no pointers alias the global.
This pass also keeps track of functions that it knows never access memory or never read memory. This allows certain
optimizations (e.g. GVN) to eliminate call instructions entirely.

The real power of this pass is that it provides context-sensitive mod/ref information for call instructions. This allows
the optimizer to know that calls to a function do not clobber or read the value of the global, allowing loads and stores
to be eliminated.

Note: This pass is somewhat limited in its scope (only support non-address taken globals), but is very quick analysis.

The -steens-aa pass

The -steens-aa pass implements a variation on the well-known “Steensgaard’s algorithm” for interprocedural alias
analysis. Steensgaard’s algorithm is a unification-based, flow-insensitive, context-insensitive, and field-insensitive
alias analysis that is also very scalable (effectively linear time).

The LLVM -steens-aa pass implements a “speculatively field-sensitive” version of Steensgaard’s algorithm using
the Data Structure Analysis framework. This gives it substantially more precision than the standard algorithm while
maintaining excellent analysis scalability.

Note: -steens-aa is available in the optional “poolalloc” module. It is not part of the LLVM core.

The -ds-aa pass

The -ds-aa pass implements the full Data Structure Analysis algorithm. Data Structure Analysis is a modular
unification-based, flow-insensitive, context-sensitive, and speculatively field-sensitive alias analysis that is also quite
scalable, usually at O(n * log(n)).

This algorithm is capable of responding to a full variety of alias analysis queries, and can provide context-sensitive
mod/ref information as well. The only major facility not implemented so far is support for must-alias information.
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Note: -ds-aa is available in the optional “poolalloc” module. It is not part of the LLVM core.

The -scev-aa pass

The -scev-aa pass implements AliasAnalysis queries by translating them into ScalarEvolution queries. This gives
it a more complete understanding of getelementptr instructions and loop induction variables than other alias
analyses have.

Alias analysis driven transformations

LLVM includes several alias-analysis driven transformations which can be used with any of the implementations
above.

The -adce pass

The -adce pass, which implements Aggressive Dead Code Elimination uses the AliasAnalysis interface to
delete calls to functions that do not have side-effects and are not used.

The -licm pass

The -licm pass implements various Loop Invariant Code Motion related transformations. It uses the
AliasAnalysis interface for several different transformations:

• It uses mod/ref information to hoist or sink load instructions out of loops if there are no instructions in the loop
that modifies the memory loaded.

• It uses mod/ref information to hoist function calls out of loops that do not write to memory and are loop-invariant.

• It uses alias information to promote memory objects that are loaded and stored to in loops to live in a register
instead. It can do this if there are no may aliases to the loaded/stored memory location.

The -argpromotion pass

The -argpromotion pass promotes by-reference arguments to be passed in by-value instead. In particular, if
pointer arguments are only loaded from it passes in the value loaded instead of the address to the function. This pass
uses alias information to make sure that the value loaded from the argument pointer is not modified between the entry
of the function and any load of the pointer.

The -gvn, -memcpyopt, and -dse passes

These passes use AliasAnalysis information to reason about loads and stores.

Clients for debugging and evaluation of implementations

These passes are useful for evaluating the various alias analysis implementations. You can use them with commands
like:
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% opt -ds-aa -aa-eval foo.bc -disable-output -stats

The -print-alias-sets pass

The -print-alias-sets pass is exposed as part of the opt tool to print out the Alias Sets formed by the Alias-
SetTracker class. This is useful if you’re using the AliasSetTracker class. To use it, use something like:

% opt -ds-aa -print-alias-sets -disable-output

The -count-aa pass

The -count-aa pass is useful to see how many queries a particular pass is making and what responses are returned
by the alias analysis. As an example:

% opt -basicaa -count-aa -ds-aa -count-aa -licm

will print out how many queries (and what responses are returned) by the -licm pass (of the -ds-aa pass) and
how many queries are made of the -basicaa pass by the -ds-aa pass. This can be useful when debugging a
transformation or an alias analysis implementation.

The -aa-eval pass

The -aa-eval pass simply iterates through all pairs of pointers in a function and asks an alias analysis whether or
not the pointers alias. This gives an indication of the precision of the alias analysis. Statistics are printed indicating
the percent of no/may/must aliases found (a more precise algorithm will have a lower number of may aliases).

Memory Dependence Analysis

If you’re just looking to be a client of alias analysis information, consider using the Memory Dependence Analysis
interface instead. MemDep is a lazy, caching layer on top of alias analysis that is able to answer the question of
what preceding memory operations a given instruction depends on, either at an intra- or inter-block level. Because
of its laziness and caching policy, using MemDep can be a significant performance win over accessing alias analysis
directly.

LLVM Bitcode File Format

• Abstract

• Overview

• Bitstream Format

– Magic Numbers

– Primitives

* Fixed Width Integers
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* Variable Width Integers

* 6-bit characters

* Word Alignment

– Abbreviation IDs

– Blocks

* ENTER_SUBBLOCK Encoding

* END_BLOCK Encoding

– Data Records

* UNABBREV_RECORD Encoding

* Abbreviated Record Encoding

– Abbreviations

* DEFINE_ABBREV Encoding

– Standard Blocks

* #0 - BLOCKINFO Block

• Bitcode Wrapper Format

• Native Object File Wrapper Format

• LLVM IR Encoding

– Basics

* LLVM IR Magic Number

* Signed VBRs

* LLVM IR Blocks

– MODULE_BLOCK Contents

* MODULE_CODE_VERSION Record

* MODULE_CODE_TRIPLE Record

* MODULE_CODE_DATALAYOUT Record

* MODULE_CODE_ASM Record

* MODULE_CODE_SECTIONNAME Record

* MODULE_CODE_DEPLIB Record

* MODULE_CODE_GLOBALVAR Record

* MODULE_CODE_FUNCTION Record

* MODULE_CODE_ALIAS Record

* MODULE_CODE_PURGEVALS Record

* MODULE_CODE_GCNAME Record

– PARAMATTR_BLOCK Contents

* PARAMATTR_CODE_ENTRY Record
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– TYPE_BLOCK Contents

* TYPE_CODE_NUMENTRY Record

* TYPE_CODE_VOID Record

* TYPE_CODE_HALF Record

* TYPE_CODE_FLOAT Record

* TYPE_CODE_DOUBLE Record

* TYPE_CODE_LABEL Record

* TYPE_CODE_OPAQUE Record

* TYPE_CODE_INTEGER Record

* TYPE_CODE_POINTER Record

* TYPE_CODE_FUNCTION Record

* TYPE_CODE_STRUCT Record

* TYPE_CODE_ARRAY Record

* TYPE_CODE_VECTOR Record

* TYPE_CODE_X86_FP80 Record

* TYPE_CODE_FP128 Record

* TYPE_CODE_PPC_FP128 Record

* TYPE_CODE_METADATA Record

– CONSTANTS_BLOCK Contents

– FUNCTION_BLOCK Contents

– TYPE_SYMTAB_BLOCK Contents

* TST_CODE_ENTRY Record

– VALUE_SYMTAB_BLOCK Contents

– METADATA_BLOCK Contents

– METADATA_ATTACHMENT Contents

Abstract

This document describes the LLVM bitstream file format and the encoding of the LLVM IR into it.

Overview

What is commonly known as the LLVM bitcode file format (also, sometimes anachronistically known as bytecode) is
actually two things: a bitstream container format and an encoding of LLVM IR into the container format.

The bitstream format is an abstract encoding of structured data, very similar to XML in some ways. Like XML,
bitstream files contain tags, and nested structures, and you can parse the file without having to understand the tags.
Unlike XML, the bitstream format is a binary encoding, and unlike XML it provides a mechanism for the file to
self-describe “abbreviations”, which are effectively size optimizations for the content.
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LLVM IR files may be optionally embedded into a wrapper structure, or in a native object file. Both of these mecha-
nisms make it easy to embed extra data along with LLVM IR files.

This document first describes the LLVM bitstream format, describes the wrapper format, then describes the record
structure used by LLVM IR files.

Bitstream Format

The bitstream format is literally a stream of bits, with a very simple structure. This structure consists of the following
concepts:

• A “magic number” that identifies the contents of the stream.

• Encoding primitives like variable bit-rate integers.

• Blocks, which define nested content.

• Data Records, which describe entities within the file.

• Abbreviations, which specify compression optimizations for the file.

Note that the llvm-bcanalyzer tool can be used to dump and inspect arbitrary bitstreams, which is very useful for
understanding the encoding.

Magic Numbers

The first two bytes of a bitcode file are ‘BC’ (0x42, 0x43). The second two bytes are an application-specific magic
number. Generic bitcode tools can look at only the first two bytes to verify the file is bitcode, while application-specific
programs will want to look at all four.

Primitives

A bitstream literally consists of a stream of bits, which are read in order starting with the least significant bit of each
byte. The stream is made up of a number of primitive values that encode a stream of unsigned integer values. These
integers are encoded in two ways: either as Fixed Width Integers or as Variable Width Integers.

Fixed Width Integers

Fixed-width integer values have their low bits emitted directly to the file. For example, a 3-bit integer value encodes
1 as 001. Fixed width integers are used when there are a well-known number of options for a field. For example,
boolean values are usually encoded with a 1-bit wide integer.

Variable Width Integers

Variable-width integer (VBR) values encode values of arbitrary size, optimizing for the case where the values are
small. Given a 4-bit VBR field, any 3-bit value (0 through 7) is encoded directly, with the high bit set to zero. Values
larger than N-1 bits emit their bits in a series of N-1 bit chunks, where all but the last set the high bit.

For example, the value 27 (0x1B) is encoded as 1011 0011 when emitted as a vbr4 value. The first set of four bits
indicates the value 3 (011) with a continuation piece (indicated by a high bit of 1). The next word indicates a value of
24 (011 << 3) with no continuation. The sum (3+24) yields the value 27.
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6-bit characters

6-bit characters encode common characters into a fixed 6-bit field. They represent the following characters with the
following 6-bit values:

'a' .. 'z' --- 0 .. 25
'A' .. 'Z' --- 26 .. 51
'0' .. '9' --- 52 .. 61

'.' --- 62
'_' --- 63

This encoding is only suitable for encoding characters and strings that consist only of the above characters. It is
completely incapable of encoding characters not in the set.

Word Alignment

Occasionally, it is useful to emit zero bits until the bitstream is a multiple of 32 bits. This ensures that the bit position
in the stream can be represented as a multiple of 32-bit words.

Abbreviation IDs

A bitstream is a sequential series of Blocks and Data Records. Both of these start with an abbreviation ID encoded as
a fixed-bitwidth field. The width is specified by the current block, as described below. The value of the abbreviation
ID specifies either a builtin ID (which have special meanings, defined below) or one of the abbreviation IDs defined
for the current block by the stream itself.

The set of builtin abbrev IDs is:

• 0 - END_BLOCK — This abbrev ID marks the end of the current block.

• 1 - ENTER_SUBBLOCK — This abbrev ID marks the beginning of a new block.

• 2 - DEFINE_ABBREV — This defines a new abbreviation.

• 3 - UNABBREV_RECORD — This ID specifies the definition of an unabbreviated record.

Abbreviation IDs 4 and above are defined by the stream itself, and specify an abbreviated record encoding.

Blocks

Blocks in a bitstream denote nested regions of the stream, and are identified by a content-specific id number (for
example, LLVM IR uses an ID of 12 to represent function bodies). Block IDs 0-7 are reserved for standard blocks
whose meaning is defined by Bitcode; block IDs 8 and greater are application specific. Nested blocks capture the
hierarchical structure of the data encoded in it, and various properties are associated with blocks as the file is parsed.
Block definitions allow the reader to efficiently skip blocks in constant time if the reader wants a summary of blocks,
or if it wants to efficiently skip data it does not understand. The LLVM IR reader uses this mechanism to skip function
bodies, lazily reading them on demand.

When reading and encoding the stream, several properties are maintained for the block. In particular, each block
maintains:

1. A current abbrev id width. This value starts at 2 at the beginning of the stream, and is set every time a block
record is entered. The block entry specifies the abbrev id width for the body of the block.

2. A set of abbreviations. Abbreviations may be defined within a block, in which case they are only defined in that
block (neither subblocks nor enclosing blocks see the abbreviation). Abbreviations can also be defined inside a
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BLOCKINFO block, in which case they are defined in all blocks that match the ID that the BLOCKINFO block
is describing.

As sub blocks are entered, these properties are saved and the new sub-block has its own set of abbreviations, and its
own abbrev id width. When a sub-block is popped, the saved values are restored.

ENTER_SUBBLOCK Encoding

[ENTER_SUBBLOCK, blockidvbr8, newabbrevlenvbr4, <align32bits>, blocklen_32]

The ENTER_SUBBLOCK abbreviation ID specifies the start of a new block record. The blockid value is encoded as
an 8-bit VBR identifier, and indicates the type of block being entered, which can be a standard block or an application-
specific block. The newabbrevlen value is a 4-bit VBR, which specifies the abbrev id width for the sub-block. The
blocklen value is a 32-bit aligned value that specifies the size of the subblock in 32-bit words. This value allows
the reader to skip over the entire block in one jump.

END_BLOCK Encoding

[END_BLOCK, <align32bits>]

The END_BLOCK abbreviation ID specifies the end of the current block record. Its end is aligned to 32-bits to ensure
that the size of the block is an even multiple of 32-bits.

Data Records

Data records consist of a record code and a number of (up to) 64-bit integer values. The interpretation of the code and
values is application specific and may vary between different block types. Records can be encoded either using an
unabbrev record, or with an abbreviation. In the LLVM IR format, for example, there is a record which encodes the
target triple of a module. The code is MODULE_CODE_TRIPLE, and the values of the record are the ASCII codes for
the characters in the string.

UNABBREV_RECORD Encoding

[UNABBREV_RECORD, codevbr6, numopsvbr6, op0vbr6, op1vbr6, ...]

An UNABBREV_RECORD provides a default fallback encoding, which is both completely general and extremely inef-
ficient. It can describe an arbitrary record by emitting the code and operands as VBRs.

For example, emitting an LLVM IR target triple as an unabbreviated record requires emitting the
UNABBREV_RECORD abbrevid, a vbr6 for the MODULE_CODE_TRIPLE code, a vbr6 for the length of the string,
which is equal to the number of operands, and a vbr6 for each character. Because there are no letters with values less
than 32, each letter would need to be emitted as at least a two-part VBR, which means that each letter would require
at least 12 bits. This is not an efficient encoding, but it is fully general.

Abbreviated Record Encoding

[<abbrevid>, fields...]

An abbreviated record is a abbreviation id followed by a set of fields that are encoded according to the abbrevia-
tion definition. This allows records to be encoded significantly more densely than records encoded with the UNAB-
BREV_RECORD type, and allows the abbreviation types to be specified in the stream itself, which allows the files to
be completely self describing. The actual encoding of abbreviations is defined below.
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The record code, which is the first field of an abbreviated record, may be encoded in the abbreviation definition (as a
literal operand) or supplied in the abbreviated record (as a Fixed or VBR operand value).

Abbreviations

Abbreviations are an important form of compression for bitstreams. The idea is to specify a dense encoding for a class
of records once, then use that encoding to emit many records. It takes space to emit the encoding into the file, but the
space is recouped (hopefully plus some) when the records that use it are emitted.

Abbreviations can be determined dynamically per client, per file. Because the abbreviations are stored in the bitstream
itself, different streams of the same format can contain different sets of abbreviations according to the needs of the
specific stream. As a concrete example, LLVM IR files usually emit an abbreviation for binary operators. If a specific
LLVM module contained no or few binary operators, the abbreviation does not need to be emitted.

DEFINE_ABBREV Encoding

[DEFINE_ABBREV, numabbrevopsvbr5, abbrevop0, abbrevop1, ...]

A DEFINE_ABBREV record adds an abbreviation to the list of currently defined abbreviations in the scope of this
block. This definition only exists inside this immediate block — it is not visible in subblocks or enclosing blocks.
Abbreviations are implicitly assigned IDs sequentially starting from 4 (the first application-defined abbreviation ID).
Any abbreviations defined in a BLOCKINFO record for the particular block type receive IDs first, in order, followed
by any abbreviations defined within the block itself. Abbreviated data records reference this ID to indicate what
abbreviation they are invoking.

An abbreviation definition consists of the DEFINE_ABBREV abbrevid followed by a VBR that specifies the number
of abbrev operands, then the abbrev operands themselves. Abbreviation operands come in three forms. They all start
with a single bit that indicates whether the abbrev operand is a literal operand (when the bit is 1) or an encoding
operand (when the bit is 0).

1. Literal operands — [11, litvaluevbr8] — Literal operands specify that the value in the result is always a single
specific value. This specific value is emitted as a vbr8 after the bit indicating that it is a literal operand.

2. Encoding info without data — [01, encoding3] — Operand encodings that do not have extra data are just emitted
as their code.

3. Encoding info with data — [01, encoding3, valuevbr5] — Operand encodings that do have extra data are emitted
as their code, followed by the extra data.

The possible operand encodings are:

• Fixed (code 1): The field should be emitted as a fixed-width value, whose width is specified by the operand’s
extra data.

• VBR (code 2): The field should be emitted as a variable-width value, whose width is specified by the operand’s
extra data.

• Array (code 3): This field is an array of values. The array operand has no extra data, but expects another operand
to follow it, indicating the element type of the array. When reading an array in an abbreviated record, the first
integer is a vbr6 that indicates the array length, followed by the encoded elements of the array. An array may
only occur as the last operand of an abbreviation (except for the one final operand that gives the array’s type).

• Char6 (code 4): This field should be emitted as a char6-encoded value. This operand type takes no extra data.
Char6 encoding is normally used as an array element type.

• Blob (code 5): This field is emitted as a vbr6, followed by padding to a 32-bit boundary (for alignment) and an
array of 8-bit objects. The array of bytes is further followed by tail padding to ensure that its total length is a
multiple of 4 bytes. This makes it very efficient for the reader to decode the data without having to make a copy
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of it: it can use a pointer to the data in the mapped in file and poke directly at it. A blob may only occur as the
last operand of an abbreviation.

For example, target triples in LLVM modules are encoded as a record of the form [TRIPLE, 'a', 'b', 'c',
'd']. Consider if the bitstream emitted the following abbrev entry:

[0, Fixed, 4]
[0, Array]
[0, Char6]

When emitting a record with this abbreviation, the above entry would be emitted as:

[4abbrevwidth, 24, 4vbr6, 06, 16, 26, 36]

These values are:

1. The first value, 4, is the abbreviation ID for this abbreviation.

2. The second value, 2, is the record code for TRIPLE records within LLVM IR file MODULE_BLOCK blocks.

3. The third value, 4, is the length of the array.

4. The rest of the values are the char6 encoded values for "abcd".

With this abbreviation, the triple is emitted with only 37 bits (assuming a abbrev id width of 3). Without the abbre-
viation, significantly more space would be required to emit the target triple. Also, because the TRIPLE value is not
emitted as a literal in the abbreviation, the abbreviation can also be used for any other string value.

Standard Blocks

In addition to the basic block structure and record encodings, the bitstream also defines specific built-in block types.
These block types specify how the stream is to be decoded or other metadata. In the future, new standard blocks may
be added. Block IDs 0-7 are reserved for standard blocks.

#0 - BLOCKINFO Block

The BLOCKINFO block allows the description of metadata for other blocks. The currently specified records are:

[SETBID (#1), blockid]
[DEFINE_ABBREV, ...]
[BLOCKNAME, ...name...]
[SETRECORDNAME, RecordID, ...name...]

The SETBID record (code 1) indicates which block ID is being described. SETBID records can occur multiple times
throughout the block to change which block ID is being described. There must be a SETBID record prior to any other
records.

Standard DEFINE_ABBREV records can occur inside BLOCKINFO blocks, but unlike their occurrence in normal
blocks, the abbreviation is defined for blocks matching the block ID we are describing, not the BLOCKINFO block
itself. The abbreviations defined in BLOCKINFO blocks receive abbreviation IDs as described in DEFINE_ABBREV .

The BLOCKNAME record (code 2) can optionally occur in this block. The elements of the record are the bytes of the
string name of the block. llvm-bcanalyzer can use this to dump out bitcode files symbolically.

The SETRECORDNAME record (code 3) can also optionally occur in this block. The first operand value is a record ID
number, and the rest of the elements of the record are the bytes for the string name of the record. llvm-bcanalyzer can
use this to dump out bitcode files symbolically.
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Note that although the data in BLOCKINFO blocks is described as “metadata,” the abbreviations they contain are
essential for parsing records from the corresponding blocks. It is not safe to skip them.

Bitcode Wrapper Format

Bitcode files for LLVM IR may optionally be wrapped in a simple wrapper structure. This structure contains a simple
header that indicates the offset and size of the embedded BC file. This allows additional information to be stored
alongside the BC file. The structure of this file header is:

[Magic32, Version32, Offset32, Size32, CPUType32]

Each of the fields are 32-bit fields stored in little endian form (as with the rest of the bitcode file fields). The Magic
number is always 0x0B17C0DE and the version is currently always 0. The Offset field is the offset in bytes to the
start of the bitcode stream in the file, and the Size field is the size in bytes of the stream. CPUType is a target-specific
value that can be used to encode the CPU of the target.

Native Object File Wrapper Format

Bitcode files for LLVM IR may also be wrapped in a native object file (i.e. ELF, COFF, Mach-O). The bitcode must
be stored in a section of the object file named __LLVM,__bitcode for MachO and .llvmbc for the other object
formats. This wrapper format is useful for accommodating LTO in compilation pipelines where intermediate objects
must be native object files which contain metadata in other sections.

Not all tools support this format.

LLVM IR Encoding

LLVM IR is encoded into a bitstream by defining blocks and records. It uses blocks for things like constant pools,
functions, symbol tables, etc. It uses records for things like instructions, global variable descriptors, type descriptions,
etc. This document does not describe the set of abbreviations that the writer uses, as these are fully self-described in
the file, and the reader is not allowed to build in any knowledge of this.

Basics

LLVM IR Magic Number

The magic number for LLVM IR files is:

[0x04, 0xC4, 0xE4, 0xD4]

When combined with the bitcode magic number and viewed as bytes, this is "BC 0xC0DE".

Signed VBRs

Variable Width Integer encoding is an efficient way to encode arbitrary sized unsigned values, but is an extremely
inefficient for encoding signed values, as signed values are otherwise treated as maximally large unsigned values.

As such, signed VBR values of a specific width are emitted as follows:

• Positive values are emitted as VBRs of the specified width, but with their value shifted left by one.

• Negative values are emitted as VBRs of the specified width, but the negated value is shifted left by one, and the
low bit is set.
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With this encoding, small positive and small negative values can both be emitted efficiently. Signed VBR encoding is
used in CST_CODE_INTEGER and CST_CODE_WIDE_INTEGER records within CONSTANTS_BLOCK blocks. It
is also used for phi instruction operands in MODULE_CODE_VERSION 1.

LLVM IR Blocks

LLVM IR is defined with the following blocks:

• 8 — MODULE_BLOCK — This is the top-level block that contains the entire module, and describes a variety
of per-module information.

• 9 — PARAMATTR_BLOCK — This enumerates the parameter attributes.

• 10 — TYPE_BLOCK — This describes all of the types in the module.

• 11 — CONSTANTS_BLOCK — This describes constants for a module or function.

• 12 — FUNCTION_BLOCK — This describes a function body.

• 13 — TYPE_SYMTAB_BLOCK — This describes the type symbol table.

• 14 — VALUE_SYMTAB_BLOCK — This describes a value symbol table.

• 15 — METADATA_BLOCK — This describes metadata items.

• 16 — METADATA_ATTACHMENT — This contains records associating metadata with function instruction
values.

MODULE_BLOCK Contents

The MODULE_BLOCK block (id 8) is the top-level block for LLVM bitcode files, and each bitcode file must contain
exactly one. In addition to records (described below) containing information about the module, a MODULE_BLOCK
block may contain the following sub-blocks:

• BLOCKINFO

• PARAMATTR_BLOCK

• TYPE_BLOCK

• TYPE_SYMTAB_BLOCK

• VALUE_SYMTAB_BLOCK

• CONSTANTS_BLOCK

• FUNCTION_BLOCK

• METADATA_BLOCK

MODULE_CODE_VERSION Record

[VERSION, version#]

The VERSION record (code 1) contains a single value indicating the format version. Versions 0 and 1 are supported
at this time. The difference between version 0 and 1 is in the encoding of instruction operands in each FUNC-
TION_BLOCK.

In version 0, each value defined by an instruction is assigned an ID unique to the function. Function-level value IDs
are assigned starting from NumModuleValues since they share the same namespace as module-level values. The
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value enumerator resets after each function. When a value is an operand of an instruction, the value ID is used to
represent the operand. For large functions or large modules, these operand values can be large.

The encoding in version 1 attempts to avoid large operand values in common cases. Instead of using the value ID
directly, operands are encoded as relative to the current instruction. Thus, if an operand is the value defined by the
previous instruction, the operand will be encoded as 1.

For example, instead of

#n = load #n-1
#n+1 = icmp eq #n, #const0
br #n+1, label #(bb1), label #(bb2)

version 1 will encode the instructions as

#n = load #1
#n+1 = icmp eq #1, (#n+1)-#const0
br #1, label #(bb1), label #(bb2)

Note in the example that operands which are constants also use the relative encoding, while operands like basic block
labels do not use the relative encoding.

Forward references will result in a negative value. This can be inefficient, as operands are normally encoded as
unsigned VBRs. However, forward references are rare, except in the case of phi instructions. For phi instructions,
operands are encoded as Signed VBRs to deal with forward references.

MODULE_CODE_TRIPLE Record

[TRIPLE, ...string...]

The TRIPLE record (code 2) contains a variable number of values representing the bytes of the target triple
specification string.

MODULE_CODE_DATALAYOUT Record

[DATALAYOUT, ...string...]

The DATALAYOUT record (code 3) contains a variable number of values representing the bytes of the target
datalayout specification string.

MODULE_CODE_ASM Record

[ASM, ...string...]

The ASM record (code 4) contains a variable number of values representing the bytes of module asm strings, with
individual assembly blocks separated by newline (ASCII 10) characters.

MODULE_CODE_SECTIONNAME Record

[SECTIONNAME, ...string...]

The SECTIONNAME record (code 5) contains a variable number of values representing the bytes of a single section
name string. There should be one SECTIONNAME record for each section name referenced (e.g., in global variable or
function section attributes) within the module. These records can be referenced by the 1-based index in the section
fields of GLOBALVAR or FUNCTION records.
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MODULE_CODE_DEPLIB Record

[DEPLIB, ...string...]

The DEPLIB record (code 6) contains a variable number of values representing the bytes of a single dependent library
name string, one of the libraries mentioned in a deplibs declaration. There should be one DEPLIB record for each
library name referenced.

MODULE_CODE_GLOBALVAR Record

[GLOBALVAR, pointer type, isconst, initid, linkage, alignment, section,
visibility, threadlocal, unnamed_addr, externally_initialized,
dllstorageclass, comdat]

The GLOBALVAR record (code 7) marks the declaration or definition of a global variable. The operand fields are:

• pointer type: The type index of the pointer type used to point to this global variable

• isconst: Non-zero if the variable is treated as constant within the module, or zero if it is not

• initid: If non-zero, the value index of the initializer for this variable, plus 1.

• linkage: An encoding of the linkage type for this variable:

– external: code 0

– weak: code 1

– appending: code 2

– internal: code 3

– linkonce: code 4

– dllimport: code 5

– dllexport: code 6

– extern_weak: code 7

– common: code 8

– private: code 9

– weak_odr: code 10

– linkonce_odr: code 11

– available_externally: code 12

– deprecated : code 13

– deprecated : code 14

• alignment*: The logarithm base 2 of the variable’s requested alignment, plus 1

• section: If non-zero, the 1-based section index in the table of MODULE_CODE_SECTIONNAME entries.

• visibility: If present, an encoding of the visibility of this variable:

– default: code 0

– hidden: code 1

– protected: code 2

• threadlocal: If present, an encoding of the thread local storage mode of the variable:
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– not thread local: code 0

– thread local; default TLS model: code 1

– localdynamic: code 2

– initialexec: code 3

– localexec: code 4

• unnamed_addr: If present, an encoding of the unnamed_addr attribute of this variable:

– not unnamed_addr: code 0

– unnamed_addr: code 1

– local_unnamed_addr: code 2

• dllstorageclass: If present, an encoding of the DLL storage class of this variable:

– default: code 0

– dllimport: code 1

– dllexport: code 2

• comdat: An encoding of the COMDAT of this function

MODULE_CODE_FUNCTION Record

[FUNCTION, type, callingconv, isproto, linkage, paramattr, alignment,
section, visibility, gc, prologuedata, dllstorageclass, comdat, prefixdata,
personalityfn]

The FUNCTION record (code 8) marks the declaration or definition of a function. The operand fields are:

• type: The type index of the function type describing this function

• callingconv: The calling convention number: * ccc: code 0 * fastcc: code 8 * coldcc: code 9 *
webkit_jscc: code 12 * anyregcc: code 13 * preserve_mostcc: code 14 * preserve_allcc:
code 15 * swiftcc : code 16 * cxx_fast_tlscc: code 17 * x86_stdcallcc: code 64 *
x86_fastcallcc: code 65 * arm_apcscc: code 66 * arm_aapcscc: code 67 * arm_aapcs_vfpcc:
code 68

• isproto*: Non-zero if this entry represents a declaration rather than a definition

• linkage: An encoding of the linkage type for this function

• paramattr: If nonzero, the 1-based parameter attribute index into the table of PARAMATTR_CODE_ENTRY
entries.

• alignment: The logarithm base 2 of the function’s requested alignment, plus 1

• section: If non-zero, the 1-based section index in the table of MODULE_CODE_SECTIONNAME entries.

• visibility: An encoding of the visibility of this function

• gc: If present and nonzero, the 1-based garbage collector index in the table of MODULE_CODE_GCNAME
entries.

• unnamed_addr: If present, an encoding of the unnamed_addr attribute of this function

• prologuedata: If non-zero, the value index of the prologue data for this function, plus 1.

• dllstorageclass: An encoding of the dllstorageclass of this function
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• comdat: An encoding of the COMDAT of this function

• prefixdata: If non-zero, the value index of the prefix data for this function, plus 1.

• personalityfn: If non-zero, the value index of the personality function for this function, plus 1.

MODULE_CODE_ALIAS Record

[ALIAS, alias type, aliasee val#, linkage, visibility, dllstorageclass,
threadlocal, unnamed_addr]

The ALIAS record (code 9) marks the definition of an alias. The operand fields are

• alias type: The type index of the alias

• aliasee val#: The value index of the aliased value

• linkage: An encoding of the linkage type for this alias

• visibility: If present, an encoding of the visibility of the alias

• dllstorageclass: If present, an encoding of the dllstorageclass of the alias

• threadlocal: If present, an encoding of the thread local property of the alias

• unnamed_addr: If present, an encoding of the unnamed_addr attribute of this alias

MODULE_CODE_PURGEVALS Record

[PURGEVALS, numvals]

The PURGEVALS record (code 10) resets the module-level value list to the size given by the single operand value.
Module-level value list items are added by GLOBALVAR, FUNCTION, and ALIAS records. After a PURGEVALS
record is seen, new value indices will start from the given numvals value.

MODULE_CODE_GCNAME Record

[GCNAME, ...string...]

The GCNAME record (code 11) contains a variable number of values representing the bytes of a single garbage collector
name string. There should be one GCNAME record for each garbage collector name referenced in function gc attributes
within the module. These records can be referenced by 1-based index in the gc fields of FUNCTION records.

PARAMATTR_BLOCK Contents

The PARAMATTR_BLOCK block (id 9) contains a table of entries describing the attributes of function parameters.
These entries are referenced by 1-based index in the paramattr field of module block FUNCTION records, or within
the attr field of function block INST_INVOKE and INST_CALL records.

Entries within PARAMATTR_BLOCK are constructed to ensure that each is unique (i.e., no two indices represent
equivalent attribute lists).

4.2. LLVM Bitcode File Format 935



LLVM Documentation, Release 3.9

PARAMATTR_CODE_ENTRY Record

[ENTRY, paramidx0, attr0, paramidx1, attr1...]

The ENTRY record (code 1) contains an even number of values describing a unique set of function parameter attributes.
Each paramidx value indicates which set of attributes is represented, with 0 representing the return value attributes,
0xFFFFFFFF representing function attributes, and other values representing 1-based function parameters. Each attr
value is a bitmap with the following interpretation:

• bit 0: zeroext

• bit 1: signext

• bit 2: noreturn

• bit 3: inreg

• bit 4: sret

• bit 5: nounwind

• bit 6: noalias

• bit 7: byval

• bit 8: nest

• bit 9: readnone

• bit 10: readonly

• bit 11: noinline

• bit 12: alwaysinline

• bit 13: optsize

• bit 14: ssp

• bit 15: sspreq

• bits 16-31: align n

• bit 32: nocapture

• bit 33: noredzone

• bit 34: noimplicitfloat

• bit 35: naked

• bit 36: inlinehint

• bits 37-39: alignstack n, represented as the logarithm base 2 of the requested alignment, plus 1

TYPE_BLOCK Contents

The TYPE_BLOCK block (id 10) contains records which constitute a table of type operator entries used to represent
types referenced within an LLVM module. Each record (with the exception of NUMENTRY) generates a single type
table entry, which may be referenced by 0-based index from instructions, constants, metadata, type symbol table
entries, or other type operator records.

Entries within TYPE_BLOCK are constructed to ensure that each entry is unique (i.e., no two indices represent struc-
turally equivalent types).
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TYPE_CODE_NUMENTRY Record

[NUMENTRY, numentries]

The NUMENTRY record (code 1) contains a single value which indicates the total number of type code entries in the
type table of the module. If present, NUMENTRY should be the first record in the block.

TYPE_CODE_VOID Record

[VOID]

The VOID record (code 2) adds a void type to the type table.

TYPE_CODE_HALF Record

[HALF]

The HALF record (code 10) adds a half (16-bit floating point) type to the type table.

TYPE_CODE_FLOAT Record

[FLOAT]

The FLOAT record (code 3) adds a float (32-bit floating point) type to the type table.

TYPE_CODE_DOUBLE Record

[DOUBLE]

The DOUBLE record (code 4) adds a double (64-bit floating point) type to the type table.

TYPE_CODE_LABEL Record

[LABEL]

The LABEL record (code 5) adds a label type to the type table.

TYPE_CODE_OPAQUE Record

[OPAQUE]

The OPAQUE record (code 6) adds an opaque type to the type table. Note that distinct opaque types are not unified.

TYPE_CODE_INTEGER Record

[INTEGER, width]

The INTEGER record (code 7) adds an integer type to the type table. The single width field indicates the width of the
integer type.
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TYPE_CODE_POINTER Record

[POINTER, pointee type, address space]

The POINTER record (code 8) adds a pointer type to the type table. The operand fields are

• pointee type: The type index of the pointed-to type

• address space: If supplied, the target-specific numbered address space where the pointed-to object resides.
Otherwise, the default address space is zero.

TYPE_CODE_FUNCTION Record

[FUNCTION, vararg, ignored, retty, ...paramty... ]

The FUNCTION record (code 9) adds a function type to the type table. The operand fields are

• vararg: Non-zero if the type represents a varargs function

• ignored: This value field is present for backward compatibility only, and is ignored

• retty: The type index of the function’s return type

• paramty: Zero or more type indices representing the parameter types of the function

TYPE_CODE_STRUCT Record

[STRUCT, ispacked, ...eltty...]

The STRUCT record (code 10) adds a struct type to the type table. The operand fields are

• ispacked: Non-zero if the type represents a packed structure

• eltty: Zero or more type indices representing the element types of the structure

TYPE_CODE_ARRAY Record

[ARRAY, numelts, eltty]

The ARRAY record (code 11) adds an array type to the type table. The operand fields are

• numelts: The number of elements in arrays of this type

• eltty: The type index of the array element type

TYPE_CODE_VECTOR Record

[VECTOR, numelts, eltty]

The VECTOR record (code 12) adds a vector type to the type table. The operand fields are

• numelts: The number of elements in vectors of this type

• eltty: The type index of the vector element type
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TYPE_CODE_X86_FP80 Record

[X86_FP80]

The X86_FP80 record (code 13) adds an x86_fp80 (80-bit floating point) type to the type table.

TYPE_CODE_FP128 Record

[FP128]

The FP128 record (code 14) adds an fp128 (128-bit floating point) type to the type table.

TYPE_CODE_PPC_FP128 Record

[PPC_FP128]

The PPC_FP128 record (code 15) adds a ppc_fp128 (128-bit floating point) type to the type table.

TYPE_CODE_METADATA Record

[METADATA]

The METADATA record (code 16) adds a metadata type to the type table.

CONSTANTS_BLOCK Contents

The CONSTANTS_BLOCK block (id 11) ...

FUNCTION_BLOCK Contents

The FUNCTION_BLOCK block (id 12) ...

In addition to the record types described below, a FUNCTION_BLOCK block may contain the following sub-blocks:

• CONSTANTS_BLOCK

• VALUE_SYMTAB_BLOCK

• METADATA_ATTACHMENT

TYPE_SYMTAB_BLOCK Contents

The TYPE_SYMTAB_BLOCK block (id 13) contains entries which map between module-level named types and their
corresponding type indices.

TST_CODE_ENTRY Record

[ENTRY, typeid, ...string...]

The ENTRY record (code 1) contains a variable number of values, with the first giving the type index of the designated
type, and the remaining values giving the character codes of the type name. Each entry corresponds to a single named
type.
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VALUE_SYMTAB_BLOCK Contents

The VALUE_SYMTAB_BLOCK block (id 14) ...

METADATA_BLOCK Contents

The METADATA_BLOCK block (id 15) ...

METADATA_ATTACHMENT Contents

The METADATA_ATTACHMENT block (id 16) ...

LLVM Block Frequency Terminology

• Introduction

• Branch Probability

• Branch Weight

• Block Frequency

• Implementation: a series of DAGs

• Block Mass

• Loop Scale

• Implementation: Getting from mass and scale to frequency

• Block Bias

Introduction

Block Frequency is a metric for estimating the relative frequency of different basic blocks. This document describes
the terminology that the BlockFrequencyInfo and MachineBlockFrequencyInfo analysis passes use.

Branch Probability

Blocks with multiple successors have probabilities associated with each outgoing edge. These are called branch
probabilities. For a given block, the sum of its outgoing branch probabilities should be 1.0.

Branch Weight

Rather than storing fractions on each edge, we store an integer weight. Weights are relative to the other edges of a
given predecessor block. The branch probability associated with a given edge is its own weight divided by the sum of
the weights on the predecessor’s outgoing edges.

For example, consider this IR:
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define void @foo() {
; ...
A:

br i1 %cond, label %B, label %C, !prof !0
; ...

}
!0 = metadata !{metadata !"branch_weights", i32 7, i32 8}

and this simple graph representation:

A -> B (edge-weight: 7)
A -> C (edge-weight: 8)

The probability of branching from block A to block B is 7/15, and the probability of branching from block A to block
C is 8/15.

See LLVM Branch Weight Metadata for details about the branch weight IR representation.

Block Frequency

Block frequency is a relative metric that represents the number of times a block executes. The ratio of a block frequency
to the entry block frequency is the expected number of times the block will execute per entry to the function.

Block frequency is the main output of the BlockFrequencyInfo and MachineBlockFrequencyInfo anal-
ysis passes.

Implementation: a series of DAGs

The implementation of the block frequency calculation analyses each loop, bottom-up, ignoring backedges; i.e., as a
DAG. After each loop is processed, it’s packaged up to act as a pseudo-node in its parent loop’s (or the function’s)
DAG analysis.

Block Mass

For each DAG, the entry node is assigned a mass of UINT64_MAX and mass is distributed to successors according to
branch weights. Block Mass uses a fixed-point representation where UINT64_MAX represents 1.0 and 0 represents
a number just above 0.0.

After mass is fully distributed, in any cut of the DAG that separates the exit nodes from the entry node, the sum of the
block masses of the nodes succeeded by a cut edge should equal UINT64_MAX. In other words, mass is conserved as
it “falls” through the DAG.

If a function’s basic block graph is a DAG, then block masses are valid block frequencies. This works poorly in
practise though, since downstream users rely on adding block frequencies together without hitting the maximum.

Loop Scale

Loop scale is a metric that indicates how many times a loop iterates per entry. As mass is distributed through the loop’s
DAG, the (otherwise ignored) backedge mass is collected. This backedge mass is used to compute the exit frequency,
and thus the loop scale.
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Implementation: Getting from mass and scale to frequency

After analysing the complete series of DAGs, each block has a mass (local to its containing loop, if any), and each
loop pseudo-node has a loop scale and its own mass (from its parent’s DAG).

We can get an initial frequency assignment (with entry frequency of 1.0) by multiplying these masses and loop scales
together. A given block’s frequency is the product of its mass, the mass of containing loops’ pseudo nodes, and the
containing loops’ loop scales.

Since downstream users need integers (not floating point), this initial frequency assignment is shifted as necessary into
the range of uint64_t.

Block Bias

Block bias is a proposed absolute metric to indicate a bias toward or away from a given block during a function’s
execution. The idea is that bias can be used in isolation to indicate whether a block is relatively hot or cold, or to
compare two blocks to indicate whether one is hotter or colder than the other.

The proposed calculation involves calculating a reference block frequency, where:

• every branch weight is assumed to be 1 (i.e., every branch probability distribution is even) and

• loop scales are ignored.

This reference frequency represents what the block frequency would be in an unbiased graph.

The bias is the ratio of the block frequency to this reference block frequency.

LLVM Branch Weight Metadata

• Introduction

• Supported Instructions

– BranchInst

– SwitchInst

– IndirectBrInst

– Other

• Built-in expect Instructions

– if statement

– switch statement

• CFG Modifications

• Function Entry Counts

Introduction

Branch Weight Metadata represents branch weights as its likeliness to be taken (see LLVM Block Frequency Termi-
nology). Metadata is assigned to the TerminatorInst as a MDNode of the MD_prof kind. The first operator is
always a MDString node with the string “branch_weights”. Number of operators depends on the terminator type.
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Branch weights might be fetch from the profiling file, or generated based on __builtin_expect instruction.

All weights are represented as an unsigned 32-bit values, where higher value indicates greater chance to be taken.

Supported Instructions

BranchInst

Metadata is only assigned to the conditional branches. There are two extra operands for the true and the false branch.

!0 = metadata !{
metadata !"branch_weights",
i32 <TRUE_BRANCH_WEIGHT>,
i32 <FALSE_BRANCH_WEIGHT>

}

SwitchInst

Branch weights are assigned to every case (including the default case which is always case #0).

!0 = metadata !{
metadata !"branch_weights",
i32 <DEFAULT_BRANCH_WEIGHT>
[ , i32 <CASE_BRANCH_WEIGHT> ... ]

}

IndirectBrInst

Branch weights are assigned to every destination.

!0 = metadata !{
metadata !"branch_weights",
i32 <LABEL_BRANCH_WEIGHT>
[ , i32 <LABEL_BRANCH_WEIGHT> ... ]

}

Other

Other terminator instructions are not allowed to contain Branch Weight Metadata.

Built-in expect Instructions

__builtin_expect(long exp, long c) instruction provides branch prediction information. The return
value is the value of exp.

It is especially useful in conditional statements. Currently Clang supports two conditional statements:
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if statement

The exp parameter is the condition. The c parameter is the expected comparison value. If it is equal to 1 (true), the
condition is likely to be true, in other case condition is likely to be false. For example:

if (__builtin_expect(x > 0, 1)) {
// This block is likely to be taken.

}

switch statement

The exp parameter is the value. The c parameter is the expected value. If the expected value doesn’t show on the
cases list, the default case is assumed to be likely taken.

switch (__builtin_expect(x, 5)) {
default: break;
case 0: // ...
case 3: // ...
case 5: // This case is likely to be taken.
}

CFG Modifications

Branch Weight Metatada is not proof against CFG changes. If terminator operands’ are changed some action should
be taken. In other case some misoptimizations may occur due to incorrect branch prediction information.

Function Entry Counts

To allow comparing different functions during inter-procedural analysis and optimization, MD_prof nodes can also
be assigned to a function definition. The first operand is a string indicating the name of the associated counter.

Currently, one counter is supported: “function_entry_count”. This is a 64-bit counter that indicates the number of
times that this function was invoked (in the case of instrumentation-based profiles). In the case of sampling-based
profiles, this counter is an approximation of how many times the function was invoked.

For example, in the code below, the instrumentation for function foo() indicates that it was called 2,590 times at
runtime.

define i32 @foo() !prof !1 {
ret i32 0

}
!1 = !{!"function_entry_count", i64 2590}

LLVM bugpoint tool: design and usage

• Description

• Design Philosophy

– Automatic Debugger Selection
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– Crash debugger

– Code generator debugger

– Miscompilation debugger

• Advice for using bugpoint

• What to do when bugpoint isn’t enough

Description

bugpoint narrows down the source of problems in LLVM tools and passes. It can be used to debug three types of
failures: optimizer crashes, miscompilations by optimizers, or bad native code generation (including problems in the
static and JIT compilers). It aims to reduce large test cases to small, useful ones. For example, if opt crashes while
optimizing a file, it will identify the optimization (or combination of optimizations) that causes the crash, and reduce
the file down to a small example which triggers the crash.

For detailed case scenarios, such as debugging opt, or one of the LLVM code generators, see How to submit an LLVM
bug report.

Design Philosophy

bugpoint is designed to be a useful tool without requiring any hooks into the LLVM infrastructure at all. It works
with any and all LLVM passes and code generators, and does not need to “know” how they work. Because of this, it
may appear to do stupid things or miss obvious simplifications. bugpoint is also designed to trade off programmer
time for computer time in the compiler-debugging process; consequently, it may take a long period of (unattended)
time to reduce a test case, but we feel it is still worth it. Note that bugpoint is generally very quick unless debugging
a miscompilation where each test of the program (which requires executing it) takes a long time.

Automatic Debugger Selection

bugpoint reads each .bc or .ll file specified on the command line and links them together into a single module,
called the test program. If any LLVM passes are specified on the command line, it runs these passes on the test program.
If any of the passes crash, or if they produce malformed output (which causes the verifier to abort), bugpoint starts
the crash debugger.

Otherwise, if the -output option was not specified, bugpoint runs the test program with the “safe” backend (which
is assumed to generate good code) to generate a reference output. Once bugpoint has a reference output for the
test program, it tries executing it with the selected code generator. If the selected code generator crashes, bugpoint
starts the crash debugger on the code generator. Otherwise, if the resulting output differs from the reference output, it
assumes the difference resulted from a code generator failure, and starts the code generator debugger.

Finally, if the output of the selected code generator matches the reference output, bugpoint runs the test program
after all of the LLVM passes have been applied to it. If its output differs from the reference output, it assumes the
difference resulted from a failure in one of the LLVM passes, and enters the miscompilation debugger. Otherwise,
there is no problem bugpoint can debug.

Crash debugger

If an optimizer or code generator crashes, bugpointwill try as hard as it can to reduce the list of passes (for optimizer
crashes) and the size of the test program. First, bugpoint figures out which combination of optimizer passes triggers
the bug. This is useful when debugging a problem exposed by opt, for example, because it runs over 38 passes.
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Next, bugpoint tries removing functions from the test program, to reduce its size. Usually it is able to reduce a test
program to a single function, when debugging intraprocedural optimizations. Once the number of functions has been
reduced, it attempts to delete various edges in the control flow graph, to reduce the size of the function as much as
possible. Finally, bugpoint deletes any individual LLVM instructions whose absence does not eliminate the failure.
At the end, bugpoint should tell you what passes crash, give you a bitcode file, and give you instructions on how to
reproduce the failure with opt or llc.

Code generator debugger

The code generator debugger attempts to narrow down the amount of code that is being miscompiled by the selected
code generator. To do this, it takes the test program and partitions it into two pieces: one piece which it compiles with
the “safe” backend (into a shared object), and one piece which it runs with either the JIT or the static LLC compiler.
It uses several techniques to reduce the amount of code pushed through the LLVM code generator, to reduce the
potential scope of the problem. After it is finished, it emits two bitcode files (called “test” [to be compiled with the
code generator] and “safe” [to be compiled with the “safe” backend], respectively), and instructions for reproducing
the problem. The code generator debugger assumes that the “safe” backend produces good code.

Miscompilation debugger

The miscompilation debugger works similarly to the code generator debugger. It works by splitting the test program
into two pieces, running the optimizations specified on one piece, linking the two pieces back together, and then exe-
cuting the result. It attempts to narrow down the list of passes to the one (or few) which are causing the miscompilation,
then reduce the portion of the test program which is being miscompiled. The miscompilation debugger assumes that
the selected code generator is working properly.

Advice for using bugpoint

bugpoint can be a remarkably useful tool, but it sometimes works in non-obvious ways. Here are some hints and
tips:

• In the code generator and miscompilation debuggers, bugpoint only works with programs that have determin-
istic output. Thus, if the program outputs argv[0], the date, time, or any other “random” data, bugpoint
may misinterpret differences in these data, when output, as the result of a miscompilation. Programs should be
temporarily modified to disable outputs that are likely to vary from run to run.

• In the code generator and miscompilation debuggers, debugging will go faster if you manually modify the
program or its inputs to reduce the runtime, but still exhibit the problem.

• bugpoint is extremely useful when working on a new optimization: it helps track down regressions quickly.
To avoid having to relink bugpoint every time you change your optimization however, have bugpoint
dynamically load your optimization with the -load option.

• bugpoint can generate a lot of output and run for a long period of time. It is often useful to capture the output
of the program to file. For example, in the C shell, you can run:

$ bugpoint ... |& tee bugpoint.log

to get a copy of bugpoint‘s output in the file bugpoint.log, as well as on your terminal.

• bugpoint cannot debug problems with the LLVM linker. If bugpoint crashes before you see its “All input
ok” message, you might try llvm-link -v on the same set of input files. If that also crashes, you may be
experiencing a linker bug.
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• bugpoint is useful for proactively finding bugs in LLVM. Invoking bugpoint with the -find-bugs
option will cause the list of specified optimizations to be randomized and applied to the program. This process
will repeat until a bug is found or the user kills bugpoint.

What to do when bugpoint isn’t enough

Sometimes, bugpoint is not enough. In particular, InstCombine and TargetLowering both have visitor structured
code with lots of potential transformations. If the process of using bugpoint has left you with still too much code
to figure out and the problem seems to be in instcombine, the following steps may help. These same techniques are
useful with TargetLowering as well.

Turn on -debug-only=instcombine and see which transformations within instcombine are firing by selecting
out lines with “IC” in them.

At this point, you have a decision to make. Is the number of transformations small enough to step through them using
a debugger? If so, then try that.

If there are too many transformations, then a source modification approach may be helpful. In this approach, you can
modify the source code of instcombine to disable just those transformations that are being performed on your test input
and perform a binary search over the set of transformations. One set of places to modify are the “visit*” methods
of InstCombiner (e.g. visitICmpInst) by adding a “return false” as the first line of the method.

If that still doesn’t remove enough, then change the caller of InstCombiner::DoOneIteration,
InstCombiner::runOnFunction to limit the number of iterations.

You may also find it useful to use “-stats” now to see what parts of instcombine are firing. This can guide where to
put additional reporting code.

At this point, if the amount of transformations is still too large, then inserting code to limit whether or not to execute
the body of the code in the visit function can be helpful. Add a static counter which is incremented on every invocation
of the function. Then add code which simply returns false on desired ranges. For example:

static int calledCount = 0;
calledCount++;
DEBUG(if (calledCount < 212) return false);
DEBUG(if (calledCount > 217) return false);
DEBUG(if (calledCount == 213) return false);
DEBUG(if (calledCount == 214) return false);
DEBUG(if (calledCount == 215) return false);
DEBUG(if (calledCount == 216) return false);
DEBUG(dbgs() << "visitXOR calledCount: " << calledCount << "\n");
DEBUG(dbgs() << "I: "; I->dump());

could be added to visitXOR to limit visitXor to being applied only to calls 212 and 217. This is from an
actual test case and raises an important point—a simple binary search may not be sufficient, as transformations that
interact may require isolating more than one call. In TargetLowering, use return SDNode(); instead of return
false;.

Now that the number of transformations is down to a manageable number, try examining the output to see if you can
figure out which transformations are being done. If that can be figured out, then do the usual debugging. If which code
corresponds to the transformation being performed isn’t obvious, set a breakpoint after the call count based disabling
and step through the code. Alternatively, you can use “printf” style debugging to report waypoints.

The LLVM Target-Independent Code Generator
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• Introduction

– Required components in the code generator

– The high-level design of the code generator

– Using TableGen for target description

• Target description classes

– The TargetMachine class

– The DataLayout class

– The TargetLowering class

– The TargetRegisterInfo class

– The TargetInstrInfo class

– The TargetFrameLowering class

– The TargetSubtarget class

– The TargetJITInfo class

• Machine code description classes

– The MachineInstr class

* Using the MachineInstrBuilder.h functions

* Fixed (preassigned) registers

* Call-clobbered registers

* Machine code in SSA form

– The MachineBasicBlock class

– The MachineFunction class

– MachineInstr Bundles

• The “MC” Layer

– The MCStreamer API

– The MCContext class

– The MCSymbol class

– The MCSection class

– The MCInst class

• Target-independent code generation algorithms

– Instruction Selection

* Introduction to SelectionDAGs

* SelectionDAG Instruction Selection Process

* Initial SelectionDAG Construction

* SelectionDAG LegalizeTypes Phase

* SelectionDAG Legalize Phase
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* SelectionDAG Optimization Phase: the DAG Combiner

* SelectionDAG Select Phase

* SelectionDAG Scheduling and Formation Phase

* Future directions for the SelectionDAG

– SSA-based Machine Code Optimizations

– Live Intervals

* Live Variable Analysis

* Live Intervals Analysis

– Register Allocation

* How registers are represented in LLVM

* Mapping virtual registers to physical registers

* Handling two address instructions

* The SSA deconstruction phase

* Instruction folding

* Built in register allocators

– Prolog/Epilog Code Insertion

– Late Machine Code Optimizations

– Code Emission

– VLIW Packetizer

* Mapping from instructions to functional units

* How the packetization tables are generated and used

• Implementing a Native Assembler

– Instruction Parsing

– Instruction Alias Processing

* Mnemonic Aliases

* Instruction Aliases

– Instruction Matching

• Target-specific Implementation Notes

– Target Feature Matrix

* Is Generally Reliable

* Assembly Parser

* Disassembler

* Inline Asm

* JIT Support

* .o File Writing
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* Tail Calls

* Segmented Stacks

– Tail call optimization

– Sibling call optimization

– The X86 backend

* X86 Target Triples supported

* X86 Calling Conventions supported

* Representing X86 addressing modes in MachineInstrs

* X86 address spaces supported

* Instruction naming

– The PowerPC backend

* LLVM PowerPC ABI

* Frame Layout

* Prolog/Epilog

* Dynamic Allocation

– The NVPTX backend

– The extended Berkeley Packet Filter (eBPF) backend

* Instruction encoding (arithmetic and jump)

* Instruction encoding (load, store)

* Packet data access (BPF_ABS, BPF_IND)

* eBPF maps

* Function calls

* Program start

– The AMDGPU backend

* Target triples supported

* Relocations

Warning: This is a work in progress.

Introduction

The LLVM target-independent code generator is a framework that provides a suite of reusable components for trans-
lating the LLVM internal representation to the machine code for a specified target—either in assembly form (suitable
for a static compiler) or in binary machine code format (usable for a JIT compiler). The LLVM target-independent
code generator consists of six main components:

1. Abstract target description interfaces which capture important properties about various aspects of the machine,
independently of how they will be used. These interfaces are defined in include/llvm/Target/.
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2. Classes used to represent the code being generated for a target. These classes are intended to be abstract
enough to represent the machine code for any target machine. These classes are defined in include/llvm/
CodeGen/. At this level, concepts like “constant pool entries” and “jump tables” are explicitly exposed.

3. Classes and algorithms used to represent code at the object file level, the MC Layer. These classes represent
assembly level constructs like labels, sections, and instructions. At this level, concepts like “constant pool
entries” and “jump tables” don’t exist.

4. Target-independent algorithms used to implement various phases of native code generation (register allocation,
scheduling, stack frame representation, etc). This code lives in lib/CodeGen/.

5. Implementations of the abstract target description interfaces for particular targets. These machine descriptions
make use of the components provided by LLVM, and can optionally provide custom target-specific passes, to
build complete code generators for a specific target. Target descriptions live in lib/Target/.

6. The target-independent JIT components. The LLVM JIT is completely target independent (it uses the
TargetJITInfo structure to interface for target-specific issues. The code for the target-independent JIT
lives in lib/ExecutionEngine/JIT.

Depending on which part of the code generator you are interested in working on, different pieces of this will be useful
to you. In any case, you should be familiar with the target description and machine code representation classes. If
you want to add a backend for a new target, you will need to implement the target description classes for your new
target and understand the LLVM code representation. If you are interested in implementing a new code generation
algorithm, it should only depend on the target-description and machine code representation classes, ensuring that it is
portable.

Required components in the code generator

The two pieces of the LLVM code generator are the high-level interface to the code generator and the set of reusable
components that can be used to build target-specific backends. The two most important interfaces ( TargetMachine
and DataLayout ) are the only ones that are required to be defined for a backend to fit into the LLVM system, but the
others must be defined if the reusable code generator components are going to be used.

This design has two important implications. The first is that LLVM can support completely non-traditional code
generation targets. For example, the C backend does not require register allocation, instruction selection, or any of
the other standard components provided by the system. As such, it only implements these two interfaces, and does
its own thing. Note that C backend was removed from the trunk since LLVM 3.1 release. Another example of a code
generator like this is a (purely hypothetical) backend that converts LLVM to the GCC RTL form and uses GCC to emit
machine code for a target.

This design also implies that it is possible to design and implement radically different code generators in the LLVM
system that do not make use of any of the built-in components. Doing so is not recommended at all, but could be
required for radically different targets that do not fit into the LLVM machine description model: FPGAs for example.

The high-level design of the code generator

The LLVM target-independent code generator is designed to support efficient and quality code generation for standard
register-based microprocessors. Code generation in this model is divided into the following stages:

1. Instruction Selection — This phase determines an efficient way to express the input LLVM code in the target
instruction set. This stage produces the initial code for the program in the target instruction set, then makes use
of virtual registers in SSA form and physical registers that represent any required register assignments due to
target constraints or calling conventions. This step turns the LLVM code into a DAG of target instructions.

2. Scheduling and Formation — This phase takes the DAG of target instructions produced by the instruction
selection phase, determines an ordering of the instructions, then emits the instructions as MachineInstrs with that
ordering. Note that we describe this in the instruction selection section because it operates on a SelectionDAG.
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3. SSA-based Machine Code Optimizations — This optional stage consists of a series of machine-code optimiza-
tions that operate on the SSA-form produced by the instruction selector. Optimizations like modulo-scheduling
or peephole optimization work here.

4. Register Allocation — The target code is transformed from an infinite virtual register file in SSA form to the
concrete register file used by the target. This phase introduces spill code and eliminates all virtual register
references from the program.

5. Prolog/Epilog Code Insertion — Once the machine code has been generated for the function and the amount
of stack space required is known (used for LLVM alloca’s and spill slots), the prolog and epilog code for the
function can be inserted and “abstract stack location references” can be eliminated. This stage is responsible for
implementing optimizations like frame-pointer elimination and stack packing.

6. Late Machine Code Optimizations — Optimizations that operate on “final” machine code can go here, such as
spill code scheduling and peephole optimizations.

7. Code Emission — The final stage actually puts out the code for the current function, either in the target assembler
format or in machine code.

The code generator is based on the assumption that the instruction selector will use an optimal pattern matching selector
to create high-quality sequences of native instructions. Alternative code generator designs based on pattern expansion
and aggressive iterative peephole optimization are much slower. This design permits efficient compilation (important
for JIT environments) and aggressive optimization (used when generating code offline) by allowing components of
varying levels of sophistication to be used for any step of compilation.

In addition to these stages, target implementations can insert arbitrary target-specific passes into the flow. For example,
the X86 target uses a special pass to handle the 80x87 floating point stack architecture. Other targets with unusual
requirements can be supported with custom passes as needed.

Using TableGen for target description

The target description classes require a detailed description of the target architecture. These target descriptions often
have a large amount of common information (e.g., an add instruction is almost identical to a sub instruction). In order
to allow the maximum amount of commonality to be factored out, the LLVM code generator uses the TableGen tool
to describe big chunks of the target machine, which allows the use of domain-specific and target-specific abstractions
to reduce the amount of repetition.

As LLVM continues to be developed and refined, we plan to move more and more of the target description to the .td
form. Doing so gives us a number of advantages. The most important is that it makes it easier to port LLVM because
it reduces the amount of C++ code that has to be written, and the surface area of the code generator that needs to be
understood before someone can get something working. Second, it makes it easier to change things. In particular, if
tables and other things are all emitted by tblgen, we only need a change in one place (tblgen) to update all of the
targets to a new interface.

Target description classes

The LLVM target description classes (located in the include/llvm/Target directory) provide an abstract de-
scription of the target machine independent of any particular client. These classes are designed to capture the abstract
properties of the target (such as the instructions and registers it has), and do not incorporate any particular pieces of
code generation algorithms.

All of the target description classes (except the DataLayout class) are designed to be subclassed by the concrete target
implementation, and have virtual methods implemented. To get to these implementations, the TargetMachine class
provides accessors that should be implemented by the target.
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The TargetMachine class

The TargetMachine class provides virtual methods that are used to access the target-specific implementations
of the various target description classes via the get*Info methods (getInstrInfo, getRegisterInfo,
getFrameInfo, etc.). This class is designed to be specialized by a concrete target implementation (e.g.,
X86TargetMachine) which implements the various virtual methods. The only required target description class
is the DataLayout class, but if the code generator components are to be used, the other interfaces should be imple-
mented as well.

The DataLayout class

The DataLayout class is the only required target description class, and it is the only class that is not extensible (you
cannot derive a new class from it). DataLayout specifies information about how the target lays out memory for
structures, the alignment requirements for various data types, the size of pointers in the target, and whether the target
is little-endian or big-endian.

The TargetLowering class

The TargetLowering class is used by SelectionDAG based instruction selectors primarily to describe how LLVM
code should be lowered to SelectionDAG operations. Among other things, this class indicates:

• an initial register class to use for various ValueTypes,

• which operations are natively supported by the target machine,

• the return type of setcc operations,

• the type to use for shift amounts, and

• various high-level characteristics, like whether it is profitable to turn division by a constant into a multiplication
sequence.

The TargetRegisterInfo class

The TargetRegisterInfo class is used to describe the register file of the target and any interactions between the
registers.

Registers are represented in the code generator by unsigned integers. Physical registers (those that actually exist in the
target description) are unique small numbers, and virtual registers are generally large. Note that register #0 is reserved
as a flag value.

Each register in the processor description has an associated TargetRegisterDesc entry, which provides a textual
name for the register (used for assembly output and debugging dumps) and a set of aliases (used to indicate whether
one register overlaps with another).

In addition to the per-register description, the TargetRegisterInfo class exposes a set of processor specific
register classes (instances of the TargetRegisterClass class). Each register class contains sets of registers that
have the same properties (for example, they are all 32-bit integer registers). Each SSA virtual register created by the
instruction selector has an associated register class. When the register allocator runs, it replaces virtual registers with
a physical register in the set.

The target-specific implementations of these classes is auto-generated from a TableGen description of the register file.
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The TargetInstrInfo class

The TargetInstrInfo class is used to describe the machine instructions supported by the target. Descriptions
define things like the mnemonic for the opcode, the number of operands, the list of implicit register uses and defs,
whether the instruction has certain target-independent properties (accesses memory, is commutable, etc), and holds
any target-specific flags.

The TargetFrameLowering class

The TargetFrameLowering class is used to provide information about the stack frame layout of the target. It
holds the direction of stack growth, the known stack alignment on entry to each function, and the offset to the local
area. The offset to the local area is the offset from the stack pointer on function entry to the first location where
function data (local variables, spill locations) can be stored.

The TargetSubtarget class

The TargetSubtarget class is used to provide information about the specific chip set being targeted. A sub-target
informs code generation of which instructions are supported, instruction latencies and instruction execution itinerary;
i.e., which processing units are used, in what order, and for how long.

The TargetJITInfo class

The TargetJITInfo class exposes an abstract interface used by the Just-In-Time code generator to perform target-
specific activities, such as emitting stubs. If a TargetMachine supports JIT code generation, it should provide one
of these objects through the getJITInfo method.

Machine code description classes

At the high-level, LLVM code is translated to a machine specific representation formed out of MachineFunction ,
MachineBasicBlock , and MachineInstr instances (defined in include/llvm/CodeGen). This representation is
completely target agnostic, representing instructions in their most abstract form: an opcode and a series of operands.
This representation is designed to support both an SSA representation for machine code, as well as a register allocated,
non-SSA form.

The MachineInstr class

Target machine instructions are represented as instances of the MachineInstr class. This class is an extremely
abstract way of representing machine instructions. In particular, it only keeps track of an opcode number and a set of
operands.

The opcode number is a simple unsigned integer that only has meaning to a specific backend. All of the instructions
for a target should be defined in the *InstrInfo.td file for the target. The opcode enum values are auto-generated
from this description. The MachineInstr class does not have any information about how to interpret the instruction
(i.e., what the semantics of the instruction are); for that you must refer to the TargetInstrInfo class.

The operands of a machine instruction can be of several different types: a register reference, a constant integer, a basic
block reference, etc. In addition, a machine operand should be marked as a def or a use of the value (though only
registers are allowed to be defs).

By convention, the LLVM code generator orders instruction operands so that all register definitions come before the
register uses, even on architectures that are normally printed in other orders. For example, the SPARC add instruction:
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“add %i1, %i2, %i3” adds the “%i1”, and “%i2” registers and stores the result into the “%i3” register. In the
LLVM code generator, the operands should be stored as “%i3, %i1, %i2”: with the destination first.

Keeping destination (definition) operands at the beginning of the operand list has several advantages. In particular, the
debugging printer will print the instruction like this:

%r3 = add %i1, %i2

Also if the first operand is a def, it is easier to create instructions whose only def is the first operand.

Using the MachineInstrBuilder.h functions

Machine instructions are created by using the BuildMI functions, located in the include/llvm/CodeGen/
MachineInstrBuilder.h file. The BuildMI functions make it easy to build arbitrary machine instructions.
Usage of the BuildMI functions look like this:

// Create a 'DestReg = mov 42' (rendered in X86 assembly as 'mov DestReg, 42')
// instruction and insert it at the end of the given MachineBasicBlock.
const TargetInstrInfo &TII = ...
MachineBasicBlock &MBB = ...
DebugLoc DL;
MachineInstr *MI = BuildMI(MBB, DL, TII.get(X86::MOV32ri), DestReg).addImm(42);

// Create the same instr, but insert it before a specified iterator point.
MachineBasicBlock::iterator MBBI = ...
BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), DestReg).addImm(42);

// Create a 'cmp Reg, 0' instruction, no destination reg.
MI = BuildMI(MBB, DL, TII.get(X86::CMP32ri8)).addReg(Reg).addImm(42);

// Create an 'sahf' instruction which takes no operands and stores nothing.
MI = BuildMI(MBB, DL, TII.get(X86::SAHF));

// Create a self looping branch instruction.
BuildMI(MBB, DL, TII.get(X86::JNE)).addMBB(&MBB);

If you need to add a definition operand (other than the optional destination register), you must explicitly mark it as
such:

MI.addReg(Reg, RegState::Define);

Fixed (preassigned) registers

One important issue that the code generator needs to be aware of is the presence of fixed registers. In particular, there
are often places in the instruction stream where the register allocator must arrange for a particular value to be in a
particular register. This can occur due to limitations of the instruction set (e.g., the X86 can only do a 32-bit divide
with the EAX/EDX registers), or external factors like calling conventions. In any case, the instruction selector should
emit code that copies a virtual register into or out of a physical register when needed.

For example, consider this simple LLVM example:

define i32 @test(i32 %X, i32 %Y) {
%Z = sdiv i32 %X, %Y
ret i32 %Z

}
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The X86 instruction selector might produce this machine code for the div and ret:

;; Start of div
%EAX = mov %reg1024 ;; Copy X (in reg1024) into EAX
%reg1027 = sar %reg1024, 31
%EDX = mov %reg1027 ;; Sign extend X into EDX
idiv %reg1025 ;; Divide by Y (in reg1025)
%reg1026 = mov %EAX ;; Read the result (Z) out of EAX

;; Start of ret
%EAX = mov %reg1026 ;; 32-bit return value goes in EAX
ret

By the end of code generation, the register allocator would coalesce the registers and delete the resultant identity
moves producing the following code:

;; X is in EAX, Y is in ECX
mov %EAX, %EDX
sar %EDX, 31
idiv %ECX
ret

This approach is extremely general (if it can handle the X86 architecture, it can handle anything!) and allows all of
the target specific knowledge about the instruction stream to be isolated in the instruction selector. Note that physical
registers should have a short lifetime for good code generation, and all physical registers are assumed dead on entry
to and exit from basic blocks (before register allocation). Thus, if you need a value to be live across basic block
boundaries, it must live in a virtual register.

Call-clobbered registers

Some machine instructions, like calls, clobber a large number of physical registers. Rather than adding <def,dead>
operands for all of them, it is possible to use an MO_RegisterMask operand instead. The register mask operand
holds a bit mask of preserved registers, and everything else is considered to be clobbered by the instruction.

Machine code in SSA form

MachineInstr‘s are initially selected in SSA-form, and are maintained in SSA-form until register allocation hap-
pens. For the most part, this is trivially simple since LLVM is already in SSA form; LLVM PHI nodes become machine
code PHI nodes, and virtual registers are only allowed to have a single definition.

After register allocation, machine code is no longer in SSA-form because there are no virtual registers left in the code.

The MachineBasicBlock class

The MachineBasicBlock class contains a list of machine instructions ( MachineInstr instances). It roughly corre-
sponds to the LLVM code input to the instruction selector, but there can be a one-to-many mapping (i.e. one LLVM ba-
sic block can map to multiple machine basic blocks). The MachineBasicBlock class has a “getBasicBlock”
method, which returns the LLVM basic block that it comes from.

The MachineFunction class

The MachineFunction class contains a list of machine basic blocks ( MachineBasicBlock instances). It
corresponds one-to-one with the LLVM function input to the instruction selector. In addition to a list of
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basic blocks, the MachineFunction contains a a MachineConstantPool, a MachineFrameInfo,
a MachineFunctionInfo, and a MachineRegisterInfo. See include/llvm/CodeGen/
MachineFunction.h for more information.

MachineInstr Bundles

LLVM code generator can model sequences of instructions as MachineInstr bundles. A MI bundle can model a VLIW
group / pack which contains an arbitrary number of parallel instructions. It can also be used to model a sequential list
of instructions (potentially with data dependencies) that cannot be legally separated (e.g. ARM Thumb2 IT blocks).

Conceptually a MI bundle is a MI with a number of other MIs nested within:

--------------
| Bundle | ---------
-------------- \

| ----------------
| | MI |
| ----------------
| |
| ----------------
| | MI |
| ----------------
| |
| ----------------
| | MI |
| ----------------
|

--------------
| Bundle | --------
-------------- \

| ----------------
| | MI |
| ----------------
| |
| ----------------
| | MI |
| ----------------
| |
| ...
|

--------------
| Bundle | --------
-------------- \

|
...

MI bundle support does not change the physical representations of MachineBasicBlock and MachineInstr. All the MIs
(including top level and nested ones) are stored as sequential list of MIs. The “bundled” MIs are marked with the
‘InsideBundle’ flag. A top level MI with the special BUNDLE opcode is used to represent the start of a bundle. It’s
legal to mix BUNDLE MIs with indiviual MIs that are not inside bundles nor represent bundles.

MachineInstr passes should operate on a MI bundle as a single unit. Member methods have been taught to correctly
handle bundles and MIs inside bundles. The MachineBasicBlock iterator has been modified to skip over bundled MIs
to enforce the bundle-as-a-single-unit concept. An alternative iterator instr_iterator has been added to MachineBa-
sicBlock to allow passes to iterate over all of the MIs in a MachineBasicBlock, including those which are nested
inside bundles. The top level BUNDLE instruction must have the correct set of register MachineOperand’s that repre-
sent the cumulative inputs and outputs of the bundled MIs.
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Packing / bundling of MachineInstr’s should be done as part of the register allocation super-pass. More specifically,
the pass which determines what MIs should be bundled together must be done after code generator exits SSA form (i.e.
after two-address pass, PHI elimination, and copy coalescing). Bundles should only be finalized (i.e. adding BUNDLE
MIs and input and output register MachineOperands) after virtual registers have been rewritten into physical registers.
This requirement eliminates the need to add virtual register operands to BUNDLE instructions which would effectively
double the virtual register def and use lists.

The “MC” Layer

The MC Layer is used to represent and process code at the raw machine code level, devoid of “high level” information
like “constant pools”, “jump tables”, “global variables” or anything like that. At this level, LLVM handles things
like label names, machine instructions, and sections in the object file. The code in this layer is used for a number of
important purposes: the tail end of the code generator uses it to write a .s or .o file, and it is also used by the llvm-mc
tool to implement standalone machine code assemblers and disassemblers.

This section describes some of the important classes. There are also a number of important subsystems that interact at
this layer, they are described later in this manual.

The MCStreamer API

MCStreamer is best thought of as an assembler API. It is an abstract API which is implemented in different ways
(e.g. to output a .s file, output an ELF .o file, etc) but whose API correspond directly to what you see in a .s file.
MCStreamer has one method per directive, such as EmitLabel, EmitSymbolAttribute, SwitchSection, EmitValue (for
.byte, .word), etc, which directly correspond to assembly level directives. It also has an EmitInstruction method, which
is used to output an MCInst to the streamer.

This API is most important for two clients: the llvm-mc stand-alone assembler is effectively a parser that parses a line,
then invokes a method on MCStreamer. In the code generator, the Code Emission phase of the code generator lowers
higher level LLVM IR and Machine* constructs down to the MC layer, emitting directives through MCStreamer.

On the implementation side of MCStreamer, there are two major implementations: one for writing out a .s file
(MCAsmStreamer), and one for writing out a .o file (MCObjectStreamer). MCAsmStreamer is a straightforward
implementation that prints out a directive for each method (e.g. EmitValue -> .byte), but MCObjectStreamer
implements a full assembler.

For target specific directives, the MCStreamer has a MCTargetStreamer instance. Each target that needs it defines a
class that inherits from it and is a lot like MCStreamer itself: It has one method per directive and two classes that inherit
from it, a target object streamer and a target asm streamer. The target asm streamer just prints it (emitFnStart ->
.fnstart), and the object streamer implement the assembler logic for it.

To make llvm use these classes, the target initialization must call TargetRegistry::RegisterAsmStreamer and Targe-
tRegistry::RegisterMCObjectStreamer passing callbacks that allocate the corresponding target streamer and pass it to
createAsmStreamer or to the appropriate object streamer constructor.

The MCContext class

The MCContext class is the owner of a variety of uniqued data structures at the MC layer, including symbols, sections,
etc. As such, this is the class that you interact with to create symbols and sections. This class can not be subclassed.

The MCSymbol class

The MCSymbol class represents a symbol (aka label) in the assembly file. There are two interesting kinds of symbols:
assembler temporary symbols, and normal symbols. Assembler temporary symbols are used and processed by the

958 Chapter 4. Subsystem Documentation



LLVM Documentation, Release 3.9

assembler but are discarded when the object file is produced. The distinction is usually represented by adding a prefix
to the label, for example “L” labels are assembler temporary labels in MachO.

MCSymbols are created by MCContext and uniqued there. This means that MCSymbols can be compared for pointer
equivalence to find out if they are the same symbol. Note that pointer inequality does not guarantee the labels will end
up at different addresses though. It’s perfectly legal to output something like this to the .s file:

foo:
bar:

.byte 4

In this case, both the foo and bar symbols will have the same address.

The MCSection class

The MCSection class represents an object-file specific section. It is subclassed by object file specific implementa-
tions (e.g. MCSectionMachO, MCSectionCOFF, MCSectionELF) and these are created and uniqued by MC-
Context. The MCStreamer has a notion of the current section, which can be changed with the SwitchToSection method
(which corresponds to a ”.section” directive in a .s file).

The MCInst class

The MCInst class is a target-independent representation of an instruction. It is a simple class (much more so than
MachineInstr) that holds a target-specific opcode and a vector of MCOperands. MCOperand, in turn, is a simple
discriminated union of three cases: 1) a simple immediate, 2) a target register ID, 3) a symbolic expression (e.g.
“Lfoo-Lbar+42”) as an MCExpr.

MCInst is the common currency used to represent machine instructions at the MC layer. It is the type used by the
instruction encoder, the instruction printer, and the type generated by the assembly parser and disassembler.

Target-independent code generation algorithms

This section documents the phases described in the high-level design of the code generator. It explains how they work
and some of the rationale behind their design.

Instruction Selection

Instruction Selection is the process of translating LLVM code presented to the code generator into target-specific
machine instructions. There are several well-known ways to do this in the literature. LLVM uses a SelectionDAG
based instruction selector.

Portions of the DAG instruction selector are generated from the target description (*.td) files. Our goal is for the
entire instruction selector to be generated from these .td files, though currently there are still things that require
custom C++ code.

Introduction to SelectionDAGs

The SelectionDAG provides an abstraction for code representation in a way that is amenable to instruction selection
using automatic techniques (e.g. dynamic-programming based optimal pattern matching selectors). It is also well-
suited to other phases of code generation; in particular, instruction scheduling (SelectionDAG’s are very close to
scheduling DAGs post-selection). Additionally, the SelectionDAG provides a host representation where a large variety
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of very-low-level (but target-independent) optimizations may be performed; ones which require extensive information
about the instructions efficiently supported by the target.

The SelectionDAG is a Directed-Acyclic-Graph whose nodes are instances of the SDNode class. The primary payload
of the SDNode is its operation code (Opcode) that indicates what operation the node performs and the operands
to the operation. The various operation node types are described at the top of the include/llvm/CodeGen/
ISDOpcodes.h file.

Although most operations define a single value, each node in the graph may define multiple values. For example, a
combined div/rem operation will define both the dividend and the remainder. Many other situations require multiple
values as well. Each node also has some number of operands, which are edges to the node defining the used value.
Because nodes may define multiple values, edges are represented by instances of the SDValue class, which is a
<SDNode, unsigned> pair, indicating the node and result value being used, respectively. Each value produced by
an SDNode has an associated MVT (Machine Value Type) indicating what the type of the value is.

SelectionDAGs contain two different kinds of values: those that represent data flow and those that represent control
flow dependencies. Data values are simple edges with an integer or floating point value type. Control edges are
represented as “chain” edges which are of type MVT::Other. These edges provide an ordering between nodes that
have side effects (such as loads, stores, calls, returns, etc). All nodes that have side effects should take a token chain
as input and produce a new one as output. By convention, token chain inputs are always operand #0, and chain results
are always the last value produced by an operation. However, after instruction selection, the machine nodes have their
chain after the instruction’s operands, and may be followed by glue nodes.

A SelectionDAG has designated “Entry” and “Root” nodes. The Entry node is always a marker node with an Opcode
of ISD::EntryToken. The Root node is the final side-effecting node in the token chain. For example, in a single
basic block function it would be the return node.

One important concept for SelectionDAGs is the notion of a “legal” vs. “illegal” DAG. A legal DAG for a target is
one that only uses supported operations and supported types. On a 32-bit PowerPC, for example, a DAG with a value
of type i1, i8, i16, or i64 would be illegal, as would a DAG that uses a SREM or UREM operation. The legalize types
and legalize operations phases are responsible for turning an illegal DAG into a legal DAG.

SelectionDAG Instruction Selection Process

SelectionDAG-based instruction selection consists of the following steps:

1. Build initial DAG — This stage performs a simple translation from the input LLVM code to an illegal Selec-
tionDAG.

2. Optimize SelectionDAG — This stage performs simple optimizations on the SelectionDAG to simplify it, and
recognize meta instructions (like rotates and div/rem pairs) for targets that support these meta operations. This
makes the resultant code more efficient and the select instructions from DAG phase (below) simpler.

3. Legalize SelectionDAG Types — This stage transforms SelectionDAG nodes to eliminate any types that are
unsupported on the target.

4. Optimize SelectionDAG — The SelectionDAG optimizer is run to clean up redundancies exposed by type legal-
ization.

5. Legalize SelectionDAG Ops — This stage transforms SelectionDAG nodes to eliminate any operations that are
unsupported on the target.

6. Optimize SelectionDAG — The SelectionDAG optimizer is run to eliminate inefficiencies introduced by opera-
tion legalization.

7. Select instructions from DAG — Finally, the target instruction selector matches the DAG operations to target
instructions. This process translates the target-independent input DAG into another DAG of target instructions.
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8. SelectionDAG Scheduling and Formation — The last phase assigns a linear order to the instructions in the target-
instruction DAG and emits them into the MachineFunction being compiled. This step uses traditional prepass
scheduling techniques.

After all of these steps are complete, the SelectionDAG is destroyed and the rest of the code generation passes are run.

One great way to visualize what is going on here is to take advantage of a few LLC command line options. The
following options pop up a window displaying the SelectionDAG at specific times (if you only get errors printed to
the console while using this, you probably need to configure your system to add support for it).

• -view-dag-combine1-dags displays the DAG after being built, before the first optimization pass.

• -view-legalize-dags displays the DAG before Legalization.

• -view-dag-combine2-dags displays the DAG before the second optimization pass.

• -view-isel-dags displays the DAG before the Select phase.

• -view-sched-dags displays the DAG before Scheduling.

The -view-sunit-dags displays the Scheduler’s dependency graph. This graph is based on the final Selec-
tionDAG, with nodes that must be scheduled together bundled into a single scheduling-unit node, and with immediate
operands and other nodes that aren’t relevant for scheduling omitted.

The option -filter-view-dags allows to select the name of the basic block that you are interested to visualize
and filters all the previous view-*-dags options.

Initial SelectionDAG Construction

The initial SelectionDAG is navely peephole expanded from the LLVM input by the SelectionDAGBuilder class.
The intent of this pass is to expose as much low-level, target-specific details to the SelectionDAG as possible. This
pass is mostly hard-coded (e.g. an LLVM add turns into an SDNode add while a getelementptr is expanded
into the obvious arithmetic). This pass requires target-specific hooks to lower calls, returns, varargs, etc. For these
features, the TargetLowering interface is used.

SelectionDAG LegalizeTypes Phase

The Legalize phase is in charge of converting a DAG to only use the types that are natively supported by the target.

There are two main ways of converting values of unsupported scalar types to values of supported types: converting
small types to larger types (“promoting”), and breaking up large integer types into smaller ones (“expanding”). For
example, a target might require that all f32 values are promoted to f64 and that all i1/i8/i16 values are promoted to i32.
The same target might require that all i64 values be expanded into pairs of i32 values. These changes can insert sign
and zero extensions as needed to make sure that the final code has the same behavior as the input.

There are two main ways of converting values of unsupported vector types to value of supported types: splitting vector
types, multiple times if necessary, until a legal type is found, and extending vector types by adding elements to the end
to round them out to legal types (“widening”). If a vector gets split all the way down to single-element parts with no
supported vector type being found, the elements are converted to scalars (“scalarizing”).

A target implementation tells the legalizer which types are supported (and which register class to use for them) by
calling the addRegisterClass method in its TargetLowering constructor.

SelectionDAG Legalize Phase

The Legalize phase is in charge of converting a DAG to only use the operations that are natively supported by the
target.
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Targets often have weird constraints, such as not supporting every operation on every supported datatype (e.g. X86
does not support byte conditional moves and PowerPC does not support sign-extending loads from a 16-bit memory
location). Legalize takes care of this by open-coding another sequence of operations to emulate the operation (“expan-
sion”), by promoting one type to a larger type that supports the operation (“promotion”), or by using a target-specific
hook to implement the legalization (“custom”).

A target implementation tells the legalizer which operations are not supported (and which of the above three actions
to take) by calling the setOperationAction method in its TargetLowering constructor.

Prior to the existence of the Legalize passes, we required that every target selector supported and handled every
operator and type even if they are not natively supported. The introduction of the Legalize phases allows all of the
canonicalization patterns to be shared across targets, and makes it very easy to optimize the canonicalized code because
it is still in the form of a DAG.

SelectionDAG Optimization Phase: the DAG Combiner

The SelectionDAG optimization phase is run multiple times for code generation, immediately after the DAG is built
and once after each legalization. The first run of the pass allows the initial code to be cleaned up (e.g. performing
optimizations that depend on knowing that the operators have restricted type inputs). Subsequent runs of the pass clean
up the messy code generated by the Legalize passes, which allows Legalize to be very simple (it can focus on making
code legal instead of focusing on generating good and legal code).

One important class of optimizations performed is optimizing inserted sign and zero extension instructions. We cur-
rently use ad-hoc techniques, but could move to more rigorous techniques in the future. Here are some good papers
on the subject:

“Widening integer arithmetic” Kevin Redwine and Norman Ramsey International Conference on Compiler Construc-
tion (CC) 2004

“Effective sign extension elimination” Motohiro Kawahito, Hideaki Komatsu, and Toshio Nakatani Proceedings of the
ACM SIGPLAN 2002 Conference on Programming Language Design and Implementation.

SelectionDAG Select Phase

The Select phase is the bulk of the target-specific code for instruction selection. This phase takes a legal SelectionDAG
as input, pattern matches the instructions supported by the target to this DAG, and produces a new DAG of target code.
For example, consider the following LLVM fragment:

%t1 = fadd float %W, %X
%t2 = fmul float %t1, %Y
%t3 = fadd float %t2, %Z

This LLVM code corresponds to a SelectionDAG that looks basically like this:

(fadd:f32 (fmul:f32 (fadd:f32 W, X), Y), Z)

If a target supports floating point multiply-and-add (FMA) operations, one of the adds can be merged with the multiply.
On the PowerPC, for example, the output of the instruction selector might look like this DAG:

(FMADDS (FADDS W, X), Y, Z)

The FMADDS instruction is a ternary instruction that multiplies its first two operands and adds the third (as single-
precision floating-point numbers). The FADDS instruction is a simple binary single-precision add instruction. To
perform this pattern match, the PowerPC backend includes the following instruction definitions:
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def FMADDS : AForm_1<59, 29,
(ops F4RC:$FRT, F4RC:$FRA, F4RC:$FRC, F4RC:$FRB),
"fmadds $FRT, $FRA, $FRC, $FRB",
[(set F4RC:$FRT, (fadd (fmul F4RC:$FRA, F4RC:$FRC),

F4RC:$FRB))]>;
def FADDS : AForm_2<59, 21,

(ops F4RC:$FRT, F4RC:$FRA, F4RC:$FRB),
"fadds $FRT, $FRA, $FRB",
[(set F4RC:$FRT, (fadd F4RC:$FRA, F4RC:$FRB))]>;

The highlighted portion of the instruction definitions indicates the pattern used to match the instructions. The
DAG operators (like fmul/fadd) are defined in the include/llvm/Target/TargetSelectionDAG.td
file. “F4RC” is the register class of the input and result values.

The TableGen DAG instruction selector generator reads the instruction patterns in the .td file and automatically
builds parts of the pattern matching code for your target. It has the following strengths:

• At compiler-compiler time, it analyzes your instruction patterns and tells you if your patterns make sense or not.

• It can handle arbitrary constraints on operands for the pattern match. In particular, it is straight-forward to say
things like “match any immediate that is a 13-bit sign-extended value”. For examples, see the immSExt16 and
related tblgen classes in the PowerPC backend.

• It knows several important identities for the patterns defined. For example, it knows that addition is commutative,
so it allows the FMADDS pattern above to match “(fadd X, (fmul Y, Z))” as well as “(fadd (fmul
X, Y), Z)”, without the target author having to specially handle this case.

• It has a full-featured type-inferencing system. In particular, you should rarely have to explicitly tell the system
what type parts of your patterns are. In the FMADDS case above, we didn’t have to tell tblgen that all of the
nodes in the pattern are of type ‘f32’. It was able to infer and propagate this knowledge from the fact that F4RC
has type ‘f32’.

• Targets can define their own (and rely on built-in) “pattern fragments”. Pattern fragments are chunks of reusable
patterns that get inlined into your patterns during compiler-compiler time. For example, the integer “(not x)”
operation is actually defined as a pattern fragment that expands as “(xor x, -1)”, since the SelectionDAG
does not have a native ‘not‘ operation. Targets can define their own short-hand fragments as they see fit. See
the definition of ‘not‘ and ‘ineg‘ for examples.

• In addition to instructions, targets can specify arbitrary patterns that map to one or more instructions using the
‘Pat’ class. For example, the PowerPC has no way to load an arbitrary integer immediate into a register in one
instruction. To tell tblgen how to do this, it defines:

// Arbitrary immediate support. Implement in terms of LIS/ORI.
def : Pat<(i32 imm:$imm),

(ORI (LIS (HI16 imm:$imm)), (LO16 imm:$imm))>;

If none of the single-instruction patterns for loading an immediate into a register match, this will be used. This
rule says “match an arbitrary i32 immediate, turning it into an ORI (‘or a 16-bit immediate’) and an LIS (‘load
16-bit immediate, where the immediate is shifted to the left 16 bits’) instruction”. To make this work, the
LO16/HI16 node transformations are used to manipulate the input immediate (in this case, take the high or low
16-bits of the immediate).

• When using the ‘Pat’ class to map a pattern to an instruction that has one or more complex operands (like e.g.
X86 addressing mode), the pattern may either specify the operand as a whole using a ComplexPattern, or
else it may specify the components of the complex operand separately. The latter is done e.g. for pre-increment
instructions by the PowerPC back end:

def STWU : DForm_1<37, (outs ptr_rc:$ea_res), (ins GPRC:$rS, memri:$dst),
"stwu $rS, $dst", LdStStoreUpd, []>,
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RegConstraint<"$dst.reg = $ea_res">, NoEncode<"$ea_res">;

def : Pat<(pre_store GPRC:$rS, ptr_rc:$ptrreg, iaddroff:$ptroff),
(STWU GPRC:$rS, iaddroff:$ptroff, ptr_rc:$ptrreg)>;

Here, the pair of ptroff and ptrreg operands is matched onto the complex operand dst of class memri in
the STWU instruction.

• While the system does automate a lot, it still allows you to write custom C++ code to match special cases if
there is something that is hard to express.

While it has many strengths, the system currently has some limitations, primarily because it is a work in progress and
is not yet finished:

• Overall, there is no way to define or match SelectionDAG nodes that define multiple values (e.g. SMUL_LOHI,
LOAD, CALL, etc). This is the biggest reason that you currently still have to write custom C++ code for your
instruction selector.

• There is no great way to support matching complex addressing modes yet. In the future, we will extend pattern
fragments to allow them to define multiple values (e.g. the four operands of the X86 addressing mode, which
are currently matched with custom C++ code). In addition, we’ll extend fragments so that a fragment can match
multiple different patterns.

• We don’t automatically infer flags like isStore/isLoad yet.

• We don’t automatically generate the set of supported registers and operations for the Legalizer yet.

• We don’t have a way of tying in custom legalized nodes yet.

Despite these limitations, the instruction selector generator is still quite useful for most of the binary and logical
operations in typical instruction sets. If you run into any problems or can’t figure out how to do something, please let
Chris know!

SelectionDAG Scheduling and Formation Phase

The scheduling phase takes the DAG of target instructions from the selection phase and assigns an order. The scheduler
can pick an order depending on various constraints of the machines (i.e. order for minimal register pressure or try to
cover instruction latencies). Once an order is established, the DAG is converted to a list of MachineInstrs and the
SelectionDAG is destroyed.

Note that this phase is logically separate from the instruction selection phase, but is tied to it closely in the code
because it operates on SelectionDAGs.

Future directions for the SelectionDAG

1. Optional function-at-a-time selection.

2. Auto-generate entire selector from .td file.

SSA-based Machine Code Optimizations

To Be Written
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Live Intervals

Live Intervals are the ranges (intervals) where a variable is live. They are used by some register allocator passes to
determine if two or more virtual registers which require the same physical register are live at the same point in the
program (i.e., they conflict). When this situation occurs, one virtual register must be spilled.

Live Variable Analysis

The first step in determining the live intervals of variables is to calculate the set of registers that are immediately dead
after the instruction (i.e., the instruction calculates the value, but it is never used) and the set of registers that are used by
the instruction, but are never used after the instruction (i.e., they are killed). Live variable information is computed for
each virtual register and register allocatable physical register in the function. This is done in a very efficient manner
because it uses SSA to sparsely compute lifetime information for virtual registers (which are in SSA form) and only
has to track physical registers within a block. Before register allocation, LLVM can assume that physical registers are
only live within a single basic block. This allows it to do a single, local analysis to resolve physical register lifetimes
within each basic block. If a physical register is not register allocatable (e.g., a stack pointer or condition codes), it is
not tracked.

Physical registers may be live in to or out of a function. Live in values are typically arguments in registers. Live out
values are typically return values in registers. Live in values are marked as such, and are given a dummy “defining”
instruction during live intervals analysis. If the last basic block of a function is a return, then it’s marked as using
all live out values in the function.

PHI nodes need to be handled specially, because the calculation of the live variable information from a depth first
traversal of the CFG of the function won’t guarantee that a virtual register used by the PHI node is defined before it’s
used. When a PHI node is encountered, only the definition is handled, because the uses will be handled in other basic
blocks.

For each PHI node of the current basic block, we simulate an assignment at the end of the current basic block and
traverse the successor basic blocks. If a successor basic block has a PHI node and one of the PHI node’s operands is
coming from the current basic block, then the variable is marked as alive within the current basic block and all of its
predecessor basic blocks, until the basic block with the defining instruction is encountered.

Live Intervals Analysis

We now have the information available to perform the live intervals analysis and build the live intervals themselves.
We start off by numbering the basic blocks and machine instructions. We then handle the “live-in” values. These are
in physical registers, so the physical register is assumed to be killed by the end of the basic block. Live intervals for
virtual registers are computed for some ordering of the machine instructions [1, N]. A live interval is an interval
[i, j), where 1 >= i >= j > N, for which a variable is live.

Note: More to come...

Register Allocation

The Register Allocation problem consists in mapping a program Pv, that can use an unbounded number of virtual
registers, to a program Pp that contains a finite (possibly small) number of physical registers. Each target architecture
has a different number of physical registers. If the number of physical registers is not enough to accommodate all the
virtual registers, some of them will have to be mapped into memory. These virtuals are called spilled virtuals.
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How registers are represented in LLVM

In LLVM, physical registers are denoted by integer numbers that normally range from 1 to 1023. To see how this num-
bering is defined for a particular architecture, you can read the GenRegisterNames.inc file for that architecture.
For instance, by inspecting lib/Target/X86/X86GenRegisterInfo.inc we see that the 32-bit register EAX
is denoted by 43, and the MMX register MM0 is mapped to 65.

Some architectures contain registers that share the same physical location. A notable example is the X86 platform. For
instance, in the X86 architecture, the registers EAX, AX and AL share the first eight bits. These physical registers are
marked as aliased in LLVM. Given a particular architecture, you can check which registers are aliased by inspecting
its RegisterInfo.td file. Moreover, the class MCRegAliasIterator enumerates all the physical registers
aliased to a register.

Physical registers, in LLVM, are grouped in Register Classes. Elements in the same register class are functionally
equivalent, and can be interchangeably used. Each virtual register can only be mapped to physical registers of a
particular class. For instance, in the X86 architecture, some virtuals can only be allocated to 8 bit registers. A register
class is described by TargetRegisterClass objects. To discover if a virtual register is compatible with a given
physical, this code can be used:

bool RegMapping_Fer::compatible_class(MachineFunction &mf,
unsigned v_reg,
unsigned p_reg) {

assert(TargetRegisterInfo::isPhysicalRegister(p_reg) &&
"Target register must be physical");

const TargetRegisterClass *trc = mf.getRegInfo().getRegClass(v_reg);
return trc->contains(p_reg);

}

Sometimes, mostly for debugging purposes, it is useful to change the number of physical registers available in
the target architecture. This must be done statically, inside the TargetRegsterInfo.td file. Just grep for
RegisterClass, the last parameter of which is a list of registers. Just commenting some out is one simple way to
avoid them being used. A more polite way is to explicitly exclude some registers from the allocation order. See the
definition of the GR8 register class in lib/Target/X86/X86RegisterInfo.td for an example of this.

Virtual registers are also denoted by integer numbers. Contrary to physical registers, different virtual registers
never share the same number. Whereas physical registers are statically defined in a TargetRegisterInfo.
td file and cannot be created by the application developer, that is not the case with virtual registers. In order
to create new virtual registers, use the method MachineRegisterInfo::createVirtualRegister().
This method will return a new virtual register. Use an IndexedMap<Foo, VirtReg2IndexFunctor>
to hold information per virtual register. If you need to enumerate all virtual registers, use the function
TargetRegisterInfo::index2VirtReg() to find the virtual register numbers:

for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
unsigned VirtReg = TargetRegisterInfo::index2VirtReg(i);
stuff(VirtReg);

}

Before register allocation, the operands of an instruction are mostly virtual registers, although physi-
cal registers may also be used. In order to check if a given machine operand is a register, use the
boolean function MachineOperand::isRegister(). To obtain the integer code of a register, use
MachineOperand::getReg(). An instruction may define or use a register. For instance, ADD reg:1026
:= reg:1025 reg:1024 defines the registers 1024, and uses registers 1025 and 1026. Given a register operand,
the method MachineOperand::isUse() informs if that register is being used by the instruction. The method
MachineOperand::isDef() informs if that registers is being defined.

We will call physical registers present in the LLVM bitcode before register allocation pre-colored registers. Pre-
colored registers are used in many different situations, for instance, to pass parameters of functions calls, and
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to store results of particular instructions. There are two types of pre-colored registers: the ones implicitly de-
fined, and those explicitly defined. Explicitly defined registers are normal operands, and can be accessed with
MachineInstr::getOperand(int)::getReg(). In order to check which registers are implicitly de-
fined by an instruction, use the TargetInstrInfo::get(opcode)::ImplicitDefs, where opcode is
the opcode of the target instruction. One important difference between explicit and implicit physical registers
is that the latter are defined statically for each instruction, whereas the former may vary depending on the pro-
gram being compiled. For example, an instruction that represents a function call will always implicitly de-
fine or use the same set of physical registers. To read the registers implicitly used by an instruction, use
TargetInstrInfo::get(opcode)::ImplicitUses. Pre-colored registers impose constraints on any reg-
ister allocation algorithm. The register allocator must make sure that none of them are overwritten by the values of
virtual registers while still alive.

Mapping virtual registers to physical registers

There are two ways to map virtual registers to physical registers (or to memory slots). The first way, that we will call
direct mapping, is based on the use of methods of the classes TargetRegisterInfo, and MachineOperand.
The second way, that we will call indirect mapping, relies on the VirtRegMap class in order to insert loads and
stores sending and getting values to and from memory.

The direct mapping provides more flexibility to the developer of the register allocator; however, it is more error prone,
and demands more implementation work. Basically, the programmer will have to specify where load and store instruc-
tions should be inserted in the target function being compiled in order to get and store values in memory. To assign
a physical register to a virtual register present in a given operand, use MachineOperand::setReg(p_reg).
To insert a store instruction, use TargetInstrInfo::storeRegToStackSlot(...), and to insert a load
instruction, use TargetInstrInfo::loadRegFromStackSlot.

The indirect mapping shields the application developer from the complexities of inserting load and store instructions.
In order to map a virtual register to a physical one, use VirtRegMap::assignVirt2Phys(vreg, preg).
In order to map a certain virtual register to memory, use VirtRegMap::assignVirt2StackSlot(vreg).
This method will return the stack slot where vreg‘s value will be located. If it is necessary to map another virtual
register to the same stack slot, use VirtRegMap::assignVirt2StackSlot(vreg, stack_location).
One important point to consider when using the indirect mapping, is that even if a virtual register is mapped to
memory, it still needs to be mapped to a physical register. This physical register is the location where the virtual
register is supposed to be found before being stored or after being reloaded.

If the indirect strategy is used, after all the virtual registers have been mapped to physical registers or stack slots,
it is necessary to use a spiller object to place load and store instructions in the code. Every virtual that has been
mapped to a stack slot will be stored to memory after being defined and will be loaded before being used. The
implementation of the spiller tries to recycle load/store instructions, avoiding unnecessary instructions. For an exam-
ple of how to invoke the spiller, see RegAllocLinearScan::runOnMachineFunction in lib/CodeGen/
RegAllocLinearScan.cpp.

Handling two address instructions

With very rare exceptions (e.g., function calls), the LLVM machine code instructions are three address instructions.
That is, each instruction is expected to define at most one register, and to use at most two registers. However, some
architectures use two address instructions. In this case, the defined register is also one of the used registers. For
instance, an instruction such as ADD %EAX, %EBX, in X86 is actually equivalent to %EAX = %EAX + %EBX.

In order to produce correct code, LLVM must convert three address instructions that represent two address instructions
into true two address instructions. LLVM provides the pass TwoAddressInstructionPass for this specific
purpose. It must be run before register allocation takes place. After its execution, the resulting code may no longer be
in SSA form. This happens, for instance, in situations where an instruction such as %a = ADD %b %c is converted
to two instructions such as:
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%a = MOVE %b
%a = ADD %a %c

Notice that, internally, the second instruction is represented as ADD %a[def/use] %c. I.e., the register operand
%a is both used and defined by the instruction.

The SSA deconstruction phase

An important transformation that happens during register allocation is called the SSA Deconstruction Phase. The
SSA form simplifies many analyses that are performed on the control flow graph of programs. However, traditional
instruction sets do not implement PHI instructions. Thus, in order to generate executable code, compilers must replace
PHI instructions with other instructions that preserve their semantics.

There are many ways in which PHI instructions can safely be removed from the target code. The most traditional PHI
deconstruction algorithm replaces PHI instructions with copy instructions. That is the strategy adopted by LLVM. The
SSA deconstruction algorithm is implemented in lib/CodeGen/PHIElimination.cpp. In order to invoke this
pass, the identifier PHIEliminationID must be marked as required in the code of the register allocator.

Instruction folding

Instruction folding is an optimization performed during register allocation that removes unnecessary copy instructions.
For instance, a sequence of instructions such as:

%EBX = LOAD %mem_address
%EAX = COPY %EBX

can be safely substituted by the single instruction:

%EAX = LOAD %mem_address

Instructions can be folded with the TargetRegisterInfo::foldMemoryOperand(...) method. Care must
be taken when folding instructions; a folded instruction can be quite different from the original instruction. See
LiveIntervals::addIntervalsForSpills in lib/CodeGen/LiveIntervalAnalysis.cpp for an
example of its use.

Built in register allocators

The LLVM infrastructure provides the application developer with three different register allocators:

• Fast — This register allocator is the default for debug builds. It allocates registers on a basic block level,
attempting to keep values in registers and reusing registers as appropriate.

• Basic — This is an incremental approach to register allocation. Live ranges are assigned to registers one at a time
in an order that is driven by heuristics. Since code can be rewritten on-the-fly during allocation, this framework
allows interesting allocators to be developed as extensions. It is not itself a production register allocator but is a
potentially useful stand-alone mode for triaging bugs and as a performance baseline.

• Greedy — The default allocator. This is a highly tuned implementation of the Basic allocator that incorporates
global live range splitting. This allocator works hard to minimize the cost of spill code.

• PBQP — A Partitioned Boolean Quadratic Programming (PBQP) based register allocator. This allocator works
by constructing a PBQP problem representing the register allocation problem under consideration, solving this
using a PBQP solver, and mapping the solution back to a register assignment.
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The type of register allocator used in llc can be chosen with the command line option -regalloc=...:

$ llc -regalloc=linearscan file.bc -o ln.s
$ llc -regalloc=fast file.bc -o fa.s
$ llc -regalloc=pbqp file.bc -o pbqp.s

Prolog/Epilog Code Insertion

Compact Unwind

Throwing an exception requires unwinding out of a function. The information on how to unwind a given function is
traditionally expressed in DWARF unwind (a.k.a. frame) info. But that format was originally developed for debuggers
to backtrace, and each Frame Description Entry (FDE) requires ~20-30 bytes per function. There is also the cost of
mapping from an address in a function to the corresponding FDE at runtime. An alternative unwind encoding is called
compact unwind and requires just 4-bytes per function.

The compact unwind encoding is a 32-bit value, which is encoded in an architecture-specific way. It specifies which
registers to restore and from where, and how to unwind out of the function. When the linker creates a final linked
image, it will create a __TEXT,__unwind_info section. This section is a small and fast way for the runtime to
access unwind info for any given function. If we emit compact unwind info for the function, that compact unwind
info will be encoded in the __TEXT,__unwind_info section. If we emit DWARF unwind info, the __TEXT,
__unwind_info section will contain the offset of the FDE in the __TEXT,__eh_frame section in the final
linked image.

For X86, there are three modes for the compact unwind encoding:

Function with a Frame Pointer (‘‘EBP‘‘ or ‘‘RBP‘‘) EBP/RBP-based frame, where EBP/RBP is pushed onto the
stack immediately after the return address, then ESP/RSP is moved to EBP/RBP. Thus to unwind, ESP/RSP
is restored with the current EBP/RBP value, then EBP/RBP is restored by popping the stack, and the return
is done by popping the stack once more into the PC. All non-volatile registers that need to be restored must
have been saved in a small range on the stack that starts EBP-4 to EBP-1020 (RBP-8 to RBP-1020). The
offset (divided by 4 in 32-bit mode and 8 in 64-bit mode) is encoded in bits 16-23 (mask: 0x00FF0000). The
registers saved are encoded in bits 0-14 (mask: 0x00007FFF) as five 3-bit entries from the following table:

Compact Number i386 Register x86-64 Register
1 EBX RBX
2 ECX R12
3 EDX R13
4 EDI R14
5 ESI R15
6 EBP RBP

Frameless with a Small Constant Stack Size (‘‘EBP‘‘ or ‘‘RBP‘‘ is not used as a frame pointer) To return, a con-
stant (encoded in the compact unwind encoding) is added to the ESP/RSP. Then the return is done by
popping the stack into the PC. All non-volatile registers that need to be restored must have been saved
on the stack immediately after the return address. The stack size (divided by 4 in 32-bit mode and 8 in
64-bit mode) is encoded in bits 16-23 (mask: 0x00FF0000). There is a maximum stack size of 1024
bytes in 32-bit mode and 2048 in 64-bit mode. The number of registers saved is encoded in bits 9-12
(mask: 0x00001C00). Bits 0-9 (mask: 0x000003FF) contain which registers were saved and their
order. (See the encodeCompactUnwindRegistersWithoutFrame() function in lib/Target/
X86FrameLowering.cpp for the encoding algorithm.)

Frameless with a Large Constant Stack Size (‘‘EBP‘‘ or ‘‘RBP‘‘ is not used as a frame pointer) This case is like
the “Frameless with a Small Constant Stack Size” case, but the stack size is too large to encode in the compact
unwind encoding. Instead it requires that the function contains “subl $nnnnnn, %esp” in its prolog. The
compact encoding contains the offset to the $nnnnnn value in the function in bits 9-12 (mask: 0x00001C00).
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Late Machine Code Optimizations

Note: To Be Written

Code Emission

The code emission step of code generation is responsible for lowering from the code generator abstractions (like
MachineFunction, MachineInstr, etc) down to the abstractions used by the MC layer (MCInst, MCStreamer, etc).
This is done with a combination of several different classes: the (misnamed) target-independent AsmPrinter class,
target-specific subclasses of AsmPrinter (such as SparcAsmPrinter), and the TargetLoweringObjectFile class.

Since the MC layer works at the level of abstraction of object files, it doesn’t have a notion of functions, global variables
etc. Instead, it thinks about labels, directives, and instructions. A key class used at this time is the MCStreamer class.
This is an abstract API that is implemented in different ways (e.g. to output a .s file, output an ELF .o file, etc) that is
effectively an “assembler API”. MCStreamer has one method per directive, such as EmitLabel, EmitSymbolAttribute,
SwitchSection, etc, which directly correspond to assembly level directives.

If you are interested in implementing a code generator for a target, there are three important things that you have to
implement for your target:

1. First, you need a subclass of AsmPrinter for your target. This class implements the general lowering process
converting MachineFunction’s into MC label constructs. The AsmPrinter base class provides a number of
useful methods and routines, and also allows you to override the lowering process in some important ways. You
should get much of the lowering for free if you are implementing an ELF, COFF, or MachO target, because the
TargetLoweringObjectFile class implements much of the common logic.

2. Second, you need to implement an instruction printer for your target. The instruction printer takes an MCInst and
renders it to a raw_ostream as text. Most of this is automatically generated from the .td file (when you specify
something like “add $dst, $src1, $src2” in the instructions), but you need to implement routines to
print operands.

3. Third, you need to implement code that lowers a MachineInstr to an MCInst, usually implemented in “<tar-
get>MCInstLower.cpp”. This lowering process is often target specific, and is responsible for turning jump table
entries, constant pool indices, global variable addresses, etc into MCLabels as appropriate. This translation layer
is also responsible for expanding pseudo ops used by the code generator into the actual machine instructions
they correspond to. The MCInsts that are generated by this are fed into the instruction printer or the encoder.

Finally, at your choosing, you can also implement a subclass of MCCodeEmitter which lowers MCInst’s into machine
code bytes and relocations. This is important if you want to support direct .o file emission, or would like to implement
an assembler for your target.

VLIW Packetizer

In a Very Long Instruction Word (VLIW) architecture, the compiler is responsible for mapping instructions to
functional-units available on the architecture. To that end, the compiler creates groups of instructions called pack-
ets or bundles. The VLIW packetizer in LLVM is a target-independent mechanism to enable the packetization of
machine instructions.

Mapping from instructions to functional units

Instructions in a VLIW target can typically be mapped to multiple functional units. During the process of packetizing,
the compiler must be able to reason about whether an instruction can be added to a packet. This decision can be
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complex since the compiler has to examine all possible mappings of instructions to functional units. Therefore to
alleviate compilation-time complexity, the VLIW packetizer parses the instruction classes of a target and generates
tables at compiler build time. These tables can then be queried by the provided machine-independent API to determine
if an instruction can be accommodated in a packet.

How the packetization tables are generated and used

The packetizer reads instruction classes from a target’s itineraries and creates a deterministic finite automaton (DFA)
to represent the state of a packet. A DFA consists of three major elements: inputs, states, and transitions. The set
of inputs for the generated DFA represents the instruction being added to a packet. The states represent the possible
consumption of functional units by instructions in a packet. In the DFA, transitions from one state to another occur on
the addition of an instruction to an existing packet. If there is a legal mapping of functional units to instructions, then
the DFA contains a corresponding transition. The absence of a transition indicates that a legal mapping does not exist
and that the instruction cannot be added to the packet.

To generate tables for a VLIW target, add TargetGenDFAPacketizer.inc as a target
to the Makefile in the target directory. The exported API provides three functions:
DFAPacketizer::clearResources(), DFAPacketizer::reserveResources(MachineInstr

*MI), and DFAPacketizer::canReserveResources(MachineInstr *MI). These functions allow a
target packetizer to add an instruction to an existing packet and to check whether an instruction can be added to a
packet. See llvm/CodeGen/DFAPacketizer.h for more information.

Implementing a Native Assembler

Though you’re probably reading this because you want to write or maintain a compiler backend, LLVM also fully
supports building a native assembler. We’ve tried hard to automate the generation of the assembler from the .td files
(in particular the instruction syntax and encodings), which means that a large part of the manual and repetitive data
entry can be factored and shared with the compiler.

Instruction Parsing

Note: To Be Written

Instruction Alias Processing

Once the instruction is parsed, it enters the MatchInstructionImpl function. The MatchInstructionImpl function per-
forms alias processing and then does actual matching.

Alias processing is the phase that canonicalizes different lexical forms of the same instructions down to one represen-
tation. There are several different kinds of alias that are possible to implement and they are listed below in the order
that they are processed (which is in order from simplest/weakest to most complex/powerful). Generally you want to
use the first alias mechanism that meets the needs of your instruction, because it will allow a more concise description.

Mnemonic Aliases

The first phase of alias processing is simple instruction mnemonic remapping for classes of instructions which are al-
lowed with two different mnemonics. This phase is a simple and unconditionally remapping from one input mnemonic
to one output mnemonic. It isn’t possible for this form of alias to look at the operands at all, so the remapping must
apply for all forms of a given mnemonic. Mnemonic aliases are defined simply, for example X86 has:

4.6. The LLVM Target-Independent Code Generator 971



LLVM Documentation, Release 3.9

def : MnemonicAlias<"cbw", "cbtw">;
def : MnemonicAlias<"smovq", "movsq">;
def : MnemonicAlias<"fldcww", "fldcw">;
def : MnemonicAlias<"fucompi", "fucomip">;
def : MnemonicAlias<"ud2a", "ud2">;

... and many others. With a MnemonicAlias definition, the mnemonic is remapped simply and directly. Though
MnemonicAlias’s can’t look at any aspect of the instruction (such as the operands) they can depend on global modes
(the same ones supported by the matcher), through a Requires clause:

def : MnemonicAlias<"pushf", "pushfq">, Requires<[In64BitMode]>;
def : MnemonicAlias<"pushf", "pushfl">, Requires<[In32BitMode]>;

In this example, the mnemonic gets mapped into a different one depending on the current instruction set.

Instruction Aliases

The most general phase of alias processing occurs while matching is happening: it provides new forms for the matcher
to match along with a specific instruction to generate. An instruction alias has two parts: the string to match and the
instruction to generate. For example:

def : InstAlias<"movsx $src, $dst", (MOVSX16rr8W GR16:$dst, GR8 :$src)>;
def : InstAlias<"movsx $src, $dst", (MOVSX16rm8W GR16:$dst, i8mem:$src)>;
def : InstAlias<"movsx $src, $dst", (MOVSX32rr8 GR32:$dst, GR8 :$src)>;
def : InstAlias<"movsx $src, $dst", (MOVSX32rr16 GR32:$dst, GR16 :$src)>;
def : InstAlias<"movsx $src, $dst", (MOVSX64rr8 GR64:$dst, GR8 :$src)>;
def : InstAlias<"movsx $src, $dst", (MOVSX64rr16 GR64:$dst, GR16 :$src)>;
def : InstAlias<"movsx $src, $dst", (MOVSX64rr32 GR64:$dst, GR32 :$src)>;

This shows a powerful example of the instruction aliases, matching the same mnemonic in multiple different ways
depending on what operands are present in the assembly. The result of instruction aliases can include operands in a
different order than the destination instruction, and can use an input multiple times, for example:

def : InstAlias<"clrb $reg", (XOR8rr GR8 :$reg, GR8 :$reg)>;
def : InstAlias<"clrw $reg", (XOR16rr GR16:$reg, GR16:$reg)>;
def : InstAlias<"clrl $reg", (XOR32rr GR32:$reg, GR32:$reg)>;
def : InstAlias<"clrq $reg", (XOR64rr GR64:$reg, GR64:$reg)>;

This example also shows that tied operands are only listed once. In the X86 backend, XOR8rr has two input GR8’s
and one output GR8 (where an input is tied to the output). InstAliases take a flattened operand list without duplicates
for tied operands. The result of an instruction alias can also use immediates and fixed physical registers which are
added as simple immediate operands in the result, for example:

// Fixed Immediate operand.
def : InstAlias<"aad", (AAD8i8 10)>;

// Fixed register operand.
def : InstAlias<"fcomi", (COM_FIr ST1)>;

// Simple alias.
def : InstAlias<"fcomi $reg", (COM_FIr RST:$reg)>;

Instruction aliases can also have a Requires clause to make them subtarget specific.

If the back-end supports it, the instruction printer can automatically emit the alias rather than what’s being aliased. It
typically leads to better, more readable code. If it’s better to print out what’s being aliased, then pass a ‘0’ as the third
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parameter to the InstAlias definition.

Instruction Matching

Note: To Be Written

Target-specific Implementation Notes

This section of the document explains features or design decisions that are specific to the code generator for a particular
target. First we start with a table that summarizes what features are supported by each target.

Target Feature Matrix

Note that this table does not list features that are not supported fully by any target yet. It considers a feature to be
supported if at least one subtarget supports it. A feature being supported means that it is useful and works for most
cases, it does not indicate that there are zero known bugs in the implementation. Here is the key:

Here is the table:

Is Generally Reliable

This box indicates whether the target is considered to be production quality. This indicates that the target has been
used as a static compiler to compile large amounts of code by a variety of different people and is in continuous use.

Assembly Parser

This box indicates whether the target supports parsing target specific .s files by implementing the MCAsmParser
interface. This is required for llvm-mc to be able to act as a native assembler and is required for inline assembly
support in the native .o file writer.

Disassembler

This box indicates whether the target supports the MCDisassembler API for disassembling machine opcode bytes into
MCInst’s.

Inline Asm

This box indicates whether the target supports most popular inline assembly constraints and modifiers.

JIT Support

This box indicates whether the target supports the JIT compiler through the ExecutionEngine interface. The ARM
backend has basic support for integer code in ARM codegen mode, but lacks NEON and full Thumb support.
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.o File Writing

This box indicates whether the target supports writing .o files (e.g. MachO, ELF, and/or COFF) files directly from the
target. Note that the target also must include an assembly parser and general inline assembly support for full inline
assembly support in the .o writer.

Targets that don’t support this feature can obviously still write out .o files, they just rely on having an external assembler
to translate from a .s file to a .o file (as is the case for many C compilers).

Tail Calls

This box indicates whether the target supports guaranteed tail calls. These are calls marked “tail” and use the fastcc
calling convention. Please see the tail call section for more details.

Segmented Stacks

This box indicates whether the target supports segmented stacks. This replaces the traditional large C stack with many
linked segments. It is compatible with the gcc implementation used by the Go front end. Basic support exists on the
X86 backend. Currently vararg doesn’t work and the object files are not marked the way the gold linker expects, but
simple Go programs can be built by dragonegg.

Tail call optimization

Tail call optimization, callee reusing the stack of the caller, is currently supported on x86/x86-64 and PowerPC. It is
performed if:

• Caller and callee have the calling convention fastcc, cc 10 (GHC calling convention) or cc 11 (HiPE
calling convention).

• The call is a tail call - in tail position (ret immediately follows call and ret uses value of call or is void).

• Option -tailcallopt is enabled.

• Platform-specific constraints are met.

x86/x86-64 constraints:

• No variable argument lists are used.

• On x86-64 when generating GOT/PIC code only module-local calls (visibility = hidden or protected) are sup-
ported.

PowerPC constraints:

• No variable argument lists are used.

• No byval parameters are used.

• On ppc32/64 GOT/PIC only module-local calls (visibility = hidden or protected) are supported.

Example:

Call as llc -tailcallopt test.ll.

declare fastcc i32 @tailcallee(i32 inreg %a1, i32 inreg %a2, i32 %a3, i32 %a4)

define fastcc i32 @tailcaller(i32 %in1, i32 %in2) {
%l1 = add i32 %in1, %in2
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%tmp = tail call fastcc i32 @tailcallee(i32 %in1 inreg, i32 %in2 inreg, i32 %in1,
→˓i32 %l1)
ret i32 %tmp

}

Implications of -tailcallopt:

To support tail call optimization in situations where the callee has more arguments than the caller a ‘callee pops
arguments’ convention is used. This currently causes each fastcc call that is not tail call optimized (because one or
more of above constraints are not met) to be followed by a readjustment of the stack. So performance might be worse
in such cases.

Sibling call optimization

Sibling call optimization is a restricted form of tail call optimization. Unlike tail call optimization described in the
previous section, it can be performed automatically on any tail calls when -tailcallopt option is not specified.

Sibling call optimization is currently performed on x86/x86-64 when the following constraints are met:

• Caller and callee have the same calling convention. It can be either c or fastcc.

• The call is a tail call - in tail position (ret immediately follows call and ret uses value of call or is void).

• Caller and callee have matching return type or the callee result is not used.

• If any of the callee arguments are being passed in stack, they must be available in caller’s own incoming argu-
ment stack and the frame offsets must be the same.

Example:

declare i32 @bar(i32, i32)

define i32 @foo(i32 %a, i32 %b, i32 %c) {
entry:

%0 = tail call i32 @bar(i32 %a, i32 %b)
ret i32 %0

}

The X86 backend

The X86 code generator lives in the lib/Target/X86 directory. This code generator is capable of targeting a
variety of x86-32 and x86-64 processors, and includes support for ISA extensions such as MMX and SSE.

X86 Target Triples supported

The following are the known target triples that are supported by the X86 backend. This is not an exhaustive list, and it
would be useful to add those that people test.

• i686-pc-linux-gnu — Linux

• i386-unknown-freebsd5.3 — FreeBSD 5.3

• i686-pc-cygwin — Cygwin on Win32

• i686-pc-mingw32 — MingW on Win32

• i386-pc-mingw32msvc — MingW crosscompiler on Linux
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• i686-apple-darwin* — Apple Darwin on X86

• x86_64-unknown-linux-gnu — Linux

X86 Calling Conventions supported

The following target-specific calling conventions are known to backend:

• x86_StdCall — stdcall calling convention seen on Microsoft Windows platform (CC ID = 64).

• x86_FastCall — fastcall calling convention seen on Microsoft Windows platform (CC ID = 65).

• x86_ThisCall — Similar to X86_StdCall. Passes first argument in ECX, others via stack. Callee is responsible
for stack cleaning. This convention is used by MSVC by default for methods in its ABI (CC ID = 70).

Representing X86 addressing modes in MachineInstrs

The x86 has a very flexible way of accessing memory. It is capable of forming memory addresses of the following
expression directly in integer instructions (which use ModR/M addressing):

SegmentReg: Base + [1,2,4,8] * IndexReg + Disp32

In order to represent this, LLVM tracks no less than 5 operands for each memory operand of this form. This means
that the “load” form of ‘mov‘ has the following MachineOperands in this order:

Index: 0 | 1 2 3 4 5
Meaning: DestReg, | BaseReg, Scale, IndexReg, Displacement Segment
OperandTy: VirtReg, | VirtReg, UnsImm, VirtReg, SignExtImm PhysReg

Stores, and all other instructions, treat the four memory operands in the same way and in the same order. If the segment
register is unspecified (regno = 0), then no segment override is generated. “Lea” operations do not have a segment
register specified, so they only have 4 operands for their memory reference.

X86 address spaces supported

x86 has a feature which provides the ability to perform loads and stores to different address spaces via the x86 segment
registers. A segment override prefix byte on an instruction causes the instruction’s memory access to go to the specified
segment. LLVM address space 0 is the default address space, which includes the stack, and any unqualified memory
accesses in a program. Address spaces 1-255 are currently reserved for user-defined code. The GS-segment is repre-
sented by address space 256, the FS-segment is represented by address space 257, and the SS-segment is represented
by address space 258. Other x86 segments have yet to be allocated address space numbers.

While these address spaces may seem similar to TLS via the thread_local keyword, and often use the same
underlying hardware, there are some fundamental differences.

The thread_local keyword applies to global variables and specifies that they are to be allocated in thread-local
memory. There are no type qualifiers involved, and these variables can be pointed to with normal pointers and accessed
with normal loads and stores. The thread_local keyword is target-independent at the LLVM IR level (though
LLVM doesn’t yet have implementations of it for some configurations)

Special address spaces, in contrast, apply to static types. Every load and store has a particular address space in its
address operand type, and this is what determines which address space is accessed. LLVM ignores these special
address space qualifiers on global variables, and does not provide a way to directly allocate storage in them. At
the LLVM IR level, the behavior of these special address spaces depends in part on the underlying OS or runtime
environment, and they are specific to x86 (and LLVM doesn’t yet handle them correctly in some cases).
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Some operating systems and runtime environments use (or may in the future use) the FS/GS-segment registers for
various low-level purposes, so care should be taken when considering them.

Instruction naming

An instruction name consists of the base name, a default operand size, and a a character per operand with an optional
special size. For example:

ADD8rr -> add, 8-bit register, 8-bit register
IMUL16rmi -> imul, 16-bit register, 16-bit memory, 16-bit immediate
IMUL16rmi8 -> imul, 16-bit register, 16-bit memory, 8-bit immediate
MOVSX32rm16 -> movsx, 32-bit register, 16-bit memory

The PowerPC backend

The PowerPC code generator lives in the lib/Target/PowerPC directory. The code generation is retargetable to several
variations or subtargets of the PowerPC ISA; including ppc32, ppc64 and altivec.

LLVM PowerPC ABI

LLVM follows the AIX PowerPC ABI, with two deviations. LLVM uses a PC relative (PIC) or static addressing for
accessing global values, so no TOC (r2) is used. Second, r31 is used as a frame pointer to allow dynamic growth of
a stack frame. LLVM takes advantage of having no TOC to provide space to save the frame pointer in the PowerPC
linkage area of the caller frame. Other details of PowerPC ABI can be found at PowerPC ABI. Note: This link
describes the 32 bit ABI. The 64 bit ABI is similar except space for GPRs are 8 bytes wide (not 4) and r13 is reserved
for system use.

Frame Layout

The size of a PowerPC frame is usually fixed for the duration of a function’s invocation. Since the frame is fixed size,
all references into the frame can be accessed via fixed offsets from the stack pointer. The exception to this is when
dynamic alloca or variable sized arrays are present, then a base pointer (r31) is used as a proxy for the stack pointer and
stack pointer is free to grow or shrink. A base pointer is also used if llvm-gcc is not passed the -fomit-frame-pointer
flag. The stack pointer is always aligned to 16 bytes, so that space allocated for altivec vectors will be properly aligned.

An invocation frame is laid out as follows (low memory at top):

The linkage area is used by a callee to save special registers prior to allocating its own frame. Only three entries are
relevant to LLVM. The first entry is the previous stack pointer (sp), aka link. This allows probing tools like gdb or
exception handlers to quickly scan the frames in the stack. A function epilog can also use the link to pop the frame
from the stack. The third entry in the linkage area is used to save the return address from the lr register. Finally, as
mentioned above, the last entry is used to save the previous frame pointer (r31.) The entries in the linkage area are the
size of a GPR, thus the linkage area is 24 bytes long in 32 bit mode and 48 bytes in 64 bit mode.

32 bit linkage area:

64 bit linkage area:

The parameter area is used to store arguments being passed to a callee function. Following the PowerPC ABI, the first
few arguments are actually passed in registers, with the space in the parameter area unused. However, if there are not
enough registers or the callee is a thunk or vararg function, these register arguments can be spilled into the parameter
area. Thus, the parameter area must be large enough to store all the parameters for the largest call sequence made by
the caller. The size must also be minimally large enough to spill registers r3-r10. This allows callees blind to the call
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signature, such as thunks and vararg functions, enough space to cache the argument registers. Therefore, the parameter
area is minimally 32 bytes (64 bytes in 64 bit mode.) Also note that since the parameter area is a fixed offset from the
top of the frame, that a callee can access its spilt arguments using fixed offsets from the stack pointer (or base pointer.)

Combining the information about the linkage, parameter areas and alignment. A stack frame is minimally 64 bytes in
32 bit mode and 128 bytes in 64 bit mode.

The dynamic area starts out as size zero. If a function uses dynamic alloca then space is added to the stack, the linkage
and parameter areas are shifted to top of stack, and the new space is available immediately below the linkage and
parameter areas. The cost of shifting the linkage and parameter areas is minor since only the link value needs to be
copied. The link value can be easily fetched by adding the original frame size to the base pointer. Note that allocations
in the dynamic space need to observe 16 byte alignment.

The locals area is where the llvm compiler reserves space for local variables.

The saved registers area is where the llvm compiler spills callee saved registers on entry to the callee.

Prolog/Epilog

The llvm prolog and epilog are the same as described in the PowerPC ABI, with the following exceptions. Callee
saved registers are spilled after the frame is created. This allows the llvm epilog/prolog support to be common with
other targets. The base pointer callee saved register r31 is saved in the TOC slot of linkage area. This simplifies
allocation of space for the base pointer and makes it convenient to locate programatically and during debugging.

Dynamic Allocation

Note: TODO - More to come.

The NVPTX backend

The NVPTX code generator under lib/Target/NVPTX is an open-source version of the NVIDIA NVPTX code gener-
ator for LLVM. It is contributed by NVIDIA and is a port of the code generator used in the CUDA compiler (nvcc). It
targets the PTX 3.0/3.1 ISA and can target any compute capability greater than or equal to 2.0 (Fermi).

This target is of production quality and should be completely compatible with the official NVIDIA toolchain.

Code Generator Options:

The extended Berkeley Packet Filter (eBPF) backend

Extended BPF (or eBPF) is similar to the original (“classic”) BPF (cBPF) used to filter network packets. The bpf()
system call performs a range of operations related to eBPF. For both cBPF and eBPF programs, the Linux kernel
statically analyzes the programs before loading them, in order to ensure that they cannot harm the running system.
eBPF is a 64-bit RISC instruction set designed for one to one mapping to 64-bit CPUs. Opcodes are 8-bit encoded,
and 87 instructions are defined. There are 10 registers, grouped by function as outlined below.

R0 return value from in-kernel functions; exit value for eBPF program
R1 - R5 function call arguments to in-kernel functions
R6 - R9 callee-saved registers preserved by in-kernel functions
R10 stack frame pointer (read only)
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Instruction encoding (arithmetic and jump)

eBPF is reusing most of the opcode encoding from classic to simplify conversion of classic BPF to eBPF. For arithmetic
and jump instructions the 8-bit ‘code’ field is divided into three parts:

+----------------+--------+--------------------+
| 4 bits | 1 bit | 3 bits |
| operation code | source | instruction class |
+----------------+--------+--------------------+
(MSB) (LSB)

Three LSB bits store instruction class which is one of:

BPF_LD 0x0
BPF_LDX 0x1
BPF_ST 0x2
BPF_STX 0x3
BPF_ALU 0x4
BPF_JMP 0x5
(unused) 0x6
BPF_ALU64 0x7

When BPF_CLASS(code) == BPF_ALU or BPF_ALU64 or BPF_JMP, 4th bit encodes source operand

BPF_X 0x0 use src_reg register as source operand
BPF_K 0x1 use 32 bit immediate as source operand

and four MSB bits store operation code

BPF_ADD 0x0 add
BPF_SUB 0x1 subtract
BPF_MUL 0x2 multiply
BPF_DIV 0x3 divide
BPF_OR 0x4 bitwise logical OR
BPF_AND 0x5 bitwise logical AND
BPF_LSH 0x6 left shift
BPF_RSH 0x7 right shift (zero extended)
BPF_NEG 0x8 arithmetic negation
BPF_MOD 0x9 modulo
BPF_XOR 0xa bitwise logical XOR
BPF_MOV 0xb move register to register
BPF_ARSH 0xc right shift (sign extended)
BPF_END 0xd endianness conversion

If BPF_CLASS(code) == BPF_JMP, BPF_OP(code) is one of

BPF_JA 0x0 unconditional jump
BPF_JEQ 0x1 jump ==
BPF_JGT 0x2 jump >
BPF_JGE 0x3 jump >=
BPF_JSET 0x4 jump if (DST & SRC)
BPF_JNE 0x5 jump !=
BPF_JSGT 0x6 jump signed >
BPF_JSGE 0x7 jump signed >=
BPF_CALL 0x8 function call
BPF_EXIT 0x9 function return
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Instruction encoding (load, store)

For load and store instructions the 8-bit ‘code’ field is divided as:

+--------+--------+-------------------+
| 3 bits | 2 bits | 3 bits |
| mode | size | instruction class |
+--------+--------+-------------------+
(MSB) (LSB)

Size modifier is one of

BPF_W 0x0 word
BPF_H 0x1 half word
BPF_B 0x2 byte
BPF_DW 0x3 double word

Mode modifier is one of

BPF_IMM 0x0 immediate
BPF_ABS 0x1 used to access packet data
BPF_IND 0x2 used to access packet data
BPF_MEM 0x3 memory
(reserved) 0x4
(reserved) 0x5
BPF_XADD 0x6 exclusive add

Packet data access (BPF_ABS, BPF_IND)

Two non-generic instructions: (BPF_ABS | <size> | BPF_LD) and (BPF_IND | <size> | BPF_LD) which are used to
access packet data. Register R6 is an implicit input that must contain pointer to sk_buff. Register R0 is an implicit
output which contains the data fetched from the packet. Registers R1-R5 are scratch registers and must not be used
to store the data across BPF_ABS | BPF_LD or BPF_IND | BPF_LD instructions. These instructions have implicit
program exit condition as well. When eBPF program is trying to access the data beyond the packet boundary, the
interpreter will abort the execution of the program.

BPF_IND | BPF_W | BPF_LD is equivalent to: R0 = ntohl(*(u32 *) (((struct sk_buff *) R6)->data + src_reg +
imm32))

eBPF maps

eBPF maps are provided for sharing data between kernel and user-space. Currently implemented types are hash and
array, with potential extension to support bloom filters, radix trees, etc. A map is defined by its type, maximum number
of elements, key size and value size in bytes. eBPF syscall supports create, update, find and delete functions on maps.

Function calls

Function call arguments are passed using up to five registers (R1 - R5). The return value is passed in a dedicated register
(R0). Four additional registers (R6 - R9) are callee-saved, and the values in these registers are preserved within kernel
functions. R0 - R5 are scratch registers within kernel functions, and eBPF programs must therefor store/restore values
in these registers if needed across function calls. The stack can be accessed using the read-only frame pointer R10.
eBPF registers map 1:1 to hardware registers on x86_64 and other 64-bit architectures. For example, x86_64 in-kernel
JIT maps them as
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R0 - rax
R1 - rdi
R2 - rsi
R3 - rdx
R4 - rcx
R5 - r8
R6 - rbx
R7 - r13
R8 - r14
R9 - r15
R10 - rbp

since x86_64 ABI mandates rdi, rsi, rdx, rcx, r8, r9 for argument passing and rbx, r12 - r15 are callee saved.

Program start

An eBPF program receives a single argument and contains a single eBPF main routine; the program does not contain
eBPF functions. Function calls are limited to a predefined set of kernel functions. The size of a program is limited to
4K instructions: this ensures fast termination and a limited number of kernel function calls. Prior to running an eBPF
program, a verifier performs static analysis to prevent loops in the code and to ensure valid register usage and operand
types.

The AMDGPU backend

The AMDGPU code generator lives in the lib/Target/AMDGPU directory, and is an open source native AMD GCN
ISA code generator.

Target triples supported

The following are the known target triples that are supported by the AMDGPU backend.

• amdgcn– — AMD GCN GPUs (AMDGPU.7.0.0+)

• amdgcn–amdhsa — AMD GCN GPUs (AMDGPU.7.0.0+) with HSA support

• r600– — AMD GPUs HD2XXX-HD6XXX

Relocations

Supported relocatable fields are:

• word32 — This specifies a 32-bit field occupying 4 bytes with arbitrary byte alignment. These values use the
same byte order as other word values in the AMD GPU architecture

• word64 — This specifies a 64-bit field occupying 8 bytes with arbitrary byte alignment. These values use the
same byte order as other word values in the AMD GPU architecture

Following notations are used for specifying relocation calculations:

• A — Represents the addend used to compute the value of the relocatable field

• G — Represents the offset into the global offset table at which the relocation entry’s symbol will reside during
execution.

• GOT — Represents the address of the global offset table.
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• P — Represents the place (section offset or address) of the storage unit being relocated (computed using
r_offset)

• S — Represents the value of the symbol whose index resides in the relocation entry

AMDGPU Backend generates Elf64_Rela relocation records with the following supported relocation types:

Relocation type Value Field Calculation
R_AMDGPU_NONE 0 none none
R_AMDGPU_ABS32_LO 1 word32 (S + A) & 0xFFFFFFFF
R_AMDGPU_ABS32_HI 2 word32 (S + A) >> 32
R_AMDGPU_ABS64 3 word64 S + A
R_AMDGPU_REL32 4 word32 S + A - P
R_AMDGPU_REL64 5 word64 S + A - P
R_AMDGPU_ABS32 6 word32 S + A
R_AMDGPU_GOTPCREL 7 word32 G + GOT + A - P

Exception Handling in LLVM

• Introduction

– Itanium ABI Zero-cost Exception Handling

– Setjmp/Longjmp Exception Handling

– Windows Runtime Exception Handling

– Overview

• LLVM Code Generation

– Throw

– Try/Catch

– Cleanups

– Throw Filters

– Restrictions

• Exception Handling Intrinsics

– llvm.eh.typeid.for

– llvm.eh.begincatch

– llvm.eh.endcatch

– llvm.eh.exceptionpointer

– SJLJ Intrinsics

* llvm.eh.sjlj.setjmp

* llvm.eh.sjlj.longjmp

* llvm.eh.sjlj.lsda

* llvm.eh.sjlj.callsite

• Asm Table Formats
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– Exception Handling Frame

– Exception Tables

• Exception Handling using the Windows Runtime

– Background on Windows exceptions

– SEH filter expressions

– New exception handling instructions

– Funclet parent tokens

– Funclet transitions

Introduction

This document is the central repository for all information pertaining to exception handling in LLVM. It describes the
format that LLVM exception handling information takes, which is useful for those interested in creating front-ends or
dealing directly with the information. Further, this document provides specific examples of what exception handling
information is used for in C and C++.

Itanium ABI Zero-cost Exception Handling

Exception handling for most programming languages is designed to recover from conditions that rarely occur during
general use of an application. To that end, exception handling should not interfere with the main flow of an applica-
tion’s algorithm by performing checkpointing tasks, such as saving the current pc or register state.

The Itanium ABI Exception Handling Specification defines a methodology for providing outlying data in the form of
exception tables without inlining speculative exception handling code in the flow of an application’s main algorithm.
Thus, the specification is said to add “zero-cost” to the normal execution of an application.

A more complete description of the Itanium ABI exception handling runtime support of can be found at Itanium C++
ABI: Exception Handling. A description of the exception frame format can be found at Exception Frames, with details
of the DWARF 4 specification at DWARF 4 Standard. A description for the C++ exception table formats can be found
at Exception Handling Tables.

Setjmp/Longjmp Exception Handling

Setjmp/Longjmp (SJLJ) based exception handling uses LLVM intrinsics llvm.eh.sjlj.setjmp and llvm.eh.sjlj.longjmp
to handle control flow for exception handling.

For each function which does exception processing — be it try/catch blocks or cleanups — that function registers
itself on a global frame list. When exceptions are unwinding, the runtime uses this list to identify which functions
need processing.

Landing pad selection is encoded in the call site entry of the function context. The runtime returns to the function via
llvm.eh.sjlj.longjmp, where a switch table transfers control to the appropriate landing pad based on the index stored in
the function context.

In contrast to DWARF exception handling, which encodes exception regions and frame information in out-of-line
tables, SJLJ exception handling builds and removes the unwind frame context at runtime. This results in faster excep-
tion handling at the expense of slower execution when no exceptions are thrown. As exceptions are, by their nature,
intended for uncommon code paths, DWARF exception handling is generally preferred to SJLJ.
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Windows Runtime Exception Handling

LLVM supports handling exceptions produced by the Windows runtime, but it requires a very different intermediate
representation. It is not based on the “landingpad” instruction like the other two models, and is described later in this
document under Exception Handling using the Windows Runtime.

Overview

When an exception is thrown in LLVM code, the runtime does its best to find a handler suited to processing the
circumstance.

The runtime first attempts to find an exception frame corresponding to the function where the exception was thrown.
If the programming language supports exception handling (e.g. C++), the exception frame contains a reference to an
exception table describing how to process the exception. If the language does not support exception handling (e.g.
C), or if the exception needs to be forwarded to a prior activation, the exception frame contains information about
how to unwind the current activation and restore the state of the prior activation. This process is repeated until the
exception is handled. If the exception is not handled and no activations remain, then the application is terminated with
an appropriate error message.

Because different programming languages have different behaviors when handling exceptions, the exception handling
ABI provides a mechanism for supplying personalities. An exception handling personality is defined by way of a
personality function (e.g. __gxx_personality_v0 in C++), which receives the context of the exception, an
exception structure containing the exception object type and value, and a reference to the exception table for the
current function. The personality function for the current compile unit is specified in a common exception frame.

The organization of an exception table is language dependent. For C++, an exception table is organized as a series
of code ranges defining what to do if an exception occurs in that range. Typically, the information associated with a
range defines which types of exception objects (using C++ type info) that are handled in that range, and an associated
action that should take place. Actions typically pass control to a landing pad.

A landing pad corresponds roughly to the code found in the catch portion of a try/catch sequence. When
execution resumes at a landing pad, it receives an exception structure and a selector value corresponding to the type
of exception thrown. The selector is then used to determine which catch should actually process the exception.

LLVM Code Generation

From a C++ developer’s perspective, exceptions are defined in terms of the throw and try/catch statements. In
this section we will describe the implementation of LLVM exception handling in terms of C++ examples.

Throw

Languages that support exception handling typically provide a throw operation to initiate the exception process.
Internally, a throw operation breaks down into two steps.

1. A request is made to allocate exception space for an exception structure. This structure needs to survive beyond
the current activation. This structure will contain the type and value of the object being thrown.

2. A call is made to the runtime to raise the exception, passing the exception structure as an argument.

In C++, the allocation of the exception structure is done by the __cxa_allocate_exception runtime function.
The exception raising is handled by __cxa_throw. The type of the exception is represented using a C++ RTTI
structure.
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Try/Catch

A call within the scope of a try statement can potentially raise an exception. In those circumstances, the LLVM C++
front-end replaces the call with an invoke instruction. Unlike a call, the invoke has two potential continuation
points:

1. where to continue when the call succeeds as per normal, and

2. where to continue if the call raises an exception, either by a throw or the unwinding of a throw

The term used to define the place where an invoke continues after an exception is called a landing pad. LLVM
landing pads are conceptually alternative function entry points where an exception structure reference and a type info
index are passed in as arguments. The landing pad saves the exception structure reference and then proceeds to select
the catch block that corresponds to the type info of the exception object.

The LLVM ‘landingpad’ Instruction is used to convey information about the landing pad to the back end. For C++,
the landingpad instruction returns a pointer and integer pair corresponding to the pointer to the exception structure
and the selector value respectively.

The landingpad instruction looks for a reference to the personality function to be used for this try/catch se-
quence in the parent function’s attribute list. The instruction contains a list of cleanup, catch, and filter clauses. The
exception is tested against the clauses sequentially from first to last. The clauses have the following meanings:

• catch <type> @ExcType

– This clause means that the landingpad block should be entered if the exception being thrown is of type
@ExcType or a subtype of @ExcType. For C++, @ExcType is a pointer to the std::type_info
object (an RTTI object) representing the C++ exception type.

– If @ExcType is null, any exception matches, so the landingpad should always be entered. This is used
for C++ catch-all blocks (“catch (...)”).

– When this clause is matched, the selector value will be equal to the value returned by “@llvm.eh.
typeid.for(i8* @ExcType)”. This will always be a positive value.

• filter <type> [<type> @ExcType1, ..., <type> @ExcTypeN]

– This clause means that the landingpad should be entered if the exception being thrown does not match any
of the types in the list (which, for C++, are again specified as std::type_info pointers).

– C++ front-ends use this to implement C++ exception specifications, such as “void foo() throw
(ExcType1, ..., ExcTypeN) { ... }”.

– When this clause is matched, the selector value will be negative.

– The array argument to filter may be empty; for example, “[0 x i8**] undef”. This means that
the landingpad should always be entered. (Note that such a filter would not be equivalent to “catch
i8* null”, because filter and catch produce negative and positive selector values respectively.)

• cleanup

– This clause means that the landingpad should always be entered.

– C++ front-ends use this for calling objects’ destructors.

– When this clause is matched, the selector value will be zero.

– The runtime may treat “cleanup” differently from “catch <type> null”.

In C++, if an unhandled exception occurs, the language runtime will call std::terminate(), but it
is implementation-defined whether the runtime unwinds the stack and calls object destructors first. For
example, the GNU C++ unwinder does not call object destructors when an unhandled exception occurs.
The reason for this is to improve debuggability: it ensures that std::terminate() is called from the
context of the throw, so that this context is not lost by unwinding the stack. A runtime will typically
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implement this by searching for a matching non-cleanup clause, and aborting if it does not find one,
before entering any landingpad blocks.

Once the landing pad has the type info selector, the code branches to the code for the first catch. The catch then checks
the value of the type info selector against the index of type info for that catch. Since the type info index is not known
until all the type infos have been gathered in the backend, the catch code must call the llvm.eh.typeid.for intrinsic to
determine the index for a given type info. If the catch fails to match the selector then control is passed on to the next
catch.

Finally, the entry and exit of catch code is bracketed with calls to __cxa_begin_catch and __cxa_end_catch.

• __cxa_begin_catch takes an exception structure reference as an argument and returns the value of the
exception object.

• __cxa_end_catch takes no arguments. This function:

1. Locates the most recently caught exception and decrements its handler count,

2. Removes the exception from the caught stack if the handler count goes to zero, and

3. Destroys the exception if the handler count goes to zero and the exception was not re-thrown by throw.

Note: a rethrow from within the catch may replace this call with a __cxa_rethrow.

Cleanups

A cleanup is extra code which needs to be run as part of unwinding a scope. C++ destructors are a typical example,
but other languages and language extensions provide a variety of different kinds of cleanups. In general, a landing pad
may need to run arbitrary amounts of cleanup code before actually entering a catch block. To indicate the presence
of cleanups, a ‘landingpad’ Instruction should have a cleanup clause. Otherwise, the unwinder will not stop at the
landing pad if there are no catches or filters that require it to.

Note: Do not allow a new exception to propagate out of the execution of a cleanup. This can corrupt the internal state
of the unwinder. Different languages describe different high-level semantics for these situations: for example, C++
requires that the process be terminated, whereas Ada cancels both exceptions and throws a third.

When all cleanups are finished, if the exception is not handled by the current function, resume unwinding by calling
the resume instruction, passing in the result of the landingpad instruction for the original landing pad.

Throw Filters

C++ allows the specification of which exception types may be thrown from a function. To represent this, a top level
landing pad may exist to filter out invalid types. To express this in LLVM code the ‘landingpad’ Instruction will have
a filter clause. The clause consists of an array of type infos. landingpad will return a negative value if the exception
does not match any of the type infos. If no match is found then a call to __cxa_call_unexpected should be
made, otherwise _Unwind_Resume. Each of these functions requires a reference to the exception structure. Note
that the most general form of a landingpad instruction can have any number of catch, cleanup, and filter clauses
(though having more than one cleanup is pointless). The LLVM C++ front-end can generate such landingpad
instructions due to inlining creating nested exception handling scopes.
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Restrictions

The unwinder delegates the decision of whether to stop in a call frame to that call frame’s language-specific personality
function. Not all unwinders guarantee that they will stop to perform cleanups. For example, the GNU C++ unwinder
doesn’t do so unless the exception is actually caught somewhere further up the stack.

In order for inlining to behave correctly, landing pads must be prepared to handle selector results that they did not
originally advertise. Suppose that a function catches exceptions of type A, and it’s inlined into a function that catches
exceptions of type B. The inliner will update the landingpad instruction for the inlined landing pad to include the
fact that B is also caught. If that landing pad assumes that it will only be entered to catch an A, it’s in for a rude
awakening. Consequently, landing pads must test for the selector results they understand and then resume exception
propagation with the resume instruction if none of the conditions match.

Exception Handling Intrinsics

In addition to the landingpad and resume instructions, LLVM uses several intrinsic functions (name prefixed
with llvm.eh) to provide exception handling information at various points in generated code.

llvm.eh.typeid.for

i32 @llvm.eh.typeid.for(i8* %type_info)

This intrinsic returns the type info index in the exception table of the current function. This value can be used to
compare against the result of landingpad instruction. The single argument is a reference to a type info.

Uses of this intrinsic are generated by the C++ front-end.

llvm.eh.begincatch

void @llvm.eh.begincatch(i8* %ehptr, i8* %ehobj)

This intrinsic marks the beginning of catch handling code within the blocks following a landingpad instruction.
The exact behavior of this function depends on the compilation target and the personality function associated with the
landingpad instruction.

The first argument to this intrinsic is a pointer that was previously extracted from the aggregate return value of the
landingpad instruction. The second argument to the intrinsic is a pointer to stack space where the exception object
should be stored. The runtime handles the details of copying the exception object into the slot. If the second parameter
is null, no copy occurs.

Uses of this intrinsic are generated by the C++ front-end. Many targets will use implementation-specific functions
(such as __cxa_begin_catch) instead of this intrinsic. The intrinsic is provided for targets that require a more
abstract interface.

When used in the native Windows C++ exception handling implementation, this intrinsic serves as a placeholder to
delimit code before a catch handler is outlined. When the handler is is outlined, this intrinsic will be replaced by
instructions that retrieve the exception object pointer from the frame allocation block.

llvm.eh.endcatch

void @llvm.eh.endcatch()
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This intrinsic marks the end of catch handling code within the current block, which will be a successor of a
block which called llvm.eh.begincatch''. The exact behavior of this function depends
on the compilation target and the personality function associated with the
corresponding ``landingpad instruction.

There may be more than one call to llvm.eh.endcatch for any given call to llvm.eh.begincatch with each
llvm.eh.endcatch call corresponding to the end of a different control path. All control paths following a call to
llvm.eh.begincatch must reach a call to llvm.eh.endcatch.

Uses of this intrinsic are generated by the C++ front-end. Many targets will use implementation-specific functions
(such as __cxa_begin_catch) instead of this intrinsic. The intrinsic is provided for targets that require a more
abstract interface.

When used in the native Windows C++ exception handling implementation, this intrinsic serves as a placeholder to
delimit code before a catch handler is outlined. After the handler is outlined, this intrinsic is simply removed.

llvm.eh.exceptionpointer

i8 addrspace(N)* @llvm.eh.padparam.pNi8(token %catchpad)

This intrinsic retrieves a pointer to the exception caught by the given catchpad.

SJLJ Intrinsics

The llvm.eh.sjlj intrinsics are used internally within LLVM’s backend. Uses of them are generated by the
backend’s SjLjEHPrepare pass.

llvm.eh.sjlj.setjmp

i32 @llvm.eh.sjlj.setjmp(i8* %setjmp_buf)

For SJLJ based exception handling, this intrinsic forces register saving for the current function and stores the address
of the following instruction for use as a destination address by llvm.eh.sjlj.longjmp. The buffer format and the overall
functioning of this intrinsic is compatible with the GCC __builtin_setjmp implementation allowing code built
with the clang and GCC to interoperate.

The single parameter is a pointer to a five word buffer in which the calling context is saved. The front end places the
frame pointer in the first word, and the target implementation of this intrinsic should place the destination address for
a llvm.eh.sjlj.longjmp in the second word. The following three words are available for use in a target-specific manner.

llvm.eh.sjlj.longjmp

void @llvm.eh.sjlj.longjmp(i8* %setjmp_buf)

For SJLJ based exception handling, the llvm.eh.sjlj.longjmp intrinsic is used to implement
__builtin_longjmp(). The single parameter is a pointer to a buffer populated by llvm.eh.sjlj.setjmp. The
frame pointer and stack pointer are restored from the buffer, then control is transferred to the destination address.
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llvm.eh.sjlj.lsda

i8* @llvm.eh.sjlj.lsda()

For SJLJ based exception handling, the llvm.eh.sjlj.lsda intrinsic returns the address of the Language Specific
Data Area (LSDA) for the current function. The SJLJ front-end code stores this address in the exception handling
function context for use by the runtime.

llvm.eh.sjlj.callsite

void @llvm.eh.sjlj.callsite(i32 %call_site_num)

For SJLJ based exception handling, the llvm.eh.sjlj.callsite intrinsic identifies the callsite value associated
with the following invoke instruction. This is used to ensure that landing pad entries in the LSDA are generated in
matching order.

Asm Table Formats

There are two tables that are used by the exception handling runtime to determine which actions should be taken when
an exception is thrown.

Exception Handling Frame

An exception handling frame eh_frame is very similar to the unwind frame used by DWARF debug info. The frame
contains all the information necessary to tear down the current frame and restore the state of the prior frame. There is
an exception handling frame for each function in a compile unit, plus a common exception handling frame that defines
information common to all functions in the unit.

The format of this call frame information (CFI) is often platform-dependent, however. ARM, for example, defines
their own format. Apple has their own compact unwind info format. On Windows, another format is used for all
architectures since 32-bit x86. LLVM will emit whatever information is required by the target.

Exception Tables

An exception table contains information about what actions to take when an exception is thrown in a particular part of a
function’s code. This is typically referred to as the language-specific data area (LSDA). The format of the LSDA table
is specific to the personality function, but the majority of personalities out there use a variation of the tables consumed
by __gxx_personality_v0. There is one exception table per function, except leaf functions and functions that
have calls only to non-throwing functions. They do not need an exception table.

Exception Handling using the Windows Runtime

Background on Windows exceptions

Interacting with exceptions on Windows is significantly more complicated than on Itanium C++ ABI platforms. The
fundamental difference between the two models is that Itanium EH is designed around the idea of “successive unwind-
ing,” while Windows EH is not.

Under Itanium, throwing an exception typically involes allocating thread local memory to hold the exception, and call-
ing into the EH runtime. The runtime identifies frames with appropriate exception handling actions, and successively
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resets the register context of the current thread to the most recently active frame with actions to run. In LLVM, exe-
cution resumes at a landingpad instruction, which produces register values provided by the runtime. If a function
is only cleaning up allocated resources, the function is responsible for calling _Unwind_Resume to transition to
the next most recently active frame after it is finished cleaning up. Eventually, the frame responsible for handling the
exception calls __cxa_end_catch to destroy the exception, release its memory, and resume normal control flow.

The Windows EH model does not use these successive register context resets. Instead, the active exception is typically
described by a frame on the stack. In the case of C++ exceptions, the exception object is allocated in stack mem-
ory and its address is passed to __CxxThrowException. General purpose structured exceptions (SEH) are more
analogous to Linux signals, and they are dispatched by userspace DLLs provided with Windows. Each frame on the
stack has an assigned EH personality routine, which decides what actions to take to handle the exception. There are a
few major personalities for C and C++ code: the C++ personality (__CxxFrameHandler3) and the SEH person-
alities (_except_handler3, _except_handler4, and __C_specific_handler). All of them implement
cleanups by calling back into a “funclet” contained in the parent function.

Funclets, in this context, are regions of the parent function that can be called as though they were a function pointer
with a very special calling convention. The frame pointer of the parent frame is passed into the funclet either using
the standard EBP register or as the first parameter register, depending on the architecture. The funclet implements the
EH action by accessing local variables in memory through the frame pointer, and returning some appropriate value,
continuing the EH process. No variables live in to or out of the funclet can be allocated in registers.

The C++ personality also uses funclets to contain the code for catch blocks (i.e. all user code between the braces
in catch (Type obj) { ... }). The runtime must use funclets for catch bodies because the C++ exception
object is allocated in a child stack frame of the function handling the exception. If the runtime rewound the stack back
to frame of the catch, the memory holding the exception would be overwritten quickly by subsequent function calls.
The use of funclets also allows __CxxFrameHandler3 to implement rethrow without resorting to TLS. Instead,
the runtime throws a special exception, and then uses SEH (__try / __except) to resume execution with new
information in the child frame.

In other words, the successive unwinding approach is incompatible with Visual C++ exceptions and general purpose
Windows exception handling. Because the C++ exception object lives in stack memory, LLVM cannot provide a
custom personality function that uses landingpads. Similarly, SEH does not provide any mechanism to rethrow an
exception or continue unwinding. Therefore, LLVM must use the IR constructs described later in this document to
implement compatible exception handling.

SEH filter expressions

The SEH personality functions also use funclets to implement filter expressions, which allow executing arbitrary user
code to decide which exceptions to catch. Filter expressions should not be confused with the filter clause of the
LLVM landingpad instruction. Typically filter expressions are used to determine if the exception came from a
particular DLL or code region, or if code faulted while accessing a particular memory address range. LLVM does not
currently have IR to represent filter expressions because it is difficult to represent their control dependencies. Filter
expressions run during the first phase of EH, before cleanups run, making it very difficult to build a faithful control
flow graph. For now, the new EH instructions cannot represent SEH filter expressions, and frontends must outline them
ahead of time. Local variables of the parent function can be escaped and accessed using the llvm.localescape
and llvm.localrecover intrinsics.

New exception handling instructions

The primary design goal of the new EH instructions is to support funclet generation while preserving information
about the CFG so that SSA formation still works. As a secondary goal, they are designed to be generic across MSVC
and Itanium C++ exceptions. They make very few assumptions about the data required by the personality, so long as
it uses the familiar core EH actions: catch, cleanup, and terminate. However, the new instructions are hard to modify
without knowing details of the EH personality. While they can be used to represent Itanium EH, the landingpad model
is strictly better for optimization purposes.
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The following new instructions are considered “exception handling pads”, in that they must be the first non-phi in-
struction of a basic block that may be the unwind destination of an EH flow edge: catchswitch, catchpad, and
cleanuppad. As with landingpads, when entering a try scope, if the frontend encounters a call site that may throw
an exception, it should emit an invoke that unwinds to a catchswitch block. Similarly, inside the scope of a C++
object with a destructor, invokes should unwind to a cleanuppad.

New instructions are also used to mark the points where control is transferred out of a catch/cleanup handler (which
will correspond to exits from the generated funclet). A catch handler which reaches its end by normal execution
executes a catchret instruction, which is a terminator indicating where in the function control is returned to. A
cleanup handler which reaches its end by normal execution executes a cleanupret instruction, which is a terminator
indicating where the active exception will unwind to next.

Each of these new EH pad instructions has a way to identify which action should be considered after this action.
The catchswitch instruction is a terminator and has an unwind destination operand analogous to the unwind
destination of an invoke. The cleanuppad instruction is not a terminator, so the unwind destination is stored on
the cleanupret instruction instead. Successfully executing a catch handler should resume normal control flow, so
neither catchpad nor catchret instructions can unwind. All of these “unwind edges” may refer to a basic block
that contains an EH pad instruction, or they may unwind to the caller. Unwinding to the caller has roughly the same
semantics as the resume instruction in the landingpad model. When inlining through an invoke, instructions that
unwind to the caller are hooked up to unwind to the unwind destination of the call site.

Putting things together, here is a hypothetical lowering of some C++ that uses all of the new IR instructions:

struct Cleanup {
Cleanup();
~Cleanup();
int m;

};
void may_throw();
int f() noexcept {
try {
Cleanup obj;
may_throw();

} catch (int e) {
may_throw();
return e;

}
return 0;

}

define i32 @f() nounwind personality i32 (...)* @__CxxFrameHandler3 {
entry:

%obj = alloca %struct.Cleanup, align 4
%e = alloca i32, align 4
%call = invoke %struct.Cleanup* @"\01??0Cleanup@@QEAA@XZ"(%struct.Cleanup* nonnull

→˓%obj)
to label %invoke.cont unwind label %lpad.catch

invoke.cont: ; preds = %entry
invoke void @"\01?may_throw@@YAXXZ"()

to label %invoke.cont.2 unwind label %lpad.cleanup

invoke.cont.2: ; preds = %invoke.cont
call void @"\01??_DCleanup@@QEAA@XZ"(%struct.Cleanup* nonnull %obj) nounwind
br label %return

return: ; preds = %invoke.cont.3, %invoke.
→˓cont.2
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%retval.0 = phi i32 [ 0, %invoke.cont.2 ], [ %3, %invoke.cont.3 ]
ret i32 %retval.0

lpad.cleanup: ; preds = %invoke.cont.2
%0 = cleanuppad within none []
call void @"\01??1Cleanup@@QEAA@XZ"(%struct.Cleanup* nonnull %obj) nounwind
cleanupret %0 unwind label %lpad.catch

lpad.catch: ; preds = %lpad.cleanup, %entry
%1 = catchswitch within none [label %catch.body] unwind label %lpad.terminate

catch.body: ; preds = %lpad.catch
%catch = catchpad within %1 [%rtti.TypeDescriptor2* @"\01??_R0H@8", i32 0, i32* %e]
invoke void @"\01?may_throw@@YAXXZ"()

to label %invoke.cont.3 unwind label %lpad.terminate

invoke.cont.3: ; preds = %catch.body
%3 = load i32, i32* %e, align 4
catchret from %catch to label %return

lpad.terminate: ; preds = %catch.body, %lpad.catch
cleanuppad within none []
call void @"\01?terminate@@YAXXZ"
unreachable

}

Funclet parent tokens

In order to produce tables for EH personalities that use funclets, it is necessary to recover the nesting that was present in
the source. This funclet parent relationship is encoded in the IR using tokens produced by the new “pad” instructions.
The token operand of a “pad” or “ret” instruction indicates which funclet it is in, or “none” if it is not nested within
another funclet.

The catchpad and cleanuppad instructions establish new funclets, and their tokens are consumed by other “pad”
instructions to establish membership. The catchswitch instruction does not create a funclet, but it produces a token
that is always consumed by its immediate successor catchpad instructions. This ensures that every catch handler
modelled by a catchpad belongs to exactly one catchswitch, which models the dispatch point after a C++ try.

Here is an example of what this nesting looks like using some hypothetical C++ code:

void f() {
try {
throw;

} catch (...) {
try {

throw;
} catch (...) {
}

}
}

define void @f() #0 personality i8* bitcast (i32 (...)* @__CxxFrameHandler3 to i8*) {
entry:

invoke void @_CxxThrowException(i8* null, %eh.ThrowInfo* null) #1
to label %unreachable unwind label %catch.dispatch
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catch.dispatch: ; preds = %entry
%0 = catchswitch within none [label %catch] unwind to caller

catch: ; preds = %catch.dispatch
%1 = catchpad within %0 [i8* null, i32 64, i8* null]
invoke void @_CxxThrowException(i8* null, %eh.ThrowInfo* null) #1

to label %unreachable unwind label %catch.dispatch2

catch.dispatch2: ; preds = %catch
%2 = catchswitch within %1 [label %catch3] unwind to caller

catch3: ; preds = %catch.dispatch2
%3 = catchpad within %2 [i8* null, i32 64, i8* null]
catchret from %3 to label %try.cont

try.cont: ; preds = %catch3
catchret from %1 to label %try.cont6

try.cont6: ; preds = %try.cont
ret void

unreachable: ; preds = %catch, %entry
unreachable

}

The “inner” catchswitch consumes %1 which is produced by the outer catchswitch.

Funclet transitions

The EH tables for personalities that use funclets make implicit use of the funclet nesting relationship to encode un-
wind destinations, and so are constrained in the set of funclet transitions they can represent. The related LLVM IR
instructions accordingly have constraints that ensure encodability of the EH edges in the flow graph.

A catchswitch, catchpad, or cleanuppad is said to be “entered” when it executes. It may subsequently be
“exited” by any of the following means:

• A catchswitch is immediately exited when none of its constituent catchpads are appropriate for the
in-flight exception and it unwinds to its unwind destination or the caller.

• A catchpad and its parent catchswitch are both exited when a catchret from the catchpad is
executed.

• A cleanuppad is exited when a cleanupret from it is executed.

• Any of these pads is exited when control unwinds to the function’s caller, either by a call which unwinds
all the way to the function’s caller, a nested catchswitch marked “unwinds to caller”, or a nested
cleanuppad‘s cleanupret marked “unwinds to caller".

• Any of these pads is exited when an unwind edge (from an invoke, nested catchswitch, or nested
cleanuppad‘s cleanupret) unwinds to a destination pad that is not a descendant of the given pad.

Note that the ret instruction is not a valid way to exit a funclet pad; it is undefined behavior to execute a ret when
a pad has been entered but not exited.

A single unwind edge may exit any number of pads (with the restrictions that the edge from a catchswitch must
exit at least itself, and the edge from a cleanupretmust exit at least its cleanuppad), and then must enter exactly
one pad, which must be distinct from all the exited pads. The parent of the pad that an unwind edge enters must be the
most-recently-entered not-yet-exited pad (after exiting from any pads that the unwind edge exits), or “none” if there
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is no such pad. This ensures that the stack of executing funclets at run-time always corresponds to some path in the
funclet pad tree that the parent tokens encode.

All unwind edges which exit any given funclet pad (including cleanupret edges exiting their cleanuppad and
catchswitch edges exiting their catchswitch) must share the same unwind destination. Similarly, any funclet
pad which may be exited by unwind to caller must not be exited by any exception edges which unwind anywhere other
than the caller. This ensures that each funclet as a whole has only one unwind destination, which EH tables for funclet
personalities may require. Note that any unwind edge which exits a catchpad also exits its parent catchswitch,
so this implies that for any given catchswitch, its unwind destination must also be the unwind destination of any
unwind edge that exits any of its constituent catchpads. Because catchswitch has no nounwind variant, and
because IR producers are not required to annotate calls which will not unwind as nounwind, it is legal to nest a
call or an “unwind to caller” catchswitch within a funclet pad that has an unwind destination other than
caller; it is undefined behavior for such a call or catchswitch to unwind.

Finally, the funclet pads’ unwind destinations cannot form a cycle. This ensures that EH lowering can construct “try
regions” with a tree-like structure, which funclet-based personalities may require.

LLVM Link Time Optimization: Design and Implementation

• Description

• Design Philosophy

– Example of link time optimization

– Alternative Approaches

• Multi-phase communication between libLTO and linker

– Phase 1 : Read LLVM Bitcode Files

– Phase 2 : Symbol Resolution

– Phase 3 : Optimize Bitcode Files

– Phase 4 : Symbol Resolution after optimization

• libLTO

– lto_module_t

– lto_code_gen_t

Description

LLVM features powerful intermodular optimizations which can be used at link time. Link Time Optimization (LTO)
is another name for intermodular optimization when performed during the link stage. This document describes the
interface and design between the LTO optimizer and the linker.

Design Philosophy

The LLVM Link Time Optimizer provides complete transparency, while doing intermodular optimization, in the com-
piler tool chain. Its main goal is to let the developer take advantage of intermodular optimizations without making any
significant changes to the developer’s makefiles or build system. This is achieved through tight integration with the
linker. In this model, the linker treates LLVM bitcode files like native object files and allows mixing and matching
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among them. The linker uses libLTO, a shared object, to handle LLVM bitcode files. This tight integration between
the linker and LLVM optimizer helps to do optimizations that are not possible in other models. The linker input allows
the optimizer to avoid relying on conservative escape analysis.

Example of link time optimization

The following example illustrates the advantages of LTO’s integrated approach and clean interface. This example re-
quires a system linker which supports LTO through the interface described in this document. Here, clang transparently
invokes system linker.

• Input source file a.c is compiled into LLVM bitcode form.

• Input source file main.c is compiled into native object code.

--- a.h ---
extern int foo1(void);
extern void foo2(void);
extern void foo4(void);

--- a.c ---
#include "a.h"

static signed int i = 0;

void foo2(void) {
i = -1;

}

static int foo3() {
foo4();
return 10;

}

int foo1(void) {
int data = 0;

if (i < 0)
data = foo3();

data = data + 42;
return data;

}

--- main.c ---
#include <stdio.h>
#include "a.h"

void foo4(void) {
printf("Hi\n");

}

int main() {
return foo1();

}

To compile, run:
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% clang -flto -c a.c -o a.o # <-- a.o is LLVM bitcode file
% clang -c main.c -o main.o # <-- main.o is native object file
% clang -flto a.o main.o -o main # <-- standard link command with -flto

• In this example, the linker recognizes that foo2() is an externally visible symbol defined in LLVM bitcode
file. The linker completes its usual symbol resolution pass and finds that foo2() is not used anywhere. This
information is used by the LLVM optimizer and it removes foo2().

• As soon as foo2() is removed, the optimizer recognizes that condition i < 0 is always false, which means
foo3() is never used. Hence, the optimizer also removes foo3().

• And this in turn, enables linker to remove foo4().

This example illustrates the advantage of tight integration with the linker. Here, the optimizer can not remove foo3()
without the linker’s input.

Alternative Approaches

Compiler driver invokes link time optimizer separately. In this model the link time optimizer is not able to take
advantage of information collected during the linker’s normal symbol resolution phase. In the above example,
the optimizer can not remove foo2() without the linker’s input because it is externally visible. This in turn
prohibits the optimizer from removing foo3().

Use separate tool to collect symbol information from all object files. In this model, a new, separate, tool or library
replicates the linker’s capability to collect information for link time optimization. Not only is this code duplica-
tion difficult to justify, but it also has several other disadvantages. For example, the linking semantics and the
features provided by the linker on various platform are not unique. This means, this new tool needs to support
all such features and platforms in one super tool or a separate tool per platform is required. This increases
maintenance cost for link time optimizer significantly, which is not necessary. This approach also requires stay-
ing synchronized with linker developements on various platforms, which is not the main focus of the link time
optimizer. Finally, this approach increases end user’s build time due to the duplication of work done by this
separate tool and the linker itself.

Multi-phase communication between libLTO and linker

The linker collects information about symbol definitions and uses in various link objects which is more accurate than
any information collected by other tools during typical build cycles. The linker collects this information by looking
at the definitions and uses of symbols in native .o files and using symbol visibility information. The linker also uses
user-supplied information, such as a list of exported symbols. LLVM optimizer collects control flow information, data
flow information and knows much more about program structure from the optimizer’s point of view. Our goal is to
take advantage of tight integration between the linker and the optimizer by sharing this information during various
linking phases.

Phase 1 : Read LLVM Bitcode Files

The linker first reads all object files in natural order and collects symbol information. This includes native object
files as well as LLVM bitcode files. To minimize the cost to the linker in the case that all .o files are native object
files, the linker only calls lto_module_create() when a supplied object file is found to not be a native object
file. If lto_module_create() returns that the file is an LLVM bitcode file, the linker then iterates over the
module using lto_module_get_symbol_name() and lto_module_get_symbol_attribute() to get
all symbols defined and referenced. This information is added to the linker’s global symbol table.

The lto* functions are all implemented in a shared object libLTO. This allows the LLVM LTO code to be updated
independently of the linker tool. On platforms that support it, the shared object is lazily loaded.

996 Chapter 4. Subsystem Documentation



LLVM Documentation, Release 3.9

Phase 2 : Symbol Resolution

In this stage, the linker resolves symbols using global symbol table. It may report undefined symbol errors, read
archive members, replace weak symbols, etc. The linker is able to do this seamlessly even though it does not know
the exact content of input LLVM bitcode files. If dead code stripping is enabled then the linker collects the list of live
symbols.

Phase 3 : Optimize Bitcode Files

After symbol resolution, the linker tells the LTO shared object which symbols are needed by native ob-
ject files. In the example above, the linker reports that only foo1() is used by native object files using
lto_codegen_add_must_preserve_symbol(). Next the linker invokes the LLVM optimizer and code gen-
erators using lto_codegen_compile() which returns a native object file creating by merging the LLVM bitcode
files and applying various optimization passes.

Phase 4 : Symbol Resolution after optimization

In this phase, the linker reads optimized a native object file and updates the internal global symbol table to reflect any
changes. The linker also collects information about any changes in use of external symbols by LLVM bitcode files.
In the example above, the linker notes that foo4() is not used any more. If dead code stripping is enabled then the
linker refreshes the live symbol information appropriately and performs dead code stripping.

After this phase, the linker continues linking as if it never saw LLVM bitcode files.

libLTO

libLTO is a shared object that is part of the LLVM tools, and is intended for use by a linker. libLTO provides an
abstract C interface to use the LLVM interprocedural optimizer without exposing details of LLVM’s internals. The
intention is to keep the interface as stable as possible even when the LLVM optimizer continues to evolve. It should
even be possible for a completely different compilation technology to provide a different libLTO that works with their
object files and the standard linker tool.

lto_module_t

A non-native object file is handled via an lto_module_t. The following functions allow the linker to check if a file
(on disk or in a memory buffer) is a file which libLTO can process:

lto_module_is_object_file(const char*)
lto_module_is_object_file_for_target(const char*, const char*)
lto_module_is_object_file_in_memory(const void*, size_t)
lto_module_is_object_file_in_memory_for_target(const void*, size_t, const char*)

If the object file can be processed by libLTO, the linker creates a lto_module_t by using one of:

lto_module_create(const char*)
lto_module_create_from_memory(const void*, size_t)

and when done, the handle is released via

lto_module_dispose(lto_module_t)

4.8. LLVM Link Time Optimization: Design and Implementation 997



LLVM Documentation, Release 3.9

The linker can introspect the non-native object file by getting the number of symbols and getting the name and at-
tributes of each symbol via:

lto_module_get_num_symbols(lto_module_t)
lto_module_get_symbol_name(lto_module_t, unsigned int)
lto_module_get_symbol_attribute(lto_module_t, unsigned int)

The attributes of a symbol include the alignment, visibility, and kind.

lto_code_gen_t

Once the linker has loaded each non-native object files into an lto_module_t, it can request libLTO to process
them all and generate a native object file. This is done in a couple of steps. First, a code generator is created with:

lto_codegen_create()

Then, each non-native object file is added to the code generator with:

lto_codegen_add_module(lto_code_gen_t, lto_module_t)

The linker then has the option of setting some codegen options. Whether or not to generate DWARF debug info is set
with:

lto_codegen_set_debug_model(lto_code_gen_t)

Which kind of position independence is set with:

lto_codegen_set_pic_model(lto_code_gen_t)

And each symbol that is referenced by a native object file or otherwise must not be optimized away is set with:

lto_codegen_add_must_preserve_symbol(lto_code_gen_t, const char*)

After all these settings are done, the linker requests that a native object file be created from the modules with the
settings using:

lto_codegen_compile(lto_code_gen_t, size*)

which returns a pointer to a buffer containing the generated native object file. The linker then parses that and links it
with the rest of the native object files.

Segmented Stacks in LLVM

• Introduction

• Implementation Details

– Allocating Stacklets

– Variable Sized Allocas
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Introduction

Segmented stack allows stack space to be allocated incrementally than as a monolithic chunk (of some worst case size)
at thread initialization. This is done by allocating stack blocks (henceforth called stacklets) and linking them into a
doubly linked list. The function prologue is responsible for checking if the current stacklet has enough space for the
function to execute; and if not, call into the libgcc runtime to allocate more stack space. Segmented stacks are enabled
with the "split-stack" attribute on LLVM functions.

The runtime functionality is already there in libgcc.

Implementation Details

Allocating Stacklets

As mentioned above, the function prologue checks if the current stacklet has enough space. The current approach is
to use a slot in the TCB to store the current stack limit (minus the amount of space needed to allocate a new block) -
this slot’s offset is again dictated by libgcc. The generated assembly looks like this on x86-64:

leaq -8(%rsp), %r10
cmpq %fs:112, %r10
jg .LBB0_2

# More stack space needs to be allocated
movabsq $8, %r10 # The amount of space needed
movabsq $0, %r11 # The total size of arguments passed on stack
callq __morestack
ret # The reason for this extra return is explained below

.LBB0_2:
# Usual prologue continues here

The size of function arguments on the stack needs to be passed to __morestack (this function is implemented in
libgcc) since that number of bytes has to be copied from the previous stacklet to the current one. This is so that SP
(and FP) relative addressing of function arguments work as expected.

The unusual ret is needed to have the function which made a call to __morestack return correctly.
__morestack, instead of returning, calls into .LBB0_2. This is possible since both, the size of the ret instruction
and the PC of call to __morestack are known. When the function body returns, control is transferred back to
__morestack. __morestack then de-allocates the new stacklet, restores the correct SP value, and does a second
return, which returns control to the correct caller.

Variable Sized Allocas

The section on allocating stacklets automatically assumes that every stack frame will be of fixed size. However, LLVM
allows the use of the llvm.alloca intrinsic to allocate dynamically sized blocks of memory on the stack. When
faced with such a variable-sized alloca, code is generated to:

• Check if the current stacklet has enough space. If yes, just bump the SP, like in the normal case.

• If not, generate a call to libgcc, which allocates the memory from the heap.

The memory allocated from the heap is linked into a list in the current stacklet, and freed along with the same. This
prevents a memory leak.
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TableGen Fundamentals

Moved

The TableGen fundamentals documentation has moved to a directory on its own and is now available at TableGen.
Please, change your links to that page.

TableGen

• Introduction

• The TableGen program

– Running TableGen

– Example

• Syntax

– Basic concepts

• TableGen backends

• TableGen Deficiencies

TableGen BackEnds

• Introduction

• LLVM BackEnds

– CodeEmitter

– RegisterInfo

– InstrInfo

– AsmWriter

– AsmMatcher

– Disassembler

– PseudoLowering

– CallingConv

– DAGISel

– DFAPacketizer

– FastISel

– Subtarget

– Intrinsic
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– OptParserDefs

– CTags

• Clang BackEnds

– ClangAttrClasses

– ClangAttrParserStringSwitches

– ClangAttrImpl

– ClangAttrList

– ClangAttrPCHRead

– ClangAttrPCHWrite

– ClangAttrSpellings

– ClangAttrSpellingListIndex

– ClangAttrVisitor

– ClangAttrTemplateInstantiate

– ClangAttrParsedAttrList

– ClangAttrParsedAttrImpl

– ClangAttrParsedAttrKinds

– ClangAttrDump

– ClangDiagsDefs

– ClangDiagGroups

– ClangDiagsIndexName

– ClangCommentNodes

– ClangDeclNodes

– ClangStmtNodes

– ClangSACheckers

– ClangCommentHTMLTags

– ClangCommentHTMLTagsProperties

– ClangCommentHTMLNamedCharacterReferences

– ClangCommentCommandInfo

– ClangCommentCommandList

– ArmNeon

– ArmNeonSema

– ArmNeonTest

– AttrDocs

• How to write a back-end
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Introduction

TableGen backends are at the core of TableGen’s functionality. The source files provide the semantics to a generated
(in memory) structure, but it’s up to the backend to print this out in a way that is meaningful to the user (normally a C
program including a file or a textual list of warnings, options and error messages).

TableGen is used by both LLVM and Clang with very different goals. LLVM uses it as a way to automate the generation
of massive amounts of information regarding instructions, schedules, cores and architecture features. Some backends
generate output that is consumed by more than one source file, so they need to be created in a way that is easy to use
pre-processor tricks. Some backends can also print C code structures, so that they can be directly included as-is.

Clang, on the other hand, uses it mainly for diagnostic messages (errors, warnings, tips) and attributes, so more on the
textual end of the scale.

LLVM BackEnds

Warning: This document is raw. Each section below needs three sub-sections: description of its purpose with
a list of users, output generated from generic input, and finally why it needed a new backend (in case there’s
something similar).

Overall, each backend will take the same TableGen file type and transform into similar output for different targets/uses.
There is an implicit contract between the TableGen files, the back-ends and their users.

For instance, a global contract is that each back-end produces macro-guarded sections. Based on whether the file is
included by a header or a source file, or even in which context of each file the include is being used, you have todefine
a macro just before including it, to get the right output:

#define GET_REGINFO_TARGET_DESC
#include "ARMGenRegisterInfo.inc"

And just part of the generated file would be included. This is useful if you need the same information in multiple
formats (instantiation, initialization, getter/setter functions, etc) from the same source TableGen file without having to
re-compile the TableGen file multiple times.

Sometimes, multiple macros might be defined before the same include file to output multiple blocks:

#define GET_REGISTER_MATCHER
#define GET_SUBTARGET_FEATURE_NAME
#define GET_MATCHER_IMPLEMENTATION
#include "ARMGenAsmMatcher.inc"

The macros will be undef’d automatically as they’re used, in the include file.

On all LLVM back-ends, the llvm-tblgen binary will be executed on the root TableGen file <Target>.td,
which should include all others. This guarantees that all information needed is accessible, and that no duplication is
needed in the TbleGen files.

CodeEmitter

Purpose: CodeEmitterGen uses the descriptions of instructions and their fields to construct an automated code emitter:
a function that, given a MachineInstr, returns the (currently, 32-bit unsigned) value of the instruction.

Output: C++ code, implementing the target’s CodeEmitter class by overriding the virtual functions as
<Target>CodeEmitter::function().
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Usage: Used to include directly at the end of <Target>MCCodeEmitter.cpp.

RegisterInfo

Purpose: This tablegen backend is responsible for emitting a description of a target register file for a code generator.
It uses instances of the Register, RegisterAliases, and RegisterClass classes to gather this information.

Output: C++ code with enums and structures representing the register mappings, properties, masks, etc.

Usage: Both on <Target>BaseRegisterInfo and <Target>MCTargetDesc (headers and source files) with
macros defining in which they are for declaration vs. initialization issues.

InstrInfo

Purpose: This tablegen backend is responsible for emitting a description of the target instruction set for the code
generator. (what are the differences from CodeEmitter?)

Output: C++ code with enums and structures representing the register mappings, properties, masks, etc.

Usage: Both on <Target>BaseInstrInfo and <Target>MCTargetDesc (headers and source files) with
macros defining in which they are for declaration vs.

AsmWriter

Purpose: Emits an assembly printer for the current target.

Output: Implementation of <Target>InstPrinter::printInstruction(), among other things.

Usage: Included directly into InstPrinter/<Target>InstPrinter.cpp.

AsmMatcher

Purpose: Emits a target specifier matcher for converting parsed assembly operands in the MCInst structures. It also
emits a matcher for custom operand parsing. Extensive documentation is written on the AsmMatcherEmitter.
cpp file.

Output: Assembler parsers’ matcher functions, declarations, etc.

Usage: Used in back-ends’ AsmParser/<Target>AsmParser.cpp for building the AsmParser class.

Disassembler

Purpose: Contains disassembler table emitters for various architectures. Extensive documentation is written on the
DisassemblerEmitter.cpp file.

Output: Decoding tables, static decoding functions, etc.

Usage: Directly included in Disassembler/<Target>Disassembler.cpp to cater for all default decodings,
after all hand-made ones.
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PseudoLowering

Purpose: Generate pseudo instruction lowering.

Output: Implements ARMAsmPrinter::emitPseudoExpansionLowering().

Usage: Included directly into <Target>AsmPrinter.cpp.

CallingConv

Purpose: Responsible for emitting descriptions of the calling conventions supported by this target.

Output: Implement static functions to deal with calling conventions chained by matching styles, returning false on no
match.

Usage: Used in ISelLowering and FastIsel as function pointers to implementation returned by a CC sellection function.

DAGISel

Purpose: Generate a DAG instruction selector.

Output: Creates huge functions for automating DAG selection.

Usage: Included in <Target>ISelDAGToDAG.cpp inside the target’s implementation of SelectionDAGISel.

DFAPacketizer

Purpose: This class parses the Schedule.td file and produces an API that can be used to reason about whether an
instruction can be added to a packet on a VLIW architecture. The class internally generates a deterministic finite
automaton (DFA) that models all possible mappings of machine instructions to functional units as instructions are
added to a packet.

Output: Scheduling tables for GPU back-ends (Hexagon, AMD).

Usage: Included directly on <Target>InstrInfo.cpp.

FastISel

Purpose: This tablegen backend emits code for use by the “fast” instruction selection algorithm. See the comments
at the top of lib/CodeGen/SelectionDAG/FastISel.cpp for background. This file scans through the target’s tablegen
instruction-info files and extracts instructions with obvious-looking patterns, and it emits code to look up these in-
structions by type and operator.

Output: Generates Predicate and FastEmit methods.

Usage: Implements private methods of the targets’ implementation of FastISel class.

Subtarget

Purpose: Generate subtarget enumerations.

Output: Enums, globals, local tables for sub-target information.

Usage: Populates <Target>Subtarget and MCTargetDesc/<Target>MCTargetDesc files (both headers
and source).
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Intrinsic

Purpose: Generate (target) intrinsic information.

OptParserDefs

Purpose: Print enum values for a class.

CTags

Purpose: This tablegen backend emits an index of definitions in ctags(1) format. A helper script,
utils/TableGen/tdtags, provides an easier-to-use interface; run ‘tdtags -H’ for documentation.

Clang BackEnds

ClangAttrClasses

Purpose: Creates Attrs.inc, which contains semantic attribute class declarations for any attribute in Attr.td that
has not set ASTNode = 0. This file is included as part of Attr.h.

ClangAttrParserStringSwitches

Purpose: Creates AttrParserStringSwitches.inc, which contains StringSwitch::Case statements for parser-related
string switches. Each switch is given its own macro (such as CLANG_ATTR_ARG_CONTEXT_LIST, or
CLANG_ATTR_IDENTIFIER_ARG_LIST), which is expected to be defined before including AttrParser-
StringSwitches.inc, and undefined after.

ClangAttrImpl

Purpose: Creates AttrImpl.inc, which contains semantic attribute class definitions for any attribute in Attr.td that
has not set ASTNode = 0. This file is included as part of AttrImpl.cpp.

ClangAttrList

Purpose: Creates AttrList.inc, which is used when a list of semantic attribute identifiers is required. For instance,
AttrKinds.h includes this file to generate the list of attr::Kind enumeration values. This list is separated out
into multiple categories: attributes, inheritable attributes, and inheritable parameter attributes. This categorization hap-
pens automatically based on information in Attr.td and is used to implement the classof functionality required
for dyn_cast and similar APIs.

ClangAttrPCHRead

Purpose: Creates AttrPCHRead.inc, which is used to deserialize attributes in the
ASTReader::ReadAttributes function.
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ClangAttrPCHWrite

Purpose: Creates AttrPCHWrite.inc, which is used to serialize attributes in the ASTWriter::WriteAttributes
function.

ClangAttrSpellings

Purpose: Creates AttrSpellings.inc, which is used to implement the __has_attribute feature test macro.

ClangAttrSpellingListIndex

Purpose: Creates AttrSpellingListIndex.inc, which is used to map parsed attribute spellings (including which syntax
or scope was used) to an attribute spelling list index. These spelling list index values are internal implementation
details exposed via AttributeList::getAttributeSpellingListIndex.

ClangAttrVisitor

Purpose: Creates AttrVisitor.inc, which is used when implementing recursive AST visitors.

ClangAttrTemplateInstantiate

Purpose: Creates AttrTemplateInstantiate.inc, which implements the instantiateTemplateAttribute func-
tion, used when instantiating a template that requires an attribute to be cloned.

ClangAttrParsedAttrList

Purpose: Creates AttrParsedAttrList.inc, which is used to generate the AttributeList::Kind parsed attribute
enumeration.

ClangAttrParsedAttrImpl

Purpose: Creates AttrParsedAttrImpl.inc, which is used by AttributeList.cpp to implement several functions
on the AttributeList class. This functionality is implemented via the AttrInfoMap ParsedAttrInfo
array, which contains one element per parsed attribute object.

ClangAttrParsedAttrKinds

Purpose: Creates AttrParsedAttrKinds.inc, which is used to implement the AttributeList::getKind function,
mapping a string (and syntax) to a parsed attribute AttributeList::Kind enumeration.

ClangAttrDump

Purpose: Creates AttrDump.inc, which dumps information about an attribute. It is used to implement
ASTDumper::dumpAttr.
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ClangDiagsDefs

Generate Clang diagnostics definitions.

ClangDiagGroups

Generate Clang diagnostic groups.

ClangDiagsIndexName

Generate Clang diagnostic name index.

ClangCommentNodes

Generate Clang AST comment nodes.

ClangDeclNodes

Generate Clang AST declaration nodes.

ClangStmtNodes

Generate Clang AST statement nodes.

ClangSACheckers

Generate Clang Static Analyzer checkers.

ClangCommentHTMLTags

Generate efficient matchers for HTML tag names that are used in documentation comments.

ClangCommentHTMLTagsProperties

Generate efficient matchers for HTML tag properties.

ClangCommentHTMLNamedCharacterReferences

Generate function to translate named character references to UTF-8 sequences.

ClangCommentCommandInfo

Generate command properties for commands that are used in documentation comments.
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ClangCommentCommandList

Generate list of commands that are used in documentation comments.

ArmNeon

Generate arm_neon.h for clang.

ArmNeonSema

Generate ARM NEON sema support for clang.

ArmNeonTest

Generate ARM NEON tests for clang.

AttrDocs

Purpose: Creates AttributeReference.rst from AttrDocs.td, and is used for documenting user-facing
attributes.

How to write a back-end

TODO.

Until we get a step-by-step HowTo for writing TableGen backends, you can at least grab the boilerplate (build system,
new files, etc.) from Clang’s r173931.

TODO: How they work, how to write one. This section should not contain details about any particular backend, except
maybe -print-enums as an example. This should highlight the APIs in TableGen/Record.h.

TableGen Language Reference

• Introduction

• Notation

• Lexical Analysis

• Syntax

– classes

– Declarations

– Types

– Values

– Bodies
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– def

– defm

– foreach

– Top-Level let

– multiclass

Warning: This document is extremely rough. If you find something lacking, please fix it, file a documentation
bug, or ask about it on llvm-dev.

Introduction

This document is meant to be a normative spec about the TableGen language in and of itself (i.e. how to understand a
given construct in terms of how it affects the final set of records represented by the TableGen file). If you are unsure if
this document is really what you are looking for, please read the introduction to TableGen first.

Notation

The lexical and syntax notation used here is intended to imitate Python’s. In particular, for lexical definitions, the
productions operate at the character level and there is no implied whitespace between elements. The syntax definitions
operate at the token level, so there is implied whitespace between tokens.

Lexical Analysis

TableGen supports BCPL (// ...) and nestable C-style (/* ... */) comments.

The following is a listing of the basic punctuation tokens:

- + [ ] { } ( ) < > : ; . = ? #

Numeric literals take one of the following forms:

TokInteger ::= DecimalInteger | HexInteger | BinInteger
DecimalInteger ::= [''+'' | ``-``] (``0''...''9'')+
HexInteger ::= ``0x'' (``0''...''9'' | ``a''...''f'' | ``A''...''F'')+
BinInteger ::= ``0b'' (``0'' | ``1'')+

One aspect to note is that the DecimalInteger token includes the + or -, as opposed to having + and - be unary
operators as most languages do.

Also note that BinInteger creates a value of type bits<n> (where n is the number of bits). This will implicitly
convert to integers when needed.

TableGen has identifier-like tokens:

ualpha ::= ``a''...''z'' | ``A''...''Z'' | ``_''
TokIdentifier ::= (``0''...''9'')* ualpha (ualpha | ``0''...''9'')*
TokVarName ::= ``$'' ualpha (ualpha | ``0''...''9'')*
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Note that unlike most languages, TableGen allows TokIdentifier to begin with a number. In case of ambiguity,
a token will be interpreted as a numeric literal rather than an identifier.

TableGen also has two string-like literals:

TokString ::= `''' <non-`''' characters and C-like escapes> `'''
TokCodeFragment ::= ``[{'' <shortest text not containing ``}]''> ``}]''

TokCodeFragment is essentially a multiline string literal delimited by [{ and }].

Note: The current implementation accepts the following C-like escapes:

\\ \' \" \t \n

TableGen also has the following keywords:

bit bits class code dag
def foreach defm field in
int let list multiclass string

TableGen also has “bang operators” which have a wide variety of meanings:

BangOperator ::= one of
!eq !if !head !tail !con
!add !shl !sra !srl !and
!cast !empty !subst !foreach !listconcat !strconcat

Syntax

TableGen has an include mechanism. It does not play a role in the syntax per se, since it is lexically replaced with
the contents of the included file.

IncludeDirective ::= ``include'' TokString

TableGen’s top-level production consists of “objects”.

TableGenFile ::= Object*
Object ::= Class | Def | Defm | Let | MultiClass | Foreach

classes

Class ::= ``class'' TokIdentifier [TemplateArgList] ObjectBody

A class declaration creates a record which other records can inherit from. A class can be parametrized by a list of
“template arguments”, whose values can be used in the class body.
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A given class can only be defined once. A class declaration is considered to define the class if any of the following
is true:

1. The TemplateArgList is present.

2. The Body in the ObjectBody is present and is not empty.

3. The BaseClassList in the ObjectBody is present.

You can declare an empty class by giving and empty TemplateArgList and an empty ObjectBody . This can
serve as a restricted form of forward declaration: note that records deriving from the forward-declared class will inherit
no fields from it since the record expansion is done when the record is parsed.

TemplateArgList ::= ``<'' Declaration ('','' Declaration)* ``>''

Declarations

The declaration syntax is pretty much what you would expect as a C++ programmer.

Declaration ::= Type TokIdentifier [''='' Value]

It assigns the value to the identifier.

Types

Type ::= ``string'' | ``code'' | ``bit'' | ``int'' | ``dag''
| ``bits'' ``<'' TokInteger ``>''
| ``list'' ``<'' Type ``>''
| ClassID

ClassID ::= TokIdentifier

Both string and code correspond to the string type; the difference is purely to indicate programmer intention.

The ClassID must identify a class that has been previously declared or defined.

Values

Value ::= SimpleValue ValueSuffix*
ValueSuffix ::= ``{'' RangeList ``}''

| ``['' RangeList ``]''
| ''.'' TokIdentifier

RangeList ::= RangePiece ('','' RangePiece)*
RangePiece ::= TokInteger

| TokInteger ``-'' TokInteger
| TokInteger TokInteger

The peculiar last form of RangePiece is due to the fact that the “-” is included in the TokInteger, hence 1-5
gets lexed as two consecutive TokInteger‘s, with values 1 and -5, instead of “1”, “-”, and “5”. The RangeList
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can be thought of as specifying “list slice” in some contexts.

SimpleValue has a number of forms:

SimpleValue ::= TokIdentifier

The value will be the variable referenced by the identifier. It can be one of:

• name of a def, such as the use of Bar in:

def Bar : SomeClass {
int X = 5;

}

def Foo {
SomeClass Baz = Bar;

}

• value local to a def, such as the use of Bar in:

def Foo {
int Bar = 5;
int Baz = Bar;

}

• a template arg of a class, such as the use of Bar in:

class Foo<int Bar> {
int Baz = Bar;

}

• value local to a multiclass, such as the use of Bar in:

multiclass Foo {
int Bar = 5;
int Baz = Bar;

}

• a template arg to a multiclass, such as the use of Bar in:

multiclass Foo<int Bar> {
int Baz = Bar;

}

SimpleValue ::= TokInteger

This represents the numeric value of the integer.

SimpleValue ::= TokString+

Multiple adjacent string literals are concatenated like in C/C++. The value is the concatenation of the strings.

SimpleValue ::= TokCodeFragment
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The value is the string value of the code fragment.

SimpleValue ::= ''?''

? represents an “unset” initializer.

SimpleValue ::= ``{'' ValueList ``}''
ValueList ::= [ValueListNE]
ValueListNE ::= Value ('','' Value)*

This represents a sequence of bits, as would be used to initialize a bits<n> field (where n is the number of bits).

SimpleValue ::= ClassID ``<'' ValueListNE ``>''

This generates a new anonymous record definition (as would be created by an unnamed def inheriting from the given
class with the given template arguments) and the value is the value of that record definition.

SimpleValue ::= ``['' ValueList ``]'' [''<'' Type ``>'']

A list initializer. The optional Type can be used to indicate a specific element type, otherwise the element type will
be deduced from the given values.

SimpleValue ::= ``('' DagArg DagArgList '')''
DagArgList ::= DagArg ('','' DagArg)*
DagArg ::= Value ['':'' TokVarName] | TokVarName

The initial DagArg is called the “operator” of the dag.

SimpleValue ::= BangOperator [''<'' Type ``>''] ``('' ValueListNE '')''

Bodies

ObjectBody ::= BaseClassList Body
BaseClassList ::= ['':'' BaseClassListNE]
BaseClassListNE ::= SubClassRef ('','' SubClassRef)*
SubClassRef ::= (ClassID | MultiClassID) [''<'' ValueList ``>'']
DefmID ::= TokIdentifier

The version with the MultiClassID is only valid in the BaseClassList of a defm. The MultiClassID
should be the name of a multiclass.

It is after parsing the base class list that the “let stack” is applied.

Body ::= '';'' | ``{'' BodyList ``}''
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BodyList ::= BodyItem*
BodyItem ::= Declaration '';''

| ``let'' TokIdentifier [RangeList] ``='' Value '';''

The let form allows overriding the value of an inherited field.

def

Def ::= ``def'' TokIdentifier ObjectBody

Defines a record whose name is given by the TokIdentifier. The fields of the record are inherited from the base
classes and defined in the body.

Special handling occurs if this def appears inside a multiclass or a foreach.

defm

Defm ::= ``defm'' TokIdentifier '':'' BaseClassListNE '';''

Note that in the BaseClassList, all of the multiclass‘s must precede any class‘s that appear.

foreach

Foreach ::= ``foreach'' Declaration ``in'' ``{'' Object* ``}''
| ``foreach'' Declaration ``in'' Object

The value assigned to the variable in the declaration is iterated over and the object or object list is reevaluated with the
variable set at each iterated value.

Top-Level let

Let ::= ``let'' LetList ``in'' ``{'' Object* ``}''
| ``let'' LetList ``in'' Object

LetList ::= LetItem ('','' LetItem)*
LetItem ::= TokIdentifier [RangeList] ``='' Value

This is effectively equivalent to let inside the body of a record except that it applies to multiple records at a time.
The bindings are applied at the end of parsing the base classes of a record.

multiclass

MultiClass ::= ``multiclass'' TokIdentifier [TemplateArgList]
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['':'' BaseMultiClassList] ``{'' MultiClassObject+ ``}''
BaseMultiClassList ::= MultiClassID ('','' MultiClassID)*
MultiClassID ::= TokIdentifier
MultiClassObject ::= Def | Defm | Let | Foreach

TableGen Language Introduction

• Introduction

• TableGen syntax

– TableGen primitives

* TableGen comments

* The TableGen type system

* TableGen values and expressions

– Classes and definitions

* Value definitions

* ‘let’ expressions

* Class template arguments

* Multiclass definitions and instances

– File scope entities

* File inclusion

* ‘let’ expressions

* Looping

• Code Generator backend info

Warning: This document is extremely rough. If you find something lacking, please fix it, file a documentation
bug, or ask about it on llvm-dev.

Introduction

This document is not meant to be a normative spec about the TableGen language in and of itself (i.e. how to understand
a given construct in terms of how it affects the final set of records represented by the TableGen file). For the formal
language specification, see TableGen Language Reference.

TableGen syntax

TableGen doesn’t care about the meaning of data (that is up to the backend to define), but it does care about syntax,
and it enforces a simple type system. This section describes the syntax and the constructs allowed in a TableGen file.
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TableGen primitives

TableGen comments

TableGen supports C++ style “//” comments, which run to the end of the line, and it also supports nestable “/* */”
comments.

The TableGen type system

TableGen files are strongly typed, in a simple (but complete) type-system. These types are used to perform automatic
conversions, check for errors, and to help interface designers constrain the input that they allow. Every value definition
is required to have an associated type.

TableGen supports a mixture of very low-level types (such as bit) and very high-level types (such as dag). This
flexibility is what allows it to describe a wide range of information conveniently and compactly. The TableGen types
are:

bit A ‘bit’ is a boolean value that can hold either 0 or 1.

int The ‘int’ type represents a simple 32-bit integer value, such as 5.

string The ‘string’ type represents an ordered sequence of characters of arbitrary length.

bits<n> A ‘bits’ type is an arbitrary, but fixed, size integer that is broken up into individual bits. This type is useful
because it can handle some bits being defined while others are undefined.

list<ty> This type represents a list whose elements are some other type. The contained type is arbitrary: it can
even be another list type.

Class type Specifying a class name in a type context means that the defined value must be a subclass of the specified
class. This is useful in conjunction with the list type, for example, to constrain the elements of the list to a
common base class (e.g., a list<Register> can only contain definitions derived from the “Register”
class).

dag This type represents a nestable directed graph of elements.

To date, these types have been sufficient for describing things that TableGen has been used for, but it is straight-forward
to extend this list if needed.

TableGen values and expressions

TableGen allows for a pretty reasonable number of different expression forms when building up values. These forms
allow the TableGen file to be written in a natural syntax and flavor for the application. The current expression forms
supported include:

? uninitialized field

0b1001011 binary integer value. Note that this is sized by the number of bits given and will not be silently ex-
tended/truncated.

07654321 octal integer value (indicated by a leading 0)

7 decimal integer value

0x7F hexadecimal integer value

"foo" string value

[{ ... }] usually called a “code fragment”, but is just a multiline string literal
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[ X, Y, Z ]<type> list value. <type> is the type of the list element and is usually optional. In rare cases,
TableGen is unable to deduce the element type in which case the user must specify it explicitly.

{ a, b, 0b10 } initializer for a “bits<4>” value. 1-bit from “a”, 1-bit from “b”, 2-bits from 0b10.

value value reference

value{17} access to one bit of a value

value{15-17} access to multiple bits of a value

DEF reference to a record definition

CLASS<val list> reference to a new anonymous definition of CLASS with the specified template arguments.

X.Y reference to the subfield of a value

list[4-7,17,2-3] A slice of the ‘list’ list, including elements 4,5,6,7,17,2, and 3 from it. Elements may be
included multiple times.

foreach <var> = [ <list> ] in { <body> }

foreach <var> = [ <list> ] in <def> Replicate <body> or <def>, replacing instances of <var> with
each value in <list>. <var> is scoped at the level of the foreach loop and must not conflict with any other
object introduced in <body> or <def>. Currently only defs are expanded within <body>.

foreach <var> = 0-15 in ...

foreach <var> = {0-15,32-47} in ... Loop over ranges of integers. The braces are required for multi-
ple ranges.

(DEF a, b) a dag value. The first element is required to be a record definition, the remaining elements in the list
may be arbitrary other values, including nested `dag‘ values.

!listconcat(a, b, ...) A list value that is the result of concatenating the ‘a’ and ‘b’ lists. The lists must
have the same element type. More than two arguments are accepted with the result being the concatenation of
all the lists given.

!strconcat(a, b, ...) A string value that is the result of concatenating the ‘a’ and ‘b’ strings. More than
two arguments are accepted with the result being the concatenation of all the strings given.

str1#str2 “#” (paste) is a shorthand for !strconcat. It may concatenate things that are not quoted strings, in which
case an implicit !cast<string> is done on the operand of the paste.

!cast<type>(a) A symbol of type type obtained by looking up the string ‘a’ in the symbol table. If the type of
‘a’ does not match type, TableGen aborts with an error. !cast<string> is a special case in that the argument must
be an object defined by a ‘def’ construct.

!subst(a, b, c) If ‘a’ and ‘b’ are of string type or are symbol references, substitute ‘b’ for ‘a’ in ‘c.’ This
operation is analogous to $(subst) in GNU make.

!foreach(a, b, c) For each member of dag or list ‘b’ apply operator ‘c.’ ‘a’ is a dummy variable that should
be declared as a member variable of an instantiated class. This operation is analogous to $(foreach) in GNU
make.

!head(a) The first element of list ‘a.’

!tail(a) The 2nd-N elements of list ‘a.’

!empty(a) An integer {0,1} indicating whether list ‘a’ is empty.

!if(a,b,c) ‘b’ if the result of ‘int’ or ‘bit’ operator ‘a’ is nonzero, ‘c’ otherwise.

!eq(a,b) ‘bit 1’ if string a is equal to string b, 0 otherwise. This only operates on string, int and bit objects. Use
!cast<string> to compare other types of objects.
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!shl(a,b) !srl(a,b) !sra(a,b) !add(a,b) !and(a,b) The usual binary and arithmetic operators.

Note that all of the values have rules specifying how they convert to values for different types. These rules allow you
to assign a value like “7” to a “bits<4>” value, for example.

Classes and definitions

As mentioned in the introduction, classes and definitions (collectively known as ‘records’) in TableGen are the main
high-level unit of information that TableGen collects. Records are defined with a def or class keyword, the record
name, and an optional list of “template arguments”. If the record has superclasses, they are specified as a comma
separated list that starts with a colon character (“:”). If value definitions or let expressions are needed for the class,
they are enclosed in curly braces (“{}”); otherwise, the record ends with a semicolon.

Here is a simple TableGen file:

class C { bit V = 1; }
def X : C;
def Y : C {

string Greeting = "hello";
}

This example defines two definitions, X and Y, both of which derive from the C class. Because of this, they both get
the V bit value. The Y definition also gets the Greeting member as well.

In general, classes are useful for collecting together the commonality between a group of records and isolating it in
a single place. Also, classes permit the specification of default values for their subclasses, allowing the subclasses to
override them as they wish.

Value definitions

Value definitions define named entries in records. A value must be defined before it can be referred to as the operand
for another value definition or before the value is reset with a let expression. A value is defined by specifying a
TableGen type and a name. If an initial value is available, it may be specified after the type with an equal sign. Value
definitions require terminating semicolons.

‘let’ expressions

A record-level let expression is used to change the value of a value definition in a record. This is primarily useful when
a superclass defines a value that a derived class or definition wants to override. Let expressions consist of the ‘let‘
keyword followed by a value name, an equal sign (“=”), and a new value. For example, a new class could be added to
the example above, redefining the V field for all of its subclasses:

class D : C { let V = 0; }
def Z : D;

In this case, the Z definition will have a zero value for its V value, despite the fact that it derives (indirectly) from the
C class, because the D class overrode its value.

Class template arguments

TableGen permits the definition of parameterized classes as well as normal concrete classes. Parameterized TableGen
classes specify a list of variable bindings (which may optionally have defaults) that are bound when used. Here is a
simple example:
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class FPFormat<bits<3> val> {
bits<3> Value = val;

}
def NotFP : FPFormat<0>;
def ZeroArgFP : FPFormat<1>;
def OneArgFP : FPFormat<2>;
def OneArgFPRW : FPFormat<3>;
def TwoArgFP : FPFormat<4>;
def CompareFP : FPFormat<5>;
def CondMovFP : FPFormat<6>;
def SpecialFP : FPFormat<7>;

In this case, template arguments are used as a space efficient way to specify a list of “enumeration values”, each with
a “Value” field set to the specified integer.

The more esoteric forms of TableGen expressions are useful in conjunction with template arguments. As an example:

class ModRefVal<bits<2> val> {
bits<2> Value = val;

}

def None : ModRefVal<0>;
def Mod : ModRefVal<1>;
def Ref : ModRefVal<2>;
def ModRef : ModRefVal<3>;

class Value<ModRefVal MR> {
// Decode some information into a more convenient format, while providing
// a nice interface to the user of the "Value" class.
bit isMod = MR.Value{0};
bit isRef = MR.Value{1};

// other stuff...
}

// Example uses
def bork : Value<Mod>;
def zork : Value<Ref>;
def hork : Value<ModRef>;

This is obviously a contrived example, but it shows how template arguments can be used to decouple the interface
provided to the user of the class from the actual internal data representation expected by the class. In this case, running
llvm-tblgen on the example prints the following definitions:

def bork { // Value
bit isMod = 1;
bit isRef = 0;

}
def hork { // Value

bit isMod = 1;
bit isRef = 1;

}
def zork { // Value

bit isMod = 0;
bit isRef = 1;

}

This shows that TableGen was able to dig into the argument and extract a piece of information that was requested by
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the designer of the “Value” class. For more realistic examples, please see existing users of TableGen, such as the X86
backend.

Multiclass definitions and instances

While classes with template arguments are a good way to factor commonality between two instances of a definition,
multiclasses allow a convenient notation for defining multiple definitions at once (instances of implicitly constructed
classes). For example, consider an 3-address instruction set whose instructions come in two forms: “reg = reg
op reg” and “reg = reg op imm” (e.g. SPARC). In this case, you’d like to specify in one place that this
commonality exists, then in a separate place indicate what all the ops are.

Here is an example TableGen fragment that shows this idea:

def ops;
def GPR;
def Imm;
class inst<int opc, string asmstr, dag operandlist>;

multiclass ri_inst<int opc, string asmstr> {
def _rr : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"),

(ops GPR:$dst, GPR:$src1, GPR:$src2)>;
def _ri : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"),

(ops GPR:$dst, GPR:$src1, Imm:$src2)>;
}

// Instantiations of the ri_inst multiclass.
defm ADD : ri_inst<0b111, "add">;
defm SUB : ri_inst<0b101, "sub">;
defm MUL : ri_inst<0b100, "mul">;
...

The name of the resultant definitions has the multidef fragment names appended to them, so this defines ADD_rr,
ADD_ri, SUB_rr, etc. A defm may inherit from multiple multiclasses, instantiating definitions from each multiclass.
Using a multiclass this way is exactly equivalent to instantiating the classes multiple times yourself, e.g. by writing:

def ops;
def GPR;
def Imm;
class inst<int opc, string asmstr, dag operandlist>;

class rrinst<int opc, string asmstr>
: inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"),

(ops GPR:$dst, GPR:$src1, GPR:$src2)>;

class riinst<int opc, string asmstr>
: inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"),

(ops GPR:$dst, GPR:$src1, Imm:$src2)>;

// Instantiations of the ri_inst multiclass.
def ADD_rr : rrinst<0b111, "add">;
def ADD_ri : riinst<0b111, "add">;
def SUB_rr : rrinst<0b101, "sub">;
def SUB_ri : riinst<0b101, "sub">;
def MUL_rr : rrinst<0b100, "mul">;
def MUL_ri : riinst<0b100, "mul">;
...
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A defm can also be used inside a multiclass providing several levels of multiclass instantiations.

class Instruction<bits<4> opc, string Name> {
bits<4> opcode = opc;
string name = Name;

}

multiclass basic_r<bits<4> opc> {
def rr : Instruction<opc, "rr">;
def rm : Instruction<opc, "rm">;

}

multiclass basic_s<bits<4> opc> {
defm SS : basic_r<opc>;
defm SD : basic_r<opc>;
def X : Instruction<opc, "x">;

}

multiclass basic_p<bits<4> opc> {
defm PS : basic_r<opc>;
defm PD : basic_r<opc>;
def Y : Instruction<opc, "y">;

}

defm ADD : basic_s<0xf>, basic_p<0xf>;
...

// Results
def ADDPDrm { ...
def ADDPDrr { ...
def ADDPSrm { ...
def ADDPSrr { ...
def ADDSDrm { ...
def ADDSDrr { ...
def ADDY { ...
def ADDX { ...

defm declarations can inherit from classes too, the rule to follow is that the class list must start after the last multiclass,
and there must be at least one multiclass before them.

class XD { bits<4> Prefix = 11; }
class XS { bits<4> Prefix = 12; }

class I<bits<4> op> {
bits<4> opcode = op;

}

multiclass R {
def rr : I<4>;
def rm : I<2>;

}

multiclass Y {
defm SS : R, XD;
defm SD : R, XS;

}

defm Instr : Y;
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// Results
def InstrSDrm {

bits<4> opcode = { 0, 0, 1, 0 };
bits<4> Prefix = { 1, 1, 0, 0 };

}
...
def InstrSSrr {

bits<4> opcode = { 0, 1, 0, 0 };
bits<4> Prefix = { 1, 0, 1, 1 };

}

File scope entities

File inclusion

TableGen supports the ‘include‘ token, which textually substitutes the specified file in place of the include directive.
The filename should be specified as a double quoted string immediately after the ‘include‘ keyword. Example:

include "foo.td"

‘let’ expressions

“Let” expressions at file scope are similar to “let” expressions within a record, except they can specify a value binding
for multiple records at a time, and may be useful in certain other cases. File-scope let expressions are really just
another way that TableGen allows the end-user to factor out commonality from the records.

File-scope “let” expressions take a comma-separated list of bindings to apply, and one or more records to bind the
values in. Here are some examples:

let isTerminator = 1, isReturn = 1, isBarrier = 1, hasCtrlDep = 1 in
def RET : I<0xC3, RawFrm, (outs), (ins), "ret", [(X86retflag 0)]>;

let isCall = 1 in
// All calls clobber the non-callee saved registers...
let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0,

MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, EFLAGS] in {

def CALLpcrel32 : Ii32<0xE8, RawFrm, (outs), (ins i32imm:$dst,variable_ops),
"call\t${dst:call}", []>;

def CALL32r : I<0xFF, MRM2r, (outs), (ins GR32:$dst, variable_ops),
"call\t{*}$dst", [(X86call GR32:$dst)]>;

def CALL32m : I<0xFF, MRM2m, (outs), (ins i32mem:$dst, variable_ops),
"call\t{*}$dst", []>;

}

File-scope “let” expressions are often useful when a couple of definitions need to be added to several records, and the
records do not otherwise need to be opened, as in the case with the CALL* instructions above.

It’s also possible to use “let” expressions inside multiclasses, providing more ways to factor out commonality from
the records, specially if using several levels of multiclass instantiations. This also avoids the need of using “let”
expressions within subsequent records inside a multiclass.

multiclass basic_r<bits<4> opc> {
let Predicates = [HasSSE2] in {
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def rr : Instruction<opc, "rr">;
def rm : Instruction<opc, "rm">;

}
let Predicates = [HasSSE3] in
def rx : Instruction<opc, "rx">;

}

multiclass basic_ss<bits<4> opc> {
let IsDouble = 0 in
defm SS : basic_r<opc>;

let IsDouble = 1 in
defm SD : basic_r<opc>;

}

defm ADD : basic_ss<0xf>;

Looping

TableGen supports the ‘foreach‘ block, which textually replicates the loop body, substituting iterator values for
iterator references in the body. Example:

foreach i = [0, 1, 2, 3] in {
def R#i : Register<...>;
def F#i : Register<...>;

}

This will create objects R0, R1, R2 and R3. foreach blocks may be nested. If there is only one item in the body the
braces may be elided:

foreach i = [0, 1, 2, 3] in
def R#i : Register<...>;

Code Generator backend info

Expressions used by code generator to describe instructions and isel patterns:

(implicit a) an implicitly defined physical register. This tells the dag instruction selection emitter the input
pattern’s extra definitions matches implicit physical register definitions.

TableGen Deficiencies

• Introduction

• Known Problems

Introduction

Despite being very generic, TableGen has some deficiencies that have been pointed out numerous times. The common
theme is that, while TableGen allows you to build Domain-Specific-Languages, the final languages that you create
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lack the power of other DSLs, which in turn increase considerably the size and complexity of TableGen files.

At the same time, TableGen allows you to create virtually any meaning of the basic concepts via custom-made back-
ends, which can pervert the original design and make it very hard for newcomers to understand it.

There are some in favour of extending the semantics even more, but making sure back-ends adhere to strict rules.
Others suggesting we should move to more powerful DSLs designed with specific purposes, or even re-using existing
DSLs.

Known Problems

TODO: Add here frequently asked questions about why TableGen doesn’t do what you want, how it might, and how
we could extend/restrict it to be more use friendly.

Introduction

TableGen’s purpose is to help a human develop and maintain records of domain-specific information. Because there
may be a large number of these records, it is specifically designed to allow writing flexible descriptions and for
common features of these records to be factored out. This reduces the amount of duplication in the description,
reduces the chance of error, and makes it easier to structure domain specific information.

The core part of TableGen parses a file, instantiates the declarations, and hands the result off to a domain-specific
backend for processing.

The current major users of TableGen are The LLVM Target-Independent Code Generator and the Clang diagnostics
and attributes.

Note that if you work on TableGen much, and use emacs or vim, that you can find an emacs “TableGen mode” and
a vim language file in the llvm/utils/emacs and llvm/utils/vim directories of your LLVM distribution,
respectively.

The TableGen program

TableGen files are interpreted by the TableGen program: llvm-tblgen available on your build directory under bin. It is
not installed in the system (or where your sysroot is set to), since it has no use beyond LLVM’s build process.

Running TableGen

TableGen runs just like any other LLVM tool. The first (optional) argument specifies the file to read. If a filename is
not specified, llvm-tblgen reads from standard input.

To be useful, one of the backends must be used. These backends are selectable on the command line (type
‘llvm-tblgen -help‘ for a list). For example, to get a list of all of the definitions that subclass a particular
type (which can be useful for building up an enum list of these records), use the -print-enums option:

$ llvm-tblgen X86.td -print-enums -class=Register
AH, AL, AX, BH, BL, BP, BPL, BX, CH, CL, CX, DH, DI, DIL, DL, DX, EAX, EBP, EBX,
ECX, EDI, EDX, EFLAGS, EIP, ESI, ESP, FP0, FP1, FP2, FP3, FP4, FP5, FP6, IP,
MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7, R10, R10B, R10D, R10W, R11, R11B, R11D,
R11W, R12, R12B, R12D, R12W, R13, R13B, R13D, R13W, R14, R14B, R14D, R14W, R15,
R15B, R15D, R15W, R8, R8B, R8D, R8W, R9, R9B, R9D, R9W, RAX, RBP, RBX, RCX, RDI,
RDX, RIP, RSI, RSP, SI, SIL, SP, SPL, ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
XMM0, XMM1, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, XMM2, XMM3, XMM4, XMM5,
XMM6, XMM7, XMM8, XMM9,
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$ llvm-tblgen X86.td -print-enums -class=Instruction
ABS_F, ABS_Fp32, ABS_Fp64, ABS_Fp80, ADC32mi, ADC32mi8, ADC32mr, ADC32ri,
ADC32ri8, ADC32rm, ADC32rr, ADC64mi32, ADC64mi8, ADC64mr, ADC64ri32, ADC64ri8,
ADC64rm, ADC64rr, ADD16mi, ADD16mi8, ADD16mr, ADD16ri, ADD16ri8, ADD16rm,
ADD16rr, ADD32mi, ADD32mi8, ADD32mr, ADD32ri, ADD32ri8, ADD32rm, ADD32rr,
ADD64mi32, ADD64mi8, ADD64mr, ADD64ri32, ...

The default backend prints out all of the records.

If you plan to use TableGen, you will most likely have to write a backend that extracts the information specific to what
you need and formats it in the appropriate way.

Example

With no other arguments, llvm-tblgen parses the specified file and prints out all of the classes, then all of the definitions.
This is a good way to see what the various definitions expand to fully. Running this on the X86.td file prints this (at
the time of this writing):

...
def ADD32rr { // Instruction X86Inst I

string Namespace = "X86";
dag OutOperandList = (outs GR32:$dst);
dag InOperandList = (ins GR32:$src1, GR32:$src2);
string AsmString = "add{l}\t{$src2, $dst|$dst, $src2}";
list<dag> Pattern = [(set GR32:$dst, (add GR32:$src1, GR32:$src2))];
list<Register> Uses = [];
list<Register> Defs = [EFLAGS];
list<Predicate> Predicates = [];
int CodeSize = 3;
int AddedComplexity = 0;
bit isReturn = 0;
bit isBranch = 0;
bit isIndirectBranch = 0;
bit isBarrier = 0;
bit isCall = 0;
bit canFoldAsLoad = 0;
bit mayLoad = 0;
bit mayStore = 0;
bit isImplicitDef = 0;
bit isConvertibleToThreeAddress = 1;
bit isCommutable = 1;
bit isTerminator = 0;
bit isReMaterializable = 0;
bit isPredicable = 0;
bit hasDelaySlot = 0;
bit usesCustomInserter = 0;
bit hasCtrlDep = 0;
bit isNotDuplicable = 0;
bit hasSideEffects = 0;
InstrItinClass Itinerary = NoItinerary;
string Constraints = "";
string DisableEncoding = "";
bits<8> Opcode = { 0, 0, 0, 0, 0, 0, 0, 1 };
Format Form = MRMDestReg;
bits<6> FormBits = { 0, 0, 0, 0, 1, 1 };
ImmType ImmT = NoImm;
bits<3> ImmTypeBits = { 0, 0, 0 };
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bit hasOpSizePrefix = 0;
bit hasAdSizePrefix = 0;
bits<4> Prefix = { 0, 0, 0, 0 };
bit hasREX_WPrefix = 0;
FPFormat FPForm = ?;
bits<3> FPFormBits = { 0, 0, 0 };

}
...

This definition corresponds to the 32-bit register-register add instruction of the x86 architecture. def ADD32rr
defines a record named ADD32rr, and the comment at the end of the line indicates the superclasses of the definition.
The body of the record contains all of the data that TableGen assembled for the record, indicating that the instruction
is part of the “X86” namespace, the pattern indicating how the instruction is selected by the code generator, that it is
a two-address instruction, has a particular encoding, etc. The contents and semantics of the information in the record
are specific to the needs of the X86 backend, and are only shown as an example.

As you can see, a lot of information is needed for every instruction supported by the code generator, and specifying
it all manually would be unmaintainable, prone to bugs, and tiring to do in the first place. Because we are using
TableGen, all of the information was derived from the following definition:

let Defs = [EFLAGS],
isCommutable = 1, // X = ADD Y,Z --> X = ADD Z,Y
isConvertibleToThreeAddress = 1 in // Can transform into LEA.

def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst),
(ins GR32:$src1, GR32:$src2),

"add{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;

This definition makes use of the custom class I (extended from the custom class X86Inst), which is defined in the
X86-specific TableGen file, to factor out the common features that instructions of its class share. A key feature of
TableGen is that it allows the end-user to define the abstractions they prefer to use when describing their information.

Each def record has a special entry called “NAME”. This is the name of the record (“ADD32rr” above). In the
general case def names can be formed from various kinds of string processing expressions and NAME resolves to the
final value obtained after resolving all of those expressions. The user may refer to NAME anywhere she desires to use
the ultimate name of the def. NAME should not be defined anywhere else in user code to avoid conflicts.

Syntax

TableGen has a syntax that is loosely based on C++ templates, with built-in types and specification. In addition,
TableGen’s syntax introduces some automation concepts like multiclass, foreach, let, etc.

Basic concepts

TableGen files consist of two key parts: ‘classes’ and ‘definitions’, both of which are considered ‘records’.

TableGen records have a unique name, a list of values, and a list of superclasses. The list of values is the main data
that TableGen builds for each record; it is this that holds the domain specific information for the application. The
interpretation of this data is left to a specific backend, but the structure and format rules are taken care of and are fixed
by TableGen.

TableGen definitions are the concrete form of ‘records’. These generally do not have any undefined values, and are
marked with the ‘def‘ keyword.
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def FeatureFPARMv8 : SubtargetFeature<"fp-armv8", "HasFPARMv8", "true",
"Enable ARMv8 FP">;

In this example, FeatureFPARMv8 is SubtargetFeature record initialised with some values. The names of the
classes are defined via the keyword class either on the same file or some other included. Most target TableGen files
include the generic ones in include/llvm/Target.

TableGen classes are abstract records that are used to build and describe other records. These classes allow the
end-user to build abstractions for either the domain they are targeting (such as “Register”, “RegisterClass”, and “In-
struction” in the LLVM code generator) or for the implementor to help factor out common properties of records (such
as “FPInst”, which is used to represent floating point instructions in the X86 backend). TableGen keeps track of all of
the classes that are used to build up a definition, so the backend can find all definitions of a particular class, such as
“Instruction”.

class ProcNoItin<string Name, list<SubtargetFeature> Features>
: Processor<Name, NoItineraries, Features>;

Here, the class ProcNoItin, receiving parameters Name of type string and a list of target features is specializing the
class Processor by passing the arguments down as well as hard-coding NoItineraries.

TableGen multiclasses are groups of abstract records that are instantiated all at once. Each instantiation can result
in multiple TableGen definitions. If a multiclass inherits from another multiclass, the definitions in the sub-multiclass
become part of the current multiclass, as if they were declared in the current multiclass.

multiclass ro_signed_pats<string T, string Rm, dag Base, dag Offset, dag Extend,
dag address, ValueType sty> {

def : Pat<(i32 (!cast<SDNode>("sextload" # sty) address)),
(!cast<Instruction>("LDRS" # T # "w_" # Rm # "_RegOffset")
Base, Offset, Extend)>;

def : Pat<(i64 (!cast<SDNode>("sextload" # sty) address)),
(!cast<Instruction>("LDRS" # T # "x_" # Rm # "_RegOffset")
Base, Offset, Extend)>;

}

defm : ro_signed_pats<"B", Rm, Base, Offset, Extend,
!foreach(decls.pattern, address,

!subst(SHIFT, imm_eq0, decls.pattern)),
i8>;

See the TableGen Language Introduction for more generic information on the usage of the language, and the TableGen
Language Reference for more in-depth description of the formal language specification.

TableGen backends

TableGen files have no real meaning without a back-end. The default operation of running llvm-tblgen is to print
the information in a textual format, but that’s only useful for debugging of the TableGen files themselves. The power
in TableGen is, however, to interpret the source files into an internal representation that can be generated into anything
you want.

Current usage of TableGen is to create huge include files with tables that you can either include directly (if the output
is in the language you’re coding), or be used in pre-processing via macros surrounding the include of the file.

Direct output can be used if the back-end already prints a table in C format or if the output is just a list of strings
(for error and warning messages). Pre-processed output should be used if the same information needs to be used in
different contexts (like Instruction names), so your back-end should print a meta-information list that can be shaped
into different compile-time formats.
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See the TableGen BackEnds for more information.

TableGen Deficiencies

Despite being very generic, TableGen has some deficiencies that have been pointed out numerous times. The common
theme is that, while TableGen allows you to build Domain-Specific-Languages, the final languages that you create
lack the power of other DSLs, which in turn increase considerably the size and complexity of TableGen files.

At the same time, TableGen allows you to create virtually any meaning of the basic concepts via custom-made back-
ends, which can pervert the original design and make it very hard for newcomers to understand the evil TableGen
file.

There are some in favour of extending the semantics even more, but making sure back-ends adhere to strict rules.
Others are suggesting we should move to less, more powerful DSLs designed with specific purposes, or even re-using
existing DSLs.

Either way, this is a discussion that will likely span across several years, if not decades. You can read more in the
TableGen Deficiencies document.

Debugging JIT-ed Code With GDB

Background

Without special runtime support, debugging dynamically generated code with GDB (as well as most debuggers) can
be quite painful. Debuggers generally read debug information from the object file of the code, but for JITed code,
there is no such file to look for.

In order to communicate the necessary debug info to GDB, an interface for registering JITed code with debuggers
has been designed and implemented for GDB and LLVM MCJIT. At a high level, whenever MCJIT generates new
machine code, it does so in an in-memory object file that contains the debug information in DWARF format. MCJIT
then adds this in-memory object file to a global list of dynamically generated object files and calls a special function
(__jit_debug_register_code) marked noinline that GDB knows about. When GDB attaches to a process, it
puts a breakpoint in this function and loads all of the object files in the global list. When MCJIT calls the registration
function, GDB catches the breakpoint signal, loads the new object file from the inferior’s memory, and resumes the
execution. In this way, GDB can get the necessary debug information.

GDB Version

In order to debug code JIT-ed by LLVM, you need GDB 7.0 or newer, which is available on most modern distributions
of Linux. The version of GDB that Apple ships with Xcode has been frozen at 6.3 for a while. LLDB may be a better
option for debugging JIT-ed code on Mac OS X.

Debugging MCJIT-ed code

The emerging MCJIT component of LLVM allows full debugging of JIT-ed code with GDB. This is due to MCJIT’s
ability to use the MC emitter to provide full DWARF debugging information to GDB.

Note that lli has to be passed the -use-mcjit flag to JIT the code with MCJIT instead of the old JIT.
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Example

Consider the following C code (with line numbers added to make the example easier to follow):

1 int compute_factorial(int n)
2 {
3 if (n <= 1)
4 return 1;
5
6 int f = n;
7 while (--n > 1)
8 f *= n;
9 return f;
10 }
11
12
13 int main(int argc, char** argv)
14 {
15 if (argc < 2)
16 return -1;
17 char firstletter = argv[1][0];
18 int result = compute_factorial(firstletter - '0');
19
20 // Returned result is clipped at 255...
21 return result;
22 }

Here is a sample command line session that shows how to build and run this code via lli inside GDB:

$ $BINPATH/clang -cc1 -O0 -g -emit-llvm showdebug.c
$ gdb --quiet --args $BINPATH/lli -use-mcjit showdebug.ll 5
Reading symbols from $BINPATH/lli...done.
(gdb) b showdebug.c:6
No source file named showdebug.c.
Make breakpoint pending on future shared library load? (y or [n]) y
Breakpoint 1 (showdebug.c:6) pending.
(gdb) r
Starting program: $BINPATH/lli -use-mcjit showdebug.ll 5
[Thread debugging using libthread_db enabled]

Breakpoint 1, compute_factorial (n=5) at showdebug.c:6
6 int f = n;
(gdb) p n
$1 = 5
(gdb) p f
$2 = 0
(gdb) n
7 while (--n > 1)
(gdb) p f
$3 = 5
(gdb) b showdebug.c:9
Breakpoint 2 at 0x7ffff7ed404c: file showdebug.c, line 9.
(gdb) c
Continuing.

Breakpoint 2, compute_factorial (n=1) at showdebug.c:9
9 return f;
(gdb) p f
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$4 = 120
(gdb) bt
#0 compute_factorial (n=1) at showdebug.c:9
#1 0x00007ffff7ed40a9 in main (argc=2, argv=0x16677e0) at showdebug.c:18
#2 0x3500000001652748 in ?? ()
#3 0x00000000016677e0 in ?? ()
#4 0x0000000000000002 in ?? ()
#5 0x0000000000d953b3 in llvm::MCJIT::runFunction (this=0x16151f0, F=0x1603020,
→˓ArgValues=...) at /home/ebenders_test/llvm_svn_rw/lib/ExecutionEngine/MCJIT/MCJIT.
→˓cpp:161
#6 0x0000000000dc8872 in llvm::ExecutionEngine::runFunctionAsMain (this=0x16151f0,
→˓Fn=0x1603020, argv=..., envp=0x7fffffffe040)

at /home/ebenders_test/llvm_svn_rw/lib/ExecutionEngine/ExecutionEngine.cpp:397
#7 0x000000000059c583 in main (argc=4, argv=0x7fffffffe018, envp=0x7fffffffe040) at /
→˓home/ebenders_test/llvm_svn_rw/tools/lli/lli.cpp:324
(gdb) finish
Run till exit from #0 compute_factorial (n=1) at showdebug.c:9
0x00007ffff7ed40a9 in main (argc=2, argv=0x16677e0) at showdebug.c:18
18 int result = compute_factorial(firstletter - '0');
Value returned is $5 = 120
(gdb) p result
$6 = 23406408
(gdb) n
21 return result;
(gdb) p result
$7 = 120
(gdb) c
Continuing.

Program exited with code 0170.
(gdb)

The LLVM gold plugin

Introduction

Building with link time optimization requires cooperation from the system linker. LTO support on Linux systems
requires that you use the gold linker which supports LTO via plugins. This is the same mechanism used by the GCC
LTO project.

The LLVM gold plugin implements the gold plugin interface on top of libLTO. The same plugin can also be used by
other tools such as ar and nm.

How to build it

You need to have gold with plugin support and build the LLVMgold plugin. Check whether you have gold running
/usr/bin/ld -v. It will report “GNU gold” or else “GNU ld” if not. If you have gold, check for plugin support
by running /usr/bin/ld -plugin. If it complains “missing argument” then you have plugin support. If not,
such as an “unknown option” error then you will either need to build gold or install a version with plugin support.

• Download, configure and build gold with plugin support:

$ git clone --depth 1 git://sourceware.org/git/binutils-gdb.git binutils
$ mkdir build
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$ cd build
$ ../binutils/configure --enable-gold --enable-plugins --disable-werror
$ make all-gold

That should leave you with build/gold/ld-new which supports the -plugin option. Running make will
additionally build build/binutils/ar and nm-new binaries supporting plugins.

• Build the LLVMgold plugin. Run CMake with -DLLVM_BINUTILS_INCDIR=/path/to/binutils/
include. The correct include path will contain the file plugin-api.h.

Usage

The linker takes a -plugin option that points to the path of the plugin .so file. To find out what link command
gcc would run in a given situation, run gcc -v [...] and look for the line where it runs collect2. Replace
that with ld-new -plugin /path/to/LLVMgold.so to test it out. Once you’re ready to switch to using gold,
backup your existing /usr/bin/ld then replace it with ld-new.

You should produce bitcode files from clang with the option -flto. This flag will also cause clang to look for the
gold plugin in the lib directory under its prefix and pass the -plugin option to ld. It will not look for an alternate
linker, which is why you need gold to be the installed system linker in your path.

ar and nm also accept the -plugin option and it’s possible to to install LLVMgold.so to /usr/lib/
bfd-plugins for a seamless setup. If you built your own gold, be sure to install the ar and nm-new you built to
/usr/bin.

Example of link time optimization

The following example shows a worked example of the gold plugin mixing LLVM bitcode and native code.

--- a.c ---
#include <stdio.h>

extern void foo1(void);
extern void foo4(void);

void foo2(void) {
printf("Foo2\n");

}

void foo3(void) {
foo4();

}

int main(void) {
foo1();

}

--- b.c ---
#include <stdio.h>

extern void foo2(void);

void foo1(void) {
foo2();

}
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void foo4(void) {
printf("Foo4");

}

--- command lines ---
$ clang -flto a.c -c -o a.o # <-- a.o is LLVM bitcode file
$ ar q a.a a.o # <-- a.a is an archive with LLVM bitcode
$ clang b.c -c -o b.o # <-- b.o is native object file
$ clang -flto a.a b.o -o main # <-- link with LLVMgold plugin

Gold informs the plugin that foo3 is never referenced outside the IR, leading LLVM to delete that function. However,
unlike in the libLTO example gold does not currently eliminate foo4.

Quickstart for using LTO with autotooled projects

Once your system ld, ar, and nm all support LLVM bitcode, everything is in place for an easy to use LTO build of
autotooled projects:

• Follow the instructions on how to build LLVMgold.so.

• Install the newly built binutils to $PREFIX

• Copy Release/lib/LLVMgold.so to $PREFIX/lib/bfd-plugins/

• Set environment variables ($PREFIX is where you installed clang and binutils):

export CC="$PREFIX/bin/clang -flto"
export CXX="$PREFIX/bin/clang++ -flto"
export AR="$PREFIX/bin/ar"
export NM="$PREFIX/bin/nm"
export RANLIB=/bin/true #ranlib is not needed, and doesn't support .bc files in .a

• Or you can just set your path:

export PATH="$PREFIX/bin:$PATH"
export CC="clang -flto"
export CXX="clang++ -flto"
export RANLIB=/bin/true

• Configure and build the project as usual:

% ./configure && make && make check

The environment variable settings may work for non-autotooled projects too, but you may need to set the LD environ-
ment variable as well.

Licensing

Gold is licensed under the GPLv3. LLVMgold uses the interface file plugin-api.h from gold which means that
the resulting LLVMgold.so binary is also GPLv3. This can still be used to link non-GPLv3 programs just as much
as gold could without the plugin.
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LLVM’s Optional Rich Disassembly Output

• Introduction

• Instruction Annotations

– Contextual markups

– C API Details

Introduction

LLVM’s default disassembly output is raw text. To allow consumers more ability to introspect the instructions’ textual
representation or to reformat for a more user friendly display there is an optional rich disassembly output.

This optional output is sufficient to reference into individual portions of the instruction text. This is intended for clients
like disassemblers, list file generators, and pretty-printers, which need more than the raw instructions and the ability
to print them.

To provide this functionality the assembly text is marked up with annotations. The markup is simple enough in syntax
to be robust even in the case of version mismatches between consumers and producers. That is, the syntax generally
does not carry semantics beyond “this text has an annotation,” so consumers can simply ignore annotations they do
not understand or do not care about.

After calling LLVMCreateDisasm() to create a disassembler context the optional output is enable with this call:

LLVMSetDisasmOptions(DC, LLVMDisassembler_Option_UseMarkup);

Then subsequent calls to LLVMDisasmInstruction() will return output strings with the marked up annotations.

Instruction Annotations

Contextual markups

Annoated assembly display will supply contextual markup to help clients more efficiently implement things like pretty
printers. Most markup will be target independent, so clients can effectively provide good display without any target
specific knowledge.

Annotated assembly goes through the normal instruction printer, but optionally includes contextual tags on portions
of the instruction string. An annotation is any ‘<’ ‘>’ delimited section of text(1).

annotation: '<' tag-name tag-modifier-list ':' annotated-text '>'
tag-name: identifier
tag-modifier-list: comma delimited identifier list

The tag-name is an identifier which gives the type of the annotation. For the first pass, this will be very simple, with
memory references, registers, and immediates having the tag names “mem”, “reg”, and “imm”, respectively.

The tag-modifier-list is typically additional target-specific context, such as register class.

Clients should accept and ignore any tag-names or tag-modifiers they do not understand, allowing the annotations to
grow in richness without breaking older clients.

For example, a possible annotation of an ARM load of a stack-relative location might be annotated as:
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ldr <reg gpr:r0>, <mem regoffset:[<reg gpr:sp>, <imm:#4>]>

1: For assembly dialects in which ‘<’ and/or ‘>’ are legal tokens, a literal token is escaped by following immediately
with a repeat of the character. For example, a literal ‘<’ character is output as ‘<<’ in an annotated assembly string.

C API Details

The intended consumers of this information use the C API, therefore the new C API function for the disassembler will
be added to provide an option to produce disassembled instructions with annotations, LLVMSetDisasmOptions()
and the LLVMDisassembler_Option_UseMarkup option (see above).

System Library

Abstract

This document provides some details on LLVM’s System Library, located in the source at lib/System and
include/llvm/System. The library’s purpose is to shield LLVM from the differences between operating systems
for the few services LLVM needs from the operating system. Much of LLVM is written using portability features of
standard C++. However, in a few areas, system dependent facilities are needed and the System Library is the wrapper
around those system calls.

By centralizing LLVM’s use of operating system interfaces, we make it possible for the LLVM tool chain and runtime
libraries to be more easily ported to new platforms since (theoretically) only lib/System needs to be ported. This
library also unclutters the rest of LLVM from #ifdef use and special cases for specific operating systems. Such uses
are replaced with simple calls to the interfaces provided in include/llvm/System.

Note that the System Library is not intended to be a complete operating system wrapper (such as the Adaptive Com-
munications Environment (ACE) or Apache Portable Runtime (APR)), but only provides the functionality necessary
to support LLVM.

The System Library was written by Reid Spencer who formulated the design based on similar work originating from
the eXtensible Programming System (XPS). Several people helped with the effort; especially, Jeff Cohen and Henrik
Bach on the Win32 port.

Keeping LLVM Portable

In order to keep LLVM portable, LLVM developers should adhere to a set of portability rules associated with the
System Library. Adherence to these rules should help the System Library achieve its goal of shielding LLVM from
the variations in operating system interfaces and doing so efficiently. The following sections define the rules needed
to fulfill this objective.

Don’t Include System Headers

Except in lib/System, no LLVM source code should directly #include a system header. Care has been taken
to remove all such #includes from LLVM while lib/System was being developed. Specifically this means
that header files like “unistd.h”, “windows.h”, “stdio.h”, and “string.h” are forbidden to be included by
LLVM source code outside the implementation of lib/System.

To obtain system-dependent functionality, existing interfaces to the system found in include/llvm/System
should be used. If an appropriate interface is not available, it should be added to include/llvm/System and
implemented in lib/System for all supported platforms.
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Don’t Expose System Headers

The System Library must shield LLVM from all system headers. To obtain system level functionality, LLVM source
must #include "llvm/System/Thing.h" and nothing else. This means that Thing.h cannot expose any
system header files. This protects LLVM from accidentally using system specific functionality and only allows it via
the lib/System interface.

Use Standard C Headers

The standard C headers (the ones beginning with “c”) are allowed to be exposed through the lib/System interface.
These headers and the things they declare are considered to be platform agnostic. LLVM source files may include them
directly or obtain their inclusion through lib/System interfaces.

Use Standard C++ Headers

The standard C++ headers from the standard C++ library and standard template library may be exposed through the
lib/System interface. These headers and the things they declare are considered to be platform agnostic. LLVM
source files may include them or obtain their inclusion through lib/System interfaces.

High Level Interface

The entry points specified in the interface of lib/System must be aimed at completing some reasonably high level
task needed by LLVM. We do not want to simply wrap each operating system call. It would be preferable to wrap
several operating system calls that are always used in conjunction with one another by LLVM.

For example, consider what is needed to execute a program, wait for it to complete, and return its result code. On Unix,
this involves the following operating system calls: getenv, fork, execve, and wait. The correct thing for lib/
System to provide is a function, say ExecuteProgramAndWait, that implements the functionality completely.
what we don’t want is wrappers for the operating system calls involved.

There must not be a one-to-one relationship between operating system calls and the System library’s interface. Any
such interface function will be suspicious.

No Unused Functionality

There must be no functionality specified in the interface of lib/System that isn’t actually used by LLVM. We’re not
writing a general purpose operating system wrapper here, just enough to satisfy LLVM’s needs. And, LLVM doesn’t
need much. This design goal aims to keep the lib/System interface small and understandable which should foster
its actual use and adoption.

No Duplicate Implementations

The implementation of a function for a given platform must be written exactly once. This implies that it must be
possible to apply a function’s implementation to multiple operating systems if those operating systems can share the
same implementation. This rule applies to the set of operating systems supported for a given class of operating system
(e.g. Unix, Win32).
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No Virtual Methods

The System Library interfaces can be called quite frequently by LLVM. In order to make those calls as efficient as
possible, we discourage the use of virtual methods. There is no need to use inheritance for implementation differences,
it just adds complexity. The #include mechanism works just fine.

No Exposed Functions

Any functions defined by system libraries (i.e. not defined by lib/System) must not be exposed through the lib/
System interface, even if the header file for that function is not exposed. This prevents inadvertent use of system
specific functionality.

For example, the stat system call is notorious for having variations in the data it provides. lib/System must not
declare stat nor allow it to be declared. Instead it should provide its own interface to discovering information about
files and directories. Those interfaces may be implemented in terms of stat but that is strictly an implementation
detail. The interface provided by the System Library must be implemented on all platforms (even those without stat).

No Exposed Data

Any data defined by system libraries (i.e. not defined by lib/System) must not be exposed through the lib/
System interface, even if the header file for that function is not exposed. As with functions, this prevents inadvertent
use of data that might not exist on all platforms.

Minimize Soft Errors

Operating system interfaces will generally provide error results for every little thing that could go wrong. In almost
all cases, you can divide these error results into two groups: normal/good/soft and abnormal/bad/hard. That is, some
of the errors are simply information like “file not found”, “insufficient privileges”, etc. while other errors are much
harder like “out of space”, “bad disk sector”, or “system call interrupted”. We’ll call the first group “soft” errors and
the second group “hard” errors.

lib/System must always attempt to minimize soft errors. This is a design requirement because the minimization of
soft errors can affect the granularity and the nature of the interface. In general, if you find that you’re wanting to throw
soft errors, you must review the granularity of the interface because it is likely you’re trying to implement something
that is too low level. The rule of thumb is to provide interface functions that can’t fail, except when faced with hard
errors.

For a trivial example, suppose we wanted to add an “OpenFileForWriting” function. For many operat-
ing systems, if the file doesn’t exist, attempting to open the file will produce an error. However, lib/System
should not simply throw that error if it occurs because its a soft error. The problem is that the interface function,
OpenFileForWriting is too low level. It should be OpenOrCreateFileForWriting. In the case of the
soft “doesn’t exist” error, this function would just create it and then open it for writing.

This design principle needs to be maintained in lib/System because it avoids the propagation of soft error handling
throughout the rest of LLVM. Hard errors will generally just cause a termination for an LLVM tool so don’t be bashful
about throwing them.

Rules of thumb:

1. Don’t throw soft errors, only hard errors.

2. If you’re tempted to throw a soft error, re-think the interface.

3. Handle internally the most common normal/good/soft error conditions so the rest of LLVM doesn’t have to.
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No throw Specifications

None of the lib/System interface functions may be declared with C++ throw() specifications on them. This re-
quirement makes sure that the compiler does not insert additional exception handling code into the interface functions.
This is a performance consideration: lib/System functions are at the bottom of many call chains and as such can
be frequently called. We need them to be as efficient as possible. However, no routines in the system library should
actually throw exceptions.

Code Organization

Implementations of the System Library interface are separated by their general class of operating system. Currently
only Unix and Win32 classes are defined but more could be added for other operating system classifications. To distin-
guish which implementation to compile, the code in lib/System uses the LLVM_ON_UNIX and LLVM_ON_WIN32
#defines provided via configure through the llvm/Config/config.h file. Each source file in lib/System,
after implementing the generic (operating system independent) functionality needs to include the correct implementa-
tion using a set of #if defined(LLVM_ON_XYZ) directives. For example, if we had lib/System/File.cpp,
we’d expect to see in that file:

#if defined(LLVM_ON_UNIX)
#include "Unix/File.cpp"
#endif
#if defined(LLVM_ON_WIN32)
#include "Win32/File.cpp"
#endif

The implementation in lib/System/Unix/File.cpp should handle all Unix variants. The implementation in
lib/System/Win32/File.cpp should handle all Win32 variants. What this does is quickly differentiate the
basic class of operating system that will provide the implementation. The specific details for a given platform must
still be determined through the use of #ifdef.

Consistent Semantics

The implementation of a lib/System interface can vary drastically between platforms. That’s okay as long as the
end result of the interface function is the same. For example, a function to create a directory is pretty straight forward
on all operating system. System V IPC on the other hand isn’t even supported on all platforms. Instead of “supporting”
System V IPC, lib/System should provide an interface to the basic concept of inter-process communications.
The implementations might use System V IPC if that was available or named pipes, or whatever gets the job done
effectively for a given operating system. In all cases, the interface and the implementation must be semantically
consistent.

Source Level Debugging with LLVM
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– Philosophy behind LLVM debugging information

– Debug information consumers

– Debugging optimized code

• Debugging information format
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– Debugger intrinsic functions

* llvm.dbg.declare

* llvm.dbg.value

• Object lifetimes and scoping

• C/C++ front-end specific debug information

– C/C++ source file information

– C/C++ global variable information

– C/C++ function information

• Debugging information format

– Debugging Information Extension for Objective C Properties

* Introduction

* Proposal

* New DWARF Tags

* New DWARF Attributes

* New DWARF Constants

– Name Accelerator Tables

* Introduction

* Hash Tables

· Standard Hash Tables

· Name Hash Tables

* Details

· Header Layout

· Fixed Lookup

* Contents

* Language Extensions and File Format Changes

· Objective-C Extensions

· Mach-O Changes

• CodeView Debug Info Format

– Format Background

– Working with CodeView

Introduction

This document is the central repository for all information pertaining to debug information in LLVM. It describes the
actual format that the LLVM debug information takes, which is useful for those interested in creating front-ends or
dealing directly with the information. Further, this document provides specific examples of what debug information
for C/C++ looks like.
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Philosophy behind LLVM debugging information

The idea of the LLVM debugging information is to capture how the important pieces of the source-language’s Abstract
Syntax Tree map onto LLVM code. Several design aspects have shaped the solution that appears here. The important
ones are:

• Debugging information should have very little impact on the rest of the compiler. No transformations, analyses,
or code generators should need to be modified because of debugging information.

• LLVM optimizations should interact in well-defined and easily described ways with the debugging information.

• Because LLVM is designed to support arbitrary programming languages, LLVM-to-LLVM tools should not
need to know anything about the semantics of the source-level-language.

• Source-level languages are often widely different from one another. LLVM should not put any restrictions of
the flavor of the source-language, and the debugging information should work with any language.

• With code generator support, it should be possible to use an LLVM compiler to compile a program to native
machine code and standard debugging formats. This allows compatibility with traditional machine-code level
debuggers, like GDB or DBX.

The approach used by the LLVM implementation is to use a small set of intrinsic functions to define a mapping between
LLVM program objects and the source-level objects. The description of the source-level program is maintained in
LLVM metadata in an implementation-defined format (the C/C++ front-end currently uses working draft 7 of the
DWARF 3 standard).

When a program is being debugged, a debugger interacts with the user and turns the stored debug information into
source-language specific information. As such, a debugger must be aware of the source-language, and is thus tied to a
specific language or family of languages.

Debug information consumers

The role of debug information is to provide meta information normally stripped away during the compilation process.
This meta information provides an LLVM user a relationship between generated code and the original program source
code.

Currently, there are two backend consumers of debug info: DwarfDebug and CodeViewDebug. DwarfDebug produces
DWARF sutable for use with GDB, LLDB, and other DWARF-based debuggers. CodeViewDebug produces CodeView,
the Microsoft debug info format, which is usable with Microsoft debuggers such as Visual Studio and WinDBG.
LLVM’s debug information format is mostly derived from and inspired by DWARF, but it is feasible to translate into
other target debug info formats such as STABS.

It would also be reasonable to use debug information to feed profiling tools for analysis of generated code, or, tools
for reconstructing the original source from generated code.

Debugging optimized code

An extremely high priority of LLVM debugging information is to make it interact well with optimizations and analysis.
In particular, the LLVM debug information provides the following guarantees:

• LLVM debug information always provides information to accurately read the source-level state of the pro-
gram, regardless of which LLVM optimizations have been run, and without any modification to the optimiza-
tions themselves. However, some optimizations may impact the ability to modify the current state of the program
with a debugger, such as setting program variables, or calling functions that have been deleted.

• As desired, LLVM optimizations can be upgraded to be aware of the LLVM debugging information, allowing
them to update the debugging information as they perform aggressive optimizations. This means that, with
effort, the LLVM optimizers could optimize debug code just as well as non-debug code.
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• LLVM debug information does not prevent optimizations from happening (for example inlining, basic block
reordering/merging/cleanup, tail duplication, etc).

• LLVM debug information is automatically optimized along with the rest of the program, using existing facil-
ities. For example, duplicate information is automatically merged by the linker, and unused information is
automatically removed.

Basically, the debug information allows you to compile a program with “-O0 -g” and get full debug information,
allowing you to arbitrarily modify the program as it executes from a debugger. Compiling a program with “-O3 -g”
gives you full debug information that is always available and accurate for reading (e.g., you get accurate stack traces
despite tail call elimination and inlining), but you might lose the ability to modify the program and call functions
where were optimized out of the program, or inlined away completely.

LLVM test suite provides a framework to test optimizer’s handling of debugging information. It can be run like this:

% cd llvm/projects/test-suite/MultiSource/Benchmarks # or some other level
% make TEST=dbgopt

This will test impact of debugging information on optimization passes. If debugging information influences optimiza-
tion passes then it will be reported as a failure. See LLVM Testing Infrastructure Guide for more information on LLVM
test infrastructure and how to run various tests.

Debugging information format

LLVM debugging information has been carefully designed to make it possible for the optimizer to optimize the pro-
gram and debugging information without necessarily having to know anything about debugging information. In par-
ticular, the use of metadata avoids duplicated debugging information from the beginning, and the global dead code
elimination pass automatically deletes debugging information for a function if it decides to delete the function.

To do this, most of the debugging information (descriptors for types, variables, functions, source files, etc) is inserted
by the language front-end in the form of LLVM metadata.

Debug information is designed to be agnostic about the target debugger and debugging information representation
(e.g. DWARF/Stabs/etc). It uses a generic pass to decode the information that represents variables, types, functions,
namespaces, etc: this allows for arbitrary source-language semantics and type-systems to be used, as long as there is a
module written for the target debugger to interpret the information.

To provide basic functionality, the LLVM debugger does have to make some assumptions about the source-level
language being debugged, though it keeps these to a minimum. The only common features that the LLVM debugger
assumes exist are source files, and program objects. These abstract objects are used by a debugger to form stack traces,
show information about local variables, etc.

This section of the documentation first describes the representation aspects common to any source-language. C/C++
front-end specific debug information describes the data layout conventions used by the C and C++ front-ends.

Debug information descriptors are specialized metadata nodes, first-class subclasses of Metadata.

Debugger intrinsic functions

LLVM uses several intrinsic functions (name prefixed with “llvm.dbg”) to provide debug information at various
points in generated code.
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llvm.dbg.declare

void @llvm.dbg.declare(metadata, metadata, metadata)

This intrinsic provides information about a local element (e.g., variable). The first argument is metadata holding the
alloca for the variable. The second argument is a local variable containing a description of the variable. The third
argument is a complex expression.

llvm.dbg.value

void @llvm.dbg.value(metadata, i64, metadata, metadata)

This intrinsic provides information when a user source variable is set to a new value. The first argument is the new
value (wrapped as metadata). The second argument is the offset in the user source variable where the new value is
written. The third argument is a local variable containing a description of the variable. The fourth argument is a
complex expression.

Object lifetimes and scoping

In many languages, the local variables in functions can have their lifetimes or scopes limited to a subset of a function.
In the C family of languages, for example, variables are only live (readable and writable) within the source block that
they are defined in. In functional languages, values are only readable after they have been defined. Though this is a
very obvious concept, it is non-trivial to model in LLVM, because it has no notion of scoping in this sense, and does
not want to be tied to a language’s scoping rules.

In order to handle this, the LLVM debug format uses the metadata attached to llvm instructions to encode line number
and scoping information. Consider the following C fragment, for example:

1. void foo() {
2. int X = 21;
3. int Y = 22;
4. {
5. int Z = 23;
6. Z = X;
7. }
8. X = Y;
9. }

Compiled to LLVM, this function would be represented like this:

; Function Attrs: nounwind ssp uwtable
define void @foo() #0 !dbg !4 {
entry:

%X = alloca i32, align 4
%Y = alloca i32, align 4
%Z = alloca i32, align 4
call void @llvm.dbg.declare(metadata i32* %X, metadata !11, metadata !13), !dbg !14
store i32 21, i32* %X, align 4, !dbg !14
call void @llvm.dbg.declare(metadata i32* %Y, metadata !15, metadata !13), !dbg !16
store i32 22, i32* %Y, align 4, !dbg !16
call void @llvm.dbg.declare(metadata i32* %Z, metadata !17, metadata !13), !dbg !19
store i32 23, i32* %Z, align 4, !dbg !19
%0 = load i32, i32* %X, align 4, !dbg !20
store i32 %0, i32* %Z, align 4, !dbg !21
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%1 = load i32, i32* %Y, align 4, !dbg !22
store i32 %1, i32* %X, align 4, !dbg !23
ret void, !dbg !24

}

; Function Attrs: nounwind readnone
declare void @llvm.dbg.declare(metadata, metadata, metadata) #1

attributes #0 = { nounwind ssp uwtable "less-precise-fpmad"="false" "no-frame-pointer-
→˓elim"="true" "no-frame-pointer-elim-non-leaf" "no-infs-fp-math"="false" "no-nans-fp-
→˓math"="false" "stack-protector-buffer-size"="8" "unsafe-fp-math"="false" "use-soft-
→˓float"="false" }
attributes #1 = { nounwind readnone }

!llvm.dbg.cu = !{!0}
!llvm.module.flags = !{!7, !8, !9}
!llvm.ident = !{!10}

!0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang version 3.7.0
→˓(trunk 231150) (llvm/trunk 231154)", isOptimized: false, runtimeVersion: 0,
→˓emissionKind: FullDebug, enums: !2, retainedTypes: !2, subprograms: !3, globals: !2,
→˓ imports: !2)
!1 = !DIFile(filename: "/dev/stdin", directory: "/Users/dexonsmith/data/llvm/debug-
→˓info")
!2 = !{}
!3 = !{!4}
!4 = distinct !DISubprogram(name: "foo", scope: !1, file: !1, line: 1, type: !5,
→˓isLocal: false, isDefinition: true, scopeLine: 1, isOptimized: false, variables: !2)
!5 = !DISubroutineType(types: !6)
!6 = !{null}
!7 = !{i32 2, !"Dwarf Version", i32 2}
!8 = !{i32 2, !"Debug Info Version", i32 3}
!9 = !{i32 1, !"PIC Level", i32 2}
!10 = !{!"clang version 3.7.0 (trunk 231150) (llvm/trunk 231154)"}
!11 = !DILocalVariable(name: "X", scope: !4, file: !1, line: 2, type: !12)
!12 = !DIBasicType(name: "int", size: 32, align: 32, encoding: DW_ATE_signed)
!13 = !DIExpression()
!14 = !DILocation(line: 2, column: 9, scope: !4)
!15 = !DILocalVariable(name: "Y", scope: !4, file: !1, line: 3, type: !12)
!16 = !DILocation(line: 3, column: 9, scope: !4)
!17 = !DILocalVariable(name: "Z", scope: !18, file: !1, line: 5, type: !12)
!18 = distinct !DILexicalBlock(scope: !4, file: !1, line: 4, column: 5)
!19 = !DILocation(line: 5, column: 11, scope: !18)
!20 = !DILocation(line: 6, column: 11, scope: !18)
!21 = !DILocation(line: 6, column: 9, scope: !18)
!22 = !DILocation(line: 8, column: 9, scope: !4)
!23 = !DILocation(line: 8, column: 7, scope: !4)
!24 = !DILocation(line: 9, column: 3, scope: !4)

This example illustrates a few important details about LLVM debugging information. In particular, it shows how the
llvm.dbg.declare intrinsic and location information, which are attached to an instruction, are applied together to
allow a debugger to analyze the relationship between statements, variable definitions, and the code used to implement
the function.

call void @llvm.dbg.declare(metadata i32* %X, metadata !11, metadata !13), !dbg !14
; [debug line = 2:7] [debug variable = X]

The first intrinsic %llvm.dbg.declare encodes debugging information for the variable X. The metadata !dbg
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!14 attached to the intrinsic provides scope information for the variable X.

!14 = !DILocation(line: 2, column: 9, scope: !4)
!4 = distinct !DISubprogram(name: "foo", scope: !1, file: !1, line: 1, type: !5,

isLocal: false, isDefinition: true, scopeLine: 1,
isOptimized: false, variables: !2)

Here !14 is metadata providing location information. In this example, scope is encoded by !4, a subprogram descrip-
tor. This way the location information attached to the intrinsics indicates that the variable X is declared at line number
2 at a function level scope in function foo.

Now lets take another example.

call void @llvm.dbg.declare(metadata i32* %Z, metadata !17, metadata !13), !dbg !19
; [debug line = 5:9] [debug variable = Z]

The third intrinsic %llvm.dbg.declare encodes debugging information for variable Z. The metadata !dbg !19
attached to the intrinsic provides scope information for the variable Z.

!18 = distinct !DILexicalBlock(scope: !4, file: !1, line: 4, column: 5)
!19 = !DILocation(line: 5, column: 11, scope: !18)

Here !19 indicates that Z is declared at line number 5 and column number 0 inside of lexical scope !18. The lexical
scope itself resides inside of subprogram !4 described above.

The scope information attached with each instruction provides a straightforward way to find instructions covered by a
scope.

C/C++ front-end specific debug information

The C and C++ front-ends represent information about the program in a format that is effectively identical to DWARF
3.0 in terms of information content. This allows code generators to trivially support native debuggers by generating
standard dwarf information, and contains enough information for non-dwarf targets to translate it as needed.

This section describes the forms used to represent C and C++ programs. Other languages could pattern themselves
after this (which itself is tuned to representing programs in the same way that DWARF 3 does), or they could choose
to provide completely different forms if they don’t fit into the DWARF model. As support for debugging information
gets added to the various LLVM source-language front-ends, the information used should be documented here.

The following sections provide examples of a few C/C++ constructs and the debug information that would best de-
scribe those constructs. The canonical references are the DIDescriptor classes defined in include/llvm/IR/
DebugInfo.h and the implementations of the helper functions in lib/IR/DIBuilder.cpp.

C/C++ source file information

llvm::Instruction provides easy access to metadata attached with an instruction. One can extract line number
information encoded in LLVM IR using Instruction::getDebugLoc() and DILocation::getLine().

if (DILocation *Loc = I->getDebugLoc()) { // Here I is an LLVM instruction
unsigned Line = Loc->getLine();
StringRef File = Loc->getFilename();
StringRef Dir = Loc->getDirectory();

}
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C/C++ global variable information

Given an integer global variable declared as follows:

int MyGlobal = 100;

a C/C++ front-end would generate the following descriptors:

;;
;; Define the global itself.
;;
@MyGlobal = global i32 100, align 4

;;
;; List of debug info of globals
;;
!llvm.dbg.cu = !{!0}

;; Some unrelated metadata.
!llvm.module.flags = !{!6, !7}

;; Define the compile unit.
!0 = !DICompileUnit(language: DW_LANG_C99, file: !1,

producer:
"clang version 3.7.0 (trunk 231150) (llvm/trunk 231154)",
isOptimized: false, runtimeVersion: 0, emissionKind: FullDebug,
enums: !2, retainedTypes: !2, subprograms: !2, globals:
!3, imports: !2)

;;
;; Define the file
;;
!1 = !DIFile(filename: "/dev/stdin",

directory: "/Users/dexonsmith/data/llvm/debug-info")

;; An empty array.
!2 = !{}

;; The Array of Global Variables
!3 = !{!4}

;;
;; Define the global variable itself.
;;
!4 = !DIGlobalVariable(name: "MyGlobal", scope: !0, file: !1, line: 1,

type: !5, isLocal: false, isDefinition: true,
variable: i32* @MyGlobal)

;;
;; Define the type
;;
!5 = !DIBasicType(name: "int", size: 32, align: 32, encoding: DW_ATE_signed)

;; Dwarf version to output.
!6 = !{i32 2, !"Dwarf Version", i32 2}

;; Debug info schema version.
!7 = !{i32 2, !"Debug Info Version", i32 3}
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C/C++ function information

Given a function declared as follows:

int main(int argc, char *argv[]) {
return 0;

}

a C/C++ front-end would generate the following descriptors:

;;
;; Define the anchor for subprograms.
;;
!4 = !DISubprogram(name: "main", scope: !1, file: !1, line: 1, type: !5,

isLocal: false, isDefinition: true, scopeLine: 1,
flags: DIFlagPrototyped, isOptimized: false,
variables: !2)

;;
;; Define the subprogram itself.
;;
define i32 @main(i32 %argc, i8** %argv) !dbg !4 {
...
}

Debugging information format

Debugging Information Extension for Objective C Properties

Introduction

Objective C provides a simpler way to declare and define accessor methods using declared properties. The language
provides features to declare a property and to let compiler synthesize accessor methods.

The debugger lets developer inspect Objective C interfaces and their instance variables and class variables. However,
the debugger does not know anything about the properties defined in Objective C interfaces. The debugger consumes
information generated by compiler in DWARF format. The format does not support encoding of Objective C proper-
ties. This proposal describes DWARF extensions to encode Objective C properties, which the debugger can use to let
developers inspect Objective C properties.

Proposal

Objective C properties exist separately from class members. A property can be defined only by “setter” and “getter”
selectors, and be calculated anew on each access. Or a property can just be a direct access to some declared ivar. Finally
it can have an ivar “automatically synthesized” for it by the compiler, in which case the property can be referred to in
user code directly using the standard C dereference syntax as well as through the property “dot” syntax, but there is
no entry in the @interface declaration corresponding to this ivar.

To facilitate debugging, these properties we will add a new DWARF TAG into the DW_TAG_structure_type
definition for the class to hold the description of a given property, and a set of DWARF attributes that provide said
description. The property tag will also contain the name and declared type of the property.

If there is a related ivar, there will also be a DWARF property attribute placed in the DW_TAG_member DIE for that
ivar referring back to the property TAG for that property. And in the case where the compiler synthesizes the ivar
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directly, the compiler is expected to generate a DW_TAG_member for that ivar (with the DW_AT_artificial set
to 1), whose name will be the name used to access this ivar directly in code, and with the property attribute pointing
back to the property it is backing.

The following examples will serve as illustration for our discussion:

@interface I1 {
int n2;

}

@property int p1;
@property int p2;
@end

@implementation I1
@synthesize p1;
@synthesize p2 = n2;
@end

This produces the following DWARF (this is a “pseudo dwarfdump” output):

0x00000100: TAG_structure_type [7] *
AT_APPLE_runtime_class( 0x10 )
AT_name( "I1" )
AT_decl_file( "Objc_Property.m" )
AT_decl_line( 3 )

0x00000110 TAG_APPLE_property
AT_name ( "p1" )
AT_type ( {0x00000150} ( int ) )

0x00000120: TAG_APPLE_property
AT_name ( "p2" )
AT_type ( {0x00000150} ( int ) )

0x00000130: TAG_member [8]
AT_name( "_p1" )
AT_APPLE_property ( {0x00000110} "p1" )
AT_type( {0x00000150} ( int ) )
AT_artificial ( 0x1 )

0x00000140: TAG_member [8]
AT_name( "n2" )
AT_APPLE_property ( {0x00000120} "p2" )
AT_type( {0x00000150} ( int ) )

0x00000150: AT_type( ( int ) )

Note, the current convention is that the name of the ivar for an auto-synthesized property is the name of the property
from which it derives with an underscore prepended, as is shown in the example. But we actually don’t need to know
this convention, since we are given the name of the ivar directly.

Also, it is common practice in ObjC to have different property declarations in the @interface and @implementation -
e.g. to provide a read-only property in the interface,and a read-write interface in the implementation. In that case, the
compiler should emit whichever property declaration will be in force in the current translation unit.

Developers can decorate a property with attributes which are encoded using
DW_AT_APPLE_property_attribute.
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@property (readonly, nonatomic) int pr;

TAG_APPLE_property [8]
AT_name( "pr" )
AT_type ( {0x00000147} (int) )
AT_APPLE_property_attribute (DW_APPLE_PROPERTY_readonly, DW_APPLE_PROPERTY_

→˓nonatomic)

The setter and getter method names are attached to the property using DW_AT_APPLE_property_setter and
DW_AT_APPLE_property_getter attributes.

@interface I1
@property (setter=myOwnP3Setter:) int p3;
-(void)myOwnP3Setter:(int)a;
@end

@implementation I1
@synthesize p3;
-(void)myOwnP3Setter:(int)a{ }
@end

The DWARF for this would be:

0x000003bd: TAG_structure_type [7] *
AT_APPLE_runtime_class( 0x10 )
AT_name( "I1" )
AT_decl_file( "Objc_Property.m" )
AT_decl_line( 3 )

0x000003cd TAG_APPLE_property
AT_name ( "p3" )
AT_APPLE_property_setter ( "myOwnP3Setter:" )
AT_type( {0x00000147} ( int ) )

0x000003f3: TAG_member [8]
AT_name( "_p3" )
AT_type ( {0x00000147} ( int ) )
AT_APPLE_property ( {0x000003cd} )
AT_artificial ( 0x1 )

New DWARF Tags

TAG Value
DW_TAG_APPLE_property 0x4200

New DWARF Attributes

Attribute Value Classes
DW_AT_APPLE_property 0x3fed Reference
DW_AT_APPLE_property_getter 0x3fe9 String
DW_AT_APPLE_property_setter 0x3fea String
DW_AT_APPLE_property_attribute 0x3feb Constant
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New DWARF Constants

Name Value
DW_APPLE_PROPERTY_readonly 0x01
DW_APPLE_PROPERTY_getter 0x02
DW_APPLE_PROPERTY_assign 0x04
DW_APPLE_PROPERTY_readwrite 0x08
DW_APPLE_PROPERTY_retain 0x10
DW_APPLE_PROPERTY_copy 0x20
DW_APPLE_PROPERTY_nonatomic 0x40
DW_APPLE_PROPERTY_setter 0x80
DW_APPLE_PROPERTY_atomic 0x100
DW_APPLE_PROPERTY_weak 0x200
DW_APPLE_PROPERTY_strong 0x400
DW_APPLE_PROPERTY_unsafe_unretained 0x800
DW_APPLE_PROPERTY_nullability 0x1000
DW_APPLE_PROPERTY_null_resettable 0x2000
DW_APPLE_PROPERTY_class 0x4000

Name Accelerator Tables

Introduction

The “.debug_pubnames” and “.debug_pubtypes” formats are not what a debugger needs. The “pub” in
the section name indicates that the entries in the table are publicly visible names only. This means no static or
hidden functions show up in the “.debug_pubnames”. No static variables or private class variables are in the “.
debug_pubtypes”. Many compilers add different things to these tables, so we can’t rely upon the contents between
gcc, icc, or clang.

The typical query given by users tends not to match up with the contents of these tables. For example, the DWARF
spec states that “In the case of the name of a function member or static data member of a C++ structure, class or
union, the name presented in the “.debug_pubnames” section is not the simple name given by the DW_AT_name
attribute of the referenced debugging information entry, but rather the fully qualified name of the data or function
member.” So the only names in these tables for complex C++ entries is a fully qualified name. Debugger users
tend not to enter their search strings as “a::b::c(int,const Foo&) const”, but rather as “c”, “b::c” , or
“a::b::c”. So the name entered in the name table must be demangled in order to chop it up appropriately and
additional names must be manually entered into the table to make it effective as a name lookup table for debuggers to
use.

All debuggers currently ignore the “.debug_pubnames” table as a result of its inconsistent and useless public-only
name content making it a waste of space in the object file. These tables, when they are written to disk, are not sorted
in any way, leaving every debugger to do its own parsing and sorting. These tables also include an inlined copy of the
string values in the table itself making the tables much larger than they need to be on disk, especially for large C++
programs.

Can’t we just fix the sections by adding all of the names we need to this table? No, because that is not what the tables
are defined to contain and we won’t know the difference between the old bad tables and the new good tables. At best
we could make our own renamed sections that contain all of the data we need.

These tables are also insufficient for what a debugger like LLDB needs. LLDB uses clang for its expression parsing
where LLDB acts as a PCH. LLDB is then often asked to look for type “foo” or namespace “bar”, or list items
in namespace “baz”. Namespaces are not included in the pubnames or pubtypes tables. Since clang asks a lot of
questions when it is parsing an expression, we need to be very fast when looking up names, as it happens a lot. Having
new accelerator tables that are optimized for very quick lookups will benefit this type of debugging experience greatly.
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We would like to generate name lookup tables that can be mapped into memory from disk, and used as is, with little
or no up-front parsing. We would also be able to control the exact content of these different tables so they contain
exactly what we need. The Name Accelerator Tables were designed to fix these issues. In order to solve these issues
we need to:

• Have a format that can be mapped into memory from disk and used as is

• Lookups should be very fast

• Extensible table format so these tables can be made by many producers

• Contain all of the names needed for typical lookups out of the box

• Strict rules for the contents of tables

Table size is important and the accelerator table format should allow the reuse of strings from common string tables
so the strings for the names are not duplicated. We also want to make sure the table is ready to be used as-is by simply
mapping the table into memory with minimal header parsing.

The name lookups need to be fast and optimized for the kinds of lookups that debuggers tend to do. Optimally we
would like to touch as few parts of the mapped table as possible when doing a name lookup and be able to quickly
find the name entry we are looking for, or discover there are no matches. In the case of debuggers we optimized for
lookups that fail most of the time.

Each table that is defined should have strict rules on exactly what is in the accelerator tables and documented so clients
can rely on the content.

Hash Tables

Standard Hash Tables

Typical hash tables have a header, buckets, and each bucket points to the bucket contents:

.------------.
| HEADER |
|------------|
| BUCKETS |
|------------|
| DATA |
`------------'

The BUCKETS are an array of offsets to DATA for each hash:

.------------.
| 0x00001000 | BUCKETS[0]
| 0x00002000 | BUCKETS[1]
| 0x00002200 | BUCKETS[2]
| 0x000034f0 | BUCKETS[3]
| | ...
| 0xXXXXXXXX | BUCKETS[n_buckets]
'------------'

So for bucket[3] in the example above, we have an offset into the table 0x000034f0 which points to a chain of
entries for the bucket. Each bucket must contain a next pointer, full 32 bit hash value, the string itself, and the data for
the current string value.

.------------.
0x000034f0: | 0x00003500 | next pointer
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| 0x12345678 | 32 bit hash
| "erase" | string value
| data[n] | HashData for this bucket
|------------|

0x00003500: | 0x00003550 | next pointer
| 0x29273623 | 32 bit hash
| "dump" | string value
| data[n] | HashData for this bucket
|------------|

0x00003550: | 0x00000000 | next pointer
| 0x82638293 | 32 bit hash
| "main" | string value
| data[n] | HashData for this bucket
`------------'

The problem with this layout for debuggers is that we need to optimize for the negative lookup case where the symbol
we’re searching for is not present. So if we were to lookup “printf” in the table above, we would make a 32 hash
for “printf”, it might match bucket[3]. We would need to go to the offset 0x000034f0 and start looking to see
if our 32 bit hash matches. To do so, we need to read the next pointer, then read the hash, compare it, and skip to the
next bucket. Each time we are skipping many bytes in memory and touching new cache pages just to do the compare
on the full 32 bit hash. All of these accesses then tell us that we didn’t have a match.

Name Hash Tables

To solve the issues mentioned above we have structured the hash tables a bit differently: a header, buckets, an array
of all unique 32 bit hash values, followed by an array of hash value data offsets, one for each hash value, then the data
for all hash values:

.-------------.
| HEADER |
|-------------|
| BUCKETS |
|-------------|
| HASHES |
|-------------|
| OFFSETS |
|-------------|
| DATA |
`-------------'

The BUCKETS in the name tables are an index into the HASHES array. By making all of the full 32 bit hash values
contiguous in memory, we allow ourselves to efficiently check for a match while touching as little memory as possible.
Most often checking the 32 bit hash values is as far as the lookup goes. If it does match, it usually is a match with no
collisions. So for a table with “n_buckets” buckets, and “n_hashes” unique 32 bit hash values, we can clarify
the contents of the BUCKETS, HASHES and OFFSETS as:

.-------------------------.
| HEADER.magic | uint32_t
| HEADER.version | uint16_t
| HEADER.hash_function | uint16_t
| HEADER.bucket_count | uint32_t
| HEADER.hashes_count | uint32_t
| HEADER.header_data_len | uint32_t
| HEADER_DATA | HeaderData
|-------------------------|
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| BUCKETS | uint32_t[n_buckets] // 32 bit hash indexes
|-------------------------|
| HASHES | uint32_t[n_hashes] // 32 bit hash values
|-------------------------|
| OFFSETS | uint32_t[n_hashes] // 32 bit offsets to hash value data
|-------------------------|
| ALL HASH DATA |
`-------------------------'

So taking the exact same data from the standard hash example above we end up with:

.------------.
| HEADER |
|------------|
| 0 | BUCKETS[0]
| 2 | BUCKETS[1]
| 5 | BUCKETS[2]
| 6 | BUCKETS[3]
| | ...
| ... | BUCKETS[n_buckets]
|------------|
| 0x........ | HASHES[0]
| 0x........ | HASHES[1]
| 0x........ | HASHES[2]
| 0x........ | HASHES[3]
| 0x........ | HASHES[4]
| 0x........ | HASHES[5]
| 0x12345678 | HASHES[6] hash for BUCKETS[3]
| 0x29273623 | HASHES[7] hash for BUCKETS[3]
| 0x82638293 | HASHES[8] hash for BUCKETS[3]
| 0x........ | HASHES[9]
| 0x........ | HASHES[10]
| 0x........ | HASHES[11]
| 0x........ | HASHES[12]
| 0x........ | HASHES[13]
| 0x........ | HASHES[n_hashes]
|------------|
| 0x........ | OFFSETS[0]
| 0x........ | OFFSETS[1]
| 0x........ | OFFSETS[2]
| 0x........ | OFFSETS[3]
| 0x........ | OFFSETS[4]
| 0x........ | OFFSETS[5]
| 0x000034f0 | OFFSETS[6] offset for BUCKETS[3]
| 0x00003500 | OFFSETS[7] offset for BUCKETS[3]
| 0x00003550 | OFFSETS[8] offset for BUCKETS[3]
| 0x........ | OFFSETS[9]
| 0x........ | OFFSETS[10]
| 0x........ | OFFSETS[11]
| 0x........ | OFFSETS[12]
| 0x........ | OFFSETS[13]
| 0x........ | OFFSETS[n_hashes]
|------------|
| |
| |
| |
| |
| |
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|------------|
0x000034f0: | 0x00001203 | .debug_str ("erase")

| 0x00000004 | A 32 bit array count - number of HashData with name "erase"
| 0x........ | HashData[0]
| 0x........ | HashData[1]
| 0x........ | HashData[2]
| 0x........ | HashData[3]
| 0x00000000 | String offset into .debug_str (terminate data for hash)
|------------|

0x00003500: | 0x00001203 | String offset into .debug_str ("collision")
| 0x00000002 | A 32 bit array count - number of HashData with name

→˓"collision"
| 0x........ | HashData[0]
| 0x........ | HashData[1]
| 0x00001203 | String offset into .debug_str ("dump")
| 0x00000003 | A 32 bit array count - number of HashData with name "dump"
| 0x........ | HashData[0]
| 0x........ | HashData[1]
| 0x........ | HashData[2]
| 0x00000000 | String offset into .debug_str (terminate data for hash)
|------------|

0x00003550: | 0x00001203 | String offset into .debug_str ("main")
| 0x00000009 | A 32 bit array count - number of HashData with name "main"
| 0x........ | HashData[0]
| 0x........ | HashData[1]
| 0x........ | HashData[2]
| 0x........ | HashData[3]
| 0x........ | HashData[4]
| 0x........ | HashData[5]
| 0x........ | HashData[6]
| 0x........ | HashData[7]
| 0x........ | HashData[8]
| 0x00000000 | String offset into .debug_str (terminate data for hash)
`------------'

So we still have all of the same data, we just organize it more efficiently for debugger lookup. If we repeat the same
“printf” lookup from above, we would hash “printf” and find it matches BUCKETS[3] by taking the 32 bit
hash value and modulo it by n_buckets. BUCKETS[3] contains “6” which is the index into the HASHES table.
We would then compare any consecutive 32 bit hashes values in the HASHES array as long as the hashes would be in
BUCKETS[3]. We do this by verifying that each subsequent hash value modulo n_buckets is still 3. In the case
of a failed lookup we would access the memory for BUCKETS[3], and then compare a few consecutive 32 bit hashes
before we know that we have no match. We don’t end up marching through multiple words of memory and we really
keep the number of processor data cache lines being accessed as small as possible.

The string hash that is used for these lookup tables is the Daniel J. Bernstein hash which is also used in the ELF
GNU_HASH sections. It is a very good hash for all kinds of names in programs with very few hash collisions.

Empty buckets are designated by using an invalid hash index of UINT32_MAX.

Details

These name hash tables are designed to be generic where specializations of the table get to define additional data that
goes into the header (“HeaderData”), how the string value is stored (“KeyType”) and the content of the data for
each hash value.
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Header Layout

The header has a fixed part, and the specialized part. The exact format of the header is:

struct Header
{

uint32_t magic; // 'HASH' magic value to allow endian detection
uint16_t version; // Version number
uint16_t hash_function; // The hash function enumeration that was used
uint32_t bucket_count; // The number of buckets in this hash table
uint32_t hashes_count; // The total number of unique hash values and hash data

→˓offsets in this table
uint32_t header_data_len; // The bytes to skip to get to the hash indexes

→˓(buckets) for correct alignment
// Specifically the length of the following HeaderData

→˓field - this does not
// include the size of the preceding fields

HeaderData header_data; // Implementation specific header data
};

The header starts with a 32 bit “magic” value which must be 'HASH' encoded as an ASCII integer. This allows
the detection of the start of the hash table and also allows the table’s byte order to be determined so the table can be
correctly extracted. The “magic” value is followed by a 16 bit version number which allows the table to be revised
and modified in the future. The current version number is 1. hash_function is a uint16_t enumeration that
specifies which hash function was used to produce this table. The current values for the hash function enumerations
include:

enum HashFunctionType
{

eHashFunctionDJB = 0u, // Daniel J Bernstein hash function
};

bucket_count is a 32 bit unsigned integer that represents how many buckets are in the BUCKETS array.
hashes_count is the number of unique 32 bit hash values that are in the HASHES array, and is the same number of
offsets are contained in the OFFSETS array. header_data_len specifies the size in bytes of the HeaderData
that is filled in by specialized versions of this table.

Fixed Lookup

The header is followed by the buckets, hashes, offsets, and hash value data.

struct FixedTable
{

uint32_t buckets[Header.bucket_count]; // An array of hash indexes into the
→˓"hashes[]" array below
uint32_t hashes [Header.hashes_count]; // Every unique 32 bit hash for the entire

→˓table is in this table
uint32_t offsets[Header.hashes_count]; // An offset that corresponds to each item

→˓in the "hashes[]" array above
};

buckets is an array of 32 bit indexes into the hashes array. The hashes array contains all of the 32 bit hash
values for all names in the hash table. Each hash in the hashes table has an offset in the offsets array that points
to the data for the hash value.

This table setup makes it very easy to repurpose these tables to contain different data, while keeping the lookup
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mechanism the same for all tables. This layout also makes it possible to save the table to disk and map it in later and
do very efficient name lookups with little or no parsing.

DWARF lookup tables can be implemented in a variety of ways and can store a lot of information for each name. We
want to make the DWARF tables extensible and able to store the data efficiently so we have used some of the DWARF
features that enable efficient data storage to define exactly what kind of data we store for each name.

The HeaderData contains a definition of the contents of each HashData chunk. We might want to store an offset
to all of the debug information entries (DIEs) for each name. To keep things extensible, we create a list of items, or
Atoms, that are contained in the data for each name. First comes the type of the data in each atom:

enum AtomType
{

eAtomTypeNULL = 0u,
eAtomTypeDIEOffset = 1u, // DIE offset, check form for encoding
eAtomTypeCUOffset = 2u, // DIE offset of the compiler unit header that contains

→˓the item in question
eAtomTypeTag = 3u, // DW_TAG_xxx value, should be encoded as DW_FORM_data1

→˓(if no tags exceed 255) or DW_FORM_data2
eAtomTypeNameFlags = 4u, // Flags from enum NameFlags
eAtomTypeTypeFlags = 5u, // Flags from enum TypeFlags

};

The enumeration values and their meanings are:

eAtomTypeNULL - a termination atom that specifies the end of the atom list
eAtomTypeDIEOffset - an offset into the .debug_info section for the DWARF DIE for
→˓this name
eAtomTypeCUOffset - an offset into the .debug_info section for the CU that contains
→˓the DIE
eAtomTypeDIETag - The DW_TAG_XXX enumeration value so you don't have to parse the
→˓DWARF to see what it is
eAtomTypeNameFlags - Flags for functions and global variables (isFunction, isInlined,
→˓ isExternal...)
eAtomTypeTypeFlags - Flags for types (isCXXClass, isObjCClass, ...)

Then we allow each atom type to define the atom type and how the data for each atom type data is encoded:

struct Atom
{

uint16_t type; // AtomType enum value
uint16_t form; // DWARF DW_FORM_XXX defines

};

The form type above is from the DWARF specification and defines the exact encoding of the data for the Atom type.
See the DWARF specification for the DW_FORM_ definitions.

struct HeaderData
{

uint32_t die_offset_base;
uint32_t atom_count;
Atoms atoms[atom_count0];

};

HeaderData defines the base DIE offset that should be added to any atoms that are encoded using the
DW_FORM_ref1, DW_FORM_ref2, DW_FORM_ref4, DW_FORM_ref8 or DW_FORM_ref_udata. It also de-
fines what is contained in each HashData object – Atom.form tells us how large each field will be in the
HashData and the Atom.type tells us how this data should be interpreted.
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For the current implementations of the “.apple_names” (all functions + globals), the “.apple_types” (names
of all types that are defined), and the “.apple_namespaces” (all namespaces), we currently set the Atom array to
be:

HeaderData.atom_count = 1;
HeaderData.atoms[0].type = eAtomTypeDIEOffset;
HeaderData.atoms[0].form = DW_FORM_data4;

This defines the contents to be the DIE offset (eAtomTypeDIEOffset) that is encoded as a 32 bit value
(DW_FORM_data4). This allows a single name to have multiple matching DIEs in a single file, which could come
up with an inlined function for instance. Future tables could include more information about the DIE such as flags
indicating if the DIE is a function, method, block, or inlined.

The KeyType for the DWARF table is a 32 bit string table offset into the ”.debug_str” table. The ”.debug_str” is the
string table for the DWARF which may already contain copies of all of the strings. This helps make sure, with help
from the compiler, that we reuse the strings between all of the DWARF sections and keeps the hash table size down.
Another benefit to having the compiler generate all strings as DW_FORM_strp in the debug info, is that DWARF
parsing can be made much faster.

After a lookup is made, we get an offset into the hash data. The hash data needs to be able to deal with 32 bit hash
collisions, so the chunk of data at the offset in the hash data consists of a triple:

uint32_t str_offset
uint32_t hash_data_count
HashData[hash_data_count]

If “str_offset” is zero, then the bucket contents are done. 99.9% of the hash data chunks contain a single item (no 32
bit hash collision):

.------------.
| 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main")
| 0x00000004 | uint32_t HashData count
| 0x........ | uint32_t HashData[0] DIE offset
| 0x........ | uint32_t HashData[1] DIE offset
| 0x........ | uint32_t HashData[2] DIE offset
| 0x........ | uint32_t HashData[3] DIE offset
| 0x00000000 | uint32_t KeyType (end of hash chain)
`------------'

If there are collisions, you will have multiple valid string offsets:

.------------.
| 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main")
| 0x00000004 | uint32_t HashData count
| 0x........ | uint32_t HashData[0] DIE offset
| 0x........ | uint32_t HashData[1] DIE offset
| 0x........ | uint32_t HashData[2] DIE offset
| 0x........ | uint32_t HashData[3] DIE offset
| 0x00002023 | uint32_t KeyType (.debug_str[0x0002023] => "print")
| 0x00000002 | uint32_t HashData count
| 0x........ | uint32_t HashData[0] DIE offset
| 0x........ | uint32_t HashData[1] DIE offset
| 0x00000000 | uint32_t KeyType (end of hash chain)
`------------'

Current testing with real world C++ binaries has shown that there is around 1 32 bit hash collision per 100,000 name
entries.
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Contents

As we said, we want to strictly define exactly what is included in the different tables. For DWARF, we have 3 tables:
“.apple_names”, “.apple_types”, and “.apple_namespaces”.

“.apple_names” sections should contain an entry for each DWARF DIE whose DW_TAG is a DW_TAG_label,
DW_TAG_inlined_subroutine, or DW_TAG_subprogram that has address attributes: DW_AT_low_pc,
DW_AT_high_pc, DW_AT_ranges or DW_AT_entry_pc. It also contains DW_TAG_variable DIEs that have
a DW_OP_addr in the location (global and static variables). All global and static variables should be included, in-
cluding those scoped within functions and classes. For example using the following code:

static int var = 0;

void f ()
{

static int var = 0;
}

Both of the static var variables would be included in the table. All functions should emit both their full names
and their basenames. For C or C++, the full name is the mangled name (if available) which is usually in the
DW_AT_MIPS_linkage_name attribute, and the DW_AT_name contains the function basename. If global or static
variables have a mangled name in a DW_AT_MIPS_linkage_name attribute, this should be emitted along with the
simple name found in the DW_AT_name attribute.

“.apple_types” sections should contain an entry for each DWARF DIE whose tag is one of:

• DW_TAG_array_type

• DW_TAG_class_type

• DW_TAG_enumeration_type

• DW_TAG_pointer_type

• DW_TAG_reference_type

• DW_TAG_string_type

• DW_TAG_structure_type

• DW_TAG_subroutine_type

• DW_TAG_typedef

• DW_TAG_union_type

• DW_TAG_ptr_to_member_type

• DW_TAG_set_type

• DW_TAG_subrange_type

• DW_TAG_base_type

• DW_TAG_const_type

• DW_TAG_file_type

• DW_TAG_namelist

• DW_TAG_packed_type

• DW_TAG_volatile_type

• DW_TAG_restrict_type
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• DW_TAG_interface_type

• DW_TAG_unspecified_type

• DW_TAG_shared_type

Only entries with a DW_AT_name attribute are included, and the entry must not be a forward declaration
(DW_AT_declaration attribute with a non-zero value). For example, using the following code:

int main ()
{

int *b = 0;
return *b;

}

We get a few type DIEs:

0x00000067: TAG_base_type [5]
AT_encoding( DW_ATE_signed )
AT_name( "int" )
AT_byte_size( 0x04 )

0x0000006e: TAG_pointer_type [6]
AT_type( {0x00000067} ( int ) )
AT_byte_size( 0x08 )

The DW_TAG_pointer_type is not included because it does not have a DW_AT_name.

“.apple_namespaces” section should contain all DW_TAG_namespace DIEs. If we run into a namespace that
has no name this is an anonymous namespace, and the name should be output as “(anonymous namespace)”
(without the quotes). Why? This matches the output of the abi::cxa_demangle() that is in the standard C++
library that demangles mangled names.

Language Extensions and File Format Changes

Objective-C Extensions

“.apple_objc” section should contain all DW_TAG_subprogram DIEs for an Objective-C class. The name used
in the hash table is the name of the Objective-C class itself. If the Objective-C class has a category, then an entry is
made for both the class name without the category, and for the class name with the category. So if we have a DIE at off-
set 0x1234 with a name of method “-[NSString(my_additions) stringWithSpecialString:]”, we
would add an entry for “NSString” that points to DIE 0x1234, and an entry for “NSString(my_additions)”
that points to 0x1234. This allows us to quickly track down all Objective-C methods for an Objective-C class when
doing expressions. It is needed because of the dynamic nature of Objective-C where anyone can add methods to a
class. The DWARF for Objective-C methods is also emitted differently from C++ classes where the methods are not
usually contained in the class definition, they are scattered about across one or more compile units. Categories can also
be defined in different shared libraries. So we need to be able to quickly find all of the methods and class functions
given the Objective-C class name, or quickly find all methods and class functions for a class + category name. This
table does not contain any selector names, it just maps Objective-C class names (or class names + category) to all of
the methods and class functions. The selectors are added as function basenames in the “.debug_names” section.

In the “.apple_names” section for Objective-C functions, the full name is the entire function name
with the brackets (“-[NSString stringWithCString:]”) and the basename is the selector only
(“stringWithCString:”).
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Mach-O Changes

The sections names for the apple hash tables are for non-mach-o files. For mach-o files, the sections should be
contained in the __DWARF segment with names as follows:

• “.apple_names” -> “__apple_names“

• “.apple_types” -> “__apple_types“

• “.apple_namespaces” -> “__apple_namespac” (16 character limit)

• “.apple_objc” -> “__apple_objc“

CodeView Debug Info Format

LLVM supports emitting CodeView, the Microsoft debug info format, and this section describes the design and imple-
mentation of that support.

Format Background

CodeView as a format is clearly oriented around C++ debugging, and in C++, the majority of debug information tends
to be type information. Therefore, the overriding design constraint of CodeView is the separation of type information
from other “symbol” information so that type information can be efficiently merged across translation units. Both type
information and symbol information is generally stored as a sequence of records, where each record begins with a
16-bit record size and a 16-bit record kind.

Type information is usually stored in the .debug$T section of the object file. All other debug info, such as line
info, string table, symbol info, and inlinee info, is stored in one or more .debug$S sections. There may only be one
.debug$T section per object file, since all other debug info refers to it. If a PDB (enabled by the /Zi MSVC option)
was used during compilation, the .debug$T section will contain only an LF_TYPESERVER2 record pointing to the
PDB. When using PDBs, symbol information appears to remain in the object file .debug$S sections.

Type records are referred to by their index, which is the number of records in the stream before a given record plus
0x1000. Many common basic types, such as the basic integral types and unqualified pointers to them, are represented
using type indices less than 0x1000. Such basic types are built in to CodeView consumers and do not require type
records.

Each type record may only contain type indices that are less than its own type index. This ensures that the graph of type
stream references is acyclic. While the source-level type graph may contain cycles through pointer types (consider a
linked list struct), these cycles are removed from the type stream by always referring to the forward declaration record
of user-defined record types. Only “symbol” records in the .debug$S streams may refer to complete, non-forward-
declaration type records.

Working with CodeView

These are instructions for some common tasks for developers working to improve LLVM’s CodeView support. Most
of them revolve around using the CodeView dumper embedded in llvm-readobj.

• Testing MSVC’s output:

$ cl -c -Z7 foo.cpp # Use /Z7 to keep types in the object file
$ llvm-readobj -codeview foo.obj

• Getting LLVM IR debug info out of Clang:
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$ clang -g -gcodeview --target=x86_64-windows-msvc foo.cpp -S -emit-llvm

Use this to generate LLVM IR for LLVM test cases.

• Generate and dump CodeView from LLVM IR metadata:

$ llc foo.ll -filetype=obj -o foo.obj
$ llvm-readobj -codeview foo.obj > foo.txt

Use this pattern in lit test cases and FileCheck the output of llvm-readobj

Improving LLVM’s CodeView support is a process of finding interesting type records, constructing a C++ test case that
makes MSVC emit those records, dumping the records, understanding them, and then generating equivalent records
in LLVM’s backend.

Auto-Vectorization in LLVM

• The Loop Vectorizer

– Usage

* Command line flags

* Pragma loop hint directives

– Diagnostics

– Features

* Loops with unknown trip count

* Runtime Checks of Pointers

* Reductions

* Inductions

* If Conversion

* Pointer Induction Variables

* Reverse Iterators

* Scatter / Gather

* Vectorization of Mixed Types

* Global Structures Alias Analysis

* Vectorization of function calls

* Partial unrolling during vectorization

– Performance

• The SLP Vectorizer

– Details

– Usage
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LLVM has two vectorizers: The Loop Vectorizer, which operates on Loops, and the SLP Vectorizer. These vectorizers
focus on different optimization opportunities and use different techniques. The SLP vectorizer merges multiple scalars
that are found in the code into vectors while the Loop Vectorizer widens instructions in loops to operate on multiple
consecutive iterations.

Both the Loop Vectorizer and the SLP Vectorizer are enabled by default.

The Loop Vectorizer

Usage

The Loop Vectorizer is enabled by default, but it can be disabled through clang using the command line flag:

$ clang ... -fno-vectorize file.c

Command line flags

The loop vectorizer uses a cost model to decide on the optimal vectorization factor and unroll factor. However, users
of the vectorizer can force the vectorizer to use specific values. Both ‘clang’ and ‘opt’ support the flags below.

Users can control the vectorization SIMD width using the command line flag “-force-vector-width”.

$ clang -mllvm -force-vector-width=8 ...
$ opt -loop-vectorize -force-vector-width=8 ...

Users can control the unroll factor using the command line flag “-force-vector-unroll”

$ clang -mllvm -force-vector-unroll=2 ...
$ opt -loop-vectorize -force-vector-unroll=2 ...

Pragma loop hint directives

The #pragma clang loop directive allows loop vectorization hints to be specified for the subsequent for, while,
do-while, or c++11 range-based for loop. The directive allows vectorization and interleaving to be enabled or disabled.
Vector width as well as interleave count can also be manually specified. The following example explicitly enables
vectorization and interleaving:

#pragma clang loop vectorize(enable) interleave(enable)
while(...) {

...
}

The following example implicitly enables vectorization and interleaving by specifying a vector width and interleaving
count:

#pragma clang loop vectorize_width(2) interleave_count(2)
for(...) {

...
}

See the Clang language extensions for details.
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Diagnostics

Many loops cannot be vectorized including loops with complicated control flow, unvectorizable types, and unvector-
izable calls. The loop vectorizer generates optimization remarks which can be queried using command line options to
identify and diagnose loops that are skipped by the loop-vectorizer.

Optimization remarks are enabled using:

-Rpass=loop-vectorize identifies loops that were successfully vectorized.

-Rpass-missed=loop-vectorize identifies loops that failed vectorization and indicates if vectorization was
specified.

-Rpass-analysis=loop-vectorize identifies the statements that caused vectorization to fail.

Consider the following loop:

#pragma clang loop vectorize(enable)
for (int i = 0; i < Length; i++) {
switch(A[i]) {
case 0: A[i] = i*2; break;
case 1: A[i] = i; break;
default: A[i] = 0;
}

}

The command line -Rpass-missed=loop-vectorized prints the remark:

no_switch.cpp:4:5: remark: loop not vectorized: vectorization is explicitly enabled [-
→˓Rpass-missed=loop-vectorize]

And the command line -Rpass-analysis=loop-vectorize indicates that the switch statement cannot be
vectorized.

no_switch.cpp:4:5: remark: loop not vectorized: loop contains a switch statement [-
→˓Rpass-analysis=loop-vectorize]
switch(A[i]) {
^

To ensure line and column numbers are produced include the command line options -gline-tables-only and
-gcolumn-info. See the Clang user manual for details

Features

The LLVM Loop Vectorizer has a number of features that allow it to vectorize complex loops.

Loops with unknown trip count

The Loop Vectorizer supports loops with an unknown trip count. In the loop below, the iteration start and finish
points are unknown, and the Loop Vectorizer has a mechanism to vectorize loops that do not start at zero. In this
example, ‘n’ may not be a multiple of the vector width, and the vectorizer has to execute the last few iterations as
scalar code. Keeping a scalar copy of the loop increases the code size.

void bar(float *A, float* B, float K, int start, int end) {
for (int i = start; i < end; ++i)
A[i] *= B[i] + K;

}
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Runtime Checks of Pointers

In the example below, if the pointers A and B point to consecutive addresses, then it is illegal to vectorize the code
because some elements of A will be written before they are read from array B.

Some programmers use the ‘restrict’ keyword to notify the compiler that the pointers are disjointed, but in our example,
the Loop Vectorizer has no way of knowing that the pointers A and B are unique. The Loop Vectorizer handles this
loop by placing code that checks, at runtime, if the arrays A and B point to disjointed memory locations. If arrays A
and B overlap, then the scalar version of the loop is executed.

void bar(float *A, float* B, float K, int n) {
for (int i = 0; i < n; ++i)
A[i] *= B[i] + K;

}

Reductions

In this example the sum variable is used by consecutive iterations of the loop. Normally, this would prevent vectoriza-
tion, but the vectorizer can detect that ‘sum’ is a reduction variable. The variable ‘sum’ becomes a vector of integers,
and at the end of the loop the elements of the array are added together to create the correct result. We support a number
of different reduction operations, such as addition, multiplication, XOR, AND and OR.

int foo(int *A, int *B, int n) {
unsigned sum = 0;
for (int i = 0; i < n; ++i)
sum += A[i] + 5;

return sum;
}

We support floating point reduction operations when -ffast-math is used.

Inductions

In this example the value of the induction variable i is saved into an array. The Loop Vectorizer knows to vectorize
induction variables.

void bar(float *A, float* B, float K, int n) {
for (int i = 0; i < n; ++i)
A[i] = i;

}

If Conversion

The Loop Vectorizer is able to “flatten” the IF statement in the code and generate a single stream of instructions. The
Loop Vectorizer supports any control flow in the innermost loop. The innermost loop may contain complex nesting of
IFs, ELSEs and even GOTOs.

int foo(int *A, int *B, int n) {
unsigned sum = 0;
for (int i = 0; i < n; ++i)
if (A[i] > B[i])

sum += A[i] + 5;
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return sum;
}

Pointer Induction Variables

This example uses the “accumulate” function of the standard c++ library. This loop uses C++ iterators, which are
pointers, and not integer indices. The Loop Vectorizer detects pointer induction variables and can vectorize this loop.
This feature is important because many C++ programs use iterators.

int baz(int *A, int n) {
return std::accumulate(A, A + n, 0);

}

Reverse Iterators

The Loop Vectorizer can vectorize loops that count backwards.

int foo(int *A, int *B, int n) {
for (int i = n; i > 0; --i)
A[i] +=1;

}

Scatter / Gather

The Loop Vectorizer can vectorize code that becomes a sequence of scalar instructions that scatter/gathers memory.

int foo(int * A, int * B, int n) {
for (intptr_t i = 0; i < n; ++i)

A[i] += B[i * 4];
}

In many situations the cost model will inform LLVM that this is not beneficial and LLVM will only vectorize such
code if forced with “-mllvm -force-vector-width=#”.

Vectorization of Mixed Types

The Loop Vectorizer can vectorize programs with mixed types. The Vectorizer cost model can estimate the cost of the
type conversion and decide if vectorization is profitable.

int foo(int *A, char *B, int n, int k) {
for (int i = 0; i < n; ++i)
A[i] += 4 * B[i];

}

Global Structures Alias Analysis

Access to global structures can also be vectorized, with alias analysis being used to make sure accesses don’t alias.
Run-time checks can also be added on pointer access to structure members.
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Many variations are supported, but some that rely on undefined behaviour being ignored (as other compilers do) are
still being left un-vectorized.

struct { int A[100], K, B[100]; } Foo;

int foo() {
for (int i = 0; i < 100; ++i)
Foo.A[i] = Foo.B[i] + 100;

}

Vectorization of function calls

The Loop Vectorize can vectorize intrinsic math functions. See the table below for a list of these functions.

pow exp exp2
sin cos sqrt
log log2 log10
fabs floor ceil
fma trunc nearbyint

fmuladd

The loop vectorizer knows about special instructions on the target and will vectorize a loop containing a function call
that maps to the instructions. For example, the loop below will be vectorized on Intel x86 if the SSE4.1 roundps
instruction is available.

void foo(float *f) {
for (int i = 0; i != 1024; ++i)
f[i] = floorf(f[i]);

}

Partial unrolling during vectorization

Modern processors feature multiple execution units, and only programs that contain a high degree of parallelism can
fully utilize the entire width of the machine. The Loop Vectorizer increases the instruction level parallelism (ILP) by
performing partial-unrolling of loops.

In the example below the entire array is accumulated into the variable ‘sum’. This is inefficient because only a single
execution port can be used by the processor. By unrolling the code the Loop Vectorizer allows two or more execution
ports to be used simultaneously.

int foo(int *A, int *B, int n) {
unsigned sum = 0;
for (int i = 0; i < n; ++i)

sum += A[i];
return sum;

}

The Loop Vectorizer uses a cost model to decide when it is profitable to unroll loops. The decision to unroll the loop
depends on the register pressure and the generated code size.

Performance

This section shows the execution time of Clang on a simple benchmark: gcc-loops. This benchmarks is a collection of
loops from the GCC autovectorization page by Dorit Nuzman.
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The chart below compares GCC-4.7, ICC-13, and Clang-SVN with and without loop vectorization at -O3, tuned for
“corei7-avx”, running on a Sandybridge iMac. The Y-axis shows the time in msec. Lower is better. The last column
shows the geomean of all the kernels.

And Linpack-pc with the same configuration. Result is Mflops, higher is better.

The SLP Vectorizer
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Details

The goal of SLP vectorization (a.k.a. superword-level parallelism) is to combine similar independent instructions into
vector instructions. Memory accesses, arithmetic operations, comparison operations, PHI-nodes, can all be vectorized
using this technique.

For example, the following function performs very similar operations on its inputs (a1, b1) and (a2, b2). The basic-
block vectorizer may combine these into vector operations.

void foo(int a1, int a2, int b1, int b2, int *A) {
A[0] = a1*(a1 + b1)/b1 + 50*b1/a1;
A[1] = a2*(a2 + b2)/b2 + 50*b2/a2;

}

The SLP-vectorizer processes the code bottom-up, across basic blocks, in search of scalars to combine.

Usage

The SLP Vectorizer is enabled by default, but it can be disabled through clang using the command line flag:

$ clang -fno-slp-vectorize file.c

LLVM has a second basic block vectorization phase which is more compile-time intensive (The BB vectorizer). This
optimization can be enabled through clang using the command line flag:

$ clang -fslp-vectorize-aggressive file.c

Writing an LLVM Backend

How To Use Instruction Mappings

• Introduction

• InstrMapping Class Overview

– Sample Example

Introduction

This document contains information about adding instruction mapping support for a target. The motivation behind
this feature comes from the need to switch between different instruction formats during various optimizations. One
approach could be to use switch cases which list all the instructions along with formats they can transition to. However,
it has large maintenance overhead because of the hardcoded instruction names. Also, whenever a new instruction is
added in the .td files, all the relevant switch cases should be modified accordingly. Instead, the same functionality
could be achieved with TableGen and some support from the .td files for a fraction of maintenance cost.

InstrMapping Class Overview

TableGen uses relationship models to map instructions with each other. These models are described using
InstrMapping class as a base. Each model sets various fields of the InstrMapping class such that they
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can uniquely describe all the instructions using that model. TableGen parses all the relation models and uses the
information to construct relation tables which relate instructions with each other. These tables are emitted in the
XXXInstrInfo.inc file along with the functions to query them. Following is the definition of InstrMapping
class definied in Target.td file:

class InstrMapping {
// Used to reduce search space only to the instructions using this
// relation model.
string FilterClass;

// List of fields/attributes that should be same for all the instructions in
// a row of the relation table. Think of this as a set of properties shared
// by all the instructions related by this relationship.
list<string> RowFields = [];

// List of fields/attributes that are same for all the instructions
// in a column of the relation table.
list<string> ColFields = [];

// Values for the fields/attributes listed in 'ColFields' corresponding to
// the key instruction. This is the instruction that will be transformed
// using this relation model.
list<string> KeyCol = [];

// List of values for the fields/attributes listed in 'ColFields', one for
// each column in the relation table. These are the instructions a key
// instruction will be transformed into.
list<list<string> > ValueCols = [];

}

Sample Example

Let’s say that we want to have a function int getPredOpcode(uint16_t Opcode, enum PredSense
inPredSense) which takes a non-predicated instruction and returns its predicated true or false form depending on
some input flag, inPredSense. The first step in the process is to define a relationship model that relates predicated
instructions to their non-predicated form by assigning appropriate values to the InstrMapping fields. For this
relationship, non-predicated instructions are treated as key instruction since they are the one used to query the interface
function.

def getPredOpcode : InstrMapping {
// Choose a FilterClass that is used as a base class for all the
// instructions modeling this relationship. This is done to reduce the
// search space only to these set of instructions.
let FilterClass = "PredRel";

// Instructions with same values for all the fields in RowFields form a
// row in the resulting relation table.
// For example, if we want to relate 'ADD' (non-predicated) with 'Add_pt'
// (predicated true) and 'Add_pf' (predicated false), then all 3
// instructions need to have same value for BaseOpcode field. It can be any
// unique value (Ex: XYZ) and should not be shared with any other
// instruction not related to 'add'.
let RowFields = ["BaseOpcode"];

// List of attributes that can be used to define key and column instructions
// for a relation. Key instruction is passed as an argument
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// to the function used for querying relation tables. Column instructions
// are the instructions they (key) can transform into.
//
// Here, we choose 'PredSense' as ColFields since this is the unique
// attribute of the key (non-predicated) and column (true/false)
// instructions involved in this relationship model.
let ColFields = ["PredSense"];

// The key column contains non-predicated instructions.
let KeyCol = ["none"];

// Two value columns - first column contains instructions with
// PredSense=true while second column has instructions with PredSense=false.
let ValueCols = [["true"], ["false"]];

}

TableGen uses the above relationship model to emit relation table that maps non-predicated instructions with their
predicated forms. It also outputs the interface function int getPredOpcode(uint16_t Opcode, enum
PredSense inPredSense) to query the table. Here, Function getPredOpcode takes two arguments, op-
code of the current instruction and PredSense of the desired instruction, and returns predicated form of the instruction,
if found in the relation table. In order for an instruction to be added into the relation table, it needs to include relevant
information in its definition. For example, consider following to be the current definitions of ADD, ADD_pt (true)
and ADD_pf (false) instructions:

def ADD : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$a, IntRegs:$b),
"$dst = add($a, $b)",
[(set (i32 IntRegs:$dst), (add (i32 IntRegs:$a),

(i32 IntRegs:$b)))]>;

def ADD_Pt : ALU32_rr<(outs IntRegs:$dst),
(ins PredRegs:$p, IntRegs:$a, IntRegs:$b),

"if ($p) $dst = add($a, $b)",
[]>;

def ADD_Pf : ALU32_rr<(outs IntRegs:$dst),
(ins PredRegs:$p, IntRegs:$a, IntRegs:$b),

"if (!$p) $dst = add($a, $b)",
[]>;

In this step, we modify these instructions to include the information required by the relationship model,
<tt>getPredOpcode</tt>, so that they can be related.

def ADD : PredRel, ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$a, IntRegs:$b),
"$dst = add($a, $b)",
[(set (i32 IntRegs:$dst), (add (i32 IntRegs:$a),

(i32 IntRegs:$b)))]> {
let BaseOpcode = "ADD";
let PredSense = "none";

}

def ADD_Pt : PredRel, ALU32_rr<(outs IntRegs:$dst),
(ins PredRegs:$p, IntRegs:$a, IntRegs:$b),

"if ($p) $dst = add($a, $b)",
[]> {

let BaseOpcode = "ADD";
let PredSense = "true";

}
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def ADD_Pf : PredRel, ALU32_rr<(outs IntRegs:$dst),
(ins PredRegs:$p, IntRegs:$a, IntRegs:$b),

"if (!$p) $dst = add($a, $b)",
[]> {

let BaseOpcode = "ADD";
let PredSense = "false";

}

Please note that all the above instructions use PredRel as a base class. This is extremely important since TableGen
uses it as a filter for selecting instructions for getPredOpcode model. Any instruction not derived from PredRel
is excluded from the analysis. BaseOpcode is another important field. Since it’s selected as a RowFields of the
model, it is required to have the same value for all 3 instructions in order to be related. Next, PredSense is used
to determine their column positions by comparing its value with KeyCol and ValueCols. If an instruction sets its
PredSense value to something not used in the relation model, it will not be assigned a column in the relation table.

• Introduction

– Audience

– Prerequisite Reading

– Basic Steps

– Preliminaries

• Target Machine

• Target Registration

• Register Set and Register Classes

– Defining a Register

– Defining a Register Class

– Implement a subclass of TargetRegisterInfo

• Instruction Set

– Instruction Operand Mapping

* Instruction Operand Name Mapping

* Instruction Operand Types

– Instruction Scheduling

– Instruction Relation Mapping

– Implement a subclass of TargetInstrInfo

– Branch Folding and If Conversion

• Instruction Selector

– The SelectionDAG Legalize Phase

* Promote

* Expand

* Custom
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* Legal

– Calling Conventions

• Assembly Printer

• Subtarget Support

• JIT Support

– Machine Code Emitter

– Target JIT Info

Introduction

This document describes techniques for writing compiler backends that convert the LLVM Intermediate Representation
(IR) to code for a specified machine or other languages. Code intended for a specific machine can take the form of
either assembly code or binary code (usable for a JIT compiler).

The backend of LLVM features a target-independent code generator that may create output for several types of target
CPUs — including X86, PowerPC, ARM, and SPARC. The backend may also be used to generate code targeted at
SPUs of the Cell processor or GPUs to support the execution of compute kernels.

The document focuses on existing examples found in subdirectories of llvm/lib/Target in a downloaded LLVM
release. In particular, this document focuses on the example of creating a static compiler (one that emits text as-
sembly) for a SPARC target, because SPARC has fairly standard characteristics, such as a RISC instruction set and
straightforward calling conventions.

Audience

The audience for this document is anyone who needs to write an LLVM backend to generate code for a specific
hardware or software target.

Prerequisite Reading

These essential documents must be read before reading this document:

• LLVM Language Reference Manual — a reference manual for the LLVM assembly language.

• The LLVM Target-Independent Code Generator — a guide to the components (classes and code generation algo-
rithms) for translating the LLVM internal representation into machine code for a specified target. Pay particular
attention to the descriptions of code generation stages: Instruction Selection, Scheduling and Formation, SSA-
based Optimization, Register Allocation, Prolog/Epilog Code Insertion, Late Machine Code Optimizations, and
Code Emission.

• TableGen — a document that describes the TableGen (tblgen) application that manages domain-specific in-
formation to support LLVM code generation. TableGen processes input from a target description file (.td
suffix) and generates C++ code that can be used for code generation.

• Writing an LLVM Pass — The assembly printer is a FunctionPass, as are several SelectionDAG pro-
cessing steps.

To follow the SPARC examples in this document, have a copy of The SPARC Architecture Manual, Version 8 for
reference. For details about the ARM instruction set, refer to the ARM Architecture Reference Manual. For more
about the GNU Assembler format (GAS), see Using As, especially for the assembly printer. “Using As” contains a list
of target machine dependent features.
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Basic Steps

To write a compiler backend for LLVM that converts the LLVM IR to code for a specified target (machine or other
language), follow these steps:

• Create a subclass of the TargetMachine class that describes characteristics of your target machine.
Copy existing examples of specific TargetMachine class and header files; for example, start with
SparcTargetMachine.cpp and SparcTargetMachine.h, but change the file names for your target.
Similarly, change code that references “Sparc” to reference your target.

• Describe the register set of the target. Use TableGen to generate code for register definition, register aliases, and
register classes from a target-specific RegisterInfo.td input file. You should also write additional code
for a subclass of the TargetRegisterInfo class that represents the class register file data used for register
allocation and also describes the interactions between registers.

• Describe the instruction set of the target. Use TableGen to generate code for target-specific instructions from
target-specific versions of TargetInstrFormats.td and TargetInstrInfo.td. You should write
additional code for a subclass of the TargetInstrInfo class to represent machine instructions supported by
the target machine.

• Describe the selection and conversion of the LLVM IR from a Directed Acyclic Graph (DAG) representation
of instructions to native target-specific instructions. Use TableGen to generate code that matches patterns and
selects instructions based on additional information in a target-specific version of TargetInstrInfo.td.
Write code for XXXISelDAGToDAG.cpp, where XXX identifies the specific target, to perform pattern match-
ing and DAG-to-DAG instruction selection. Also write code in XXXISelLowering.cpp to replace or remove
operations and data types that are not supported natively in a SelectionDAG.

• Write code for an assembly printer that converts LLVM IR to a GAS format for your target machine. You should
add assembly strings to the instructions defined in your target-specific version of TargetInstrInfo.td.
You should also write code for a subclass of AsmPrinter that performs the LLVM-to-assembly conversion
and a trivial subclass of TargetAsmInfo.

• Optionally, add support for subtargets (i.e., variants with different capabilities). You should also write code for a
subclass of the TargetSubtarget class, which allows you to use the -mcpu= and -mattr= command-line
options.

• Optionally, add JIT support and create a machine code emitter (subclass of TargetJITInfo) that is used to
emit binary code directly into memory.

In the .cpp and .h. files, initially stub up these methods and then implement them later. Initially, you may not know
which private members that the class will need and which components will need to be subclassed.

Preliminaries

To actually create your compiler backend, you need to create and modify a few files. The absolute minimum is
discussed here. But to actually use the LLVM target-independent code generator, you must perform the steps described
in the LLVM Target-Independent Code Generator document.

First, you should create a subdirectory under lib/Target to hold all the files related to your target. If your target is
called “Dummy”, create the directory lib/Target/Dummy.

In this new directory, create a CMakeLists.txt. It is easiest to copy a CMakeLists.txt of another target
and modify it. It should at least contain the LLVM_TARGET_DEFINITIONS variable. The library can be named
LLVMDummy (for example, see the MIPS target). Alternatively, you can split the library into LLVMDummyCodeGen
and LLVMDummyAsmPrinter, the latter of which should be implemented in a subdirectory below lib/Target/
Dummy (for example, see the PowerPC target).

Note that these two naming schemes are hardcoded into llvm-config. Using any other naming scheme will confuse
llvm-config and produce a lot of (seemingly unrelated) linker errors when linking llc.
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To make your target actually do something, you need to implement a subclass of TargetMachine. This implementa-
tion should typically be in the file lib/Target/DummyTargetMachine.cpp, but any file in the lib/Target
directory will be built and should work. To use LLVM’s target independent code generator, you should do what all
current machine backends do: create a subclass of LLVMTargetMachine. (To create a target from scratch, create a
subclass of TargetMachine.)

To get LLVM to actually build and link your target, you need to run cmake with
-DLLVM_EXPERIMENTAL_TARGETS_TO_BUILD=Dummy. This will build your target without needing to
add it to the list of all the targets.

Once your target is stable, you can add it to the LLVM_ALL_TARGETS variable located in the main CMakeLists.
txt.

Target Machine

LLVMTargetMachine is designed as a base class for targets implemented with the LLVM target-independent code
generator. The LLVMTargetMachine class should be specialized by a concrete target class that implements the
various virtual methods. LLVMTargetMachine is defined as a subclass of TargetMachine in include/
llvm/Target/TargetMachine.h. The TargetMachine class implementation (TargetMachine.cpp)
also processes numerous command-line options.

To create a concrete target-specific subclass of LLVMTargetMachine, start by copying an existing
TargetMachine class and header. You should name the files that you create to reflect your specific target. For
instance, for the SPARC target, name the files SparcTargetMachine.h and SparcTargetMachine.cpp.

For a target machine XXX, the implementation of XXXTargetMachine must have access methods to obtain objects
that represent target components. These methods are named get*Info, and are intended to obtain the instruction
set (getInstrInfo), register set (getRegisterInfo), stack frame layout (getFrameInfo), and similar in-
formation. XXXTargetMachine must also implement the getDataLayout method to access an object with
target-specific data characteristics, such as data type size and alignment requirements.

For instance, for the SPARC target, the header file SparcTargetMachine.h declares prototypes for several
get*Info and getDataLayout methods that simply return a class member.

namespace llvm {

class Module;

class SparcTargetMachine : public LLVMTargetMachine {
const DataLayout DataLayout; // Calculates type size & alignment
SparcSubtarget Subtarget;
SparcInstrInfo InstrInfo;
TargetFrameInfo FrameInfo;

protected:
virtual const TargetAsmInfo *createTargetAsmInfo() const;

public:
SparcTargetMachine(const Module &M, const std::string &FS);

virtual const SparcInstrInfo *getInstrInfo() const {return &InstrInfo; }
virtual const TargetFrameInfo *getFrameInfo() const {return &FrameInfo; }
virtual const TargetSubtarget *getSubtargetImpl() const{return &Subtarget; }
virtual const TargetRegisterInfo *getRegisterInfo() const {
return &InstrInfo.getRegisterInfo();

}
virtual const DataLayout *getDataLayout() const { return &DataLayout; }
static unsigned getModuleMatchQuality(const Module &M);
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// Pass Pipeline Configuration
virtual bool addInstSelector(PassManagerBase &PM, bool Fast);
virtual bool addPreEmitPass(PassManagerBase &PM, bool Fast);

};

} // end namespace llvm

• getInstrInfo()

• getRegisterInfo()

• getFrameInfo()

• getDataLayout()

• getSubtargetImpl()

For some targets, you also need to support the following methods:

• getTargetLowering()

• getJITInfo()

Some architectures, such as GPUs, do not support jumping to an arbitrary program location and implement branching
using masked execution and loop using special instructions around the loop body. In order to avoid CFG modifica-
tions that introduce irreducible control flow not handled by such hardware, a target must call setRequiresStructured-
CFG(true) when being initialized.

In addition, the XXXTargetMachine constructor should specify a TargetDescription string that determines
the data layout for the target machine, including characteristics such as pointer size, alignment, and endianness. For
example, the constructor for SparcTargetMachine contains the following:

SparcTargetMachine::SparcTargetMachine(const Module &M, const std::string &FS)
: DataLayout("E-p:32:32-f128:128:128"),
Subtarget(M, FS), InstrInfo(Subtarget),
FrameInfo(TargetFrameInfo::StackGrowsDown, 8, 0) {

}

Hyphens separate portions of the TargetDescription string.

• An upper-case “E” in the string indicates a big-endian target data model. A lower-case “e” indicates little-
endian.

• “p:” is followed by pointer information: size, ABI alignment, and preferred alignment. If only two figures
follow “p:”, then the first value is pointer size, and the second value is both ABI and preferred alignment.

• Then a letter for numeric type alignment: “i”, “f”, “v”, or “a” (corresponding to integer, floating point, vector,
or aggregate). “i”, “v”, or “a” are followed by ABI alignment and preferred alignment. “f” is followed by
three values: the first indicates the size of a long double, then ABI alignment, and then ABI preferred alignment.

Target Registration

You must also register your target with the TargetRegistry, which is what other LLVM tools use to be able to
lookup and use your target at runtime. The TargetRegistry can be used directly, but for most targets there are
helper templates which should take care of the work for you.

All targets should declare a global Target object which is used to represent the target during registration. Then, in
the target’s TargetInfo library, the target should define that object and use the RegisterTarget template to
register the target. For example, the Sparc registration code looks like this:
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Target llvm::TheSparcTarget;

extern "C" void LLVMInitializeSparcTargetInfo() {
RegisterTarget<Triple::sparc, /*HasJIT=*/false>
X(TheSparcTarget, "sparc", "Sparc");

}

This allows the TargetRegistry to look up the target by name or by target triple. In addition, most targets will
also register additional features which are available in separate libraries. These registration steps are separate, because
some clients may wish to only link in some parts of the target — the JIT code generator does not require the use of the
assembler printer, for example. Here is an example of registering the Sparc assembly printer:

extern "C" void LLVMInitializeSparcAsmPrinter() {
RegisterAsmPrinter<SparcAsmPrinter> X(TheSparcTarget);

}

For more information, see “llvm/Target/TargetRegistry.h”.

Register Set and Register Classes

You should describe a concrete target-specific class that represents the register file of a target machine. This class is
called XXXRegisterInfo (where XXX identifies the target) and represents the class register file data that is used
for register allocation. It also describes the interactions between registers.

You also need to define register classes to categorize related registers. A register class should be added for groups
of registers that are all treated the same way for some instruction. Typical examples are register classes for integer,
floating-point, or vector registers. A register allocator allows an instruction to use any register in a specified register
class to perform the instruction in a similar manner. Register classes allocate virtual registers to instructions from these
sets, and register classes let the target-independent register allocator automatically choose the actual registers.

Much of the code for registers, including register definition, register aliases, and register classes, is generated
by TableGen from XXXRegisterInfo.td input files and placed in XXXGenRegisterInfo.h.inc and
XXXGenRegisterInfo.inc output files. Some of the code in the implementation of XXXRegisterInfo re-
quires hand-coding.

Defining a Register

The XXXRegisterInfo.td file typically starts with register definitions for a target machine. The Register class
(specified in Target.td) is used to define an object for each register. The specified string n becomes the Name of
the register. The basic Register object does not have any subregisters and does not specify any aliases.

class Register<string n> {
string Namespace = "";
string AsmName = n;
string Name = n;
int SpillSize = 0;
int SpillAlignment = 0;
list<Register> Aliases = [];
list<Register> SubRegs = [];
list<int> DwarfNumbers = [];

}

For example, in the X86RegisterInfo.td file, there are register definitions that utilize the Register class, such
as:
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def AL : Register<"AL">, DwarfRegNum<[0, 0, 0]>;

This defines the register AL and assigns it values (with DwarfRegNum) that are used by gcc, gdb, or a debug
information writer to identify a register. For register AL, DwarfRegNum takes an array of 3 values representing 3
different modes: the first element is for X86-64, the second for exception handling (EH) on X86-32, and the third is
generic. -1 is a special Dwarf number that indicates the gcc number is undefined, and -2 indicates the register number
is invalid for this mode.

From the previously described line in the X86RegisterInfo.td file, TableGen generates this code in the
X86GenRegisterInfo.inc file:

static const unsigned GR8[] = { X86::AL, ... };

const unsigned AL_AliasSet[] = { X86::AX, X86::EAX, X86::RAX, 0 };

const TargetRegisterDesc RegisterDescriptors[] = {
...

{ "AL", "AL", AL_AliasSet, Empty_SubRegsSet, Empty_SubRegsSet, AL_SuperRegsSet }, ...

From the register info file, TableGen generates a TargetRegisterDesc object for each register.
TargetRegisterDesc is defined in include/llvm/Target/TargetRegisterInfo.h with the follow-
ing fields:

struct TargetRegisterDesc {
const char *AsmName; // Assembly language name for the register
const char *Name; // Printable name for the reg (for debugging)
const unsigned *AliasSet; // Register Alias Set
const unsigned *SubRegs; // Sub-register set
const unsigned *ImmSubRegs; // Immediate sub-register set
const unsigned *SuperRegs; // Super-register set

};

TableGen uses the entire target description file (.td) to determine text names for the register (in the AsmName and
Name fields of TargetRegisterDesc) and the relationships of other registers to the defined register (in the other
TargetRegisterDesc fields). In this example, other definitions establish the registers “AX”, “EAX”, and “RAX”
as aliases for one another, so TableGen generates a null-terminated array (AL_AliasSet) for this register alias set.

The Register class is commonly used as a base class for more complex classes. In Target.td, the Register
class is the base for the RegisterWithSubRegs class that is used to define registers that need to specify subregis-
ters in the SubRegs list, as shown here:

class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
let SubRegs = subregs;

}

In SparcRegisterInfo.td, additional register classes are defined for SPARC: a Register subclass,
SparcReg, and further subclasses: Ri, Rf, and Rd. SPARC registers are identified by 5-bit ID numbers, which
is a feature common to these subclasses. Note the use of “let” expressions to override values that are initially defined
in a superclass (such as SubRegs field in the Rd class).

class SparcReg<string n> : Register<n> {
field bits<5> Num;
let Namespace = "SP";

}
// Ri - 32-bit integer registers
class Ri<bits<5> num, string n> :
SparcReg<n> {
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let Num = num;
}
// Rf - 32-bit floating-point registers
class Rf<bits<5> num, string n> :
SparcReg<n> {

let Num = num;
}
// Rd - Slots in the FP register file for 64-bit floating-point values.
class Rd<bits<5> num, string n, list<Register> subregs> : SparcReg<n> {

let Num = num;
let SubRegs = subregs;

}

In the SparcRegisterInfo.td file, there are register definitions that utilize these subclasses of Register, such
as:

def G0 : Ri< 0, "G0">, DwarfRegNum<[0]>;
def G1 : Ri< 1, "G1">, DwarfRegNum<[1]>;
...
def F0 : Rf< 0, "F0">, DwarfRegNum<[32]>;
def F1 : Rf< 1, "F1">, DwarfRegNum<[33]>;
...
def D0 : Rd< 0, "F0", [F0, F1]>, DwarfRegNum<[32]>;
def D1 : Rd< 2, "F2", [F2, F3]>, DwarfRegNum<[34]>;

The last two registers shown above (D0 and D1) are double-precision floating-point registers that are aliases for pairs
of single-precision floating-point sub-registers. In addition to aliases, the sub-register and super-register relationships
of the defined register are in fields of a register’s TargetRegisterDesc.

Defining a Register Class

The RegisterClass class (specified in Target.td) is used to define an object that represents a group of related
registers and also defines the default allocation order of the registers. A target description file XXXRegisterInfo.
td that uses Target.td can construct register classes using the following class:

class RegisterClass<string namespace,
list<ValueType> regTypes, int alignment, dag regList> {

string Namespace = namespace;
list<ValueType> RegTypes = regTypes;
int Size = 0; // spill size, in bits; zero lets tblgen pick the size
int Alignment = alignment;

// CopyCost is the cost of copying a value between two registers
// default value 1 means a single instruction
// A negative value means copying is extremely expensive or impossible
int CopyCost = 1;
dag MemberList = regList;

// for register classes that are subregisters of this class
list<RegisterClass> SubRegClassList = [];

code MethodProtos = [{}]; // to insert arbitrary code
code MethodBodies = [{}];

}

To define a RegisterClass, use the following 4 arguments:
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• The first argument of the definition is the name of the namespace.

• The second argument is a list of ValueType register type values that are defined in include/llvm/
CodeGen/ValueTypes.td. Defined values include integer types (such as i16, i32, and i1 for Boolean),
floating-point types (f32, f64), and vector types (for example, v8i16 for an 8 x i16 vector). All registers
in a RegisterClass must have the same ValueType, but some registers may store vector data in different
configurations. For example a register that can process a 128-bit vector may be able to handle 16 8-bit integer
elements, 8 16-bit integers, 4 32-bit integers, and so on.

• The third argument of the RegisterClass definition specifies the alignment required of the registers when
they are stored or loaded to memory.

• The final argument, regList, specifies which registers are in this class. If an alternative allocation order
method is not specified, then regList also defines the order of allocation used by the register allocator. Be-
sides simply listing registers with (add R0, R1, ...), more advanced set operators are available. See
include/llvm/Target/Target.td for more information.

In SparcRegisterInfo.td, three RegisterClass objects are defined: FPRegs, DFPRegs, and IntRegs.
For all three register classes, the first argument defines the namespace with the string “SP”. FPRegs defines a group
of 32 single-precision floating-point registers (F0 to F31); DFPRegs defines a group of 16 double-precision registers
(D0-D15).

// F0, F1, F2, ..., F31
def FPRegs : RegisterClass<"SP", [f32], 32, (sequence "F%u", 0, 31)>;

def DFPRegs : RegisterClass<"SP", [f64], 64,
(add D0, D1, D2, D3, D4, D5, D6, D7, D8,

D9, D10, D11, D12, D13, D14, D15)>;

def IntRegs : RegisterClass<"SP", [i32], 32,
(add L0, L1, L2, L3, L4, L5, L6, L7,

I0, I1, I2, I3, I4, I5,
O0, O1, O2, O3, O4, O5, O7,
G1,
// Non-allocatable regs:
G2, G3, G4,
O6, // stack ptr
I6, // frame ptr
I7, // return address
G0, // constant zero
G5, G6, G7 // reserved for kernel

)>;

Using SparcRegisterInfo.td with TableGen generates several output files that are intended for inclusion in
other source code that you write. SparcRegisterInfo.td generates SparcGenRegisterInfo.h.inc,
which should be included in the header file for the implementation of the SPARC register implementation that
you write (SparcRegisterInfo.h). In SparcGenRegisterInfo.h.inc a new structure is defined called
SparcGenRegisterInfo that uses TargetRegisterInfo as its base. It also specifies types, based upon the
defined register classes: DFPRegsClass, FPRegsClass, and IntRegsClass.

SparcRegisterInfo.td also generates SparcGenRegisterInfo.inc, which is included at the bottom
of SparcRegisterInfo.cpp, the SPARC register implementation. The code below shows only the generated
integer registers and associated register classes. The order of registers in IntRegs reflects the order in the definition
of IntRegs in the target description file.

// IntRegs Register Class...
static const unsigned IntRegs[] = {

SP::L0, SP::L1, SP::L2, SP::L3, SP::L4, SP::L5,
SP::L6, SP::L7, SP::I0, SP::I1, SP::I2, SP::I3,
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SP::I4, SP::I5, SP::O0, SP::O1, SP::O2, SP::O3,
SP::O4, SP::O5, SP::O7, SP::G1, SP::G2, SP::G3,
SP::G4, SP::O6, SP::I6, SP::I7, SP::G0, SP::G5,
SP::G6, SP::G7,

};

// IntRegsVTs Register Class Value Types...
static const MVT::ValueType IntRegsVTs[] = {

MVT::i32, MVT::Other
};

namespace SP { // Register class instances
DFPRegsClass DFPRegsRegClass;
FPRegsClass FPRegsRegClass;
IntRegsClass IntRegsRegClass;

...
// IntRegs Sub-register Classess...
static const TargetRegisterClass* const IntRegsSubRegClasses [] = {
NULL

};
...

// IntRegs Super-register Classess...
static const TargetRegisterClass* const IntRegsSuperRegClasses [] = {
NULL

};
...

// IntRegs Register Class sub-classes...
static const TargetRegisterClass* const IntRegsSubclasses [] = {
NULL

};
...

// IntRegs Register Class super-classes...
static const TargetRegisterClass* const IntRegsSuperclasses [] = {
NULL

};

IntRegsClass::IntRegsClass() : TargetRegisterClass(IntRegsRegClassID,
IntRegsVTs, IntRegsSubclasses, IntRegsSuperclasses, IntRegsSubRegClasses,
IntRegsSuperRegClasses, 4, 4, 1, IntRegs, IntRegs + 32) {}

}

The register allocators will avoid using reserved registers, and callee saved registers are not used until all the volatile
registers have been used. That is usually good enough, but in some cases it may be necessary to provide custom
allocation orders.

Implement a subclass of TargetRegisterInfo

The final step is to hand code portions of XXXRegisterInfo, which implements the interface described in
TargetRegisterInfo.h (see The TargetRegisterInfo class). These functions return 0, NULL, or false, unless
overridden. Here is a list of functions that are overridden for the SPARC implementation in SparcRegisterInfo.
cpp:

• getCalleeSavedRegs — Returns a list of callee-saved registers in the order of the desired callee-save stack
frame offset.

• getReservedRegs— Returns a bitset indexed by physical register numbers, indicating if a particular register
is unavailable.
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• hasFP — Return a Boolean indicating if a function should have a dedicated frame pointer register.

• eliminateCallFramePseudoInstr — If call frame setup or destroy pseudo instructions are used, this
can be called to eliminate them.

• eliminateFrameIndex — Eliminate abstract frame indices from instructions that may use them.

• emitPrologue — Insert prologue code into the function.

• emitEpilogue — Insert epilogue code into the function.

Instruction Set

During the early stages of code generation, the LLVM IR code is converted to a SelectionDAG with nodes that are
instances of the SDNode class containing target instructions. An SDNode has an opcode, operands, type requirements,
and operation properties. For example, is an operation commutative, does an operation load from memory. The various
operation node types are described in the include/llvm/CodeGen/SelectionDAGNodes.h file (values of
the NodeType enum in the ISD namespace).

TableGen uses the following target description (.td) input files to generate much of the code for instruction definition:

• Target.td — Where the Instruction, Operand, InstrInfo, and other fundamental classes are de-
fined.

• TargetSelectionDAG.td — Used by SelectionDAG instruction selection generators, contains SDTC*
classes (selection DAG type constraint), definitions of SelectionDAG nodes (such as imm, cond, bb, add,
fadd, sub), and pattern support (Pattern, Pat, PatFrag, PatLeaf, ComplexPattern.

• XXXInstrFormats.td — Patterns for definitions of target-specific instructions.

• XXXInstrInfo.td — Target-specific definitions of instruction templates, condition codes, and instructions
of an instruction set. For architecture modifications, a different file name may be used. For example, for Pentium
with SSE instruction, this file is X86InstrSSE.td, and for Pentium with MMX, this file is X86InstrMMX.
td.

There is also a target-specific XXX.td file, where XXX is the name of the target. The XXX.td file includes the other
.td input files, but its contents are only directly important for subtargets.

You should describe a concrete target-specific class XXXInstrInfo that represents machine instructions supported
by a target machine. XXXInstrInfo contains an array of XXXInstrDescriptor objects, each of which de-
scribes one instruction. An instruction descriptor defines:

• Opcode mnemonic

• Number of operands

• List of implicit register definitions and uses

• Target-independent properties (such as memory access, is commutable)

• Target-specific flags

The Instruction class (defined in Target.td) is mostly used as a base for more complex instruction classes.

class Instruction {
string Namespace = "";
dag OutOperandList; // A dag containing the MI def operand list.
dag InOperandList; // A dag containing the MI use operand list.
string AsmString = ""; // The .s format to print the instruction with.
list<dag> Pattern; // Set to the DAG pattern for this instruction.
list<Register> Uses = [];
list<Register> Defs = [];
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list<Predicate> Predicates = []; // predicates turned into isel match code
... remainder not shown for space ...

}

A SelectionDAG node (SDNode) should contain an object representing a target-specific instruction that is defined
in XXXInstrInfo.td. The instruction objects should represent instructions from the architecture manual of the
target machine (such as the SPARC Architecture Manual for the SPARC target).

A single instruction from the architecture manual is often modeled as multiple target instructions, depending upon its
operands. For example, a manual might describe an add instruction that takes a register or an immediate operand. An
LLVM target could model this with two instructions named ADDri and ADDrr.

You should define a class for each instruction category and define each opcode as a subclass of the category with
appropriate parameters such as the fixed binary encoding of opcodes and extended opcodes. You should map the
register bits to the bits of the instruction in which they are encoded (for the JIT). Also you should specify how the
instruction should be printed when the automatic assembly printer is used.

As is described in the SPARC Architecture Manual, Version 8, there are three major 32-bit formats for instructions.
Format 1 is only for the CALL instruction. Format 2 is for branch on condition codes and SETHI (set high bits of a
register) instructions. Format 3 is for other instructions.

Each of these formats has corresponding classes in SparcInstrFormat.td. InstSP is a base class for
other instruction classes. Additional base classes are specified for more precise formats: for example in
SparcInstrFormat.td, F2_1 is for SETHI, and F2_2 is for branches. There are three other base classes:
F3_1 for register/register operations, F3_2 for register/immediate operations, and F3_3 for floating-point opera-
tions. SparcInstrInfo.td also adds the base class Pseudo for synthetic SPARC instructions.

SparcInstrInfo.td largely consists of operand and instruction definitions for the SPARC target. In
SparcInstrInfo.td, the following target description file entry, LDrr, defines the Load Integer instruction for a
Word (the LD SPARC opcode) from a memory address to a register. The first parameter, the value 3 (112), is the opera-
tion value for this category of operation. The second parameter (0000002) is the specific operation value for LD/Load
Word. The third parameter is the output destination, which is a register operand and defined in the Register target
description file (IntRegs).

def LDrr : F3_1 <3, 0b000000, (outs IntRegs:$dst), (ins MEMrr:$addr),
"ld [$addr], $dst",
[(set i32:$dst, (load ADDRrr:$addr))]>;

The fourth parameter is the input source, which uses the address operand MEMrr that is defined earlier in
SparcInstrInfo.td:

def MEMrr : Operand<i32> {
let PrintMethod = "printMemOperand";
let MIOperandInfo = (ops IntRegs, IntRegs);

}

The fifth parameter is a string that is used by the assembly printer and can be left as an empty string until the assembly
printer interface is implemented. The sixth and final parameter is the pattern used to match the instruction during the
SelectionDAG Select Phase described in The LLVM Target-Independent Code Generator. This parameter is detailed
in the next section, Instruction Selector.

Instruction class definitions are not overloaded for different operand types, so separate versions of instructions are
needed for register, memory, or immediate value operands. For example, to perform a Load Integer instruction for a
Word from an immediate operand to a register, the following instruction class is defined:

def LDri : F3_2 <3, 0b000000, (outs IntRegs:$dst), (ins MEMri:$addr),
"ld [$addr], $dst",
[(set i32:$dst, (load ADDRri:$addr))]>;

1080 Chapter 4. Subsystem Documentation



LLVM Documentation, Release 3.9

Writing these definitions for so many similar instructions can involve a lot of cut and paste. In .td files, the
multiclass directive enables the creation of templates to define several instruction classes at once (using the
defm directive). For example in SparcInstrInfo.td, the multiclass pattern F3_12 is defined to create
2 instruction classes each time F3_12 is invoked:

multiclass F3_12 <string OpcStr, bits<6> Op3Val, SDNode OpNode> {
def rr : F3_1 <2, Op3Val,

(outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
!strconcat(OpcStr, " $b, $c, $dst"),
[(set i32:$dst, (OpNode i32:$b, i32:$c))]>;

def ri : F3_2 <2, Op3Val,
(outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
!strconcat(OpcStr, " $b, $c, $dst"),
[(set i32:$dst, (OpNode i32:$b, simm13:$c))]>;

}

So when the defm directive is used for the XOR and ADD instructions, as seen below, it creates four instruction objects:
XORrr, XORri, ADDrr, and ADDri.

defm XOR : F3_12<"xor", 0b000011, xor>;
defm ADD : F3_12<"add", 0b000000, add>;

SparcInstrInfo.td also includes definitions for condition codes that are referenced by branch instructions. The
following definitions in SparcInstrInfo.td indicate the bit location of the SPARC condition code. For example,
the 10th bit represents the “greater than” condition for integers, and the 22nd bit represents the “greater than” condition
for floats.

def ICC_NE : ICC_VAL< 9>; // Not Equal
def ICC_E : ICC_VAL< 1>; // Equal
def ICC_G : ICC_VAL<10>; // Greater
...
def FCC_U : FCC_VAL<23>; // Unordered
def FCC_G : FCC_VAL<22>; // Greater
def FCC_UG : FCC_VAL<21>; // Unordered or Greater
...

(Note that Sparc.h also defines enums that correspond to the same SPARC condition codes. Care must be taken to
ensure the values in Sparc.h correspond to the values in SparcInstrInfo.td. I.e., SPCC::ICC_NE = 9,
SPCC::FCC_U = 23 and so on.)

Instruction Operand Mapping

The code generator backend maps instruction operands to fields in the instruction. Operands are assigned to unbound
fields in the instruction in the order they are defined. Fields are bound when they are assigned a value. For example,
the Sparc target defines the XNORrr instruction as a F3_1 format instruction having three operands.

def XNORrr : F3_1<2, 0b000111,
(outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
"xnor $b, $c, $dst",
[(set i32:$dst, (not (xor i32:$b, i32:$c)))]>;

The instruction templates in SparcInstrFormats.td show the base class for F3_1 is InstSP.

class InstSP<dag outs, dag ins, string asmstr, list<dag> pattern> : Instruction {
field bits<32> Inst;
let Namespace = "SP";
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bits<2> op;
let Inst{31-30} = op;
dag OutOperandList = outs;
dag InOperandList = ins;
let AsmString = asmstr;
let Pattern = pattern;

}

InstSP leaves the op field unbound.

class F3<dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSP<outs, ins, asmstr, pattern> {

bits<5> rd;
bits<6> op3;
bits<5> rs1;
let op{1} = 1; // Op = 2 or 3
let Inst{29-25} = rd;
let Inst{24-19} = op3;
let Inst{18-14} = rs1;

}

F3 binds the op field and defines the rd, op3, and rs1 fields. F3 format instructions will bind the operands rd,
op3, and rs1 fields.

class F3_1<bits<2> opVal, bits<6> op3val, dag outs, dag ins,
string asmstr, list<dag> pattern> : F3<outs, ins, asmstr, pattern> {

bits<8> asi = 0; // asi not currently used
bits<5> rs2;
let op = opVal;
let op3 = op3val;
let Inst{13} = 0; // i field = 0
let Inst{12-5} = asi; // address space identifier
let Inst{4-0} = rs2;

}

F3_1 binds the op3 field and defines the rs2 fields. F3_1 format instructions will bind the operands to the rd, rs1,
and rs2 fields. This results in the XNORrr instruction binding $dst, $b, and $c operands to the rd, rs1, and rs2
fields respectively.

Instruction Operand Name Mapping

TableGen will also generate a function called getNamedOperandIdx() which can be used to look up an operand’s index
in a MachineInstr based on its TableGen name. Setting the UseNamedOperandTable bit in an instruction’s TableGen
definition will add all of its operands to an enumeration in the llvm::XXX:OpName namespace and also add an entry
for it into the OperandMap table, which can be queried using getNamedOperandIdx()

int DstIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::dst); // => 0
int BIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::b); // => 1
int CIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::c); // => 2
int DIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::d); // => -1

...

The entries in the OpName enum are taken verbatim from the TableGen definitions, so operands with lowercase names
will have lower case entries in the enum.
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To include the getNamedOperandIdx() function in your backend, you will need to define a few preprocessor macros
in XXXInstrInfo.cpp and XXXInstrInfo.h. For example:

XXXInstrInfo.cpp:

#define GET_INSTRINFO_NAMED_OPS // For getNamedOperandIdx() function
#include "XXXGenInstrInfo.inc"

XXXInstrInfo.h:

#define GET_INSTRINFO_OPERAND_ENUM // For OpName enum
#include "XXXGenInstrInfo.inc"

namespace XXX {
int16_t getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIndex);

} // End namespace XXX

Instruction Operand Types

TableGen will also generate an enumeration consisting of all named Operand types defined in the backend, in the
llvm::XXX::OpTypes namespace. Some common immediate Operand types (for instance i8, i32, i64, f32, f64) are
defined for all targets in include/llvm/Target/Target.td, and are available in each Target’s OpTypes enum.
Also, only named Operand types appear in the enumeration: anonymous types are ignored. For example, the X86
backend defines brtarget and brtarget8, both instances of the TableGen Operand class, which represent
branch target operands:

def brtarget : Operand<OtherVT>;
def brtarget8 : Operand<OtherVT>;

This results in:

namespace X86 {
namespace OpTypes {
enum OperandType {

...
brtarget,
brtarget8,
...
i32imm,
i64imm,
...
OPERAND_TYPE_LIST_END

} // End namespace OpTypes
} // End namespace X86

In typical TableGen fashion, to use the enum, you will need to define a preprocessor macro:

#define GET_INSTRINFO_OPERAND_TYPES_ENUM // For OpTypes enum
#include "XXXGenInstrInfo.inc"

Instruction Scheduling

Instruction itineraries can be queried using MCDesc::getSchedClass(). The value can be named by an enumemation
in llvm::XXX::Sched namespace generated by TableGen in XXXGenInstrInfo.inc. The name of the schedule classes
are the same as provided in XXXSchedule.td plus a default NoItinerary class.
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Instruction Relation Mapping

This TableGen feature is used to relate instructions with each other. It is particularly useful when you have multiple
instruction formats and need to switch between them after instruction selection. This entire feature is driven by relation
models which can be defined in XXXInstrInfo.td files according to the target-specific instruction set. Relation
models are defined using InstrMapping class as a base. TableGen parses all the models and generates instruction
relation maps using the specified information. Relation maps are emitted as tables in the XXXGenInstrInfo.inc
file along with the functions to query them. For the detailed information on how to use this feature, please refer to
How To Use Instruction Mappings.

Implement a subclass of TargetInstrInfo

The final step is to hand code portions of XXXInstrInfo, which implements the interface described in
TargetInstrInfo.h (see The TargetInstrInfo class). These functions return 0 or a Boolean or they assert, unless
overridden. Here’s a list of functions that are overridden for the SPARC implementation in SparcInstrInfo.cpp:

• isLoadFromStackSlot — If the specified machine instruction is a direct load from a stack slot, return the
register number of the destination and the FrameIndex of the stack slot.

• isStoreToStackSlot — If the specified machine instruction is a direct store to a stack slot, return the
register number of the destination and the FrameIndex of the stack slot.

• copyPhysReg — Copy values between a pair of physical registers.

• storeRegToStackSlot — Store a register value to a stack slot.

• loadRegFromStackSlot — Load a register value from a stack slot.

• storeRegToAddr — Store a register value to memory.

• loadRegFromAddr — Load a register value from memory.

• foldMemoryOperand — Attempt to combine instructions of any load or store instruction for the specified
operand(s).

Branch Folding and If Conversion

Performance can be improved by combining instructions or by eliminating instructions that are never reached. The
AnalyzeBranch method in XXXInstrInfo may be implemented to examine conditional instructions and remove
unnecessary instructions. AnalyzeBranch looks at the end of a machine basic block (MBB) for opportunities for
improvement, such as branch folding and if conversion. The BranchFolder and IfConverter machine function
passes (see the source files BranchFolding.cpp and IfConversion.cpp in the lib/CodeGen directory)
call AnalyzeBranch to improve the control flow graph that represents the instructions.

Several implementations of AnalyzeBranch (for ARM, Alpha, and X86) can be examined as models for your own
AnalyzeBranch implementation. Since SPARC does not implement a useful AnalyzeBranch, the ARM target
implementation is shown below.

AnalyzeBranch returns a Boolean value and takes four parameters:

• MachineBasicBlock &MBB — The incoming block to be examined.

• MachineBasicBlock *&TBB — A destination block that is returned. For a conditional branch that evalu-
ates to true, TBB is the destination.

• MachineBasicBlock *&FBB — For a conditional branch that evaluates to false, FBB is returned as the
destination.

• std::vector<MachineOperand> &Cond — List of operands to evaluate a condition for a conditional
branch.
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In the simplest case, if a block ends without a branch, then it falls through to the successor block. No destination
blocks are specified for either TBB or FBB, so both parameters return NULL. The start of the AnalyzeBranch (see
code below for the ARM target) shows the function parameters and the code for the simplest case.

bool ARMInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,
std::vector<MachineOperand> &Cond) const

{
MachineBasicBlock::iterator I = MBB.end();
if (I == MBB.begin() || !isUnpredicatedTerminator(--I))
return false;

If a block ends with a single unconditional branch instruction, then AnalyzeBranch (shown below) should return
the destination of that branch in the TBB parameter.

if (LastOpc == ARM::B || LastOpc == ARM::tB) {
TBB = LastInst->getOperand(0).getMBB();
return false;

}

If a block ends with two unconditional branches, then the second branch is never reached. In that situation, as shown
below, remove the last branch instruction and return the penultimate branch in the TBB parameter.

if ((SecondLastOpc == ARM::B || SecondLastOpc == ARM::tB) &&
(LastOpc == ARM::B || LastOpc == ARM::tB)) {

TBB = SecondLastInst->getOperand(0).getMBB();
I = LastInst;
I->eraseFromParent();
return false;

}

A block may end with a single conditional branch instruction that falls through to successor block if the condition
evaluates to false. In that case, AnalyzeBranch (shown below) should return the destination of that conditional
branch in the TBB parameter and a list of operands in the Cond parameter to evaluate the condition.

if (LastOpc == ARM::Bcc || LastOpc == ARM::tBcc) {
// Block ends with fall-through condbranch.
TBB = LastInst->getOperand(0).getMBB();
Cond.push_back(LastInst->getOperand(1));
Cond.push_back(LastInst->getOperand(2));
return false;

}

If a block ends with both a conditional branch and an ensuing unconditional branch, then AnalyzeBranch (shown
below) should return the conditional branch destination (assuming it corresponds to a conditional evaluation of
“true”) in the TBB parameter and the unconditional branch destination in the FBB (corresponding to a conditional
evaluation of “false”). A list of operands to evaluate the condition should be returned in the Cond parameter.

unsigned SecondLastOpc = SecondLastInst->getOpcode();

if ((SecondLastOpc == ARM::Bcc && LastOpc == ARM::B) ||
(SecondLastOpc == ARM::tBcc && LastOpc == ARM::tB)) {

TBB = SecondLastInst->getOperand(0).getMBB();
Cond.push_back(SecondLastInst->getOperand(1));
Cond.push_back(SecondLastInst->getOperand(2));
FBB = LastInst->getOperand(0).getMBB();
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return false;
}

For the last two cases (ending with a single conditional branch or ending with one conditional and one uncondi-
tional branch), the operands returned in the Cond parameter can be passed to methods of other instructions to create
new branches or perform other operations. An implementation of AnalyzeBranch requires the helper methods
RemoveBranch and InsertBranch to manage subsequent operations.

AnalyzeBranch should return false indicating success in most circumstances. AnalyzeBranch should only
return true when the method is stumped about what to do, for example, if a block has three terminating branches.
AnalyzeBranch may return true if it encounters a terminator it cannot handle, such as an indirect branch.

Instruction Selector

LLVM uses a SelectionDAG to represent LLVM IR instructions, and nodes of the SelectionDAG ideally rep-
resent native target instructions. During code generation, instruction selection passes are performed to convert non-
native DAG instructions into native target-specific instructions. The pass described in XXXISelDAGToDAG.cpp
is used to match patterns and perform DAG-to-DAG instruction selection. Optionally, a pass may be defined (in
XXXBranchSelector.cpp) to perform similar DAG-to-DAG operations for branch instructions. Later, the code
in XXXISelLowering.cpp replaces or removes operations and data types not supported natively (legalizes) in a
SelectionDAG.

TableGen generates code for instruction selection using the following target description input files:

• XXXInstrInfo.td — Contains definitions of instructions in a target-specific instruction set, generates
XXXGenDAGISel.inc, which is included in XXXISelDAGToDAG.cpp.

• XXXCallingConv.td — Contains the calling and return value conventions for the target architecture, and it
generates XXXGenCallingConv.inc, which is included in XXXISelLowering.cpp.

The implementation of an instruction selection pass must include a header that declares the FunctionPass class or
a subclass of FunctionPass. In XXXTargetMachine.cpp, a Pass Manager (PM) should add each instruction
selection pass into the queue of passes to run.

The LLVM static compiler (llc) is an excellent tool for visualizing the contents of DAGs. To display the
SelectionDAG before or after specific processing phases, use the command line options for llc, described at
SelectionDAG Instruction Selection Process.

To describe instruction selector behavior, you should add patterns for lowering LLVM code into a SelectionDAG as
the last parameter of the instruction definitions in XXXInstrInfo.td. For example, in SparcInstrInfo.td,
this entry defines a register store operation, and the last parameter describes a pattern with the store DAG operator.

def STrr : F3_1< 3, 0b000100, (outs), (ins MEMrr:$addr, IntRegs:$src),
"st $src, [$addr]", [(store i32:$src, ADDRrr:$addr)]>;

ADDRrr is a memory mode that is also defined in SparcInstrInfo.td:

def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>;

The definition of ADDRrr refers to SelectADDRrr, which is a function defined in an implementation of the In-
structor Selector (such as SparcISelDAGToDAG.cpp).

In lib/Target/TargetSelectionDAG.td, the DAG operator for store is defined below:

def store : PatFrag<(ops node:$val, node:$ptr),
(st node:$val, node:$ptr), [{

if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N))
return !ST->isTruncatingStore() &&
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ST->getAddressingMode() == ISD::UNINDEXED;
return false;

}]>;

XXXInstrInfo.td also generates (in XXXGenDAGISel.inc) the SelectCode method that is used to call the
appropriate processing method for an instruction. In this example, SelectCode calls Select_ISD_STORE for
the ISD::STORE opcode.

SDNode *SelectCode(SDValue N) {
...
MVT::ValueType NVT = N.getNode()->getValueType(0);
switch (N.getOpcode()) {
case ISD::STORE: {
switch (NVT) {
default:
return Select_ISD_STORE(N);
break;

}
break;

}
...

The pattern for STrr is matched, so elsewhere in XXXGenDAGISel.inc, code for STrr is created for
Select_ISD_STORE. The Emit_22 method is also generated in XXXGenDAGISel.inc to complete the pro-
cessing of this instruction.

SDNode *Select_ISD_STORE(const SDValue &N) {
SDValue Chain = N.getOperand(0);
if (Predicate_store(N.getNode())) {
SDValue N1 = N.getOperand(1);
SDValue N2 = N.getOperand(2);
SDValue CPTmp0;
SDValue CPTmp1;

// Pattern: (st:void i32:i32:$src,
// ADDRrr:i32:$addr)<<P:Predicate_store>>
// Emits: (STrr:void ADDRrr:i32:$addr, IntRegs:i32:$src)
// Pattern complexity = 13 cost = 1 size = 0
if (SelectADDRrr(N, N2, CPTmp0, CPTmp1) &&

N1.getNode()->getValueType(0) == MVT::i32 &&
N2.getNode()->getValueType(0) == MVT::i32) {

return Emit_22(N, SP::STrr, CPTmp0, CPTmp1);
}

...

The SelectionDAG Legalize Phase

The Legalize phase converts a DAG to use types and operations that are natively supported by the target. For natively
unsupported types and operations, you need to add code to the target-specific XXXTargetLowering implementa-
tion to convert unsupported types and operations to supported ones.

In the constructor for the XXXTargetLowering class, first use the addRegisterClassmethod to specify which
types are supported and which register classes are associated with them. The code for the register classes are generated
by TableGen from XXXRegisterInfo.td and placed in XXXGenRegisterInfo.h.inc. For example, the
implementation of the constructor for the SparcTargetLowering class (in SparcISelLowering.cpp) starts with
the following code:
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addRegisterClass(MVT::i32, SP::IntRegsRegisterClass);
addRegisterClass(MVT::f32, SP::FPRegsRegisterClass);
addRegisterClass(MVT::f64, SP::DFPRegsRegisterClass);

You should examine the node types in the ISD namespace (include/llvm/CodeGen/SelectionDAGNodes.
h) and determine which operations the target natively supports. For operations that do not have native support, add a
callback to the constructor for the XXXTargetLowering class, so the instruction selection process knows what to
do. The TargetLowering class callback methods (declared in llvm/Target/TargetLowering.h) are:

• setOperationAction — General operation.

• setLoadExtAction — Load with extension.

• setTruncStoreAction — Truncating store.

• setIndexedLoadAction — Indexed load.

• setIndexedStoreAction — Indexed store.

• setConvertAction — Type conversion.

• setCondCodeAction — Support for a given condition code.

Note: on older releases, setLoadXAction is used instead of setLoadExtAction. Also, on older releases,
setCondCodeAction may not be supported. Examine your release to see what methods are specifically supported.

These callbacks are used to determine that an operation does or does not work with a specified type (or types). And
in all cases, the third parameter is a LegalAction type enum value: Promote, Expand, Custom, or Legal.
SparcISelLowering.cpp contains examples of all four LegalAction values.

Promote

For an operation without native support for a given type, the specified type may be promoted to a larger type that
is supported. For example, SPARC does not support a sign-extending load for Boolean values (i1 type), so in
SparcISelLowering.cpp the third parameter below, Promote, changes i1 type values to a large type before
loading.

setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);

Expand

For a type without native support, a value may need to be broken down further, rather than promoted. For an operation
without native support, a combination of other operations may be used to similar effect. In SPARC, the floating-point
sine and cosine trig operations are supported by expansion to other operations, as indicated by the third parameter,
Expand, to setOperationAction:

setOperationAction(ISD::FSIN, MVT::f32, Expand);
setOperationAction(ISD::FCOS, MVT::f32, Expand);

Custom

For some operations, simple type promotion or operation expansion may be insufficient. In some cases, a special
intrinsic function must be implemented.
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For example, a constant value may require special treatment, or an operation may require spilling and restoring regis-
ters in the stack and working with register allocators.

As seen in SparcISelLowering.cpp code below, to perform a type conversion from a floating point value to a
signed integer, first the setOperationAction should be called with Custom as the third parameter:

setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);

In the LowerOperation method, for each Custom operation, a case statement should be added to indicate what
function to call. In the following code, an FP_TO_SINT opcode will call the LowerFP_TO_SINT method:

SDValue SparcTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
switch (Op.getOpcode()) {
case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
...
}

}

Finally, the LowerFP_TO_SINT method is implemented, using an FP register to convert the floating-point value to
an integer.

static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
assert(Op.getValueType() == MVT::i32);
Op = DAG.getNode(SPISD::FTOI, MVT::f32, Op.getOperand(0));
return DAG.getNode(ISD::BITCAST, MVT::i32, Op);

}

Legal

The Legal LegalizeAction enum value simply indicates that an operation is natively supported. Legal repre-
sents the default condition, so it is rarely used. In SparcISelLowering.cpp, the action for CTPOP (an operation
to count the bits set in an integer) is natively supported only for SPARC v9. The following code enables the Expand
conversion technique for non-v9 SPARC implementations.

setOperationAction(ISD::CTPOP, MVT::i32, Expand);
...
if (TM.getSubtarget<SparcSubtarget>().isV9())

setOperationAction(ISD::CTPOP, MVT::i32, Legal);

Calling Conventions

To support target-specific calling conventions, XXXGenCallingConv.td uses interfaces (such as CCIfType and
CCAssignToReg) that are defined in lib/Target/TargetCallingConv.td. TableGen can take the target
descriptor file XXXGenCallingConv.td and generate the header file XXXGenCallingConv.inc, which is
typically included in XXXISelLowering.cpp. You can use the interfaces in TargetCallingConv.td to
specify:

• The order of parameter allocation.

• Where parameters and return values are placed (that is, on the stack or in registers).

• Which registers may be used.

• Whether the caller or callee unwinds the stack.
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The following example demonstrates the use of the CCIfType and CCAssignToReg interfaces. If the CCIfType
predicate is true (that is, if the current argument is of type f32 or f64), then the action is performed. In this case, the
CCAssignToReg action assigns the argument value to the first available register: either R0 or R1.

CCIfType<[f32,f64], CCAssignToReg<[R0, R1]>>

SparcCallingConv.td contains definitions for a target-specific return-value calling convention
(RetCC_Sparc32) and a basic 32-bit C calling convention (CC_Sparc32). The definition of RetCC_Sparc32
(shown below) indicates which registers are used for specified scalar return types. A single-precision float is returned
to register F0, and a double-precision float goes to register D0. A 32-bit integer is returned in register I0 or I1.

def RetCC_Sparc32 : CallingConv<[
CCIfType<[i32], CCAssignToReg<[I0, I1]>>,
CCIfType<[f32], CCAssignToReg<[F0]>>,
CCIfType<[f64], CCAssignToReg<[D0]>>

]>;

The definition of CC_Sparc32 in SparcCallingConv.td introduces CCAssignToStack, which assigns the
value to a stack slot with the specified size and alignment. In the example below, the first parameter, 4, indicates the
size of the slot, and the second parameter, also 4, indicates the stack alignment along 4-byte units. (Special cases: if
size is zero, then the ABI size is used; if alignment is zero, then the ABI alignment is used.)

def CC_Sparc32 : CallingConv<[
// All arguments get passed in integer registers if there is space.
CCIfType<[i32, f32, f64], CCAssignToReg<[I0, I1, I2, I3, I4, I5]>>,
CCAssignToStack<4, 4>

]>;

CCDelegateTo is another commonly used interface, which tries to find a specified sub-calling convention, and,
if a match is found, it is invoked. In the following example (in X86CallingConv.td), the definition of
RetCC_X86_32_C ends with CCDelegateTo. After the current value is assigned to the register ST0 or ST1,
the RetCC_X86Common is invoked.

def RetCC_X86_32_C : CallingConv<[
CCIfType<[f32], CCAssignToReg<[ST0, ST1]>>,
CCIfType<[f64], CCAssignToReg<[ST0, ST1]>>,
CCDelegateTo<RetCC_X86Common>

]>;

CCIfCC is an interface that attempts to match the given name to the current calling convention. If the name identifies
the current calling convention, then a specified action is invoked. In the following example (in X86CallingConv.
td), if the Fast calling convention is in use, then RetCC_X86_32_Fast is invoked. If the SSECall calling
convention is in use, then RetCC_X86_32_SSE is invoked.

def RetCC_X86_32 : CallingConv<[
CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
CCIfCC<"CallingConv::X86_SSECall", CCDelegateTo<RetCC_X86_32_SSE>>,
CCDelegateTo<RetCC_X86_32_C>

]>;

Other calling convention interfaces include:

• CCIf <predicate, action> — If the predicate matches, apply the action.

• CCIfInReg <action> — If the argument is marked with the “inreg” attribute, then apply the action.

• CCIfNest <action> — If the argument is marked with the “nest” attribute, then apply the action.
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• CCIfNotVarArg <action> — If the current function does not take a variable number of arguments, apply
the action.

• CCAssignToRegWithShadow <registerList, shadowList> — similar to CCAssignToReg,
but with a shadow list of registers.

• CCPassByVal <size, align> — Assign value to a stack slot with the minimum specified size and align-
ment.

• CCPromoteToType <type> — Promote the current value to the specified type.

• CallingConv <[actions]> — Define each calling convention that is supported.

Assembly Printer

During the code emission stage, the code generator may utilize an LLVM pass to produce assembly output. To do this,
you want to implement the code for a printer that converts LLVM IR to a GAS-format assembly language for your
target machine, using the following steps:

• Define all the assembly strings for your target, adding them to the instructions defined in the XXXInstrInfo.
td file. (See Instruction Set.) TableGen will produce an output file (XXXGenAsmWriter.inc) with an
implementation of the printInstruction method for the XXXAsmPrinter class.

• Write XXXTargetAsmInfo.h, which contains the bare-bones declaration of the XXXTargetAsmInfo
class (a subclass of TargetAsmInfo).

• Write XXXTargetAsmInfo.cpp, which contains target-specific values for TargetAsmInfo properties
and sometimes new implementations for methods.

• Write XXXAsmPrinter.cpp, which implements the AsmPrinter class that performs the LLVM-to-
assembly conversion.

The code in XXXTargetAsmInfo.h is usually a trivial declaration of the XXXTargetAsmInfo class for
use in XXXTargetAsmInfo.cpp. Similarly, XXXTargetAsmInfo.cpp usually has a few declarations of
XXXTargetAsmInfo replacement values that override the default values in TargetAsmInfo.cpp. For example
in SparcTargetAsmInfo.cpp:

SparcTargetAsmInfo::SparcTargetAsmInfo(const SparcTargetMachine &TM) {
Data16bitsDirective = "\t.half\t";
Data32bitsDirective = "\t.word\t";
Data64bitsDirective = 0; // .xword is only supported by V9.
ZeroDirective = "\t.skip\t";
CommentString = "!";
ConstantPoolSection = "\t.section \".rodata\",#alloc\n";

}

The X86 assembly printer implementation (X86TargetAsmInfo) is an example where the target specific
TargetAsmInfo class uses an overridden methods: ExpandInlineAsm.

A target-specific implementation of AsmPrinter is written in XXXAsmPrinter.cpp, which implements
the AsmPrinter class that converts the LLVM to printable assembly. The implementation must include the
following headers that have declarations for the AsmPrinter and MachineFunctionPass classes. The
MachineFunctionPass is a subclass of FunctionPass.

#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/MachineFunctionPass.h"

As a FunctionPass, AsmPrinter first calls doInitialization to set up the AsmPrinter. In
SparcAsmPrinter, a Mangler object is instantiated to process variable names.
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In XXXAsmPrinter.cpp, the runOnMachineFunction method (declared in MachineFunctionPass)
must be implemented for XXXAsmPrinter. In MachineFunctionPass, the runOnFunctionmethod invokes
runOnMachineFunction. Target-specific implementations of runOnMachineFunction differ, but generally
do the following to process each machine function:

• Call SetupMachineFunction to perform initialization.

• Call EmitConstantPool to print out (to the output stream) constants which have been spilled to memory.

• Call EmitJumpTableInfo to print out jump tables used by the current function.

• Print out the label for the current function.

• Print out the code for the function, including basic block labels and the assembly for the instruction (using
printInstruction)

The XXXAsmPrinter implementation must also include the code generated by TableGen that is output in the
XXXGenAsmWriter.inc file. The code in XXXGenAsmWriter.inc contains an implementation of the
printInstruction method that may call these methods:

• printOperand

• printMemOperand

• printCCOperand (for conditional statements)

• printDataDirective

• printDeclare

• printImplicitDef

• printInlineAsm

The implementations of printDeclare, printImplicitDef, printInlineAsm, and printLabel in
AsmPrinter.cpp are generally adequate for printing assembly and do not need to be overridden.

The printOperand method is implemented with a long switch/case statement for the type of operand: register,
immediate, basic block, external symbol, global address, constant pool index, or jump table index. For an instruction
with a memory address operand, the printMemOperand method should be implemented to generate the proper
output. Similarly, printCCOperand should be used to print a conditional operand.

doFinalization should be overridden in XXXAsmPrinter, and it should be called to shut down the assembly
printer. During doFinalization, global variables and constants are printed to output.

Subtarget Support

Subtarget support is used to inform the code generation process of instruction set variations for a given chip set.
For example, the LLVM SPARC implementation provided covers three major versions of the SPARC microprocessor
architecture: Version 8 (V8, which is a 32-bit architecture), Version 9 (V9, a 64-bit architecture), and the UltraSPARC
architecture. V8 has 16 double-precision floating-point registers that are also usable as either 32 single-precision or 8
quad-precision registers. V8 is also purely big-endian. V9 has 32 double-precision floating-point registers that are also
usable as 16 quad-precision registers, but cannot be used as single-precision registers. The UltraSPARC architecture
combines V9 with UltraSPARC Visual Instruction Set extensions.

If subtarget support is needed, you should implement a target-specific XXXSubtarget class for your architecture.
This class should process the command-line options -mcpu= and -mattr=.

TableGen uses definitions in the Target.td and Sparc.td files to generate code in SparcGenSubtarget.
inc. In Target.td, shown below, the SubtargetFeature interface is defined. The first 4 string parameters of
the SubtargetFeature interface are a feature name, an attribute set by the feature, the value of the attribute, and
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a description of the feature. (The fifth parameter is a list of features whose presence is implied, and its default value is
an empty array.)

class SubtargetFeature<string n, string a, string v, string d,
list<SubtargetFeature> i = []> {

string Name = n;
string Attribute = a;
string Value = v;
string Desc = d;
list<SubtargetFeature> Implies = i;

}

In the Sparc.td file, the SubtargetFeature is used to define the following features.

def FeatureV9 : SubtargetFeature<"v9", "IsV9", "true",
"Enable SPARC-V9 instructions">;

def FeatureV8Deprecated : SubtargetFeature<"deprecated-v8",
"V8DeprecatedInsts", "true",
"Enable deprecated V8 instructions in V9 mode">;

def FeatureVIS : SubtargetFeature<"vis", "IsVIS", "true",
"Enable UltraSPARC Visual Instruction Set extensions">;

Elsewhere in Sparc.td, the Proc class is defined and then is used to define particular SPARC processor subtypes
that may have the previously described features.

class Proc<string Name, list<SubtargetFeature> Features>
: Processor<Name, NoItineraries, Features>;

def : Proc<"generic", []>;
def : Proc<"v8", []>;
def : Proc<"supersparc", []>;
def : Proc<"sparclite", []>;
def : Proc<"f934", []>;
def : Proc<"hypersparc", []>;
def : Proc<"sparclite86x", []>;
def : Proc<"sparclet", []>;
def : Proc<"tsc701", []>;
def : Proc<"v9", [FeatureV9]>;
def : Proc<"ultrasparc", [FeatureV9, FeatureV8Deprecated]>;
def : Proc<"ultrasparc3", [FeatureV9, FeatureV8Deprecated]>;
def : Proc<"ultrasparc3-vis", [FeatureV9, FeatureV8Deprecated, FeatureVIS]>;

From Target.td and Sparc.td files, the resulting SparcGenSubtarget.inc specifies enum val-
ues to identify the features, arrays of constants to represent the CPU features and CPU subtypes, and the
ParseSubtargetFeatures method that parses the features string that sets specified subtarget options. The gen-
erated SparcGenSubtarget.inc file should be included in the SparcSubtarget.cpp. The target-specific
implementation of the XXXSubtarget method should follow this pseudocode:

XXXSubtarget::XXXSubtarget(const Module &M, const std::string &FS) {
// Set the default features
// Determine default and user specified characteristics of the CPU
// Call ParseSubtargetFeatures(FS, CPU) to parse the features string
// Perform any additional operations

}
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JIT Support

The implementation of a target machine optionally includes a Just-In-Time (JIT) code generator that emits machine
code and auxiliary structures as binary output that can be written directly to memory. To do this, implement JIT code
generation by performing the following steps:

• Write an XXXCodeEmitter.cpp file that contains a machine function pass that transforms target-machine
instructions into relocatable machine code.

• Write an XXXJITInfo.cpp file that implements the JIT interfaces for target-specific code-generation activi-
ties, such as emitting machine code and stubs.

• Modify XXXTargetMachine so that it provides a TargetJITInfo object through its getJITInfo
method.

There are several different approaches to writing the JIT support code. For instance, TableGen and target descriptor
files may be used for creating a JIT code generator, but are not mandatory. For the Alpha and PowerPC target ma-
chines, TableGen is used to generate XXXGenCodeEmitter.inc, which contains the binary coding of machine
instructions and the getBinaryCodeForInstr method to access those codes. Other JIT implementations do not.

Both XXXJITInfo.cpp and XXXCodeEmitter.cpp must include the llvm/CodeGen/
MachineCodeEmitter.h header file that defines the MachineCodeEmitter class containing code for
several callback functions that write data (in bytes, words, strings, etc.) to the output stream.

Machine Code Emitter

In XXXCodeEmitter.cpp, a target-specific of the Emitter class is implemented as a function pass (sub-
class of MachineFunctionPass). The target-specific implementation of runOnMachineFunction (in-
voked by runOnFunction in MachineFunctionPass) iterates through the MachineBasicBlock calls
emitInstruction to process each instruction and emit binary code. emitInstruction is largely implemented
with case statements on the instruction types defined in XXXInstrInfo.h. For example, in X86CodeEmitter.
cpp, the emitInstruction method is built around the following switch/case statements:

switch (Desc->TSFlags & X86::FormMask) {
case X86II::Pseudo: // for not yet implemented instructions

... // or pseudo-instructions
break;

case X86II::RawFrm: // for instructions with a fixed opcode value
...
break;

case X86II::AddRegFrm: // for instructions that have one register operand
... // added to their opcode
break;

case X86II::MRMDestReg:// for instructions that use the Mod/RM byte
... // to specify a destination (register)
break;

case X86II::MRMDestMem:// for instructions that use the Mod/RM byte
... // to specify a destination (memory)
break;

case X86II::MRMSrcReg: // for instructions that use the Mod/RM byte
... // to specify a source (register)
break;

case X86II::MRMSrcMem: // for instructions that use the Mod/RM byte
... // to specify a source (memory)
break;

case X86II::MRM0r: case X86II::MRM1r: // for instructions that operate on
case X86II::MRM2r: case X86II::MRM3r: // a REGISTER r/m operand and
case X86II::MRM4r: case X86II::MRM5r: // use the Mod/RM byte and a field
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case X86II::MRM6r: case X86II::MRM7r: // to hold extended opcode data
...
break;

case X86II::MRM0m: case X86II::MRM1m: // for instructions that operate on
case X86II::MRM2m: case X86II::MRM3m: // a MEMORY r/m operand and
case X86II::MRM4m: case X86II::MRM5m: // use the Mod/RM byte and a field
case X86II::MRM6m: case X86II::MRM7m: // to hold extended opcode data

...
break;

case X86II::MRMInitReg: // for instructions whose source and
... // destination are the same register
break;

}

The implementations of these case statements often first emit the opcode and then get the operand(s). Then depending
upon the operand, helper methods may be called to process the operand(s). For example, in X86CodeEmitter.
cpp, for the X86II::AddRegFrm case, the first data emitted (by emitByte) is the opcode added to the
register operand. Then an object representing the machine operand, MO1, is extracted. The helper meth-
ods such as isImmediate, isGlobalAddress, isExternalSymbol, isConstantPoolIndex, and
isJumpTableIndex determine the operand type. (X86CodeEmitter.cpp also has private methods such as
emitConstant, emitGlobalAddress, emitExternalSymbolAddress, emitConstPoolAddress,
and emitJumpTableAddress that emit the data into the output stream.)

case X86II::AddRegFrm:
MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg()));

if (CurOp != NumOps) {
const MachineOperand &MO1 = MI.getOperand(CurOp++);
unsigned Size = X86InstrInfo::sizeOfImm(Desc);
if (MO1.isImmediate())

emitConstant(MO1.getImm(), Size);
else {

unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
: (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);

if (Opcode == X86::MOV64ri)
rt = X86::reloc_absolute_dword; // FIXME: add X86II flag?

if (MO1.isGlobalAddress()) {
bool NeedStub = isa<Function>(MO1.getGlobal());
bool isLazy = gvNeedsLazyPtr(MO1.getGlobal());
emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,

NeedStub, isLazy);
} else if (MO1.isExternalSymbol())

emitExternalSymbolAddress(MO1.getSymbolName(), rt);
else if (MO1.isConstantPoolIndex())
emitConstPoolAddress(MO1.getIndex(), rt);

else if (MO1.isJumpTableIndex())
emitJumpTableAddress(MO1.getIndex(), rt);

}
}
break;

In the previous example, XXXCodeEmitter.cpp uses the variable rt, which is a RelocationType enum that
may be used to relocate addresses (for example, a global address with a PIC base offset). The RelocationType
enum for that target is defined in the short target-specific XXXRelocations.h file. The RelocationType is
used by the relocate method defined in XXXJITInfo.cpp to rewrite addresses for referenced global symbols.

For example, X86Relocations.h specifies the following relocation types for the X86 addresses. In all
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four cases, the relocated value is added to the value already in memory. For reloc_pcrel_word and
reloc_picrel_word, there is an additional initial adjustment.

enum RelocationType {
reloc_pcrel_word = 0, // add reloc value after adjusting for the PC loc
reloc_picrel_word = 1, // add reloc value after adjusting for the PIC base
reloc_absolute_word = 2, // absolute relocation; no additional adjustment
reloc_absolute_dword = 3 // absolute relocation; no additional adjustment

};

Target JIT Info

XXXJITInfo.cpp implements the JIT interfaces for target-specific code-generation activities, such as emitting
machine code and stubs. At minimum, a target-specific version of XXXJITInfo implements the following:

• getLazyResolverFunction — Initializes the JIT, gives the target a function that is used for compilation.

• emitFunctionStub — Returns a native function with a specified address for a callback function.

• relocate — Changes the addresses of referenced globals, based on relocation types.

• Callback function that are wrappers to a function stub that is used when the real target is not initially known.

getLazyResolverFunction is generally trivial to implement. It makes the incoming parameter as the global
JITCompilerFunction and returns the callback function that will be used a function wrapper. For the Alpha
target (in AlphaJITInfo.cpp), the getLazyResolverFunction implementation is simply:

TargetJITInfo::LazyResolverFn AlphaJITInfo::getLazyResolverFunction(
JITCompilerFn F) {

JITCompilerFunction = F;
return AlphaCompilationCallback;

}

For the X86 target, the getLazyResolverFunction implementation is a little more complicated, because it
returns a different callback function for processors with SSE instructions and XMM registers.

The callback function initially saves and later restores the callee register values, incoming arguments, and frame and
return address. The callback function needs low-level access to the registers or stack, so it is typically implemented
with assembler.

Garbage Collection with LLVM

• Abstract

• Quick Start

• Introduction

– What is Garbage Collection?

– Goals and non-goals

• LLVM IR Features

– Specifying GC code generation: gc "..."
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Abstract

This document covers how to integrate LLVM into a compiler for a language which supports garbage collection. Note
that LLVM itself does not provide a garbage collector. You must provide your own.

Quick Start

First, you should pick a collector strategy. LLVM includes a number of built in ones, but you can also implement
a loadable plugin with a custom definition. Note that the collector strategy is a description of how LLVM should
generate code such that it interacts with your collector and runtime, not a description of the collector itself.

Next, mark your generated functions as using your chosen collector strategy. From c++, you can call:

F.setGC(<collector description name>);

This will produce IR like the following fragment:

define void @foo() gc "<collector description name>" { ... }

When generating LLVM IR for your functions, you will need to:
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• Use @llvm.gcread and/or @llvm.gcwrite in place of standard load and store instructions. These intrin-
sics are used to represent load and store barriers. If you collector does not require such barriers, you can skip
this step.

• Use the memory allocation routines provided by your garbage collector’s runtime library.

• If your collector requires them, generate type maps according to your runtime’s binary interface. LLVM is not
involved in the process. In particular, the LLVM type system is not suitable for conveying such information
though the compiler.

• Insert any coordination code required for interacting with your collector. Many collectors require running ap-
plication code to periodically check a flag and conditionally call a runtime function. This is often referred to as
a safepoint poll.

You will need to identify roots (i.e. references to heap objects your collector needs to know about) in your generated
IR, so that LLVM can encode them into your final stack maps. Depending on the collector strategy chosen, this is
accomplished by using either the @llvm.gcroot intrinsics or an gc.statepoint relocation sequence.

Don’t forget to create a root for each intermediate value that is generated when evaluating an expression. In h(f(),
g()), the result of f() could easily be collected if evaluating g() triggers a collection.

Finally, you need to link your runtime library with the generated program executable (for a static compiler) or ensure
the appropriate symbols are available for the runtime linker (for a JIT compiler).

Introduction

What is Garbage Collection?

Garbage collection is a widely used technique that frees the programmer from having to know the lifetimes of heap
objects, making software easier to produce and maintain. Many programming languages rely on garbage collection
for automatic memory management. There are two primary forms of garbage collection: conservative and accurate.

Conservative garbage collection often does not require any special support from either the language or the compiler: it
can handle non-type-safe programming languages (such as C/C++) and does not require any special information from
the compiler. The Boehm collector is an example of a state-of-the-art conservative collector.

Accurate garbage collection requires the ability to identify all pointers in the program at run-time (which requires that
the source-language be type-safe in most cases). Identifying pointers at run-time requires compiler support to locate
all places that hold live pointer variables at run-time, including the processor stack and registers.

Conservative garbage collection is attractive because it does not require any special compiler support, but it does have
problems. In particular, because the conservative garbage collector cannot know that a particular word in the machine
is a pointer, it cannot move live objects in the heap (preventing the use of compacting and generational GC algorithms)
and it can occasionally suffer from memory leaks due to integer values that happen to point to objects in the program.
In addition, some aggressive compiler transformations can break conservative garbage collectors (though these seem
rare in practice).

Accurate garbage collectors do not suffer from any of these problems, but they can suffer from degraded scalar op-
timization of the program. In particular, because the runtime must be able to identify and update all pointers active
in the program, some optimizations are less effective. In practice, however, the locality and performance benefits of
using aggressive garbage collection techniques dominates any low-level losses.

This document describes the mechanisms and interfaces provided by LLVM to support accurate garbage collection.

Goals and non-goals

LLVM’s intermediate representation provides garbage collection intrinsics that offer support for a broad class of
collector models. For instance, the intrinsics permit:
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• semi-space collectors

• mark-sweep collectors

• generational collectors

• incremental collectors

• concurrent collectors

• cooperative collectors

• reference counting

We hope that the support built into the LLVM IR is sufficient to support a broad class of garbage collected languages
including Scheme, ML, Java, C#, Perl, Python, Lua, Ruby, other scripting languages, and more.

Note that LLVM does not itself provide a garbage collector — this should be part of your language’s runtime library.
LLVM provides a framework for describing the garbage collectors requirements to the compiler. In particular, LLVM
provides support for generating stack maps at call sites, polling for a safepoint, and emitting load and store barriers.
You can also extend LLVM - possibly through a loadable code generation plugins - to generate code and data structures
which conforms to the binary interface specified by the runtime library. This is similar to the relationship between
LLVM and DWARF debugging info, for example. The difference primarily lies in the lack of an established standard
in the domain of garbage collection — thus the need for a flexible extension mechanism.

The aspects of the binary interface with which LLVM’s GC support is concerned are:

• Creation of GC safepoints within code where collection is allowed to execute safely.

• Computation of the stack map. For each safe point in the code, object references within the stack frame must be
identified so that the collector may traverse and perhaps update them.

• Write barriers when storing object references to the heap. These are commonly used to optimize incremental
scans in generational collectors.

• Emission of read barriers when loading object references. These are useful for interoperating with concurrent
collectors.

There are additional areas that LLVM does not directly address:

• Registration of global roots with the runtime.

• Registration of stack map entries with the runtime.

• The functions used by the program to allocate memory, trigger a collection, etc.

• Computation or compilation of type maps, or registration of them with the runtime. These are used to crawl the
heap for object references.

In general, LLVM’s support for GC does not include features which can be adequately addressed with other features
of the IR and does not specify a particular binary interface. On the plus side, this means that you should be able to
integrate LLVM with an existing runtime. On the other hand, it can have the effect of leaving a lot of work for the
developer of a novel language. We try to mitigate this by providing built in collector strategy descriptions that can
work with many common collector designs and easy extension points. If you don’t already have a specific binary
interface you need to support, we recommend trying to use one of these built in collector strategies.

LLVM IR Features

This section describes the garbage collection facilities provided by the LLVM intermediate representation. The exact
behavior of these IR features is specified by the selected GC strategy description.
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Specifying GC code generation: gc "..."

define <returntype> @name(...) gc "name" { ... }

The gc function attribute is used to specify the desired GC strategy to the compiler. Its programmatic equivalent is
the setGC method of Function.

Setting gc "name" on a function triggers a search for a matching subclass of GCStrategy. Some collector strategies
are built in. You can add others using either the loadable plugin mechanism, or by patching your copy of LLVM. It
is the selected GC strategy which defines the exact nature of the code generated to support GC. If none is found, the
compiler will raise an error.

Specifying the GC style on a per-function basis allows LLVM to link together programs that use different garbage
collection algorithms (or none at all).

Identifying GC roots on the stack

LLVM currently supports two different mechanisms for describing references in compiled code at safepoints. llvm.
gcroot is the older mechanism; gc.statepoint has been added more recently. At the moment, you can choose
either implementation (on a per GC strategy basis). Longer term, we will probably either migrate away from llvm.
gcroot entirely, or substantially merge their implementations. Note that most new development work is focused on
gc.statepoint.

Using gc.statepoint

This page contains detailed documentation for gc.statepoint.

Using llvm.gcwrite

void @llvm.gcroot(i8** %ptrloc, i8* %metadata)

The llvm.gcroot intrinsic is used to inform LLVM that a stack variable references an object on the heap and is
to be tracked for garbage collection. The exact impact on generated code is specified by the Function’s selected GC
strategy. All calls to llvm.gcroot must reside inside the first basic block.

The first argument must be a value referring to an alloca instruction or a bitcast of an alloca. The second contains a
pointer to metadata that should be associated with the pointer, and must be a constant or global value address. If your
target collector uses tags, use a null pointer for metadata.

A compiler which performs manual SSA construction must ensure that SSA values representing GC references are
stored in to the alloca passed to the respective gcroot before every call site and reloaded after every call. A compiler
which uses mem2reg to raise imperative code using alloca into SSA form need only add a call to @llvm.gcroot
for those variables which are pointers into the GC heap.

It is also important to mark intermediate values with llvm.gcroot. For example, consider h(f(), g()). Beware
leaking the result of f() in the case that g() triggers a collection. Note, that stack variables must be initialized and
marked with llvm.gcroot in function’s prologue.

The %metadata argument can be used to avoid requiring heap objects to have ‘isa’ pointers or tag bits. [Appel89,
Goldberg91, Tolmach94] If specified, its value will be tracked along with the location of the pointer in the stack frame.

Consider the following fragment of Java code:
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{
Object X; // A null-initialized reference to an object
...

}

This block (which may be located in the middle of a function or in a loop nest), could be compiled to this LLVM code:

Entry:
;; In the entry block for the function, allocate the
;; stack space for X, which is an LLVM pointer.
%X = alloca %Object*

;; Tell LLVM that the stack space is a stack root.
;; Java has type-tags on objects, so we pass null as metadata.
%tmp = bitcast %Object** %X to i8**
call void @llvm.gcroot(i8** %tmp, i8* null)
...

;; "CodeBlock" is the block corresponding to the start
;; of the scope above.

CodeBlock:
;; Java null-initializes pointers.
store %Object* null, %Object** %X

...

;; As the pointer goes out of scope, store a null value into
;; it, to indicate that the value is no longer live.
store %Object* null, %Object** %X
...

Reading and writing references in the heap

Some collectors need to be informed when the mutator (the program that needs garbage collection) either reads a
pointer from or writes a pointer to a field of a heap object. The code fragments inserted at these points are called read
barriers and write barriers, respectively. The amount of code that needs to be executed is usually quite small and not
on the critical path of any computation, so the overall performance impact of the barrier is tolerable.

Barriers often require access to the object pointer rather than the derived pointer (which is a pointer to the field within
the object). Accordingly, these intrinsics take both pointers as separate arguments for completeness. In this snippet,
%object is the object pointer, and %derived is the derived pointer:

;; An array type.
%class.Array = type { %class.Object, i32, [0 x %class.Object*] }
...

;; Load the object pointer from a gcroot.
%object = load %class.Array** %object_addr

;; Compute the derived pointer.
%derived = getelementptr %object, i32 0, i32 2, i32 %n

LLVM does not enforce this relationship between the object and derived pointer (although a particular collector strat-
egy might). However, it would be an unusual collector that violated it.

The use of these intrinsics is naturally optional if the target GC does not require the corresponding barrier. The GC
strategy used with such a collector should replace the intrinsic calls with the corresponding load or store instruction
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if they are used.

One known deficiency with the current design is that the barrier intrinsics do not include the size or alignment of
the underlying operation performed. It is currently assumed that the operation is of pointer size and the alignment is
assumed to be the target machine’s default alignment.

Write barrier: llvm.gcwrite

void @llvm.gcwrite(i8* %value, i8* %object, i8** %derived)

For write barriers, LLVM provides the llvm.gcwrite intrinsic function. It has exactly the same semantics as a non-
volatile store to the derived pointer (the third argument). The exact code generated is specified by the Function’s
selected GC strategy.

Many important algorithms require write barriers, including generational and concurrent collectors. Additionally,
write barriers could be used to implement reference counting.

Read barrier: llvm.gcread

i8* @llvm.gcread(i8* %object, i8** %derived)

For read barriers, LLVM provides the llvm.gcread intrinsic function. It has exactly the same semantics as a non-
volatile load from the derived pointer (the second argument). The exact code generated is specified by the Function’s
selected GC strategy.

Read barriers are needed by fewer algorithms than write barriers, and may have a greater performance impact since
pointer reads are more frequent than writes.

Built In GC Strategies

LLVM includes built in support for several varieties of garbage collectors.

The Shadow Stack GC

To use this collector strategy, mark your functions with:

F.setGC("shadow-stack");

Unlike many GC algorithms which rely on a cooperative code generator to compile stack maps, this algorithm carefully
maintains a linked list of stack roots [Henderson2002]. This so-called “shadow stack” mirrors the machine stack.
Maintaining this data structure is slower than using a stack map compiled into the executable as constant data, but has
a significant portability advantage because it requires no special support from the target code generator, and does not
require tricky platform-specific code to crawl the machine stack.

The tradeoff for this simplicity and portability is:

• High overhead per function call.

• Not thread-safe.

Still, it’s an easy way to get started. After your compiler and runtime are up and running, writing a plugin will allow
you to take advantage of more advanced GC features of LLVM in order to improve performance.
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The shadow stack doesn’t imply a memory allocation algorithm. A semispace collector or building atop malloc are
great places to start, and can be implemented with very little code.

When it comes time to collect, however, your runtime needs to traverse the stack roots, and for this it needs to integrate
with the shadow stack. Luckily, doing so is very simple. (This code is heavily commented to help you understand the
data structure, but there are only 20 lines of meaningful code.)

/// @brief The map for a single function's stack frame. One of these is
/// compiled as constant data into the executable for each function.
///
/// Storage of metadata values is elided if the %metadata parameter to
/// @llvm.gcroot is null.
struct FrameMap {
int32_t NumRoots; //< Number of roots in stack frame.
int32_t NumMeta; //< Number of metadata entries. May be < NumRoots.
const void *Meta[0]; //< Metadata for each root.

};

/// @brief A link in the dynamic shadow stack. One of these is embedded in
/// the stack frame of each function on the call stack.
struct StackEntry {

StackEntry *Next; //< Link to next stack entry (the caller's).
const FrameMap *Map; //< Pointer to constant FrameMap.
void *Roots[0]; //< Stack roots (in-place array).

};

/// @brief The head of the singly-linked list of StackEntries. Functions push
/// and pop onto this in their prologue and epilogue.
///
/// Since there is only a global list, this technique is not threadsafe.
StackEntry *llvm_gc_root_chain;

/// @brief Calls Visitor(root, meta) for each GC root on the stack.
/// root and meta are exactly the values passed to
/// @llvm.gcroot.
///
/// Visitor could be a function to recursively mark live objects. Or it
/// might copy them to another heap or generation.
///
/// @param Visitor A function to invoke for every GC root on the stack.
void visitGCRoots(void (*Visitor)(void **Root, const void *Meta)) {

for (StackEntry *R = llvm_gc_root_chain; R; R = R->Next) {
unsigned i = 0;

// For roots [0, NumMeta), the metadata pointer is in the FrameMap.
for (unsigned e = R->Map->NumMeta; i != e; ++i)
Visitor(&R->Roots[i], R->Map->Meta[i]);

// For roots [NumMeta, NumRoots), the metadata pointer is null.
for (unsigned e = R->Map->NumRoots; i != e; ++i)
Visitor(&R->Roots[i], NULL);

}
}
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The ‘Erlang’ and ‘Ocaml’ GCs

LLVM ships with two example collectors which leverage the gcroot mechanisms. To our knowledge, these are
not actually used by any language runtime, but they do provide a reasonable starting point for someone interested in
writing an gcroot compatible GC plugin. In particular, these are the only in tree examples of how to produce a
custom binary stack map format using a gcroot strategy.

As there names imply, the binary format produced is intended to model that used by the Erlang and OCaml compilers
respectively.

The Statepoint Example GC

F.setGC("statepoint-example");

This GC provides an example of how one might use the infrastructure provided by gc.statepoint. This ex-
ample GC is compatible with the PlaceSafepoints and RewriteStatepointsForGC utility passes which simplify gc.
statepoint sequence insertion. If you need to build a custom GC strategy around the gc.statepoints mech-
anisms, it is recommended that you use this one as a starting point.

This GC strategy does not support read or write barriers. As a result, these intrinsics are lowered to normal loads and
stores.

The stack map format generated by this GC strategy can be found in the Stack Map Section using a format documented
here. This format is intended to be the standard format supported by LLVM going forward.

The CoreCLR GC

F.setGC("coreclr");

This GC leverages the gc.statepoint mechanism to support the CoreCLR runtime.

Support for this GC strategy is a work in progress. This strategy will differ from statepoint-example GC strategy in
certain aspects like:

• Base-pointers of interior pointers are not explicitly tracked and reported.

• A different format is used for encoding stack maps.

• Safe-point polls are only needed before loop-back edges and before tail-calls (not needed at function-entry).

Custom GC Strategies

If none of the built in GC strategy descriptions met your needs above, you will need to define a custom GCStrategy and
possibly, a custom LLVM pass to perform lowering. Your best example of where to start defining a custom GCStrategy
would be to look at one of the built in strategies.

You may be able to structure this additional code as a loadable plugin library. Loadable plugins are sufficient if all you
need is to enable a different combination of built in functionality, but if you need to provide a custom lowering pass,
you will need to build a patched version of LLVM. If you think you need a patched build, please ask for advice on
llvm-dev. There may be an easy way we can extend the support to make it work for your use case without requiring a
custom build.
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Collector Requirements

You should be able to leverage any existing collector library that includes the following elements:

1. A memory allocator which exposes an allocation function your compiled code can call.

2. A binary format for the stack map. A stack map describes the location of references at a safepoint and is used by
precise collectors to identify references within a stack frame on the machine stack. Note that collectors which
conservatively scan the stack don’t require such a structure.

3. A stack crawler to discover functions on the call stack, and enumerate the references listed in the stack map for
each call site.

4. A mechanism for identifying references in global locations (e.g. global variables).

5. If you collector requires them, an LLVM IR implementation of your collectors load and store barriers. Note that
since many collectors don’t require barriers at all, LLVM defaults to lowering such barriers to normal loads and
stores unless you arrange otherwise.

Implementing a collector plugin

User code specifies which GC code generation to use with the gc function attribute or, equivalently, with the setGC
method of Function.

To implement a GC plugin, it is necessary to subclass llvm::GCStrategy, which can be accomplished in a few
lines of boilerplate code. LLVM’s infrastructure provides access to several important algorithms. For an uncontrover-
sial collector, all that remains may be to compile LLVM’s computed stack map to assembly code (using the binary
representation expected by the runtime library). This can be accomplished in about 100 lines of code.

This is not the appropriate place to implement a garbage collected heap or a garbage collector itself. That code should
exist in the language’s runtime library. The compiler plugin is responsible for generating code which conforms to the
binary interface defined by library, most essentially the stack map.

To subclass llvm::GCStrategy and register it with the compiler:

// lib/MyGC/MyGC.cpp - Example LLVM GC plugin

#include "llvm/CodeGen/GCStrategy.h"
#include "llvm/CodeGen/GCMetadata.h"
#include "llvm/Support/Compiler.h"

using namespace llvm;

namespace {
class LLVM_LIBRARY_VISIBILITY MyGC : public GCStrategy {
public:
MyGC() {}

};

GCRegistry::Add<MyGC>
X("mygc", "My bespoke garbage collector.");

}

This boilerplate collector does nothing. More specifically:

• llvm.gcread calls are replaced with the corresponding load instruction.

• llvm.gcwrite calls are replaced with the corresponding store instruction.

• No safe points are added to the code.
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• The stack map is not compiled into the executable.

Using the LLVM makefiles, this code can be compiled as a plugin using a simple makefile:

# lib/MyGC/Makefile

LEVEL := ../..
LIBRARYNAME = MyGC
LOADABLE_MODULE = 1

include $(LEVEL)/Makefile.common

Once the plugin is compiled, code using it may be compiled using llc -load=MyGC.so (though MyGC.so may
have some other platform-specific extension):

$ cat sample.ll
define void @f() gc "mygc" {
entry:

ret void
}
$ llvm-as < sample.ll | llc -load=MyGC.so

It is also possible to statically link the collector plugin into tools, such as a language-specific compiler front-end.

Overview of available features

GCStrategy provides a range of features through which a plugin may do useful work. Some of these are callbacks,
some are algorithms that can be enabled, disabled, or customized. This matrix summarizes the supported (and planned)
features and correlates them with the collection techniques which typically require them.

Algorithm Done Shadow
stack

ref-
count

mark-
sweep

copy-
ing

incre-
mental

threaded concur-
rent

stack map
initialize roots
derived pointers NO N* N*
custom lowering
gcroot
gcwrite
gcread
safe points
in calls
before calls
for loops NO N N
before escape
emit code at safe
points

NO N N

output
assembly
JIT NO ? ? ? ? ?
obj NO ? ? ? ? ?
live analysis NO ? ? ? ? ?
register map NO ? ? ? ? ?
* Derived pointers only pose a hasard to copying collections.
? denotes a feature which could be utilized if available.

To be clear, the collection techniques above are defined as:
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Shadow Stack The mutator carefully maintains a linked list of stack roots.

Reference Counting The mutator maintains a reference count for each object and frees an object when its count falls
to zero.

Mark-Sweep When the heap is exhausted, the collector marks reachable objects starting from the roots, then deallo-
cates unreachable objects in a sweep phase.

Copying As reachability analysis proceeds, the collector copies objects from one heap area to another, compacting
them in the process. Copying collectors enable highly efficient “bump pointer” allocation and can improve
locality of reference.

Incremental (Including generational collectors.) Incremental collectors generally have all the properties of a copying
collector (regardless of whether the mature heap is compacting), but bring the added complexity of requiring
write barriers.

Threaded Denotes a multithreaded mutator; the collector must still stop the mutator (“stop the world”) before begin-
ning reachability analysis. Stopping a multithreaded mutator is a complicated problem. It generally requires
highly platform-specific code in the runtime, and the production of carefully designed machine code at safe
points.

Concurrent In this technique, the mutator and the collector run concurrently, with the goal of eliminating pause times.
In a cooperative collector, the mutator further aids with collection should a pause occur, allowing collection to
take advantage of multiprocessor hosts. The “stop the world” problem of threaded collectors is generally still
present to a limited extent. Sophisticated marking algorithms are necessary. Read barriers may be necessary.

As the matrix indicates, LLVM’s garbage collection infrastructure is already suitable for a wide variety of collectors,
but does not currently extend to multithreaded programs. This will be added in the future as there is interest.

Computing stack maps

LLVM automatically computes a stack map. One of the most important features of a GCStrategy is to compile this
information into the executable in the binary representation expected by the runtime library.

The stack map consists of the location and identity of each GC root in the each function in the module. For each root:

• RootNum: The index of the root.

• StackOffset: The offset of the object relative to the frame pointer.

• RootMetadata: The value passed as the %metadata parameter to the @llvm.gcroot intrinsic.

Also, for the function as a whole:

• getFrameSize(): The overall size of the function’s initial stack frame, not accounting for any dynamic
allocation.

• roots_size(): The count of roots in the function.

To access the stack map, use GCFunctionMetadata::roots_begin() and -end() from the GCMetadat-
aPrinter:

for (iterator I = begin(), E = end(); I != E; ++I) {
GCFunctionInfo *FI = *I;
unsigned FrameSize = FI->getFrameSize();
size_t RootCount = FI->roots_size();

for (GCFunctionInfo::roots_iterator RI = FI->roots_begin(),
RE = FI->roots_end();
RI != RE; ++RI) {

int RootNum = RI->Num;

4.19. Garbage Collection with LLVM 1107



LLVM Documentation, Release 3.9

int RootStackOffset = RI->StackOffset;
Constant *RootMetadata = RI->Metadata;

}
}

If the llvm.gcroot intrinsic is eliminated before code generation by a custom lowering pass, LLVM will compute
an empty stack map. This may be useful for collector plugins which implement reference counting or a shadow stack.

Initializing roots to null: InitRoots

MyGC::MyGC() {
InitRoots = true;

}

When set, LLVM will automatically initialize each root to null upon entry to the function. This prevents the GC’s
sweep phase from visiting uninitialized pointers, which will almost certainly cause it to crash. This initialization
occurs before custom lowering, so the two may be used together.

Since LLVM does not yet compute liveness information, there is no means of distinguishing an uninitialized stack root
from an initialized one. Therefore, this feature should be used by all GC plugins. It is enabled by default.

Custom lowering of intrinsics: CustomRoots, CustomReadBarriers, and CustomWriteBarriers

For GCs which use barriers or unusual treatment of stack roots, these flags allow the collector to perform arbitrary
transformations of the LLVM IR:

class MyGC : public GCStrategy {
public:

MyGC() {
CustomRoots = true;
CustomReadBarriers = true;
CustomWriteBarriers = true;

}
};

If any of these flags are set, LLVM suppresses its default lowering for the corresponding intrinsics. Instead, you must
provide a custom Pass which lowers the intrinsics as desired. If you have opted in to custom lowering of a particular
intrinsic your pass must eliminate all instances of the corresponding intrinsic in functions which opt in to your GC.
The best example of such a pass is the ShadowStackGC and it’s ShadowStackGCLowering pass.

There is currently no way to register such a custom lowering pass without building a custom copy of LLVM.

Generating safe points: NeededSafePoints

LLVM can compute four kinds of safe points:

namespace GC {
/// PointKind - The type of a collector-safe point.
///
enum PointKind {
Loop, //< Instr is a loop (backwards branch).
Return, //< Instr is a return instruction.
PreCall, //< Instr is a call instruction.
PostCall //< Instr is the return address of a call.
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};
}

A collector can request any combination of the four by setting the NeededSafePoints mask:

MyGC::MyGC() {
NeededSafePoints = 1 << GC::Loop

| 1 << GC::Return
| 1 << GC::PreCall
| 1 << GC::PostCall;

}

It can then use the following routines to access safe points.

for (iterator I = begin(), E = end(); I != E; ++I) {
GCFunctionInfo *MD = *I;
size_t PointCount = MD->size();

for (GCFunctionInfo::iterator PI = MD->begin(),
PE = MD->end(); PI != PE; ++PI) {

GC::PointKind PointKind = PI->Kind;
unsigned PointNum = PI->Num;

}
}

Almost every collector requires PostCall safe points, since these correspond to the moments when the function is
suspended during a call to a subroutine.

Threaded programs generally require Loop safe points to guarantee that the application will reach a safe point within
a bounded amount of time, even if it is executing a long-running loop which contains no function calls.

Threaded collectors may also require Return and PreCall safe points to implement “stop the world” techniques
using self-modifying code, where it is important that the program not exit the function without reaching a safe point
(because only the topmost function has been patched).

Emitting assembly code: GCMetadataPrinter

LLVM allows a plugin to print arbitrary assembly code before and after the rest of a module’s assembly code. At the
end of the module, the GC can compile the LLVM stack map into assembly code. (At the beginning, this information
is not yet computed.)

Since AsmWriter and CodeGen are separate components of LLVM, a separate abstract base class and registry
is provided for printing assembly code, the GCMetadaPrinter and GCMetadataPrinterRegistry. The
AsmWriter will look for such a subclass if the GCStrategy sets UsesMetadata:

MyGC::MyGC() {
UsesMetadata = true;

}

This separation allows JIT-only clients to be smaller.

Note that LLVM does not currently have analogous APIs to support code generation in the JIT, nor using the object
writers.

// lib/MyGC/MyGCPrinter.cpp - Example LLVM GC printer

#include "llvm/CodeGen/GCMetadataPrinter.h"
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#include "llvm/Support/Compiler.h"

using namespace llvm;

namespace {
class LLVM_LIBRARY_VISIBILITY MyGCPrinter : public GCMetadataPrinter {
public:
virtual void beginAssembly(AsmPrinter &AP);

virtual void finishAssembly(AsmPrinter &AP);
};

GCMetadataPrinterRegistry::Add<MyGCPrinter>
X("mygc", "My bespoke garbage collector.");

}

The collector should use AsmPrinter to print portable assembly code. The collector itself contains the stack map
for the entire module, and may access the GCFunctionInfo using its own begin() and end() methods. Here’s
a realistic example:

#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/Target/TargetAsmInfo.h"
#include "llvm/Target/TargetMachine.h"

void MyGCPrinter::beginAssembly(AsmPrinter &AP) {
// Nothing to do.

}

void MyGCPrinter::finishAssembly(AsmPrinter &AP) {
MCStreamer &OS = AP.OutStreamer;
unsigned IntPtrSize = AP.TM.getSubtargetImpl()->getDataLayout()->getPointerSize();

// Put this in the data section.
OS.SwitchSection(AP.getObjFileLowering().getDataSection());

// For each function...
for (iterator FI = begin(), FE = end(); FI != FE; ++FI) {
GCFunctionInfo &MD = **FI;

// A compact GC layout. Emit this data structure:
//
// struct {
// int32_t PointCount;
// void *SafePointAddress[PointCount];
// int32_t StackFrameSize; // in words
// int32_t StackArity;
// int32_t LiveCount;
// int32_t LiveOffsets[LiveCount];
// } __gcmap_<FUNCTIONNAME>;

// Align to address width.
AP.EmitAlignment(IntPtrSize == 4 ? 2 : 3);

// Emit PointCount.
OS.AddComment("safe point count");
AP.EmitInt32(MD.size());
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// And each safe point...
for (GCFunctionInfo::iterator PI = MD.begin(),

PE = MD.end(); PI != PE; ++PI) {
// Emit the address of the safe point.
OS.AddComment("safe point address");
MCSymbol *Label = PI->Label;
AP.EmitLabelPlusOffset(Label/*Hi*/, 0/*Offset*/, 4/*Size*/);

}

// Stack information never change in safe points! Only print info from the
// first call-site.
GCFunctionInfo::iterator PI = MD.begin();

// Emit the stack frame size.
OS.AddComment("stack frame size (in words)");
AP.EmitInt32(MD.getFrameSize() / IntPtrSize);

// Emit stack arity, i.e. the number of stacked arguments.
unsigned RegisteredArgs = IntPtrSize == 4 ? 5 : 6;
unsigned StackArity = MD.getFunction().arg_size() > RegisteredArgs ?

MD.getFunction().arg_size() - RegisteredArgs : 0;
OS.AddComment("stack arity");
AP.EmitInt32(StackArity);

// Emit the number of live roots in the function.
OS.AddComment("live root count");
AP.EmitInt32(MD.live_size(PI));

// And for each live root...
for (GCFunctionInfo::live_iterator LI = MD.live_begin(PI),

LE = MD.live_end(PI);
LI != LE; ++LI) {

// Emit live root's offset within the stack frame.
OS.AddComment("stack index (offset / wordsize)");
AP.EmitInt32(LI->StackOffset);

}
}

}
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• Quick Start — Writing hello world

– Setting up the build environment

– Basic code required

– Running a pass with opt

• Pass classes and requirements

– The ImmutablePass class

– The ModulePass class

* The runOnModule method

– The CallGraphSCCPass class

* The doInitialization(CallGraph &) method

* The runOnSCC method

* The doFinalization(CallGraph &) method

– The FunctionPass class

* The doInitialization(Module &) method

* The runOnFunction method

* The doFinalization(Module &) method

– The LoopPass class

* The doInitialization(Loop *, LPPassManager &) method

* The runOnLoop method

* The doFinalization() method

– The RegionPass class

* The doInitialization(Region *, RGPassManager &) method

* The runOnRegion method

* The doFinalization() method

– The BasicBlockPass class

* The doInitialization(Function &) method

* The runOnBasicBlock method

* The doFinalization(Function &) method

– The MachineFunctionPass class

* The runOnMachineFunction(MachineFunction &MF) method

– Pass registration

* The print method

– Specifying interactions between passes

* The getAnalysisUsage method

* The AnalysisUsage::addRequired<> and AnalysisUsage::addRequiredTransitive<>
methods
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* The AnalysisUsage::addPreserved<> method

* Example implementations of getAnalysisUsage

* The getAnalysis<> and getAnalysisIfAvailable<> methods

– Implementing Analysis Groups

* Analysis Group Concepts

* Using RegisterAnalysisGroup

• Pass Statistics

– What PassManager does

* The releaseMemory method

• Registering dynamically loaded passes

– Using existing registries

– Creating new registries

– Using GDB with dynamically loaded passes

* Setting a breakpoint in your pass

* Miscellaneous Problems

– Future extensions planned

* Multithreaded LLVM

Introduction — What is a pass?

The LLVM Pass Framework is an important part of the LLVM system, because LLVM passes are where most of
the interesting parts of the compiler exist. Passes perform the transformations and optimizations that make up the
compiler, they build the analysis results that are used by these transformations, and they are, above all, a structuring
technique for compiler code.

All LLVM passes are subclasses of the Pass class, which implement functionality by overriding virtual methods inher-
ited from Pass. Depending on how your pass works, you should inherit from the ModulePass , CallGraphSCCPass,
FunctionPass , or LoopPass, or RegionPass, or BasicBlockPass classes, which gives the system more information
about what your pass does, and how it can be combined with other passes. One of the main features of the LLVM Pass
Framework is that it schedules passes to run in an efficient way based on the constraints that your pass meets (which
are indicated by which class they derive from).

We start by showing you how to construct a pass, everything from setting up the code, to compiling, loading, and
executing it. After the basics are down, more advanced features are discussed.

Quick Start — Writing hello world

Here we describe how to write the “hello world” of passes. The “Hello” pass is designed to simply print out the name of
non-external functions that exist in the program being compiled. It does not modify the program at all, it just inspects
it. The source code and files for this pass are available in the LLVM source tree in the lib/Transforms/Hello
directory.
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Setting up the build environment

First, configure and build LLVM. Next, you need to create a new directory somewhere in the LLVM source base.
For this example, we’ll assume that you made lib/Transforms/Hello. Finally, you must set up a build script
(Makefile) that will compile the source code for the new pass. To do this, copy the following into Makefile:

# Makefile for hello pass

# Path to top level of LLVM hierarchy
LEVEL = ../../..

# Name of the library to build
LIBRARYNAME = Hello

# Make the shared library become a loadable module so the tools can
# dlopen/dlsym on the resulting library.
LOADABLE_MODULE = 1

# Include the makefile implementation stuff
include $(LEVEL)/Makefile.common

This makefile specifies that all of the .cpp files in the current directory are to be compiled and linked together into
a shared object $(LEVEL)/Debug+Asserts/lib/Hello.so that can be dynamically loaded by the opt or
bugpoint tools via their -load options. If your operating system uses a suffix other than .so (such as Windows
or Mac OS X), the appropriate extension will be used.

If you are used CMake to build LLVM, see Developing LLVM passes out of source.

Now that we have the build scripts set up, we just need to write the code for the pass itself.

Basic code required

Now that we have a way to compile our new pass, we just have to write it. Start out with:

#include "llvm/Pass.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/raw_ostream.h"

Which are needed because we are writing a Pass, we are operating on Functions, and we will be doing some printing.

Next we have:

using namespace llvm;

... which is required because the functions from the include files live in the llvm namespace.

Next we have:

namespace {

... which starts out an anonymous namespace. Anonymous namespaces are to C++ what the “static” keyword is to
C (at global scope). It makes the things declared inside of the anonymous namespace visible only to the current file.
If you’re not familiar with them, consult a decent C++ book for more information.

Next, we declare our pass itself:

struct Hello : public FunctionPass {
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This declares a “Hello” class that is a subclass of FunctionPass. The different builtin pass subclasses are described
in detail later, but for now, know that FunctionPass operates on a function at a time.

static char ID;
Hello() : FunctionPass(ID) {}

This declares pass identifier used by LLVM to identify pass. This allows LLVM to avoid using expensive C++ runtime
information.

bool runOnFunction(Function &F) override {
errs() << "Hello: ";
errs().write_escaped(F.getName()) << "\n";
return false;

}
}; // end of struct Hello

} // end of anonymous namespace

We declare a runOnFunction method, which overrides an abstract virtual method inherited from FunctionPass. This
is where we are supposed to do our thing, so we just print out our message with the name of each function.

char Hello::ID = 0;

We initialize pass ID here. LLVM uses ID’s address to identify a pass, so initialization value is not important.

static RegisterPass<Hello> X("hello", "Hello World Pass",
false /* Only looks at CFG */,
false /* Analysis Pass */);

Lastly, we register our class Hello, giving it a command line argument “hello”, and a name “Hello World Pass”.
The last two arguments describe its behavior: if a pass walks CFG without modifying it then the third argument is set
to true; if a pass is an analysis pass, for example dominator tree pass, then true is supplied as the fourth argument.

As a whole, the .cpp file looks like:

#include "llvm/Pass.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;

namespace {
struct Hello : public FunctionPass {
static char ID;
Hello() : FunctionPass(ID) {}

bool runOnFunction(Function &F) override {
errs() << "Hello: ";
errs().write_escaped(F.getName()) << '\n';
return false;

}
};

}

char Hello::ID = 0;
static RegisterPass<Hello> X("hello", "Hello World Pass", false, false);

Now that it’s all together, compile the file with a simple “gmake” command from the top level of your build directory
and you should get a new file “Debug+Asserts/lib/Hello.so”. Note that everything in this file is contained
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in an anonymous namespace — this reflects the fact that passes are self contained units that do not need external
interfaces (although they can have them) to be useful.

Running a pass with opt

Now that you have a brand new shiny shared object file, we can use the opt command to run an LLVM program
through your pass. Because you registered your pass with RegisterPass, you will be able to use the opt tool to
access it, once loaded.

To test it, follow the example at the end of the Getting Started with the LLVM System to compile “Hello World” to
LLVM. We can now run the bitcode file (hello.bc) for the program through our transformation like this (or course, any
bitcode file will work):

$ opt -load ../../Debug+Asserts/lib/Hello.so -hello < hello.bc > /dev/null
Hello: __main
Hello: puts
Hello: main

The -load option specifies that opt should load your pass as a shared object, which makes “-hello” a valid
command line argument (which is one reason you need to register your pass). Because the Hello pass does not modify
the program in any interesting way, we just throw away the result of opt (sending it to /dev/null).

To see what happened to the other string you registered, try running opt with the -help option:

$ opt -load ../../Debug+Asserts/lib/Hello.so -help
OVERVIEW: llvm .bc -> .bc modular optimizer

USAGE: opt [options] <input bitcode>

OPTIONS:
Optimizations available:

...
-globalopt - Global Variable Optimizer
-globalsmodref-aa - Simple mod/ref analysis for globals
-gvn - Global Value Numbering
-hello - Hello World Pass
-indvars - Induction Variable Simplification
-inline - Function Integration/Inlining

...

The pass name gets added as the information string for your pass, giving some documentation to users of opt. Now
that you have a working pass, you would go ahead and make it do the cool transformations you want. Once you get
it all working and tested, it may become useful to find out how fast your pass is. The PassManager provides a nice
command line option (--time-passes) that allows you to get information about the execution time of your pass
along with the other passes you queue up. For example:

$ opt -load ../../Debug+Asserts/lib/Hello.so -hello -time-passes < hello.bc > /dev/
→˓null
Hello: __main
Hello: puts
Hello: main
===============================================================================

... Pass execution timing report ...
===============================================================================

Total Execution Time: 0.02 seconds (0.0479059 wall clock)

---User Time--- --System Time-- --User+System-- ---Wall Time--- --- Pass
→˓Name ---
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0.0100 (100.0%) 0.0000 ( 0.0%) 0.0100 ( 50.0%) 0.0402 ( 84.0%) Bitcode
→˓Writer

0.0000 ( 0.0%) 0.0100 (100.0%) 0.0100 ( 50.0%) 0.0031 ( 6.4%) Dominator
→˓Set Construction

0.0000 ( 0.0%) 0.0000 ( 0.0%) 0.0000 ( 0.0%) 0.0013 ( 2.7%) Module
→˓Verifier

0.0000 ( 0.0%) 0.0000 ( 0.0%) 0.0000 ( 0.0%) 0.0033 ( 6.9%) Hello World
→˓Pass

0.0100 (100.0%) 0.0100 (100.0%) 0.0200 (100.0%) 0.0479 (100.0%) TOTAL

As you can see, our implementation above is pretty fast. The additional passes listed are automatically inserted by the
opt tool to verify that the LLVM emitted by your pass is still valid and well formed LLVM, which hasn’t been broken
somehow.

Now that you have seen the basics of the mechanics behind passes, we can talk about some more details of how they
work and how to use them.

Pass classes and requirements

One of the first things that you should do when designing a new pass is to decide what class you should subclass for
your pass. The Hello World example uses the FunctionPass class for its implementation, but we did not discuss why
or when this should occur. Here we talk about the classes available, from the most general to the most specific.

When choosing a superclass for your Pass, you should choose the most specific class possible, while still being
able to meet the requirements listed. This gives the LLVM Pass Infrastructure information necessary to optimize how
passes are run, so that the resultant compiler isn’t unnecessarily slow.

The ImmutablePass class

The most plain and boring type of pass is the “ImmutablePass” class. This pass type is used for passes that do not have
to be run, do not change state, and never need to be updated. This is not a normal type of transformation or analysis,
but can provide information about the current compiler configuration.

Although this pass class is very infrequently used, it is important for providing information about the current target
machine being compiled for, and other static information that can affect the various transformations.

ImmutablePasses never invalidate other transformations, are never invalidated, and are never “run”.

The ModulePass class

The ModulePass class is the most general of all superclasses that you can use. Deriving from ModulePass indicates
that your pass uses the entire program as a unit, referring to function bodies in no predictable order, or adding and
removing functions. Because nothing is known about the behavior of ModulePass subclasses, no optimization can
be done for their execution.

A module pass can use function level passes (e.g. dominators) using the getAnalysis interface
getAnalysis<DominatorTree>(llvm::Function *) to provide the function to retrieve analysis result
for, if the function pass does not require any module or immutable passes. Note that this can only be done for func-
tions for which the analysis ran, e.g. in the case of dominators you should only ask for the DominatorTree for
function definitions, not declarations.

To write a correct ModulePass subclass, derive from ModulePass and overload the runOnModule method with
the following signature:
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The runOnModule method

virtual bool runOnModule(Module &M) = 0;

The runOnModule method performs the interesting work of the pass. It should return true if the module was
modified by the transformation and false otherwise.

The CallGraphSCCPass class

The CallGraphSCCPass is used by passes that need to traverse the program bottom-up on the call graph (callees
before callers). Deriving from CallGraphSCCPass provides some mechanics for building and traversing the
CallGraph, but also allows the system to optimize execution of CallGraphSCCPasses. If your pass meets
the requirements outlined below, and doesn’t meet the requirements of a FunctionPass or BasicBlockPass, you should
derive from CallGraphSCCPass.

TODO: explain briefly what SCC, Tarjan’s algo, and B-U mean.

To be explicit, CallGraphSCCPass subclasses are:

1. ... not allowed to inspect or modify any Functions other than those in the current SCC and the direct callers
and direct callees of the SCC.

2. ... required to preserve the current CallGraph object, updating it to reflect any changes made to the program.

3. ... not allowed to add or remove SCC’s from the current Module, though they may change the contents of an
SCC.

4. ... allowed to add or remove global variables from the current Module.

5. ... allowed to maintain state across invocations of runOnSCC (including global data).

Implementing a CallGraphSCCPass is slightly tricky in some cases because it has to handle SCCs with more than
one node in it. All of the virtual methods described below should return true if they modified the program, or false
if they didn’t.

The doInitialization(CallGraph &) method

virtual bool doInitialization(CallGraph &CG);

The doInitialization method is allowed to do most of the things that CallGraphSCCPasses are not al-
lowed to do. They can add and remove functions, get pointers to functions, etc. The doInitialization
method is designed to do simple initialization type of stuff that does not depend on the SCCs being processed. The
doInitialization method call is not scheduled to overlap with any other pass executions (thus it should be very
fast).

The runOnSCC method

virtual bool runOnSCC(CallGraphSCC &SCC) = 0;

The runOnSCCmethod performs the interesting work of the pass, and should return true if the module was modified
by the transformation, false otherwise.
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The doFinalization(CallGraph &) method

virtual bool doFinalization(CallGraph &CG);

The doFinalization method is an infrequently used method that is called when the pass framework has finished
calling runOnSCC for every SCC in the program being compiled.

The FunctionPass class

In contrast to ModulePass subclasses, FunctionPass subclasses do have a predictable, local behavior that can be
expected by the system. All FunctionPass execute on each function in the program independent of all of the
other functions in the program. FunctionPasses do not require that they are executed in a particular order, and
FunctionPasses do not modify external functions.

To be explicit, FunctionPass subclasses are not allowed to:

1. Inspect or modify a Function other than the one currently being processed.

2. Add or remove Functions from the current Module.

3. Add or remove global variables from the current Module.

4. Maintain state across invocations of runOnFunction (including global data).

Implementing a FunctionPass is usually straightforward (See the Hello World pass for example).
FunctionPasses may overload three virtual methods to do their work. All of these methods should return true if
they modified the program, or false if they didn’t.

The doInitialization(Module &) method

virtual bool doInitialization(Module &M);

The doInitialization method is allowed to do most of the things that FunctionPasses are not allowed
to do. They can add and remove functions, get pointers to functions, etc. The doInitialization method
is designed to do simple initialization type of stuff that does not depend on the functions being processed. The
doInitialization method call is not scheduled to overlap with any other pass executions (thus it should be very
fast).

A good example of how this method should be used is the LowerAllocations pass. This pass converts
malloc and free instructions into platform dependent malloc() and free() function calls. It uses the
doInitialization method to get a reference to the malloc and free functions that it needs, adding proto-
types to the module if necessary.

The runOnFunction method

virtual bool runOnFunction(Function &F) = 0;

The runOnFunction method must be implemented by your subclass to do the transformation or analysis work of
your pass. As usual, a true value should be returned if the function is modified.
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The doFinalization(Module &) method

virtual bool doFinalization(Module &M);

The doFinalization method is an infrequently used method that is called when the pass framework has finished
calling runOnFunction for every function in the program being compiled.

The LoopPass class

All LoopPass execute on each loop in the function independent of all of the other loops in the function. LoopPass
processes loops in loop nest order such that outer most loop is processed last.

LoopPass subclasses are allowed to update loop nest using LPPassManager interface. Implementing a loop pass
is usually straightforward. LoopPasses may overload three virtual methods to do their work. All these methods
should return true if they modified the program, or false if they didn’t.

A LoopPass subclass which is intended to run as part of the main loop pass pipeline needs to preserve all of the same
function analyses that the other loop passes in its pipeline require. To make that easier, a getLoopAnalysisUsage
function is provided by LoopUtils.h. It can be called within the subclass’s getAnalysisUsage override to get
consistent and correct behavior. Analogously, INITIALIZE_PASS_DEPENDENCY(LoopPass)will initialize this
set of function analyses.

The doInitialization(Loop *, LPPassManager &) method

virtual bool doInitialization(Loop *, LPPassManager &LPM);

The doInitialization method is designed to do simple initialization type of stuff that does not depend on the
functions being processed. The doInitialization method call is not scheduled to overlap with any other pass
executions (thus it should be very fast). LPPassManager interface should be used to access Function or Module
level analysis information.

The runOnLoop method

virtual bool runOnLoop(Loop *, LPPassManager &LPM) = 0;

The runOnLoop method must be implemented by your subclass to do the transformation or analysis work of your
pass. As usual, a true value should be returned if the function is modified. LPPassManager interface should be
used to update loop nest.

The doFinalization() method

virtual bool doFinalization();

The doFinalization method is an infrequently used method that is called when the pass framework has finished
calling runOnLoop for every loop in the program being compiled.

The RegionPass class

RegionPass is similar to LoopPass, but executes on each single entry single exit region in the function.
RegionPass processes regions in nested order such that the outer most region is processed last.
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RegionPass subclasses are allowed to update the region tree by using the RGPassManager interface. You may
overload three virtual methods of RegionPass to implement your own region pass. All these methods should return
true if they modified the program, or false if they did not.

The doInitialization(Region *, RGPassManager &) method

virtual bool doInitialization(Region *, RGPassManager &RGM);

The doInitialization method is designed to do simple initialization type of stuff that does not depend on the
functions being processed. The doInitialization method call is not scheduled to overlap with any other pass
executions (thus it should be very fast). RPPassManager interface should be used to access Function or Module
level analysis information.

The runOnRegion method

virtual bool runOnRegion(Region *, RGPassManager &RGM) = 0;

The runOnRegion method must be implemented by your subclass to do the transformation or analysis work of your
pass. As usual, a true value should be returned if the region is modified. RGPassManager interface should be used
to update region tree.

The doFinalization() method

virtual bool doFinalization();

The doFinalization method is an infrequently used method that is called when the pass framework has finished
calling runOnRegion for every region in the program being compiled.

The BasicBlockPass class

BasicBlockPasses are just like FunctionPass’s , except that they must limit their scope of inspection and modifi-
cation to a single basic block at a time. As such, they are not allowed to do any of the following:

1. Modify or inspect any basic blocks outside of the current one.

2. Maintain state across invocations of runOnBasicBlock.

3. Modify the control flow graph (by altering terminator instructions)

4. Any of the things forbidden for FunctionPasses.

BasicBlockPasses are useful for traditional local and “peephole” optimizations. They may override the same
doInitialization(Module &) and doFinalization(Module &) methods that FunctionPass’s have, but also have the fol-
lowing virtual methods that may also be implemented:

The doInitialization(Function &) method

virtual bool doInitialization(Function &F);
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The doInitialization method is allowed to do most of the things that BasicBlockPasses are not allowed to
do, but that FunctionPasses can. The doInitialization method is designed to do simple initialization that
does not depend on the BasicBlocks being processed. The doInitialization method call is not scheduled to
overlap with any other pass executions (thus it should be very fast).

The runOnBasicBlock method

virtual bool runOnBasicBlock(BasicBlock &BB) = 0;

Override this function to do the work of the BasicBlockPass. This function is not allowed to inspect or modify
basic blocks other than the parameter, and are not allowed to modify the CFG. A true value must be returned if the
basic block is modified.

The doFinalization(Function &) method

virtual bool doFinalization(Function &F);

The doFinalization method is an infrequently used method that is called when the pass framework has finished
calling runOnBasicBlock for every BasicBlock in the program being compiled. This can be used to perform per-
function finalization.

The MachineFunctionPass class

A MachineFunctionPass is a part of the LLVM code generator that executes on the machine-dependent repre-
sentation of each LLVM function in the program.

Code generator passes are registered and initialized specially by TargetMachine::addPassesToEmitFile
and similar routines, so they cannot generally be run from the opt or bugpoint commands.

A MachineFunctionPass is also a FunctionPass, so all the restrictions that apply to a
FunctionPass also apply to it. MachineFunctionPasses also have additional restrictions. In particu-
lar, MachineFunctionPasses are not allowed to do any of the following:

1. Modify or create any LLVM IR Instructions, BasicBlocks, Arguments, Functions,
GlobalVariables, GlobalAliases, or Modules.

2. Modify a MachineFunction other than the one currently being processed.

3. Maintain state across invocations of runOnMachineFunction (including global data).

The runOnMachineFunction(MachineFunction &MF) method

virtual bool runOnMachineFunction(MachineFunction &MF) = 0;

runOnMachineFunction can be considered the main entry point of a MachineFunctionPass; that is, you
should override this method to do the work of your MachineFunctionPass.

The runOnMachineFunction method is called on every MachineFunction in a Module, so that the
MachineFunctionPass may perform optimizations on the machine-dependent representation of the func-
tion. If you want to get at the LLVM Function for the MachineFunction you’re working on, use
MachineFunction‘s getFunction() accessor method — but remember, you may not modify the LLVM
Function or its contents from a MachineFunctionPass.
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Pass registration

In the Hello World example pass we illustrated how pass registration works, and discussed some of the reasons that it
is used and what it does. Here we discuss how and why passes are registered.

As we saw above, passes are registered with the RegisterPass template. The template parameter is the name of
the pass that is to be used on the command line to specify that the pass should be added to a program (for example,
with opt or bugpoint). The first argument is the name of the pass, which is to be used for the -help output of
programs, as well as for debug output generated by the –debug-pass option.

If you want your pass to be easily dumpable, you should implement the virtual print method:

The print method

virtual void print(llvm::raw_ostream &O, const Module *M) const;

The print method must be implemented by “analyses” in order to print a human readable version of the analysis
results. This is useful for debugging an analysis itself, as well as for other people to figure out how an analysis works.
Use the opt -analyze argument to invoke this method.

The llvm::raw_ostream parameter specifies the stream to write the results on, and the Module parameter gives
a pointer to the top level module of the program that has been analyzed. Note however that this pointer may be NULL
in certain circumstances (such as calling the Pass::dump() from a debugger), so it should only be used to enhance
debug output, it should not be depended on.

Specifying interactions between passes

One of the main responsibilities of the PassManager is to make sure that passes interact with each other correctly.
Because PassManager tries to optimize the execution of passes it must know how the passes interact with each other
and what dependencies exist between the various passes. To track this, each pass can declare the set of passes that are
required to be executed before the current pass, and the passes which are invalidated by the current pass.

Typically this functionality is used to require that analysis results are computed before your pass is run. Running
arbitrary transformation passes can invalidate the computed analysis results, which is what the invalidation set speci-
fies. If a pass does not implement the getAnalysisUsage method, it defaults to not having any prerequisite passes, and
invalidating all other passes.

The getAnalysisUsage method

virtual void getAnalysisUsage(AnalysisUsage &Info) const;

By implementing the getAnalysisUsage method, the required and invalidated sets may be specified for your
transformation. The implementation should fill in the AnalysisUsage object with information about which passes are
required and not invalidated. To do this, a pass may call any of the following methods on the AnalysisUsage
object:

The AnalysisUsage::addRequired<> and AnalysisUsage::addRequiredTransitive<> meth-
ods

If your pass requires a previous pass to be executed (an analysis for example), it can use one of these methods to
arrange for it to be run before your pass. LLVM has many different types of analyses and passes that can be required,
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spanning the range from DominatorSet to BreakCriticalEdges. Requiring BreakCriticalEdges, for
example, guarantees that there will be no critical edges in the CFG when your pass has been run.

Some analyses chain to other analyses to do their job. For example, an AliasAnalysis <AliasAnalysis> implementation
is required to chain to other alias analysis passes. In cases where analyses chain, the addRequiredTransitive
method should be used instead of the addRequired method. This informs the PassManager that the transitively
required pass should be alive as long as the requiring pass is.

The AnalysisUsage::addPreserved<> method

One of the jobs of the PassManager is to optimize how and when analyses are run. In particular, it attempts to
avoid recomputing data unless it needs to. For this reason, passes are allowed to declare that they preserve (i.e., they
don’t invalidate) an existing analysis if it’s available. For example, a simple constant folding pass would not modify
the CFG, so it can’t possibly affect the results of dominator analysis. By default, all passes are assumed to invalidate
all others.

The AnalysisUsage class provides several methods which are useful in certain circumstances that are related to
addPreserved. In particular, the setPreservesAll method can be called to indicate that the pass does not
modify the LLVM program at all (which is true for analyses), and the setPreservesCFG method can be used by
transformations that change instructions in the program but do not modify the CFG or terminator instructions (note
that this property is implicitly set for BasicBlockPasses).

addPreserved is particularly useful for transformations like BreakCriticalEdges. This pass knows how to
update a small set of loop and dominator related analyses if they exist, so it can preserve them, despite the fact that it
hacks on the CFG.

Example implementations of getAnalysisUsage

// This example modifies the program, but does not modify the CFG
void LICM::getAnalysisUsage(AnalysisUsage &AU) const {

AU.setPreservesCFG();
AU.addRequired<LoopInfoWrapperPass>();

}

The getAnalysis<> and getAnalysisIfAvailable<> methods

The Pass::getAnalysis<> method is automatically inherited by your class, providing you with access to the
passes that you declared that you required with the getAnalysisUsage method. It takes a single template argument that
specifies which pass class you want, and returns a reference to that pass. For example:

bool LICM::runOnFunction(Function &F) {
LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
//...

}

This method call returns a reference to the pass desired. You may get a runtime assertion failure if you attempt to get
an analysis that you did not declare as required in your getAnalysisUsage implementation. This method can be called
by your run* method implementation, or by any other local method invoked by your run* method.

A module level pass can use function level analysis info using this interface. For example:

bool ModuleLevelPass::runOnModule(Module &M) {
//...
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DominatorTree &DT = getAnalysis<DominatorTree>(Func);
//...

}

In above example, runOnFunction for DominatorTree is called by pass manager before returning a reference
to the desired pass.

If your pass is capable of updating analyses if they exist (e.g., BreakCriticalEdges, as described above), you can
use the getAnalysisIfAvailable method, which returns a pointer to the analysis if it is active. For example:

if (DominatorSet *DS = getAnalysisIfAvailable<DominatorSet>()) {
// A DominatorSet is active. This code will update it.

}

Implementing Analysis Groups

Now that we understand the basics of how passes are defined, how they are used, and how they are required from other
passes, it’s time to get a little bit fancier. All of the pass relationships that we have seen so far are very simple: one
pass depends on one other specific pass to be run before it can run. For many applications, this is great, for others,
more flexibility is required.

In particular, some analyses are defined such that there is a single simple interface to the analysis results, but multiple
ways of calculating them. Consider alias analysis for example. The most trivial alias analysis returns “may alias” for
any alias query. The most sophisticated analysis a flow-sensitive, context-sensitive interprocedural analysis that can
take a significant amount of time to execute (and obviously, there is a lot of room between these two extremes for
other implementations). To cleanly support situations like this, the LLVM Pass Infrastructure supports the notion of
Analysis Groups.

Analysis Group Concepts

An Analysis Group is a single simple interface that may be implemented by multiple different passes. Analysis Groups
can be given human readable names just like passes, but unlike passes, they need not derive from the Pass class. An
analysis group may have one or more implementations, one of which is the “default” implementation.

Analysis groups are used by client passes just like other passes are: the AnalysisUsage::addRequired()
and Pass::getAnalysis() methods. In order to resolve this requirement, the PassManager scans the available
passes to see if any implementations of the analysis group are available. If none is available, the default implementation
is created for the pass to use. All standard rules for interaction between passes still apply.

Although Pass Registration is optional for normal passes, all analysis group implementations must be registered, and
must use the INITIALIZE_AG_PASS template to join the implementation pool. Also, a default implementation of the
interface must be registered with RegisterAnalysisGroup.

As a concrete example of an Analysis Group in action, consider the AliasAnalysis analysis group. The default imple-
mentation of the alias analysis interface (the basicaa pass) just does a few simple checks that don’t require significant
analysis to compute (such as: two different globals can never alias each other, etc). Passes that use the AliasAnalysis
interface (for example the gcse pass), do not care which implementation of alias analysis is actually provided, they
just use the designated interface.

From the user’s perspective, commands work just like normal. Issuing the command opt -gcse ... will cause
the basicaa class to be instantiated and added to the pass sequence. Issuing the command opt -somefancyaa
-gcse ... will cause the gcse pass to use the somefancyaa alias analysis (which doesn’t actually exist, it’s just
a hypothetical example) instead.
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Using RegisterAnalysisGroup

The RegisterAnalysisGroup template is used to register the analysis group itself, while the
INITIALIZE_AG_PASS is used to add pass implementations to the analysis group. First, an analysis group should
be registered, with a human readable name provided for it. Unlike registration of passes, there is no command line
argument to be specified for the Analysis Group Interface itself, because it is “abstract”:

static RegisterAnalysisGroup<AliasAnalysis> A("Alias Analysis");

Once the analysis is registered, passes can declare that they are valid implementations of the interface by using the
following code:

namespace {
// Declare that we implement the AliasAnalysis interface
INITIALIZE_AG_PASS(FancyAA, AliasAnalysis , "somefancyaa",

"A more complex alias analysis implementation",
false, // Is CFG Only?
true, // Is Analysis?
false); // Is default Analysis Group implementation?

}

This just shows a class FancyAA that uses the INITIALIZE_AG_PASS macro both to register and to “join” the
AliasAnalysis analysis group. Every implementation of an analysis group should join using this macro.

namespace {
// Declare that we implement the AliasAnalysis interface
INITIALIZE_AG_PASS(BasicAA, AliasAnalysis, "basicaa",

"Basic Alias Analysis (default AA impl)",
false, // Is CFG Only?
true, // Is Analysis?
true); // Is default Analysis Group implementation?

}

Here we show how the default implementation is specified (using the final argument to the INITIALIZE_AG_PASS
template). There must be exactly one default implementation available at all times for an Analysis Group to be used.
Only default implementation can derive from ImmutablePass. Here we declare that the BasicAliasAnalysis pass
is the default implementation for the interface.

Pass Statistics

The Statistic class is designed to be an easy way to expose various success metrics from passes. These statistics are
printed at the end of a run, when the -stats command line option is enabled on the command line. See the Statistics
section in the Programmer’s Manual for details.

What PassManager does

The PassManager class takes a list of passes, ensures their prerequisites are set up correctly, and then schedules passes
to run efficiently. All of the LLVM tools that run passes use the PassManager for execution of these passes.

The PassManager does two main things to try to reduce the execution time of a series of passes:

1. Share analysis results. The PassManager attempts to avoid recomputing analysis results as much as pos-
sible. This means keeping track of which analyses are available already, which analyses get invalidated, and
which analyses are needed to be run for a pass. An important part of work is that the PassManager tracks the
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exact lifetime of all analysis results, allowing it to free memory allocated to holding analysis results as soon as
they are no longer needed.

2. Pipeline the execution of passes on the program. The PassManager attempts to get better cache and
memory usage behavior out of a series of passes by pipelining the passes together. This means that, given a
series of consecutive FunctionPass, it will execute all of the FunctionPass on the first function, then all of the
FunctionPasses on the second function, etc... until the entire program has been run through the passes.

This improves the cache behavior of the compiler, because it is only touching the LLVM program representation
for a single function at a time, instead of traversing the entire program. It reduces the memory consumption
of compiler, because, for example, only one DominatorSet needs to be calculated at a time. This also makes it
possible to implement some interesting enhancements in the future.

The effectiveness of the PassManager is influenced directly by how much information it has about the behaviors
of the passes it is scheduling. For example, the “preserved” set is intentionally conservative in the face of an unim-
plemented getAnalysisUsage method. Not implementing when it should be implemented will have the effect of not
allowing any analysis results to live across the execution of your pass.

The PassManager class exposes a --debug-pass command line options that is useful for debugging pass exe-
cution, seeing how things work, and diagnosing when you should be preserving more analyses than you currently are.
(To get information about all of the variants of the --debug-pass option, just type “opt -help-hidden”).

By using the –debug-pass=Structure option, for example, we can see how our Hello World pass interacts with other
passes. Lets try it out with the gcse and licm passes:

$ opt -load ../../Debug+Asserts/lib/Hello.so -gcse -licm --debug-pass=Structure <
→˓hello.bc > /dev/null
Module Pass Manager

Function Pass Manager
Dominator Set Construction
Immediate Dominators Construction
Global Common Subexpression Elimination

-- Immediate Dominators Construction
-- Global Common Subexpression Elimination

Natural Loop Construction
Loop Invariant Code Motion

-- Natural Loop Construction
-- Loop Invariant Code Motion

Module Verifier
-- Dominator Set Construction
-- Module Verifier

Bitcode Writer
--Bitcode Writer

This output shows us when passes are constructed and when the analysis results are known to be dead (prefixed
with “--”). Here we see that GCSE uses dominator and immediate dominator information to do its job. The LICM
pass uses natural loop information, which uses dominator sets, but not immediate dominators. Because immediate
dominators are no longer useful after the GCSE pass, it is immediately destroyed. The dominator sets are then reused
to compute natural loop information, which is then used by the LICM pass.

After the LICM pass, the module verifier runs (which is automatically added by the opt tool), which uses the dom-
inator set to check that the resultant LLVM code is well formed. After it finishes, the dominator set information is
destroyed, after being computed once, and shared by three passes.

Lets see how this changes when we run the Hello World pass in between the two passes:

$ opt -load ../../Debug+Asserts/lib/Hello.so -gcse -hello -licm --debug-
→˓pass=Structure < hello.bc > /dev/null
Module Pass Manager
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Function Pass Manager
Dominator Set Construction
Immediate Dominators Construction
Global Common Subexpression Elimination

-- Dominator Set Construction
-- Immediate Dominators Construction
-- Global Common Subexpression Elimination

Hello World Pass
-- Hello World Pass

Dominator Set Construction
Natural Loop Construction
Loop Invariant Code Motion

-- Natural Loop Construction
-- Loop Invariant Code Motion

Module Verifier
-- Dominator Set Construction
-- Module Verifier

Bitcode Writer
--Bitcode Writer
Hello: __main
Hello: puts
Hello: main

Here we see that the Hello World pass has killed the Dominator Set pass, even though it doesn’t modify the code at
all! To fix this, we need to add the following getAnalysisUsage method to our pass:

// We don't modify the program, so we preserve all analyses
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();

}

Now when we run our pass, we get this output:

$ opt -load ../../Debug+Asserts/lib/Hello.so -gcse -hello -licm --debug-
→˓pass=Structure < hello.bc > /dev/null
Pass Arguments: -gcse -hello -licm
Module Pass Manager

Function Pass Manager
Dominator Set Construction
Immediate Dominators Construction
Global Common Subexpression Elimination

-- Immediate Dominators Construction
-- Global Common Subexpression Elimination

Hello World Pass
-- Hello World Pass

Natural Loop Construction
Loop Invariant Code Motion

-- Loop Invariant Code Motion
-- Natural Loop Construction

Module Verifier
-- Dominator Set Construction
-- Module Verifier

Bitcode Writer
--Bitcode Writer
Hello: __main
Hello: puts
Hello: main
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Which shows that we don’t accidentally invalidate dominator information anymore, and therefore do not have to
compute it twice.

The releaseMemory method

virtual void releaseMemory();

The PassManager automatically determines when to compute analysis results, and how long to keep them around
for. Because the lifetime of the pass object itself is effectively the entire duration of the compilation process, we need
some way to free analysis results when they are no longer useful. The releaseMemory virtual method is the way
to do this.

If you are writing an analysis or any other pass that retains a significant amount of state (for use by another pass which
“requires” your pass and uses the getAnalysis method) you should implement releaseMemory to, well, release the
memory allocated to maintain this internal state. This method is called after the run* method for the class, before the
next call of run* in your pass.

Registering dynamically loaded passes

Size matters when constructing production quality tools using LLVM, both for the purposes of distribution, and for
regulating the resident code size when running on the target system. Therefore, it becomes desirable to selectively use
some passes, while omitting others and maintain the flexibility to change configurations later on. You want to be able
to do all this, and, provide feedback to the user. This is where pass registration comes into play.

The fundamental mechanisms for pass registration are the MachinePassRegistry class and subclasses of
MachinePassRegistryNode.

An instance of MachinePassRegistry is used to maintain a list of MachinePassRegistryNode objects.
This instance maintains the list and communicates additions and deletions to the command line interface.

An instance of MachinePassRegistryNode subclass is used to maintain information provided about a particular
pass. This information includes the command line name, the command help string and the address of the function used
to create an instance of the pass. A global static constructor of one of these instances registers with a corresponding
MachinePassRegistry, the static destructor unregisters. Thus a pass that is statically linked in the tool will be
registered at start up. A dynamically loaded pass will register on load and unregister at unload.

Using existing registries

There are predefined registries to track instruction scheduling (RegisterScheduler) and register allocation
(RegisterRegAlloc) machine passes. Here we will describe how to register a register allocator machine pass.

Implement your register allocator machine pass. In your register allocator .cpp file add the following include:

#include "llvm/CodeGen/RegAllocRegistry.h"

Also in your register allocator .cpp file, define a creator function in the form:

FunctionPass *createMyRegisterAllocator() {
return new MyRegisterAllocator();

}

Note that the signature of this function should match the type of RegisterRegAlloc::FunctionPassCtor.
In the same file add the “installing” declaration, in the form:
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static RegisterRegAlloc myRegAlloc("myregalloc",
"my register allocator help string",
createMyRegisterAllocator);

Note the two spaces prior to the help string produces a tidy result on the -help query.

$ llc -help
...
-regalloc - Register allocator to use (default=linearscan)
=linearscan - linear scan register allocator
=local - local register allocator
=simple - simple register allocator
=myregalloc - my register allocator help string

...

And that’s it. The user is now free to use -regalloc=myregalloc as an option.
Registering instruction schedulers is similar except use the RegisterScheduler class.
Note that the RegisterScheduler::FunctionPassCtor is significantly different from
RegisterRegAlloc::FunctionPassCtor.

To force the load/linking of your register allocator into the llc/lli tools, add your creator function’s global declara-
tion to Passes.h and add a “pseudo” call line to llvm/Codegen/LinkAllCodegenComponents.h.

Creating new registries

The easiest way to get started is to clone one of the existing registries; we recommend llvm/CodeGen/
RegAllocRegistry.h. The key things to modify are the class name and the FunctionPassCtor type.

Then you need to declare the registry. Example: if your pass registry is RegisterMyPasses then define:

MachinePassRegistry RegisterMyPasses::Registry;

And finally, declare the command line option for your passes. Example:

cl::opt<RegisterMyPasses::FunctionPassCtor, false,
RegisterPassParser<RegisterMyPasses> >

MyPassOpt("mypass",
cl::init(&createDefaultMyPass),
cl::desc("my pass option help"));

Here the command option is “mypass”, with createDefaultMyPass as the default creator.

Using GDB with dynamically loaded passes

Unfortunately, using GDB with dynamically loaded passes is not as easy as it should be. First of all, you can’t set a
breakpoint in a shared object that has not been loaded yet, and second of all there are problems with inlined functions
in shared objects. Here are some suggestions to debugging your pass with GDB.

For sake of discussion, I’m going to assume that you are debugging a transformation invoked by opt, although nothing
described here depends on that.

Setting a breakpoint in your pass

First thing you do is start gdb on the opt process:
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$ gdb opt
GNU gdb 5.0
Copyright 2000 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "sparc-sun-solaris2.6"...
(gdb)

Note that opt has a lot of debugging information in it, so it takes time to load. Be patient. Since we cannot set a
breakpoint in our pass yet (the shared object isn’t loaded until runtime), we must execute the process, and have it stop
before it invokes our pass, but after it has loaded the shared object. The most foolproof way of doing this is to set a
breakpoint in PassManager::run and then run the process with the arguments you want:

$ (gdb) break llvm::PassManager::run
Breakpoint 1 at 0x2413bc: file Pass.cpp, line 70.
(gdb) run test.bc -load $(LLVMTOP)/llvm/Debug+Asserts/lib/[libname].so -[passoption]
Starting program: opt test.bc -load $(LLVMTOP)/llvm/Debug+Asserts/lib/[libname].so -
→˓[passoption]
Breakpoint 1, PassManager::run (this=0xffbef174, M=@0x70b298) at Pass.cpp:70
70 bool PassManager::run(Module &M) { return PM->run(M); }
(gdb)

Once the opt stops in the PassManager::run method you are now free to set breakpoints in your pass so that
you can trace through execution or do other standard debugging stuff.

Miscellaneous Problems

Once you have the basics down, there are a couple of problems that GDB has, some with solutions, some without.

• Inline functions have bogus stack information. In general, GDB does a pretty good job getting stack traces and
stepping through inline functions. When a pass is dynamically loaded however, it somehow completely loses
this capability. The only solution I know of is to de-inline a function (move it from the body of a class to a .cpp
file).

• Restarting the program breaks breakpoints. After following the information above, you have succeeded in
getting some breakpoints planted in your pass. Next thing you know, you restart the program (i.e., you type
“run” again), and you start getting errors about breakpoints being unsettable. The only way I have found to
“fix” this problem is to delete the breakpoints that are already set in your pass, run the program, and re-set the
breakpoints once execution stops in PassManager::run.

Hopefully these tips will help with common case debugging situations. If you’d like to contribute some tips of your
own, just contact Chris.

Future extensions planned

Although the LLVM Pass Infrastructure is very capable as it stands, and does some nifty stuff, there are things we’d
like to add in the future. Here is where we are going:

Multithreaded LLVM

Multiple CPU machines are becoming more common and compilation can never be fast enough: obviously we should
allow for a multithreaded compiler. Because of the semantics defined for passes above (specifically they cannot
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maintain state across invocations of their run* methods), a nice clean way to implement a multithreaded compiler
would be for the PassManager class to create multiple instances of each pass object, and allow the separate instances
to be hacking on different parts of the program at the same time.

This implementation would prevent each of the passes from having to implement multithreaded constructs, requiring
only the LLVM core to have locking in a few places (for global resources). Although this is a simple extension, we
simply haven’t had time (or multiprocessor machines, thus a reason) to implement this. Despite that, we have kept the
LLVM passes SMP ready, and you should too.

How To Use Attributes

• Introduction

• Attribute

• AttributeSet

• AttrBuilder

Introduction

Attributes in LLVM have changed in some fundamental ways. It was necessary to do this to support expanding the
attributes to encompass more than a handful of attributes — e.g. command line options. The old way of handling
attributes consisted of representing them as a bit mask of values. This bit mask was stored in a “list” structure that
was reference counted. The advantage of this was that attributes could be manipulated with ‘or’s and ‘and’s. The
disadvantage of this was that there was limited room for expansion, and virtually no support for attribute-value pairs
other than alignment.

In the new scheme, an Attribute object represents a single attribute that’s uniqued. You use the
Attribute::get methods to create a new Attribute object. An attribute can be a single “enum” value (the
enum being the Attribute::AttrKind enum), a string representing a target-dependent attribute, or an attribute-
value pair. Some examples:

• Target-independent: noinline, zext

• Target-dependent: "no-sse", "thumb2"

• Attribute-value pair: "cpu" = "cortex-a8", align = 4

Note: for an attribute value pair, we expect a target-dependent attribute to have a string for the value.

Attribute

An Attribute object is designed to be passed around by value.

Because attributes are no longer represented as a bit mask, you will need to convert any code which does treat them as
a bit mask to use the new query methods on the Attribute class.

AttributeSet

The AttributeSet class replaces the old AttributeList class. The AttributeSet stores a collection of
Attribute objects for each kind of object that may have an attribute associated with it: the function as a whole, the
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return type, or the function’s parameters. A function’s attributes are at index AttributeSet::FunctionIndex;
the return type’s attributes are at index AttributeSet::ReturnIndex; and the function’s parameters’ attributes
are at indices 1, ..., n (where ‘n’ is the number of parameters). Most methods on the AttributeSet class take an
index parameter.

An AttributeSet is also a uniqued and immutable object. You create an AttributeSet through the
AttributeSet::get methods. You can add and remove attributes, which result in the creation of a new
AttributeSet.

An AttributeSet object is designed to be passed around by value.

Note: It is advised that you do not use the AttributeSet “introspection” methods (e.g. Raw, getRawPointer,
etc.). These methods break encapsulation, and may be removed in a future release (i.e. LLVM 4.0).

AttrBuilder

Lastly, we have a “builder” class to help create the AttributeSet object without having to create several different
intermediate uniqued AttributeSet objects. The AttrBuilder class allows you to add and remove attributes
at will. The attributes won’t be uniqued until you call the appropriate AttributeSet::get method.

An AttrBuilder object is not designed to be passed around by value. It should be passed by reference.

Note: It is advised that you do not use the AttrBuilder::addRawValue() method or the
AttrBuilder(uint64_t Val) constructor. These are for backwards compatibility and may be removed in
a future release (i.e. LLVM 4.0).

And that’s basically it! A lot of functionality is hidden behind these classes, but the interfaces are pretty straight
forward.

User Guide for NVPTX Back-end

• Introduction

• Conventions

– Marking Functions as Kernels

– Address Spaces

– Triples

• NVPTX Intrinsics

– Address Space Conversion

* ‘llvm.nvvm.ptr.*.to.gen‘ Intrinsics

* ‘llvm.nvvm.ptr.gen.to.*‘ Intrinsics

– Reading PTX Special Registers

* ‘llvm.nvvm.read.ptx.sreg.*‘

– Barriers

* ‘llvm.nvvm.barrier0‘

– Other Intrinsics
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• Linking with Libdevice

– Reflection Parameters

– Invoking NVVMReflect

• Executing PTX

• Common Issues

– ptxas complains of undefined function: __nvvm_reflect

• Tutorial: A Simple Compute Kernel

– The Kernel

– Dissecting the Kernel

* Data Layout

* Target Intrinsics

* Address Spaces

* Kernel Metadata

– Running the Kernel

• Tutorial: Linking with Libdevice

Introduction

To support GPU programming, the NVPTX back-end supports a subset of LLVM IR along with a defined set of
conventions used to represent GPU programming concepts. This document provides an overview of the general usage
of the back- end, including a description of the conventions used and the set of accepted LLVM IR.

Note: This document assumes a basic familiarity with CUDA and the PTX assembly language. Information about
the CUDA Driver API and the PTX assembly language can be found in the CUDA documentation.

Conventions

Marking Functions as Kernels

In PTX, there are two types of functions: device functions, which are only callable by device code, and kernel functions,
which are callable by host code. By default, the back-end will emit device functions. Metadata is used to declare a
function as a kernel function. This metadata is attached to the nvvm.annotations named metadata object, and
has the following format:

!0 = !{<function-ref>, metadata !"kernel", i32 1}

The first parameter is a reference to the kernel function. The following example shows a kernel function calling a
device function in LLVM IR. The function @my_kernel is callable from host code, but @my_fmad is not.

define float @my_fmad(float %x, float %y, float %z) {
%mul = fmul float %x, %y
%add = fadd float %mul, %z
ret float %add
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}

define void @my_kernel(float* %ptr) {
%val = load float, float* %ptr
%ret = call float @my_fmad(float %val, float %val, float %val)
store float %ret, float* %ptr
ret void

}

!nvvm.annotations = !{!1}
!1 = !{void (float*)* @my_kernel, !"kernel", i32 1}

When compiled, the PTX kernel functions are callable by host-side code.

Address Spaces

The NVPTX back-end uses the following address space mapping:

Address Space Memory Space
0 Generic
1 Global
2 Internal Use
3 Shared
4 Constant
5 Local

Every global variable and pointer type is assigned to one of these address spaces, with 0 being the default address
space. Intrinsics are provided which can be used to convert pointers between the generic and non-generic address
spaces.

As an example, the following IR will define an array @g that resides in global device memory.

@g = internal addrspace(1) global [4 x i32] [ i32 0, i32 1, i32 2, i32 3 ]

LLVM IR functions can read and write to this array, and host-side code can copy data to it by name with the CUDA
Driver API.

Note that since address space 0 is the generic space, it is illegal to have global variables in address space 0. Address
space 0 is the default address space in LLVM, so the addrspace(N) annotation is required for global variables.

Triples

The NVPTX target uses the module triple to select between 32/64-bit code generation and the driver-compiler interface
to use. The triple architecture can be one of nvptx (32-bit PTX) or nvptx64 (64-bit PTX). The operating system
should be one of cuda or nvcl, which determines the interface used by the generated code to communicate with the
driver. Most users will want to use cuda as the operating system, which makes the generated PTX compatible with
the CUDA Driver API.

Example: 32-bit PTX for CUDA Driver API: nvptx-nvidia-cuda

Example: 64-bit PTX for CUDA Driver API: nvptx64-nvidia-cuda

NVPTX Intrinsics
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Address Space Conversion

‘llvm.nvvm.ptr.*.to.gen‘ Intrinsics

Syntax:

These are overloaded intrinsics. You can use these on any pointer types.

declare i8* @llvm.nvvm.ptr.global.to.gen.p0i8.p1i8(i8 addrspace(1)*)
declare i8* @llvm.nvvm.ptr.shared.to.gen.p0i8.p3i8(i8 addrspace(3)*)
declare i8* @llvm.nvvm.ptr.constant.to.gen.p0i8.p4i8(i8 addrspace(4)*)
declare i8* @llvm.nvvm.ptr.local.to.gen.p0i8.p5i8(i8 addrspace(5)*)

Overview:

The ‘llvm.nvvm.ptr.*.to.gen‘ intrinsics convert a pointer in a non-generic address space to a generic address
space pointer.

Semantics:

These intrinsics modify the pointer value to be a valid generic address space pointer.

‘llvm.nvvm.ptr.gen.to.*‘ Intrinsics

Syntax:

These are overloaded intrinsics. You can use these on any pointer types.

declare i8 addrspace(1)* @llvm.nvvm.ptr.gen.to.global.p1i8.p0i8(i8*)
declare i8 addrspace(3)* @llvm.nvvm.ptr.gen.to.shared.p3i8.p0i8(i8*)
declare i8 addrspace(4)* @llvm.nvvm.ptr.gen.to.constant.p4i8.p0i8(i8*)
declare i8 addrspace(5)* @llvm.nvvm.ptr.gen.to.local.p5i8.p0i8(i8*)

Overview:

The ‘llvm.nvvm.ptr.gen.to.*‘ intrinsics convert a pointer in the generic address space to a pointer in the
target address space. Note that these intrinsics are only useful if the address space of the target address space of the
pointer is known. It is not legal to use address space conversion intrinsics to convert a pointer from one non-generic
address space to another non-generic address space.

Semantics:

These intrinsics modify the pointer value to be a valid pointer in the target non-generic address space.
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Reading PTX Special Registers

‘llvm.nvvm.read.ptx.sreg.*‘

Syntax:

declare i32 @llvm.nvvm.read.ptx.sreg.tid.x()
declare i32 @llvm.nvvm.read.ptx.sreg.tid.y()
declare i32 @llvm.nvvm.read.ptx.sreg.tid.z()
declare i32 @llvm.nvvm.read.ptx.sreg.ntid.x()
declare i32 @llvm.nvvm.read.ptx.sreg.ntid.y()
declare i32 @llvm.nvvm.read.ptx.sreg.ntid.z()
declare i32 @llvm.nvvm.read.ptx.sreg.ctaid.x()
declare i32 @llvm.nvvm.read.ptx.sreg.ctaid.y()
declare i32 @llvm.nvvm.read.ptx.sreg.ctaid.z()
declare i32 @llvm.nvvm.read.ptx.sreg.nctaid.x()
declare i32 @llvm.nvvm.read.ptx.sreg.nctaid.y()
declare i32 @llvm.nvvm.read.ptx.sreg.nctaid.z()
declare i32 @llvm.nvvm.read.ptx.sreg.warpsize()

Overview:

The ‘@llvm.nvvm.read.ptx.sreg.*‘ intrinsics provide access to the PTX special registers, in particular the
kernel launch bounds. These registers map in the following way to CUDA builtins:

CUDA Builtin PTX Special Register Intrinsic
threadId @llvm.nvvm.read.ptx.sreg.tid.*
blockIdx @llvm.nvvm.read.ptx.sreg.ctaid.*
blockDim @llvm.nvvm.read.ptx.sreg.ntid.*
gridDim @llvm.nvvm.read.ptx.sreg.nctaid.*

Barriers

‘llvm.nvvm.barrier0‘

Syntax:

declare void @llvm.nvvm.barrier0()

Overview:

The ‘@llvm.nvvm.barrier0()‘ intrinsic emits a PTX bar.sync 0 instruction, equivalent to the
__syncthreads() call in CUDA.

Other Intrinsics

For the full set of NVPTX intrinsics, please see the include/llvm/IR/IntrinsicsNVVM.td file in the LLVM
source tree.
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Linking with Libdevice

The CUDA Toolkit comes with an LLVM bitcode library called libdevice that implements many common math-
ematical functions. This library can be used as a high-performance math library for any compilers using the LLVM
NVPTX target. The library can be found under nvvm/libdevice/ in the CUDA Toolkit and there is a separate
version for each compute architecture.

For a list of all math functions implemented in libdevice, see libdevice Users Guide.

To accommodate various math-related compiler flags that can affect code generation of libdevice code, the library code
depends on a special LLVM IR pass (NVVMReflect) to handle conditional compilation within LLVM IR. This pass
looks for calls to the @__nvvm_reflect function and replaces them with constants based on the defined reflection
parameters. Such conditional code often follows a pattern:

float my_function(float a) {
if (__nvvm_reflect("FASTMATH"))
return my_function_fast(a);

else
return my_function_precise(a);

}

The default value for all unspecified reflection parameters is zero.

The NVVMReflect pass should be executed early in the optimization pipeline, immediately after the link stage. The
internalize pass is also recommended to remove unused math functions from the resulting PTX. For an input IR
module module.bc, the following compilation flow is recommended:

1. Save list of external functions in module.bc

2. Link module.bc with libdevice.compute_XX.YY.bc

3. Internalize all functions not in list from (1)

4. Eliminate all unused internal functions

5. Run NVVMReflect pass

6. Run standard optimization pipeline

Note: linkonce and linkonce_odr linkage types are not suitable for the libdevice functions. It is possible to
link two IR modules that have been linked against libdevice using different reflection variables.

Since the NVVMReflect pass replaces conditionals with constants, it will often leave behind dead code of the form:

entry:
..
br i1 true, label %foo, label %bar

foo:
..

bar:
; Dead code
..

Therefore, it is recommended that NVVMReflect is executed early in the optimization pipeline before dead-code
elimination.
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Reflection Parameters

The libdevice library currently uses the following reflection parameters to control code generation:

Flag Description
__CUDA_FTZ=[0,1] Use optimized code paths that flush subnormals to zero

Invoking NVVMReflect

To ensure that all dead code caused by the reflection pass is eliminated, it is recommended that the reflection pass is
executed early in the LLVM IR optimization pipeline. The pass takes an optional mapping of reflection parameter
name to an integer value. This mapping can be specified as either a command-line option to opt or as an LLVM
StringMap<int> object when programmatically creating a pass pipeline.

With opt:

# opt -nvvm-reflect -nvvm-reflect-list=<var>=<value>,<var>=<value> module.bc -o
→˓module.reflect.bc

With programmatic pass pipeline:

extern FunctionPass *llvm::createNVVMReflectPass(const StringMap<int>& Mapping);

StringMap<int> ReflectParams;
ReflectParams["__CUDA_FTZ"] = 1;
Passes.add(createNVVMReflectPass(ReflectParams));

Executing PTX

The most common way to execute PTX assembly on a GPU device is to use the CUDA Driver API. This API is a
low-level interface to the GPU driver and allows for JIT compilation of PTX code to native GPU machine code.

Initializing the Driver API:

CUdevice device;
CUcontext context;

// Initialize the driver API
cuInit(0);
// Get a handle to the first compute device
cuDeviceGet(&device, 0);
// Create a compute device context
cuCtxCreate(&context, 0, device);

JIT compiling a PTX string to a device binary:

CUmodule module;
CUfunction function;

// JIT compile a null-terminated PTX string
cuModuleLoadData(&module, (void*)PTXString);

// Get a handle to the "myfunction" kernel function
cuModuleGetFunction(&function, module, "myfunction");

For full examples of executing PTX assembly, please see the CUDA Samples distribution.
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Common Issues

ptxas complains of undefined function: __nvvm_reflect

When linking with libdevice, the NVVMReflect pass must be used. See Linking with Libdevice for more information.

Tutorial: A Simple Compute Kernel

To start, let us take a look at a simple compute kernel written directly in LLVM IR. The kernel implements vector
addition, where each thread computes one element of the output vector C from the input vectors A and B. To make
this easier, we also assume that only a single CTA (thread block) will be launched, and that it will be one dimensional.

The Kernel

target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-
→˓f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"
target triple = "nvptx64-nvidia-cuda"

; Intrinsic to read X component of thread ID
declare i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind

define void @kernel(float addrspace(1)* %A,
float addrspace(1)* %B,
float addrspace(1)* %C) {

entry:
; What is my ID?
%id = tail call i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind

; Compute pointers into A, B, and C
%ptrA = getelementptr float, float addrspace(1)* %A, i32 %id
%ptrB = getelementptr float, float addrspace(1)* %B, i32 %id
%ptrC = getelementptr float, float addrspace(1)* %C, i32 %id

; Read A, B
%valA = load float, float addrspace(1)* %ptrA, align 4
%valB = load float, float addrspace(1)* %ptrB, align 4

; Compute C = A + B
%valC = fadd float %valA, %valB

; Store back to C
store float %valC, float addrspace(1)* %ptrC, align 4

ret void
}

!nvvm.annotations = !{!0}
!0 = !{void (float addrspace(1)*,

float addrspace(1)*,
float addrspace(1)*)* @kernel, !"kernel", i32 1}

We can use the LLVM llc tool to directly run the NVPTX code generator:

# llc -mcpu=sm_20 kernel.ll -o kernel.ptx
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Note: If you want to generate 32-bit code, change p:64:64:64 to p:32:32:32 in the module data layout string
and use nvptx-nvidia-cuda as the target triple.

The output we get from llc (as of LLVM 3.4):

//
// Generated by LLVM NVPTX Back-End
//

.version 3.1

.target sm_20

.address_size 64

// .globl kernel
// @kernel

.visible .entry kernel(
.param .u64 kernel_param_0,
.param .u64 kernel_param_1,
.param .u64 kernel_param_2

)
{

.reg .f32 %f<4>;

.reg .s32 %r<2>;

.reg .s64 %rl<8>;

// BB#0: // %entry
ld.param.u64 %rl1, [kernel_param_0];
mov.u32 %r1, %tid.x;
mul.wide.s32 %rl2, %r1, 4;
add.s64 %rl3, %rl1, %rl2;
ld.param.u64 %rl4, [kernel_param_1];
add.s64 %rl5, %rl4, %rl2;
ld.param.u64 %rl6, [kernel_param_2];
add.s64 %rl7, %rl6, %rl2;
ld.global.f32 %f1, [%rl3];
ld.global.f32 %f2, [%rl5];
add.f32 %f3, %f1, %f2;
st.global.f32 [%rl7], %f3;
ret;

}

Dissecting the Kernel

Now let us dissect the LLVM IR that makes up this kernel.

Data Layout

The data layout string determines the size in bits of common data types, their ABI alignment, and their storage size.
For NVPTX, you should use one of the following:

32-bit PTX:

target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-
→˓f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"
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64-bit PTX:

target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-
→˓f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"

Target Intrinsics

In this example, we use the @llvm.nvvm.read.ptx.sreg.tid.x intrinsic to read the X component of the
current thread’s ID, which corresponds to a read of register %tid.x in PTX. The NVPTX back-end supports a large
set of intrinsics. A short list is shown below; please see include/llvm/IR/IntrinsicsNVVM.td for the full
list.

Intrinsic CUDA Equivalent
i32 @llvm.nvvm.read.ptx.sreg.tid.{x,y,z} threadIdx.{x,y,z}
i32 @llvm.nvvm.read.ptx.sreg.ctaid.{x,y,z} blockIdx.{x,y,z}
i32 @llvm.nvvm.read.ptx.sreg.ntid.{x,y,z} blockDim.{x,y,z}
i32 @llvm.nvvm.read.ptx.sreg.nctaid.{x,y,z} gridDim.{x,y,z}
void @llvm.nvvm.barrier0() __syncthreads()

Address Spaces

You may have noticed that all of the pointer types in the LLVM IR example had an explicit address space specifier.
What is address space 1? NVIDIA GPU devices (generally) have four types of memory:

• Global: Large, off-chip memory

• Shared: Small, on-chip memory shared among all threads in a CTA

• Local: Per-thread, private memory

• Constant: Read-only memory shared across all threads

These different types of memory are represented in LLVM IR as address spaces. There is also a fifth address space
used by the NVPTX code generator that corresponds to the “generic” address space. This address space can represent
addresses in any other address space (with a few exceptions). This allows users to write IR functions that can load/store
memory using the same instructions. Intrinsics are provided to convert pointers between the generic and non-generic
address spaces.

See Address Spaces and NVPTX Intrinsics for more information.

Kernel Metadata

In PTX, a function can be either a kernel function (callable from the host program), or a device function (callable
only from GPU code). You can think of kernel functions as entry-points in the GPU program. To mark an LLVM IR
function as a kernel function, we make use of special LLVM metadata. The NVPTX back-end will look for a named
metadata node called nvvm.annotations. This named metadata must contain a list of metadata that describe the
IR. For our purposes, we need to declare a metadata node that assigns the “kernel” attribute to the LLVM IR function
that should be emitted as a PTX kernel function. These metadata nodes take the form:

!{<function ref>, metadata !"kernel", i32 1}

For the previous example, we have:
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!nvvm.annotations = !{!0}
!0 = !{void (float addrspace(1)*,

float addrspace(1)*,
float addrspace(1)*)* @kernel, !"kernel", i32 1}

Here, we have a single metadata declaration in nvvm.annotations. This metadata annotates our @kernel
function with the kernel attribute.

Running the Kernel

Generating PTX from LLVM IR is all well and good, but how do we execute it on a real GPU device? The CUDA
Driver API provides a convenient mechanism for loading and JIT compiling PTX to a native GPU device, and launch-
ing a kernel. The API is similar to OpenCL. A simple example showing how to load and execute our vector addition
code is shown below. Note that for brevity this code does not perform much error checking!

Note: You can also use the ptxas tool provided by the CUDA Toolkit to offline compile PTX to machine code
(SASS) for a specific GPU architecture. Such binaries can be loaded by the CUDA Driver API in the same way as
PTX. This can be useful for reducing startup time by precompiling the PTX kernels.

#include <iostream>
#include <fstream>
#include <cassert>
#include "cuda.h"

void checkCudaErrors(CUresult err) {
assert(err == CUDA_SUCCESS);

}

/// main - Program entry point
int main(int argc, char **argv) {

CUdevice device;
CUmodule cudaModule;
CUcontext context;
CUfunction function;
CUlinkState linker;
int devCount;

// CUDA initialization
checkCudaErrors(cuInit(0));
checkCudaErrors(cuDeviceGetCount(&devCount));
checkCudaErrors(cuDeviceGet(&device, 0));

char name[128];
checkCudaErrors(cuDeviceGetName(name, 128, device));
std::cout << "Using CUDA Device [0]: " << name << "\n";

int devMajor, devMinor;
checkCudaErrors(cuDeviceComputeCapability(&devMajor, &devMinor, device));
std::cout << "Device Compute Capability: "

<< devMajor << "." << devMinor << "\n";
if (devMajor < 2) {
std::cerr << "ERROR: Device 0 is not SM 2.0 or greater\n";
return 1;
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}

std::ifstream t("kernel.ptx");
if (!t.is_open()) {
std::cerr << "kernel.ptx not found\n";
return 1;

}
std::string str((std::istreambuf_iterator<char>(t)),

std::istreambuf_iterator<char>());

// Create driver context
checkCudaErrors(cuCtxCreate(&context, 0, device));

// Create module for object
checkCudaErrors(cuModuleLoadDataEx(&cudaModule, str.c_str(), 0, 0, 0));

// Get kernel function
checkCudaErrors(cuModuleGetFunction(&function, cudaModule, "kernel"));

// Device data
CUdeviceptr devBufferA;
CUdeviceptr devBufferB;
CUdeviceptr devBufferC;

checkCudaErrors(cuMemAlloc(&devBufferA, sizeof(float)*16));
checkCudaErrors(cuMemAlloc(&devBufferB, sizeof(float)*16));
checkCudaErrors(cuMemAlloc(&devBufferC, sizeof(float)*16));

float* hostA = new float[16];
float* hostB = new float[16];
float* hostC = new float[16];

// Populate input
for (unsigned i = 0; i != 16; ++i) {
hostA[i] = (float)i;
hostB[i] = (float)(2*i);
hostC[i] = 0.0f;

}

checkCudaErrors(cuMemcpyHtoD(devBufferA, &hostA[0], sizeof(float)*16));
checkCudaErrors(cuMemcpyHtoD(devBufferB, &hostB[0], sizeof(float)*16));

unsigned blockSizeX = 16;
unsigned blockSizeY = 1;
unsigned blockSizeZ = 1;
unsigned gridSizeX = 1;
unsigned gridSizeY = 1;
unsigned gridSizeZ = 1;

// Kernel parameters
void *KernelParams[] = { &devBufferA, &devBufferB, &devBufferC };

std::cout << "Launching kernel\n";

// Kernel launch
checkCudaErrors(cuLaunchKernel(function, gridSizeX, gridSizeY, gridSizeZ,

blockSizeX, blockSizeY, blockSizeZ,
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0, NULL, KernelParams, NULL));

// Retrieve device data
checkCudaErrors(cuMemcpyDtoH(&hostC[0], devBufferC, sizeof(float)*16));

std::cout << "Results:\n";
for (unsigned i = 0; i != 16; ++i) {
std::cout << hostA[i] << " + " << hostB[i] << " = " << hostC[i] << "\n";

}

// Clean up after ourselves
delete [] hostA;
delete [] hostB;
delete [] hostC;

// Clean-up
checkCudaErrors(cuMemFree(devBufferA));
checkCudaErrors(cuMemFree(devBufferB));
checkCudaErrors(cuMemFree(devBufferC));
checkCudaErrors(cuModuleUnload(cudaModule));
checkCudaErrors(cuCtxDestroy(context));

return 0;
}

You will need to link with the CUDA driver and specify the path to cuda.h.

# clang++ sample.cpp -o sample -O2 -g -I/usr/local/cuda-5.5/include -lcuda

We don’t need to specify a path to libcuda.so since this is installed in a system location by the driver, not the
CUDA toolkit.

If everything goes as planned, you should see the following output when running the compiled program:

Using CUDA Device [0]: GeForce GTX 680
Device Compute Capability: 3.0
Launching kernel
Results:
0 + 0 = 0
1 + 2 = 3
2 + 4 = 6
3 + 6 = 9
4 + 8 = 12
5 + 10 = 15
6 + 12 = 18
7 + 14 = 21
8 + 16 = 24
9 + 18 = 27
10 + 20 = 30
11 + 22 = 33
12 + 24 = 36
13 + 26 = 39
14 + 28 = 42
15 + 30 = 45

4.22. User Guide for NVPTX Back-end 1145



LLVM Documentation, Release 3.9

Note: You will likely see a different device identifier based on your hardware

Tutorial: Linking with Libdevice

In this tutorial, we show a simple example of linking LLVM IR with the libdevice library. We will use the same kernel
as the previous tutorial, except that we will compute C = pow(A, B) instead of C = A + B. Libdevice provides
an __nv_powf function that we will use.

target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-
→˓f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"
target triple = "nvptx64-nvidia-cuda"

; Intrinsic to read X component of thread ID
declare i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind
; libdevice function
declare float @__nv_powf(float, float)

define void @kernel(float addrspace(1)* %A,
float addrspace(1)* %B,
float addrspace(1)* %C) {

entry:
; What is my ID?
%id = tail call i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind

; Compute pointers into A, B, and C
%ptrA = getelementptr float, float addrspace(1)* %A, i32 %id
%ptrB = getelementptr float, float addrspace(1)* %B, i32 %id
%ptrC = getelementptr float, float addrspace(1)* %C, i32 %id

; Read A, B
%valA = load float, float addrspace(1)* %ptrA, align 4
%valB = load float, float addrspace(1)* %ptrB, align 4

; Compute C = pow(A, B)
%valC = call float @__nv_powf(float %valA, float %valB)

; Store back to C
store float %valC, float addrspace(1)* %ptrC, align 4

ret void
}

!nvvm.annotations = !{!0}
!0 = !{void (float addrspace(1)*,

float addrspace(1)*,
float addrspace(1)*)* @kernel, !"kernel", i32 1}

To compile this kernel, we perform the following steps:

1. Link with libdevice

2. Internalize all but the public kernel function

3. Run NVVMReflect and set __CUDA_FTZ to 0

4. Optimize the linked module
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5. Codegen the module

These steps can be performed by the LLVM llvm-link, opt, and llc tools. In a complete compiler, these steps
can also be performed entirely programmatically by setting up an appropriate pass configuration (see Linking with
Libdevice).

# llvm-link t2.bc libdevice.compute_20.10.bc -o t2.linked.bc
# opt -internalize -internalize-public-api-list=kernel -nvvm-reflect-list=__CUDA_
→˓FTZ=0 -nvvm-reflect -O3 t2.linked.bc -o t2.opt.bc
# llc -mcpu=sm_20 t2.opt.bc -o t2.ptx

Note: The -nvvm-reflect-list=_CUDA_FTZ=0 is not strictly required, as any undefined variables will default
to zero. It is shown here for evaluation purposes.

This gives us the following PTX (excerpt):

//
// Generated by LLVM NVPTX Back-End
//

.version 3.1

.target sm_20

.address_size 64

// .globl kernel
// @kernel

.visible .entry kernel(
.param .u64 kernel_param_0,
.param .u64 kernel_param_1,
.param .u64 kernel_param_2

)
{

.reg .pred %p<30>;

.reg .f32 %f<111>;

.reg .s32 %r<21>;

.reg .s64 %rl<8>;

// BB#0: // %entry
ld.param.u64 %rl2, [kernel_param_0];
mov.u32 %r3, %tid.x;
ld.param.u64 %rl3, [kernel_param_1];
mul.wide.s32 %rl4, %r3, 4;
add.s64 %rl5, %rl2, %rl4;
ld.param.u64 %rl6, [kernel_param_2];
add.s64 %rl7, %rl3, %rl4;
add.s64 %rl1, %rl6, %rl4;
ld.global.f32 %f1, [%rl5];
ld.global.f32 %f2, [%rl7];
setp.eq.f32 %p1, %f1, 0f3F800000;
setp.eq.f32 %p2, %f2, 0f00000000;
or.pred %p3, %p1, %p2;
@%p3 bra BB0_1;
bra.uni BB0_2;

BB0_1:
mov.f32 %f110, 0f3F800000;
st.global.f32 [%rl1], %f110;
ret;
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BB0_2: // %__nv_isnanf.exit.i
abs.f32 %f4, %f1;
setp.gtu.f32 %p4, %f4, 0f7F800000;
@%p4 bra BB0_4;

// BB#3: // %__nv_isnanf.exit5.i
abs.f32 %f5, %f2;
setp.le.f32 %p5, %f5, 0f7F800000;
@%p5 bra BB0_5;

BB0_4: // %.critedge1.i
add.f32 %f110, %f1, %f2;
st.global.f32 [%rl1], %f110;
ret;

BB0_5: // %__nv_isinff.exit.i

...

BB0_26: // %__nv_truncf.exit.i.i.i.i.i
mul.f32 %f90, %f107, 0f3FB8AA3B;
cvt.rzi.f32.f32 %f91, %f90;
mov.f32 %f92, 0fBF317200;
fma.rn.f32 %f93, %f91, %f92, %f107;
mov.f32 %f94, 0fB5BFBE8E;
fma.rn.f32 %f95, %f91, %f94, %f93;
mul.f32 %f89, %f95, 0f3FB8AA3B;
// inline asm
ex2.approx.ftz.f32 %f88,%f89;
// inline asm
add.f32 %f96, %f91, 0f00000000;
ex2.approx.f32 %f97, %f96;
mul.f32 %f98, %f88, %f97;
setp.lt.f32 %p15, %f107, 0fC2D20000;
selp.f32 %f99, 0f00000000, %f98, %p15;
setp.gt.f32 %p16, %f107, 0f42D20000;
selp.f32 %f110, 0f7F800000, %f99, %p16;
setp.eq.f32 %p17, %f110, 0f7F800000;
@%p17 bra BB0_28;

// BB#27:
fma.rn.f32 %f110, %f110, %f108, %f110;

BB0_28: // %__internal_accurate_powf.exit.i
setp.lt.f32 %p18, %f1, 0f00000000;
setp.eq.f32 %p19, %f3, 0f3F800000;
and.pred %p20, %p18, %p19;
@!%p20 bra BB0_30;
bra.uni BB0_29;

BB0_29:
mov.b32 %r9, %f110;
xor.b32 %r10, %r9, -2147483648;
mov.b32 %f110, %r10;

BB0_30: // %__nv_powf.exit
st.global.f32 [%rl1], %f110;
ret;

}
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User Guide for AMDGPU Back-end

Introduction

The AMDGPU back-end provides ISA code generation for AMD GPUs, starting with the R600 family up until the
current Volcanic Islands (GCN Gen 3).

Conventions

Address Spaces

The AMDGPU back-end uses the following address space mapping:

Address Space Memory Space
0 Private
1 Global
2 Constant
3 Local
4 Generic (Flat)
5 Region

The terminology in the table, aside from the region memory space, is from the OpenCL standard.

Assembler

The assembler is currently considered experimental.

For syntax examples look in test/MC/AMDGPU.

Below some of the currently supported features (modulo bugs). These all apply to the Southern Islands ISA, Sea
Islands and Volcanic Islands are also supported but may be missing some instructions and have more bugs:

DS Instructions

All DS instructions are supported.

FLAT Instructions

These instructions are only present in the Sea Islands and Volcanic Islands instruction set. All FLAT instructions are
supported for these architectures

MUBUF Instructions

All non-atomic MUBUF instructions are supported.

SMRD Instructions

Only the s_load_dword* SMRD instructions are supported.
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SOP1 Instructions

All SOP1 instructions are supported.

SOP2 Instructions

All SOP2 instructions are supported.

SOPC Instructions

All SOPC instructions are supported.

SOPP Instructions

Unless otherwise mentioned, all SOPP instructions that have one or more operands accept integer operands only. No
verification is performed on the operands, so it is up to the programmer to be familiar with the range or acceptable
values.

s_waitcnt

s_waitcnt accepts named arguments to specify which memory counter(s) to wait for.

; Wait for all counters to be 0
s_waitcnt 0

; Equivalent to s_waitcnt 0. Counter names can also be delimited by
; '&' or ','.
s_waitcnt vmcnt(0) expcnt(0) lgkcmt(0)

; Wait for vmcnt counter to be 1.
s_waitcnt vmcnt(1)

VOP1, VOP2, VOP3, VOPC Instructions

All 32-bit and 64-bit encodings should work.

The assembler will automatically detect which encoding size to use for VOP1, VOP2, and VOPC instructions based
on the operands. If you want to force a specific encoding size, you can add an _e32 (for 32-bit encoding) or _e64 (for
64-bit encoding) suffix to the instruction. Most, but not all instructions support an explicit suffix. These are all valid
assembly strings:

v_mul_i32_i24 v1, v2, v3
v_mul_i32_i24_e32 v1, v2, v3
v_mul_i32_i24_e64 v1, v2, v3

Assembler Directives
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.hsa_code_object_version major, minor

major and minor are integers that specify the version of the HSA code object that will be generated by the assembler.
This value will be stored in an entry of the .note section.

.hsa_code_object_isa [major, minor, stepping, vendor, arch]

major, minor, and stepping are all integers that describe the instruction set architecture (ISA) version of the assembly
program.

vendor and arch are quoted strings. vendor should always be equal to “AMD” and arch should always be equal to
“AMDGPU”.

If no arguments are specified, then the assembler will derive the ISA version, vendor, and arch from the value of the
-mcpu option that is passed to the assembler.

ISA version, vendor, and arch will all be stored in a single entry of the .note section.

.amd_kernel_code_t

This directive marks the beginning of a list of key / value pairs that are used to specify the amd_kernel_code_t object
that will be emitted by the assembler. The list must be terminated by the .end_amd_kernel_code_t directive. For any
amd_kernel_code_t values that are unspecified a default value will be used. The default value for all keys is 0, with
the following exceptions:

• kernel_code_version_major defaults to 1.

• machine_kind defaults to 1.

• machine_version_major, machine_version_minor, and machine_version_stepping are derived from the value of
the -mcpu option that is passed to the assembler.

• kernel_code_entry_byte_offset defaults to 256.

• wavefront_size defaults to 6.

• kernarg_segment_alignment, group_segment_alignment, and private_segment_alignment default to 4. Note that
alignments are specified as a power of two, so a value of n means an alignment of 2^ n.

The .amd_kernel_code_t directive must be placed immediately after the function label and before any instructions.

For a full list of amd_kernel_code_t keys, see the examples in test/CodeGen/AMDGPU/hsa.s. For an explanation of
the meanings of the different keys, see the comments in lib/Target/AMDGPU/AmdKernelCodeT.h

Here is an example of a minimal amd_kernel_code_t specification:

.hsa_code_object_version 1,0

.hsa_code_object_isa

.hsatext

.globl hello_world

.p2align 8

.amdgpu_hsa_kernel hello_world

hello_world:

.amd_kernel_code_t
enable_sgpr_kernarg_segment_ptr = 1
is_ptr64 = 1
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compute_pgm_rsrc1_vgprs = 0
compute_pgm_rsrc1_sgprs = 0
compute_pgm_rsrc2_user_sgpr = 2
kernarg_segment_byte_size = 8
wavefront_sgpr_count = 2
workitem_vgpr_count = 3

.end_amd_kernel_code_t

s_load_dwordx2 s[0:1], s[0:1] 0x0
v_mov_b32 v0, 3.14159
s_waitcnt lgkmcnt(0)
v_mov_b32 v1, s0
v_mov_b32 v2, s1
flat_store_dword v[1:2], v0
s_endpgm

.Lfunc_end0:
.size hello_world, .Lfunc_end0-hello_world

Stack maps and patch points in LLVM

• Definitions

• Motivation

• Intrinsics

– ‘llvm.experimental.stackmap‘ Intrinsic

– ‘llvm.experimental.patchpoint.*‘ Intrinsic

• Stack Map Format

– Stack Map Section

• Stack Map Usage

– Direct Stack Map Entries

• Supported Architectures

Definitions

In this document we refer to the “runtime” collectively as all components that serve as the LLVM client, including the
LLVM IR generator, object code consumer, and code patcher.

A stack map records the location of live values at a particular instruction address. These live values do not
refer to all the LLVM values live across the stack map. Instead, they are only the values that the runtime requires to
be live at this point. For example, they may be the values the runtime will need to resume program execution at that
point independent of the compiled function containing the stack map.

LLVM emits stack map data into the object code within a designated Stack Map Section. This stack map data contains
a record for each stack map. The record stores the stack map’s instruction address and contains a entry for each
mapped value. Each entry encodes a value’s location as a register, stack offset, or constant.

A patch point is an instruction address at which space is reserved for patching a new instruction sequence at run time.
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Patch points look much like calls to LLVM. They take arguments that follow a calling convention and may return a
value. They also imply stack map generation, which allows the runtime to locate the patchpoint and find the location
of live values at that point.

Motivation

This functionality is currently experimental but is potentially useful in a variety of settings, the most obvious being
a runtime (JIT) compiler. Example applications of the patchpoint intrinsics are implementing an inline call cache
for polymorphic method dispatch or optimizing the retrieval of properties in dynamically typed languages such as
JavaScript.

The intrinsics documented here are currently used by the JavaScript compiler within the open source WebKit project,
see the FTL JIT, but they are designed to be used whenever stack maps or code patching are needed. Because the
intrinsics have experimental status, compatibility across LLVM releases is not guaranteed.

The stack map functionality described in this document is separate from the functionality described in Computing stack
maps. GCFunctionMetadata provides the location of pointers into a collected heap captured by the GCRoot intrinsic,
which can also be considered a “stack map”. Unlike the stack maps defined above, the GCFunctionMetadata stack
map interface does not provide a way to associate live register values of arbitrary type with an instruction address, nor
does it specify a format for the resulting stack map. The stack maps described here could potentially provide richer
information to a garbage collecting runtime, but that usage will not be discussed in this document.

Intrinsics

The following two kinds of intrinsics can be used to implement stack maps and patch points: llvm.
experimental.stackmap and llvm.experimental.patchpoint. Both kinds of intrinsics generate a
stack map record, and they both allow some form of code patching. They can be used independently (i.e. llvm.
experimental.patchpoint implicitly generates a stack map without the need for an additional call to llvm.
experimental.stackmap). The choice of which to use depends on whether it is necessary to reserve space for
code patching and whether any of the intrinsic arguments should be lowered according to calling conventions. llvm.
experimental.stackmap does not reserve any space, nor does it expect any call arguments. If the runtime
patches code at the stack map’s address, it will destructively overwrite the program text. This is unlike llvm.
experimental.patchpoint, which reserves space for in-place patching without overwriting surrounding code.
The llvm.experimental.patchpoint intrinsic also lowers a specified number of arguments according to its
calling convention. This allows patched code to make in-place function calls without marshaling.

Each instance of one of these intrinsics generates a stack map record in the Stack Map Section. The record includes an
ID, allowing the runtime to uniquely identify the stack map, and the offset within the code from the beginning of the
enclosing function.

‘llvm.experimental.stackmap‘ Intrinsic

Syntax:

declare void
@llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, ...)

Overview:

The ‘llvm.experimental.stackmap‘ intrinsic records the location of specified values in the stack map without
generating any code.
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Operands:

The first operand is an ID to be encoded within the stack map. The second operand is the number of shadow bytes
following the intrinsic. The variable number of operands that follow are the live values for which locations will
be recorded in the stack map.

To use this intrinsic as a bare-bones stack map, with no code patching support, the number of shadow bytes can be set
to zero.

Semantics:

The stack map intrinsic generates no code in place, unless nops are needed to cover its shadow (see below). However,
its offset from function entry is stored in the stack map. This is the relative instruction address immediately following
the instructions that precede the stack map.

The stack map ID allows a runtime to locate the desired stack map record. LLVM passes this ID through directly to
the stack map record without checking uniqueness.

LLVM guarantees a shadow of instructions following the stack map’s instruction offset during which neither the
end of the basic block nor another call to llvm.experimental.stackmap or llvm.experimental.
patchpoint may occur. This allows the runtime to patch the code at this point in response to an event triggered
from outside the code. The code for instructions following the stack map may be emitted in the stack map’s shadow,
and these instructions may be overwritten by destructive patching. Without shadow bytes, this destructive patching
could overwrite program text or data outside the current function. We disallow overlapping stack map shadows so that
the runtime does not need to consider this corner case.

For example, a stack map with 8 byte shadow:

call void @runtime()
call void (i64, i32, ...)* @llvm.experimental.stackmap(i64 77, i32 8,

i64* %ptr)
%val = load i64* %ptr
%add = add i64 %val, 3
ret i64 %add

May require one byte of nop-padding:

0x00 callq _runtime
0x05 nop <--- stack map address
0x06 movq (%rdi), %rax
0x07 addq $3, %rax
0x0a popq %rdx
0x0b ret <---- end of 8-byte shadow

Now, if the runtime needs to invalidate the compiled code, it may patch 8 bytes of code at the stack map’s address at
follows:

0x00 callq _runtime
0x05 movl $0xffff, %rax <--- patched code at stack map address
0x0a callq *%rax <---- end of 8-byte shadow

This way, after the normal call to the runtime returns, the code will execute a patched call to a special entry point that
can rebuild a stack frame from the values located by the stack map.

‘llvm.experimental.patchpoint.*‘ Intrinsic
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Syntax:

declare void
@llvm.experimental.patchpoint.void(i64 <id>, i32 <numBytes>,

i8* <target>, i32 <numArgs>, ...)
declare i64

@llvm.experimental.patchpoint.i64(i64 <id>, i32 <numBytes>,
i8* <target>, i32 <numArgs>, ...)

Overview:

The ‘llvm.experimental.patchpoint.*‘ intrinsics creates a function call to the specified <target> and
records the location of specified values in the stack map.

Operands:

The first operand is an ID, the second operand is the number of bytes reserved for the patchable region, the third
operand is the target address of a function (optionally null), and the fourth operand specifies how many of the following
variable operands are considered function call arguments. The remaining variable number of operands are the live
values for which locations will be recorded in the stack map.

Semantics:

The patch point intrinsic generates a stack map. It also emits a function call to the address specified by <target> if
the address is not a constant null. The function call and its arguments are lowered according to the calling convention
specified at the intrinsic’s callsite. Variants of the intrinsic with non-void return type also return a value according to
calling convention.

On PowerPC, note that <target> must be the ABI function pointer for the intended target of the indirect call.
Specifically, when compiling for the ELF V1 ABI, <target> is the function-descriptor address normally used as the
C/C++ function-pointer representation.

Requesting zero patch point arguments is valid. In this case, all variable operands are handled just like llvm.
experimental.stackmap.*. The difference is that space will still be reserved for patching, a call will be
emitted, and a return value is allowed.

The location of the arguments are not normally recorded in the stack map because they are already fixed by the
calling convention. The remaining live values will have their location recorded, which could be a register, stack
location, or constant. A special calling convention has been introduced for use with stack maps, anyregcc, which
forces the arguments to be loaded into registers but allows those register to be dynamically allocated. These argument
registers will have their register locations recorded in the stack map in addition to the remaining live values.

The patch point also emits nops to cover at least <numBytes> of instruction encoding space. Hence, the client must
ensure that <numBytes> is enough to encode a call to the target address on the supported targets. If the call target is
constant null, then there is no minimum requirement. A zero-byte null target patchpoint is valid.

The runtime may patch the code emitted for the patch point, including the call sequence and nops. However, the
runtime may not assume anything about the code LLVM emits within the reserved space. Partial patching is not
allowed. The runtime must patch all reserved bytes, padding with nops if necessary.

This example shows a patch point reserving 15 bytes, with one argument in $rdi, and a return value in $rax per native
calling convention:
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%target = inttoptr i64 -281474976710654 to i8*
%val = call i64 (i64, i32, ...)*

@llvm.experimental.patchpoint.i64(i64 78, i32 15,
i8* %target, i32 1, i64* %ptr)

%add = add i64 %val, 3
ret i64 %add

May generate:

0x00 movabsq $0xffff000000000002, %r11 <--- patch point address
0x0a callq *%r11
0x0d nop
0x0e nop <--- end of reserved 15-bytes
0x0f addq $0x3, %rax
0x10 movl %rax, 8(%rsp)

Note that no stack map locations will be recorded. If the patched code sequence does not need arguments fixed to
specific calling convention registers, then the anyregcc convention may be used:

%val = call anyregcc @llvm.experimental.patchpoint(i64 78, i32 15,
i8* %target, i32 1,
i64* %ptr)

The stack map now indicates the location of the %ptr argument and return value:

Stack Map: ID=78, Loc0=%r9 Loc1=%r8

The patch code sequence may now use the argument that happened to be allocated in %r8 and return a value allocated
in %r9:

0x00 movslq 4(%r8) %r9 <--- patched code at patch point address
0x03 nop
...
0x0e nop <--- end of reserved 15-bytes
0x0f addq $0x3, %r9
0x10 movl %r9, 8(%rsp)

Stack Map Format

The existence of a stack map or patch point intrinsic within an LLVM Module forces code emission to create a Stack
Map Section. The format of this section follows:

Header {
uint8 : Stack Map Version (current version is 1)
uint8 : Reserved (expected to be 0)
uint16 : Reserved (expected to be 0)

}
uint32 : NumFunctions
uint32 : NumConstants
uint32 : NumRecords
StkSizeRecord[NumFunctions] {

uint64 : Function Address
uint64 : Stack Size

}
Constants[NumConstants] {

uint64 : LargeConstant
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}
StkMapRecord[NumRecords] {

uint64 : PatchPoint ID
uint32 : Instruction Offset
uint16 : Reserved (record flags)
uint16 : NumLocations
Location[NumLocations] {
uint8 : Register | Direct | Indirect | Constant | ConstantIndex
uint8 : Reserved (location flags)
uint16 : Dwarf RegNum
int32 : Offset or SmallConstant

}
uint16 : Padding
uint16 : NumLiveOuts
LiveOuts[NumLiveOuts]
uint16 : Dwarf RegNum
uint8 : Reserved
uint8 : Size in Bytes

}
uint32 : Padding (only if required to align to 8 byte)

}

The first byte of each location encodes a type that indicates how to interpret the RegNum and Offset fields as
follows:

Encoding Type Value Description
0x1 Register Reg Value in a register
0x2 Direct Reg + Offset Frame index value
0x3 Indirect [Reg + Offset] Spilled value
0x4 Constant Offset Small constant
0x5 ConstIndex Constants[Offset] Large constant

In the common case, a value is available in a register, and the Offset field will be zero. Values spilled to the stack are
encoded as Indirect locations. The runtime must load those values from a stack address, typically in the form [BP
+ Offset]. If an alloca value is passed directly to a stack map intrinsic, then LLVM may fold the frame index
into the stack map as an optimization to avoid allocating a register or stack slot. These frame indices will be encoded as
Direct locations in the form BP + Offset. LLVM may also optimize constants by emitting them directly in the
stack map, either in the Offset of a Constant location or in the constant pool, referred to by ConstantIndex
locations.

At each callsite, a “liveout” register list is also recorded. These are the registers that are live across the stackmap and
therefore must be saved by the runtime. This is an important optimization when the patchpoint intrinsic is used with a
calling convention that by default preserves most registers as callee-save.

Each entry in the liveout register list contains a DWARF register number and size in bytes. The stackmap format
deliberately omits specific subregister information. Instead the runtime must interpret this information conservatively.
For example, if the stackmap reports one byte at %rax, then the value may be in either %al or %ah. It doesn’t matter
in practice, because the runtime will simply save %rax. However, if the stackmap reports 16 bytes at %ymm0, then
the runtime can safely optimize by saving only %xmm0.

The stack map format is a contract between an LLVM SVN revision and the runtime. It is currently experimental
and may change in the short term, but minimizing the need to update the runtime is important. Consequently, the
stack map design is motivated by simplicity and extensibility. Compactness of the representation is secondary because
the runtime is expected to parse the data immediately after compiling a module and encode the information in its
own format. Since the runtime controls the allocation of sections, it can reuse the same stack map space for multiple
modules.

Stackmap support is currently only implemented for 64-bit platforms. However, a 32-bit implementation should be
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able to use the same format with an insignificant amount of wasted space.

Stack Map Section

A JIT compiler can easily access this section by providing its own memory manager via the LLVM C API
LLVMCreateSimpleMCJITMemoryManager(). When creating the memory manager, the JIT provides a call-
back: LLVMMemoryManagerAllocateDataSectionCallback(). When LLVM creates this section, it in-
vokes the callback and passes the section name. The JIT can record the in-memory address of the section at this time
and later parse it to recover the stack map data.

On Darwin, the stack map section name is “__llvm_stackmaps”. The segment name is “__LLVM_STACKMAPS”.

Stack Map Usage

The stack map support described in this document can be used to precisely determine the location of values at a specific
position in the code. LLVM does not maintain any mapping between those values and any higher-level entity. The
runtime must be able to interpret the stack map record given only the ID, offset, and the order of the locations, which
LLVM preserves.

Note that this is quite different from the goal of debug information, which is a best-effort attempt to track the location
of named variables at every instruction.

An important motivation for this design is to allow a runtime to commandeer a stack frame when execution reaches an
instruction address associated with a stack map. The runtime must be able to rebuild a stack frame and resume program
execution using the information provided by the stack map. For example, execution may resume in an interpreter or a
recompiled version of the same function.

This usage restricts LLVM optimization. Clearly, LLVM must not move stores across a stack map. However, loads
must also be handled conservatively. If the load may trigger an exception, hoisting it above a stack map could be
invalid. For example, the runtime may determine that a load is safe to execute without a type check given the current
state of the type system. If the type system changes while some activation of the load’s function exists on the stack, the
load becomes unsafe. The runtime can prevent subsequent execution of that load by immediately patching any stack
map location that lies between the current call site and the load (typically, the runtime would simply patch all stack
map locations to invalidate the function). If the compiler had hoisted the load above the stack map, then the program
could crash before the runtime could take back control.

To enforce these semantics, stackmap and patchpoint intrinsics are considered to potentially read and write all memory.
This may limit optimization more than some clients desire. This limitation may be avoided by marking the call site
as “readonly”. In the future we may also allow meta-data to be added to the intrinsic call to express aliasing, thereby
allowing optimizations to hoist certain loads above stack maps.

Direct Stack Map Entries

As shown in Stack Map Section, a Direct stack map location records the address of frame index. This address is
itself the value that the runtime requested. This differs from Indirect locations, which refer to a stack locations from
which the requested values must be loaded. Direct locations can communicate the address if an alloca, while Indirect
locations handle register spills.

For example:

entry:
%a = alloca i64...
llvm.experimental.stackmap(i64 <ID>, i32 <shadowBytes>, i64* %a)
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The runtime can determine this alloca’s relative location on the stack immediately after compilation, or at any time
thereafter. This differs from Register and Indirect locations, because the runtime can only read the values in those
locations when execution reaches the instruction address of the stack map.

This functionality requires LLVM to treat entry-block allocas specially when they are directly consumed by an intrin-
sics. (This is the same requirement imposed by the llvm.gcroot intrinsic.) LLVM transformations must not substitute
the alloca with any intervening value. This can be verified by the runtime simply by checking that the stack map’s
location is a Direct location type.

Supported Architectures

Support for StackMap generation and the related intrinsics requires some code for each backend. Today, only a subset
of LLVM’s backends are supported. The currently supported architectures are X86_64, PowerPC, and Aarch64.

Design and Usage of the InAlloca Attribute

Introduction

The inalloca attribute is designed to allow taking the address of an aggregate argument that is being passed by value
through memory. Primarily, this feature is required for compatibility with the Microsoft C++ ABI. Under that ABI,
class instances that are passed by value are constructed directly into argument stack memory. Prior to the addition of
inalloca, calls in LLVM were indivisible instructions. There was no way to perform intermediate work, such as object
construction, between the first stack adjustment and the final control transfer. With inalloca, all arguments passed
in memory are modelled as a single alloca, which can be stored to prior to the call. Unfortunately, this complicated
feature comes with a large set of restrictions designed to bound the lifetime of the argument memory around the call.

For now, it is recommended that frontends and optimizers avoid producing this construct, primarily because it forces
the use of a base pointer. This feature may grow in the future to allow general mid-level optimization, but for now, it
should be regarded as less efficient than passing by value with a copy.

Intended Usage

The example below is the intended LLVM IR lowering for some C++ code that passes two default-constructed Foo
objects to g in the 32-bit Microsoft C++ ABI.

// Foo is non-trivial.
struct Foo { int a, b; Foo(); ~Foo(); Foo(const Foo &); };
void g(Foo a, Foo b);
void f() {

g(Foo(), Foo());
}

%struct.Foo = type { i32, i32 }
declare void @Foo_ctor(%struct.Foo* %this)
declare void @Foo_dtor(%struct.Foo* %this)
declare void @g(<{ %struct.Foo, %struct.Foo }>* inalloca %memargs)

define void @f() {
entry:

%base = call i8* @llvm.stacksave()
%memargs = alloca <{ %struct.Foo, %struct.Foo }>
%b = getelementptr <{ %struct.Foo, %struct.Foo }>* %memargs, i32 1
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call void @Foo_ctor(%struct.Foo* %b)

; If a's ctor throws, we must destruct b.
%a = getelementptr <{ %struct.Foo, %struct.Foo }>* %memargs, i32 0
invoke void @Foo_ctor(%struct.Foo* %a)

to label %invoke.cont unwind %invoke.unwind

invoke.cont:
call void @g(<{ %struct.Foo, %struct.Foo }>* inalloca %memargs)
call void @llvm.stackrestore(i8* %base)
...

invoke.unwind:
call void @Foo_dtor(%struct.Foo* %b)
call void @llvm.stackrestore(i8* %base)
...

}

To avoid stack leaks, the frontend saves the current stack pointer with a call to llvm.stacksave. Then, it allocates the
argument stack space with alloca and calls the default constructor. The default constructor could throw an exception,
so the frontend has to create a landing pad. The frontend has to destroy the already constructed argument b before
restoring the stack pointer. If the constructor does not unwind, g is called. In the Microsoft C++ ABI, g will destroy
its arguments, and then the stack is restored in f.

Design Considerations

Lifetime

The biggest design consideration for this feature is object lifetime. We cannot model the arguments as static allocas
in the entry block, because all calls need to use the memory at the top of the stack to pass arguments. We cannot vend
pointers to that memory at function entry because after code generation they will alias.

The rule against allocas between argument allocations and the call site avoids this problem, but it creates a cleanup
problem. Cleanup and lifetime is handled explicitly with stack save and restore calls. In the future, we may want to
introduce a new construct such as freea or afree to make it clear that this stack adjusting cleanup is less powerful
than a full stack save and restore.

Nested Calls and Copy Elision

We also want to be able to support copy elision into these argument slots. This means we have to support multiple live
argument allocations.

Consider the evaluation of:

// Foo is non-trivial.
struct Foo { int a; Foo(); Foo(const &Foo); ~Foo(); };
Foo bar(Foo b);
int main() {
bar(bar(Foo()));

}

In this case, we want to be able to elide copies into bar‘s argument slots. That means we need to have more than one
set of argument frames active at the same time. First, we need to allocate the frame for the outer call so we can pass it
in as the hidden struct return pointer to the middle call. Then we do the same for the middle call, allocating a frame
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and passing its address to Foo‘s default constructor. By wrapping the evaluation of the inner bar with stack save and
restore, we can have multiple overlapping active call frames.

Callee-cleanup Calling Conventions

Another wrinkle is the existence of callee-cleanup conventions. On Windows, all methods and many other functions
adjust the stack to clear the memory used to pass their arguments. In some sense, this means that the allocas are
automatically cleared by the call. However, LLVM instead models this as a write of undef to all of the inalloca values
passed to the call instead of a stack adjustment. Frontends should still restore the stack pointer to avoid a stack leak.

Exceptions

There is also the possibility of an exception. If argument evaluation or copy construction throws an exception, the
landing pad must do cleanup, which includes adjusting the stack pointer to avoid a stack leak. This means the cleanup
of the stack memory cannot be tied to the call itself. There needs to be a separate IR-level instruction that can perform
independent cleanup of arguments.

Efficiency

Eventually, it should be possible to generate efficient code for this construct. In particular, using inalloca should not
require a base pointer. If the backend can prove that all points in the CFG only have one possible stack level, then it
can address the stack directly from the stack pointer. While this is not yet implemented, the plan is that the inalloca
attribute should not change much, but the frontend IR generation recommendations may change.

Using ARM NEON instructions in big endian mode

• Introduction

– Example: C-level intrinsics -> assembly

• Problem

• LDR and LD1

• Considerations

– LLVM IR Lane ordering

– AAPCS

– Alignment

– Summary

• Implementation

– Bitconverts

Introduction

Generating code for big endian ARM processors is for the most part straightforward. NEON loads and stores however
have some interesting properties that make code generation decisions less obvious in big endian mode.
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The aim of this document is to explain the problem with NEON loads and stores, and the solution that has been
implemented in LLVM.

In this document the term “vector” refers to what the ARM ABI calls a “short vector”, which is a sequence of items
that can fit in a NEON register. This sequence can be 64 or 128 bits in length, and can constitute 8, 16, 32 or 64 bit
items. This document refers to A64 instructions throughout, but is almost applicable to the A32/ARMv7 instruction
sets also. The ABI format for passing vectors in A32 is sligtly different to A64. Apart from that, the same concepts
apply.

Example: C-level intrinsics -> assembly

It may be helpful first to illustrate how C-level ARM NEON intrinsics are lowered to instructions.

This trivial C function takes a vector of four ints and sets the zero’th lane to the value “42”:

#include <arm_neon.h>
int32x4_t f(int32x4_t p) {

return vsetq_lane_s32(42, p, 0);
}

arm_neon.h intrinsics generate “generic” IR where possible (that is, normal IR instructions not llvm.arm.neon.*
intrinsic calls). The above generates:

define <4 x i32> @f(<4 x i32> %p) {
%vset_lane = insertelement <4 x i32> %p, i32 42, i32 0
ret <4 x i32> %vset_lane

}

Which then becomes the following trivial assembly:

f: // @f
movz w8, #0x2a
ins v0.s[0], w8
ret

Problem

The main problem is how vectors are represented in memory and in registers.

First, a recap. The “endianness” of an item affects its representation in memory only. In a register, a number is just
a sequence of bits - 64 bits in the case of AArch64 general purpose registers. Memory, however, is a sequence of
addressable units of 8 bits in size. Any number greater than 8 bits must therefore be split up into 8-bit chunks, and
endianness describes the order in which these chunks are laid out in memory.

A “little endian” layout has the least significant byte first (lowest in memory address). A “big endian” layout has
the most significant byte first. This means that when loading an item from big endian memory, the lowest 8-bits in
memory must go in the most significant 8-bits, and so forth.

LDR and LD1

Fig. 4.1: Big endian vector load using LDR.
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performing a 64-bit load - LDR q0, [foo]. However if we try this in big endian mode, because of the byte swap-
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Fig. 4.2:
Big
en-
dian
vec-
tor
load
us-
ing
LD1.
Note
that
the
lanes
re-
tain
the
cor-
rect
or-
der-
ing.

Because of this, the instruction LD1 performs a vector load but performs byte swapping not on the entire 64 bits,
but on the individual items within the vector. This means that the register content is the same as it would have
been on a little endian system.

It may seem that LD1 should suffice to peform vector loads on a big endian machine. However there are pros and
cons to the two approaches that make it less than simple which register format to pick.

There are two options:

1. The content of a vector register is the same as if it had been loaded with an LDR instruction.

2. The content of a vector register is the same as if it had been loaded with an LD1 instruction.

Because LD1 == LDR + REV and similarly LDR == LD1 + REV (on a big endian system), we can simulate
either type of load with the other type of load plus a REV instruction. So we’re not deciding which instructions
to use, but which format to use (which will then influence which instruction is best to use).

Note that throughout this section we only mention loads. Stores have exactly the same problems as their associ-
ated loads, so have been skipped for brevity.

Considerations

LLVM IR Lane ordering

LLVM IR has first class vector types. In LLVM IR, the zero’th element of a vector resides at the lowest memory
address. The optimizer relies on this property in certain areas, for example when concatenating vectors together.
The intention is for arrays and vectors to have identical memory layouts - [4 x i8] and <4 x i8> should
be represented the same in memory. Without this property there would be many special cases that the optimizer
would have to cleverly handle.

Use of LDR would break this lane ordering property. This doesn’t preclude the use of LDR, but we would have to
do one of two things:

1. Insert a REV instruction to reverse the lane order after every LDR.

2. Disable all optimizations that rely on lane layout, and for every access to an individual lane
(insertelement/extractelement/shufflevector) reverse the lane index.
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AAPCS

The ARM procedure call standard (AAPCS) defines the ABI for passing vectors between functions in registers. It
states:

When a short vector is transferred between registers and memory it is treated as an opaque object. That
is a short vector is stored in memory as if it were stored with a single STR of the entire register; a short
vector is loaded from memory using the corresponding LDR instruction. On a little-endian system this
means that element 0 will always contain the lowest addressed element of a short vector; on a big-endian
system element 0 will contain the highest-addressed element of a short vector.

—Procedure Call Standard for the ARM 64-bit Architecture (AArch64), 4.1.2 Short Vectors

The use of LDR and STR as the ABI defines has at least one advantage over LD1 and ST1. LDR and STR are oblivious
to the size of the individual lanes of a vector. LD1 and ST1 are not - the lane size is encoded within them. This is
important across an ABI boundary, because it would become necessary to know the lane width the callee expects.
Consider the following code:

<callee.c>
void callee(uint32x2_t v) {

...
}

<caller.c>
extern void callee(uint32x2_t);
void caller() {

callee(...);
}

If callee changed its signature to uint16x4_t, which is equivalent in register content, if we passed as LD1 we’d
break this code until caller was updated and recompiled.

There is an argument that if the signatures of the two functions are different then the behaviour should be undefined.
But there may be functions that are agnostic to the lane layout of the vector, and treating the vector as an opaque value
(just loading it and storing it) would be impossible without a common format across ABI boundaries.

So to preserve ABI compatibility, we need to use the LDR lane layout across function calls.

Alignment

In strict alignment mode, LDR qX requires its address to be 128-bit aligned, whereas LD1 only requires it to be
as aligned as the lane size. If we canonicalised on using LDR, we’d still need to use LD1 in some places to avoid
alignment faults (the result of the LD1 would then need to be reversed with REV).

Most operating systems however do not run with alignment faults enabled, so this is often not an issue.

Summary

The following table summarises the instructions that are required to be emitted for each property mentioned above for
each of the two solutions.

LDR layout LD1 layout
Lane ordering LDR + REV LD1
AAPCS LDR LD1 + REV
Alignment for strict mode LDR / LD1 + REV LD1

Neither approach is perfect, and choosing one boils down to choosing the lesser of two evils. The issue with lane
ordering, it was decided, would have to change target-agnostic compiler passes and would result in a strange IR in
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which lane indices were reversed. It was decided that this was worse than the changes that would have to be made to
support LD1, so LD1 was chosen as the canonical vector load instruction (and by inference, ST1 for vector stores).

Implementation

There are 3 parts to the implementation:

1. Predicate LDR and STR instructions so that they are never allowed to be selected to generate vector loads and
stores. The exception is one-lane vectors1 - these by definition cannot have lane ordering problems so are fine
to use LDR/STR.

2. Create code generation patterns for bitconverts that create REV instructions.

3. Make sure appropriate bitconverts are created so that vector values get passed over call boundaries as 1-element
vectors (which is the same as if they were loaded with LDR).

Bitconverts

The main problem with the LD1 solution is dealing with bitconverts (or bitcasts, or reinterpret casts). These are pseudo
instructions that only change the compiler’s interpretation of data, not the underlying data itself. A requirement is that
if data is loaded and then saved again (called a “round trip”), the memory contents should be the same after the store
as before the load. If a vector is loaded and is then bitconverted to a different vector type before storing, the round trip
will currently be broken.

Take for example this code sequence:

%0 = load <4 x i32> %x
%1 = bitcast <4 x i32> %0 to <2 x i64>

store <2 x i64> %1, <2 x i64>* %y

1 One lane vectors may seem useless as a concept but they serve to distinguish between values held in general purpose registers and values held
in NEON/VFP registers. For example, an i64 would live in an x register, but <1 x i64> would live in a d register.
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This would produce a code sequence such as that in the figure on the right. The mismatched LD1 and ST1 cause the
stored data to differ from the loaded data.

When we see a bitcast from type X to type Y, what we need to do is to change the in-register representation of the data
to be as if it had just been loaded by a LD1 of type Y.

Conceptually this is simple - we can insert a REV undoing the LD1 of type X (converting the in-register representation
to the same as if it had been loaded by LDR) and then insert another REV to change the representation to be as if it had
been loaded by an LD1 of type Y.

For the previous example, this would be:

LD1 v0.4s, [x]

REV64 v0.4s, v0.4s // There is no REV128 instruction, so it must be
→˓synthesizedcd
EXT v0.16b, v0.16b, v0.16b, #8 // with a REV64 then an EXT to swap the two 64-
→˓bit elements.

REV64 v0.2d, v0.2d
EXT v0.16b, v0.16b, v0.16b, #8

ST1 v0.2d, [y]

It turns out that these REV pairs can, in almost all cases, be squashed together into a single REV. For the example
above, a REV128 4s + REV128 2d is actually a REV64 4s, as shown in the figure on the right.
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Introduction

LLVM’s code coverage mapping format is used to provide code coverage analysis using LLVM’s and Clang’s instru-
menation based profiling (Clang’s -fprofile-instr-generate option).
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This document is aimed at those who use LLVM’s code coverage mapping to provide code coverage analysis for their
own programs, and for those who would like to know how it works under the hood. A prior knowledge of how Clang’s
profile guided optimization works is useful, but not required.

We start by showing how to use LLVM and Clang for code coverage analysis, then we briefly desribe LLVM’s code
coverage mapping format and the way that Clang and LLVM’s code coverage tool work with this format. After the
basics are down, more advanced features of the coverage mapping format are discussed - such as the data structures,
LLVM IR representation and the binary encoding.

Quick Start

Here’s a short story that describes how to generate code coverage overview for a sample source file called test.c.

• First, compile an instrumented version of your program using Clang’s -fprofile-instr-generate op-
tion with the additional -fcoverage-mapping option:

clang -o test -fprofile-instr-generate -fcoverage-mapping test.c

• Then, run the instrumented binary. The runtime will produce a file called default.profraw containing the raw
profile instrumentation data:

./test

• After that, merge the profile data using the llvm-profdata tool:

llvm-profdata merge -o test.profdata default.profraw

• Finally, run LLVM’s code coverage tool (llvm-cov) to produce the code coverage overview for the sample source
file:

llvm-cov show ./test -instr-profile=test.profdata test.c

High Level Overview

LLVM’s code coverage mapping format is designed to be a self contained data format, that can be embedded into the
LLVM IR and object files. It’s described in this document as a mapping format because its goal is to store the data
that is required for a code coverage tool to map between the specific source ranges in a file and the execution counts
obtained after running the instrumented version of the program.

The mapping data is used in two places in the code coverage process:

1. When clang compiles a source file with -fcoverage-mapping, it generates the mapping information that
describes the mapping between the source ranges and the profiling instrumentation counters. This information
gets embedded into the LLVM IR and conveniently ends up in the final executable file when the program is
linked.

2. It is also used by llvm-cov - the mapping information is extracted from an object file and is used to associate the
execution counts (the values of the profile instrumentation counters), and the source ranges in a file. After that,
the tool is able to generate various code coverage reports for the program.

The coverage mapping format aims to be a “universal format” that would be suitable for usage by any frontend, and
not just by Clang. It also aims to provide the frontend the possibility of generating the minimal coverage mapping data
in order to reduce the size of the IR and object files - for example, instead of emitting mapping information for each
statement in a function, the frontend is allowed to group the statements with the same execution count into regions of
code, and emit the mapping information only for those regions.
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Advanced Concepts

The remainder of this guide is meant to give you insight into the way the coverage mapping format works.

The coverage mapping format operates on a per-function level as the profile instrumentation counters are associated
with a specific function. For each function that requires code coverage, the frontend has to create coverage mapping
data that can map between the source code ranges and the profile instrumentation counters for that function.

Mapping Region

The function’s coverage mapping data contains an array of mapping regions. A mapping region stores the source code
range that is covered by this region, the file id, the coverage mapping counter and the region’s kind. There are several
kinds of mapping regions:

• Code regions associate portions of source code and coverage mapping counters. They make up the majority
of the mapping regions. They are used by the code coverage tool to compute the execution counts for lines,
highlight the regions of code that were never executed, and to obtain the various code coverage statistics for a
function. For example:

• Skipped regions are used to represent source ranges that were skipped by Clang’s preprocessor. They don’t
associate with coverage mapping counters, as the frontend knows that they are never executed. They are used
by the code coverage tool to mark the skipped lines inside a function as non-code lines that don’t have execution
counts. For example:

• Expansion regions are used to represent Clang’s macro expansions. They have an additional property - expanded
file id. This property can be used by the code coverage tool to find the mapping regions that are created as a
result of this macro expansion, by checking if their file id matches the expanded file id. They don’t associate
with coverage mapping counters, as the code coverage tool can determine the execution count for this region by
looking up the execution count of the first region with a corresponding file id. For example:

Source Range:

The source range record contains the starting and ending location of a certain mapping region. Both locations include
the line and the column numbers.

File ID:

The file id an integer value that tells us in which source file or macro expansion is this region located. It enables Clang
to produce mapping information for the code defined inside macros, like this example demonstrates:

Counter:

A coverage mapping counter can represents a reference to the profile instrumentation counter. The execution count for
a region with such counter is determined by looking up the value of the corresponding profile instrumentation counter.

It can also represent a binary arithmetical expression that operates on coverage mapping counters or other expressions.
The execution count for a region with an expression counter is determined by evaluating the expression’s arguments
and then adding them together or subtracting them from one another. In the example below, a subtraction expression
is used to compute the execution count for the compound statement that follows the else keyword:

Finally, a coverage mapping counter can also represent an execution count of of zero. The zero counter is used to
provide coverage mapping for unreachable statements and expressions, like in the example below:
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The zero counters allow the code coverage tool to display proper line execution counts for the unreachable lines and
highlight the unreachable code. Without them, the tool would think that those lines and regions were still executed, as
it doesn’t possess the frontend’s knowledge.

LLVM IR Representation

The coverage mapping data is stored in the LLVM IR using a single global constant structure variable called
__llvm_coverage_mapping with the __llvm_covmap section specifier.

For example, let’s consider a C file and how it gets compiled to LLVM:

int foo() {
return 42;

}
int bar() {
return 13;

}

The coverage mapping variable generated by Clang has 3 fields:

• Coverage mapping header.

• An array of function records.

• Coverage mapping data which is an array of bytes. Zero paddings are added at the end to force 8 byte alignment.

@__llvm_coverage_mapping = internal constant { { i32, i32, i32, i32 }, [2 x { i64,
→˓i32, i64 }], [40 x i8] }
{

{ i32, i32, i32, i32 } ; Coverage map header
{
i32 2, ; The number of function records
i32 20, ; The length of the string that contains the encoded translation unit

→˓filenames
i32 20, ; The length of the string that contains the encoded coverage mapping data
i32 1, ; Coverage mapping format version

},
[2 x { i64, i32, i64 }] [ ; Function records
{ i64, i32, i64 } {
i64 0x5cf8c24cdb18bdac, ; Function's name MD5
i32 9, ; Function's encoded coverage mapping data string length
i64 0 ; Function's structural hash

},
{ i64, i32, i64 } {
i64 0xe413754a191db537, ; Function's name MD5
i32 9, ; Function's encoded coverage mapping data string length
i64 0 ; Function's structural hash

}],
[40 x i8] c"..." ; Encoded data (dissected later)

}, section "__llvm_covmap", align 8

The function record layout has evolved since version 1. In version 1, the function record for foo is defined as follows:

{ i8*, i32, i32, i64 } { i8* getelementptr inbounds ([3 x i8]* @__profn_foo, i32 0,
→˓i32 0), ; Function's name
i32 3, ; Function's name length
i32 9, ; Function's encoded coverage mapping data string length
i64 0 ; Function's structural hash

}
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Coverage Mapping Header:

The coverage mapping header has the following fields:

• The number of function records.

• The length of the string in the third field of __llvm_coverage_mapping that contains the encoded translation unit
filenames.

• The length of the string in the third field of __llvm_coverage_mapping that contains the encoded coverage
mapping data.

• The format version. The current version is 2 (encoded as a 1).

Function record:

A function record is a structure of the following type:

{ i64, i32, i64 }

It contains function name’s MD5, the length of the encoded mapping data for that function, and function’s structural
hash value.

Encoded data:

The encoded data is stored in a single string that contains the encoded filenames used by this translation unit and the
encoded coverage mapping data for each function in this translation unit.

The encoded data has the following structure:

[filenames, coverageMappingDataForFunctionRecord0, coverageMappingDataForFunctionRecord1,
..., padding]

If necessary, the encoded data is padded with zeroes so that the size of the data string is rounded up to the nearest
multiple of 8 bytes.

Dissecting the sample:

Here’s an overview of the encoded data that was stored in the IR for the coverage mapping sample that was shown
earlier:

• The IR contains the following string constant that represents the encoded coverage mapping data for the sample
translation unit:

c"\01\12/Users/alex/test.
→˓c\01\00\00\01\01\01\0C\02\02\01\00\00\01\01\04\0C\02\02\00\00"

• The string contains values that are encoded in the LEB128 format, which is used throughout for storing integers.
It also contains a string value.

• The length of the substring that contains the encoded translation unit filenames is the value of the second field
in the __llvm_coverage_mapping structure, which is 20, thus the filenames are encoded in this string:
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c"\01\12/Users/alex/test.c"

This string contains the following data:

– Its first byte has a value of 0x01. It stores the number of filenames contained in this string.

– Its second byte stores the length of the first filename in this string.

– The remaining 18 bytes are used to store the first filename.

• The length of the substring that contains the encoded coverage mapping data for the first function is the
value of the third field in the first structure in an array of function records stored in the third field of the
__llvm_coverage_mapping structure, which is the 9. Therefore, the coverage mapping for the first function
record is encoded in this string:

c"\01\00\00\01\01\01\0C\02\02"

This string consists of the following bytes:

0x01 The number of file ids used by this function. There is only one file id used by the mapping data in
this function.

0x00 An index into the filenames array which corresponds to the file “/Users/alex/test.c”.
0x00 The number of counter expressions used by this function. This function doesn’t use any expressions.
0x01 The number of mapping regions that are stored in an array for the function’s file id #0.
0x01 The coverage mapping counter for the first region in this function. The value of 1 tells us that it’s a

coverage mapping counter that is a reference to the profile instrumentation counter with an index of 0.
0x01 The starting line of the first mapping region in this function.
0x0C The starting column of the first mapping region in this function.
0x02 The ending line of the first mapping region in this function.
0x02 The ending column of the first mapping region in this function.

• The length of the substring that contains the encoded coverage mapping data for the second function record is
also 9. It’s structured like the mapping data for the first function record.

• The two trailing bytes are zeroes and are used to pad the coverage mapping data to give it the 8 byte alignment.

Encoding

The per-function coverage mapping data is encoded as a stream of bytes, with a simple structure. The structure
consists of the encoding types like variable-length unsigned integers, that are used to encode File ID Mapping, Counter
Expressions and the Mapping Regions.

The format of the structure follows:

[file id mapping, counter expressions, mapping regions]

The translation unit filenames are encoded using the same encoding types as the per-function coverage mapping data,
with the following structure:

[numFilenames : LEB128, filename0 : string, filename1 : string,
...]

Types

This section describes the basic types that are used by the encoding format and can appear after : in the [foo :
type] description.
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LEB128

LEB128 is an unsigned integer value that is encoded using DWARF’s LEB128 encoding, optimizing for the case where
values are small (1 byte for values less than 128).

Strings

[length : LEB128, characters...]

String values are encoded with a LEB value for the length of the string and a sequence of bytes for its characters.

File ID Mapping

[numIndices : LEB128, filenameIndex0 : LEB128, filenameIndex1 : LEB128,
...]

File id mapping in a function’s coverage mapping stream contains the indices into the translation unit’s filenames
array.

Counter

[value : LEB128]

A coverage mapping counter is stored in a single LEB value. It is composed of two things — the tag which is stored
in the lowest 2 bits, and the counter data which is stored in the remaining bits.

Tag:

The counter’s tag encodes the counter’s kind and, if the counter is an expression, the expression’s kind. The possible
tag values are:

• 0 - The counter is zero.

• 1 - The counter is a reference to the profile instrumentation counter.

• 2 - The counter is a subtraction expression.

• 3 - The counter is an addition expression.

Data:

The counter’s data is interpreted in the following manner:

• When the counter is a reference to the profile instrumentation counter, then the counter’s data is the id of the
profile counter.

• When the counter is an expression, then the counter’s data is the index into the array of counter expressions.
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Counter Expressions

[numExpressions : LEB128, expr0LHS : LEB128, expr0RHS : LEB128, expr1LHS :
LEB128, expr1RHS : LEB128, ...]

Counter expressions consist of two counters as they represent binary arithmetic operations. The expression’s kind is
determined from the tag of the counter that references this expression.

Mapping Regions

[numRegionArrays : LEB128, regionsForFile0, regionsForFile1, ...]

The mapping regions are stored in an array of sub-arrays where every region in a particular sub-array has the same file
id.

The file id for a sub-array of regions is the index of that sub-array in the main array e.g. The first sub-array will have
the file id of 0.

Sub-Array of Regions

[numRegions : LEB128, region0, region1, ...]

The mapping regions for a specific file id are stored in an array that is sorted in an ascending order by the region’s
starting location.

Mapping Region

[header, source range]

The mapping region record contains two sub-records — the header, which stores the counter and/or the region’s kind,
and the source range that contains the starting and ending location of this region.

Header

[counter]

or

[pseudo-counter]

The header encodes the region’s counter and the region’s kind.

The value of the counter’s tag distinguishes between the counters and pseudo-counters — if the tag is zero, than this
header contains a pseudo-counter, otherwise this header contains an ordinary counter.

Counter:

A mapping region whose header has a counter with a non-zero tag is a code region.
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Pseudo-Counter:

[value : LEB128]

A pseudo-counter is stored in a single LEB value, just like the ordinary counter. It has the following interpretation:

• bits 0-1: tag, which is always 0.

• bit 2: expansionRegionTag. If this bit is set, then this mapping region is an expansion region.

• remaining bits: data. If this region is an expansion region, then the data contains the expanded file id of that
region.

Otherwise, the data contains the region’s kind. The possible region kind values are:

– 0 - This mapping region is a code region with a counter of zero.

– 2 - This mapping region is a skipped region.

Source Range

[deltaLineStart : LEB128, columnStart : LEB128, numLines : LEB128,
columnEnd : LEB128]

The source range record contains the following fields:

• deltaLineStart: The difference between the starting line of the current mapping region and the starting line of
the previous mapping region.

If the current mapping region is the first region in the current sub-array, then it stores the starting line of that
region.

• columnStart: The starting column of the mapping region.

• numLines: The difference between the ending line and the starting line of the current mapping region.

• columnEnd: The ending column of the mapping region.

Garbage Collection Safepoints in LLVM

• Status

• Overview

– Base & Derived Pointers

– GC Transitions

• Intrinsics

– ‘llvm.experimental.gc.statepoint’ Intrinsic

– ‘llvm.experimental.gc.result’ Intrinsic

– ‘llvm.experimental.gc.relocate’ Intrinsic

• Stack Map Format

• Safepoint Semantics & Verification
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• Utility Passes for Safepoint Insertion

– RewriteStatepointsForGC

– PlaceSafepoints

• Supported Architectures

• Problem Areas and Active Work

• Bugs and Enhancements

Status

This document describes a set of experimental extensions to LLVM. Use with caution. Because the intrinsics have
experimental status, compatibility across LLVM releases is not guaranteed.

LLVM currently supports an alternate mechanism for conservative garbage collection support using the gcroot
intrinsic. The mechanism described here shares little in common with the alternate gcroot implementation and it is
hoped that this mechanism will eventually replace the gc_root mechanism.

Overview

To collect dead objects, garbage collectors must be able to identify any references to objects contained within executing
code, and, depending on the collector, potentially update them. The collector does not need this information at all
points in code - that would make the problem much harder - but only at well-defined points in the execution known as
‘safepoints’ For most collectors, it is sufficient to track at least one copy of each unique pointer value. However, for a
collector which wishes to relocate objects directly reachable from running code, a higher standard is required.

One additional challenge is that the compiler may compute intermediate results (“derived pointers”) which point
outside of the allocation or even into the middle of another allocation. The eventual use of this intermediate value
must yield an address within the bounds of the allocation, but such “exterior derived pointers” may be visible to the
collector. Given this, a garbage collector can not safely rely on the runtime value of an address to indicate the object it
is associated with. If the garbage collector wishes to move any object, the compiler must provide a mapping, for each
pointer, to an indication of its allocation.

To simplify the interaction between a collector and the compiled code, most garbage collectors are organized in terms
of three abstractions: load barriers, store barriers, and safepoints.

1. A load barrier is a bit of code executed immediately after the machine load instruction, but before any use of
the value loaded. Depending on the collector, such a barrier may be needed for all loads, merely loads of a
particular type (in the original source language), or none at all.

2. Analogously, a store barrier is a code fragment that runs immediately before the machine store instruction, but
after the computation of the value stored. The most common use of a store barrier is to update a ‘card table’ in
a generational garbage collector.

3. A safepoint is a location at which pointers visible to the compiled code (i.e. currently in registers or on the
stack) are allowed to change. After the safepoint completes, the actual pointer value may differ, but the ‘object’
(as seen by the source language) pointed to will not.

Note that the term ‘safepoint’ is somewhat overloaded. It refers to both the location at which the machine
state is parsable and the coordination protocol involved in bring application threads to a point at which the
collector can safely use that information. The term “statepoint” as used in this document refers exclusively
to the former.
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This document focuses on the last item - compiler support for safepoints in generated code. We will assume that an
outside mechanism has decided where to place safepoints. From our perspective, all safepoints will be function calls.
To support relocation of objects directly reachable from values in compiled code, the collector must be able to:

1. identify every copy of a pointer (including copies introduced by the compiler itself) at the safepoint,

2. identify which object each pointer relates to, and

3. potentially update each of those copies.

This document describes the mechanism by which an LLVM based compiler can provide this information to a language
runtime/collector, and ensure that all pointers can be read and updated if desired. The heart of the approach is to
construct (or rewrite) the IR in a manner where the possible updates performed by the garbage collector are explicitly
visible in the IR. Doing so requires that we:

1. create a new SSA value for each potentially relocated pointer, and ensure that no uses of the original (non
relocated) value is reachable after the safepoint,

2. specify the relocation in a way which is opaque to the compiler to ensure that the optimizer can not introduce
new uses of an unrelocated value after a statepoint. This prevents the optimizer from performing unsound
optimizations.

3. recording a mapping of live pointers (and the allocation they’re associated with) for each statepoint.

At the most abstract level, inserting a safepoint can be thought of as replacing a call instruction with a call to a multiple
return value function which both calls the original target of the call, returns it’s result, and returns updated values for
any live pointers to garbage collected objects.

Note that the task of identifying all live pointers to garbage collected values, transforming the IR to
expose a pointer giving the base object for every such live pointer, and inserting all the intrinsics correctly
is explicitly out of scope for this document. The recommended approach is to use the utility passes
described below.

This abstract function call is concretely represented by a sequence of intrinsic calls known collectively as a “statepoint
relocation sequence”.

Let’s consider a simple call in LLVM IR:

define i8 addrspace(1)* @test1(i8 addrspace(1)* %obj)
gc "statepoint-example" {

call void ()* @foo()
ret i8 addrspace(1)* %obj

}

Depending on our language we may need to allow a safepoint during the execution of foo. If so, we need to let the
collector update local values in the current frame. If we don’t, we’ll be accessing a potential invalid reference once we
eventually return from the call.

In this example, we need to relocate the SSA value %obj. Since we can’t actually change the value in the SSA value
%obj, we need to introduce a new SSA value %obj.relocated which represents the potentially changed value of
%obj after the safepoint and update any following uses appropriately. The resulting relocation sequence is:

define i8 addrspace(1)* @test1(i8 addrspace(1)* %obj)
gc "statepoint-example" {

%0 = call token (i64, i32, void ()*, i32, i32, ...)* @llvm.experimental.gc.
→˓statepoint.p0f_isVoidf(i64 0, i32 0, void ()* @foo, i32 0, i32 0, i32 0, i32 0, i8
→˓addrspace(1)* %obj)
%obj.relocated = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.

→˓p1i8(token %0, i32 7, i32 7)
ret i8 addrspace(1)* %obj.relocated

}
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Ideally, this sequence would have been represented as a M argument, N return value function (where M is the number
of values being relocated + the original call arguments and N is the original return value + each relocated value), but
LLVM does not easily support such a representation.

Instead, the statepoint intrinsic marks the actual site of the safepoint or statepoint. The statepoint returns a token value
(which exists only at compile time). To get back the original return value of the call, we use the gc.result intrinsic.
To get the relocation of each pointer in turn, we use the gc.relocate intrinsic with the appropriate index. Note that
both the gc.relocate and gc.result are tied to the statepoint. The combination forms a “statepoint relocation
sequence” and represents the entirety of a parseable call or ‘statepoint’.

When lowered, this example would generate the following x86 assembly:

.globl test1

.align 16, 0x90
pushq %rax
callq foo

.Ltmp1:
movq (%rsp), %rax # This load is redundant (oops!)
popq %rdx
retq

Each of the potentially relocated values has been spilled to the stack, and a record of that location has been recorded to
the Stack Map section. If the garbage collector needs to update any of these pointers during the call, it knows exactly
what to change.

The relevant parts of the StackMap section for our example are:

# This describes the call site
# Stack Maps: callsite 2882400000

.quad 2882400000

.long .Ltmp1-test1

.short 0
# .. 8 entries skipped ..
# This entry describes the spill slot which is directly addressable
# off RSP with offset 0. Given the value was spilled with a pushq,
# that makes sense.
# Stack Maps: Loc 8: Direct RSP [encoding: .byte 2, .byte 8, .short 7, .int 0]

.byte 2

.byte 8

.short 7

.long 0

This example was taken from the tests for the RewriteStatepointsForGC utility pass. As such, it’s full StackMap can
be easily examined with the following command.

opt -rewrite-statepoints-for-gc test/Transforms/RewriteStatepointsForGC/basics.ll -S
→˓| llc -debug-only=stackmaps

Base & Derived Pointers

A “base pointer” is one which points to the starting address of an allocation (object). A “derived pointer” is one which
is offset from a base pointer by some amount. When relocating objects, a garbage collector needs to be able to relocate
each derived pointer associated with an allocation to the same offset from the new address.

“Interior derived pointers” remain within the bounds of the allocation they’re associated with. As a result, the base
object can be found at runtime provided the bounds of allocations are known to the runtime system.
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“Exterior derived pointers” are outside the bounds of the associated object; they may even fall within another allo-
cations address range. As a result, there is no way for a garbage collector to determine which allocation they are
associated with at runtime and compiler support is needed.

The gc.relocate intrinsic supports an explicit operand for describing the allocation associated with a derived
pointer. This operand is frequently referred to as the base operand, but does not strictly speaking have to be a base
pointer, but it does need to lie within the bounds of the associated allocation. Some collectors may require that the
operand be an actual base pointer rather than merely an internal derived pointer. Note that during lowering both the
base and derived pointer operands are required to be live over the associated call safepoint even if the base is otherwise
unused afterwards.

If we extend our previous example to include a pointless derived pointer, we get:

define i8 addrspace(1)* @test1(i8 addrspace(1)* %obj)
gc "statepoint-example" {

%gep = getelementptr i8, i8 addrspace(1)* %obj, i64 20000
%token = call token (i64, i32, void ()*, i32, i32, ...)* @llvm.experimental.gc.

→˓statepoint.p0f_isVoidf(i64 0, i32 0, void ()* @foo, i32 0, i32 0, i32 0, i32 0, i8
→˓addrspace(1)* %obj, i8 addrspace(1)* %gep)
%obj.relocated = call i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(token

→˓%token, i32 7, i32 7)
%gep.relocated = call i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(token

→˓%token, i32 7, i32 8)
%p = getelementptr i8, i8 addrspace(1)* %gep, i64 -20000
ret i8 addrspace(1)* %p

}

Note that in this example %p and %obj.relocate are the same address and we could replace one with the other, poten-
tially removing the derived pointer from the live set at the safepoint entirely.

GC Transitions

As a practical consideration, many garbage-collected systems allow code that is collector-aware (“managed code”) to
call code that is not collector-aware (“unmanaged code”). It is common that such calls must also be safepoints, since
it is desirable to allow the collector to run during the execution of unmanaged code. Furthermore, it is common that
coordinating the transition from managed to unmanaged code requires extra code generation at the call site to inform
the collector of the transition. In order to support these needs, a statepoint may be marked as a GC transition, and data
that is necessary to perform the transition (if any) may be provided as additional arguments to the statepoint.

Note that although in many cases statepoints may be inferred to be GC transitions based on the function
symbols involved (e.g. a call from a function with GC strategy “foo” to a function with GC strategy
“bar”), indirect calls that are also GC transitions must also be supported. This requirement is the driving
force behind the decision to require that GC transitions are explicitly marked.

Let’s revisit the sample given above, this time treating the call to @foo as a GC transition. Depending on our target,
the transition code may need to access some extra state in order to inform the collector of the transition. Let’s assume
a hypothetical GC–somewhat unimaginatively named “hypothetical-gc” –that requires that a TLS variable must be
written to before and after a call to unmanaged code. The resulting relocation sequence is:

@flag = thread_local global i32 0, align 4

define i8 addrspace(1)* @test1(i8 addrspace(1) *%obj)
gc "hypothetical-gc" {

%0 = call token (i64, i32, void ()*, i32, i32, ...)* @llvm.experimental.gc.
→˓statepoint.p0f_isVoidf(i64 0, i32 0, void ()* @foo, i32 0, i32 1, i32* @Flag, i32 0,
→˓ i8 addrspace(1)* %obj)

4.28. Garbage Collection Safepoints in LLVM 1179



LLVM Documentation, Release 3.9

%obj.relocated = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.
→˓p1i8(token %0, i32 7, i32 7)
ret i8 addrspace(1)* %obj.relocated

}

During lowering, this will result in a instruction selection DAG that looks something like:

CALLSEQ_START
...
GC_TRANSITION_START (lowered i32 *@Flag), SRCVALUE i32* Flag
STATEPOINT
GC_TRANSITION_END (lowered i32 *@Flag), SRCVALUE i32 *Flag
...
CALLSEQ_END

In order to generate the necessary transition code, the backend for each target supported by “hypothetical-gc”
must be modified to lower GC_TRANSITION_START and GC_TRANSITION_END nodes appropriately when the
“hypothetical-gc” strategy is in use for a particular function. Assuming that such lowering has been added for X86,
the generated assembly would be:

.globl test1

.align 16, 0x90
pushq %rax
movl $1, %fs:Flag@TPOFF
callq foo
movl $0, %fs:Flag@TPOFF

.Ltmp1:
movq (%rsp), %rax # This load is redundant (oops!)
popq %rdx
retq

Note that the design as presented above is not fully implemented: in particular, strategy-specific lowering is not
present, and all GC transitions are emitted as as single no-op before and after the call instruction. These no-ops are
often removed by the backend during dead machine instruction elimination.

Intrinsics

‘llvm.experimental.gc.statepoint’ Intrinsic

Syntax:

declare token
@llvm.experimental.gc.statepoint(i64 <id>, i32 <num patch bytes>,

func_type <target>,
i64 <#call args>, i64 <flags>,
... (call parameters),
i64 <# transition args>, ... (transition parameters),
i64 <# deopt args>, ... (deopt parameters),
... (gc parameters))

Overview:

The statepoint intrinsic represents a call which is parse-able by the runtime.
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Operands:

The ‘id’ operand is a constant integer that is reported as the ID field in the generated stackmap. LLVM does not
interpret this parameter in any way and its meaning is up to the statepoint user to decide. Note that LLVM is free to
duplicate code containing statepoint calls, and this may transform IR that had a unique ‘id’ per lexical call to statepoint
to IR that does not.

If ‘num patch bytes’ is non-zero then the call instruction corresponding to the statepoint is not emitted and LLVM
emits ‘num patch bytes’ bytes of nops in its place. LLVM will emit code to prepare the function arguments and
retrieve the function return value in accordance to the calling convention; the former before the nop sequence and the
latter after the nop sequence. It is expected that the user will patch over the ‘num patch bytes’ bytes of nops with a
calling sequence specific to their runtime before executing the generated machine code. There are no guarantees with
respect to the alignment of the nop sequence. Unlike Stack maps and patch points in LLVM statepoints do not have a
concept of shadow bytes. Note that semantically the statepoint still represents a call or invoke to ‘target’, and the nop
sequence after patching is expected to represent an operation equivalent to a call or invoke to ‘target’.

The ‘target’ operand is the function actually being called. The target can be specified as either a symbolic LLVM
function, or as an arbitrary Value of appropriate function type. Note that the function type must match the signature of
the callee and the types of the ‘call parameters’ arguments.

The ‘#call args’ operand is the number of arguments to the actual call. It must exactly match the number of arguments
passed in the ‘call parameters’ variable length section.

The ‘flags’ operand is used to specify extra information about the statepoint. This is currently only used to mark
certain statepoints as GC transitions. This operand is a 64-bit integer with the following layout, where bit 0 is the least
significant bit:

Bit # Usage
0 Set if the statepoint is a GC transition, cleared otherwise.
1-63 Reserved for future use; must be cleared.

The ‘call parameters’ arguments are simply the arguments which need to be passed to the call target. They will be
lowered according to the specified calling convention and otherwise handled like a normal call instruction. The number
of arguments must exactly match what is specified in ‘# call args’. The types must match the signature of ‘target’.

The ‘transition parameters’ arguments contain an arbitrary list of Values which need to be passed to GC transition
code. They will be lowered and passed as operands to the appropriate GC_TRANSITION nodes in the selection DAG.
It is assumed that these arguments must be available before and after (but not necessarily during) the execution of the
callee. The ‘# transition args’ field indicates how many operands are to be interpreted as ‘transition parameters’.

The ‘deopt parameters’ arguments contain an arbitrary list of Values which is meaningful to the runtime. The runtime
may read any of these values, but is assumed not to modify them. If the garbage collector might need to modify one
of these values, it must also be listed in the ‘gc pointer’ argument list. The ‘# deopt args’ field indicates how many
operands are to be interpreted as ‘deopt parameters’.

The ‘gc parameters’ arguments contain every pointer to a garbage collector object which potentially needs to be
updated by the garbage collector. Note that the argument list must explicitly contain a base pointer for every derived
pointer listed. The order of arguments is unimportant. Unlike the other variable length parameter sets, this list is not
length prefixed.

Semantics:

A statepoint is assumed to read and write all memory. As a result, memory operations can not be reordered past a
statepoint. It is illegal to mark a statepoint as being either ‘readonly’ or ‘readnone’.

Note that legal IR can not perform any memory operation on a ‘gc pointer’ argument of the statepoint in a location
statically reachable from the statepoint. Instead, the explicitly relocated value (from a gc.relocate) must be used.
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‘llvm.experimental.gc.result’ Intrinsic

Syntax:

declare type*
@llvm.experimental.gc.result(token %statepoint_token)

Overview:

gc.result extracts the result of the original call instruction which was replaced by the gc.statepoint. The
gc.result intrinsic is actually a family of three intrinsics due to an implementation limitation. Other than the type
of the return value, the semantics are the same.

Operands:

The first and only argument is the gc.statepoint which starts the safepoint sequence of which this gc.result
is a part. Despite the typing of this as a generic token, only the value defined by a gc.statepoint is legal here.

Semantics:

The gc.result represents the return value of the call target of the statepoint. The type of the gc.result
must exactly match the type of the target. If the call target returns void, there will be no gc.result.

A gc.result is modeled as a ‘readnone’ pure function. It has no side effects since it is just a projection of the return
value of the previous call represented by the gc.statepoint.

‘llvm.experimental.gc.relocate’ Intrinsic

Syntax:

declare <pointer type>
@llvm.experimental.gc.relocate(token %statepoint_token,

i32 %base_offset,
i32 %pointer_offset)

Overview:

A gc.relocate returns the potentially relocated value of a pointer at the safepoint.

Operands:

The first argument is the gc.statepoint which starts the safepoint sequence of which this gc.relocation is
a part. Despite the typing of this as a generic token, only the value defined by a gc.statepoint is legal here.

The second argument is an index into the statepoints list of arguments which specifies the allocation for the pointer
being relocated. This index must land within the ‘gc parameter’ section of the statepoint’s argument list. The associated
value must be within the object with which the pointer being relocated is associated. The optimizer is free to change
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which interior derived pointer is reported, provided that it does not replace an actual base pointer with another interior
derived pointer. Collectors are allowed to rely on the base pointer operand remaining an actual base pointer if so
constructed.

The third argument is an index into the statepoint’s list of arguments which specify the (potentially) derived pointer
being relocated. It is legal for this index to be the same as the second argument if-and-only-if a base pointer is being
relocated. This index must land within the ‘gc parameter’ section of the statepoint’s argument list.

Semantics:

The return value of gc.relocate is the potentially relocated value of the pointer specified by it’s arguments. It
is unspecified how the value of the returned pointer relates to the argument to the gc.statepoint other than that
a) it points to the same source language object with the same offset, and b) the ‘based-on’ relationship of the newly
relocated pointers is a projection of the unrelocated pointers. In particular, the integer value of the pointer returned is
unspecified.

A gc.relocate is modeled as a readnone pure function. It has no side effects since it is just a way to extract
information about work done during the actual call modeled by the gc.statepoint.

Stack Map Format

Locations for each pointer value which may need read and/or updated by the runtime or collector are provided via the
Stack Map format specified in the PatchPoint documentation.

Each statepoint generates the following Locations:

• Constant which describes the calling convention of the call target. This constant is a valid calling convention
identifier for the version of LLVM used to generate the stackmap. No additional compatibility guarantees are
made for this constant over what LLVM provides elsewhere w.r.t. these identifiers.

• Constant which describes the flags passed to the statepoint intrinsic

• Constant which describes number of following deopt Locations (not operands)

• Variable number of Locations, one for each deopt parameter listed in the IR statepoint (same number as de-
scribed by previous Constant). At the moment, only deopt parameters with a bitwidth of 64 bits or less are
supported. Values of a type larger than 64 bits can be specified and reported only if a) the value is constant at the
call site, and b) the constant can be represented with less than 64 bits (assuming zero extension to the original
bitwidth).

• Variable number of relocation records, each of which consists of exactly two Locations. Relocation records are
described in detail below.

Each relocation record provides sufficient information for a collector to relocate one or more derived pointers. Each
record consists of a pair of Locations. The second element in the record represents the pointer (or pointers) which need
updated. The first element in the record provides a pointer to the base of the object with which the pointer(s) being
relocated is associated. This information is required for handling generalized derived pointers since a pointer may be
outside the bounds of the original allocation, but still needs to be relocated with the allocation. Additionally:

• It is guaranteed that the base pointer must also appear explicitly as a relocation pair if used after the statepoint.

• There may be fewer relocation records then gc parameters in the IR statepoint. Each unique pair will occur at
least once; duplicates are possible.

• The Locations within each record may either be of pointer size or a multiple of pointer size. In the later case,
the record must be interpreted as describing a sequence of pointers and their corresponding base pointers. If the
Location is of size N x sizeof(pointer), then there will be N records of one pointer each contained within the
Location. Both Locations in a pair can be assumed to be of the same size.
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Note that the Locations used in each section may describe the same physical location. e.g. A stack slot may appear as
a deopt location, a gc base pointer, and a gc derived pointer.

The LiveOut section of the StkMapRecord will be empty for a statepoint record.

Safepoint Semantics & Verification

The fundamental correctness property for the compiled code’s correctness w.r.t. the garbage collector is a dynamic
one. It must be the case that there is no dynamic trace such that a operation involving a potentially relocated pointer
is observably-after a safepoint which could relocate it. ‘observably-after’ is this usage means that an outside observer
could observe this sequence of events in a way which precludes the operation being performed before the safepoint.

To understand why this ‘observable-after’ property is required, consider a null comparison performed on the original
copy of a relocated pointer. Assuming that control flow follows the safepoint, there is no way to observe externally
whether the null comparison is performed before or after the safepoint. (Remember, the original Value is unmodified
by the safepoint.) The compiler is free to make either scheduling choice.

The actual correctness property implemented is slightly stronger than this. We require that there be no static path on
which a potentially relocated pointer is ‘observably-after’ it may have been relocated. This is slightly stronger than
is strictly necessary (and thus may disallow some otherwise valid programs), but greatly simplifies reasoning about
correctness of the compiled code.

By construction, this property will be upheld by the optimizer if correctly established in the source IR. This is a key
invariant of the design.

The existing IR Verifier pass has been extended to check most of the local restrictions on the intrinsics mentioned in
their respective documentation. The current implementation in LLVM does not check the key relocation invariant, but
this is ongoing work on developing such a verifier. Please ask on llvm-dev if you’re interested in experimenting with
the current version.

Utility Passes for Safepoint Insertion

RewriteStatepointsForGC

The pass RewriteStatepointsForGC transforms a functions IR by replacing a gc.statepoint (with an optional
gc.result) with a full relocation sequence, including all required gc.relocates. To function, the pass requires
that the GC strategy specified for the function be able to reliably distinguish between GC references and non-GC
references in IR it is given.

As an example, given this code:

define i8 addrspace(1)* @test1(i8 addrspace(1)* %obj)
gc "statepoint-example" {

call token (i64, i32, void ()*, i32, i32, ...)* @llvm.experimental.gc.statepoint.
→˓p0f_isVoidf(i64 2882400000, i32 0, void ()* @foo, i32 0, i32 0, i32 0, i32 5, i32 0,
→˓ i32 -1, i32 0, i32 0, i32 0)
ret i8 addrspace(1)* %obj

}

The pass would produce this IR:

define i8 addrspace(1)* @test1(i8 addrspace(1)* %obj)
gc "statepoint-example" {

%0 = call token (i64, i32, void ()*, i32, i32, ...)* @llvm.experimental.gc.
→˓statepoint.p0f_isVoidf(i64 2882400000, i32 0, void ()* @foo, i32 0, i32 0, i32 0,
→˓i32 5, i32 0, i32 -1, i32 0, i32 0, i32 0, i8 addrspace(1)* %obj)

1184 Chapter 4. Subsystem Documentation



LLVM Documentation, Release 3.9

%obj.relocated = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.
→˓p1i8(token %0, i32 12, i32 12)
ret i8 addrspace(1)* %obj.relocated

}

In the above examples, the addrspace(1) marker on the pointers is the mechanism that the statepoint-example
GC strategy uses to distinguish references from non references. Address space 1 is not globally reserved for this
purpose.

This pass can be used an utility function by a language frontend that doesn’t want to manually reason about liveness,
base pointers, or relocation when constructing IR. As currently implemented, RewriteStatepointsForGC must be run
after SSA construction (i.e. mem2ref).

RewriteStatepointsForGC will ensure that appropriate base pointers are listed for every relocation created. It will do
so by duplicating code as needed to propagate the base pointer associated with each pointer being relocated to the
appropriate safepoints. The implementation assumes that the following IR constructs produce base pointers: loads
from the heap, addresses of global variables, function arguments, function return values. Constant pointers (such as
null) are also assumed to be base pointers. In practice, this constraint can be relaxed to producing interior derived
pointers provided the target collector can find the associated allocation from an arbitrary interior derived pointer.

In practice, RewriteStatepointsForGC can be run much later in the pass pipeline, after most optimization is already
done. This helps to improve the quality of the generated code when compiled with garbage collection support. In the
long run, this is the intended usage model. At this time, a few details have yet to be worked out about the semantic
model required to guarantee this is always correct. As such, please use with caution and report bugs.

PlaceSafepoints

The pass PlaceSafepoints transforms a function’s IR by replacing any call or invoke instructions with appropriate gc.
statepoint and gc.result pairs, and inserting safepoint polls sufficient to ensure running code checks for a
safepoint request on a timely manner. This pass is expected to be run before RewriteStatepointsForGC and thus does
not produce full relocation sequences.

As an example, given input IR of the following:

define void @test() gc "statepoint-example" {
call void @foo()
ret void

}

declare void @do_safepoint()
define void @gc.safepoint_poll() {
call void @do_safepoint()
ret void

}

This pass would produce the following IR:

define void @test() gc "statepoint-example" {
%safepoint_token = call token (i64, i32, void ()*, i32, i32, ...)* @llvm.

→˓experimental.gc.statepoint.p0f_isVoidf(i64 2882400000, i32 0, void ()* @do_
→˓safepoint, i32 0, i32 0, i32 0, i32 0)
%safepoint_token1 = call token (i64, i32, void ()*, i32, i32, ...)* @llvm.

→˓experimental.gc.statepoint.p0f_isVoidf(i64 2882400000, i32 0, void ()* @foo, i32 0,
→˓i32 0, i32 0, i32 0)
ret void

}
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In this case, we’ve added an (unconditional) entry safepoint poll and converted the call into a gc.statepoint.
Note that despite appearances, the entry poll is not necessarily redundant. We’d have to know that foo and test
were not mutually recursive for the poll to be redundant. In practice, you’d probably want to your poll definition to
contain a conditional branch of some form.

At the moment, PlaceSafepoints can insert safepoint polls at method entry and loop backedges locations. Extending
this to work with return polls would be straight forward if desired.

PlaceSafepoints includes a number of optimizations to avoid placing safepoint polls at particular sites unless needed to
ensure timely execution of a poll under normal conditions. PlaceSafepoints does not attempt to ensure timely execution
of a poll under worst case conditions such as heavy system paging.

The implementation of a safepoint poll action is specified by looking up a function of the name gc.
safepoint_poll in the containing Module. The body of this function is inserted at each poll site desired. While
calls or invokes inside this method are transformed to a gc.statepoints, recursive poll insertion is not performed.

By default PlaceSafepoints passes in 0xABCDEF00 as the statepoint ID and 0 as the number of patchable
bytes to the newly constructed gc.statepoint. These values can be configured on a per-callsite basis us-
ing the attributes "statepoint-id" and "statepoint-num-patch-bytes". If a call site is marked
with a "statepoint-id" function attribute and its value is a positive integer (represented as a string), then
that value is used as the ID of the newly constructed gc.statepoint. If a call site is marked with a
"statepoint-num-patch-bytes" function attribute and its value is a positive integer, then that value is used
as the ‘num patch bytes’ parameter of the newly constructed gc.statepoint. The "statepoint-id" and
"statepoint-num-patch-bytes" attributes are not propagated to the gc.statepoint call or invoke if
they could be successfully parsed.

If you are scheduling the RewriteStatepointsForGC pass late in the pass order, you should probably schedule this
pass immediately before it. The exception would be if you need to preserve abstract frame information (e.g. for
deoptimization or introspection) at safepoints. In that case, ask on the llvm-dev mailing list for suggestions.

Supported Architectures

Support for statepoint generation requires some code for each backend. Today, only X86_64 is supported.

Problem Areas and Active Work

1. As the existing users of the late rewriting model have matured, we’ve found cases where the optimizer breaks
the assumption that an SSA value of gc-pointer type actually contains a gc-pointer and vice-versa. We need to
clarify our expectations and propose at least one small IR change. (Today, the gc-pointer distinction is managed
via address spaces. This turns out not to be quite strong enough.)

2. Support for languages which allow unmanaged pointers to garbage collected objects (i.e. pass a pointer to an
object to a C routine) via pinning.

3. Support for garbage collected objects allocated on the stack. Specifically, allocas are always assumed to be in
address space 0 and we need a cast/promotion operator to let rewriting identify them.

4. The current statepoint lowering is known to be somewhat poor. In the very long term, we’d like to integrate
statepoints with the register allocator; in the near term this is unlikely to happen. We’ve found the quality of
lowering to be relatively unimportant as hot-statepoints are almost always inliner bugs.

5. Concerns have been raised that the statepoint representation results in a large amount of IR being produced for
some examples and that this contributes to higher than expected memory usage and compile times. There’s no
immediate plans to make changes due to this, but alternate models may be explored in the future.

6. Relocations along exceptional paths are currently broken in ToT. In particular, there is current no way to repre-
sent a rethrow on a path which also has relocations. See this llvm-dev discussion for more detail.
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Bugs and Enhancements

Currently known bugs and enhancements under consideration can be tracked by performing a bugzilla search for
[Statepoint] in the summary field. When filing new bugs, please use this tag so that interested parties see the newly
filed bug. As with most LLVM features, design discussions take place on llvm-dev, and patches should be sent to
llvm-commits for review.

MergeFunctions pass, how it works

• Introduction

– Why would I want to read this document?

– What should I know to be able to follow along with this document?

– What I gain by reading this document?

– Narrative structure

• Basics

– How to do it?

* Possible solutions

· Random-access

· Logarithmical search

· Present state

* MergeFunctions, main fields and runOnModule

· runOnModule

· Comparison and logarithmical search

• Functions comparison

– FunctionComparator::compare(void)

– FunctionComparator::cmpType

– cmpValues(const Value*, const Value*)

* What we assiciate in cmpValues?

* How to implement cmpValues?

– cmpConstants

– compare(const BasicBlock*, const BasicBlock*)

– cmpGEP

– cmpOperation

– O(log(N))

• Merging process, mergeTwoFunctions

– If “F” may be overridden
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* HasGlobalAliases, removeUsers

* No global aliases, replaceDirectCallers

· If “F” could not be overridden, fix it!

• That’s it.

Introduction

Sometimes code contains equal functions, or functions that does exactly the same thing even though they are non-equal
on the IR level (e.g.: multiplication on 2 and ‘shl 1’). It could happen due to several reasons: mainly, the usage of
templates and automatic code generators. Though, sometimes user itself could write the same thing twice :-)

The main purpose of this pass is to recognize such functions and merge them.

Why would I want to read this document?

Document is the extension to pass comments and describes the pass logic. It describes algorithm that is used in order
to compare functions, it also explains how we could combine equal functions correctly, keeping module valid.

Material is brought in top-down form, so reader could start learn pass from ideas and end up with low-level algorithm
details, thus preparing him for reading the sources.

So main goal is do describe algorithm and logic here; the concept. This document is good for you, if you don’t want
to read the source code, but want to understand pass algorithms. Author tried not to repeat the source-code and cover
only common cases, and thus avoid cases when after minor code changes we need to update this document.

What should I know to be able to follow along with this document?

Reader should be familiar with common compile-engineering principles and LLVM code fundamentals. In this article
we suppose reader is familiar with Single Static Assingment concepts. Understanding of IR structure is also important.

We will use such terms as “module”, “function”, “basic block”, “user”, “value”, “instruction”.

As a good start point, Kaleidoscope tutorial could be used:

LLVM Tutorial: Table of Contents

Especially it’s important to understand chapter 3 of tutorial:

Kaleidoscope: Code generation to LLVM IR

Reader also should know how passes work in LLVM, they could use next article as a reference and start point here:

Writing an LLVM Pass

What else? Well perhaps reader also should have some experience in LLVM pass debugging and bug-fixing.

What I gain by reading this document?

Main purpose is to provide reader with comfortable form of algorithms description, namely the human reading text.
Since it could be hard to understand algorithm straight from the source code: pass uses some principles that have to
be explained first.

Author wishes to everybody to avoid case, when you read code from top to bottom again and again, and yet you don’t
understand why we implemented it that way.
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We hope that after this article reader could easily debug and improve MergeFunctions pass and thus help LLVM
project.

Narrative structure

Article consists of three parts. First part explains pass functionality on the top-level. Second part describes the
comparison procedure itself. The third part describes the merging process.

In every part author also tried to put the contents into the top-down form. First, the top-level methods will be described,
while the terminal ones will be at the end, in the tail of each part. If reader will see the reference to the method that
wasn’t described yet, they will find its description a bit below.

Basics

How to do it?

Do we need to merge functions? Obvious thing is: yes that’s a quite possible case, since usually we do have duplicates.
And it would be good to get rid of them. But how to detect such a duplicates? The idea is next: we split functions onto
small bricks (parts), then we compare “bricks” amount, and if it equal, compare “bricks” themselves, and then do our
conclusions about functions themselves.

What the difference it could be? For example, on machine with 64-bit pointers (let’s assume we have only one address
space), one function stores 64-bit integer, while another one stores a pointer. So if the target is a machine mentioned
above, and if functions are identical, except the parameter type (we could consider it as a part of function type), then
we can treat uint64_t and‘‘void*‘‘ as equal.

It was just an example; possible details are described a bit below.

As another example reader may imagine two more functions. First function performs multiplication on 2, while the
second one performs arithmetic right shift on 1.

Possible solutions

Let’s briefly consider possible options about how and what we have to implement in order to create full-featured
functions merging, and also what it would meant for us.

Equal functions detection, obviously supposes “detector” method to be implemented, latter should answer the question
“whether functions are equal”. This “detector” method consists of tiny “sub-detectors”, each of them answers exactly
the same question, but for function parts.

As the second step, we should merge equal functions. So it should be a “merger” method. “Merger” accepts two
functions F1 and F2, and produces F1F2 function, the result of merging.

Having such a routines in our hands, we can process whole module, and merge all equal functions.

In this case, we have to compare every function with every another function. As reader could notice, this way seems
to be quite expensive. Of course we could introduce hashing and other helpers, but it is still just an optimization, and
thus the level of O(N*N) complexity.

Can we reach another level? Could we introduce logarithmical search, or random access lookup? The answer is:
“yes”.
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Random-access

How it could be done? Just convert each function to number, and gather all of them in special hash-table. Functions
with equal hash are equal. Good hashing means, that every function part must be taken into account. That means we
have to convert every function part into some number, and then add it into hash. Lookup-up time would be small, but
such approach adds some delay due to hashing routine.

Logarithmical search

We could introduce total ordering among the functions set, once we had it we could then implement a logarithmical
search. Lookup time still depends on N, but adds a little of delay (log(N)).

Present state

Both of approaches (random-access and logarithmical) has been implemented and tested. And both of them gave
a very good improvement. And what was most surprising, logarithmical search was faster; sometimes up to 15%.
Hashing needs some extra CPU time, and it is the main reason why it works slower; in most of cases total “hashing”
time was greater than total “logarithmical-search” time.

So, preference has been granted to the “logarithmical search”.

Though in the case of need, logarithmical-search (read “total-ordering”) could be used as a milestone on our way to
the random-access implementation.

Every comparison is based either on the numbers or on flags comparison. In random-access approach we could use
the same comparison algorithm. During comparison we exit once we find the difference, but here we might have to
scan whole function body every time (note, it could be slower). Like in “total-ordering”, we will track every numbers
and flags, but instead of comparison, we should get numbers sequence and then create the hash number. So, once
again, total-ordering could be considered as a milestone for even faster (in theory) random-access approach.

MergeFunctions, main fields and runOnModule

There are two most important fields in class:

FnTree – the set of all unique functions. It keeps items that couldn’t be merged with each other. It is defined as:

std::set<FunctionNode> FnTree;

Here FunctionNode is a wrapper for llvm::Function class, with implemented “<” operator among the func-
tions set (below we explain how it works exactly; this is a key point in fast functions comparison).

Deferred – merging process can affect bodies of functions that are in FnTree already. Obviously such functions
should be rechecked again. In this case we remove them from FnTree, and mark them as to be rescanned, namely
put them into Deferred list.

runOnModule

The algorithm is pretty simple:

1. Put all module’s functions into the worklist.

2. Scan worklist‘s functions twice: first enumerate only strong functions and then only weak ones:
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2.1. Loop body: take function from worklist (call it FCur) and try to insert it into FnTree: check whether
FCur is equal to one of functions in FnTree. If there is equal function in FnTree (call it FExists): merge
function FCur with FExists. Otherwise add function from worklist to FnTree.

3. Once worklist scanning and merging operations is complete, check Deferred list. If it is not empty: refill worklist
contents with Deferred list and do step 2 again, if Deferred is empty, then exit from method.

Comparison and logarithmical search

Let’s recall our task: for every function F from module M, we have to find equal functions F‘ in shortest time, and
merge them into the single function.

Defining total ordering among the functions set allows to organize functions into the binary tree. The lookup procedure
complexity would be estimated as O(log(N)) in this case. But how to define total-ordering?

We have to introduce a single rule applicable to every pair of functions, and following this rule then evaluate which
of them is greater. What kind of rule it could be? Let’s declare it as “compare” method, that returns one of 3 possible
values:

-1, left is less than right,

0, left and right are equal,

1, left is greater than right.

Of course it means, that we have to maintain strict and non-strict order relation properties:

• reflexivity (a <= a, a == a, a >= a),

• antisymmetry (if a <= b and b <= a then a == b),

• transitivity (a <= b and b <= c, then a <= c)

• asymmetry (if a < b, then a > b or a == b).

As it was mentioned before, comparison routine consists of “sub-comparison-routines”, each of them also consists
“sub-comparison-routines”, and so on, finally it ends up with a primitives comparison.

Below, we will use the next operations:

1. cmpNumbers(number1, number2) is method that returns -1 if left is less than right; 0, if left and right
are equal; and 1 otherwise.

2. cmpFlags(flag1, flag2) is hypothetical method that compares two flags. The logic is the same as in
cmpNumbers, where true is 1, and false is 0.

The rest of article is based on MergeFunctions.cpp source code (<llvm_dir>/lib/Transforms/IPO/MergeFunctions.cpp).
We would like to ask reader to keep this file open nearby, so we could use it as a reference for further explanations.

Now we’re ready to proceed to the next chapter and see how it works.

Functions comparison

At first, let’s define how exactly we compare complex objects.

Complex objects comparison (function, basic-block, etc) is mostly based on its sub-objects comparison results. So it
is similar to the next “tree” objects comparison:

1. For two trees T1 and T2 we perform depth-first-traversal and have two sequences as a product: “T1Items” and
“T2Items”.
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2. Then compare chains “T1Items” and “T2Items” in most-significant-item-first order. Result of items comparison
would be the result of T1 and T2 comparison itself.

FunctionComparator::compare(void)

Brief look at the source code tells us, that comparison starts in “int
FunctionComparator::compare(void)” method.

1. First parts to be compared are function’s attributes and some properties that outsides “attributes” term, but still
could make function different without changing its body. This part of comparison is usually done within simple
cmpNumbers or cmpFlags operations (e.g. cmpFlags(F1->hasGC(), F2->hasGC())). Below is full list of
function’s properties to be compared on this stage:

• Attributes (those are returned by Function::getAttributes() method).

• GC, for equivalence, RHS and LHS should be both either without GC or with the same one.

• Section, just like a GC: RHS and LHS should be defined in the same section.

• Variable arguments. LHS and RHS should be both either with or without var-args.

• Calling convention should be the same.

2. Function type. Checked by FunctionComparator::cmpType(Type*, Type*) method. It checks return
type and parameters type; the method itself will be described later.

3. Associate function formal parameters with each other. Then comparing function bodies, if we see the usage of
LHS‘s i-th argument in LHS‘s body, then, we want to see usage of RHS‘s i-th argument at the same place in RHS‘s
body, otherwise functions are different. On this stage we grant the preference to those we met later in function body
(value we met first would be less). This is done by “FunctionComparator::cmpValues(const Value*,
const Value*)” method (will be described a bit later).

4. Function body comparison. As it written in method comments:

“We do a CFG-ordered walk since the actual ordering of the blocks in the linked list is immaterial. Our walk starts at
the entry block for both functions, then takes each block from each terminator in order. As an artifact, this also means
that unreachable blocks are ignored.”

So, using this walk we get BBs from left and right in the same order, and compare them by
“FunctionComparator::compare(const BasicBlock*, const BasicBlock*)” method.

We also associate BBs with each other, like we did it with function formal arguments (see cmpValues method
below).

FunctionComparator::cmpType

Consider how types comparison works.

1. Coerce pointer to integer. If left type is a pointer, try to coerce it to the integer type. It could be done if its address
space is 0, or if address spaces are ignored at all. Do the same thing for the right type.

2. If left and right types are equal, return 0. Otherwise we need to give preference to one of them. So proceed to the
next step.

3. If types are of different kind (different type IDs). Return result of type IDs comparison, treating them as a numbers
(use cmpNumbers operation).

4. If types are vectors or integers, return result of their pointers comparison, comparing them as numbers.

5. Check whether type ID belongs to the next group (call it equivalent-group):

• Void
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• Float

• Double

• X86_FP80

• FP128

• PPC_FP128

• Label

• Metadata.

If ID belongs to group above, return 0. Since it’s enough to see that types has the same TypeID. No additional
information is required.

6. Left and right are pointers. Return result of address space comparison (numbers comparison).

7. Complex types (structures, arrays, etc.). Follow complex objects comparison technique (see the very first paragraph
of this chapter). Both left and right are to be expanded and their element types will be checked the same way. If we
get -1 or 1 on some stage, return it. Otherwise return 0.

8. Steps 1-6 describe all the possible cases, if we passed steps 1-6 and didn’t get any conclusions, then invoke
llvm_unreachable, since it’s quite unexpectable case.

cmpValues(const Value*, const Value*)

Method that compares local values.

This method gives us an answer on a very curious quesion: whether we could treat local values as equal, and which
value is greater otherwise. It’s better to start from example:

Consider situation when we’re looking at the same place in left function “FL” and in right function “FR”. And every
part of left place is equal to the corresponding part of right place, and (!) both parts use Value instances, for example:

instr0 i32 %LV ; left side, function FL
instr0 i32 %RV ; right side, function FR

So, now our conclusion depends on Value instances comparison.

Main purpose of this method is to determine relation between such values.

What we expect from equal functions? At the same place, in functions “FL” and “FR” we expect to see equal values,
or values defined at the same place in “FL” and “FR”.

Consider small example here:

define void %f(i32 %pf0, i32 %pf1) {
instr0 i32 %pf0 instr1 i32 %pf1 instr2 i32 123

}

define void %g(i32 %pg0, i32 %pg1) {
instr0 i32 %pg0 instr1 i32 %pg0 instr2 i32 123

}

In this example, pf0 is associated with pg0, pf1 is associated with pg1, and we also declare that pf0 < pf1, and thus pg0
< pf1.

Instructions with opcode “instr0” would be equal, since their types and opcodes are equal, and values are associated.

Instruction with opcode “instr1” from f is greater than instruction with opcode “instr1” from g; here we have equal
types and opcodes, but “pf1 is greater than “pg0”.
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And instructions with opcode “instr2” are equal, because their opcodes and types are equal, and the same constant is
used as a value.

What we assiciate in cmpValues?

• Function arguments. i-th argument from left function associated with i-th argument from right function.

• BasicBlock instances. In basic-block enumeration loop we associate i-th BasicBlock from the left function with
i-th BasicBlock from the right function.

• Instructions.

• Instruction operands. Note, we can meet Value here we have never seen before. In this case it is not a function
argument, nor BasicBlock, nor Instruction. It is global value. It is constant, since its the only supposed global
here. Method also compares:

• Constants that are of the same type.

• If right constant could be losslessly bit-casted to the left one, then we also compare them.

How to implement cmpValues?

Association is a case of equality for us. We just treat such values as equal. But, in general, we need to implement
antisymmetric relation. As it was mentioned above, to understand what is less, we can use order in which we meet
values. If both of values has the same order in function (met at the same time), then treat values as associated.
Otherwise – it depends on who was first.

Every time we run top-level compare method, we initialize two identical maps (one for the left side, another one for
the right side):

map<Value, int> sn_mapL, sn_mapR;

The key of the map is the Value itself, the value – is its order (call it serial number).

To add value V we need to perform the next procedure:

sn_map.insert(std::make_pair(V, sn_map.size()));

For the first Value, map will return 0, for second Value map will return 1, and so on.

Then we can check whether left and right values met at the same time with simple comparison:

cmpNumbers(sn_mapL[Left], sn_mapR[Right]);

Of course, we can combine insertion and comparison:

std::pair<iterator, bool>
LeftRes = sn_mapL.insert(std::make_pair(Left, sn_mapL.size())), RightRes
= sn_mapR.insert(std::make_pair(Right, sn_mapR.size()));

return cmpNumbers(LeftRes.first->second, RightRes.first->second);

Let’s look, how whole method could be implemented.

1. we have to start from the bad news. Consider function self and cross-referencing cases:

// self-reference unsigned fact0(unsigned n) { return n > 1 ? n

* fact0(n-1) : 1; } unsigned fact1(unsigned n) { return n > 1 ? n *
fact1(n-1) : 1; }

// cross-reference unsigned ping(unsigned n) { return n!= 0 ? pong(n-1) : 0;
} unsigned pong(unsigned n) { return n!= 0 ? ping(n-1) : 0; }
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This comparison has been implemented in initial MergeFunctions pass version. But, unfortunately, it is
not transitive. And this is the only case we can’t convert to less-equal-greater comparison. It is a seldom
case, 4-5 functions of 10000 (checked on test-suite), and, we hope, reader would forgive us for such a
sacrifice in order to get the O(log(N)) pass time.

2. If left/right Value is a constant, we have to compare them. Return 0 if it is the same constant, or use
cmpConstants method otherwise.

3. If left/right is InlineAsm instance. Return result of Value pointers comparison.

4. Explicit association of L (left value) and R (right value). We need to find out whether values met at the same time,
and thus are associated. Or we need to put the rule: when we treat L < R. Now it is easy: just return result of numbers
comparison:

std::pair<iterator, bool>
LeftRes = sn_mapL.insert(std::make_pair(Left, sn_mapL.size())),
RightRes = sn_mapR.insert(std::make_pair(Right, sn_mapR.size()));

if (LeftRes.first->second == RightRes.first->second) return 0;
if (LeftRes.first->second < RightRes.first->second) return -1;
return 1;

Now when cmpValues returns 0, we can proceed comparison procedure. Otherwise, if we get (-1 or 1), we need to
pass this result to the top level, and finish comparison procedure.

cmpConstants

Performs constants comparison as follows:

1. Compare constant types using cmpType method. If result is -1 or 1, goto step 2, otherwise proceed to step 3.

2. If types are different, we still can check whether constants could be losslessly bitcasted to each other. The further
explanation is modification of canLosslesslyBitCastTo method.

2.1 Check whether constants are of the first class types (isFirstClassType check):

2.1.1. If both constants are not of the first class type: return result of cmpType.

2.1.2. Otherwise, if left type is not of the first class, return -1. If right type is not of the first class, return
1.

2.1.3. If both types are of the first class type, proceed to the next step (2.1.3.1).

2.1.3.1. If types are vectors, compare their bitwidth using the cmpNumbers. If result is not 0, return it.

2.1.3.2. Different types, but not a vectors:

• if both of them are pointers, good for us, we can proceed to step 3.

• if one of types is pointer, return result of isPointer flags comparison (cmpFlags operation).

• otherwise we have no methods to prove bitcastability, and thus return result of types comparison (-1
or 1).

Steps below are for the case when types are equal, or case when constants are bitcastable:

3. One of constants is a “null” value. Return the result of cmpFlags(L->isNullValue, R->isNullValue)
comparison.

4. Compare value IDs, and return result if it is not 0:
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if (int Res = cmpNumbers(L->getValueID(), R->getValueID()))
return Res;

5. Compare the contents of constants. The comparison depends on kind of constants, but on this stage it is just
a lexicographical comparison. Just see how it was described in the beginning of “Functions comparison” paragraph.
Mathematically it is equal to the next case: we encode left constant and right constant (with similar way bitcode-writer
does). Then compare left code sequence and right code sequence.

compare(const BasicBlock*, const BasicBlock*)

Compares two BasicBlock instances.

It enumerates instructions from left BB and right BB.

1. It assigns serial numbers to the left and right instructions, using cmpValues method.

2. If one of left or right is GEP (GetElementPtr), then treat GEP as greater than other instructions, if both
instructions are GEPs use cmpGEP method for comparison. If result is -1 or 1, pass it to the top-level comparison
(return it).

3.1. Compare operations. Call cmpOperation method. If result is -1 or 1, return it.

3.2. Compare number of operands, if result is -1 or 1, return it.

3.3. Compare operands themselves, use cmpValues method. Return result if it is -1 or 1.

3.4. Compare type of operands, using cmpType method. Return result if it is -1 or 1.

3.5. Proceed to the next instruction.

4. We can finish instruction enumeration in 3 cases:

4.1. We reached the end of both left and right basic-blocks. We didn’t exit on steps 1-3, so contents is equal,
return 0.

4.2. We have reached the end of the left basic-block. Return -1.

4.3. Return 1 (the end of the right basic block).

cmpGEP

Compares two GEPs (getelementptr instructions).

It differs from regular operations comparison with the only thing: possibility to use
accumulateConstantOffset method.

So, if we get constant offset for both left and right GEPs, then compare it as numbers, and return comparison result.

Otherwise treat it like a regular operation (see previous paragraph).

cmpOperation

Compares instruction opcodes and some important operation properties.

1. Compare opcodes, if it differs return the result.

2. Compare number of operands. If it differs – return the result.
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3. Compare operation types, use cmpType. All the same – if types are different, return result.

4. Compare subclassOptionalData, get it with getRawSubclassOptionalData method, and compare it like a
numbers.

5. Compare operand types.

6. For some particular instructions check equivalence (relation in our case) of some significant attributes. For example
we have to compare alignment for load instructions.

O(log(N))

Methods described above implement order relationship. And latter, could be used for nodes comparison in a binary
tree. So we can organize functions set into the binary tree and reduce the cost of lookup procedure from O(N*N) to
O(log(N)).

Merging process, mergeTwoFunctions

Once MergeFunctions detected that current function (G) is equal to one that were analyzed before (function F) it calls
mergeTwoFunctions(Function*, Function*).

Operation affects FnTree contents with next way: F will stay in FnTree. G being equal to F will not be added to
FnTree. Calls of G would be replaced with something else. It changes bodies of callers. So, functions that calls G
would be put into Deferred set and removed from FnTree, and analyzed again.

The approach is next:

1. Most wished case: when we can use alias and both of F and G are weak. We make both of them with aliases to the
third strong function H. Actually H is F. See below how it’s made (but it’s better to look straight into the source code).
Well, this is a case when we can just replace G with F everywhere, we use replaceAllUsesWith operation here
(RAUW).

2. F could not be overridden, while G could. It would be good to do the next: after merging the places where
overridable function were used, still use overridable stub. So try to make G alias to F, or create overridable tail call
wrapper around F and replace G with that call.

3. Neither F nor G could be overridden. We can’t use RAUW. We can just change the callers: call F instead of G.
That’s what replaceDirectCallers does.

Below is detailed body description.

If “F” may be overridden

As follows from mayBeOverridden comments: “whether the definition of this global may be replaced by some-
thing non-equivalent at link time”. If so, that’s ok: we can use alias to F instead of G or change call instructions
itself.

HasGlobalAliases, removeUsers

First consider the case when we have global aliases of one function name to another. Our purpose is make both of
them with aliases to the third strong function. Though if we keep F alive and without major changes we can leave it
in FnTree. Try to combine these two goals.

Do stub replacement of F itself with an alias to F.

1. Create stub function H, with the same name and attributes like function F. It takes maximum alignment of F and G.
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2. Replace all uses of function F with uses of function H. It is the two steps procedure instead. First of all, we must
take into account, all functions from whom F is called would be changed: since we change the call argument (from
F to H). If so we must to review these caller functions again after this procedure. We remove callers from FnTree,
method with name removeUsers(F) does that (don’t confuse with replaceAllUsesWith):

2.1. Inside removeUsers(Value* V) we go through the all values that use value V (or F in our
context). If value is instruction, we go to function that holds this instruction and mark it as to-be-analyzed-
again (put to Deferred set), we also remove caller from FnTree.

2.2. Now we can do the replacement: call F->replaceAllUsesWith(H).

3. H (that now “officially” plays F‘s role) is replaced with alias to F. Do the same with G: replace it with alias to F.
So finally everywhere F was used, we use H and it is alias to F, and everywhere G was used we also have alias to F.

4. Set F linkage to private. Make it strong :-)

No global aliases, replaceDirectCallers

If global aliases are not supported. We call replaceDirectCallers then. Just go through all calls of G and
replace it with calls of F. If you look into method you will see that it scans all uses of G too, and if use is callee (if
user is call instruction and G is used as what to be called), we replace it with use of F.

If “F” could not be overridden, fix it!

We call writeThunkOrAlias(Function *F, Function *G). Here we try to replace G with alias to F first.
Next conditions are essential:

• target should support global aliases,

• the address itself of G should be not significant, not named and not referenced anywhere,

• function should come with external, local or weak linkage.

Otherwise we write thunk: some wrapper that has G’s interface and calls F, so G could be replaced with this wrapper.

writeAlias

As follows from llvm reference:

“Aliases act as second name for the aliasee value”. So we just want to create second name for F and use it instead of
G:

1. create global alias itself (GA),

2. adjust alignment of F so it must be maximum of current and G’s alignment;

3. replace uses of G:

3.1. first mark all callers of G as to-be-analyzed-again, using removeUsers method (see chapter above),

3.2. call G->replaceAllUsesWith(GA).

4. Get rid of G.

writeThunk

As it written in method comments:

“Replace G with a simple tail call to bitcast(F). Also replace direct uses of G with bitcast(F). Deletes G.”

In general it does the same as usual when we want to replace callee, except the first point:

1. We generate tail call wrapper around F, but with interface that allows use it instead of G.
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2. “As-usual”: removeUsers and replaceAllUsesWith then.

3. Get rid of G.

That’s it.

We have described how to detect equal functions, and how to merge them, and in first chapter we have described how
it works all-together. Author hopes, reader have some picture from now, and it helps him improve and debug this pass.

Reader is welcomed to send us any questions and proposals ;-)

Type Metadata

Type metadata is a mechanism that allows IR modules to co-operatively build pointer sets corresponding to addresses
within a given set of globals. LLVM’s control flow integrity implementation uses this metadata to efficiently check (at
each call site) that a given address corresponds to either a valid vtable or function pointer for a given class or function
type, and its whole-program devirtualization pass uses the metadata to identify potential callees for a given virtual call.

To use the mechanism, a client creates metadata nodes with two elements:

1. a byte offset into the global (generally zero for functions)

2. a metadata object representing an identifier for the type

These metadata nodes are associated with globals by using global object metadata attachments with the !type meta-
data kind.

Each type identifier must exclusively identify either global variables or functions.

Limitation

The current implementation only supports attaching metadata to functions on the x86-32 and x86-64 architectures.

An intrinsic, llvm.type.test, is used to test whether a given pointer is associated with a type identifier.

Representing Type Information using Type Metadata

This section describes how Clang represents C++ type information associated with virtual tables using type metadata.

Consider the following inheritance hierarchy:

struct A {
virtual void f();

};

struct B : A {
virtual void f();
virtual void g();

};

struct C {
virtual void h();

};

struct D : A, C {
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virtual void f();
virtual void h();

};

The virtual table objects for A, B, C and D look like this (under the Itanium ABI):

Table 4.29: Virtual Table Layout for A, B, C, D

Class 0 1 2 3 4 5 6
A A::offset-to-top &A::rtti &A::f
B B::offset-to-top &B::rtti &B::f &B::g
C C::offset-to-top &C::rtti &C::h
D D::offset-to-top &D::rtti &D::f &D::h D::offset-to-top &D::rtti thunk for &D::h

When an object of type A is constructed, the address of &A::f in A’s virtual table object is stored in the object’s vtable
pointer. In ABI parlance this address is known as an address point. Similarly, when an object of type B is constructed,
the address of &B::f is stored in the vtable pointer. In this way, the vtable in B’s virtual table object is compatible
with A’s vtable.

D is a little more complicated, due to the use of multiple inheritance. Its virtual table object contains two vtables, one
compatible with A’s vtable and the other compatible with C’s vtable. Objects of type D contain two virtual pointers,
one belonging to the A subobject and containing the address of the vtable compatible with A’s vtable, and the other
belonging to the C subobject and containing the address of the vtable compatible with C’s vtable.

The full set of compatibility information for the above class hierarchy is shown below. The following table shows the
name of a class, the offset of an address point within that class’s vtable and the name of one of the classes with which
that address point is compatible.

Table 4.30: Type Offsets for A, B, C, D

VTable for Offset Compatible Class
A 16 A
B 16 A

B
C 16 C
D 16 A

D
48 C

The next step is to encode this compatibility information into the IR. The way this is done is to create type metadata
named after each of the compatible classes, with which we associate each of the compatible address points in each
vtable. For example, these type metadata entries encode the compatibility information for the above hierarchy:

@_ZTV1A = constant [...], !type !0
@_ZTV1B = constant [...], !type !0, !type !1
@_ZTV1C = constant [...], !type !2
@_ZTV1D = constant [...], !type !0, !type !3, !type !4

!0 = !{i64 16, !"_ZTS1A"}
!1 = !{i64 16, !"_ZTS1B"}
!2 = !{i64 16, !"_ZTS1C"}
!3 = !{i64 16, !"_ZTS1D"}
!4 = !{i64 48, !"_ZTS1C"}

With this type metadata, we can now use the llvm.type.test intrinsic to test whether a given pointer is com-
patible with a type identifier. Working backwards, if llvm.type.test returns true for a particular pointer, we
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can also statically determine the identities of the virtual functions that a particular virtual call may call. For example,
if a program assumes a pointer to be a member of !"_ZST1A", we know that the address can be only be one of
_ZTV1A+16, _ZTV1B+16 or _ZTV1D+16 (i.e. the address points of the vtables of A, B and D respectively). If we
then load an address from that pointer, we know that the address can only be one of &A::f, &B::f or &D::f.

Testing Addresses For Type Membership

If a program tests an address using llvm.type.test, this will cause a link-time optimization pass,
LowerTypeTests, to replace calls to this intrinsic with efficient code to perform type member tests. At a high
level, the pass will lay out referenced globals in a consecutive memory region in the object file, construct bit vectors
that map onto that memory region, and generate code at each of the llvm.type.test call sites to test pointers
against those bit vectors. Because of the layout manipulation, the globals’ definitions must be available at LTO time.
For more information, see the control flow integrity design document.

A type identifier that identifies functions is transformed into a jump table, which is a block of code consisting of one
branch instruction for each of the functions associated with the type identifier that branches to the target function. The
pass will redirect any taken function addresses to the corresponding jump table entry. In the object file’s symbol table,
the jump table entries take the identities of the original functions, so that addresses taken outside the module will pass
any verification done inside the module.

Jump tables may call external functions, so their definitions need not be available at LTO time. Note that if an externally
defined function is associated with a type identifier, there is no guarantee that its identity within the module will be the
same as its identity outside of the module, as the former will be the jump table entry if a jump table is necessary.

The GlobalLayoutBuilder class is responsible for laying out the globals efficiently to minimize the sizes of the under-
lying bitsets.

Example

target datalayout = "e-p:32:32"

@a = internal global i32 0, !type !0
@b = internal global i32 0, !type !0, !type !1
@c = internal global i32 0, !type !1
@d = internal global [2 x i32] [i32 0, i32 0], !type !2

define void @e() !type !3 {
ret void

}

define void @f() {
ret void

}

declare void @g() !type !3

!0 = !{i32 0, !"typeid1"}
!1 = !{i32 0, !"typeid2"}
!2 = !{i32 4, !"typeid2"}
!3 = !{i32 0, !"typeid3"}

declare i1 @llvm.type.test(i8* %ptr, metadata %typeid) nounwind readnone

define i1 @foo(i32* %p) {
%pi8 = bitcast i32* %p to i8*
%x = call i1 @llvm.type.test(i8* %pi8, metadata !"typeid1")
ret i1 %x
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}

define i1 @bar(i32* %p) {
%pi8 = bitcast i32* %p to i8*
%x = call i1 @llvm.type.test(i8* %pi8, metadata !"typeid2")
ret i1 %x

}

define i1 @baz(void ()* %p) {
%pi8 = bitcast void ()* %p to i8*
%x = call i1 @llvm.type.test(i8* %pi8, metadata !"typeid3")
ret i1 %x

}

define void @main() {
%a1 = call i1 @foo(i32* @a) ; returns 1
%b1 = call i1 @foo(i32* @b) ; returns 1
%c1 = call i1 @foo(i32* @c) ; returns 0
%a2 = call i1 @bar(i32* @a) ; returns 0
%b2 = call i1 @bar(i32* @b) ; returns 1
%c2 = call i1 @bar(i32* @c) ; returns 1
%d02 = call i1 @bar(i32* getelementptr ([2 x i32]* @d, i32 0, i32 0)) ; returns 0
%d12 = call i1 @bar(i32* getelementptr ([2 x i32]* @d, i32 0, i32 1)) ; returns 1
%e = call i1 @baz(void ()* @e) ; returns 1
%f = call i1 @baz(void ()* @f) ; returns 0
%g = call i1 @baz(void ()* @g) ; returns 1
ret void

}

FaultMaps and implicit checks

• Motivation

• The Fault Map Section

• The ImplicitNullChecks pass

– make.implicit metadata

Motivation

Code generated by managed language runtimes tend to have checks that are required for safety but never fail in practice.
In such cases, it is profitable to make the non-failing case cheaper even if it makes the failing case significantly more
expensive. This asymmetry can be exploited by folding such safety checks into operations that can be made to fault
reliably if the check would have failed, and recovering from such a fault by using a signal handler.

For example, Java requires null checks on objects before they are read from or written to. If the object is null then
a NullPointerException has to be thrown, interrupting normal execution. In practice, however, dereferencing
a null pointer is extremely rare in well-behaved Java programs, and typically the null check can be folded into a
nearby memory operation that operates on the same memory location.
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The Fault Map Section

Information about implicit checks generated by LLVM are put in a special “fault map” section. On Darwin this section
is named __llvm_faultmaps.

The format of this section is

Header {
uint8 : Fault Map Version (current version is 1)
uint8 : Reserved (expected to be 0)
uint16 : Reserved (expected to be 0)

}
uint32 : NumFunctions
FunctionInfo[NumFunctions] {

uint64 : FunctionAddress
uint32 : NumFaultingPCs
uint32 : Reserved (expected to be 0)
FunctionFaultInfo[NumFaultingPCs] {
uint32 : FaultKind = FaultMaps::FaultingLoad (only legal value currently)
uint32 : FaultingPCOffset
uint32 : HandlerPCOffset

}
}

The ImplicitNullChecks pass

The ImplicitNullChecks pass transforms explicit control flow for checking if a pointer is null, like:

%ptr = call i32* @get_ptr()
%ptr_is_null = icmp i32* %ptr, null
br i1 %ptr_is_null, label %is_null, label %not_null, !make.implicit !0

not_null:
%t = load i32, i32* %ptr
br label %do_something_with_t

is_null:
call void @HFC()
unreachable

!0 = !{}

to control flow implicit in the instruction loading or storing through the pointer being null checked:

%ptr = call i32* @get_ptr()
%t = load i32, i32* %ptr ;; handler-pc = label %is_null
br label %do_something_with_t

is_null:
call void @HFC()
unreachable

This transform happens at the MachineInstr level, not the LLVM IR level (so the above exam-
ple is only representative, not literal). The ImplicitNullChecks pass runs during codegen, if
-enable-implicit-null-checks is passed to llc.

The ImplicitNullChecks pass adds entries to the __llvm_faultmaps section described above as needed.
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make.implicit metadata

Making null checks implicit is an aggressive optimization, and it can be a net performance pessimization if too many
memory operations end up faulting because of it. A language runtime typically needs to ensure that only a negligible
number of implicit null checks actually fault once the application has reached a steady state. A standard way of doing
this is by healing failed implicit null checks into explicit null checks via code patching or recompilation. It follows
that there are two requirements an explicit null check needs to satisfy for it to be profitable to convert it to an implicit
null check:

1. The case where the pointer is actually null (i.e. the “failing” case) is extremely rare.

2. The failing path heals the implicit null check into an explicit null check so that the application does not repeatedly
page fault.

The frontend is expected to mark branches that satisfy (1) and (2) using a !make.implicit metadata node (the
actual content of the metadata node is ignored). Only branches that are marked with !make.implicit metadata
are considered as candidates for conversion into implicit null checks.

(Note that while we could deal with (1) using profiling data, dealing with (2) requires some information not present in
branch profiles.)
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* Register Operands

· Register Flags

· Subregister Indices

* Global Value Operands

Warning: This is a work in progress.

Introduction

This document is a reference manual for the Machine IR (MIR) serialization format. MIR is a human readable
serialization format that is used to represent LLVM’s machine specific intermediate representation.

The MIR serialization format is designed to be used for testing the code generation passes in LLVM.

Overview

The MIR serialization format uses a YAML container. YAML is a standard data serialization language, and the full
YAML language spec can be read at yaml.org.

A MIR file is split up into a series of YAML documents. The first document can contain an optional embedded LLVM
IR module, and the rest of the documents contain the serialized machine functions.

MIR Testing Guide

You can use the MIR format for testing in two different ways:

• You can write MIR tests that invoke a single code generation pass using the run-pass option in llc.

• You can use llc’s stop-after option with existing or new LLVM assembly tests and check the MIR output
of a specific code generation pass.

Testing Individual Code Generation Passes

The run-pass option in llc allows you to create MIR tests that invoke just a single code generation pass. When this
option is used, llc will parse an input MIR file, run the specified code generation pass, and print the resulting MIR to
the standard output stream.

You can generate an input MIR file for the test by using the stop-after option in llc. For example, if you would
like to write a test for the post register allocation pseudo instruction expansion pass, you can specify the machine copy
propagation pass in the stop-after option, as it runs just before the pass that we are trying to test:

llc -stop-after machine-cp bug-trigger.ll > test.mir

After generating the input MIR file, you’ll have to add a run line that uses the -run-pass option to it. In order to
test the post register allocation pseudo instruction expansion pass on X86-64, a run line like the one shown below can
be used:

# RUN: llc -run-pass postrapseudos -march=x86-64 %s -o /dev/null |
FileCheck %s
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The MIR files are target dependent, so they have to be placed in the target specific test directories. They also need to
specify a target triple or a target architecture either in the run line or in the embedded LLVM IR module.

Limitations

Currently the MIR format has several limitations in terms of which state it can serialize:

• The target-specific state in the target-specific MachineFunctionInfo subclasses isn’t serialized at the mo-
ment.

• The target-specific MachineConstantPoolValue subclasses (in the ARM and SystemZ backends) aren’t
serialized at the moment.

• The MCSymbol machine operands are only printed, they can’t be parsed.

• A lot of the state in MachineModuleInfo isn’t serialized - only the CFI instructions and the variable debug
information from MMI is serialized right now.

These limitations impose restrictions on what you can test with the MIR format. For now, tests that would like to test
some behaviour that depends on the state of certain MCSymbol operands or the exception handling state in MMI,
can’t use the MIR format. As well as that, tests that test some behaviour that depends on the state of the target
specific MachineFunctionInfo or MachineConstantPoolValue subclasses can’t use the MIR format at
the moment.

High Level Structure

Embedded Module

When the first YAML document contains a YAML block literal string, the MIR parser will treat this string as an LLVM
assembly language string that represents an embedded LLVM IR module. Here is an example of a YAML document
that contains an LLVM module:

define i32 @inc(i32* %x) {
entry:

%0 = load i32, i32* %x
%1 = add i32 %0, 1
store i32 %1, i32* %x
ret i32 %1

}

Machine Functions

The remaining YAML documents contain the machine functions. This is an example of such YAML document:

---
name: inc
tracksRegLiveness: true
liveins:

- { reg: '%rdi' }
body: |

bb.0.entry:
liveins: %rdi

%eax = MOV32rm %rdi, 1, _, 0, _
%eax = INC32r killed %eax, implicit-def dead %eflags
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MOV32mr killed %rdi, 1, _, 0, _, %eax
RETQ %eax

...

The document above consists of attributes that represent the various properties and data structures in a machine func-
tion.

The attribute name is required, and its value should be identical to the name of a function that this machine function
is based on.

The attribute body is a YAML block literal string. Its value represents the function’s machine basic blocks and their
machine instructions.

Machine Instructions Format Reference

The machine basic blocks and their instructions are represented using a custom, human readable serialization language.
This language is used in the YAML block literal string that corresponds to the machine function’s body.

A source string that uses this language contains a list of machine basic blocks, which are described in the section
below.

Machine Basic Blocks

A machine basic block is defined in a single block definition source construct that contains the block’s ID. The example
below defines two blocks that have an ID of zero and one:

bb.0:
<instructions>

bb.1:
<instructions>

A machine basic block can also have a name. It should be specified after the ID in the block’s definition:

bb.0.entry: ; This block's name is "entry"
<instructions>

The block’s name should be identical to the name of the IR block that this machine block is based on.

Block References

The machine basic blocks are identified by their ID numbers. Individual blocks are referenced using the following
syntax:

%bb.<id>[.<name>]

Examples:

%bb.0
%bb.1.then
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Successors

The machine basic block’s successors have to be specified before any of the instructions:

bb.0.entry:
successors: %bb.1.then, %bb.2.else
<instructions>

bb.1.then:
<instructions>

bb.2.else:
<instructions>

The branch weights can be specified in brackets after the successor blocks. The example below defines a block that
has two successors with branch weights of 32 and 16:

bb.0.entry:
successors: %bb.1.then(32), %bb.2.else(16)

Live In Registers

The machine basic block’s live in registers have to be specified before any of the instructions:

bb.0.entry:
liveins: %edi, %esi

The list of live in registers and successors can be empty. The language also allows multiple live in register and
successor lists - they are combined into one list by the parser.

Miscellaneous Attributes

The attributes IsAddressTaken, IsLandingPad and Alignment can be specified in brackets after the block’s
definition:

bb.0.entry (address-taken):
<instructions>

bb.2.else (align 4):
<instructions>

bb.3(landing-pad, align 4):
<instructions>

Machine Instructions

A machine instruction is composed of a name, machine operands, instruction flags, and machine memory operands.

The instruction’s name is usually specified before the operands. The example below shows an instance of the X86
RETQ instruction with a single machine operand:

RETQ %eax

However, if the machine instruction has one or more explicitly defined register operands, the instruction’s name has
to be specified after them. The example below shows an instance of the AArch64 LDPXpost instruction with three
defined register operands:
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%sp, %fp, %lr = LDPXpost %sp, 2

The instruction names are serialized using the exact definitions from the target’s *InstrInfo.td files, and they
are case sensitive. This means that similar instruction names like TSTri and tSTRi represent different machine
instructions.

Instruction Flags

The flag frame-setup can be specified before the instruction’s name:

%fp = frame-setup ADDXri %sp, 0, 0

Registers

Registers are one of the key primitives in the machine instructions serialization language. They are primarly used in
the register machine operands, but they can also be used in a number of other places, like the basic block’s live in list.

The physical registers are identified by their name. They use the following syntax:

%<name>

The example below shows three X86 physical registers:

%eax
%r15
%eflags

The virtual registers are identified by their ID number. They use the following syntax:

%<id>

Example:

%0

The null registers are represented using an underscore (‘_‘). They can also be represented using a ‘%noreg‘ named
register, although the former syntax is preferred.

Machine Operands

There are seventeen different kinds of machine operands, and all of them, except the MCSymbol operand, can be
serialized. The MCSymbol operands are just printed out - they can’t be parsed back yet.

Immediate Operands

The immediate machine operands are untyped, 64-bit signed integers. The example below shows an instance of the
X86 MOV32ri instruction that has an immediate machine operand -42:

%eax = MOV32ri -42
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Register Operands

The register primitive is used to represent the register machine operands. The register operands can also have optional
register flags, a subregister index, and a reference to the tied register operand. The full syntax of a register operand is
shown below:

[<flags>] <register> [ :<subregister-idx-name> ] [ (tied-def <tied-op>) ]

This example shows an instance of the X86 XOR32rr instruction that has 5 register operands with different register
flags:

dead %eax = XOR32rr undef %eax, undef %eax, implicit-def dead %eflags, implicit-def
→˓%al

Register Flags

The table below shows all of the possible register flags along with the corresponding internal llvm::RegState
representation:

Flag Internal Value
implicit RegState::Implicit
implicit-def RegState::ImplicitDefine
def RegState::Define
dead RegState::Dead
killed RegState::Kill
undef RegState::Undef
internal RegState::InternalRead
early-clobber RegState::EarlyClobber
debug-use RegState::Debug

Subregister Indices

The register machine operands can reference a portion of a register by using the subregister indices. The example
below shows an instance of the COPY pseudo instruction that uses the X86 sub_8bit subregister index to copy 8
lower bits from the 32-bit virtual register 0 to the 8-bit virtual register 1:

%1 = COPY %0:sub_8bit

The names of the subregister indices are target specific, and are typically defined in the target’s *RegisterInfo.td
file.

Global Value Operands

The global value machine operands reference the global values from the embedded LLVM IR module. The example
below shows an instance of the X86 MOV64rm instruction that has a global value operand named G:

%rax = MOV64rm %rip, 1, _, @G, _

The named global values are represented using an identifier with the ‘@’ prefix. If the identifier doesn’t match the
regular expression [-a-zA-Z$._][-a-zA-Z$._0-9]*, then this identifier must be quoted.
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The unnamed global values are represented using an unsigned numeric value with the ‘@’ prefix, like in the following
examples: @0, @989.

Writing an LLVM Pass Information on how to write LLVM transformations and analyses.

Writing an LLVM Backend Information on how to write LLVM backends for machine targets.

The LLVM Target-Independent Code Generator The design and implementation of the LLVM code generator. Use-
ful if you are working on retargetting LLVM to a new architecture, designing a new codegen pass, or enhancing
existing components.

Machine IR (MIR) Format Reference Manual A reference manual for the MIR serialization format, which is used
to test LLVM’s code generation passes.

TableGen Describes the TableGen tool, which is used heavily by the LLVM code generator.

LLVM Alias Analysis Infrastructure Information on how to write a new alias analysis implementation or how to use
existing analyses.

Garbage Collection with LLVM The interfaces source-language compilers should use for compiling GC’d programs.

Source Level Debugging with LLVM This document describes the design and philosophy behind the LLVM source-
level debugger.

Auto-Vectorization in LLVM This document describes the current status of vectorization in LLVM.

Exception Handling in LLVM This document describes the design and implementation of exception handling in
LLVM.

LLVM bugpoint tool: design and usage Automatic bug finder and test-case reducer description and usage informa-
tion.

LLVM Bitcode File Format This describes the file format and encoding used for LLVM “bc” files.

System Library This document describes the LLVM System Library (lib/System) and how to keep LLVM source
code portable

LLVM Link Time Optimization: Design and Implementation This document describes the interface between LLVM
intermodular optimizer and the linker and its design

The LLVM gold plugin How to build your programs with link-time optimization on Linux.

Debugging JIT-ed Code With GDB How to debug JITed code with GDB.

MCJIT Design and Implementation Describes the inner workings of MCJIT execution engine.

LLVM Branch Weight Metadata Provides information about Branch Prediction Information.

LLVM Block Frequency Terminology Provides information about terminology used in the
BlockFrequencyInfo analysis pass.

Segmented Stacks in LLVM This document describes segmented stacks and how they are used in LLVM.

LLVM’s Optional Rich Disassembly Output This document describes the optional rich disassembly output syntax.

How To Use Attributes Answers some questions about the new Attributes infrastructure.

User Guide for NVPTX Back-end This document describes using the NVPTX back-end to compile GPU kernels.

User Guide for AMDGPU Back-end This document describes how to use the AMDGPU back-end.

Stack maps and patch points in LLVM LLVM support for mapping instruction addresses to the location of values
and allowing code to be patched.

Using ARM NEON instructions in big endian mode LLVM’s support for generating NEON instructions on big en-
dian ARM targets is somewhat nonintuitive. This document explains the implementation and rationale.
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LLVM Code Coverage Mapping Format This describes the format and encoding used for LLVM’s code coverage
mapping.

Garbage Collection Safepoints in LLVM This describes a set of experimental extensions for garbage collection sup-
port.

MergeFunctions pass, how it works Describes functions merging optimization.

Design and Usage of the InAlloca Attribute Description of the inalloca argument attribute.

FaultMaps and implicit checks LLVM support for folding control flow into faulting machine instructions.

Compiling CUDA C/C++ with LLVM LLVM support for CUDA.
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– Copyright

– License

– Patents

Introduction

This document contains the LLVM Developer Policy which defines the project’s policy towards developers and their
contributions. The intent of this policy is to eliminate miscommunication, rework, and confusion that might arise from
the distributed nature of LLVM’s development. By stating the policy in clear terms, we hope each developer can know
ahead of time what to expect when making LLVM contributions. This policy covers all llvm.org subprojects, including
Clang, LLDB, libc++, etc.

This policy is also designed to accomplish the following objectives:

1. Attract both users and developers to the LLVM project.

2. Make life as simple and easy for contributors as possible.

3. Keep the top of Subversion trees as stable as possible.

4. Establish awareness of the project’s copyright, license, and patent policies with contributors to the project.

This policy is aimed at frequent contributors to LLVM. People interested in contributing one-off patches can do so in
an informal way by sending them to the llvm-commits mailing list and engaging another developer to see it through
the process.

Developer Policies

This section contains policies that pertain to frequent LLVM developers. We always welcome one-off patches from
people who do not routinely contribute to LLVM, but we expect more from frequent contributors to keep the system
as efficient as possible for everyone. Frequent LLVM contributors are expected to meet the following requirements in
order for LLVM to maintain a high standard of quality.

Stay Informed

Developers should stay informed by reading at least the “dev” mailing list for the projects you are interested in, such
as llvm-dev for LLVM, cfe-dev for Clang, or lldb-dev for LLDB. If you are doing anything more than just casual work
on LLVM, it is suggested that you also subscribe to the “commits” mailing list for the subproject you’re interested
in, such as llvm-commits, cfe-commits, or lldb-commits. Reading the “commits” list and paying attention to changes
being made by others is a good way to see what other people are interested in and watching the flow of the project as
a whole.

We recommend that active developers register an email account with LLVM Bugzilla and preferably subscribe to the
llvm-bugs email list to keep track of bugs and enhancements occurring in LLVM. We really appreciate people who are
proactive at catching incoming bugs in their components and dealing with them promptly.

Please be aware that all public LLVM mailing lists are public and archived, and that notices of confidentiality or
non-disclosure cannot be respected.

Making and Submitting a Patch

When making a patch for review, the goal is to make it as easy for the reviewer to read it as possible. As such, we
recommend that you:
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1. Make your patch against the Subversion trunk, not a branch, and not an old version of LLVM. This makes it
easy to apply the patch. For information on how to check out SVN trunk, please see the Getting Started Guide.

2. Similarly, patches should be submitted soon after they are generated. Old patches may not apply correctly if the
underlying code changes between the time the patch was created and the time it is applied.

3. Patches should be made with svn diff, or similar. If you use a different tool, make sure it uses the diff
-u format and that it doesn’t contain clutter which makes it hard to read.

4. If you are modifying generated files, such as the top-level configure script, please separate out those changes
into a separate patch from the rest of your changes.

Once your patch is ready, submit it by emailing it to the appropriate project’s commit mailing list (or commit it directly
if applicable). Alternatively, some patches get sent to the project’s development list or component of the LLVM bug
tracker, but the commit list is the primary place for reviews and should generally be preferred.

When sending a patch to a mailing list, it is a good idea to send it as an attachment to the message, not embedded
into the text of the message. This ensures that your mailer will not mangle the patch when it sends it (e.g. by making
whitespace changes or by wrapping lines).

For Thunderbird users: Before submitting a patch, please open Preferences > Advanced > General > Config Edi-
tor, find the key mail.content_disposition_type, and set its value to 1. Without this setting, Thunder-
bird sends your attachment using Content-Disposition: inline rather than Content-Disposition:
attachment. Apple Mail gamely displays such a file inline, making it difficult to work with for reviewers using that
program.

When submitting patches, please do not add confidentiality or non-disclosure notices to the patches themselves. These
notices conflict with the LLVM License and may result in your contribution being excluded.

Code Reviews

LLVM has a code review policy. Code review is one way to increase the quality of software. We generally follow
these policies:

1. All developers are required to have significant changes reviewed before they are committed to the repository.

2. Code reviews are conducted by email on the relevant project’s commit mailing list, or alternatively on the
project’s development list or bug tracker.

3. Code can be reviewed either before it is committed or after. We expect major changes to be reviewed before
being committed, but smaller changes (or changes where the developer owns the component) can be reviewed
after commit.

4. The developer responsible for a code change is also responsible for making all necessary review-related changes.

5. Code review can be an iterative process, which continues until the patch is ready to be committed. Specifically,
once a patch is sent out for review, it needs an explicit “looks good” before it is submitted. Do not assume silent
approval, or request active objections to the patch with a deadline.

Sometimes code reviews will take longer than you would hope for, especially for larger features. Accepted ways to
speed up review times for your patches are:

• Review other people’s patches. If you help out, everybody will be more willing to do the same for you; goodwill
is our currency.

• Ping the patch. If it is urgent, provide reasons why it is important to you to get this patch landed and ping it
every couple of days. If it is not urgent, the common courtesy ping rate is one week. Remember that you’re
asking for valuable time from other professional developers.

• Ask for help on IRC. Developers on IRC will be able to either help you directly, or tell you who might be a good
reviewer.
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• Split your patch into multiple smaller patches that build on each other. The smaller your patch, the higher the
probability that somebody will take a quick look at it.

Developers should participate in code reviews as both reviewers and reviewees. If someone is kind enough to review
your code, you should return the favor for someone else. Note that anyone is welcome to review and give feedback on
a patch, but only people with Subversion write access can approve it.

There is a web based code review tool that can optionally be used for code reviews. See Code Reviews with Phabrica-
tor.

Code Owners

The LLVM Project relies on two features of its process to maintain rapid development in addition to the high quality
of its source base: the combination of code review plus post-commit review for trusted maintainers. Having both is a
great way for the project to take advantage of the fact that most people do the right thing most of the time, and only
commit patches without pre-commit review when they are confident they are right.

The trick to this is that the project has to guarantee that all patches that are committed are reviewed after they go in:
you don’t want everyone to assume someone else will review it, allowing the patch to go unreviewed. To solve this
problem, we have a notion of an ‘owner’ for a piece of the code. The sole responsibility of a code owner is to ensure
that a commit to their area of the code is appropriately reviewed, either by themself or by someone else. The list of
current code owners can be found in the file CODE_OWNERS.TXT in the root of the LLVM source tree.

Note that code ownership is completely different than reviewers: anyone can review a piece of code, and we welcome
code review from anyone who is interested. Code owners are the “last line of defense” to guarantee that all patches
that are committed are actually reviewed.

Being a code owner is a somewhat unglamorous position, but it is incredibly important for the ongoing success of the
project. Because people get busy, interests change, and unexpected things happen, code ownership is purely opt-in,
and anyone can choose to resign their “title” at any time. For now, we do not have an official policy on how one gets
elected to be a code owner.

Test Cases

Developers are required to create test cases for any bugs fixed and any new features added. Some tips for getting your
testcase approved:

• All feature and regression test cases are added to the llvm/test directory. The appropriate sub-directory
should be selected (see the Testing Guide for details).

• Test cases should be written in LLVM assembly language.

• Test cases, especially for regressions, should be reduced as much as possible, by bugpoint or manually. It is
unacceptable to place an entire failing program into llvm/test as this creates a time-to-test burden on all
developers. Please keep them short.

Note that llvm/test and clang/test are designed for regression and small feature tests only. More extensive test cases
(e.g., entire applications, benchmarks, etc) should be added to the llvm-test test suite. The llvm-test suite is for
coverage (correctness, performance, etc) testing, not feature or regression testing.

Quality

The minimum quality standards that any change must satisfy before being committed to the main development branch
are:

1. Code must adhere to the LLVM Coding Standards.
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2. Code must compile cleanly (no errors, no warnings) on at least one platform.

3. Bug fixes and new features should include a testcase so we know if the fix/feature ever regresses in the future.

4. Code must pass the llvm/test test suite.

5. The code must not cause regressions on a reasonable subset of llvm-test, where “reasonable” depends on the
contributor’s judgement and the scope of the change (more invasive changes require more testing). A reasonable
subset might be something like “llvm-test/MultiSource/Benchmarks”.

Additionally, the committer is responsible for addressing any problems found in the future that the change is respon-
sible for. For example:

• The code should compile cleanly on all supported platforms.

• The changes should not cause any correctness regressions in the llvm-test suite and must not cause any
major performance regressions.

• The change set should not cause performance or correctness regressions for the LLVM tools.

• The changes should not cause performance or correctness regressions in code compiled by LLVM on all appli-
cable targets.

• You are expected to address any Bugzilla bugs that result from your change.

We prefer for this to be handled before submission but understand that it isn’t possible to test all of this for every
submission. Our build bots and nightly testing infrastructure normally finds these problems. A good rule of thumb is
to check the nightly testers for regressions the day after your change. Build bots will directly email you if a group of
commits that included yours caused a failure. You are expected to check the build bot messages to see if they are your
fault and, if so, fix the breakage.

Commits that violate these quality standards (e.g. are very broken) may be reverted. This is necessary when the change
blocks other developers from making progress. The developer is welcome to re-commit the change after the problem
has been fixed.

Commit messages

Although we don’t enforce the format of commit messages, we prefer that you follow these guidelines to help review,
search in logs, email formatting and so on. These guidelines are very similar to rules used by other open source
projects.

Most importantly, the contents of the message should be carefully written to convey the rationale of the change (without
delving too much in detail). It also should avoid being vague or overly specific. For example, “bits were not set right”
will leave the reviewer wondering about which bits, and why they weren’t right, while “Correctly set overflow bits in
TargetInfo” conveys almost all there is to the change.

Below are some guidelines about the format of the message itself:

• Separate the commit message into title, body and, if you’re not the original author, a “Patch by” attribution line
(see below).

• The title should be concise. Because all commits are emailed to the list with the first line as the subject, long
titles are frowned upon. Short titles also look better in git log.

• When the changes are restricted to a specific part of the code (e.g. a back-end or optimization pass), it is
customary to add a tag to the beginning of the line in square brackets. For example, “[SCEV] ...” or “[OpenMP]
...”. This helps email filters and searches for post-commit reviews.

• The body, if it exists, should be separated from the title by an empty line.
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• The body should be concise, but explanatory, including a complete reasoning. Unless it is required to understand
the change, examples, code snippets and gory details should be left to bug comments, web review or the mailing
list.

• If the patch fixes a bug in bugzilla, please include the PR# in the message.

• Attribution of Changes should be in a separate line, after the end of the body, as simple as “Patch by John Doe.”.
This is how we officially handle attribution, and there are automated processes that rely on this format.

• Text formatting and spelling should follow the same rules as documentation and in-code comments, ex. capital-
ization, full stop, etc.

• If the commit is a bug fix on top of another recently committed patch, or a revert or reapply of a patch, include
the svn revision number of the prior related commit. This could be as simple as “Revert rNNNN because it
caused PR#”.

For minor violations of these recommendations, the community normally favors reminding the contributor of this
policy over reverting. Minor corrections and omissions can be handled by sending a reply to the commits mailing list.

Obtaining Commit Access

We grant commit access to contributors with a track record of submitting high quality patches. If you would like
commit access, please send an email to Chris with the following information:

1. The user name you want to commit with, e.g. “hacker”.

2. The full name and email address you want message to llvm-commits to come from, e.g. “J. Random Hacker
<hacker@yoyodyne.com>”.

3. A “password hash” of the password you want to use, e.g. “2ACR96qjUqsyM”. Note that you don’t ever tell
us what your password is; you just give it to us in an encrypted form. To get this, run “htpasswd” (a utility
that comes with apache) in crypt mode (often enabled with “-d”), or find a web page that will do it for you.
Note that our system does not work with MD5 hashes. These are significantly longer than a crypt hash - e.g.
“$apr1$vea6bBV2$Z8IFx.AfeD8LhqlZFqJer0”, we only accept the shorter crypt hash.

Once you’ve been granted commit access, you should be able to check out an LLVM tree with an SVN URL of
“https://username@llvm.org/...” instead of the normal anonymous URL of “http://llvm.org/...”. The first time you
commit you’ll have to type in your password. Note that you may get a warning from SVN about an untrusted key; you
can ignore this. To verify that your commit access works, please do a test commit (e.g. change a comment or add a
blank line). Your first commit to a repository may require the autogenerated email to be approved by a mailing list.
This is normal and will be done when the mailing list owner has time.

If you have recently been granted commit access, these policies apply:

1. You are granted commit-after-approval to all parts of LLVM. To get approval, submit a patch to llvm-commits.
When approved, you may commit it yourself.

2. You are allowed to commit patches without approval which you think are obvious. This is clearly a subjective
decision — we simply expect you to use good judgement. Examples include: fixing build breakage, reverting
obviously broken patches, documentation/comment changes, any other minor changes.

3. You are allowed to commit patches without approval to those portions of LLVM that you have contributed or
maintain (i.e., have been assigned responsibility for), with the proviso that such commits must not break the
build. This is a “trust but verify” policy, and commits of this nature are reviewed after they are committed.

4. Multiple violations of these policies or a single egregious violation may cause commit access to be revoked.

In any case, your changes are still subject to code review (either before or after they are committed, depending on the
nature of the change). You are encouraged to review other peoples’ patches as well, but you aren’t required to do so.
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Making a Major Change

When a developer begins a major new project with the aim of contributing it back to LLVM, they should inform the
community with an email to the llvm-dev email list, to the extent possible. The reason for this is to:

1. keep the community informed about future changes to LLVM,

2. avoid duplication of effort by preventing multiple parties working on the same thing and not knowing about it,
and

3. ensure that any technical issues around the proposed work are discussed and resolved before any significant
work is done.

The design of LLVM is carefully controlled to ensure that all the pieces fit together well and are as consistent as
possible. If you plan to make a major change to the way LLVM works or want to add a major new extension, it is a
good idea to get consensus with the development community before you start working on it.

Once the design of the new feature is finalized, the work itself should be done as a series of incremental changes, not
as a long-term development branch.

Incremental Development

In the LLVM project, we do all significant changes as a series of incremental patches. We have a strong dislike for
huge changes or long-term development branches. Long-term development branches have a number of drawbacks:

1. Branches must have mainline merged into them periodically. If the branch development and mainline develop-
ment occur in the same pieces of code, resolving merge conflicts can take a lot of time.

2. Other people in the community tend to ignore work on branches.

3. Huge changes (produced when a branch is merged back onto mainline) are extremely difficult to code review.

4. Branches are not routinely tested by our nightly tester infrastructure.

5. Changes developed as monolithic large changes often don’t work until the entire set of changes is done. Breaking
it down into a set of smaller changes increases the odds that any of the work will be committed to the main
repository.

To address these problems, LLVM uses an incremental development style and we require contributors to follow this
practice when making a large/invasive change. Some tips:

• Large/invasive changes usually have a number of secondary changes that are required before the big change can
be made (e.g. API cleanup, etc). These sorts of changes can often be done before the major change is done,
independently of that work.

• The remaining inter-related work should be decomposed into unrelated sets of changes if possible. Once this is
done, define the first increment and get consensus on what the end goal of the change is.

• Each change in the set can be stand alone (e.g. to fix a bug), or part of a planned series of changes that works
towards the development goal.

• Each change should be kept as small as possible. This simplifies your work (into a logical progression), simpli-
fies code review and reduces the chance that you will get negative feedback on the change. Small increments
also facilitate the maintenance of a high quality code base.

• Often, an independent precursor to a big change is to add a new API and slowly migrate clients to use the
new API. Each change to use the new API is often “obvious” and can be committed without review. Once
the new API is in place and used, it is much easier to replace the underlying implementation of the API. This
implementation change is logically separate from the API change.

If you are interested in making a large change, and this scares you, please make sure to first discuss the change/gather
consensus then ask about the best way to go about making the change.
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Attribution of Changes

When contributors submit a patch to an LLVM project, other developers with commit access may commit it for the
author once appropriate (based on the progression of code review, etc.). When doing so, it is important to retain correct
attribution of contributions to their contributors. However, we do not want the source code to be littered with random
attributions “this code written by J. Random Hacker” (this is noisy and distracting). In practice, the revision control
system keeps a perfect history of who changed what, and the CREDITS.txt file describes higher-level contributions.
If you commit a patch for someone else, please follow the attribution of changes in the simple manner as outlined by
the commit messages section. Overall, please do not add contributor names to the source code.

Also, don’t commit patches authored by others unless they have submitted the patch to the project or you have been
authorized to submit them on their behalf (you work together and your company authorized you to contribute the
patches, etc.). The author should first submit them to the relevant project’s commit list, development list, or LLVM
bug tracker component. If someone sends you a patch privately, encourage them to submit it to the appropriate list
first.

IR Backwards Compatibility

When the IR format has to be changed, keep in mind that we try to maintain some backwards compatibility. The rules
are intended as a balance between convenience for llvm users and not imposing a big burden on llvm developers:

• The textual format is not backwards compatible. We don’t change it too often, but there are no specific promises.

• Additions and changes to the IR should be reflected in test/Bitcode/compatibility.ll.

• The bitcode format produced by a X.Y release will be readable by all following X.Z releases and the (X+1).0
release.

• After each X.Y release, compatibility.ll must be copied to compatibility-X.Y.ll. The corre-
sponding bitcode file should be assembled using the X.Y build and committed as compatibility-X.Y.
ll.bc.

• Newer releases can ignore features from older releases, but they cannot miscompile them. For example, if nsw
is ever replaced with something else, dropping it would be a valid way to upgrade the IR.

• Debug metadata is special in that it is currently dropped during upgrades.

• Non-debug metadata is defined to be safe to drop, so a valid way to upgrade it is to drop it. That is not very user
friendly and a bit more effort is expected, but no promises are made.

C API Changes

• Stability Guarantees: The C API is, in general, a “best effort” for stability. This means that we make every
attempt to keep the C API stable, but that stability will be limited by the abstractness of the interface and the
stability of the C++ API that it wraps. In practice, this means that things like “create debug info” or “create this
type of instruction” are likely to be less stable than “take this IR file and JIT it for my current machine”.

• Release stability: We won’t break the C API on the release branch with patches that go on that branch, with
the exception that we will fix an unintentional C API break that will keep the release consistent with both the
previous and next release.

• Testing: Patches to the C API are expected to come with tests just like any other patch.

• Including new things into the API: If an LLVM subcomponent has a C API already included, then expanding
that C API is acceptable. Adding C API for subcomponents that don’t currently have one needs to be discussed
on the mailing list for design and maintainability feedback prior to implementation.

• Documentation: Any changes to the C API are required to be documented in the release notes so that it’s clear
to external users who do not follow the project how the C API is changing and evolving.
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Copyright, License, and Patents

Note: This section deals with legal matters but does not provide legal advice. We are not lawyers — please seek legal
counsel from an attorney.

This section addresses the issues of copyright, license and patents for the LLVM project. The copyright for the code
is held by the individual contributors of the code and the terms of its license to LLVM users and developers is the
University of Illinois/NCSA Open Source License (with portions dual licensed under the MIT License, see below). As
contributor to the LLVM project, you agree to allow any contributions to the project to licensed under these terms.

Copyright

The LLVM project does not require copyright assignments, which means that the copyright for the code in the project
is held by its respective contributors who have each agreed to release their contributed code under the terms of the
LLVM License.

An implication of this is that the LLVM license is unlikely to ever change: changing it would require tracking down
all the contributors to LLVM and getting them to agree that a license change is acceptable for their contribution. Since
there are no plans to change the license, this is not a cause for concern.

As a contributor to the project, this means that you (or your company) retain ownership of the code you contribute,
that it cannot be used in a way that contradicts the license (which is a liberal BSD-style license), and that the license
for your contributions won’t change without your approval in the future.

License

We intend to keep LLVM perpetually open source and to use a liberal open source license. As a contributor to the
project, you agree that any contributions be licensed under the terms of the corresponding subproject. All of
the code in LLVM is available under the University of Illinois/NCSA Open Source License, which boils down to this:

• You can freely distribute LLVM.

• You must retain the copyright notice if you redistribute LLVM.

• Binaries derived from LLVM must reproduce the copyright notice (e.g. in an included readme file).

• You can’t use our names to promote your LLVM derived products.

• There’s no warranty on LLVM at all.

We believe this fosters the widest adoption of LLVM because it allows commercial products to be derived from
LLVM with few restrictions and without a requirement for making any derived works also open source (i.e. LLVM’s
license is not a “copyleft” license like the GPL). We suggest that you read the License if further clarification is needed.

In addition to the UIUC license, the runtime library components of LLVM (compiler_rt, libc++, and libclc) are also
licensed under the MIT License, which does not contain the binary redistribution clause. As a user of these runtime
libraries, it means that you can choose to use the code under either license (and thus don’t need the binary redistribution
clause), and as a contributor to the code that you agree that any contributions to these libraries be licensed under both
licenses. We feel that this is important for runtime libraries, because they are implicitly linked into applications and
therefore should not subject those applications to the binary redistribution clause. This also means that it is ok to move
code from (e.g.) libc++ to the LLVM core without concern, but that code cannot be moved from the LLVM core to
libc++ without the copyright owner’s permission.

Note that the LLVM Project does distribute dragonegg, which is GPL. This means that anything “linked” into drag-
onegg must itself be compatible with the GPL, and must be releasable under the terms of the GPL. This implies that
any code linked into dragonegg and distributed to others may be subject to the viral aspects of the GPL (for
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example, a proprietary code generator linked into dragonegg must be made available under the GPL). This is not a
problem for code already distributed under a more liberal license (like the UIUC license), and GPL-containing sub-
projects are kept in separate SVN repositories whose LICENSE.txt files specifically indicate that they contain GPL
code.

We have no plans to change the license of LLVM. If you have questions or comments about the license, please contact
the LLVM Developer’s Mailing List.

Patents

To the best of our knowledge, LLVM does not infringe on any patents (we have actually removed code from LLVM in
the past that was found to infringe). Having code in LLVM that infringes on patents would violate an important goal
of the project by making it hard or impossible to reuse the code for arbitrary purposes (including commercial use).

When contributing code, we expect contributors to notify us of any potential for patent-related trouble with their
changes (including from third parties). If you or your employer own the rights to a patent and would like to contribute
code to LLVM that relies on it, we require that the copyright owner sign an agreement that allows any other user of
LLVM to freely use your patent. Please contact the LLVM Foundation Board of Directors for more details.

Creating an LLVM Project

• Overview

• Source Tree Layout

• Writing LLVM Style Makefiles

– Required Variables

– Variables for Building Subdirectories

– Variables for Building Libraries

– Variables for Building Programs

– Miscellaneous Variables

• Placement of Object Code

• Further Help

Overview

The LLVM build system is designed to facilitate the building of third party projects that use LLVM header files,
libraries, and tools. In order to use these facilities, a Makefile from a project must do the following things:

• Set make variables. There are several variables that a Makefile needs to set to use the LLVM build system:

– PROJECT_NAME - The name by which your project is known.

– LLVM_SRC_ROOT - The root of the LLVM source tree.

– LLVM_OBJ_ROOT - The root of the LLVM object tree.

– PROJ_SRC_ROOT - The root of the project’s source tree.

– PROJ_OBJ_ROOT - The root of the project’s object tree.
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– PROJ_INSTALL_ROOT - The root installation directory.

– LEVEL - The relative path from the current directory to the project’s root ($PROJ_OBJ_ROOT).

• Include Makefile.config from $(LLVM_OBJ_ROOT).

• Include Makefile.rules from $(LLVM_SRC_ROOT).

There are two ways that you can set all of these variables:

• You can write your own Makefiles which hard-code these values.

• You can use the pre-made LLVM sample project. This sample project includes Makefiles, a configure script
that can be used to configure the location of LLVM, and the ability to support multiple object directories from a
single source directory.

If you want to devise your own build system, studying other projects and LLVM Makefiles will probably provide
enough information on how to write your own Makefiles.

Source Tree Layout

In order to use the LLVM build system, you will want to organize your source code so that it can benefit from the build
system’s features. Mainly, you want your source tree layout to look similar to the LLVM source tree layout.

Underneath your top level directory, you should have the following directories:

lib

This subdirectory should contain all of your library source code. For each library that you build, you will
have one directory in lib that will contain that library’s source code.

Libraries can be object files, archives, or dynamic libraries. The lib directory is just a convenient place
for libraries as it places them all in a directory from which they can be linked later.

include

This subdirectory should contain any header files that are global to your project. By global, we mean that
they are used by more than one library or executable of your project.

By placing your header files in include, they will be found automatically by the LLVM build system. For
example, if you have a file include/jazz/note.h, then your source files can include it simply with #include
“jazz/note.h”.

tools

This subdirectory should contain all of your source code for executables. For each program that you build,
you will have one directory in tools that will contain that program’s source code.

test

This subdirectory should contain tests that verify that your code works correctly. Automated tests are
especially useful.

Currently, the LLVM build system provides basic support for tests. The LLVM system provides the
following:

• LLVM contains regression tests in llvm/test. These tests are run by the Lit testing tool. This test procedure
uses RUN lines in the actual test case to determine how to run the test. See the LLVM Testing Infrastructure
Guide for more details.

• LLVM contains an optional package called llvm-test, which provides benchmarks and programs that are
known to compile with the Clang front end. You can use these programs to test your code, gather statistical
information, and compare it to the current LLVM performance statistics.
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Currently, there is no way to hook your tests directly into the llvm/test testing harness. You will simply
need to find a way to use the source provided within that directory on your own.

Typically, you will want to build your lib directory first followed by your tools directory.

Writing LLVM Style Makefiles

The LLVM build system provides a convenient way to build libraries and executables. Most of your project Makefiles
will only need to define a few variables. Below is a list of the variables one can set and what they can do:

Required Variables

LEVEL

This variable is the relative path from this Makefile to the top directory of your project’s source code.
For example, if your source code is in /tmp/src, then the Makefile in /tmp/src/jump/high
would set LEVEL to "../..".

Variables for Building Subdirectories

DIRS

This is a space separated list of subdirectories that should be built. They will be built, one at a time, in the
order specified.

PARALLEL_DIRS

This is a list of directories that can be built in parallel. These will be built after the directories in DIRS
have been built.

OPTIONAL_DIRS

This is a list of directories that can be built if they exist, but will not cause an error if they do not exist.
They are built serially in the order in which they are listed.

Variables for Building Libraries

LIBRARYNAME

This variable contains the base name of the library that will be built. For example, to build a library named
libsample.a, LIBRARYNAME should be set to sample.

BUILD_ARCHIVE

By default, a library is a .o file that is linked directly into a program. To build an archive (also known as
a static library), set the BUILD_ARCHIVE variable.

SHARED_LIBRARY

If SHARED_LIBRARY is defined in your Makefile, a shared (or dynamic) library will be built.

Variables for Building Programs

TOOLNAME

This variable contains the name of the program that will be built. For example, to build an executable
named sample, TOOLNAME should be set to sample.
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USEDLIBS

This variable holds a space separated list of libraries that should be linked into the program. These
libraries must be libraries that come from your lib directory. The libraries must be specified without their
lib prefix. For example, to link libsample.a, you would set USEDLIBS to sample.a.

Note that this works only for statically linked libraries.

LLVMLIBS

This variable holds a space separated list of libraries that should be linked into the program. These
libraries must be LLVM libraries. The libraries must be specified without their lib prefix. For ex-
ample, to link with a driver that performs an IR transformation you might set LLVMLIBS to this min-
imal set of libraries LLVMSupport.a LLVMCore.a LLVMBitReader.a LLVMAsmParser.a
LLVMAnalysis.a LLVMTransformUtils.a LLVMScalarOpts.a LLVMTarget.a.

Note that this works only for statically linked libraries. LLVM is split into a large number of static
libraries, and the list of libraries you require may be much longer than the list above. To see a full
list of libraries use: llvm-config --libs all. Using LINK_COMPONENTS as described below,
obviates the need to set LLVMLIBS.

LINK_COMPONENTS

This variable holds a space separated list of components that the LLVM Makefiles pass to the
llvm-config tool to generate a link line for the program. For example, to link with all LLVM li-
braries use LINK_COMPONENTS = all.

LIBS

To link dynamic libraries, add -l<library base name> to the LIBS variable. The LLVM build
system will look in the same places for dynamic libraries as it does for static libraries.

For example, to link libsample.so, you would have the following line in your Makefile:

LIBS += -lsample

Note that LIBS must occur in the Makefile after the inclusion of Makefile.common.

Miscellaneous Variables

CFLAGS & CPPFLAGS

This variable can be used to add options to the C and C++ compiler, respectively. It is typically used to
add options that tell the compiler the location of additional directories to search for header files.

It is highly suggested that you append to CFLAGS and CPPFLAGS as opposed to overwriting them. The
master Makefiles may already have useful options in them that you may not want to overwrite.

Placement of Object Code

The final location of built libraries and executables will depend upon whether you do a Debug, Release, or
Profile build.

Libraries

All libraries (static and dynamic) will be stored in PROJ_OBJ_ROOT/<type>/lib, where type is
Debug, Release, or Profile for a debug, optimized, or profiled build, respectively.

Executables
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All executables will be stored in PROJ_OBJ_ROOT/<type>/bin, where type is Debug, Release,
or Profile for a debug, optimized, or profiled build, respectively.

Further Help

If you have any questions or need any help creating an LLVM project, the LLVM team would be more than happy to
help. You can always post your questions to the LLVM Developers Mailing List.

LLVMBuild Guide

• Introduction

• Project Organization

• Build Integration

• Component Overview

• LLVMBuild Format Reference

Introduction

This document describes the LLVMBuild organization and files which we use to describe parts of the LLVM ecosys-
tem. For description of specific LLVMBuild related tools, please see the command guide.

LLVM is designed to be a modular set of libraries which can be flexibly mixed together in order to build a variety of
tools, like compilers, JITs, custom code generators, optimization passes, interpreters, and so on. Related projects in
the LLVM system like Clang and LLDB also tend to follow this philosophy.

In order to support this usage style, LLVM has a fairly strict structure as to how the source code and various components
are organized. The LLVMBuild.txt files are the explicit specification of that structure, and are used by the build
systems and other tools in order to develop the LLVM project.

Project Organization

The source code for LLVM projects using the LLVMBuild system (LLVM, Clang, and LLDB) is organized into
components, which define the separate pieces of functionality that make up the project. These projects may consist of
many libraries, associated tools, build tools, or other utility tools (for example, testing tools).

For the most part, the project contents are organized around defining one main component per each subdirectory. Each
such directory contains an LLVMBuild.txt which contains the component definitions.

The component descriptions for the project as a whole are automatically gathered by the LLVMBuild tools. The
tools automatically traverse the source directory structure to find all of the component description files. NOTE: For
performance/sanity reasons, we only traverse into subdirectories when the parent itself contains an LLVMBuild.txt
description file.

Build Integration

The LLVMBuild files themselves are just a declarative way to describe the project structure. The actual building of
the LLVM project is handled by another build system (See: CMake).
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The build system implementation will load the relevant contents of the LLVMBuild files and use that to drive the
actual project build. Typically, the build system will only need to load this information at “configure” time, and use it
to generative native information. Build systems will also handle automatically reconfiguring their information when
the contents of the LLVMBuild.txt files change.

Developers generally are not expected to need to be aware of the details of how the LLVMBuild system is integrated
into their build. Ideally, LLVM developers who are not working on the build system would only ever need to modify
the contents of the LLVMBuild.txt description files (although we have not reached this goal yet).

For more information on the utility tool we provide to help interfacing with the build system, please see the llvm-build
documentation.

Component Overview

As mentioned earlier, LLVM projects are organized into logical components. Every component is typically grouped
into its own subdirectory. Generally, a component is organized around a coherent group of sources which have some
kind of clear API separation from other parts of the code.

LLVM primarily uses the following types of components:

• Libraries - Library components define a distinct API which can be independently linked into LLVM client
applications. Libraries typically have private and public header files, and may specify a link of required libraries
that they build on top of.

• Build Tools - Build tools are applications which are designed to be run as part of the build process (typically to
generate other source files). Currently, LLVM uses one main build tool called TableGen to generate a variety of
source files.

• Tools - Command line applications which are built using the LLVM component libraries. Most LLVM tools are
small and are primarily frontends to the library interfaces.

Components are described using LLVMBuild.txt files in the directories that define the component. See the LLVM-
Build Format Reference section for information on the exact format of these files.

LLVMBuild Format Reference

LLVMBuild files are written in a simple variant of the INI or configuration file format (Wikipedia entry). The format
defines a list of sections each of which may contain some number of properties. A simple example of the file format
is below:

; Comments start with a semi-colon.

; Sections are declared using square brackets.
[component_0]

; Properties are declared using '=' and are contained in the previous section.
;
; We support simple string and boolean scalar values and list values, where
; items are separated by spaces. There is no support for quoting, and so
; property values may not contain spaces.
property_name = property_value
list_property_name = value_1 value_2 ... value_n
boolean_property_name = 1 (or 0)

LLVMBuild files are expected to define a strict set of sections and properties. A typical component description file for
a library component would look like the following example:
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[component_0]
type = Library
name = Linker
parent = Libraries
required_libraries = Archive BitReader Core Support TransformUtils

A full description of the exact sections and properties which are allowed follows.

Each file may define exactly one common component, named common. The common component may define the
following properties:

• subdirectories [optional]

If given, a list of the names of the subdirectories from the current subpath to search for additional LLVMBuild
files.

Each file may define multiple components. Each component is described by a section who name starts with
component. The remainder of the section name is ignored, but each section name must be unique. Typically
components are just number in order for files with multiple components (component_0, component_1, and so
on).

Warning: Section names not matching this format (or the common section) are currently unused and are disal-
lowed.

Every component is defined by the properties in the section. The exact list of properties that are allowed depends on
the component type. Components may not define any properties other than those expected by the component type.

Every component must define the following properties:

• type [required]

The type of the component. Supported component types are detailed below. Most components will define
additional properties which may be required or optional.

• name [required]

The name of the component. Names are required to be unique across the entire project.

• parent [required]

The name of the logical parent of the component. Components are organized into a logical tree to make it easier
to navigate and organize groups of components. The parents have no semantics as far as the project build is
concerned, however. Typically, the parent will be the main component of the parent directory.

Components may reference the root pseudo component using $ROOT to indicate they should logically be
grouped at the top-level.

Components may define the following properties:

• dependencies [optional]

If specified, a list of names of components which must be built prior to this one. This should only be exactly
those components which produce some tool or source code required for building the component.

Note: Group and LibraryGroup components have no semantics for the actual build, and are not allowed
to specify dependencies.

The following section lists the available component types, as well as the properties which are associated with that
component.
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• type = Group

Group components exist purely to allow additional arbitrary structuring of the logical components tree. For
example, one might define a Libraries group to hold all of the root library components.

Group components have no additionally properties.

• type = Library

Library components define an individual library which should be built from the source code in the component
directory.

Components with this type use the following properties:

– library_name [optional]

If given, the name to use for the actual library file on disk. If not given, the name is derived from the
component name itself.

– required_libraries [optional]

If given, a list of the names of Library or LibraryGroup components which must also be linked in
whenever this library is used. That is, the link time dependencies for this component. When tools are built,
the build system will include the transitive closure of all required_libraries for the components
the tool needs.

– add_to_library_groups [optional]

If given, a list of the names of LibraryGroup components which this component is also part of. This
allows nesting groups of components. For example, the X86 target might define a library group for all of
the X86 components. That library group might then be included in the all-targets library group.

– installed [optional] [boolean]

Whether this library is installed. Libraries that are not installed are only reported by llvm-config when
it is run as part of a development directory.

• type = LibraryGroup

LibraryGroup components are a mechanism to allow easy definition of useful sets of related components.
In particular, we use them to easily specify things like “all targets”, or “all assembly printers”.

Components with this type use the following properties:

– required_libraries [optional]

See the Library type for a description of this property.

– add_to_library_groups [optional]

See the Library type for a description of this property.

• type = TargetGroup

TargetGroup components are an extension of LibraryGroups, specifically for defining LLVM targets
(which are handled specially in a few places).

The name of the component should always be the name of the target.

Components with this type use the LibraryGroup properties in addition to:

– has_asmparser [optional] [boolean]

Whether this target defines an assembly parser.

– has_asmprinter [optional] [boolean]

Whether this target defines an assembly printer.
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– has_disassembler [optional] [boolean]

Whether this target defines a disassembler.

– has_jit [optional] [boolean]

Whether this target supports JIT compilation.

• type = Tool

Tool components define standalone command line tools which should be built from the source code in the
component directory and linked.

Components with this type use the following properties:

– required_libraries [optional]

If given, a list of the names of Library or LibraryGroup components which this tool is required to
be linked with.

Note: The values should be the component names, which may not always match up with the actual library
names on disk.

Build systems are expected to properly include all of the libraries required by the linked components (i.e.,
the transitive closure of required_libraries).

Build systems are also expected to understand that those library components must be built prior to linking
– they do not also need to be listed under dependencies.

• type = BuildTool

BuildTool components are like Tool components, except that the tool is supposed to be built for the platform
where the build is running (instead of that platform being targeted). Build systems are expected to handle the
fact that required libraries may need to be built for multiple platforms in order to be able to link this tool.

BuildTool components currently use the exact same properties as Tool components, the type distinction is
only used to differentiate what the tool is built for.

How To Release LLVM To The Public

• Introduction

• Release Timeline

• Release Process

Introduction

This document contains information about successfully releasing LLVM — including subprojects: e.g., clang and
dragonegg — to the public. It is the Release Manager’s responsibility to ensure that a high quality build of LLVM
is released.

If you’re looking for the document on how to test the release candidates and create the binary packages, please refer
to the How To Validate a New Release instead.
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Release Timeline

LLVM is released on a time based schedule — with major releases roughly every 6 months. In between major releases
there may be dot releases. The release manager will determine if and when to make a dot release based on feedback
from the community. Typically, dot releases should be made if there are large number of bug-fixes in the stable branch
or a critical bug has been discovered that affects a large number of users.

Unless otherwise stated, dot releases will follow the same procedure as major releases.

The release process is roughly as follows:

• Set code freeze and branch creation date for 6 months after last code freeze date. Announce release schedule to
the LLVM community and update the website.

• Create release branch and begin release process.

• Send out release candidate sources for first round of testing. Testing lasts 7-10 days. During the first round of
testing, any regressions found should be fixed. Patches are merged from mainline into the release branch. Also,
all features need to be completed during this time. Any features not completed at the end of the first round of
testing will be removed or disabled for the release.

• Generate and send out the second release candidate sources. Only critial bugs found during this testing phase
will be fixed. Any bugs introduced by merged patches will be fixed. If so a third round of testing is needed.

• The release notes are updated.

• Finally, release!

The release process will be accelerated for dot releases. If the first round of testing finds no critical bugs and no
regressions since the last major release, then additional rounds of testing will not be required.

Release Process

• Release Administrative Tasks

– Create Release Branch

– Update LLVM Version

– Tagging the LLVM Release Candidates

• Building the Release

– Build LLVM

– Build Clang Binary Distribution

– Target Specific Build Details

• Release Qualification Criteria

– Qualify LLVM

– Qualify Clang

– Specific Target Qualification Details

• Community Testing

• Release Patch Rules

– Merging Patches
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• Release Final Tasks

– Update Documentation

– Tag the LLVM Final Release

• Update the LLVM Demo Page

– Update the LLVM Website

– Announce the Release

Release Administrative Tasks

This section describes a few administrative tasks that need to be done for the release process to begin. Specifically, it
involves:

• Creating the release branch,

• Setting version numbers, and

• Tagging release candidates for the release team to begin testing.

Create Release Branch

Branch the Subversion trunk using the following procedure:

1. Remind developers that the release branching is imminent and to refrain from committing patches that might
break the build. E.g., new features, large patches for works in progress, an overhaul of the type system, an
exciting new TableGen feature, etc.

2. Verify that the current Subversion trunk is in decent shape by examining nightly tester and buildbot results.

3. Create the release branch for llvm, clang, the test-suite, and dragonegg from the last known good
revision. The branch’s name is release_XY, where X is the major and Y the minor release numbers. The
branches should be created using the following commands:

$ svn copy https://llvm.org/svn/llvm-project/llvm/trunk \
https://llvm.org/svn/llvm-project/llvm/branches/release_XY

$ svn copy https://llvm.org/svn/llvm-project/cfe/trunk \
https://llvm.org/svn/llvm-project/cfe/branches/release_XY

$ svn copy https://llvm.org/svn/llvm-project/dragonegg/trunk \
https://llvm.org/svn/llvm-project/dragonegg/branches/release_XY

$ svn copy https://llvm.org/svn/llvm-project/test-suite/trunk \
https://llvm.org/svn/llvm-project/test-suite/branches/release_XY

4. Advise developers that they may now check their patches into the Subversion tree again.

5. The Release Manager should switch to the release branch, because all changes to the release will now be done
in the branch. The easiest way to do this is to grab a working copy using the following commands:

$ svn co https://llvm.org/svn/llvm-project/llvm/branches/release_XY llvm-X.Y

$ svn co https://llvm.org/svn/llvm-project/cfe/branches/release_XY clang-X.Y

$ svn co https://llvm.org/svn/llvm-project/dragonegg/branches/release_XY
→˓dragonegg-X.Y
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$ svn co https://llvm.org/svn/llvm-project/test-suite/branches/release_XY test-
→˓suite-X.Y

Update LLVM Version

After creating the LLVM release branch, update the release branches’ autoconf and configure.ac versions
from ‘X.Ysvn‘ to ‘X.Y‘. Update it on mainline as well to be the next version (‘X.Y+1svn‘). Regenerate the
configure scripts for both llvm and the test-suite.

In addition, the version numbers of all the Bugzilla components must be updated for the next release.

Tagging the LLVM Release Candidates

Tag release candidates using the tag.sh script in utils/release.

$ ./tag.sh -release X.Y.Z -rc $RC

The Release Manager may supply pre-packaged source tarballs for users. This can be done with the export.sh script
in utils/release.

$ ./export.sh -release X.Y.Z -rc $RC

This will generate source tarballs for each LLVM project being validated, which can be uploaded to the website for
further testing.

Building the Release

The builds of llvm, clang, and dragonegg must be free of errors and warnings in Debug, Release+Asserts, and
Release builds. If all builds are clean, then the release passes Build Qualification.

The make options for building the different modes:

Mode Options
Debug ENABLE_OPTIMIZED=0
Release+Asserts ENABLE_OPTIMIZED=1
Release ENABLE_OPTIMIZED=1 DISABLE_ASSERTIONS=1

Build LLVM

Build Debug, Release+Asserts, and Release versions of llvm on all supported platforms. Directions to build
llvm are here.

Build Clang Binary Distribution

Creating the clang binary distribution (Debug/Release+Asserts/Release) requires performing the following steps for
each supported platform:

1. Build clang according to the directions here.

2. Build both a Debug and Release version of clang. The binary will be the Release build.
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3. Package clang (details to follow).

Target Specific Build Details

The table below specifies which compilers are used for each Arch/OS combination when qualifying the build of llvm,
clang, and dragonegg.

Architecture OS compiler
x86-32 Mac OS 10.5 gcc 4.0.1
x86-32 Linux gcc 4.2.X, gcc 4.3.X
x86-32 FreeBSD gcc 4.2.X
x86-32 mingw gcc 3.4.5
x86-64 Mac OS 10.5 gcc 4.0.1
x86-64 Linux gcc 4.2.X, gcc 4.3.X
x86-64 FreeBSD gcc 4.2.X
ARMv7 Linux gcc 4.6.X, gcc 4.7.X

Release Qualification Criteria

A release is qualified when it has no regressions from the previous release (or baseline). Regressions are related to
correctness first and performance second. (We may tolerate some minor performance regressions if they are deemed
necessary for the general quality of the compiler.)

Regressions are new failures in the set of tests that are used to qualify each product and only include things on
the list. Every release will have some bugs in it. It is the reality of developing a complex piece of software. We
need a very concrete and definitive release criteria that ensures we have monotonically improving quality on
some metric. The metric we use is described below. This doesn’t mean that we don’t care about other criteria,
but these are the criteria which we found to be most important and which must be satisfied before a release can
go out.

Qualify LLVM

LLVM is qualified when it has a clean test run without a front-end. And it has no regressions when using either clang
or dragonegg with the test-suite from the previous release.

Qualify Clang

Clang is qualified when front-end specific tests in the llvm regression test suite all pass, clang’s own test suite passes
cleanly, and there are no regressions in the test-suite.
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Specific Target Qualification Details

Architec-
ture

OS clang
baseline

tests

x86-32 Linux last release llvm regression tests, clang regression tests, test-suite (including
spec)

x86-32 FreeBSD last release llvm regression tests, clang regression tests, test-suite
x86-32 mingw none QT
x86-64 Mac OS

10.X
last release llvm regression tests, clang regression tests, test-suite (including

spec)
x86-64 Linux last release llvm regression tests, clang regression tests, test-suite (including

spec)
x86-64 FreeBSD last release llvm regression tests, clang regression tests, test-suite
ARMv7A Linux last release llvm regression tests, clang regression tests, test-suite

Community Testing

Once all testing has been completed and appropriate bugs filed, the release candidate tarballs are put on the website
and the LLVM community is notified. Ask that all LLVM developers test the release in 2 ways:

1. Download llvm-X.Y, llvm-test-X.Y, and the appropriate clang binary. Build LLVM. Run make
check and the full LLVM test suite (make TEST=nightly report).

2. Download llvm-X.Y, llvm-test-X.Y, and the clang sources. Compile everything. Run make check
and the full LLVM test suite (make TEST=nightly report).

Ask LLVM developers to submit the test suite report and make check results to the list. Verify that there are no
regressions from the previous release. The results are not used to qualify a release, but to spot other potential problems.
For unsupported targets, verify that make check is at least clean.

During the first round of testing, all regressions must be fixed before the second release candidate is tagged.

If this is the second round of testing, the testing is only to ensure that bug fixes previously merged in have not created
new major problems. This is not the time to solve additional and unrelated bugs! If no patches are merged in, the
release is determined to be ready and the release manager may move onto the next stage.

Release Patch Rules

Below are the rules regarding patching the release branch:

1. Patches applied to the release branch may only be applied by the release manager.

2. During the first round of testing, patches that fix regressions or that are small and relatively risk free (verified
by the appropriate code owner) are applied to the branch. Code owners are asked to be very conservative in
approving patches for the branch. We reserve the right to reject any patch that does not fix a regression as
previously defined.

3. During the remaining rounds of testing, only patches that fix critical regressions may be applied.

4. For dot releases all patches must maintain both API and ABI compatibility with the previous major release.
Only bugfixes will be accepted.
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Merging Patches

The utils/release/merge.sh script can be used to merge individual revisions into any one of the llvm projects.
To merge revision $N into project $PROJ, do:

1. svn co https://llvm.org/svn/llvm-project/$PROJ/branches/release_XX $PROJ.
src

2. $PROJ.src/utils/release/merge.sh --proj $PROJ --rev $N

3. Run regression tests.

4. cd $PROJ.src. Run the svn commit command printed out by merge.sh in step 2.

Release Final Tasks

The final stages of the release process involves tagging the “final” release branch, updating documentation that refers
to the release, and updating the demo page.

Update Documentation

Review the documentation and ensure that it is up to date. The “Release Notes” must be updated to reflect new
features, bug fixes, new known issues, and changes in the list of supported platforms. The “Getting Started Guide”
should be updated to reflect the new release version number tag available from Subversion and changes in basic system
requirements. Merge both changes from mainline into the release branch.

Tag the LLVM Final Release

Tag the final release sources using the tag.sh script in utils/release.

$ ./tag.sh -release X.Y.Z -final

Update the LLVM Demo Page

The LLVM demo page must be updated to use the new release. This consists of using the new clang binary and
building LLVM.

Update the LLVM Website

The website must be updated before the release announcement is sent out. Here is what to do:

1. Check out the www module from Subversion.

2. Create a new subdirectory X.Y in the releases directory.

3. Commit the llvm, test-suite, clang source, clang binaries, dragonegg source, and
dragonegg binaries in this new directory.

4. Copy and commit the llvm/docs and LICENSE.txt files into this new directory. The docs should be built
with BUILD_FOR_WEBSITE=1.

5. Commit the index.html to the release/X.Y directory to redirect (use from previous release).

6. Update the releases/download.html file with the new release.
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7. Update the releases/index.html with the new release and link to release documentation.

8. Finally, update the main page (index.html and sidebar) to point to the new release and release announcement.
Make sure this all gets committed back into Subversion.

Announce the Release

Have Chris send out the release announcement when everything is finished.

Advice on Packaging LLVM

• Overview

• Compile Flags

• C++ Features

• Shared Library

• Dependencies

Overview

LLVM sets certain default configure options to make sure our developers don’t break things for constrained platforms.
These settings are not optimal for most desktop systems, and we hope that packagers (e.g., Redhat, Debian, MacPorts,
etc.) will tweak them. This document lists settings we suggest you tweak.

LLVM’s API changes with each release, so users are likely to want, for example, both LLVM-2.6 and LLVM-2.7
installed at the same time to support apps developed against each.

Compile Flags

LLVM runs much more quickly when it’s optimized and assertions are removed. However, such a build is currently
incompatible with users who build without defining NDEBUG, and the lack of assertions makes it hard to debug
problems in user code. We recommend allowing users to install both optimized and debug versions of LLVM in
parallel. The following configure flags are relevant:

--disable-assertions Builds LLVM with NDEBUG defined. Changes the LLVM ABI. Also available by
setting DISABLE_ASSERTIONS=0|1 in make‘s environment. This defaults to enabled regardless of the
optimization setting, but it slows things down.

--enable-debug-symbols Builds LLVM with -g. Also available by setting DEBUG_SYMBOLS=0|1 in
make‘s environment. This defaults to disabled when optimizing, so you should turn it back on to let users
debug their programs.

--enable-optimized (For svn checkouts) Builds LLVM with -O2 and, by default, turns off debug symbols.
Also available by setting ENABLE_OPTIMIZED=0|1 in make‘s environment. This defaults to enabled when
not in a checkout.
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C++ Features

RTTI LLVM disables RTTI by default. Add REQUIRES_RTTI=1 to your environment while running make to
re-enable it. This will allow users to build with RTTI enabled and still inherit from LLVM classes.

Shared Library

Configure with --enable-shared to build libLLVM-<major>.<minor>.(so|dylib) and link the tools
against it. This saves lots of binary size at the cost of some startup time.

Dependencies

--enable-libffi Depend on libffi to allow the LLVM interpreter to call external functions.

--with-oprofile

Depend on libopagent (>=version 0.9.4) to let the LLVM JIT tell oprofile about function addresses and
line numbers.

How To Validate a New Release

• Introduction

• Scripts

• Test Suite

• Pre-Release Process

• Release Process

• Bug Reporting Process

Introduction

This document contains information about testing the release candidates that will ultimately be the next LLVM release.
For more information on how to manage the actual release, please refer to How To Release LLVM To The Public.

Overview of the Release Process

Once the release process starts, the Release Manager will ask for volunteers, and it’ll be the role of each volunteer to:

• Test and benchmark the previous release

• Test and benchmark each release candidate, comparing to the previous release and candidates

• Identify, reduce and report every regression found during tests and benchmarks

• Make sure the critical bugs get fixed and merged to the next release candidate
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Not all bugs or regressions are show-stoppers and it’s a bit of a grey area what should be fixed before the next candidate
and what can wait until the next release.

It’ll depend on:

• The severity of the bug, how many people it affects and if it’s a regression or a known bug. Known bugs are
“unsupported features” and some bugs can be disabled if they have been implemented recently.

• The stage in the release. Less critical bugs should be considered to be fixed between RC1 and RC2, but not so
much at the end of it.

• If it’s a correctness or a performance regression. Performance regression tends to be taken more lightly than
correctness.

Scripts

The scripts are in the utils/release directory.

test-release.sh

This script will check-out, configure and compile LLVM+Clang (+ most add-ons, like compiler-rt, libcxx,
libomp and clang-extra-tools) in three stages, and will test the final stage. It’ll have installed the final
binaries on the Phase3/Releasei(+Asserts) directory, and that’s the one you should use for the test-suite and other
external tests.

To run the script on a specific release candidate run:

./test-release.sh \
-release 3.3 \
-rc 1 \
-no-64bit \
-test-asserts \
-no-compare-files

Each system will require different options. For instance, x86_64 will obviously not need -no-64bit while 32-bit
systems will, or the script will fail.

The important flags to get right are:

• On the pre-release, you should change -rc 1 to -final. On RC2, change it to -rc 2 and so on.

• On non-release testing, you can use -final in conjunction with -no-checkout, but you’ll have to create
the final directory by hand and link the correct source dir to final/llvm.src.

• For release candidates, you need -test-asserts, or it won’t create a “Release+Asserts” directory, which is
needed for release testing and benchmarking. This will take twice as long.

• On the final candidate you just need Release builds, and that’s the binary directory you’ll have to pack.

This script builds three phases of Clang+LLVM twice each (Release and Release+Asserts), so use screen or nohup to
avoid headaches, since it’ll take a long time.

Use the --help option to see all the options and chose it according to your needs.

findRegressions-nightly.py

TODO
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Test Suite

Follow the LNT Quick Start Guide link on how to set-up the test-suite

The binary location you’ll have to use for testing is inside the rcN/Phase3/Release+Asserts/
llvmCore-REL-RC.install. Link that directory to an easier location and run the test-suite.

An example on the run command line, assuming you created a link from the correct install directory to ~/devel/
llvm/install:

./sandbox/bin/python sandbox/bin/lnt runtest \
nt \
-j4 \
--sandbox sandbox \
--test-suite ~/devel/llvm/test/test-suite \
--cc ~/devel/llvm/install/bin/clang \
--cxx ~/devel/llvm/install/bin/clang++

It should have no new regressions, compared to the previous release or release candidate. You don’t need to fix all the
bugs in the test-suite, since they’re not necessarily meant to pass on all architectures all the time. This is due to the
nature of the result checking, which relies on direct comparison, and most of the time, the failures are related to bad
output checking, rather than bad code generation.

If the errors are in LLVM itself, please report every single regression found as blocker, and all the other bugs as
important, but not necessarily blocking the release to proceed. They can be set as “known failures” and to be fix on a
future date.

Pre-Release Process

When the release process is announced on the mailing list, you should prepare for the testing, by applying the same
testing you’ll do on the release candidates, on the previous release.

You should:

• Download the previous release sources from http://llvm.org/releases/download.html.

• Run the test-release.sh script on final mode (change -rc 1 to -final).

• Once all three stages are done, it’ll test the final stage.

• Using the Phase3/Release+Asserts/llvmCore-MAJ.MIN-final.install base, run the test-
suite.

If the final phase’s make check-all failed, it’s a good idea to also test the intermediate stages by going on the obj
directory and running make check-all to find if there’s at least one stage that passes (helps when reducing the
error for bug report purposes).

Release Process

When the Release Manager sends you the release candidate, download all sources, unzip on the same directory (there
will be sym-links from the appropriate places to them), and run the release test as above.

You should:

• Download the current candidate sources from where the release manager points you (ex. http://llvm.org/
pre-releases/3.3/rc1/).

• Repeat the steps above with -rc 1, -rc 2 etc modes and run the test-suite the same way.

1240 Chapter 5. Development Process Documentation

http://llvm.org/docs/lnt/quickstart.html
http://llvm.org/releases/download.html
http://llvm.org/pre-releases/3.3/rc1/
http://llvm.org/pre-releases/3.3/rc1/


LLVM Documentation, Release 3.9

• Compare the results, report all errors on Bugzilla and publish the binary blob where the release manager can
grab it.

Once the release manages announces that the latest candidate is the good one, you have to pack the Release (no
Asserts) install directory on Phase3 and that will be the official binary.

• Rename (or link) clang+llvm-REL-ARCH-ENV to the .install directory

• Tar that into the same name with .tar.gz extensioan from outside the directory

• Make it available for the release manager to download

Bug Reporting Process

If you found regressions or failures when comparing a release candidate with the previous release, follow the rules
below:

• Critical bugs on compilation should be fixed as soon as possible, possibly before releasing the binary blobs.

• Check-all tests should be fixed before the next release candidate, but can wait until the test-suite run is finished.

• Bugs in the test suite or unimportant check-all tests can be fixed in between release candidates.

• New features or recent big changes, when close to the release, should have done in a way that it’s easy to disable.
If they misbehave, prefer disabling them than releasing an unstable (but untested) binary package.

LLVM Developer Policy The LLVM project’s policy towards developers and their contributions.

Creating an LLVM Project How-to guide and templates for new projects that use the LLVM infrastructure. The
templates (directory organization, Makefiles, and test tree) allow the project code to be located outside (or
inside) the llvm/ tree, while using LLVM header files and libraries.

LLVMBuild Guide Describes the LLVMBuild organization and files used by LLVM to specify component descrip-
tions.

How To Release LLVM To The Public This is a guide to preparing LLVM releases. Most developers can ignore it.

How To Validate a New Release This is a guide to validate a new release, during the release process. Most developers
can ignore it.

Advice on Packaging LLVM Advice on packaging LLVM into a distribution.

Code Reviews with Phabricator Describes how to use the Phabricator code review tool hosted on http://reviews.llvm.
org/ and its command line interface, Arcanist.

5.6. How To Validate a New Release 1241

http://reviews.llvm.org/
http://reviews.llvm.org/


LLVM Documentation, Release 3.9

1242 Chapter 5. Development Process Documentation



CHAPTER 6

Community

LLVM has a thriving community of friendly and helpful developers. The two primary communication mechanisms in
the LLVM community are mailing lists and IRC.

Mailing Lists

If you can’t find what you need in these docs, try consulting the mailing lists.

Developer’s List (llvm-dev) This list is for people who want to be included in technical discussions of LLVM. People
post to this list when they have questions about writing code for or using the LLVM tools. It is relatively low
volume.

Commits Archive (llvm-commits) This list contains all commit messages that are made when LLVM developers
commit code changes to the repository. It also serves as a forum for patch review (i.e. send patches here). It is
useful for those who want to stay on the bleeding edge of LLVM development. This list is very high volume.

Bugs & Patches Archive (llvm-bugs) This list gets emailed every time a bug is opened and closed. It is higher
volume than the LLVM-dev list.

Test Results Archive (llvm-testresults) A message is automatically sent to this list by every active nightly tester
when it completes. As such, this list gets email several times each day, making it a high volume list.

LLVM Announcements List (llvm-announce) This is a low volume list that provides important announcements re-
garding LLVM. It gets email about once a month.

IRC

Users and developers of the LLVM project (including subprojects such as Clang) can be found in #llvm on irc.oftc.net.

This channel has several bots.

• Buildbot reporters

– llvmbb - Bot for the main LLVM buildbot master. http://lab.llvm.org:8011/console
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– bb-chapuni - An individually run buildbot master. http://bb.pgr.jp/console

– smooshlab - Apple’s internal buildbot master.

• robot - Bugzilla linker. %bug <number>

• clang-bot - A geordi instance running near-trunk clang instead of gcc.
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Index

Symbols
–check-prefix prefix

command line option, 266
–check-prefixes prefix1,prefix2,...

command line option, 266
–config-prefix=NAME

command line option, 275
–debug

command line option, 276
–debug-syms, -a

llvm-nm command line option, 245
–defined-only

llvm-nm command line option, 245
–disable-excess-fp-precision

command line option, 234
–disable-fp-elim

command line option, 234
–dynamic, -D

llvm-nm command line option, 245
–enable-no-infs-fp-math

command line option, 234
–enable-no-nans-fp-math

command line option, 234
–enable-unsafe-fp-math

command line option, 234
–extern-only, -g

llvm-nm command line option, 245
–format=format, -f format

llvm-nm command line option, 245
–help

llvm-cov-gcov command line option, 249
–implicit-check-not check-pattern

command line option, 266
–input-file filename

command line option, 266
–load=<dso_path>

command line option, 235
–match-full-lines

command line option, 266

–max-tests=N
command line option, 276

–max-time=N
command line option, 276

–no-progress-bar
command line option, 275

–no-sort, -p
llvm-nm command line option, 245

–numeric-sort, -n, -v
llvm-nm command line option, 245

–path=PATH
command line option, 275

–print-file-name, -A, -o
llvm-nm command line option, 245

–print-machineinstrs
command line option, 235

–print-size, -S
llvm-nm command line option, 245

–radix=RADIX, -t
llvm-nm command line option, 245

–regalloc=<allocator>
command line option, 235

–show-suites
command line option, 276

–show-tests
command line option, 276

–show-unsupported
command line option, 275

–show-xfail
command line option, 275

–shuffle
command line option, 276

–size-sort
llvm-nm command line option, 245

–spiller=<spiller>
command line option, 235

–stats
command line option, 234

–strict-whitespace
command line option, 266
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–time-passes
command line option, 235

–time-tests
command line option, 275

–undefined-only, -u
llvm-nm command line option, 245

–vg
command line option, 275

–vg-arg=ARG
command line option, 275

–vg-leak
command line option, 275

–x86-asm-syntax=[att|intel]
command line option, 235

-B (default)
llvm-nm command line option, 245

-D NAME, -D NAME=VALUE, –param NAME, –param
NAME=VALUE

command line option, 275
-I directory

tblgen command line option, 273
-O=uint

command line option, 234
-P

llvm-nm command line option, 245
-S

command line option, 232, 239
-Xdemangler=<TOOL>|<TOOL-OPTION>

llvm-cov-show command line option, 251
-{passname}

command line option, 232
-a, –all-blocks

llvm-cov-gcov command line option, 249
-a, –show-all

command line option, 275
-all-functions

llvm-profdata-show command line option, 254
-arch=<name>

llvm-cov-report command line option, 252
llvm-cov-show command line option, 251

-asmparsernum N
tblgen command line option, 273

-asmwriternum N
tblgen command line option, 273

-b, –branch-probabilities
llvm-cov-gcov command line option, 249

-binary (default)
llvm-profdata-merge command line option, 253

-c, –branch-counts
llvm-cov-gcov command line option, 249

-class className
tblgen command line option, 273

-code-model=model
command line option, 237

-counts
llvm-profdata-show command line option, 254

-d
command line option, 239

-debug
command line option, 233

-debug-dump=section
command line option, 257

-default-arch
command line option, 257

-demangle
command line option, 257

-disable-excess-fp-precision
command line option, 237

-disable-inlining
command line option, 232

-disable-opt
command line option, 232

-disable-post-RA-scheduler
command line option, 237

-disable-spill-fusing
command line option, 237

-dsym-hint=<path/to/file.dSYM>
command line option, 257

-dump
llvm-bcanalyzer command line option, 262

-dyn-symbols
command line option, 282

-dynamic-table
command line option, 282

-elf-section-groups, -g
command line option, 282

-enable-no-infs-fp-math
command line option, 237

-enable-no-nans-fp-math
command line option, 237

-enable-unsafe-fp-math
command line option, 237

-expand-relocs
command line option, 282

-f
command line option, 232, 239

-f, –function-summaries
llvm-cov-gcov command line option, 249

-fake-argv0=executable
command line option, 236

-file-headers, -h
command line option, 281

-filetype=<output file type>
command line option, 234

-force-interpreter={false,true}
command line option, 236

-format=<FORMAT>
llvm-cov-show command line option, 251
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-function=string
llvm-profdata-show command line option, 254

-functions=[none|short|linkage]
command line option, 257

-gcc
llvm-profdata-merge command line option, 253

-gen-asm-matcher
tblgen command line option, 273

-gen-asm-writer
tblgen command line option, 273

-gen-dag-isel
tblgen command line option, 273

-gen-dfa-packetizer
tblgen command line option, 273

-gen-disassembler
tblgen command line option, 273

-gen-emitter
tblgen command line option, 273

-gen-enhanced-disassembly-info
tblgen command line option, 274

-gen-fast-isel
tblgen command line option, 273

-gen-instr-info
tblgen command line option, 273

-gen-intrinsic
tblgen command line option, 274

-gen-pseudo-lowering
tblgen command line option, 273

-gen-register-info
tblgen command line option, 273

-gen-subtarget
tblgen command line option, 273

-gen-tgt-intrinsic
tblgen command line option, 274

-h, –help
command line option, 274

-help
command line option, 232, 234, 236, 239, 266, 281
llvm-bcanalyzer command line option, 262
llvm-nm command line option, 245
llvm-profdata-merge command line option, 253
llvm-profdata-show command line option, 254
tblgen command line option, 273

-inlining
command line option, 257

-input-files=path, -f=path
llvm-profdata-merge command line option, 253

-instr (default)
llvm-profdata-merge command line option, 253
llvm-profdata-show command line option, 254

-j N, –threads=N
command line option, 274

-jit-enable-eh
command line option, 237

-join-liveintervals
command line option, 237

-l, –long-file-names
llvm-cov-gcov command line option, 250

-line-coverage-gt=<N>
llvm-cov-show command line option, 251

-line-coverage-lt=<N>
llvm-cov-show command line option, 251

-load=<plugin>
command line option, 233

-load=pluginfilename
command line option, 236

-march=<arch>
command line option, 234

-march=arch
command line option, 236

-mattr=a1,+a2,-a3,...
command line option, 234, 237

-mcpu=<cpuname>
command line option, 234

-mcpu=cpuname
command line option, 237

-meabi=[default|gnu|4|5]
command line option, 235

-mtriple=<target triple>
command line option, 234

-mtriple=target triple
command line option, 236

-n, –no-output
llvm-cov-gcov command line option, 250

-name-regex=<PATTERN>
llvm-cov-show command line option, 251

-name=<NAME>
llvm-cov-show command line option, 251

-needed-libs
command line option, 282

-nodetails
llvm-bcanalyzer command line option, 262

-nozero-initialized-in-bss
command line option, 237

-o <filename>
command line option, 232

-o filename
command line option, 239, 255
tblgen command line option, 273

-o=<DIR|FILE>, –object-directory=<DIR>, –object-
file=<FILE>

llvm-cov-gcov command line option, 250
-obj

command line option, 257
-output-dir=PATH

llvm-cov-show command line option, 251
-output=output, -o=output

llvm-profdata-merge command line option, 253
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llvm-profdata-show command line option, 254
-p

command line option, 233
-p, –preserve-paths

llvm-cov-gcov command line option, 250
-pre-RA-sched=scheduler

command line option, 237
-pretty-print

command line option, 257
-print-address

command line option, 257
-print-enums

tblgen command line option, 273
-print-records

tblgen command line option, 273
-print-sets

tblgen command line option, 273
-program-headers

command line option, 282
-q, –quiet

command line option, 275
-regalloc=allocator

command line option, 238
-region-coverage-gt=<N>

llvm-cov-show command line option, 251
-region-coverage-lt=<N>

llvm-cov-show command line option, 251
-relocation-model=model

command line option, 238
-relocations, -r

command line option, 281
-s, –succinct

command line option, 275
-sample

llvm-profdata-merge command line option, 253
llvm-profdata-show command line option, 255

-section-data, -sd
command line option, 281

-section-relocations, -sr
command line option, 281

-section-symbols, -st
command line option, 281

-sections, -s
command line option, 281

-seed seed
command line option, 255

-show-expansions
llvm-cov-show command line option, 251

-show-instantiations
llvm-cov-show command line option, 251

-show-line-counts
llvm-cov-show command line option, 251

-show-line-counts-or-regions
llvm-cov-show command line option, 251

-show-regions
llvm-cov-show command line option, 251

-size size
command line option, 255

-soft-float
command line option, 237

-sparse[=true|false]
llvm-profdata-merge command line option, 253

-spiller
command line option, 238

-stats
command line option, 233, 236

-strip-debug
command line option, 232

-symbols, -t
command line option, 281

-text
llvm-profdata-merge command line option, 253
llvm-profdata-show command line option, 254

-time-passes
command line option, 233, 236

-u, –unconditional-branches
llvm-cov-gcov command line option, 250

-unwind, -u
command line option, 282

-use-color[=VALUE]
llvm-cov-report command line option, 252
llvm-cov-show command line option, 251

-use-symbol-table
command line option, 257

-v
command line option, 239

-v, –verbose
command line option, 275

-verify
llvm-bcanalyzer command line option, 262

-verify-each
command line option, 233

-version
command line option, 236, 267, 281
llvm-cov-gcov command line option, 250
tblgen command line option, 274

-weighted-input=weight,filename
llvm-profdata-merge command line option, 253

-x86-asm-syntax=syntax
command line option, 238

C
command line option

–check-prefix prefix, 266
–check-prefixes prefix1,prefix2,..., 266
–config-prefix=NAME, 275
–debug, 276
–disable-excess-fp-precision, 234
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–disable-fp-elim, 234
–enable-no-infs-fp-math, 234
–enable-no-nans-fp-math, 234
–enable-unsafe-fp-math, 234
–implicit-check-not check-pattern, 266
–input-file filename, 266
–load=<dso_path>, 235
–match-full-lines, 266
–max-tests=N, 276
–max-time=N, 276
–no-progress-bar, 275
–path=PATH, 275
–print-machineinstrs, 235
–regalloc=<allocator>, 235
–show-suites, 276
–show-tests, 276
–show-unsupported, 275
–show-xfail, 275
–shuffle, 276
–spiller=<spiller>, 235
–stats, 234
–strict-whitespace, 266
–time-passes, 235
–time-tests, 275
–vg, 275
–vg-arg=ARG, 275
–vg-leak, 275
–x86-asm-syntax=[att|intel], 235
-D NAME, -D NAME=VALUE, –param NAME, –

param NAME=VALUE, 275
-O=uint, 234
-S, 232, 239
-{passname}, 232
-a, –show-all, 275
-code-model=model, 237
-d, 239
-debug, 233
-debug-dump=section, 257
-default-arch, 257
-demangle, 257
-disable-excess-fp-precision, 237
-disable-inlining, 232
-disable-opt, 232
-disable-post-RA-scheduler, 237
-disable-spill-fusing, 237
-dsym-hint=<path/to/file.dSYM>, 257
-dyn-symbols, 282
-dynamic-table, 282
-elf-section-groups, -g, 282
-enable-no-infs-fp-math, 237
-enable-no-nans-fp-math, 237
-enable-unsafe-fp-math, 237
-expand-relocs, 282
-f, 232, 239

-fake-argv0=executable, 236
-file-headers, -h, 281
-filetype=<output file type>, 234
-force-interpreter={false,true}, 236
-functions=[none|short|linkage], 257
-h, –help, 274
-help, 232, 234, 236, 239, 266, 281
-inlining, 257
-j N, –threads=N, 274
-jit-enable-eh, 237
-join-liveintervals, 237
-load=<plugin>, 233
-load=pluginfilename, 236
-march=<arch>, 234
-march=arch, 236
-mattr=a1,+a2,-a3,..., 234, 237
-mcpu=<cpuname>, 234
-mcpu=cpuname, 237
-meabi=[default|gnu|4|5], 235
-mtriple=<target triple>, 234
-mtriple=target triple, 236
-needed-libs, 282
-nozero-initialized-in-bss, 237
-o <filename>, 232
-o filename, 239, 255
-obj, 257
-p, 233
-pre-RA-sched=scheduler, 237
-pretty-print, 257
-print-address, 257
-program-headers, 282
-q, –quiet, 275
-regalloc=allocator, 238
-relocation-model=model, 238
-relocations, -r, 281
-s, –succinct, 275
-section-data, -sd, 281
-section-relocations, -sr, 281
-section-symbols, -st, 281
-sections, -s, 281
-seed seed, 255
-size size, 255
-soft-float, 237
-spiller, 238
-stats, 233, 236
-strip-debug, 232
-symbols, -t, 281
-time-passes, 233, 236
-unwind, -u, 282
-use-symbol-table, 257
-v, 239
-v, –verbose, 275
-verify-each, 233
-version, 236, 267, 281
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-x86-asm-syntax=syntax, 238

L
llvm-bcanalyzer command line option

-dump, 262
-help, 262
-nodetails, 262
-verify, 262

llvm-cov-gcov command line option
–help, 249
-a, –all-blocks, 249
-b, –branch-probabilities, 249
-c, –branch-counts, 249
-f, –function-summaries, 249
-l, –long-file-names, 250
-n, –no-output, 250
-o=<DIR|FILE>, –object-directory=<DIR>, –

object-file=<FILE>, 250
-p, –preserve-paths, 250
-u, –unconditional-branches, 250
-version, 250

llvm-cov-report command line option
-arch=<name>, 252
-use-color[=VALUE], 252

llvm-cov-show command line option
-Xdemangler=<TOOL>|<TOOL-OPTION>, 251
-arch=<name>, 251
-format=<FORMAT>, 251
-line-coverage-gt=<N>, 251
-line-coverage-lt=<N>, 251
-name-regex=<PATTERN>, 251
-name=<NAME>, 251
-output-dir=PATH, 251
-region-coverage-gt=<N>, 251
-region-coverage-lt=<N>, 251
-show-expansions, 251
-show-instantiations, 251
-show-line-counts, 251
-show-line-counts-or-regions, 251
-show-regions, 251
-use-color[=VALUE], 251

llvm-nm command line option
–debug-syms, -a, 245
–defined-only, 245
–dynamic, -D, 245
–extern-only, -g, 245
–format=format, -f format, 245
–no-sort, -p, 245
–numeric-sort, -n, -v, 245
–print-file-name, -A, -o, 245
–print-size, -S, 245
–radix=RADIX, -t, 245
–size-sort, 245
–undefined-only, -u, 245

-B (default), 245
-P, 245
-help, 245

llvm-profdata-merge command line option
-binary (default), 253
-gcc, 253
-help, 253
-input-files=path, -f=path, 253
-instr (default), 253
-output=output, -o=output, 253
-sample, 253
-sparse[=true|false], 253
-text, 253
-weighted-input=weight,filename, 253

llvm-profdata-show command line option
-all-functions, 254
-counts, 254
-function=string, 254
-help, 254
-instr (default), 254
-output=output, -o=output, 254
-sample, 255
-text, 254

T
tblgen command line option

-I directory, 273
-asmparsernum N, 273
-asmwriternum N, 273
-class className, 273
-gen-asm-matcher, 273
-gen-asm-writer, 273
-gen-dag-isel, 273
-gen-dfa-packetizer, 273
-gen-disassembler, 273
-gen-emitter, 273
-gen-enhanced-disassembly-info, 274
-gen-fast-isel, 273
-gen-instr-info, 273
-gen-intrinsic, 274
-gen-pseudo-lowering, 273
-gen-register-info, 273
-gen-subtarget, 273
-gen-tgt-intrinsic, 274
-help, 273
-o filename, 273
-print-enums, 273
-print-records, 273
-print-sets, 273
-version, 274
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